POSTER: Bundled References: An Abstraction for
Highly-Concurrent Linearizable Range Queries

Jacob Nelson
Lehigh University, USA
jjn217@lehigh.edu

Abstract

Bundled references are a new building block to provide
linearizable range query operations for highly concurrent
linked data structures. They enable range queries to traverse
a path through the data structure that is consistent with
the target atomic snapshot. The path consists of the mini-
mal amount of nodes that should be accessed to preserve
linearizability.

CCS Concepts: - Computing methodologies — Concur-
rent algorithms.

Keywords: Concurrent Data Structures, Linearizable Range
Queries

1 Introduction

In this paper we introduce bundled references, a new building
block to design linearizable concurrent linked data structures
(e.g., skip lists) optimized to scale up performance of range
query operations executing concurrently with update opera-
tions. The core innovation behind bundled references lies in
adopting the design principles of Multi Version Concurrency
Controls (MVCC) [8] and persistent data structures [3] to
generic linked data structures.

To summarize the strategy, we enable linearizable range
queries by augmenting each link in a data structure with
a historical record of its previous values, each of which is
tagged with a timestamp reflecting the point in (logical) time
when the operation that generated that link occurred. In
other words, we associate timestamps to references connect-
ing data structure elements instead of to the pointed ele-
ments. A range query simply follows the links that comply
with its starting point in order to collect its result set.

The bundled reference building block equips a data struc-
ture with the following properties:

e Range query operations are linearized when they start,
reducing interference with concurrent updates;

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8294-6/21/02.
https://doi.org/10.1145/3437801.3441614

Ahmed Hassan
Lehigh University, USA
ahh319@lehigh.edu

448

Roberto Palmieri
Lehigh University, USA
palmieri@lehigh.edu

e Each thread performing a range query only traverses
the minimal amount of nodes in the range, regardless
of concurrent updates.

e Data structure traversals are left unaffected by bun-
dles, permitting optimizations such as wait-free [4]
traversals;

e State-of-art reclamation techniques (e.g., EBR [16]) can
be easily integrated to reclaim data structure elements,
minimizing the space overhead of bundling and mak-
ing it practical.

2 The Bundle Building Block

Overview. Figure 1 shows an example on how bundles are
deployed in a linked list. As shown in the figure, the next
pointer of each node is replaced by a bundle object that encap-
sulates the history of this next pointer. The figure shows the
state of the linked list and its bundles after the following se-
quence of operations (assuming an initially empty linked list):
insert(20), insert(30), insert(10), remove(20).

Figure 1. An example of using bundled references in a linked
list. The path made of solid lines represents the state of the
linked list after all update operations take place. Edges are
labeled with their respective timestamps.

To understand how this state is generated, we assume that
the list is initialized with a single bundle reference whose
timestamp is “0” (the initial value of a global timestamp
globalTs), which connects its head and tail sentinel nodes.
Inserting 20 does not replace this reference. Instead, it creates
anew entry in the head’s bundle with timestamp “1” pointing
to the newly inserted node as well as an entry with the
same timestamp in this new node pointing to the tail node.
Similarly, inserting 30 and 10 adds new bundle entries with
timestamps “2” and “3”, respectively. The last operation that
removes 20 also does not replace any reference. Instead, it
creates a new bundle entry in 10’s bundle (with timestamp
“4”) that points to 30, which reflects physically deleting 20
by making its predecessor node point to its next node.

https://doi.org/10.1145/3437801.3441614
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Now, assume that different range queries start at different
times concurrently with those update operations. Each range
query (R;) is always able to traverse the proper snapshot
of the list that reflects the time (¢) it started. For example, a
query Ry will skip any links whose timestamp greater than
“0”. Importantly, R; will observe 20 even if it reaches 10 after
20 is deleted because it will use the bundle entry whose
timestamp is “3”, which points to 20. Furthermore, since a
range query determines its result set by simply following the
most recent link corresponding to its timestamp, it visits the
minimum number of nodes necessary to collect its range.

Listing 1. Bundle. Listing 2. Linked List Node.

1 timestamp_t globalTs; class Node {

2 class BundleEntry { key_t key;
3 Node « ptr; val_t val;
timestamp_t ts; lock_t lock;

bool deleted;

// The bundled reference
Node * newestNextPtr;
Bundle nextPtrBundle;

}
class Bundle {

1

2

3

4
BundleEntry =+ next; 5
6

7
BundleEntry « head; || 8
9

NoRECTREN IC NEE BN

} }

A bundle (see Listing 1) consists of a linked list of bundle
entries, ordered by timestamp, and exists alongside a stan-
dard reference (e.g., newestNextPtr). Together, they encode
a data structure link. By decoupling the bundle from the
regular pointer, operations can retain certain optimizations
such as wait-free traversals. In fact, range queries are the
only operations that will ever traverse the structure using
bundles. We demonstrate this particular optimization by
showing nodes of a bundled linked list in Listing 2.

Updates. Bundles are updated whenever there is a cor-
responding change to the link. Care must be taken so that
point operations and range queries observe a consistent view
of the data structure. The following steps ensure the above
requirement. (1) Bundles corresponding to any links to be
changed by the update are prepared by inserting a new bun-
dle entry with PENDING timestamp. (2) A fetch-and-add on
globalTs reserves a timestamp with which to label bundle
entries. (3) The linearization point is executed (e.g., linking a
newly inserted node, logical deletion). (4) The update is made
visible to range queries by replacing the PENDING timestamp
with the one read from globalTs.

Range Queries. Range queries first read globalTs into
a local variable (i.e., ts) to set their linearization point. A tra-
versal can then simply use bundles to ensure that the visited
nodes are consistent with this timestamp. If a PENDING entry
is found, the range query must wait until the entry’s times-
tamp is set since the update increments the global timestamp
before performing its linearization point.

3 Bundling a Data Structure

Bundling a data structure is not automatic but the steps
are well defined. It entails augmenting links in nodes with
bundled references, surrounding the respective linearization
points of update operations with bundle maintenance, and

449

Jacob Nelson, Ahmed Hassan, and Roberto Palmieri

O EBR-RQ ‘@ EBR-RQ-LF d= RLU 9> Bundle £3 Unsafe

I PN
300 150 8‘3 ﬁ@
2200 100 P
5
2100 50
0 0
148 96 144 192 I 48 96 144 192
(a) SL,2 - 88— 10 (b) SL, 50 — 40 — 10
300 T T] ‘
8 60
200 0
<100 $ 20
0 0
1 48 96 144 192 1 48 96 144 192

(¢)CT, 2—-88—10 (d) CT, 50 — 40 — 10

Figure 2. Throughput (Mops/s) under various workload con-
figurations for the skip list (SL) and Citrus tree (CT), with
the number of threads on the x-axis. Workloads are written
as U — C — RQ, corresponding to the percentages of update
(U), contains (C) and range queries (RQ).

implementing range queries. The first two steps are straight-
forward and mostly data structure independent, while the
bulk of the effort lies in the range query itself, as traversals
are data structure dependent.

However, regardless of data structure, we can break range
queries into three phases. The pre-range phase reaches the
node immediately preceding the range. Next, the range-entry
phase traverses to the start of the range. Finally, the range-
collect phase collects the result set to be returned.

Naturally, a traversal using bundles incurs overhead be-
cause it involves finding the correct link to follow. As an
optimization, the pre-range phase leverages standard refer-
ences used by point operations. Then, both the range-entry
and range-collect phases leverage the bundles’ Dereference-
Bundle function, which returns the most recent bundle entry
that is no newer than the operation’s linearization times-
tamp, ts. Note that with this strategy the range-entry phase
is necessary to avoid missing a concurrent update, such as a
deletion that removes a node belonging to the range. During
this phase, if DereferenceBundle does not find a satisfying
entry, then the operation restarts from the beginning. How-
ever, once the range-collect phase begins, the operation is
destined to finish.

Complete details of how to bundle a data structure can be
found in our companion technical report [7], which includes
a description of a linked list, skip list and binary search tree.

4 Evaluation

We evaluate our technique by applying it to three data struc-
tures, integrating it in an existing benchmark, and comparing
against the following three competitors:

Bundled References

e EBR-RQ [1] is a lock-based linearizable range query

strategy based on epoch-based memory reclamation [2].

e EBR-RQ-LF is a lock-free variant of EBR-RQ.

e Read-log-update (RLU) [5] is an extension of the well-
known RCU [6] strategy that supports concurrent writ-
ers.

Initial microbenchmark results (Figure 2) show our tech-
nique (i.e., Bundle) outperforms the competitors when the
workload is mixed. This is because normal traversals are
not instrumented (as in RLU) and range queries need not
visit more nodes than necessary (as in EBR-RQ and EBR-
RQ-LF). This confirms that bundling manages the trade-off
between update-intensive and read-only workloads effec-
tively. On the other hand, our competitors perform best un-
der extreme workloads. Hence, performance stability across
different workloads is an important byproduct of bundled
data structures. EBR-RQ and EBR-RQ-LF outperfom bundling
in 100% update workloads because range queries increment
the global timestamp instead of updates. Conversely, RLU
performs better in read-only workloads since its instrumen-
tation of dereferences is lighter weight. More results and
analysis, including the integration of our data structures in
the DBx1000 database [9] running TPC-C, are presented in
our technical report [7].

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1814974.

References

[1] Maya Arbel-Raviv and Trevor Brown. 2018. Harnessing epoch-based
reclamation for efficient range queries. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2018, Vienna, Austria, February 24-28, 2018. 14-27.

[2] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data
Structures: There has to be a Better Way. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC 2015,
Donostia-San Sebastian, Spain, July 21 - 23, 2015. 261-270.

[3] James R Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre
Tarjan. 1986. Making data structures persistent. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing. 109-121.

[4] Maurice Herlihy. 1991. Wait-Free Synchronization. ACM Trans. Program.
Lang. Syst. 13,1 (1991), 124-149. https://doi.org/10.1145/114005.102808

[5] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. 2015.
Read-log-update: a lightweight synchronization mechanism for concur-
rent programming. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015.
168-183.

[6] Paul E McKenney and John D Slingwine. 1998. Read-copy update:
Using execution history to solve concurrency problems. In Parallel and
Distributed Computing and Systems. 509-518.

[7] Jacob Nelson, Ahmed Hassan, and Roberto Palmieri. 2020. Bundled
References: An Abstraction for Highly-Concurrent Linearizable Range
Queries. arXiv:cs.DS/2012.15438 https://arxiv.org/abs/2012.15438

[8] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017.
An empirical evaluation of in-memory multi-version concurrency con-
trol. Proceedings of the VLDB Endowment 10, 7 (2017), 781-792.

450

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

[9] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and
Michael Stonebraker. 2014. Staring into the Abyss: An Evaluation of
Concurrency Control with One Thousand Cores. PVLDB 8, 3 (2014),
209-220. https://doi.org/10.14778/27355084273551 1

A Artifact Description

Here we give a high-level overview of the artifact support-
ing this paper. For more detailed instructions on how to
configure, run and plot the results, we refer the reader to the
comprehensive README file included in the root directory
of the source code (https://zenodo.org/record/4402298).
Organization. Our primary contributions are located in
the directories prefixed with “bundle”. Importantly, the “mi-
crobenchmark” and “macrobenchmark” directories are used
for evaluating the approach. The microbenchmark consists of
two experiments designed to understand the implications of
design choices between competitors. The first runs various
workload configurations while fixing the range query size
to 50. The second uses a workload of 50% updates and 50%
range queries, while adjusting the range query size. The ar-
tifact is pre-configured to execute experiments for only the
skip list and Citrus tree since traversal time dominates the
performance of lazy list; their results are more illustrative of
algorithm behavior. The macrobenchmark integrates the data
structures as indexes in the DBx1000 in-memory database
and executes the TPC-C benchmark. Results are saved to a
“data” directory in each benchmark while plots are saved to
the “figures” directory at the project root folder.
Requirements. The project is primarily C++ and is com-
piled using g++ 7.3 with the compilation flags -std=c++11
-mcx16 -03. The two primary dependencies are the jemalloc
scalable memory allocation library and the 1ibnuma NUMA
library. The plotting scripts use Python (v3.6) and the Plotly
library (v4.12). NUMA must enabled to run properly.
Configuration. Configuring the above benchmarks relies
on five parameters that must be adjusted according to the
testbed. The following can be found in “config.mk".
e maxthreads, the max number of concurrent threads
e maxthreads_powerof2, maxthreads rounded up to a
power of 2
e threadincrement, the thread step size
e cpu_freq_ghz, processor frequency for measuring pro-
gram execution time
e pinning_policy, the thread affinity mapping
The README contains a command to automatically generate
a pinning policy that mirrors those used in our experiments,
which fills each NUMA zone before moving on.
Execution. After compiling the project according to the
instructions in the README, the benchmarks can be run by
navigating to their respective directories and executing the
script named runscript. sh. The results can then be plotted
via the plot. py script located in the root directory. Plots are
generated as interactive HTML files, which can be opened
via a browser window.

https://doi.org/10.1145/114005.102808
https://arxiv.org/abs/cs.DS/2012.15438
https://arxiv.org/abs/2012.15438
https://doi.org/10.14778/2735508.2735511
https://zenodo.org/record/4402298

	Abstract
	1 Introduction
	2 The Bundle Building Block
	3 Bundling a Data Structure
	4 Evaluation
	Acknowledgments
	References
	A Artifact Description

