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Mitigating Scattering Effects in
Light-Based Three-Dimensional
Printing Using Machine Learning

When using light-based three-dimensional (3D) printing methods to fabricate functional
micro-devices, unwanted light scattering during the printing process is a significant chal-
lenge to achieve high-resolution fabrication. We report the use of a deep neural network
(NN)-based machine learning (ML) technique to mitigate the scattering effect, where our
NN was employed to study the highly sophisticated relationship between the input digital
masks and their corresponding output 3D printed structures. Furthermore, the NN was
used to model an inverse 3D printing process, where it took desired printed structures as
inputs and subsequently generated grayscale digital masks that optimized the light exposure
dose according to the desired structures’ local features. Verification results showed that
using NN-generated digital masks yielded significant improvements in printing fidelity
when compared with using masks identical to the desired structures.

[DOLI: 10.1115/1.4046986]

Keywords: additive manufacturing, computer-integrated manufacturing, nontraditional
manufacturing processes, production systems optimization

1 Introduction

Light-based three-dimensional (3D) printing methods using
digital light processing (DLP) technique [1,2], such as projection
micro-stereolithography (PuSL) [3], dynamic optical projection
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stereolithography [4], continuous liquid interface production [5],
and microscale continuous optical bioprinting (LCOB) [6], have
emerged as promising tools for fabricating functional devices
such as tissue engineering scaffolds [6,7], implantable medical
devices [8,9], microfluidic devices [10], microsensors [11], and
micro-robots [12] for a variety of applications in medicine, manu-
facturing, and consumer products due to their rapid fabrication
speed and micron-scale fabrication resolution. For these applica-
tions, high-fidelity fabrication for the 3D printed part as compared
to its intended design is highly desired. However, functional
devices are often made of a mixture of polymeric materials and
functional elements such as cells [7,10], micro/nanoparticles
[11,12], and micelles. These elements often scatter the incoming
light during the photopolymerization process, and additionally,
the polymer materials themselves may have turbidity, form crystal-
lites, or even micropores during and/or after polymerization, which
can also give rise to light scattering [13]. Such light scattering ulti-
mately reduces fidelity in the final product due to suboptimal poly-
merization of both the intended and unintended design areas
(Fig. 1). Figures 1(d) and 1(e) show a comparison between 3D
printing of non-scattering material and scattering material under
the same fabrication condition. In Fig. 1(d), we used 100% poly(-
ethylene glycol) diacrylate (PEGDA) (Mn=575) with 1% w/V
Irgacure 819. In Fig. 1(e), we utilized 100% PEGDA (Mn =575),
1% w/V Irgacure 819, and 1% w/V glass microbeads (diameter =
4 ym). The 3D printed “blood vessel” structure is hollow as
shown in Fig. 1(d), while it is clogged in Fig. 1(e) due to light scat-
tering. Therefore, it is challenging to achieve high-fidelity and fine
resolution in printing turbid materials using light-based 3D printing
methods. Generally, the fabrication resolution and fidelity achiev-
able in turbid materials are worse than in optically clear materials;
thus, it would take more effort to optimize proper exposure
dosages during printing. Such process optimization adds significant
cost and time for product development, making it especially
onerous in the case of 3D bioprinting where expensive cells are
involved in the printing process to make biological tissues.

In most implementations of light-based 3D printing, binary
digital masks identical to the desired structures are used. We will
term these “identical masks,” where in binary fashion, 1 (shaded
white) represents light exposure and O (shaded black) represents
no light exposure. However, directly applying these binary identical
masks will not produce the exact copies of the desired structures due
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to challenges such as the aforementioned light scattering effect, thus
motivating us to modulate the input mask in ways that might suffi-
ciently compensate. With advances in DLP techniques, patterns uti-
lizing grayscale values (ranging from O to 255 instead of binary 0
and 1) can be employed in light-based 3D printing. We expect
that by using grayscale masks which are not necessarily identical
to the desired patterns could compensate or counterbalance the
effect of scattering, thus resulting in 3D printed structures as
designed. Unfortunately, the light scattering properties of the prepo-
lymer materials are complicated (e.g., vary during printing and
overtime), making it difficult to a priori model the scattering and
photopolymerization behavior of these materials as well as calculate
the grayscale digital masks for 3D printing.

Recent advances in machine learning (ML) technologies based on
deep neural networks (NNs) have successfully demonstrated their
capability in assisting industrial manufacturing [14]. For example,
researchers have reported the use of an NN-based ML technique to
help optimize the processing parameters of inkjet-based 3D printing
[15], fused filament fabrication-based 3D printing [16,17], and laser
powder bed fusion [18-21]. However, to the best of our knowledge,
using ML to assist in DLP-based 3D printing has not yet been
reported. Moreover, it is far more complicated for NN to optimize
a 2D image than to optimize a few scalar parameters.

Here, we report the use of deep NN-based ML to study the 3D
printing behavior of light scattering materials and to generate gray-
scale digital masks to mitigate the effect of scattering in light-based
3D printing. A NN is trained to model the inverse process of 3D
printing, where the input is the desired structure, and the output is
the grayscale digital mask. We used 300 mask-structure pairs,
which were produced by an in-house DLP-based 3D printer, to
train the NN. Masks generated by the NN have then used to 3D
print the desired target structures. Finally, we compared the
printed structures created from NN-suggested masks to the struc-
tures printed from traditional identical masks. The results show
that higher fabrication resolution and better fidelity can be achieved
by our ML-assisted approach.

2 Experimental Setup

2.1 Modeling Digital Light Processing-Based Three-
Dimensional Printing. Figure 1(a) shows the setup of a

1

Schematic of the 3D printer and the printed structures. (a) The DLP-based 3D printer setup. (b) SEM image of printed 3D

“fractal tree” with a non-scattering material. (c) A “blood vessel” fabricated with a non-scattering material and the zoom-in detail of
vessel opening. (d) A “blood vessel” fabricated with a scattering material and the zoom-in detail of vessel opening.
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DLP-based 3D printer in this work. A light source of 405 nm wave-
length illuminates the digital micromirror device (DMD). The DMD
chip consists of 4 million of micromirrors, which can be individu-
ally controlled to flip toward two different directions, thus display-
ing a pattern. The reflected light is patterned by the DMD and is
projected onto the liquid state prepolymer solution by lenses. A
computer is used to control the DMD to display the cross sections
at different position of the 3D model. Upon light exposure, the pho-
tosensitive material polymerizes, forming a thin layer of solid struc-
ture. The motorized stage brings the solidified part up by a layer
thickness, which is typically tens to hundreds of microns, then
unpolymerized material refills the gap. The DMD then displays
the next cross section and photopolymerizes the next layer. By
repeating this process, a 3D construct is thus printed. Figures 1(b)
and 1(c) show the scanning electron microscopy (SEM) images of
the printed structures using this 3D printer. The whole multi-layer
3D printing process can be discretized into multiple single-layer
prints, which is the focus of this study.

There are several tunable variables for a single-layer print: (1) the
digital mask determines the shape of the exposed area; (2) the expo-
sure duration; and (3) the light intensity defines the exposure dose.
We can combine these variables into a “generalized digital mask,”
where the grayscale value of any given pixel on the digital mask
represents the local exposure dose. We abstracted the 3D printer
as a nonlinear time-invariant system. The input of the system is

the digital mask, which is a 512x512 pixel grayscale image,
where the grayscale value represents the local exposure dose. The
output of the system is the single-layer 3D printed structure,
which is represented by a 512 x 512 binary image, where 1 repre-
sents a solidified area and O represents a void area.

2.2 Neural Network. The NN models the inverse process of
3D printing, which takes a 512 x512 binary image (the desired
printed structure) as an input and generates a 512 x 512 grayscale
image (the digital mask) as the output (Fig. 2(a)). We used mask-
structure pairs from the 3D printer to train the NN. The digital
masks are grayscale images of an assortment of random shapes,
e.g., checkerboards, discs, and rectangles (Fig. 3). The 3D printer
then used these masks to print their corresponding structures. The
exposure duration was fixed to 5s. During printing, the actual
light intensity of the maximum grayscale value (255) was measured
to be 5.6 mW/cm? and 0 mW/cm? for the minimum grayscale value
(0). The light source was a light-emitting diode centered at 405 nm
wavelength. The prepolymer material was 50% (V/V) PEGDA (Mn
=575) aqueous solution, with 1% (w/V) lithium phenyl-2.4,6-
trimethylbenzoylphosphinate as photoinitiator, and 0.1% (w/V)
glass microbeads (diameter=4 um) as scattering particles. The
microscope images of the printed structures are then processed
into binary images with the use of custom code. We collected
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Fig.2 Data flow and architecture of the neural network. (a) The 3D printer takes the digital
masks as input, and output the printed structure. The neural network takes the desired
structure as input, and output the suggested digital mask. The input and output of the
3D printer are used to train the neural network. (b) The neural network has a 14-layer con-
volutional neural network architecture with U-Net style skip connections. The rectangles
represent the feature maps, with their feature resolution denoted at the bottom, and their

feature channel number denoted on the top.
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Fig. 3 Examples of the training digital masks

300 mask-structure pairs, which were then augmented to 900 pairs
by random rotation about the image center. The detailed training
method is available in the Appendix.

The architecture of our NN is adapted from the generator design
in image-to-image style transfer which is an encoder-decoder fully
convolutional network with U-Net style skip connections [22-24], a
schematic depiction of which is shown in Fig. 2(b). We also intro-
duced partially cycle-consistent image-to-image translation loss to
better meet our task characteristics which will be explained in the
Appendix. The NN consists of 14 building blocks, where each
building block is a convolution or deconvolution layer followed
by batch normalization [25] and the activation function. The convo-
lution layers in the first seven building blocks are set with stride 2 to
down-sample the features, while the deconvolution layers in the last
seven building block up-sample the feature using stride 2 to recover

the output image to the original resolution. The activation function
of the first 13 building block is a rectifier linear unit function [26].
The last building block uses a hyperbolic tangent function (tanh) as
the activation function in order to restrict the output value in the
range of —1 and 1, which is then linearly mapped to the grayscale
value ranging from O to 255. There are also skip connections that
copy the feature maps from the down-sampling process and
append to the corresponding feature maps of the up-sampling
process, allowing the network to learn more precise local
information.

3 Results and Discussion

To evaluate our ML method, we designed several target struc-
tures that were never used in the course of training the NN. The

Fig.4 Comparison of the targets, the NN-suggested masks, and the microscopic images of the printed structures. (a) The
target structures. (b) The NN-suggested masks for the targets. (c) The actual printed structures using the masks from b.
(d) The NN-suggested mask overlaid with its target (shown as red contour).
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Fig. 5 Printed structures using NN-suggested mask and identical mask. The first column is the target structures (designs). The
second to fourth columns are the printing result using the identical masks at 50%, 75%, and 100% exposure dose. The fifth column

uses the NN-suggested masks.

NN-suggested digital masks for these targets, after which we then
used our 3D printer to print the structures using these masks and
compare them to the targets.

As shown in Fig. 4, the NN-suggested masks (Fig. 4(b)) are not
necessarily identical to the desired structure (Fig. 4(a)). Compared
to the traditional “identical masks,” the NN-suggested masks show
significant use of grayscale variation and local feature deformation.

Journal of Manufacturing Science and Engineering

3D printing using the NN-suggested masks resulted in structures
(Fig. 4(c)) that more closely match our desired structures. We
find that the NN-suggested mask is able to compensate for the
scattering effect by “stretching out” at the corners and “squeezing
in” at the edges, as shown in Fig. 4(d). The NN’s behavior
matches our human intuition of how we would counter the scatter-
ing effect.

AUGUST 2020, Vol. 142 / 081002-5
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Fig. 6 Printed structures using NN-suggested masks and identical masks. (a)—(c) Overlaid contours of the structures printed
under different exposure doses with identical masks indicated as dose percentages in the legend, the structure printed with
NN suggested masks indicated as Al in the legend, and the target ground truth structure indicated as Target. (d)—(g) Zoom-in
views in the dashed frame in panel (c), where the contours of the structures printed under four different conditions are isolated.
(h) The Chamfer distances, Dice coefficient, and Accuracy score between the printed structures and the desired targets.

More importantly, using the NN-suggested mask, we can reach a
printing fidelity that cannot be achieved by using traditional “iden-
tical masks.” Traditionally, people tend to optimize the printing
process by only tuning the exposure dose but keep using an “iden-
tical mask.” To showcase the fidelity achievable with our method,
we 3D printed and then compared the same target shape using
both the NN-suggested masks as well as the traditional “identical
masks.” For the traditional “identical masks,” we used exposure
doses of 50% (2.8 mW/cm?), 75% (4.2mW/cm®), and 100%
(5.6 mW/cm?) to simulate how an operator might optimize the 3D
printing by tuning the global exposure dose.

Figure 5° shows the printed results of several targets using tradi-
tional “identical masks” at different exposure doses or using the
NN-suggested masks. These targets include simple geometries as
well as complex shapes. For all these targets, the NN-suggested
masks yield the best printing fidelity and are able to fabricate the
finest features such as sharp corners.

Figure 6 shows the overlaid contours of part of the printed struc-
tures in Fig. 5. The contours represent the structures printed using
the “identical masks” at 50%, 75%, and 100% exposure doses,
the structure printed using NN suggested masks, and the target
structure as shown by the legend. Compared with the targets, the
50% dose structures are shrunken considerably compared with the

3The artistic butterfly silhouette used in Fig. 5 is designed by Vexels.com.

081002-6 / Vol. 142, AUGUST 2020

target (Fig. 6(d)), indicating under-exposure condition; while the
100% dose structures are expanded well beyond the target structure
(Fig. 6(f)), indicating over-exposure. The 75% dose structures
expand at the edges but also shrink at the corners, thus indicating
over-exposure at some locations and under-exposure at others
(Fig. 6(e)). This suggests that by using an “identical mask,” we
cannot achieve proper exposure across the entire printing area.

The NN-suggested masks digitally individualize the local expo-
sure dose depending on the local feature; hence, an optimized
map of exposure doses can be achieved across the entire printing
area. We can see from Figs. 6(a)-6(g) that the red (NN-suggested)
contours best match the targets. Significantly, fine features such as
sharp corners seem particularly well-preserved. Thus, the
NN-suggested masks outperform the “identical masks.”

In order to quantitatively evaluate the printing fidelity of the
printed structures shown in Figs. 5(a)-5(c), we compare those
printed structures with their targets using Chamfer distance
defined by Eq. (1) [27], Dice coefficient (equivalently F1 score)
defined by Eq. (2) [28], and the accuracy score defined by accu-
racy = number of correct pixels/total number of pixels.

— : 2 : o2
Chamfer(P, @)= jmin [l p=qll;+3 minllp=qll; ()

pEP qeQ

In Eq. (1), P and Q are the two binary images (or, two sets of
non-zero pixels) we compare, p and ¢ are the positions of individual

Transactions of the ASME



non-zero pixels from the corresponding sets.

23 pigi
Yim+ Xl a

In Eq. (2), P and Q are the two binary images we compare, p; and
q; are the binary pixel values of index i. N is the total number of
pixels on the image.

If a pair of images have a greater similarity, they have a smaller
Chamfer distance and a larger Dice coefficient and accuracy score.
The calculated Chamfer distances, Dice coefficient, and accuracy
between the 12 printed structures and their corresponding targets
are shown in Fig. 6(h). All three indices suggest that using the
NN-suggested mask, we can achieve better printing fidelity,
which matches our qualitative evaluation.

The evaluation results have shown that our ML approach can
help to address the scattering issue in light-based 3D printing,
achieving a better fabrication fidelity and resolution than the tradi-
tional non-ML method. It should be noted that the NN we presented
does not take the material properties as input variables. Therefore,
NN should be trained individually for different materials.
However, we believe that our method and the NN architecture
can be applied to different materials to address the scattering
problem in light-based 3D printing.

Dice(P, Q) = 2)

4 Conclusions

We have successfully demonstrated the use of ML to assist light-
based 3D printing. When using turbid materials to fabricate func-
tional devices, the printing fidelity deteriorates due to light scatter-
ing. The NN allow us to study the relationship between the input
digital mask and the actual output printed structure. Using the
image-to-image fully convolutional NN that takes the desired struc-
ture as input and the grayscale digital mask as output, we succeeded
in training the NN with a notably small amount of data (300 original
mask-structure pairs). After training, the NN provides a digital mask
with a digitally optimized light dose map. Compared to traditional
“identical masks,” the NN-suggested masks mitigate the scattering
effect and enable better fabrication resolution and fidelity. Such
intelligent advice empowered by ML could minimize the
trial-and-error inherent in optimizing printing parameters, thus sig-
nificantly reducing the costs across the board for a time, labor,
resources, customized parts, and time-to-delivery.

One limitation of our approach is that we do not consider the 3D
printer’s specifications and the materials’ properties as input param-
eters of the neural network. Therefore, one trained neural network
can only be applied to the specific material and specific 3D
printer which it is trained with. In order to apply it to another mate-
rial or a different 3D printer, the neural network need to be
re-trained by a training dataset generated on the specific 3D
printer with the specific material.

We expect that this method can be applied to light-based 3D bio-
printing, where complex 3D scaffolds embedding live cells with
micron-scale features to mimic the native biological tissue are
highly desired. This will further create a new paradigm for 3D bio-
printing of functional organs and tissues due to expensive cell
sources, patient-specific design, and required microscale printing
resolution.
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Appendix

Neural Network Implementation and Objective Function.
Our objective is to find proper masks according to any target struc-
ture. Intuitively, we can achieve this objective by training the NN
alone with the mask-structure data pairs we have made. The
trained NN will learn to mimic the mapping from our dataset.
However, we have limited data to train the NN, which prevents
our NN from generalizing well on the entire structure space.

To address this challenge, we introduce a slave NN which learns
the mapping of the 3D printer (the mapping from the mask to the
structure). The slave NN has a similar architecture as the master
NN as shown in Fig. 2(b), and the difference is that the last layer
of the slave NN has two output channels and the tanh is replaced
with a softmax function. We train the master NN, which models
the inverse process of 3D printing (i.e., from the structure to the
mask), based on not only the data generated by the actual 3D
printer but also the extra information provided by the slave NN,
thus we can allow the master NN to fit a broader and smoother dis-
tribution of data.

We formulate the training process of the NN as solving a mini-
mization problem with the following objective function. For simpli-
city in expression, we define a function S: X — Y, which represents
the slave NN that learns the mapping from any grayscale mask x to
the binary structure y. In the optimal case, the slave NN behaves
exactly as the 3D printer, which is denoted as S*. Similarly, we
denote M: Y — Z as the transformation of master NN that learns a
mapping from the desired binary structure y to a suggested gray-
scale mask z.

We first look at the slave NN. Since we want the slave NN to
mimic the behavior of a 3D printer, i.e., we want the output of S
to be as close as the output of $* for the same input x, the ideal
objective function for the slave NN can be expressed as Eq. (A1)

L:'lave =E; [ZOSS(S(x)v §* (—x))] (A 1)

where loss can be any loss function.

However, we only have limited access to the 3D printer S* due to
the cost and time, and we decide therefore only to use the data
pre-generated by S* for training, which are the 300 mask-structure
pairs. We denote the training dataset as (X,Y), such that any (x,y)
chosen from (X,Y) satisfies S*(x) =y. According to this data set,
we can come up with a new objective function as Eq. (A2)

LSlave = x,y[lOSS(S(X), y)]

This objective (Eq. (A2)) is ultimately the same as the ideal
objective (Eq. (Al)) if we have unlimited data. However, due to
the limited amount of data we have, we expect the trained S to
have a relatively high variance. This variance can be a form of
useful noise to help generalize the master NN, which will be
trained using this slave NN.

Next, we are looking at the master NN. We define the ideal objec-
tive equation for optimizing the master NN as Eq. (A3)

L}\kflasrer = Ey[l()SS(S* (M(Y))’ y)]

We can see that M is trained to minimize the error between the
actual output structure and the desired structure. Again, we use a
data set (X,Y) instead of S* during training. According to this
data set, we can come up with a new objective function as Eq. (A4)

LMasler,l = Ex,y [lOSS(M(Y)’ x)]

In the optimal case M(y)=ux. Since we know S*(x) =y, we will
have S*(M(y)) =y for the y’s in set Y. This means the new objective
leads to the same optimized M as the ideal objective (Eq. (A3)).
However, we will have a severe generalization issue with this
new objective. Imagine a small disturbance is applied to the input
v, a well generalized M(y) will then output an image X close to x.
However, notice that S* can potentially be very non-linear, which
means that $*(X) can be very different from S$*(x) even though X
is very close to x. We may then interpret this effect as having

(A2)

(A3)

(A4)
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Fig. 7 Comparison between the two-NN design and the master-only design. The first column is the masks generated by
the master-only design. The masks generated by the two-NN design can be found in Fig. 4. The second column is the con-
tours of the printed structures using the two-NN design and the master-only design comparing with the target. The bar
chart is the Chamfer distance between the prints using two-NN design and the target, and the Chamfer distance

between the prints using master-only design and the target.

relatively high variance if $*(X) is not smooth enough. Due to this
issue, we need to find a way to better generalize M.

Let’s take a look at another way to address the ideal master NN
objective (Eq. (A3)) which is to replace S* by its approximation, S.
The objective becomes Eq. (AS)

LMaster,Z = Ey [ZOSS(S(M(y)), A2)

This objective has the benefit of generalizing well thanks to the
information previously learned from S. The disadvantage is the
cumulated error in the term S(M(y)). Notice that both S and M
in this objective are neural networks and will potentially have
some error even after convergence. If we use this Lyse.n as
objective, the calculation S(M(y)) will suffer from the error of
both S and M, making the trained M biased according to the
error from S.

Since the two feasible master NN objective functions either have
a small bias or small variance, we decide to combine them. The
resulting objective combining Lysuger1 and Lysager2, (Eqs. (A3)
and (A4)), becomes Eq. (A6)

(A5)

Lytasier = Ey[l0ss(SM ), Y)] + 4 Exylloss(M(y), )] (A6)

where 1 is a tunable weight term to control the tradeoff between bias

and variance. Notice that the first term is also a cycle-consistent
loss, which is empirically proved to add performance to the

081002-8 / Vol. 142, AUGUST 2020

network when the data set is having this cycle-consistency property
[29-31].

We decide to train S and M simultaneously instead of full training
S before starting to train M. Our final objective function for both
master NN and slave NN, therefore, is the combination of
Eq. (A2) and Eq. (A6).

L =E,[loss(SMy)), W]+ A1 Exylloss(M(y), x)]

+ A2 * Exy[loss(S(x), y)] (A7)

The advantage of training the master and slave NN simulta-
neously using Eq. (A7) is demonstrated in Fig. 7, where only train-
ing the master NN with Eq. (A4) is used for comparison. We
noticed that the masks on the leftmost row of Fig. 7 generated
by the master-only design contains some “ghost images,” which
may be due to the poor generalization capability of the master-
only design. The contours of the printed structures are shown
in the second column, where the contours are the target, the
two-NN design, and the master-only design indicated by the
legend. We can see that the two-NN contours perform better
than the master-only contours. The calculated Chamfer distances
(Eq. (1)) also prove that the prints using the master-only design
have a greater Chamfer distance than the prints using our
two-NN design.

Following this approach, we can interpret S as a gradually reduc-
ing noise term, and this noise will make the output of S to bounce
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Fig. 8 Plot of errors versus episodes. The red line represents
the loss calculated for master during training. The yellow and
blue dots are errors of slave and master NN calculated using
the test set. Final test error shows the value for slave and
master NN errors after the last (200) epoch.

around the ground truth after convergence. We find this noise useful
to generalize M to fit the distribution of varying output of S and
avoid overfitting M to a deterministic output of S. We decide not
to apply other commonly used noises, like adding Gaussian noise
to the input or applying dropout to the network weights during train-
ing [32], while updating M. In terms of S, we add Gaussian noise to
the input with zero mean, initial standard deviation 0.1, and 0.97
decay rate at each iteration.

In terms of hyperparameter choices, we use the L1 norm as
the loss function for comparing grayscale images, and we use the
cross-entropy loss for the loss between binary images. The tradeoff
weight A; is set to 0.1 and A, is 1.

Data Augmentation. Consider the small amount of training
data we had access to, we implemented data augmentation tech-
niques to better train the networks. Typical image processing
tasks use a hierarchical algorithm [33] or use data augmentation
to improve the learning of many invariance properties such as
shift-invariance, rotational invariance, and deformation invariance
[23,24,34]. We augment our data by applying rotation and flip-
ping with respect to the image center. In our implementation,
the 300 pairs of data were augmented to 900 pairs following
this method.

Hyperparameters and Training Details. We trained both net-
works under PyTorch [35] framework with mini-batch stochastic
gradient descent using Adam solver [36]. The batch size is set to
10 due to the memory limit (8 GB). The momentum parameters
are set to (0.9, 0.999), and the learning rate is 0.00001. All
network model weights and biases are initialized using random
samples from normal distribution with zero mean and 0.02 standard
deviation. The whole training process took six and a half hours on a
personal computer with a GTX 1070Ti discrete graphics processing
unit (GPU). Once trained, the NN takes only a few seconds to cal-
culate an output digital mask on a personal computer, and the speed
is about ten times faster when utilizing the GPU. The training curve
Fig. 8 shows that the network is converging smoothly. We used 33
pairs of test data isolated from the train data to calculate the test
errors, and these errors represent that our networks can indeed gen-
eralize well on unseen data. Although the error value does not give
intuitive results, since the slave NN and master NN errors are calcu-
lated differently, we can still find out that the slave NN is converg-
ing faster than the master NN. This might prove that the mapping
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learned by slave NN is a relatively easier transformation compared
to what master NN learns.
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