Information Sciences 548 (2021) 295-312

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins .

Fusion of heterogeneous attention mechanisms in multi-view 7))
convolutional neural network for text classification T

Yunji Liang **, Huihui Li? Bin Guo?, Zhiwen Yu?, Xiaolong Zheng ™%, Sagar Samtani®,

Daniel D. Zeng ™

2School of Computer Science, Northwestern Polytechnical Univeristy, Xi'an, ShaanXi, China

bState Key Laboratory of Management and Control for Complex Systems, Institute of Automation Chinese Academy of Sciences, Beijing, China
¢ Operations and Decision Technologies Department, Kelley School of Business, Indiana University, USA

dUniversity of Chinese Academy of Sciences, Beijing, China

ARTICLE INFO

ABSTRACT

Article history:

Received 7 March 2020

Received in revised form 10 October 2020
Accepted 12 October 2020

Available online 17 October 2020

Keywords:

View attention

Spatial attention

Multi-view representation
Series and parallel connection
Conventional neural network
Text classification

The rapid proliferation of user generated content has given rise to large volumes of text cor-
pora. Increasingly, scholars, researchers, and organizations employ text classification to mine
novel insights for high-impact applications. Despite their prevalence, conventional text classi-
fication methods rely on labor-intensive feature engineering efforts that are task specific, omit
long-term relationships, and are not suitable for the rapidly evolving domains. While an
increasing body of deep learning and attention mechanism literature aim to address these
issues, extant methods often represent text as a single view and omit multiple sets of features
at varying levels of granularity. Recognizing that these issues often result in performance
degradations, we propose a novel Spatial View Attention Convolutional Neural Network
(SVA-CNN). SVA-CNN leverages an innovative and carefully designed set of multi-view repre-
sentation learning, a combination of heterogeneous attention mechanisms and CNN-based
operations to automatically extract and weight multiple granularities and fine-grained repre-
sentations. Rigorously evaluating SVA-CNN against prevailing text classification methods on
five large-scale benchmark datasets indicates its ability to outperform extant deep learning-
based classification methods in both performance and training time for document classifica-
tion, sentiment analysis, and thematic identification applications. To facilitate model repro-
ducibility and extensions, SVA-CNN’s source code is also available via GitHub.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The rapid proliferation of user generated content has given rise to large volumes of text corpora. Increasingly, researchers,
scholars, and organizations are employing natural language processing (NLP) to mine novel insights from news sources,
social media, and other forms of computer mediated communication. A prevailing NLP task is machine learning-based text
classification. To date, text classification has been successfully applied in many high-impact applications including sentiment
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analysis [1,2], illegal sales detection [3,4], early screening of mental health issues [5,6], fake news detection [7,8], deviant
content identification [9,10], and numerous others.

Fundamentally, text classification aims to learn a function that assigns a class label to a text instance based on the fea-
tures of the instance. Conventional approaches handcraft multiple categories of features (e.g., lexical, syntactic, term fre-
quencies, etc.) and feed them into machine learning algorithms such as support vector machine (SVM), Naive Bayes,
random forest, decision tree, and others [11]. However, hand-crafting feature extraction is a labor-intensive task that often
requires significant domain expertise. Moreover, selected feature sets are often task specific, omit long-term relationships
within text corpora, and are often brittle and ever-changing in the rapidly evolving applications.

Recognizing these challenges, scholars have increasingly turning to deep learning-based techniques such as Long Short-
Term Memory (LSTM), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Convolutional Neural Network
(CNN) [1,12-14]. Such methods use non-linear activation functions, back-propagation, and error correction computations
to automatically learn salient feature representations from a given text input. Recent years have augmented these models
by incorporating attention mechanisms that compute a score for each token within an input vector based on how important
the token for the final decision.

Despite their advantages, extant deep learning-based approaches suffer from several key drawbacks. First, input text is
often represented using a single view (i.e., single set of features), rather than comprehensively examining multiple different
levels of granularity (e.g., n-grams, phrases, etc.). Fine-grained text representations can enhance overall text classification
performance. Second, although numerous attention mechanisms are proposed to learn the weights of tokens, they either
quantify the significant of words or measure the association between tokens and the specific tasks in one single view.
How to construct attention mechanisms that capture the latent interaction among multiple views is unclear. Finally, and
relatedly, how to systematically combine multi-view text representation learning and attention mechanism in a manner that
maximizes predictive power while minimizing training time is unknown.

Motivated by the aforementioned limitations, we propose a novel Spatial View Attention Convolutional Neural Network
(SVA-CNN) framework. SVA-CNN leverages a carefully designed set of multi-view representation learning, a heterogeneous
combination of novel attention mechanisms, and CNN-based operations. Through the design and rigorous evaluations of
SVA-CNN, this paper makes several key contributions to text classification and interpretable deep learning-based method-
ologies. These include:

e A novel multi-view representation of text to automatically extract multiple granularities and fine-grained representations
(e.g., phrases, n-grams, etc.) from a given text input without manual feature engineering;

e An innovative spatial attention mechanism that automatically learns the importance of words and phrases from the
multi-view representation;

e A thorough comparison of SVA-CNN’s predictive capability against prevailing text classification methods on five large-
scale benchmark datasets for document classification, sentiment analysis, and thematic identification applications;

e A systematic investigation into the effect of series-parallel connection strategies of spatial and view attention mechanism
on overall model performance and training time;

o A public release of the SVA-CNN model via the popular social coding repository, GitHub, to facilitate future model repro-
ducibility and extensions.

The remainder of this paper is organized as follows. In Section 2, we ground the proposed SVA-CNN model by formally
reviewing related work in text classification, multi-view representation learning, and attention mechanisms. Section 3 sum-
marizes key research gaps from extant literature, and presents a systematic overview of the proposed SVA-CNN. Section 4
delves into the core novelties of the proposed model by formally denoting its key operations. Section 5 summarizes the over-
all evaluation set up, benchmark datasets, and key results. Section 6 discusses the implications of these results and illustrates
the potential practical utility of the proposed model. Finally, Section 7 offers concluding remarks and summarizes promising
future directions for research.

2. Related work
2.1. Text classification

Formally, text classification can be formulated as follows. Given a corpus {(X1,¥;),..., (X, ¥,)}, where x; = [x!,... x"] is
the m-dimensional feature vector of text; y; € C is the corresponding label of given textual data; C refers to the set of classes.
The goal of one classification problem is to learn a mapping function that predicts the label for one given textual sequence
with least biases. Typically, text classification algorithms can be categorized into two major groups (conventional and deep
learning-based solutions). Both approaches have been applied extensively in numerous application areas. We summarize the
key principles of each approach in the following sub-sections.

296



Y. Liang, H. Li, B. Guo et al. Information Sciences 548 (2021) 295-312

2.1.1. Conventional text classification

Numerous hand-crafted features such as word frequency, grammatical, lexical, psychological, and structural features are
proposed. Prevailing supervised classification algorithms include SVM [15], random forest [ 11], Naive Bayes [11], and ensem-
ble learning [16] are employed to bridge the mapping between feature sets and labels. However, text classification based on
conventional classification algorithms rely on feature engineering, resulting in algorithms designed to detect specific indi-
cators. Hand-crafting feature is time consuming, labor intensive, and not suitable for rapidly evolving domains. Due to
the diversity, ambiguousness of words and dynamics of languages, to pre-define one complete set of features for large-
scale textual corpus is infeasible. On the other hand, supervised learning algorithms are based on samples made from exist-
ing corpora. Thus, those approaches are useful to detect the content similar to existing corpora, and are less intelligent in
detecting emerging instances.

2.1.2. Deep learning-based text classification

RNN and its variants including LSTM and GRU are the prevailing models for sentiment analysis [1], translation [17] and
sequence tagging [18,13] follows. However, variants of RNN-based models are subject to the loss of long-distance contextual
information and the focus of input vectors is equally scattered. CNN-based models are widely adopted for text classification
[19-21], relation extraction and classification [22,23]. CNNs use a series of padding, convolutional, and pooling layers to
automatically learn features from raw data (e.g., input text) in a matrix form. For example, Li et al. proposed a CNN-
based model with two cascading convolutional layers to learn the word-phrase relation and the phrase-sentence relation
for social emotion classification [20]. CNN-based solutions are often preferred over RNN-based models in situations where
training time is an essential consideration [24]. However, the CNN-based solutions are often used in a single-view fashion,
thus potentially omitting critical features (e.g., long term dependencies) within the input text. Meanwhile, existing studies
primarily use concatenation to fuse heterogeneous features. How to efficient combine heterogeneous features will be helpful
for improving the performance. An increasingly viable remedy for this issue is multi-view representation learning, which we
review next.

2.2. Multi-view representation learning

Multi-view representation learning is an emerging topic in machine learning that fuses multiple views (feature sets) to
improve the performance. In contrast to single view learning, multi-view learning introduces a function to each view and
jointly optimizes all the functions to exploit the redundant views of the same input data and improve the learning perfor-
mance. Multi-view representation learning can be categorized into two groups: multi-modal methods and multi-view
methods.

2.2.1. Multi-modal methods

Multi-modality indicates one signal described by different medias. For example, happiness can be expressed by facial
expression, acoustic tones, and linguistic clues. Numerous studies show that the significant performance improvements have
been observed by fusing the disparate, yet related feature sets expressed through different medias [25,26]. For example, the
fusion of facial emotion and vocal features was studied for the detection of depression disorder [27]. Hassanpour et al. fused
the images and texts posted on Instagram, and utilized the jointly deep learning model for the large-scale screening of sub-
stance abuse including drug abuse and alcohol addiction [28]. Chancellor et al. proposed a multi-modal classifier to jointly
learn both textual and visual characteristics from Tumblr to automatically distinguish the pro-eating disorder posts [29].
Jiang et al. proposed the latent topic text representation learning to provide an effective text representation and text mea-
surement with latent topics for text classification task [30].

2.2.2. Multi-view methods

Multiple views refers to one signal to be described at different granularities. Multi-view representation learning is widely
adopted in computer vision tasks. Liu et al. proposed an example-based multi-view domain generalization framework for
visual recognition by learning robust classifier that can be generalized to arbitrary target domain based on the training sam-
ples with multiple types of features [31]. Zhang et al. proposed a deep neural network (DNN)-driven feature learning method
for multi-view facial expression recognition [32].

In NLP, Qiu et al. proposed a multi-view annotation framework for Chinese treebanking, which integrates the dependency
structure and phrase structure [33]. Dhillon et al. introduced a context-specific word embedding which measures the inter-
action among views by the canonical correlation analysis to find the latent structure [34]. The proposed multi-view word
embedding performed well on named entity recognition and chunking tasks. However, for text classification, the sequential
input data is converted into sequential word-level vectors, which only provide a single view on the word level. These
approaches overlook the latent interaction among complex semantic groups. How to construct and apply the multi-view
representation for text classification tasks is an open issue.
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2.3. Attention mechanisms in NLP

Over the last few years, attention mechanisms have found broad applications in numerous NLP tasks. Attention mecha-
nisms aim to learn to what extent words are associated with the specific task [35]. The basic idea is to compute an attention
score for each token, and to modulate the input vectors accordingly. To date, numerous attention mechanisms have been
proposed to preserve the context dependency [36], to capture both the global and local features in image caption tasks
[37], and to learn the hierarchial fine-grained features for document classification [38]. Various attention mechanisms were
proposed to encode the sequence data based on the weight each element is assigned. Among them, Bahdanau et al. intro-
duced the attention mechanism in neural machine translation to build explicit word alignment during decoding [39]. To pre-
serve the long-distance context of tokens, Wu et al. proposed the context attention to improve the word representation
generated by word2vec [36]. For document classification, Yang et al. introduced the hierarchical attention to construct
the bottom-up representations ranging from word-level to sentence-level vectors [38]. Lately, the self-attention has been
introduced to learn a distributed relation representation with respect to all other tokens, and has achieved the state-of-
the-art performance in translation [40].

However, the prior attention mechanisms either quantify the significant of words or measure the association between
tokens and the specific tasks in one single view. As a result, these approaches do not fit well for the multi-view data for sev-
eral reasons. First, the prior studies for multi-view data consider concatenating all multiple views into one single view and
applies single-view learning algorithms directly [28,29]. However, the disadvantages of this method include the over-fitting
problem on comparatively small training sets and the missing of specific statistical property of each view [25]. Second, most
existing attention-based models only take into account the semantic features by modulating the sentence context into the
last convolutional layer feature map via spatially attentive weights [28,29]. While multiple attention mechanisms including
spatial attention, semantic attention, and multi-layer attention perform well to preserve the fine-grained features from dif-
ferent views, how to connect heterogeneous attention mechanisms for multi-view data has not been studied yet.

3. Overview of the proposed SVA-CNN model

To date, most studies only focus on single view data of text, and design numerous attention mechanisms to learn the
weights of word pairs. However, how to construct the multi-view text representation for fine-grained feature extraction
and preserve the latent interaction among different views are rarely studies. Therefore, we are interested in studying the
multi-view representation and heterogeneous attention mechanisms for text classification. Specifically, we explore the
multi-view representation of textual data, propose the context attention, spatial attention, and view attention mechanisms
to preserve the complex latent interaction among different-granularity semantic groups, and study the connection of hetero-
geneous attention mechanisms to find the optimized connection for multi-view text classification.

In particular, we propose a novel SVA-CNN deep learning architecture. SVA-CNN leverages a multi-view representation of
text to learn high-level features. The multi-view representation aims to construct the collection of vectorized n-gram fea-
tures that enrich the feature representation in different granularities. Based on the multi-view representation, the original
text can be formulated in word level, phrase level, and n consecutive words, which make it possible to learn the semantics
from different granularities. Spatial attention and view attention mechanisms are proposed to preserve the latent interaction
among different-granularity semantic groups. Specifically, the spatial attention aims to learn the long-term dependencies
among n-gram features by quantifying the importance of n-gram features for text classification. The view attention mech-
anism characterizes which channel of the n-gram features are important. The view attention mechanism aims to learn the
multi-granularity semantic groups for text classification. Finally, the series-parallel connection of heterogeneous attention
mechanisms aims to find an efficient way to fuse attention mechanisms with multi-view text classification.

As shown in Fig. 1, the workflow is controlled by the two switches (Switch A and Switch B). The context attention aims to
preserve the long-term dependency between words by scaling the weights of surrounding tokens. Whether the context
attention is adopted to modulate word vectors or not is controlled by Switch A. We introduce the attention pool to provide
a variety of attention mechanisms for the enhanced performance. In the attention pool, we introduce two basic attention
mechanisms: spatial attention to learn the importance of semantic features and view attention to learn the significance of
views from multi-view data. Apart from the spatial attention and view attention, we study the combination of spatial and
view attention mechanisms in different ways including series connection and parallel connection. The series connection

can be formulated as V@ — vV = f¥¢ (V(O)) —f (V“)), where V@ denotes the feature map of multi-view data on the i-th

layer; f(-) symbolizes a set of attention mechanisms; The subscript of f(-) refers to attention mechanisms (s for spatial atten-
tion, v for view attention); The superscript of f(-) refers to how attention mechanisms are connected (se for series connection,
and pa for parallel connection). Similarly, we can organize the attention mechanisms in another way by

VO Ly — g (V“”) —f (V(”>. For parallel-connected attention, the spatial attention and view attention take the feature

N

map V@ as input respectively and conduct specified transformation in a parallel manner. The parallel connection is formu-

e v
lated as V (o va,g

control which one is chosen from the attention pool.

>F (ff“ (V(O)) N (V“”) ) To evaluate the effects of heterogeneous attention mechanisms, we use Switch B to
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Fig. 1. Overview of the proposed SVA-CNN. Switch A is used to control whether the context attention is applied to modulate the word vector; Switch B aims
to actuate the transition among different attention mechanisms in the attention pool by flipping the switch to different positions.

As the newly constructed feature map is represented in multiple views, the concatenation layer fuses the multi-view fea-
ture maps to build one comprehensive feature map for text classification. The dropout layer is included to avoid the over-
fitting problem. The softmax layer is provided to find the maximum likelihood estimation of classes. The details of primary
components in Fig. 1 are elaborated in the following sections. All notations used in this paper are summarized in Table 1.

4. Heterogeneous attention mechanisms
4.1. Context attention

Conventional word vectors only focus on the local structural features based on the co-occurrence of words in the context
windows. However, they often overlook the long-term dependencies between non-consecutive words. To address this prob-
lem, Zhao and Wu proposed the context attention mechanism to capture the long-term correlation among words [36]. In this
paper, we apply the context attention mechanism to learn the fine-grained word representation. The key idea of context
attention is described below.

For a given textual input, the text matrix is denoted as A = [Xy, Xz, ..., Xi,... .,xI}T, where x; € R? refers to the d-dimensional
word vector corresponding to the i-th token in the text sequence; [ is the total number of tokens in the given sequence. Given
the i-th token vectorized as x;, the context attention determines which contextual vectors X;;-;, 1 < j < I should be paid more
attention. The context vector X; is formulated as X; = Zj#,-oci j - Xj, where o;; > 0,1 <j <[ are the attention weights, and
>;%; = 1. The value of o;; can be quantified by the softmax layer as shown in Eq. (1), where score(-) is used to quantify

the correlation of word pairs (x;, ;). The definition of score(-) is shown in Eq. (2), where @ refers to the concatenation.

exp(score(X;, X;
L) "

Zj,zl_j,;éiexp(score(x,-, )

score(X;, X;) = tanh(W* [x; & X;]) %

Based on Egs. (1) and (2), the context vector X; € R* of word vector X; is learned based on the context attention mech-
anism, where d; is the width of context vector. To preserve both the local structural features and long-term dependency of
text matrix A, we concatenate X; and X; as the newly generated representation of words X =X; ® X;. Then the original text

matrix A is transformed as A = [%;,X,,...,X,,...,X]]", where x; € R**% and A € R@+%),
4.2. Multi-view representation

Prior studies primarily focus on the word-level features and do not preserve the association among semantic groups. We
introduce the multi-view representation of text to learn both word-level and high-level semantic features including phrase-
level and n-gram features. To learn the multi-view representation of textual data, we use the filter in the convolutional layer
of CNN to control to what extent the input text is abstracted. Given a filter with filter size k, the convolution operation will
generate one feature map based on subsequent k words (referred as k-gram). By changing the filter size k, the raw text
sequence can be expressed in different feature maps. We term the feature maps generated by changing filter sizes as the
multi-view representation of text.

Given a set of filters ® = {g(-),8,(-), - -,8(-)} and the text matrix A, the convolutional operations build the multi-view
representation of k-grams by the dot product between a filter W, and the vectors of consecutive words

299



Y. Liang, H. Li, B. Guo et al. Information Sciences 548 (2021) 295-312

Table 1
Definition of notations used in this paper.

Notation Definition

X; the word vector of i-th word in the text sequence

1 length of text sequence

d the dimension of word vector

A text matrix consisted of word vectors

i attention score between word pair x; and X;

4 context attention

X; modulated word vector based on attention score o;
X; concatenation of x; and X;

A modulated text matrix based on context attention a
d dimension of modulated word vector X;. d; = 0 means context attention is not introduced;
W* parameter matrix for attention o

gi() the convolutional filter with filter size i

0 set of convolutional filters

k the number of convolutional filters in 0; it is identical to the number of views;
Vi features extracted by filter g;(-), where 1 <i <k

v feature map matrix generated by filters in 0

v feature map matrix on the i-th layer

u; padded features extracted by v;

U padded feature map of V

B view attention in parallel-connected SVA

Y spatial attention in parallel-connected SVA

w! parameter matrix for view attention g

w’ parameter matrix for spatial attention y

B view attention score in g

Vi spatial attention score in y

v; mean pooling of the i-th view

v compressed representation of k views

WY/, W)  parameter matrices for series-connected view attention y
W/, W4  parameter matrices for series-connected view attention y

U modulated feature map based on heterogeneous attention mechanisms

fe) a set of attention mechanisms. The subscript of f(-) could be s (spatial attention) or v (view attention); The superscript of f(-) could be se
(series connection) or pa (parallel connection);

A a vector of Bernoulli random variables

X, =X ®X, & - DX], ;. Thus, the feature map based on filter g;(-) can be written as v; =Wy, - [X, & X}, @--- ®X],].
Finally, we obtain the multi-view representation of text based on ©, and the set of feature maps can be denoted as
V={vy,va,...,Vi,...,Vi}, where v; refers to the feature map generated based on filter g;(-) € ®. As the sizes of
v;, 1 <i < k are different, we need to reshape Vto U, and U = [uy,uy, ..., ], where u; € R-kDx(@+&) represents the i-th view
of the feature map V.

4.3. Parallel-connected spatial and view attention (SVA)

As shown in Fig. 2, the parallel-connected spatial and view attention mechanism aims to learn two vectors of weights: the
view attention g € R'*¥ to characterize the importance of feature maps generated by filters, and the spatial attention
y € REKD*k to quantify the weights of semantic groups in each view.

To learn view attention g in parallel-connected SVA, we split the multi-view representation of textual into u; and
Uy = [Uy,...,u]. Here u; refers to the feature map generated based on unigram features of tokens by the filter g;(-); Uz
denotes the phrase-level feature maps generated by filters g;(-),2 < i < k respectively. As u; extracts the word-level features
and u;, 2 < i < k represent the high-level semantic feature groups, we introduce parallel spatial and view attention to learn
the correlation between word-level features and high-level semantic groups.

We apply a multilayer perception (MLP) to learn the mapping between u; and u;, 2 < i < k. The generated weight matrix
vector g € R"* is formulated by Eq. (3), where W* is the weighted matrix; and b” € R@*%)*k is the bias vector. The softmax
function is utilized to normalize the distribution of attention weights.

B = softmax(tanh (Wﬁ [uq @ upy wh + b/j)) (3)

The spatial attention aims to learn the weight matrix y = [y,,...,7,], where k is the number of convolutional filters.
y; € R 1 < < k indicates the weight vector of the i-th view. The spatial attention weight vector y; is measured by
Eq. (4).
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Fig. 2. Proposed SVA-CNN architecture. (a) the multi-view representation extracts the n-gram features; (b) parallel attention aims to organize the view and
spatial attention mechanisms in the paralleled way; (c) series attention combines the view and spatial attention mechanisms in one series-connected way.

y; = softmax(tanh(W’ - u; + b")) (4)
Based on the view attention and the spatial attention, the parallel connection of series and parallel attention mechanisms

can be formulated as follows, where U denotes the transformed feature map after parallel SVA.

N w
U=> gyou) 5)
j=1

4.4. Series-connected spatial and view attention

4.4.1. View attention

After the CNN filter layers, a set of n-gram features are generated. However, n-grams such as unigram, bi-gram and tri-
gram play different roles in the classification task. Therefore, view attention is introduced to learn the more discriminating
grams from different views. Specifically, we obtain the structural features v; on each view c;. As the sizes of v;,1 <i < k are
different, we need to reshape V to U = [u;,uy, ..., w], where u; € RU-¥1x(@+d) represents the i-th view of the feature map V,
and k is the number of filters. Then, meanpooling is applied on each view to obtain the feature vector v:

V=[v1,02,..., 0], ¥R (6)

where scalar z; is the mean of vector u;, which represents the i-th view features. The view attention mechanism can be for-
mulated as below.

V= softmax(Wg’ - tanh <W1’ RV + bf) + b%’) (7)

where WY € R*! WY ¢ R are parameter matrices, ® represents the outer product of vectors. b} € R, b € R are the bias
terms. The view attention aims to choose the combination of most discriminative n-grams for the classification task. Unlike
the concatenation of n-gram features introduced in [14], the view attention adjusts the weights of n-grams according to their
contribution to the classifier.
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4.4.2. Spatial attention

In general, one word is only highly associated with partial semantic tokens of one sentence. For example, in the theme
text classification task, only the semantic phrases associated with the given topic are useful. Therefore, applying a global fea-
ture vector to label the whole text may lead to sub-optimal results due to the irrelevant regions. Instead of considering each
semantic feature equally, the spatial attention mechanism aims to pay more attention to the semantic-related regions. For

the multi-view representation of text U, we reshape U to U = [Uy,T,..., U] by flattening the length and width of U, where

U; € R, and m = (I- k+1) x (d + ds). Thus, the spatial attention y can be measured by a single-layer neural network fol-
lowed by a softmax function.

w = softmas (W -tanh( (W0 +5f)) +04) ®

where W/ € R™! W} € R™™ are parameter matrices. bf € R™, b4 € R™ are the bias terms. The spatial attention mechanism
aims to learn the phrase-level features associated with the given tokens.

4.4.3. Series connection

With the series collection, we use — to indicate the sequential orders of different attention mechanisms. Ve — Sp denotes
the view attention followed by spatial attention. For the given multi-view inputs of text U, the view attention function F,
aims to obtain the view attention weights . After the modulation of U by , we obtain the view guided feature map. Then
the modulated feature map is fed to the spatial attention function F; to obtain the spatial features y. Finally, we modulate the
multi-view representation of text U by both  and x. The operations of Ve — Sp can be formulated as below:

v = Fv(U)
1=F(f(U.¥)) 9)
U :f(Uv '/fl)

Similarly, we define Sp — Ve by changing the orders of operations. For Sp — Ve, given the multi-view representation U,

the flatten operation is conducted for U, and the spatial attention function F, explores the association between tokens.
According to yx, view attention function F,, the operations of Sp — Ve can be formulated as below.

-5 (0)
¥ =F,(fC(U, 7)) (10)
U=f(U,y,7)

After the modulation of multi-view textual vector based on spatial and view attention, we obtain one modulated feature

map of the initial text representation, denoted as u.

4.5. Regularization

To overcome the overfitting problem, the dropout layer is employed on the feature vector U for regularization. The drop-
out method randomly skips a proportion of hidden connections among neuron units during the forward training, and
ensures the trained model are not tightly dependent on certain set of neuron units. The dropout regularization is shown

in Eq. (11), where U is the modulated feature vector based on attention mechanisms; 4 is a vector of Bernoulli random vari-

ables with probability p of being 1; b refers the biases of the layer i, and VO is the output after the dropout operation on the
layer i. In addition, the fully connected layer is applied before the softmax classifier. For the FC layer, the activation function
is assigned as ReLU.

Vi — W (U ~/1) +p? (11)

4.6. Loss function

For the data training, we use cross-entropy loss (as shown in Eq. (12)) for the binary classification tasks, where y; € {0,1}
is the binary indicator, which is 1 for positive samples and 0 for negative samples; p; is the predicted probability of the sam-
ple x; being positive under the given parameters 0. Here we use sigmod function to build the mapping between sample x; and
p;- While for the multi-class classification problem, we use softmax loss as the loss function. Softmax loss measures the sep-
arate cross-entropy loss for each class and minimizes the average loss for all classes.
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n

loss(xi) = 13"y, x log(p;) + (1 -y,) x log(1 - p,) 12
i=1

3 1
where p; = ;%

To minimize the loss, we optimize this problem by the popular optimizer Adaptive Moment Estimation (Adam). The rea-
sons to choose Adam are threefold. First, it tunes the learning rate during the training automatically. Second, it provides fas-
ter convergence compared with stochastic gradient descent algorithm. Finally, it is computationally efficient with less
memory requirements.

5. Experiments
In this section, we conduct extensive experiments to answer the following questions:

e Q1: Whether the introduction of heterogeneous attention mechanisms is constructive for text classification tasks?

e Q2: Which way is efficient to organize the heterogeneous attention mechanisms?

e Q3: What parameters are important to tune the model?

e Q4: How does the proposed attention series-parallel attention mechanism perform compared with the state-of-the-art
models?

5.1. Benchmark datasets

To answer the questions above, we conduct extensive experiment on five public datasets with three classification tasks
including document classification, sentiment classification and thematic classification.

o AG News Corpus (NEWS-4)' [41] consists of news collected from up to 200 sources. All the news are divided into 4 cate-
gories based on topics. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training
samples is 120,000 and testing 7,600.

« Hate Speech (HATE-3)’ contains 24,784 tweets manually labeled by CrowdFlower users as hate_speech, offensive_language,
or neither [42]. As the lack of official split, we randomly choose 21,000 tweets as training samples, and use the rest for testing.

« Amazon Review (AMZ-5)° consists of reviews of fine foods from Amazon. The dataset includes 500,000 reviews up to Octo-
ber 2012. Reviews include product and user information, ratings, and a plain text review. We use the ratings as the categorial
labels, and conduct a 5-class text classification.

« Movie Review (IMDB-2)* [43] contains up 50,000 movie reviews collected from IMDB.com. It provides a set of 25,000 highly
polarized movie reviews for training, and 25,000 for testing. We carry out the binary sentiment classification task to detect
the polarized emotion.

« Emotion Text (TWT-13)° contains labels for 40,000 emotional tweets collected from Twitter. Up to 13 categorial labels are
annotated including happiness, sadness, and anger. As the lack of official split, we randomly choose 37,000 tweets as training
samples, and use the rest for testing.

5.2. Training setup

The experiments are conducted on a server running RedHat 6.5 operating system with 16-core Intel Xeon E5-2620 CPU @
2.10 GHz processor, NVIDIA 1080 Ti GPU, and 96 GB RAM. The proposed algorithms in this paper are implemented in Python
3.6 and TensorFlow-GPU 1.9.0. The baselines shown in Section 5.5 are implemented based on the open source package
downloaded from Github.®

For the CNN model, the dimension of word embedding d is set to 200. For the context attention, the dimension of con-
textual information d; is set to 100. In the convolutional layer, we use 5 filters ® = {g(),8-(-),83(),84(-).&5(:)} to generate 5
views of text by changing the filter size respectively. Instead of concatenating different views, we apply parallel and series
attention mechanisms on multi-view representation to extract the multi-view and multi-granularity attributes for enhanced
performance. The proposed solution is publicly available on GitHub.”

https://github.com/mhjabreel/CharCNN.
https://github.com/tpawelski/hate-speech-detection.
https://www.kaggle.com/snap/amazon-fine-food-reviews.
http://ai.stanford.edu/amaas/data/sentiment/.
https://www.figure-eight.com/data-for-everyone/.
https://github.com/brightmart/text_classification.
https://github.com/yunjinwpu/SVA-CNN.
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5.3. SVA-CNN evaluations

To examine whether the introduction of different attention mechanisms including context attention, spatial attention and
view attention is beneficial for the text classification task (Q1) and to identify the efficient way to organize attention mech-
anisms (Q2), we evaluate the performance of heterogeneous attention mechanisms on five public datasets. For simplicity,
Co, Sp, and Ve denote the CNN model with context attention, spatial attention and view attention, respectively. To examine
the performance of the combination of three basic attention mechanisms, we introduce two operators: — for series connec-
tion and // for parallel connection. Based on these two operators, we construct the following combinations: Co — Sp for the
combination of context attention and spatial attention; Co — Ve for the integration of context and view attention; Sp//Ve for
paralleled SVA as defined in Eq. (5); Sp — Ve and Ve — Sp are short for series connection of spatial and view attention mech-
anisms in different sequential orders. Co — (Sp//Ve) denotes for the paralleled view and spatial attention with the contextual
embedding; Co — (Sp — Ve) and Co — (Ve — Sp) represent the series connection of three basic attention mechanisms in dif-
ferent orders. We evaluate the performance of heterogeneous attention mechanisms on five public datasets respectively.
Based on the results presented in Table 2, we make the following key observations:

1) Compared with the contextual attention Co, introducing the spatial attention Sp and view attention Ve improves per-
formance on all datasets, and the spatial attention Sp performs best among the three basic attention mechanisms. The
spatial attention Sp outperforms context attention with over 7% relative gain on all datasets. The context attention
primarily uses word level features, while spatial attention and view attention mechanisms capture high-level features
such as phrases and semantics. The powerful capability of representation learning for complex features enables both spa-
tial and view attention mechanism to gain significant improvements for text classification.

2) Compared with single attention mechanism, heterogeneous attention mechanisms enhance performance. For instance,
the series connection of context attention Co and spatial attention Sp shows significant performance gain in terms of
accuracy. This holds true no matter how the heterogeneous attention mechanisms are connected. This finding indicates
that the mixture of attention mechanisms learns supplementary features for text classification. Furthermore, the connec-
tion of heterogeneous attention mechanisms matters with regard to the overall performance. In our experiments, we con-
duct a comparative study to show differences between series connection and parallel connection. According to Table 2,
we observe that series-connected spatial and view attention mechanisms Sp — Ve and Ve — Sp outperform other combi-
nations. In addition, there are subtle differences between Sp — Ve and Ve — Sp. In general, the series connection of
Ve — Sp performs better compared with Sp — Ve.

3) We investigate the effects of context attention on the combinations of spatial attention and view attention mecha-
nisms. As shown in Table 2, Ve — Sp performs well with the accuracy of 97.46%; while Co — (Ve — Sp) has 97.25%;
Ve//Sp outperforms Co — (Ve//Sp) with 0.82% gain in terms of accuracy on NEWS-4. This indicates that context attention
Co is not essential and can be replaced with the combination of spatial attention Sp and view attention Ve. This indicates
that Ve — Sp and Ve//Sp can learn the long-term dependencies.

5.4. Impacts of multi-view representation

To answer Q3: what parameters are important to tune the model?, we evaluate the impacts of multiple views and padding
length, respectively. With regard to the multi-view representation, we study the effects of multiple views on classification
performance by changing the number of k, which refers to the number of views and is determined by the number of filters
defined in ® (See Section 4.2). Here, we set k = 3, 6, and 9 respectively, and examine the corresponding performance of
Ve — Sp,Sp//Ve and Sp — Ve.

According to Table 3, we observe that the performance of series/ parallel-connected SVA is enhanced with the increase of
k. For example, when k = 3, the accuracy of Sp//Ve is 95.30%; while it is 96.98% when k = 9. The increase of view number k
indicates that multi-granularity semantic groups are extracted by leveraging multi-view representation learning of textual
data, which can preserve fine-grained semantic features. It also demonstrates that introducing additional views increases
overall performance.

Since how many views should be introduced is still an open question, we track the performance of Ve — Sp, and Sp — Ve
on NEWS-4 by changing the number of views k. As shown in Fig. 3, generally the performance of SVA is enhanced with the
increase of views when k < 6. While, the training time consumption increases when including additional views. For example,
when k < 5, the performance improvement is significant with lower training time consumption. While when k > 6, the
accuracy gain is subtle with the increase of views. In contrast, the training time grows rapidly. Thus, the number of views
should be limited due to the trade-off between performance and training time consumption. To balance the time consump-
tion and the accuracy, we set the number of view k = 5.

In addition to examining the sensitivity of these parameters on the overall performance, we study the impact of padding
length [ on performance. The padding length is widely applied to format the raw data into a fixed-length vector. In the com-
parative experiment, we set the padding length I € {100, 200,300, 400,500} respectively. As shown in Fig. 4, although the
combination of context, view and spatial attention mechanisms Co — (Ve — Sp) performs best in terms of accuracy,
Ve — Sp and Sp — Ve show competitive performance in terms of accuracy against Co — (Ve — Sp) with the increase of pad-
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Table 2
Performance of different connections of contextual, spatial, and view attention mechanisms.
Dataset Model Metrics (%)
Acc F1 P R

NEWS-4 Co 84.38 80.56 90.63 85.30
Sp 92.23 92.57 92.42 92.36
Ve 90.63 89.24 90.43 90.38
Co — Sp 95.45 95.27 95.24 95.50
Co — Ch 93.76 93.90 93.32 93.45
Sp//Ch 96.12 96.47 96.82 96.19
Sp — Ve 97.44 97.69 97.81 97.28
Ve — Sp 97.46 97.65 97.78 97.41
Co — (Sp//Ve) 95.30 93.70 92.52 96.90
Co — (Sp — Ve) 97.25 93.41 93.15 97.09
Co — (Ve — Sp) 97.12 93.29 93.73 97.31

HATE-3 Co 84.51 80.69 90.76 85.43
Sp 92.36 92.70 92.55 92.49
Ve 90.76 89.37 90.56 90.51
Co— Sp 95.58 95.40 95.37 95.63
Co — Ve 93.89 94.03 93.45 93.58
Sp//Ve 96.25 96.60 96.95 96.32
Sp — Ve 97.57 97.82 97.94 97.41
Ve — Sp 97.59 97.78 97.91 97.54
Co — (Sp//Ve) 94.30 92.70 91.52 95.90
Co — (Sp — Ve) 96.25 92.41 92.15 96.09
Co — (Ve — Sp) 96.12 92.29 92.73 96.31

AMZ-5 Co 84.27 80.45 90.52 85.19
Sp 92.12 92.46 92.31 92.25
Ve 90.52 89.13 90.32 90.27
Co — Sp 95.34 95.16 95.13 95.39
Co — Ve 93.65 93.79 93.21 93.34
Sp//Ve 96.01 96.36 96.71 96.08
Sp — Ve 97.33 97.58 97.70 97.17
Ve — Sp 97.35 97.54 97.67 97.30
Co — (Sp//Ve) 96.60 94.80 93.92 98.10
Co — (Sp — Ve) 98.55 94.51 94.55 98.29
Co — (Ve — Sp) 98.42 94.39 95.13 98.51

IMDB-2 Co 85.08 81.26 91.33 86.00
Sp 92.93 93.27 93.12 93.06
Ve 91.33 89.94 91.13 91.08
Co — Sp 96.15 95.97 95.94 96.20
Co — Ve 94.46 94.60 94.02 94.15
Sp//Ve 96.82 97.17 97.52 96.89
Sp — Ve 98.14 98.39 98.51 97.98
Ve — Sp 98.16 98.35 98.48 98.11
Co — (Sp//Ve) 95.81 94.21 93.03 97.01
Co — (Sp — Ve) 97.76 93.92 93.66 97.20
Co — (Ve — Sp) 97.63 93.80 94.24 97.42

TWT-13 Co 86.18 82.36 92.43 87.10
Sp 94.03 94.37 94.22 94.16
Ve 92.43 91.04 92.23 92.18
Co— Sp 97.25 97.07 97.04 97.30
Co — Ve 95.56 95.70 95.12 95.25
Sp//Ve 97.92 98.27 98.62 97.99
Sp — Ve 99.24 99.49 99.61 99.08
Ve — Sp 99.26 99.45 99.58 99.21
Co — (Sp//Ve) 96.19 94.59 93.41 97.39
Co — (Sp — Ve) 98.14 94.30 94.04 97.58
Co — (Ve — Sp) 98.01 94.18 94.62 97.80

ding length L This indicates that increasing the padding length can help improve accuracy. A closer examination of the
results also indicates that the training time consumption of Co — (Ve — Sp) shows exponential growth with the increase
of padding length I. Compared with the high training time of Co — (Ve — Sp), Ve — Sp and Sp — Ve have lower training time
consumption. When examining the trade off between the performance and training time consumption, Ve — Sp and Sp — Ve
show competitive performance and lower training consumption.
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Table 3
Effects of multi-view representation on heterogeneous attention mechanisms.
Dataset Attention k Metrics (%)
Acc F1 P R
NEWS-4 Sp//Ve 3 95.30 93.70 92.52 96.90
6 96.85 93.16 92.77 96.91
9 96.98 93.62 92.88 96.97
Sp — Ve 3 97.25 93.41 93.15 97.09
6 97.30 93.37 93.33 97.18
9 97.41 93.33 93.53 97.44
Ve — Sp 3 97.12 93.29 93.73 97.31
6 97.32 93.25 93.86 97.12
9 97.47 93.21 94.13 97.82
HATE-3 Sp//Ve 3 94.30 92.70 91.52 95.90
6 95.85 92.16 91.77 95.86
9 95.98 92.62 91.88 95.99
Sp— Ve 3 96.25 92.41 92.15 96.09
6 96.30 92.37 92.33 96.18
9 96.41 92.33 92.53 96.44
Ve — Sp 3 96.12 92.29 92.73 96.31
6 96.32 92.25 92.86 96.12
9 96.47 92.21 93.13 96.82
AMZ-5 Sp//Ve 3 96.60 94.80 93.92 98.10
6 98.15 94.26 94.17 98.26
9 98.28 94.72 94.28 98.19
Sp — Ve 3 98.55 94.51 94.55 98.29
6 98.60 94.47 94.73 98.38
9 98.71 94.43 94.93 98.64
Ve — Sp 3 98.42 94.39 95.13 98.51
6 98.62 94.35 95.26 98.32
9 98.77 94.31 95.53 99.02
IMDB-2 Sp//Ve 3 95.81 94.21 93.03 97.01
6 97.36 93.67 93.28 97.24
9 97.49 94.13 93.39 97.10
Sp — Ve 3 97.76 93.92 93.66 97.20
6 97.81 93.88 93.84 97.29
9 97.92 93.84 94.04 97.55
Ve — Sp 3 97.63 93.80 94.24 97.42
6 97.83 93.76 94.37 97.23
9 97.98 93.72 94.64 97.93
TWT-13 Sp//Ve 3 96.19 94.59 93.41 97.39
6 97.74 94.05 93.66 97.64
9 97.87 94.51 93.77 97.48
Sp— Ve 3 98.14 94.30 94.04 97.58
6 98.19 94.26 94.22 97.67
9 98.30 94.22 94.42 97.93
Ve — Sp 3 98.01 94.18 94.62 97.80
6 98.21 94.14 94.75 97.61
9 98.36 94.10 95.02 98.31

5.5. Summary of benchmark experiments

To answer Q4, we compare series-connected spatial and view attention mechanisms Ve — Sp with state-of-the-art deep
learning-based classification algorithms. They are as follows:

o TextCNN was first proposed for text classification in [14], where the weights of words are assigned according to the pre-
trained vectors, and can be dynamically tuned during training.

o TextRNN: LSTM and GRU are widely applied for sequence learning task.In this paper, we choose the bidirectional LSTM
(Bi-LSTM) as the baseline.

e CLSTM [44] utilizes CNN to extract the higher-level phrase representations, and employs LSTM to obtain the sentence
representation.CLSTM is able to capture both local features of phrases as well as global and temporal sentence semantics.

e RCNN [45] applies a bi-directional recurrent structure to capture contextual information as far as possible when learning
word representations, and utilizes a max-pooling layer to capture the key clues in text.
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Fig. 3. Changes of performance with the increase of views k. Blue lines show the performance in accuracy; red lines summarize training time.
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Fig. 4. Performance changes and training time consumption with the increase of padding length | among the combinations of heterogeneous attention
mechanisms.

« Seq2seq [17] provides one unified end-to-end framework for sequence learning tasks.It relies on a multilayered LSTM to
map the input sequence to a vector of a fixed dimensionality, and then another LSTM model to decode the target
sequence.

o Hierarchical Attention Networks (HAN) explores the hierarchical structure of documents and provides two attention
mechanisms to learn the word-level and sentence-level representations of documents [38].

o FastText [46] utilizes the bag-of-words of n-gram features instead of word vectors to capture partial information about
the local word order.Then the averaged text representation is fed to a hierarchical softmax to speed up the training
process.

o Self-Attention [47] aims to compute the weight for each vector by comparing itself with all vectors.With the self-
attentive mechanism, the network learns the latent interaction among tokens and adjust the weights of tokens
correspondingly.

o DPCNN [48] integrates the region embedding and shortcut connection in low-complexity word-level CNN for text clas-
sification to efficiently represent long-range associations in text.
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o Transformer [40] utilizes self-attention of words, positional embedding and multi-head attention to long-term depen-
dency. Transformer is independent from RNN and CNN models, and is highly parallelism with low computational
complexity.

As shown in Table 4, we find that CNN-based models show competitive or even better results than that of RNN-based
models. This demonstrates that CNN can be used to sequence learning tasks classification tasks as well, which is consistent
with the conclusions in prior studies [14]. In addition, the combination of RNN and CNN such as CLSTM and RCNN does not
significantly improve the overall performance.

Compared with models without attention mechanisms (e.g., TextCNN, RCNN, CLSTM, RCNN, DPCNN), the models with
attention mechanisms including HAN, self-attention, and transformer outperform the models without attention mechanisms
on all five datasets. This indicates that attention mechanisms can significant improve the classification performance by mod-
ulating the weights of features.

We also conduct statistical significance tests according to the results shown in Table 4 to quantify the differences among
different models. Specifically, we compare the metrics of baselines with that of Ve — Sp respectively. Apart from the results
on dataset IMDB-2, significant differences are observed with the value of p < 0.05. For the dataset IMDB-2, significant
differences exist among Ve — Sp and other baselines except transformer. These observations indicate Ve — Sp yields a sig-
nificant performance gain compared to other classification methods. For example, the averaged accuracy of Ve — Sp on all
five public datasets is over 96%. The strong performance of Ve — Sp indicates that the proposed connection of spatial and
view attention for multi-view textual data in CNN effectively learns the latent dependency and long-term dependency for
text classification tasks. In contrast to the spatial attention in HAN, self-attention, and transformer, Ve — Sp preserves the
long-term word-level dependency, and the high-level semantic features.

Since the CNN relies on padding formulations, we also conduct additional evaluations to evaluate the performance of
baselines and Ve — Sp with the increase of padding length ranging [ ranging from 100 to 500. Conducting such a sensitivity
analysis is critical to identifying optimal and peak performances of CNN-based models operating in text contexts. For sim-
plicity and space considerations, we choose NEWS-4 as the training dataset. As shown in Fig. 5, Ve — Sp outperforms the
other baselines. In terms of training time consumption, the time costs for training on NEWS-4 grow steadily for baselines
with the increase of padding length. Among the baselines, Transformer shows the highest time consumption. We compare
our proposed solution with transformer in terms of efficiency based on the training time. We observe that when
I € {100,200}, Ve — Sp outperforms all the baselines with highest accuracy and least training time consumption. Although
the training time consumption grows rapidly with the increase of padding length, Ve — Sp shows competitive performance
than that of transformer with similar time consumption and a significant grain margin in terms of accuracy.

6. Discussion

Compared with prior works in the field of text classification, our proposed solutions have four key advantages. First, the
five integrated attention mechanisms in the novel attention pool are diverse and carefully selected to address common sce-
narios that occur within text classification. The spatial attention characterizes the long-term dependencies among n-gram
features by quantifying the importance of n-gram features for text classification. The view attention mechanism quantifies
which channel of the n-gram features are important. The series-parallel connection of heterogeneous attention mechanisms
reveals the efficient way for multi-view text classification. Second, the attention mechanisms help to improve the perfor-
mance of the proposed approaches by carefully considering key characteristics within input text. Third, no manual feature
engineering is required at any stage during the process. This is an essential functionality for rapidly evolving domains.
Finally, the method outputs interpretable features that are weighted based on importance to the final decision making pro-
cess. Consequently, it can be used for subsequent downstream machine learning tasks, enhance domain value, and help to
refine the model for future applications.

To illustrate the advantages and potential practical utility of SVA-CNN for text classification, we visualize the spatial and
view attention on selected messages from NEWS-4. The original text is depicted as below:

A suicide car bomb detonated outside the gates of a Marine base in western Iraq on Saturday killing at least sixteen Iraqi police
officers and wounding forty others at a police checkpoint. Afghan police are investigating a suicide grenade attack in the center of
Kabul that injured seven people including three international peacekeepers. An American woman has died after being wounded by
a suicide bomber in Kabul. The US military said taking the death toll from the attack on a crowded shopping street popular with
foreigners to two. Kabul bomb deaths rise to three. Afghan authorities say a US translator has died after a suicide bombing in Kabul
bringing the number killed to three. An American woman and an Afghan girl died from wounds suffered in a Taliban suicide attack
in a popular Kabul shopping street. US embassy and hospital officials said on Sunday an American woman and a young Afghan girl
have died from their wounds after a suicide bomb attack in the Afghan capital of Kabul. A Taliban suicide fighter blew himself up in
the attack.

Fig. 6 shows effects of heterogeneous attention mechanisms in SVA-CNN. The horizontal axis are the indexing number of
words in the given example, and represent the spatial attention weights on the given view. The color depth expresses the
importance degree of one word in the spatial attention mechanism. The more important role the word plays in semantic
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Table 4
Comparison of the proposed SVA-CNN against State-of-the-Art Benchmark Algorithms.
Dataset Model Metrics (%)
Acc F1 P R

NEWS-4 TextCNN 83.58 78.66 83.67 74.94
TextRNN 84.67 83.66 83.68 83.99
CLSTM 84.59 79.67 84.68 75.95
RCNN 87.63 83.70 87.71 79.99
Seq2Seq 86.60 80.69 86.70 76.96
HAN 91.76 88.68 85.75 93.04
FastText 90.75 89.69 86.74 92.05
Self-Attention 89.74 88.69 86.73 91.04
DPCNN 81.63 80.64 81.65 79.96
Transformer 92.75 91.75 92.76 92.07
SVA-CNN 97.46 97.65 97.78 97.41

HATE-3 TextCNN 88.72 87.69 86.72 89.03
TextRNN 89.74 86.64 81.73 91.02
CLSTM 90.70 88.73 90.74 87.04
RCNN 89.74 87.68 85.73 91.03
Seq2Seq 90.70 89.74 91.74 87.05
HAN 94.77 93.77 94.78 94.09
FastText 95.76 94.78 95.79 93.10
Self-Attention 94.75 93.78 95.78 92.09
DPCNN 90.73 90.73 90.74 90.06
Transformer 94.79 95.78 95.78 96.11
SVA-CNN 97.59 97.78 97.91 97.54

AMZ-5 TextCNN 87.62 86.78 95.71 79.02
TextRNN 91.74 91.75 92.75 91.07
CLSTM 89.69 88.73 90.73 86.04
RCNN 92.68 90.81 98.76 85.06
Seq2Seq 85.63 82.68 85.69 79.98
HAN 92.74 91.75 92.76 91.07
FastText 91.75 92.74 91.75 92.08
Self-Attention 92.76 92.74 91.76 93.08
DPCNN 88.73 84.63 80.72 90.00
Transformer 94.79 93.75 92.78 96.09
SVA-CNN 97.35 97.54 97.67 97.30

IMDB-2 TextCNN 92.77 93.76 93.76 94.09
TextRNN 93.78 93.74 91.77 95.09
CLSTM 91.70 90.76 93.75 87.06
RCNN 95.80 95.76 93.79 97.11
Seq2Seq 92.64 87.78 95.76 81.03
HAN 94.81 93.72 89.78 98.09
FastText 94.78 93.76 93.78 95.09
Self-Attention 95.76 95.81 98.79 93.11
DPCNN 92.77 91.73 90.76 94.07
Transformer 97.82 97.79 96.81 99.13
SVA-CNN 98.16 98.35 98.48 98.11

TWT-13 TextCNN 90.61 84.75 92.74 78.00
TextRNN 85.60 81.70 87.69 76.97
CLSTM 87.65 85.73 90.71 82.01
RCNN 86.63 85.75 92.70 80.01
Seq2Seq 85.50 78.77 94.69 66.94
HAN 86.81 74.42 59.70 97.90
FastText 85.70 83.67 84.69 86.99
Self-Attention 89.69 90.79 96.73 86.06
DPCNN 91.75 90.72 89.75 92.06
Transformer 93.78 93.76 93.77 95.09
SVA-CNN 99.26 99.45 99.58 99.21

representation, the darker the color is. For the vertical axis, it enumerates the views generated by different convolutional
filters, and aims to show the significance of views for the classification task.

As illustrated in Fig. 6, spatial attention distributions of multiple views are significantly different. For example, on word-
level features, the words such as suicide, car, bomb are assigned with higher weight scores. While the for n-gram feature,
more high-level semantic groups are taken as the important clues for text classification. For instance, suicide bomber, Iraqi
police officers and suicide grenade attack are assigned with higher spatial weights. Meanwhile, according to the view weights,
the view attention mechanism can quantify the importance of multiple views for the given task. According to the visualiza-

309



Y. Liang, H. Li, B. Guo et al. Information Sciences 548 (2021) 295-312

100
I B TextcNN EEIRCNN  [lFastText [ Transformer
[ TextRNN [ Seq2Seq [ Self-Attention [___]Ve — Sp
98 - EENcLsTM [EEHAN [T 1DPCNN
96 - T R O 4 o
94+ y .
12}
- 2 ‘
5
S 92 1 3 2 >
= 22
8 90f 1 o g
© g &7 LT o=
3 E
o j=2)
= — [ =4
< 88 £ -
i
=
86 - 1 103‘
TextCNN -----Ac---- FastText
841 1 “TextRNN =+ Self-Attention|
CLSTM —--+---DPCNN
82 |- 4 -*RCNN Transformer
- ©O- -Seq2Seq —B— Ve — Sp
H —--= HAN
80 L L L
100 200 300 400 500 100 200 300 400 500
padding length / padding length /

Fig. 5. Performance changes and training time consumption with the increase of padding length [ between Ve — Sp and baselines.

V1| 0.09 I

V2| 0.16

Visualization of View and Spatial Attention Weights

0.7

V3 05

View Attention

V4| 0.20

VS
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tion of spatial and view attention mechanisms, we find that SVA-CNN can provide the multiple granularity feature maps
through multi-view representation learning, and tune the weights of multi-view features for enhanced performance.

7. Conclusion

Despite the prevalence of text classification studies, existing solutions are labor-intensive and task-oriented feature engi-
neering of conventional text classification methods are not suitable for the rapidly evolving domains. Moreover, prevailing
deep-learning based solutions only represent text as a single view and omit multiple sets of features at varying levels of
granularity. To date, encoding different levels of granularity to enrich fine-grained text representation at semantic level is
rarely studied. In this paper, we propose a novel Spatial View Attention Convolutional Neural Network (SVA-CNN). SVA-
CNN leverages the multi-view representation of sequential text and a heterogeneous combination of context, spatial and
view attention mechanisms to automatically extract and weight multiple granularities and fine-grained representations.
The proposed SVA-CNN is evaluated on five datasets with document classification, sentiment classification, and thematic
classification tasks. The experimental results show that SVA-CNN outperforms baselines by learning the multi-granularity
features from multi-view text representation, and the series-connected spatial and view attention mechanism yields a sig-
nificant performance gain in all tasks with higher accuracy and lower training time.
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