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Wolbachia are maternally transmitted bacterial endosymbionts, carried by approximately
half of all insect species. Wolbachia prevalence in nature stems from manipulation
of host reproduction to favor the success of infected females. The best known
reproductive modification induced by Wolbachia is referred to as sperm-egg
Cytoplasmic Incompatibility (Cl). In Cl, the sperm of Wolbachia-infected males cause
embryonic lethality, attributed to paternal chromatin segregation defects during early
mitotic divisions. Remarkably, the embryos of Wolbachia-infected females “rescue”
Cl lethality, yielding egg hatch rates equivalent to uninfected female crosses. Several
models have been discussed as the basis for Rescue, and functional evidence indicates
a major contribution by Wolbachia Cl factors. A role for host contributions to Rescue
remains largely untested. In this study, we used a chemical feeding approach to
test for Cl suppression capabilities by Drosophila simulans. We found that uninfected
females exhibited significantly higher Cl egg hatch rates in response to seven chemical
treatments that affect DNA integrity, cell cycle control, and protein turnover. Three of
these treatments suppressed Cl induced by endogenous wRi Wolbachia, as well as
an ectopic wMel Wolbachia infection. The results implicate DNA integrity as a focal
aspect of Cl suppression for different Wolbachia strains. The framework presented here,
applied to diverse Cl models, will further enrich our understanding of host reproductive
manipulation by insect endosymbionts.

Keywords: Wolbachia, cytoplasmic incompatibility, Cl, rescue, Drosophila

INTRODUCTION

Endosymbiosis is a specialized form of interaction, with one organism dwelling inside the cells
and tissues of another (Archibald, 2015). The bacterium Wolbachia pipientis is one of the most
widespread endosymbionts, carried by half or more of all insect species (Weinert et al., 2015;
Sazama et al.,, 2017). Wolbachia are gram negative bacteria that belong to the alpha-protobacterial
class Rickettsiales. Wolbachia are maternally transmitted, with the efficacy of transmission
dependent on the bacteria being loaded into eggs (Breeuwer and Werren, 1990; Zchori-Fein et al.,
1998; Hadfield and Axton, 1999; Stouthamer et al., 1999; Rasgon and Scott, 2003; Veneti et al,,
2004; Ferree et al.,, 2005; Serbus et al., 2008; Fast et al., 2011). Wolbachia commonly modify
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host reproduction to favor the success of infected females. This
is accomplished by induction of parthenogenesis, male killing,
feminization and sperm-egg cytoplasmic incompatibility (Yen
and Barr, 1971; Rousset et al., 1992; Stouthamer et al.,, 1993;
Jiggins et al., 1998; Hurst et al., 1999; Werren et al., 2008).
Though Wolbachia interactions with their host appear generally
commensal, this extent of host manipulation classifies Wolbachia
bacteria as reproductive parasites.

Cytoplasmic incompatibility (CI) is the most widely known of
all Wolbachia-induced reproductive manipulations (Hoffmann
and Turelli, 1997; Werren, 1997; Stouthamer et al., 1999).
CI is characterized by embryonic lethality in crosses between
uninfected females and Wolbachia-infected males (Hertig, 1936;
Laven, 1959; Yen and Barr, 1971, 1973; Noda, 1984; Hsiao
and Hsiao, 1985; Wade and Stevens, 1985; Hoffmann et al.,
1986; Binnington and Hoffmann, 1989). By contrast, Wolbachia-
infected females are compatible with both uninfected and
Wolbachia-infected males, with viable progeny produced by
both types of crosses. The ability of embryos from Wolbachia-
infected females to survive the Wolbachia-modified sperm is
known as “Rescue.” Compatibility is conferred by specific
pairings of sperm modification (mod) and rescue capacity
(resc) associated with different Wolbachia strains (Turelli, 1994;
Werren, 1997; McGraw and O’Neill, 1999; Charlat et al., 2001;
Poinsot et al., 2003; Duron et al., 2006; Zabalou et al., 2008;
Nor et al., 2013). With infected females favored by elimination
of incompatible embryos, the CI/Rescue paradigm effectively
drives host population replacement in natural populations as
well as in applied, vector management scenarios (Turelli and
Hoffmann, 1991, 1995; Riegler et al., 2005; Hoffmann et al., 2011;
Kriesner et al., 2013; Schuler et al., 2013; Schmidt et al., 2017;
Turelli et al., 2018).

The cellular basis of CI has been a point of interest for
many years. Cytological experiments indicate that mitotic defects
are a consensus feature of CI across Wolbachia-host systems.
Specifically, paternal chromatin remains at the metaphase plate
while maternal chromatin segregates to opposite poles in
anaphase, resulting in chromosome bridging and aneuploidy
(O’Neill and Karr, 1990; Reed and Werren, 1995; Callaini and
Riparbelli, 1996; Lassy and Karr, 1996; Callaini et al., 1997;
Tram and Sullivan, 2002; Landmann et al., 2009; Bonneau et al.,
2018b). Studies from Nasonia and Drosophila simulans have
suggested these mitotic defects are produced from a timing
mismatch between male and female pronuclei at the first mitotic
division, which must be reconciled in order to enable Rescue
(Callaini et al., 1997; Tram and Sullivan, 2002; Landmann et al.,
2009). A separate line of work implicated Wolbachia-induced
oxidative damage to spermatocyte DNA as a contributor to CI
lethality (Brennan et al., 2012) with the implication that DNA
damage prevention and/or repair in the embryo is important
in conferring Rescue. This model is consistent with a body
of literature on Wolbachia and induction of oxidative stress
(Brennan et al, 2008; Xi et al., 2008; Hughes et al, 2011;
Andrews et al., 2012; Pan et al,, 2012; Bian et al., 2013; Zug and
Hammerstein, 2015).

The most recent model is that Wolbachia CI factors
(Cifs) are responsible for both CI and Rescue (Beckmann

et al, 2017; LePage et al, 2017; Shropshire et al, 2018).
Bioinformatic predictions and transgenic studies using yeast
and Drosophila melanogaster models, have indicated that CifB
proteins have deubiquitlase activity (CidB), nuclease activity
(CinB), or both (CndB) (Beckmann and Fallon, 2013; Beckmann
et al, 2017, 2019a,b; Lindsey et al., 2018; Chen et al., 2019).
CifB is required to induce CI (LePage et al, 2017; Bonneau
et al, 2018b, 2019; Chen et al, 2019; Meany et al., 2019),
possibly by affecting sperm chromatin remodeling during
spermatogenesis (Beckmann et al., 2019b). By contrast, CifA
can Rescue classical CI phenotypes induced by Wolbachia
(Shropshire et al., 2018), as well as CI associated with dual
expression of CifA and CifB in transgenic males (Chen et al.,
2019; Shropshire and Bordenstein, 2019). Proteomic evidence
also indicates that CidA binding modifies CidB targeting
(Beckmann et al., 2019b).

One caveat of the CifA findings to date is that D. melanogaster
exhibits transient CI, mainly in association with newly eclosed
males (Reynolds and Hoffmann, 2002; Yamada et al., 2007;
LePage et al., 2017), particularly for first-emerging males of a
population (Yamada et al, 2007). Depending upon the host
strain used, initial hatch rates of 5-50% increase to 50-
80% by day 3, and become normal by day 5 (Reynolds and
Hoffmann, 2002; Yamada et al, 2007; LePage et al., 2017).
This CI decline appears attributable to the host background,
as wRi Wolbachia transinfected into D. melanogaster also
elicit a mild CI response, allowing on the order of 70% egg
hatch (Boyle et al, 1993). By contrast, progeny produced
by wRi Wolbachia CI range from 0 to 6% of normal for
newly eclosed males, 15-30% in 7-9 day old males, and 40-
50% in 14-day old males, depending upon the experiment
(Hoffmann et al,, 1986; Turelli and Hoffmann, 1995). Thus,
it is unclear if D. melanogaster CI represents mild induction
of the CI defect, a background environment that is already
highly permissive/enabling of Rescue, or both. As transgenic
studies of Cif function in CI and Rescue have only just begun,
it is not known to what extent Cif-related mechanisms in
D. melanogaster represent that of other hosts exhibiting severe,
Wolbachia-induced CI defects.

A long-standing question has been to what extent host
factors contribute to the mechanism of Rescue. If Cif proteins
act exclusively in terms of a toxin-antitoxin system, with
CifA suppressing CifB function via direct binding (Beckmann
et al, 2019a), no host involvement is required for Rescue.
Consistent with the toxin-antitoxin model, direct binding has
been demonstrated for multiple cognate pairs of CifA and
CifB proteins (Beckmann et al, 2017, 2019b; Chen et al,
2019). Complementary studies did not identify contributions by
additional Wolbachia-generated factors (Bonneau et al., 2018a,
2019; Perlmutter and Bordenstein, 2020), though host genetic
background differences are reported to alter CI severity (Boyle
et al., 1993; Poinsot et al., 1998). It remains possible that host
mechanisms, to some extent, run in support of, in parallel to,
or independently of bacterial effectors in the context of Rescue.
Cardinium endosymbionts carried by Encarsia wasps have been
credited with inducing their own forms of CI and Rescue
(Hunter et al., 2003; Penz et al., 2012; Mann et al., 2017), in the
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apparent absence of Cif proteins altogether (Lindsey et al., 2018;
Doremus and Hunter, 2020). Two additional non-Wolbachia
CI systems were recently identified (Doremus and Hunter,
2020), in Lariophagus wasps (Konig et al., 2019) as well as
in Brontispa beetles (Takano et al.,, 2017). While it is possible
that each endosymbiont has a self-contained mechanism for
CI and Rescue, another possibility is that these functionally
convergent phenotypes are due to endosymbiont effects on
conserved, cellular processes of the host. As such, the extent of
host involvement in the process of Rescue merits examination.

Since Rescue involves preventing and/or repairing CI defects,
this study examined whether D. simulans females have the
capacity to alter developmental outcomes of CI embryos. If this
is possible, then modifying the function of the relevant host
pathways should confer CI suppression, evident as increased
hatch rates for uninfected embryos that are otherwise subject
to CI lethality. To test this, uninfected D. simulans females
were exposed to chemicals that alter candidate cellular processes,
previously implicated in CI and Rescue. CI induced by the
endogenous wRi Wolbachia strain, as well as a transinfected
wMel Wolbachia strain, were investigated. Egg hatch data
were evaluated in light of existing CI/Rescue models, as
described below.

MATERIALS AND METHODS
Fly Stocks and Rearing Conditions

The wRi Wolbachia strain, endogenous to D. simulans, used in
this study was originally described by Hoffman, Turrelli, and
Simmons (Hoffmann et al., 1986). The uninfected D. simulans
strain (w™) is of the same genetic background, as it was
this original line cured of Wolbachia with tetracycline. The
wMel trans-infected line was created with Wolbachia from
D. melanogaster (Poinsot et al., 1998), backcrossed into the cured
fly stock for six generations to standardize the D. simulans
genetic background. We previously confirmed the identity of
wRi and wMel in D. simulans, and verified that the wMel
transinfection matches the standard wMel strain carried by most
D. melanogaster stocks (Christensen et al., 2016).

All the flies used in this study were maintained at 25°C
on a 12 h light/dark cycle using an Invictus Drosophila
incubator (Genessee Scientific, United States). Flies were raised
in standard 60z square bottom polyethylene bottles containing
25-30 ml of fly food (described later). Each stock bottle
was seeded by approximately 80-100 flies, a mixture of
both male and female, and incubated for 3-6 days. After
this period, flies were either transferred to a new bottle or
discarded. Flies used to seed all bottles were discarded by
12-15 days of age. To collect virgin flies, stock bottles were
completely cleared, and rechecked by eye to verify the absence
of flies. Newly eclosed flies were collected 5-8 h later using
standard CO, gas pads. Males and females were separated and
temporarily stored in narrow polypropylene vials until loading
into treatment vials/plates, as described below. To avoid damage
from prolonged exposure to CO,, fly sorting was limited to a
20-25 min time frame.

Microbial 16S rRNA Gene Sequencing

To determine the infection status in D. simulans flies, microbial
16S rRNA gene sequencing was performed. Ovaries were
dissected from uninfected, wRi-infected and wMel-infected
D. simulans females, followed by sequencing of region V1-V3
of the 16S rRNA gene, carried out on an Illumina MiSeq as
previously described (Christensen et al., 2019). Each sample
represents ovarian content from 20 flies. The raw sequencing
data are available at https://www.ncbinlm.nih.gov/Traces/study/
2acc=PRJNA663645.

Food Preparation

The stock food used in this study was made as per a standard
Bloomington Stock Center recipe, described earlier’ (Camacho
et al., 2017). For chemical feeding assays, concentrated stock
solutions of each chemical were prepared using an appropriate
solvent, dependent on necessary final concentration. To make
chemical food for independent experiments, the appropriate
amount of stock solution was mixed with melted food and mixed
thoroughly by stirring. This food was transferred to either vials
or plate wells immediately, before cooling and solidifying. The
same amount of solvent was mixed with standard food to create a
parallel “control food” condition in each experiment. Vial-based
trials contained 3-5 ml of food per vial, while in the 24-well plate
format, each well contained 800 L of food.

Dose Response Curve Preparation

To determine the appropriate feeding concentration for each
chemical, a range of 6-7 doses was empirically tested for each
compound. The range of concentrations used was based on
information available in existing literature. Each chemical was
diluted to the appropriate concentration in beakers containing
10 mL standard food with Brilliant Blue G food added (Acros
Organics). All content was mixed thoroughly for 30 s, then
divided equally into two treatment vials and cooled under the
fume hood for ~2 h to prevent condensation from collecting
along the sides of the vials. In each case, one treatment vial was
immediately used, and the second vial was plugged with rayon,
wrapped in foil, and stored in a sealed container at 4°C for
use 6 days later.

To carry out dose-response testing, six uninfected male and
six uninfected female D. simulans flies were incubated in the first
set of treatment vials. On the 6 day, the flies were transferred
to the second corresponding treatment vials for an additional
6 days. Adult mortality, egg lay, egg hatch and larval development
were qualitatively scored for treatment vials and corresponding
controls across the 12-day period. Treatment vials equivalent
to the control were scored as “+.” Conditions exhibiting loss
of 40% or more relative to the control, of eggs, larvae and/or
pupae, were separately noted. Defects occurring during later days
(Zchori-Fein et al., 1998; Rasgon and Scott, 2003; Veneti et al.,
2004; Ferree et al., 2005; Serbus et al., 2008; Fast et al., 2011) of
treatment were scored as “some,” and consistent developmental
defects across the 12-day span were scored as “-.” The highest
concentration of chemical with no adverse effect on flies as per

'https://bdsc.indiana.edu/information/recipes/bloomfood.html
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the above criteria was selected for subsequent feeding assays.
Dose response curves for dual drug treatment combinations were
carried out similarly. Two independent biological replicates were
performed for all dose-response experiments.

Cl Suppression Tests

In the Vial-Based Format

Virgin D. simulans flies were incubated for 3 days in vials
containing 3-5 ml of food. Females were split between treatment
food and control food conditions, whereas infected males were
exposed to standard food only. In all cases, flies were grouped,
with 15-20 flies per vial. On day 3, male and female flies
were transferred to fresh vials of standard food for an 8-
h mating period. Depending upon the experiment, this was
done as single pair matings or as mass matings of 30-40
flies, using equal numbers of males and females. Afterward,
male flies were discarded and female flies were returned their
original treatment vials. At day 4, individual females were split
up into separate vials that sustained their existing treatment
conditions, with the addition of blue food coloring to the food
to improve egg visibility.

In the Plate Assay Format

A detailed description is provided in Additional File S1. Briefly,
Corning 24-well plates (Cat# 3738) were set up with 800 pL
of fly food per well. 10 D. simulans virgin females were added
to each well and incubated for 3 days. Uninfected females were
added to eight standard food wells for use as the CI control, and
to eight treatment wells to test for chemical suppression of CL
Infected females were added to eight standard food wells for use
as a Rescue control. Wolbachia-infected males were incubated
separately on standard food for 3 days, at a density of 45 flies or
fewer per vial. At day 3, the females were transferred to a new
plate carrying standard food and mated to 10 infected males for
8 h. Afterward, males were removed, and female flies returned
to their respective wells in the original treatment plate. At day 4,
females were transferred to a fresh plate that contained the same
treatment condition per well, along with blue food coloring.

For Both Assay Formats

Female flies were discarded at day 5, followed by scoring of egg
hatch at day 6. Two or more independent biological replicates
were performed for each plate assay experiment. For rigor and
consistency across the plate assays, only plates that showed a 12%
or lower hatch rate for the CI control were scored.

Statistical Analysis

Chi Square tests of goodness of fit were performed manually
as per standard procedures (McDonald, 2014). A Bonferonni
correction was applied, so that alpha values were scaled to
the number of data categories analyzed (McDonald, 2014). Z'
values were calculated as previously (Zhang et al., 1999; Serbus
et al,, 2012). As previously, the IBM SPSS v.23 analysis package
was used for all other statistical test (Field, 2013; Christensen
et al.,, 2019). The data were analyzed for normality using the
Shapiro-Wilk test and for homogeneity of variance by Levene’s
test (Shapiro and Wilk, 1965; Lim and Loh, 1996; Mohd

Razali and Bee, 2011). For the data with normal distribution,
mean differences were evaluated using a t-test if variance was
homogeneous, and Welch’s ¢-test if it was not (McDonald, 2014;
Rietveld and van Hout, 2015). If the data did not fit the normal
distribution, the Mann-Whitney U-test was performed for data
showing homogeneity of variance, and an independent t-test
was performed with bootstrapping as an approximation when
variance was uneven (LaFlair et al., 2015; Rietveld and van Hout,
2015). To assess the power of different sample sizes, we also
used a bootstrap procedure in MATLAB™ (Mathworks, Natick,
MA, United States) that randomly sub-samples from the data
to determine the sample size required to meet specified p-values
(Christensen et al., 2019).

RESULTS

Verification of D. simulans Endosymbiont
Identity by 16S rRNA Analysis

The D. simulans flies used in this study carry the Wolbachia strain
wRi as a natural infection (Hoffmann et al., 1986), or wMel as a
transinfected strain (Poinsot et al., 1998). Female flies from these
strains have been shown by DNA staining to exhibit nucleoids in
their germline cells that are consistent with Wolbachia infection
(Serbus and Sullivan, 2007; Christensen et al., 2016). These lines
have also been confirmed as PCR-positive for the Wolbachia
surface protein (Wsp) gene, and the Wolbachia strain identities
have been confirmed by sequencing (Christensen et al., 2016).
Use of these detection methods, while consistent with expected
Wolbachia identities, does not rule out the possible presence of
other bacterial endosymbionts.

To independently confirm the identity of the germline bacteria
carried by Wolbachia-infected flies, 16S rRNA microbiome
analyses were carried out as previously described (Christensen
et al, 2019). Ovary tissue samples were analyzed from both
uninfected and Wolbachia-infected D. simulans lines. The data
indicate Wolbachia spp. as the predominant taxon carried by both
wRi- and wMel-infected tissues, with 94.5-98.3% of the reads
representing the Wolbachia genus (Figure 1) (Supplementary
Table S1) (Additional File S2). The other non-Wolbachia taxa
detected in the Wolbachia-infected ovary samples paralleled
that of the uninfected control (Figure 1). As this was a non-
sterile assay, these signatures likely reflect the microbiome of the
cuticle, the body cavity and residual contamination of dissection
equipment (Christensen et al., 2019). Notably, the Wolbachia-
infected samples show no evidence of other Drosophila-resident
symbionts such as Spiroplasma. Thus, Wolbachia endosymbionts
represent the vast majority, if not all, of the microbiome carried
by maternal germline cells that generate Rescue-capable eggs.

Confirmation of Baseline Cl and Rescue
Phenotypes From D. simulans

Previous studies have demonstrated that natural (wRi) as well
as transinfected (wMel) Wolbachia strains induce robust CI and
Rescue effects in D. simulans (Hoffmann et al., 1986; Binnington
and Hoffmann, 1989; Poinsot et al., 1998). To determine the
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FIGURE 1 | 16S rRNA microbiome profiles associated with Drosophila simulans ovary tissues. Uninfected and Wolbachia-infected tissues are shown. Top five most
abundant genera that equal or exceed 1% abundance per sample are shown. For further details, see Supplementary Table S1 and Additional File S2.

strength of CI and Rescue in current laboratory settings, group
mating assays were performed and egg hatch outcomes were
scored for individual females. Crosses of infected females to
infected males, referred to as the Rescue, yielded a 92% hatch rate.
This was not significantly different from the uninfected Control
cross (p > 0.05; adjusted o = 0.0083) (Table 1). By contrast, the
CI egg hatch rates ranged from 4 to 10% for wMel and wRi. This
represents a significant reduction in hatch rates, as compared to
both Control and Rescue crosses (p < 0.001; adjusted o = 0.0083)
(Table 1). This outcome is consistent with the expectation of
strong CI and Rescue phenotypes associated with D. simulans.

Wolbachia infection has been reported to alter pheromone
release and perception by other species of Drosophila, leading
to altered mating patterns (Ringo et al., 2011; Schneider et al.,
2019). Thus, it is formally possible that low egg hatch in
incompatible crosses, normally attributed to wRi-induced CI
lethality, instead reflects a failure to mate. To distinguish between
these possibilities, single pair matings were set up, with egg hatch
scored only for vials in which mating was visually confirmed.
In these experiments, hatch rates remained low for CI crosses
(10%) as compared to Control crosses (90%) (Table 1) (p < 0.001;
adjusted o = 0.0125). The results of these mating-confirmed
crosses closely parallels that shown above for group matings. This
demonstrates that the low hatch rates currently associated with
wRi-induced CI are due to the reduced viability of CI eggs laid by
uninfected D. simulans females.

Demonstrating Use of Small Molecule
Inhibitors to Suppress Cl Phenotypes

CI embryos have previously been shown to exhibit defective
incorporation of maternal histones into paternal DNA

(Landmann et al., 2009). We reasoned that chromatin-modifying
compounds may also be able to confer CI suppression in a
manner analogous to natural Rescue. It is known that acetylation
of histones lowers their affinity for DNA and loosens chromatin
structure, whereas removal of acetyl groups by histone de-
acetylase (HDAC) enzymes reverses this effect (Pasyukova
and Vaiserman, 2017). Since HDAC inhibitor compounds
are commonly used in animal models and clinical settings
(Drummond et al., 2005; Ganai et al., 2016; Tandon et al., 2016;
Pasyukova and Vaiserman, 2017; Salcedo Magguilli, 2017), an
array of well-established compounds is available for testing.
Thus, we established a chemical feeding protocol to test a role for
chromatin remodeling in CI suppression.

One of the most well-known HDAC inhibitors is the non-
toxic, short chain fatty acid butyric acid, or sodium butyrate
(NaBu) (Cousens et al., 1979; Davie, 2003). Dose-response assays
were performed to determine the maximum tolerable NaBu
dosage for adult D. simulans. Doses within a 200-fold range
were tested, and the highest dose which did not substantially
alter developmental phenotypes was identified (Supplementary
Table S2). This dose was used for all subsequent tests for
NaBu impact on CI hatch rates. It is not known what stage(s)
of oogenesis are important for conferring Rescue ability upon
embryos. Thus, uninfected females were kept on drug food
throughout the duration of the experiment except during matings
with CI males. Males were incubated and mated on control food
only to prevent ingestion of the compound (Figure 2).

Group mating experiments were performed to determine the
impact of NaBu on CI hatch rates associated with wRi and
wMel Wolbachia. For wRi, the CI hatch rate was 1.6-fold higher
for the NaBu treated vials when compared to control food
(p = 0.0122; adjusted o = 0.0125) (Table 2). For wMel, the CI
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TABLE 1 | Egg hatch rates from Cl-related crosses on control food.

g

e ?

Egg hatch rates on control food conditions Control cross Cl cross Rescue cross

Hatch rate Eggs (females) Hatch rate Eggs (females) Hatch rate Eggs (females)
Mass matings: D. simulans wRi 89% 606 (31) 10% 712 (41) 92% 575 (35)
Mass matings: D. simulans wMel 89% 561 (41) 4% 546 (38) 92% 820 (42)
Single pair matings confirmed: D. simulans wRi 90% 679 (35) 10% 672 (43) n/d n/d
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FIGURE 2 | Procedures used for Cl- and Rescue-related crosses. Drug feedings were carried out on blue food where specified in the protocol timeline. For details
on food preparation, please see section “Materials and Methods” and Additional File S1.

hatch rate on NaBu food was more than twice that of control
food conditions (p < 0.001 adjusted o = 0.0125). To further verify
whether the increased egg hatch rates with NaBu feeding were
due to unanticipated changes in the mating behavior, single pair
matings were also performed. The data confirmed a 94% hatch
rate for Rescue crosses, as compared to a 10% hatch rate for
CI (p < 0.001; adjusted o = 0.0083). For the NaBu treatment
condition, CI hatch rates were nearly double that of the CI
control (p < 0.001; adjusted a = 0.0083) (Table 2). Taken together,
these data indicate that the HDAC inhibitor NaBu induces CI
suppression in uninfected females.

Scaling Up Screening of Small Molecule

Inhibitors to Test for Cl Suppression

The observation that CI can be partially suppressed by NaBu
raises potential questions of whether targeting other host factors
could confer CI suppression as well. Assessing this possibility
requires screening of more compounds, including sufficient
replicates to distinguish CI suppression effects. To this end,
we developed a plate-based feeding assay for analyzing small
molecule effects on CI hatch rates, based upon existing adult

screening methods (Markstein et al., 2014) that were previously
optimized for use in Wolbachia assays (Christensen et al., 2019).
In the context of 24-well plates, a maximum of 8 wells can
be analyzed per condition for CI, Cl+treatment and Rescue.
Ensuring that results would be relevant to those of a naturally
robust CI system, wRi-infected males were used to perform all
plate assay matings.

To determine whether chemical feeding in a plate assay format
is an effective means of identifying CI suppression, the HDAC
inhibitor NaBu was retested across five biologically independent
plate replicates. All plate replicates indicated consistently higher
egg hatch for the CI+NaBu condition (20-30%) than was seen
in the CI control condition (11-14%) (p-value range: <0.001 to
0.003) (Figure 3A) (Supplementary Tables S3, S4). It is also
possible to consider the data from the perspective of plate-
based cell screens, where the quality of such assays is typically
described in terms of its Z’ factor. Positive Z' values, ranging
between 0 and 1, only result when the average values for the
controls are separated by more than three times the standard
deviation for each treatment (Zhang et al., 1999; Birmingham
et al, 2009; Serbus et al, 2012). According to this analysis,
data from the five NaBu plate replicates returned Z' values
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TABLE 2 | Egg hatch rates from Cl-related crosses on NaBu treatment food.

e

Egg hatch rates in response to NaBu

Cl cross Regular food

e

Cl cross NaBu food

e

Rescue cross Regular food

Hatch rate

Eggs (females)

Hatch rate Eggs (females) Hatch rate Eggs (females)

Mass matings: D. simulans wRi 10%
Mass matings: D. simulans wMel 4%

Single pair matings confirmed: D. simulans wRi 10%

454 (30)
382 (29)
771 (30)

16%
11%
19%

202 (21) n/d n/d
544 (40) n/d n/d
724 (32) 94% 741 (30)
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FIGURE 3 | The impact of NaBu treatment on Cl egg hatch. (A) Hatch rate
data from assay plates using wRi-infected D. simulans flies. Each symbol
represents data from a single well. *p < 0.005. (B) NaBu impact on Cl, in
terms of conventional Z' analysis. Range boundaries of the Cl control (red)
and Rescue control (cyan) are indicated. The normalized “hit range” between
controls is shown in white. Yellow dots: average hatch rate for the Cl+NaBu
condition per screening plate, normalized to the range between Cl and
Rescue controls. For further details, see Supplementary Tables S4, S5.

ranging from 0.76 to 0.89 (Supplementary Table S5). The
CI+NaBu condition also occupied the intermediate “hit” range,
consistently distinguishable from the CI control (Figure 3B). This
demonstrates that the plate-based feeding assay reproducibly
identifies CI-suppressing treatments.

To determine the quantity of screening plates required for
reproducible identification of a chemical suppressor of CI, the
NaBu plate data were statistically analyzed. Data were collated
and compared for every crosswise pairing of five independent
screening plates, using data from 16 wells per condition in each
case. Sub-sampling among the five plate replicates indicated
that data combinations from any two plate replicates identified
a significant difference between CI and CI+NaBu conditions
(p < 0.001, n = 10 plate data combinations) (Supplementary
Table $4). To further determine how many wells are required
for significance, data were sub-sampled from within each of the
paired plate datasets (Christensen et al., 2019). Data from eight
or more wells per condition were sufficient to identify significant
differences between CI and CI+NaBu conditions, when setting
an alpha value at 0.05 (Figure 4A). Sampling from 11 or more
wells per condition yielded a significant difference with alpha set
at 0.01 (n = 10 plate data combinations) (Figure 4B). These data
indicate that screening two chemical assay plates is sufficient to
detect chemical suppressors of CI. In addition to corroborating
NaBu-induced CI suppression, these plate assay data also created
the foundation for testing additional candidate compounds.

Testing for Cl Suppression by
Short-Chain Fatty Acids and Protein
Acetylation Modifier

To further pursue the functional role of NaBu in CI suppression,
the basic structure of this compound was considered. Since NaBu
is a short-chain fatty acid, this opens the question of whether
short-chain fatty acids generally exert CI-suppressing effects.
To investigate this possibility, flies were fed with three other
forms of short-chain fatty acids, specifically acetic, propionic
and valeric acid, to test for suppression of wRi-induced CI in
D. simulans. The doses used for each compound, as well as
all others described below, were empirically determined in vial
format (Supplementary Table $6), then tested for impact on CI
hatch rates in the context of the plate-based assay. Results from
these experiments indicated that acetic acid conferred borderline
CI suppression abilities upon uninfected embryos (p = 0.047).
Propionic acid and valeric acid had no significant effect on CI
hatch rates (Table 3) (Supplementary Tables S7, S8). Thus, CI
suppression is not a generalized effect associated with dietary
short-chain fatty acids.

NaBu is best known for its impact on chromatin structure
and has been credited with suppressing HDACs 1-5 and 7-
9, representing the entirety of class I and Ila HDAC enzymes
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(Ganai et al., 2016; Tandon et al., 2016). To determine whether
maternal HDAC function affects wRi-induced CI, an array of
HDAC inhibitors was dose-optimized (Supplementary Table S6)
and tested in the plate-based assay. The selected inhibitors
included the class I and II HDAC inhibitors quisinostat (Arts
etal., 2009) and trichostatin A, as well as the pan HDAC inhibitor
vorinostat (SAHA) (Ganai et al., 2016; Tandon et al., 2016). The
inhibitor CUDC-101, which targets class I and II HDAC as well
as growth factor receptors, was also tested (Lai et al., 2010).
Remarkably, none of these HDAC inhibitors exerted significant
impact on CI hatch rates (Table 3) (Supplementary Tables S7,
$8). To confirm that the fly stocks and assay parameters were still
performing as expected, the effect of NaBu was retested in the
plate-based format. The data confirmed that CI suppression by
NaBu was still significant, with a p-value below 0.001 (Table 3)
(Supplementary Figure S1 and Supplementary Tables S7-S9).
Overall, these results do not support HDAC inhibition and

associated chromatin remodeling as a generalized mechanism
for CI suppression.

Testing Modifiers of DNA Damage for

Maternal Cl Suppression Effects

NaBu has also been shown to promote DNA repair, in part
by indirectly increasing acetylation of histone H4 (Smerdon
et al., 1982; Williamson et al., 2012; Mao and Wyrick, 2016).
To test whether maternal DNA repair processes affect wRi-
induced CI, an array of inhibitors was pursued. To activate the
DNA repair response, agents that induce oxidative DNA damage
were selected, specifically celastrol and rotenone (Sanders and
Greenamyre, 2013; Xu et al., 2013; Moreira et al., 2019). The
alkylating agent cisplatin, which also generates reactive oxygen,
was included as well (Basu and Krishnamurthy, 2010; Podratz
et al., 2011; Rezaee et al.,, 2013). Topoisomerase inhibitors were
also used, including camptothecin, which prevents re-sealing
of single stranded nicks by topoisomerase I, and teniposide,
which prevents removal of topoisomerase II from DNA and
induces degradation of the enzyme (Rowe et al., 1986; Hartmann
and Lipp, 2006; Nitiss, 2009). As the ribosome inhibitor
cycloheximide has been reported to prevent formation of single-
and double-stranded DNA breaks (Yoshioka et al., 1987; Lorico
etal., 1988), this drug was also tested.

Using optimized doses (Supplementary Table S6), the plate-
based feeding assay indicated CI suppression for half of the
treatment conditions used. A significant increase in hatch
rate was observed for uninfected females exposed to celastrol,
teniposide and cycloheximide, all associated with p-values
of 0.001 or less (Table 3) (Supplementary Figure S1 and
Supplementary Tables S7-S9). These data open a possible role
for maternal processes that prevent and repair DNA damage in
conferring CI suppression upon uninfected embryos.

Testing the Impact of Cell-Cycle Timing

on Maternal Cl Suppression
Exposure to NaBu has been shown to slow cell cycle timing
(D’Anna et al., 1980; Lallemand et al., 1996). To test the effect
of maternal cell cycle timing on wRi-induced CI, uninfected
D. simulans were exposed to an array of complementary
inhibitors. In attempt to slow the progression of mitosis by
altering microtubule dynamics, the microtubule destabilizers
colchicine and griseofulvin, as well as the microtubule stabilizer
taxol were tested (Singh et al., 2008; Stanton et al., 2011). To
slow anaphase onset and exit from mitosis, inhibitors of the
anaphase promoting complex, apcin and TAME, were used (Zeng
et al., 2010; Sackton et al,, 2014). To inhibit the progress of
mitosis and the cell cycle overall, the Cyclin dependent kinase
inhibitors flavopiridol and roscovitine were used (Gray et al,
1999; Cicenas et al., 2015; Bailon-Moscoso et al., 2017), as well
as the proteasome inhibitors bortezomib and MG132 (Goldberg,
2012; Rastogi and Mishra, 2012). To stall general re-entry into the
cell cycle, the MAPKK (MEK) inhibitor trametinib was also used
(Zeiser, 2014; Kurata et al., 2016).

After identifying appropriate doses (Supplementary
Table S6), chemical manipulators of cell cycle timing were tested
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TABLE 3 | Impact of chemical treatments on Cl egg hatch rates for wRi-infected D. simulans.

Effect tested Chemical used Reputed cellular effect Dose used # wells Significant increase p-value
(plates) in hatch rate?
Diverse functions NaBu C4 short chain fatty acid. Affects HDACs, DNA 50 mM 16 (2) Yes <0.001
damage repair, cell cycle
Short chain fatty acids Acetic acid C2 short chain fatty acid 100 mM 16 (2) Borderline 0.047
Propionic acid C3 short chain fatty acid 10mM 16 (2) No 0.769
Valeric acid C5 short chain fatty acid 5mM 16 (2) No 0.926
Chromatin modification  Quisinostat HDAC inhibitor 1 uM 16 (2) No 0.235
Trichostatin A HDAC inhibitor 10uM 16 (2) No 0.696
Vorinostat/SAHA ~ HDAC inhibitor 75 uM 16 (2) No 0.913
CUDC-101 Inhibits HDACs, EGFR 250 uM 16 (2) No 0.610
DNA damage Celastrol ROS-generating 20 uM 16 (2) Yes 0.001
Rotenone ROS-generating 10uM 16 (2) No 0.149
Cisplatin alkylating agent 100 uM 16 (2) No 0.065
Camptothecin Inhibits topoisomerase |l 50 uM 16 (2) No 0.059
Teniposide Inhibits topoisomerase Il 500 uM 16 (2) Yes <0.001
Cycloheximide Ribosome inhibitor, prevents DNA damage 50 uM 16 (2) Yes <0.001
Cell cycle delay Colchicine Destabilizes microtubules 2.5uM 16 (2) No 0.967
Griseofulvin Destabilizes microtubules 300 uM 16 (2) No 0.675
Taxol Stabilizes microtubules 1uM 16 (2) No 0.774
Apcin APC/C inhibitor 300 uM 16 (2) No 0.061
TAME APC inhibitor 20 mM 16 (2) No 0.410
Flavopiridol CDK inhibitor 10 uM 16 (2) No 0.360
Roscovitine CDK inhibitor 100 uM 16 (2) No 0.175
Bortezomib Proteasome inhibitor 1uM 16 (2) Yes 0.005
MG132 Proteasome inhibitor 50 uM 16 (2) Yes 0.001
Trametinib MEK inhibitor 250 nM 16 (2) Yes 0.002

for CI suppression. The plate assay data indicated significantly
increased CI hatch rates for bortezomib, MG132, and trametinib-
fed females compared to control (p-value range: 0.001-0.005)
(Table 3) (Supplementary Figure S1 and Supplementary Tables
§7-89). As cell cycle delays are a recognized consequence of
DNA damage, resulting from checkpoint activation that allows
damage repair (Chao et al, 2017), these data are consistent
with a possible role for altered embryonic cell cycle timing in
suppression of CI.

Re-testing CI-Suppressing Compounds
Against Transinfected D. simulans

If the compounds that suppress wRi-induced CI act upon a
network of conserved, Rescue-related maternal interactions, the
effects would be expected to be applicable to other host-strain
combinations. To this end, the chemicals identified above as
hits were analyzed for suppression of wMel-induced CI as well,
using flies from a transinfected stock population (Poinsot et al.,
1998). Specifically, NaBu, celastrol, cycloheximide, teniposide,
bortezomib, MG132, trametinib, and the initially borderline hit
acetic acid (Table 3) were retested in the plate assay format.
The same dosing and procedures were used as above, with
the only difference being that wMel-infected males were used
for CI induction.

The results indicated that NaBu, celastrol, and cycloheximide
significantly elevated CI hatch rates for wMel-induced CI (p-
value range: 0.011-0.013) (Table 4) (Supplementary Figure S2

and Supplementary Tables S10-S12). By contrast, teniposide,
bortezomib, and MG132 treatments exhibited borderline CI
suppression effects (p-value range 0.041-0.047). Trametinib and
acetic acid did not induce any significant effects (Table 4)
(Supplementary Tables S10, S11). This outcome distinguishes
cellular responses associated with certain DNA damage and/or
cell cycle timing regulators as general contributors to maternal
suppression of CI in D. simulans.

Testing Combined Pathway Effects for

Suppression of Cl

To further test the extent to which suppression of CI
under these treatments is due to a shared network of
pathway functions, a dual chemical treatment strategy
was pursued. We focused on hits that elicited the most
robust CI suppression across both systems tested, namely:
NaBu, celastrol, and cycloheximide. Additional treatment
combinations included compounds that exerted more modest
effects, namely: teniposide, bortezomib, and MG132. As for
the single drug trials, dose response curves were carried
out for all pairwise chemical treatments on uninfected
D. simulans flies (Supplementary Table S13). Nearly all
treatment combinations required reduced drug dosing, as
compared to singly administered treatments (Supplementary
Table S$6). The cycloheximide/bortezomib combination
was the only case in which original treatment doses for
both compounds could be tolerated additively, without
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TABLE 4 | Impact of chemical treatments on Cl egg hatch rates for wMel-infected D. simulans.

Effect tested Chemical used Reputed cellular effect Dose used # wells Sig increase in p-value
(plates) hatch rate?
Diverse functions NaBu C4 short chain fatty acid. Affects HDACs, DNA 50 mM 16 (2 Yes 0.011
damage repair, cell cycle
Short chain fatty acids Acetic acid C2 short chain fatty acid 100 mM 16 (2) No 0.408
DNA damage Celastrol ROS-generating 20 uM 16 (2) Yes 0.013
Cycloheximide Ribosome inhibitor, prevents DNA damage 50 uM 16 (2 Yes 0.013
Teniposide Inhibits topoisomerase |l 500 uM 16 (2) Borderline 0.041
Cell cycle delay Bortezomib Proteasome inhibitor 1 uM 16 (2 Borderline 0.047
MG132 Proteasome inhibitor 50 uM 16 (2) Borderline 0.047
Trametinib MEK inhibitor 250 nM 16 (2) No 0.096

adverse effects on fecundity, egg hatch or larval development
(Supplementary Table S13).

After uninfected D. simulans females were treated with
dual drug combinations, their egg hatch rates were compared
against females raised on control food in the plate assay
format. To ensure that the results would be representative
of natural CI, wRi-infected males were used to induce CI
in this series of experiments. The results indicated that the
cycloheximide/bortezomib combination significantly increased
the CI hatch rate as compared to the CI control (p = 0.006)
(Table 5) (Supplementary Tables S14, S15). No other paired
chemical treatments induced CI suppression (Table 5). It is
possible that loss of CI suppression effects is attributable to
reduced combinatorial doses of otherwise effective compounds.
Regardless, the data indicate CI suppression by compounds
that are traditionally associated with manipulation of protein
synthesis and protein turnover.

DISCUSSION

This study was designed to inform host capacity for modifying
CI outcomes in the context of non-model organisms. A strong
case is currently being made for involvement of Wolbachia Cif
proteins in induction of CI and Rescue, based on analysis of
D. melanogaster and yeast models (Beckmann et al., 2017, 2019b;
LePage et al., 2017; Shropshire et al., 2018; Chen et al., 2019).
This study, using natural and transinfected D. simulans, add to
the complex biological underpinnings of embryonic lethality by
indicating that maternal contributions to Rescue are also possible.
Demonstrating CI suppression through chemical feeding of
uninfected females, without invoking any effect or contribution
by Wolbachia-supplied antitoxins, opens the possibility of a
role for host contributions to Rescue. Fundamental to these
questions is whether a core set of maternal mechanisms in
insects can act to suppress CI across systems. Fortunately, the
framework presented here enables broad investigation of diverse
CI-Rescue systems in the future, including that of non- Wolbachia
endosymbionts like Cardinium (Hunter et al., 2003; Penz et al,,
2012; Mann et al., 2017; Takano et al., 2017; Konig et al., 2019;
Doremus and Hunter, 2020).

Despite the reproducibility and statistical significance of CI-
suppression effects by multiple drugs and drug combinations,

the limitations of the current work are reflected by CI hatch
rates which did not exceed three times that of CI-control hatch
rates. The disparity between the 90%+ egg hatch frequencies of
Wolbachia-induced Rescue and that of chemical CI suppression
can be due to a variety of factors or experimental limitations. One
important aspect could be the absence of Wolbachia-supplied
Cif proteins. It is possible that maternal mechanisms act as
a supplement to, or in coordination with Cif functions to a
substantial extent. It also remains possible that CI-suppressing
treatments mimic Cif effects, even in the absence of a usual
role for host factors in Rescue. There are no known chemical
treatments that will specifically mimic predicted Cif proteins
at this time (Beckmann et al., 2017; Lindsey et al., 2018). Our
attempt to alter broader functional networks of maternal proteins
by use of multiple inhibitors was met with limited success,
possibly due to dosage considerations, limited by systemic
tolerances for dual treatments.

When interpreting the CI suppression data yielded by the
current chemical screen, the technical limitations inherent to the
method itself are important to consider. Whole body feedings
lack the time and tissue-specific nuance afforded to Wolbachia
in vivo. While dosing within the food was standardized for this
study, it is not possible to control for local dosing to tissues/cells
of the recipient organism. This is due to differences in ingestion,
absorption, efflux, metabolism, and/or excretion rates, which are
expected to vary in association with each cell type and each drug.
A feeding assay also creates the possibility for side effects due to
host microbiome impacts. Initial attempts to run this screen using
standardized micro-injections were curtailed by observations
that injected D. simulans flies stop laying eggs. Working with
flies under anexic or gnotobiotic conditions presents its own set
of complications (Koyle et al., 2016). For these reasons, seeing a
response from this chemical screen is informative, whereas the
lack of a response is not. Distinct from most drug screens, whose
interpretations are limited by typically detrimental health effects
on the test subject, the output of this screen leads to increased
survival of otherwise ill-fated embryos.

This study was designed to address contributions of host
chromatin remodeling, DNA damage repair and cell cycle timing
impacts on CI suppression in vivo. Though little support was
evident for chromatin remodeling in CI suppression, impacts
on DNA integrity and cell cycle timing conferred significant
increases in CI egg hatch. As such, our results at present do not
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TABLE 5 | Impact of chemical combinations on Cl egg hatch rates for wRi-infected D. simulans.

Effect tested Chemical used Dose used # wells (plates) Significant increase in hatch rate? p-value
Diverse functions/DNA damage NaBu/Celastrol 25 mM/10 uM 16 (2) No 0.119
Diverse functions/DNA damage NaBu/Cycloheximide 25 mM/25 M 16 (2) No 0.817
Diverse functions/cell cycle delay NaBu/MG132 25 mM/25 uM 16 (2) No 0.201
DNA damage Teniposide/Celastrol 250 pM/500 pM 16 (2) No 0.287
DNA damage Celastrol/Cycloheximide 10 pM/25 uM 16 (2) No 0.565
DNA damage/cell cycle delay Cycloheximide/Bortezomib 50 uM/1 uM 16 (2) Yes 0.006
DNA damage/cell cycle delay Teniposide/MG132 250 uM/25 pM 16 (2) No 0.264

Cycloheximide

DNA integrity

Cell cycle timing

Protein turnover

Bortezomlb

TM'?

Ten|p08|de

— Suppressed wRi-induced ClI

— Suppressed wRi- and wMel-induced Cl

categories.

FIGURE 5 | Summary of maternal impacts that significantly increased D. simulans Cl hatch rates. This information is based upon available literature, summarized in
Additional File S3. Green arrows: positive impact. Red lines: negative effect. Dotted lines: interpretation based upon partial datasets. Bracket: includes multiple

readily distinguish between existing models of CI and Rescue,
but instead opens consideration of networked models that may
better reflect the cell biology of CI. DNA damage and cell
cycle timing are well-known to be intrinsically connected, since
DNA damage triggers a checkpoint mechanism that arrests the
cell cycle (Alberts et al,, 2015; Chao et al, 2017). Variation
upon functions of the ubiquitin-proteasome system may further
link these processes. DNA damage repair is facilitated by
ubiquitination of histones and DNA repair pathway proteins,
followed by their deubiquitination upon completion of the
repair (Cohn and D’Andrea, 2008; Stadler and Richly, 2017;
Uckelmann and Sixma, 2017). Ubiquitination and degradation
of cyclins and other regulators is also fundamentally required
for cell cycle progression (Bassermann et al., 2014; Alberts et al.,
2015). The deubiquitylase and nuclease functions of Cif proteins
converge upon these same processes (Beckmann and Fallon,
2013; Beckmann et al., 2017, 2019a,b; Lindsey et al., 2018; Chen
et al,, 2019), and expression studies in Cl-inducing Cardinium

have implicated the ubiquitin-proteasome system and DNA
repair as well (Mann et al., 2017). The CI-suppressing compounds
identified in this study reflect this continuum of function.

One question raised by this work is what distinguished
the compounds that affected egg hatch for both wRi and
wMel-induced CI, from those that affected wRi-induced CI
only (Figure 5). As wRi and wMel encode different types
of Cif proteins, Cin versus Cid, respectively (Beckmann
and Fallon, 2013), it would be reasonable for CI associated
with different strains to respond differently to the same CI-
suppressing compounds. In general, this study found that “hit”
compounds that suppressed wRi-induced CI exerted overall
weaker effects on wMel-induced CI. It is not clear whether
differences in Cif proteins are responsible, as other circumstantial
explanations could also cause this outcome. Future tests of CI-
suppressing compounds across more host-strain combinations
will be needed to make a stronger correlative statement
addressing this point.
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Another perspective for interpretation regarding the cellular
impacts of the compounds themselves. Is there anything
distinct about the activity profile of compounds that suppress
both wRi and wMel-induced CI? The use of well-known
compounds in this study provides access to vast literature
for interpreting reproducible CI suppression effects. Past
studies of mammalian systems and cell lines provide a
patchwork of information that informs effects on DNA
integrity, cell cycle timing and protein turnover. According
to existing literature, the compounds identified here as
Cl-suppressing agents act as consistent suppressors of cell
cycle timing, but exert variable impacts on protein turnover,
depending upon the compound (Additional File S3). Although
neither of those functional profiles aligns with the strain-
specific differences observed in CI egg hatch outcomes thus
far (Figure 5).

Clearer associations are evident between existing literature
and CI suppression outcomes in this study from the perspective
of DNA integrity. The four compounds that suppress wRi-
induced CI are known inducers of DNA damage, whereas the
three compounds that suppress both wRi- and wMel-induced
CI, reportedly support DNA integrity (Figure 5) (Additional File
S3). Though celastrol can exert detrimental impacts on DNA
(Han et al., 2018; Wang et al., 2020), it has also been shown
to suppress radiation-induced damage (Xu et al., 2013; Moreira
et al., 2019). Cycloheximide treatments prevent formation of
single- and double-strand DNA breaks (Yoshioka et al., 1987;
Lorico et al, 1988). NaBu protects DNA integrity by up-
regulating antioxidant pathways and by facilitating DNA repair
(Smerdon et al, 1982; Mao and Wyrick, 2016; El-Shorbagy,
2017). This suggests that DNA integrity is a dynamic, focal
aspect of CI suppression with respect to different Wolbachia
strains in D. simulans. Future analyses of CI and Rescue,
from the perspective of both host and microbe promise to be
informative in elucidating the molecular basis of this ecologically
relevant mechanism.
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