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Abstract: The exact distribution is typically unavailable for a two-sample t-statistic
in a single test for equal population means if we have nonGaussian samples, un-
equal population variances, or unequal sample sizes n; and ns. In this case, a
calibration method using a reference distribution offers a practically feasible sub-
stitute. This study simultaneously calibrates a diverging number m of two-sample
t-statistics for inferences of significance in high-dimensional data from a small sam-
ple. For the Gaussian calibration method, we demonstrate the following. First, the
simultaneous “general” two-sample t-statistics achieve the overall significance level,
as long as log(m) increases at a strictly slower rate than (ni1 4+ n2)*/® as ny + no
diverges. Second, directly applying the same calibration method to simultaneous
“pooled” two-sample t-statistics may substantially lose the overall level accuracy.
The proposed “adaptively pooled” two-sample t-statistics overcome such incoher-
ence, while operating as simply and performing as well as the “general” two-sample
t-statistics. Third, we propose a “two-stage” t-test procedure to effectively alleviate
the skewness commonly encountered in various two-sample t-statistics in practice,
thus increasing the calibration accuracy. Lastly, we discuss the implications of these
results using simulation studies and real-data applications.

Key words and phrases: Familywise error rate, multiple hypothesis testing, overall
significance level, simultaneous inference, skewness.

1. Introduction

With the advancement of high-throughput technology, large-scale simultane-
ous inference procedures Bourgon, Gentleman and Huber (2010); Efron (2010);
Liang and Nettleton (2012); Leek and Storey (2008); Zhang, Fan and Yu (2011);
Zhao, Wang and Wei (2013) arise naturally from high-dimensional data from
small samples, with wide applications in biology, genetics, astronomy, economics,
and neuroscience research among others. This problem is characterized by si-
multaneously carrying out a large number of hypothesis tests, where each test
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involves a relatively short data vector. For example, in microarray gene expres-
sion studies, the number of genes could be in the order of thousands or higher,
but sample sizes could be in the order of tens or hundreds. Such procedures im-
plicitly assume that some marginal quantities, such as the significance levels (or
type-1 error rates) and p-values, can be calculated exactly for each of the simulta-
neous tests. In practice, such an assumption may not be realistic when the exact
distributions of the test statistics in finite-sample cases are not directly available.
This motivates the need to estimate the distributions from which the marginal
quantities are computed. However, it is unclear how good the approximation
must be for the simultaneous inference to be feasible.

This study investigates the performance of simultaneously conducting a di-
verging number m of two-sample t-tests for the equality of the mean effects of
two groups, where m frequently exceeds the sample sizes n; and ns in the two
groups, although the combined sample size n = nq + ns is still moderately large.
Three issues arise naturally from analyzing such matrix-type data. First, it is
well known that the exact distribution of an individual two-sample t-statistic for
comparing population means is typically unavailable if we have nonGaussian sam-
ples, unequal population variances, or unequal sample sizes. Indeed, this issue
remains one of the unsolved problems in the statistical literature, the so-called
Behrens—Fisher problem Welch (1938, 1947). In practice, a calibration method
using a reference distribution, such as the standard Gaussian distribution N(0, 1),
serves as a feasible substitute, provided that the approximation accuracy suffices
for finite sample sizes. Second, the two-sample problem is more important, in
a certain sense, but more complex and challenging than the one-sample prob-
lem. Moreover, unlike the one-sample t-statistic, there is no unique method for
choosing a two-sample t-statistic. The two most common choices are the “gen-
eral” two-sample t-statistic and the “pooled” two-sample t-statistic. Nonetheless,
no studies have examined whether the calibration methods for the two choices
are equally applicable. Third, in practice, asymmetric populations are common,
but reduce the accuracy of a single two-sample t-statistic. Here, no studies have
examined simultaneous inferences based on a diverging number of two-sample
t-statistics.

Owing to the popularity of two-sample ¢-tests, it is highly desirable to inves-
tigate how many and which two-sample t-statistics can be calibrated simultane-
ously before the overall level accuracy becomes poor. This study addresses three
new issues for two-sample t-statistics involving independent and dependent data.

Issue 1. We demonstrate that for the Gaussian calibration method, the overall
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significance level of the simultaneous “general” two-sample t-statistics can be
achieved, provided that log(m) increases at a strictly slower rate than (ny +mns)'/3
as nj + ng diverges. Furthermore, we show that the choice of (m,ni,ng) controls
the false discovery rates (FDRs) of some multiple testing procedures based on

calibrated p-values.

Issue 2. In contrast, the “pooled” two-sample t-statistics may behave substan-
tially differently to the “general” two-sample t-statistics, particularly when a
“composite variance quantity” (CVQ; defined in (2.7)) exceeds one. The proposed
“adaptively pooled” two-sample t-statistics in Section 3.2 operate as simply, but
perform as well as the “general” two-sample t-statistics.

Issue 3. Moreover, we propose a “two-stage” t-test procedure in Section 3.3 to
effectively alleviate the skewness effects commonly encountered from various types
of two-sample t-statistics in practice, thus increasing the calibration accuracy.

In the case of simultaneous one-sample t-statistics under independence and
positive regression dependence on subsets Benjamini and Yekutieli (2001), cali-
bration using a Gaussian or Student’s ¢ distribution and the bootstrap method
was studied in Fan, Hall and Yao (2007), assuming that the number m, of true
null hypotheses is identical to m; that is, m, = m, which is restrictive in applica-
tions. Here, we examine the validity of the Gaussian calibration method applied
to different choices of two-sample t-statistics under independence and general de-
pendency, where m, < m is allowed and m, is a nonrandom quantity. To control
the FDR asymptotically, we apply the factor model to deal with several prac-
tically motivated dependence models, including the jointly Gaussian distributed
test statistics.

The rest of the paper is organized as follows. Section 2 formulates the overall
significance level of simultaneous two-sample t-statistics that compare the means
of two populations. Section 3 addresses Issues 1-3 in detail. Section 4 discusses
the effect on the calibration method of dependence between observations. Sec-
tions 5 and 6 present our simulation studies and real-data examples, respectively.
Section 7 concludes the paper. All technical details, figures and tables are rele-
gated to the online Supplementary Material.

2. Model Structure and Significance Testing

Many applications test data from two groups, such as a normal control group
and a cancer patient group. More formally, we consider observations {Xj; ;} of
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the X-group and {Y; ;} of the Y-group described by the signal plus noise model

Xiaj:l’LX;i +€i,j71§i§m, 1§] Snl,

. . (2.1)
Y;,j = Wy, T €ij, 1<i1<m, 1 <5 < ng,

where the index i refers to the ith test (for example, gene or brain voxel), j indi-
cates the jth sample (for example, array or subject), constants p,, and p,, stand
for the mean effects from the X-group and Y-group, respectively, in the ith test,
and €; ; and e;; are the respective random errors. Some basic assumptions are
collected in conditions A1-A3 for our statistical analysis. We test the following
hypotheses:

Hog: pig, = py, against Hyg:pi, # iy, (2.2)

simultaneously for 1 < ¢ < m. One-sided alternatives can be formulated similarly.

2.1. Single two-sample t-statistic

For testing a single null hypothesis Hp; in (2.2), two-sample t-statistics de-
noted by Tj.p,, n,, along with their variants, are widely used. One version is formed
by the “general” two-sample t-statistic (Welch (1938), equation (2)),

general _ 71 - ?z : (23>
\/s§;i/n1 + 53.,/n2

where X; = Z?;l X;j/n and Y; = Z?il Y; j/no are the sample means within
the ith test, and §%i = >t (Xij — Xi)?/(n1 —1) and s3,; = >z (Yij —
Yi)?/(ny — 1) are the sample variances within the ith test. Under conditions

A1-A3, the distribution of Teeneral g given as follows.

311,12

(al) In the special case of Gaussian errors ¢; ; ~ N(0, Jg;i) and e; j ~ N(0, az;i),

with equal variances o2, = 0Z; and equal sample sizes n; = na, ﬂgfbfe;jl
under Hy; of (2.2) follows the tg,, —o-distribution.
(a2) In other cases, the exact distribution of ﬂgfflle:jl under Hy; is typically un-

available, but the central limit theorem (CLT) and Slutsky’s theorem Das-
Gupta (2008) give

general B N(0,1), under Hy;,, (2.4)

1511,M2
D e
as np — oo and ng — oo, where — denotes convergence in distribution.

Another commonly used form is the “pooled” two-sample ¢-statistic (Welch
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(1938), equation (1); Bickel and Doksum (2007), Section 4.9.3; Efron (2010),
Section 2.1; Bourgon, Gentleman and Huber (2010)),

pool _ 72 - ?z (2 5)
13M1,M2 ’ '
Spoolx;y;i\/ 1/77,1 + 1/77,2
where S}%oolX;Y;i = {(n1 — 1)s§<;i + (ng — l)sa;i}/(nl + ng — 2) acts as a pooled
sample variance within the 7th test. Under conditions A1-A3, the distribution of
ﬁzi’}m is given as follows.

(b1) In the special case of Gaussian errors ¢; ; ~ N(0, ag;i) and e; j ~ N(0, ag;i),

with equal variances o2, = o2, ng?lng under Hy; of (2.2) follows the
tn, +n,—2-distribution.
(b2) In other cases, the exact distribution of T} ol " under Hy; is typically un-

2M1,N2
available. In a large sample analysis, if n; — oo and ny — oo such that

ni/(n1 +na) — p € (0,1), then it can be shown that

D
1}1?2?}”2 = N(0, 02;6’(5,@;1-)’ under Hy,, (2.6)
where )
1—p)+ 00 .., os.
03;0(5,e>;¢ = ( ?) pe(a,e),z’ with 9(6,6);1' = %' (2.7)
p+ (1 - p) (e,e)3i Ug;i

The derivation of (2.6) is relegated to Appendix A. We call 02;9(5 o the CVQ,
which aggregates the ratio of sample sizes and the ratio of population variances.
Clearly, 0%;9 = 1 holds only in Case 1 or Case 2 below:

Case 1.

(e,e);i

1
p=35 that is, equal sample sizes with nq = no; (2.8)

Case 2.

0(c,e);i = 1, that is, equal population variances with ag;i = Jg;i. (2.9)

2
e;1?

Note too that 02.9
9 PiV(e,e);

< 0z;. In general, the limiting distribution in (2.6) cannot be used

2, and o2, in O, are typically

>1 holds only if n1 < ng and U?;z‘ > o2, orifny > no

and Jii
directly, because the population variances o

unknown in practical settings.

2.2. Simultaneous two-sample t-statistics

When calibrating multiple two-sample t-tests {7Tj.n, n, }i; simultaneously,
the accuracy of the overall significance level is used to control some aspects
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of the overall error rate. We first use the “general” two-sample t-statistics
{Tgeneral m

iy, fie1 b0 introduce some necessary notation. We discuss extensions to
) )

alternative choices {ﬂ?ﬁ?lnz ™, in Section 3.2. For a critical value t, the signifi-

cance level of the ith test is

TEeneral) o g, (2.10)

Qjng ng (t> = PHO,i(

where P, , denotes the probability calculated when Hog; is true. When test-
ing m null hypotheses simultaneously, the indices of the true null hypotheses
are collected in the set Zop = {i : Ho, is true}, with cardinality m, = |Z|.
The overall significance level is captured by the family-wise-error-rate (abbre-
viated as FWER or FWER;), FWER(t) = P(V,,(t) > 1), where V,,,(t) =
S I(Ho, is true, |T2gzrlle;jl| > t) = e, I(|ﬂgz?e;jl| > t) denotes the number
of false rejections, with an indicator operator I(-). More generally, for integers
kE > 1, FWERg(t) = P(V;,,(t) > k) denotes the k-fold family-wise-error-rate
(abbreviated as FWERy, see Lehmann and Romano (2005)).

Recall from Section 2.1 that exact values of .y, n,(t) based on the exact null

distribution of Tffl?e;j are unavailable in many practical settings. However, when
) )

ny — oo and ns — 00, the null distribution of 75 can be approximated by

;M1,N2

N(0,1), as seen in (2.4). This result motivates the approximation using N(0, 1)
random variables {7} ;. It is thus natural to use the quantities,

o7 (t) =P(|T7] > t), V()= ZI(!T?! > t),
FWER®(t) = P(V2(t) > 1), FWERS(t) = P(V2(1) > k),

which are computationally feasible, as substitutes for a.,, n, (t), Vi (t), FWER(t),
and FWERy(t), respectively, when n; and ny are large.

In this study, we examine the relation between the number of tests m and
the sample sizes n; and ny within each test. Here, applying appropriate choices

a

of the critical values t,.,,, and t (obtained from the calibrated distributions

aym;k
(through {T2}™,)) to the two-sample t-statistics {Tlgzrlle;jl m ., and {ﬂPSfIM m,
guarantees that
FWER; (t5.,) < a+o(1), (2.11)
FWER(t2,,1.) < a + o1), (2.12)

as m — oo, np — 0o, and ng — 00, where « is the control level. Similarly,
it is ideal to control the FDR based on a certain threshold 74y, for the true
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p-values {P;}; that is, FDR(7a;m;n) < o+ o(1), where FDR(7) = E[} .7, I(F; <
)/{{>°", I(P; < 1)} v 1}], with a V b = max{a,b}. When the exact {P;} are
unavailable, it is more realistic to control the corresponding FDR based on some
threshold 72 for the calibrated p-values {P*}",, such that

ay;m;n

FDR(75.:n) < o+ 0(1). (2.13)

3. Error Controls with Independent Data
3.1. “General” two-sample t-tests for (2.2)

We first discuss error controls using the “general” two-sample t-statistics

{Tgeneral ™ ., for which we require additional assumptions A4-A7. We further

iny,ne Ji=11
assume that the rates of growth of m, ni, and ny are connected via

log(m) = o(n'/?), (3.1)
with the combined sample size n = ny + no.

3.1.1. Controlling FWER(t},,,,) in (2.11) and FWER(t,,, ;) in (2.12)
The validity of the calibration method is supported by (3.3) of Proposition
1, which states that the overall significance level converges to a limit that does

not exceed the nominal level, the desirable property in (2.11).

Proposition 1 (control FWER; (t},.,,,) under independence between tests). As-
sume model (2.1) and that conditions A1-A7 hold. For o € (0,1), m,/m — 7, €

Tgeneral m

(0,1], m — oo, and n — oo, if the general two-sample t-statistics {15, "~}

are used, (m,n) satisfies (3.1), and

_ N\1/m
=0 (P, (3.2)

where ® denotes the cumulative distribution function (C.D.F.) of an N(0,1) vari-
able, then

FWER; (t5.,,) = FWER{(t,,,,) + o(1),

FWER}(t3,,,) = 1 — (1 — a)™/™ < a.

Similarly, (3.6) of Proposition 2 implies that FWER(t3,,,..) < o + o(1),

which is desirable in (2.12). A common feature of Propositions 1-2 is that as the

proportion m, of true nulls approaches one, FWER(tS,,) and FWER(t5.,,.,)

aym;k

(3.3)

approach the control level «, and hence the inequalities in (2.11)—(2.12) become
equalities.
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Proposition 2 (control FWERy(t},,,.;) under independence between tests).
Assume model (2.1) and that conditions A1-AT hold. For k > 2, a € (0,1),
m,/m — m, € (0,1], m — oo, and n — oo, if the general two-sample t-statistics
{T, general}f’il are used, (m,n) satisfies (3.1), and

| A =01 (1 — %ﬂ> (3.4)

aymyk —
where Bi.. denotes the solution of equation

Gk (Bria) = @, (3.5)

with Gi(B) =1 — Z?;é B7/jle P for B € (0,00), then

FWERL(t2, ) = FWER*‘(‘J‘;mk) +o(1), (3.6)
FWERa(tgmk) Gr(m,Bria) +0(1) < a4 o(1). |

3.1.2. Controlling the FDR in (2.13) for multiple testing procedures

Similarly to the marginal significance levels, the true marginal p-values {P;}
are unknown in advance or are not directly available when the exact distribu-
tions of the two-sample t-statistics are unknown, and thus need to be approxi-
mated from the calibrated distribution. The practical implication is that using
the approximate p-values {P?*} means the resulting multiple testing procedure,
such as the Bonferroni correction, is still valid. This because the FDR under
the conditions of Proposition 1 is asymptotically bounded by the level « if the
approximation errors of the p-values are o(1/m).

Analogously, consider the Benjamini-Hochberg (BH) multiple testing pro-
cedure Benjamini and Hochberg (1995), which rejects the null hypotheses Hy;
when P; < P( Py where k = max{j : Py < aj/m}, and Py < -+ < Py, de-
note the ordered p-values {P;}. Then, FDRpy = E(Vgu/(Rpu V 1)) gives the
FDR of the BH procedure, where Vgy = ZZEIO (P < P(k)) and Rpg = k.
For the calibration method, applying the approximate p-values {P?} instead
of {P;} to the BH procedure yields the number Vi3 of false rejections and
the number R{;; of total rejections, and the corresponding FDR defined by
FDREy = E(V3y/(Riy VvV 1)). More generally, for the p-values {F;} used in
the BH procedure, FDRpy = FDR(7q;m:n) (Storey, Taylor and Siegmund (2004),
Lemma 1), where FDR(t) = E{Vp.,,(t)/(Rp.m(t)V1)}, for t € [0, 1], and Tomm =
sup{t : FDR(t) < a}, with FDR(t) = mt/Rp.m(t), Veun(t) = Sser, 1P < 1),
and Rp.,(t) = > ;o I(P; < t). Similarly, for the approximate p-values {P?},
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define FDR?(t) = E{V3,, (t)/ (R, (t) V 1)} and 72, = sup{t : FDR (1) < a},
where FDR () = m /R, (1), Vi, (1) = Yier, (PP < t), and R}, (t) =
> LB <)

Proposition 3 shows that the resulting FDR(

mild conditions; Figure 13 presents simulation evaluations. Additional assump-
tions A5, A7, A8A10 are needed.

a
Ta:m:n) can be controlled under

Proposition 3 (control FDR(75.,,.,) of the BH procedure under independence
between tests). Assume model (2.1) and that conditions A1-A5, A5, A6, AT,
and A8-A10 hold. Define by Fp(-;n) and f3(-;n) the C.D.F. and p.d.f., respec-
tively, of the approzimate p-values {P*}™™ . For a € (0,1), let

San = Sup{t : H(t, ’I’L) < O{}, gg;n = Sup{t : Ha(t’ n) < a,},

where H(t;n) =t/Fp(t;n) and H*(t;n) = t/Fp(t;n). Suppose H'(t;n) is bounded
below for t in an open interval with endpoints ¢un and <., and fg(ggm;n)
< a bt < f4(0;n). If the general two-sample t-statistics {Ifzrllijl ™. are used
and

¢ (1 - ¢h,) € (0, o(n'?)), (3.7)

then as m — oo and n — 00,
FDR(75. ) < a+o(1). (3.8)

Remark 1. Similarly to Lemma A.1 of Jing, Kong and Zhou (2014), we obtain

Toomin = San T OP (m~1/2), where Taem:n 8ives the threshold for the approximate

p-values. Therefore, condition (3.7) becomes
O (1 = 7o + Op(m™'/2)) € (0, o(n'/%)), (3.9)

which implicitly describes the relationship between m and n. For example, if
a

T, is of order m~% with probability tending to one, where 0 < b < 1 /2, then

asm;n

a sufficient condition for (3.9) is log(m) = o(n'/?), as characterized by (3.1).
Remark 2.

(i) Using similar arguments for Corollary 2.1 in Liu and Shao (2014), we can
show that log(m) = o(n'/?) is also a necessary condition for controlling
FDR asymptotically. More precisely, if log(m) > ¢ n/3 for some constant
co > 0, we obtain liminf(,, ;)0 FDR(73.,,.,) = B, With a constant 8 > a.
In particular, if log(m)/n'/3 — oo, we obtain FDR(73.,,.n) — 1, implying
that the FDR is not controlled as m — co and n — oo.
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(ii) On the other hand, the condition log(m) = o(n'/?) can be relaxed to a
better rate log(m) = o(n'/?) with additional conditions, such as that of

symmetric errors and a stronger large deviation result for the two-sample ¢-
tests TEemeral, PHO,Z.(T-general >x)/{1l—-®(z)} = exp(—3_1/£37ix3n_1/2){1 +

O(1 +)?/n/?}, where k3; = [E{(Xi1 — 1y,)*}/p” —E{(Yi1 — py,.)*}/ (1~
0)21/{0%s/p + 02,/ (1 — p)}¥/2, and 6 = O, n) satisfies [0(z,n)| < C uni-
formly in = € (0,0(n'/4)). The justification for this large deviation result is

beyond the scope of this study. See Section 3.3 for a related discussion.

(iii) The condition A5, “two-sample ¢-statistics corresponding to true non-nulls
are identically distributed,” simplifies the technical proof for Proposition 3.
In the simulation studies in Section 5, where the differences (., — 4,.,,)
under the true non-nulls vary with ¢, Figure 13 indicates that Proposition 3
continues to hold in cases where condition A5’ is relaxed.

Remark 3. In Propositions 1-3, the Gaussian distribution is used to approxi-
Tgeneral

imim, - Lhese results can be easily

mate the distribution of the test statistics
generalized to the t-distribution approximation by replacing ®(-) with the C.D.F.

of the t,,, 4n,—2 distribution.

3.2. Proposed “adaptively pooled” two-sample t-tests for (2.2)

We now discuss error controls using the “pooled” two-sample t-statistics
g p p
{TPoo! " .. Recall from (A.11) and (A.26) in the Appendix A that the con-

i5n,m2
clusions of Propositions 1-3 rely on the tail distribution of ﬂgz?e;jl

Hy ;, approximated by that of the N(0, 1) distribution, fulfilling

under the null

;M1,N2 —

1—®(x)

PH . Tgeneral > 7
‘ 0,1( ) o 1‘ _) 0

uniformly in = up to a point of order o(nl/ 6). Applying similar derivations to the

“pooled” version of the test statistics TZP;Zfan, we observe that if the condition

Po, (TP > 1)
. 2 — 11 =0 3.10
’ - o) ’ (3.10)

holds uniformly up to the point z of order o(n'/%), then (2.11) and (2.12) are
also applicable to {17 col ym Indeed, condition (3.10) holds when the CVQ is

iny,ne Ji=1
equal to one, that is, 0,9, . = 1, in either Case 1 with n; = ng, as discussed

in (2.8), or Case 2 with aii = Ug;i, as discussed in (2.9). Numerical evidence is
2

provided in Figure 3 with og.i = 0Z,, where the performance of the calibration
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method applied to the “pooled” choices (in the second column panels) is nearly
identical to that applied to the “general” choices (in the first column panels).

Next, we examine the effect on (3.10) if the CVQ is allowed to differ from
Tpool

imym, 18 used, then the result in (2.6) indicates

one. If the original form (2.5) of

Opi0(c,e)si
To analyze the ratio on the right-hand side of (3.11), the panels of Figure 1
plot the function {1 — ®(x/0)}/{1 — ®(z)}, which behaves very differently in the
cases of 0 > 1 and o0 < 1. The maximum value of {1 — ®(z/0)}/{1 — ®(z)}
is unbounded when o > 1, but is at most one when ¢ < 1. This difference
ultimately affects (3.10) in the following ways.
(i) If opp,. ... > 1, then the maximum value of [Pg, (TP > ) /{1 — ®(z)}—

i1,
1] will always be much larger than zero.

(ii) Ifo,,. .., <1, then the maximum value of [P, , (TP > ) /{1 — D(z)}—

1] will potentially approach zero, particularly when Tpi0,...,.. approaches one.

Hence, condition (3.10) may fail if 0, , > 1, and the overall level accuracy

may be lost by directly applying the calibration method to the simultaneous
TPOO]

in,.n,- €€ the numerical illustrations in Figure
, )

“pooled” two-sample t-statistics

5 associated with o, . > 1.
Tpool

inyn, With szneral, particularly in the

To circumvent the incoherence of Lo
b

case of CVQ > 1, we propose an “adaptively pooled” version, which follows
an approximately N(0, 1) distribution under the null. Following (2.6), a natural
choice is given by

pool
pool,A  Ting,ng
e, = (3.12)
g 7
pye(s,e);i

where 6 ¢).; = S%Z/sgﬁ serves as an estimate of 0. o).; = az.i/ag.i. The simula-
b b ) b

tion results in Section 5 support that the performance of the calibration method
Tpool;A m

Gnyma Jie1 18 comparable to that

applied to the “adaptively pooled” choice {

Tgeneral m
iiny,me Ji=1"

applied to the “general” choice {

3.3. Proposed “two-stage” t-test procedure for (2.2)
In practice, ﬂgfbfe;jl and ngfln/z could be skewly distributed under Hy ;, yield-
ing a slower convergence rate to N(0,1) and a lower calibration accuracy by

N(0,1). See also Remark 2(ii). For szrlle;jl, its theoretical form of the skewness-
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“adjusted” two-sample t-statistic,

adjust; T X Y, M3,X; i/nl M3, Yz/nQ 3 13
isn1,ne (( i z) + (3X1/n1 n SyZ/n2)

13,X5i/13 — 13,5/ 3 (Xi - SX ji SYz
+3 2 2
(SX;i/nl + SY;i/n2)

can be derived from Johnson (1978), used for the “adjusted” one-sample t-

statistic, where

s xi = E{(Xi1 — py )’} psya =E{(Yi1 — py,)} (3.14)

A form similar to (3.13) can be found in equation (2.16) of Cressie and Whitford

(1986). As expected, ﬂagjuff "I alleviates the skewness effects from ﬂgzllle;?l and,

thus, is more symmetric under Hp;. Clearly, if ug,X;i/n% — Mg,y;i/TLQ = 0, then

djust; T 1 .
e reduces to T2, Hence, the quantity
H3,X5i M3,V v v -
gt = et = B{(X - V) - B(X - V)Y, (3.15)
1 2

eneral . L.
serves as a valid measure of skewness of T Zgn n, » assuming conditions A1-A3. In

TadJust T.

imyn, 1sinfeasible for the skewness adjustment, because the quantity

practice,
,ugjx;i/nl ,11,37)/72/7”&2 is unknown. However, it can be estimated using the sample’s
third moments, leading to the empirical form of the skewness-“adjusted” two-

sample t-statistic,

Tad]ustE ( X _V, + ,u3XZ/n1 M3Y'L/n2 3 16
bin,ne ( ' ) 6(3X1/n1 +SYZ/TL2 )

+ ﬁ3,X;i/n% B /73,3/;@'/712 —_ / SX i SY i
3(s%.;/m1 + s%;i/ng)2 Xi V
where fi3 x; = 50 (Xij — X;)% fny and figy, = Y252, (Yij — Yi)? /na.
Tgeneral nd Tadjust E

With regard to the choice between , we discuss two

RO PRI
cases. If p3 x.i/n3 — psy.i/n3 = 0 exactly or approximately, then ]lgfln’e;jl is
expected to be more symmetrically distributed under Hp; than is TlagiuZzE, and

adjust; E

will outperform 7 (owing to the variability of sample third moments). On

1M1 ,N2
1 djust;E
the other hand, if 3 x.:/ n% — p3yii/ n% is far from zero, then ﬂanJuz will be
. ) 1
effective in correcting the skewness, whereas T} "™
Tgeneral or TadjustE

M1 ,No N,y 0

may not be.

Hence, before selecting we first need to assess the ade-
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quacy of
(1) . #3,X;i H3,yi
HO,i : n% — n% =0. (3.17)

Note that (3.14) and (3.17) motivate us to consider the t-statistic

fiz,x:i/nT — His,yyi/n3

)
P ) 5
\/‘73,)(;@'/”1 +05y./15

(3.18)

where 8%7 x.; and Ef\iy;i denote the sample variances of {(X;; — 71-)3}?;1 and
{(Yij—Y:)?}"2,, respectively. Under the null hypothesis (3.17), (3.18) > N(0, 1),
by the CLT and Slutsky’s theorem, assuming finite sixth moments of X;; and
Yii.

To improve the efficiency of testing (2.2), we propose a “two-stage” t-test
procedure:

1st-stage: For each ¢+ = 1,...,m, apply the first-stage two-sample t-statistic
(3.18) to test, individually, for the null hypothesis H(()li) in (3.17).

2nd-stage: For each i = 1,...,m, define the second-stage two-sample t-statistic
2_stage
1511,M2

2_stage 1311,N2

in1,no Tgeneral in (2.3)’ if (318) retains (317)

23N, Mn2

) {Tadjust;E in (3.16), if (3.18) rejects (3.17), (3.19)

Use {T25%8ym  t6 perform the multiple testing procedure for (2.2).

1Ma,N2

As illustrated in the simulation studies in Section 5, T2W"tT always performs
best, but is practically infeasible. The proposed T2-'%8¢ is as good as the better
of Tgeneral and Tadjust;E'

Remark 4. For the “adaptively pooled” two-sample t-statistic TP°°%* the skew-

1n1,n2
general
rT;

ness adjustment is similar to (3.16) for T2 "™,

O-P§é\(a c)-iSpOOlX;YEi V 1/711 + 1/712.

except that the denominator is

4. Error Controls Allowing Dependent Data

In practice, dependence in data sets may arise from different tests, between
the X-group and Y-group, or within the same X-group or within the same Y-
group. Section 4.1 considers the types of dependence between tests, Sections 4.2—
4.3 explore models (4.10) and (4.12), respectively, incorporating the dependence
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structure between two groups and within the same group, respectively. Appendix
B discusses extensions of (4.10) and (4.12).

4.1. Dependence between tests

Recall that Propositions 1-2 rely on condition A7, which assumes indepen-
dence between the test statistics corresponding to the true nulls. Section 4.1.1
evaluates the effect of general dependency between the test statistics on the con-
trol of the overall significance level; Propositions 4-5 remove condition A7. Sec-
tion 4.1.2 considers test statistics that are asymptotically jointly Gaussian.

4.1.1. General dependence between tests

Proposition 4 (control FWER, (t5,,) under general dependence between tests).
Assume model (2.1) and that conditions A1-A6 hold. For o € (0,1), m,/m —

Tgeneral m

7, € (0,1], m — oo, and n — oo, if the general two-sample t-statistics { i

are used, with ., given in (3.2) and (m,n) satisfying (3.1), then
FWER, (t5.,,) < 7,010 +0(1), (4.1)
where 1. = —log(l — ).

In view of (4.1), the limiting overall significance level continues to be bounded
by the nominal level «, for any m, < /1., when m tests are allowed to be
dependent. See the left panel of Figure 2 for the plot of a/f1., with respect to
a. For example, a level a = 0.05 allows any choice of 7, in the range (0,0.9748],
which is wide enough for realistic applications. Interestingly, even in the special
case of m, = 1 (which is rare, in practice), that 7 Si1. = fi1.o and a < B
(with a negligible difference between a and fi., particularly when « is small,
as illustrated in the right panel of Figure 2) indicates that the critical value
ta., in (3.2) offers an asymptotically slightly conservative 1. for the resulting
FWER(t5.,,)-

Proposition 5 states that, when & = 1, the upper bound achievable for
FWER(t7, ,,, ) reduces to that for FWER(t3,,,, ).

Proposition 5 (control FWER(t?,,,.;) under general dependence between tests).
Assume model (2.1) and that conditions A1-A6 hold. For k > 2, a € (0,1),

m,/m — 7w, € (0,1], m — oo, and n — oo, if the general two-sample t-statistics

{ generalym
isng,ne Ji=1

are used, with t;, ., given in (3.4) and (m,n) satisfying (3.1), then

FWER (t2,) <~

a;m;k

+o(1), (4.2)
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where B.q solves (3.5).

Compared with Proposition 2, the upper bound 7, k.o /k in (4.2), with k > 2,
is controlled by the nominal level o only when the proportion 7, does not exceed
a/(Br.a/k), which is equal to 0.2821 for & = 0.05 and k = 2. In the extreme case
of m, = 1, we can show that 7 Si./k = Bi.a/k is invariably at least as large as
«. This reflects the cost of generalizing Proposition 2 from mutually independent
tests to cases allowing for general dependency.

4.1.2. Jointly Gaussian distributed test statistics
Consider a specific factor model for observations {X; ;} and {Y; ;}:

Xij =ty +Bxuj+eij L<i<m, 1<j<m,

— T , : (4.3)
Yij =#y, +By,vjteiy 1<i<m, 1<j<n,

. . . Lid.
where u; are unobserved d,-dimensional random vectors, with {w,...,u,, } '~

N(0,X); v; are unobserved d,-dimensional random vectors, with {vi,...,vp,}
L N(0,X,); and (wq,...,u,,) and (vy,...,v,,) are independent. For example,
the gene expressions {X;; : 1 <1i < m} of the jth subject may be influenced by
common factors u;, for example, the age or other variables of the jth subject. In
addition, assume {e; j} and {e; ;} are identical to those in model (4.10); {e; ;},
{ei;}, {u;}, and {v;} are independent.

For model (4.3), the dependence between the two-sample t-statistics,

yni,ne
\/sg(;i/nl + s%,;i/ng

L oi=1,...,m, (4.4)

is caused by factors @ = » "1, u;/n1 and ¥ = 3772, v;/na, which are common
to all tests. It follows that the two-sample t-statistics can be rewritten as

(Tgeneral Tgeneral )T —De U’ (45)

Ling,ng " 7 T ming,ne

where D = (X1-Y1,...,X,;,—Y )" the operator e in (4.5) indicates component-
wise multiplication; and U = (Uy, ..., Uy,)T, with U; = (sg(;i/nl + s%;i/ng)_l/?
For fixed m, the CLT gives

Jritne D3 Wi,... W7, (4.6)
as ny — oo and ng — oo, where (W1, ..., W,,)T ~ N(v,Q), for some v € R™ and

positive-definite matrix Q = (wj;)i<ij<m. Similarly, the law of large numbers
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: 2 P oar 2 2 P oar 2 :
gives sy, — ﬁx;izuﬁX;i + oz, and sy, — By;izv/@Y;i + o¢.;, implying

(n1 +n2) V2 U; B, 1<i<m, (4.7)

where ¢; = {</3)T(;i2u5X;i + Ug;i)/ﬂ + (ﬁrT/;iEvﬁY;i + Ug;i)/u —p)}~ /% thus,
(n1+n2) Y2 U S e, (4.8)

with ¢ = (c1,...,cm)?. By Slutsky’s theorem DasGupta (2008), (4.5), (4.6), and
(4.8) imply that
(eenerel L rgeren T Bz, Z,)T ~ N5, Q), (4.9)

Ling,ng m;ni,nz

where Z; = ¢; W;, v = ce v, and Q= (¢i ¢j wij)i<ij<m-

The joint Gaussianity of the test statistics in (4.9) makes it feasible to apply
the factor model method in Fan, Han and Gu (2012) to decompose SNI, and then
to control the false discovery proportion (FDP; defined as the number of false
rejections divided by the number of rejections) and FDR asymptotically. On the
other hand, this method relies on knowing Q in advance. Thus, we need the
techniques used to estimate high-dimensional covariance matrices to estimate Q.
Our Gaussian calibration helps to simplify its diagonal entries to ones.

4.2. Dependence between groups and within a group: Model I

Consider observations {X; ;} and {Y;;} following Model I,

w:
Xi,j:,rx;i+ei,j+7l, 1<i<m, 1<j<ny,

- | | (4.10)
Yz‘,j:My;i"‘ei,j""Ea 1<i<m, 1 <7 < no,
where the errors {wy,...,wn,} B N(0,02), with 02 € (0,00). For each i,
the errors {€;1,...,€in, PN N(0,02,), the errors {e;1,...,€in,} PN N(0,02,),
and {(g,1, ... 75i,n1)7 (€i1,---,€in,), w;} are mutually independent. Furthermore,
{(€i1, - €inis€its--o,€imy;wi) 1 i € Ip} are independent. It follows that the
two-sample t-statistics reduce to the following forms:
general € — €
1;n1,N2
\/ EZ/m +s /nz
o (4.11)
pool Ei — € pool;A  Ting,ng

i;nl,ng ) i;nlan2 ~ ’
Spool,. ;i V 1/TL1 + 1/?12 O-P§9(s,e);i
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Note that this data set involves dependence between different groups, and within
the same group; however, the test statistics (using {78}, {TP°! 1 op TPOLY)

3M1,N2 2Ny, n2 311,12
associated with the true nulls are independent. Moreover, Model I in the case of
02 = 0 reduces to the counterpart of model (2.1).

With regard to Model I, we can show two distributional results for the “gen-

Tgeneral

N i
eral” two-sample {-statistic T3 =

under Hy;:

: 2 2 _ general .
(c1) if 0z; = 0z; and ny = ny, then T3, "™ ~ top, _o;

(c2) if ny — oo and ny — 0o, then T8 B N(0, 1).

;M71,N2

Hence, the conclusions of Propositions 1-2 carry through to the “general” two-

Tgeneral m

sample t-statistics { e T

As a comparison, for the “pooled” two-sample t-statistic Ilpsflm under Hy ;,

we draw the following two conclusions:

(d1) If 02; = 02, then Tffifln? ~ tp,+n,—2- In this case, the results in Proposi-

Tpool m

tions 1-2 continue to apply for the “pooled” choice { R M

(d2) If ny — oo and ng — oo, such that ny/(n; +n2) — p € (0,1), then (2.6)
gives JZPSTIM 2 N(O,ag;e(wm). Similarly to the discussion in Section 3.2,
there is no guarantee in the case of 0,9, ., > 1 that we can achieve level
bounds « in (2.11) and (2.12) using {T°°% }m .

N1 ,N2

However, according to (4.11), the “adaptively pooled” version satisfies ﬂ?ﬁ?lﬁ

2N (0,1) and, thus, the N(0,1) calibration remains valid for {TP°°54}ym

Ny ,n2
4.3. Dependence between groups and within a group: Model II

Consider an alternative model similar to Model I, except that the signs of
the error terms w;/2 in X; ; are negative, yielding Model II:

wj ) .
Xiyj:/LX;i—i—si’j—?Z, 1<:<m, 1 <7 <ny,

5 (4.12)

Yijg =iy, teij g 1<i<m, 1<) <ny.

Model (4.12) is motivated from a two-sample microarray testing example in Sec-
tion 4 of Efron (2004) and Section 6.4 of Efron (2010) with n; = ng, where w; are
small disturbances caused by unequal effects of unobserved covariates on the X-
group and Y-group. The explicit forms of the two-sample t-statistics are derived
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as follows:
general Ei — € — W
ni,ne
2. 2. /ni+ 82 i/ ng
ool (4.13)
pool Ei — € — W poolA  Timi,mo

n1,ne T N n1,ne N ’
Spoole;c;i 1/711 + 1/”2 0-1)?9(6,6);1'

which differ from those in (4.11). Again, dependence between and within groups
exist in the data set, where the extent of the dependence is captured by the
magnitude of o2, but the two-sample t-statistics associated with the true nulls
remain 1ndependent.

In the context of Model II, we can show two results for the null distribution
Tgeneral

of the “general” two-sample t-statistic 77 g

(el) if US;Z- = Uz;i = 07 and n; = ng, then @gZ?e;jl ~ ton,—2 X f1, where f; =
V1+ (m/2)(02/07);

(e2) if ny — oo and ng — oo, then

nlngafu

Tgeneral =7 X fodl + 1)} — wh fo = 1+ —
1;M1,M2 2{ OP( )} 00, ere J2 g 3 n ga

where Z ~ N(0,1) and 5 denotes convergence in probability.

We can also show that TZPT?OInA has the same limit null distribution as ngzlfeéjl.

For the null distribution of the “pooled” two-sample t-statistic sznOIn , we draw

two conclusions:

(f1) If Ugn- = 02 = o2, then TP ~ tyin,_2 X f3, where f3 =

e;i 1511 ,N2

V14 (ning/(n1 +n2))(02 /o?).

(f2) If n; — oo and ny — 0o, such that ny/(ny +n2) — p € (0,1), then

TP = Z % fufl + op(1)} 5 oo,

1,M1,N2

where f4 = \/<1 —p) +poi/oZ+ ((ning)/(n1 + n2))(o2 /o2) (4.15)
4 o+ (L= p)o2/o? -

Thus, the conclusions of Propositions 1-2 fail for the two-sample t-statistics

{ general m

i ns Jie1s Decause the factor fo in (4.14) invariably exceeds one. As a com-

parison, Propositions 1-2 may fail for {Tlpzfln2 ™, particularly when the factor

fa in (4.15) substantially exceeds one. In the case of fo > fy, the “adaptively

9 : pool;A . pool m
pooled” versions {737 " "} do not ameliorate {T7." }1";.
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5. Simulation Study

We assess the finite-sample performance of the calibration method applied

o g generalym pool m pool;Aym
to the two-sample t-test statistics {Ti;nl,na m A S S { A PP {

f}g‘ffLZT T f}SfZZE ™., and {ﬂ?ff’zg?e ™ |, as the total sample size n = n1+ng
varies. For each k € {1, 2}, we conduct the simulation 1,000 times. In each simu-
lation, we calculate the numbers of false rejections Vi, (t,,,) and Vi, (t,,,..). The
empirical estimates of FWER(t,,,,) and FWERg(t, ;) are the proportion of
times that {Vin (t3,,,) = 1} and {V},.(t3,.,,.x) = k}, respectively, occur in the 1,000
simulations. Set v = 0.05 as the control level. The “two-stage” t-tests use level
0.05 in the first-stage. A range of sample sizes are considered, with n; = 10c and
ny = 20c, for ¢ € {1, 2,...,10}, yielding the combined sample size n = 30c. We
set m = 10,000, with =, = m,/m = 0.9.

To generate data under either independence or dependence, we consider the

model
Xij =t +eig +signyg 5+, 1<i<m, 1< <my,
w (5.1)
. ¥ . .
Yij = by, teig+signy,; —, 1<i<m, 1<j<ny,
where ., = p,, =1, for e =1,...,m,. The values of ., and p, 6 are sim-
ulated from Uniform(0.75,1.25) and Uniform(1.75,2.25), respectively, for i =
m, +1,...,m, and {g;;} are independent of {e;;}. In addition, the errors

{wi, ..., wn} LR N(0,02), as described below (4.10). Note that (5.1) includes

models (2.1), (4.10), and (4.12):

if signy; =0 and signy; =0, then model (5.1) reduces to model (2.1);
if signy.; = +1 and signy; = +1, then model (5.1) is Model I in (4.10);
if signy; = —1 and signy; = +1, then model (5.1) is Model IT in (4.12).

In model (5.1), the schemes for the errors {¢; ;} and {e; ;} are considered in
Examples 1-5, as follows: Example 1: {¢;;} S N(0,02), {e;;} S N(0, 02),
with o = 1.0; Example 2: {g; ;} Hh- N(0,1), {es;} "5 t4; Example 3: {ei} b
ta, {ei;} < N(0,1); Example 4: {¢;;} ey X3 — 2, {eij} ey —(x3 — 2); and
Example 5: {g; ;} e X34, e;j = (2b;—1) u; j, where {u; ;} e~ {Exp(1/\)=A},
with A = 4, and the coefficients b; are nonrandom and equal to the sampled values

of bf, with {b7,...,0},} b Ber(1/2). Here,Examples 4 and 5 assess the skewness

effects of the two-sample t-tests on the calibration methods.
Moreover, in model (5.1), the variances o2 of the errors {w;} are considered
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for
model (2.1) with o, = 0; Model I with o, = 0.5; Model II with o,, = 0.1.

Thus, the combination of errors {e; j,e; ;} and errors {w;} in model (5.1) yields
15 examples, denoted as follows:

‘Example 17, ..., ‘Example 5’ for independent data;
‘Example 1(I)’, ..., ‘Example 5(I)’: for dependent data,;
‘Example 1(IT)’, ..., ‘Example 5(II)": for dependent data.

Graphical illustrations are displayed in Figures 3-7 for the empirical estimates
of FWER(t},,,), in Figures 8-12 for the empirical estimates of FWERg(t?,,,.1.)
with k£ = 2, and in Figure 13 for the calculated FDP of the BH procedure.

5.1. Independent data

Recall that Examples 1-5 correspond to independent data. Table 1 summa-
rizes the information on the CVQ and skewness of the error terms.

In Example 1 with Gaussian errors, the top row of Figure 3 indicates that
the estimated FWER(t3,,,,) of {TE™ 1) gots closer to 0.05 as the sample size n

My ,N2

increases. The N(0, 1) calibration applied to {EPZTInQ} performs similarly to that
of {Jffl?%jl}, owing to the equal population variances, such that 03;9(516);1_ =1

in Example 1. In this case, there is also no adverse effect of using the “adap-
tively pooled” version {7, OOl;A}. The calibration methods applied to {T7H™5T

;M1 ,N2 ;M1 ,N2

{T2dsEEY “and {T25%8°) perform similarly to that applied to {7} owing

51,12 13m0 511,12
to the symmetric distributions of {¢; ;} and {e; ;}.

In addition, recall from part (bl) in Section 2.1 that TP ip Example 1

23M1,N2
exactly follows the t,,1p,_o-distribution under the null. The second columns

of Figures 3 and 8 overlay the true values (using red lines) of FWER(t,,,,) and
FWERk(tZ;m; 1), respectively, which match well with their empirical counterparts.
This supports the validity of the simulations. Similarly, the left column of Fig-
ure 13 compares the FDP of the BH multiple testing procedure Benjamini and

Hochberg (1995), implemented as follows: the approximate p-values calculated

. . . . general pool pool;A adjust;T
from the approximate N(0, 1)-distributions for Timlm2 e A
adjust; E 2_stage
ni,ne and Ti;nlanz ?

distribution for T°°® . As shown, when n approaches 100 (or more), the FDPs

2M1,N2 "

and the exact p-values calculated from the exact ¢, 4p,—2-

using the N(0, 1) calibration mimic that using the exact distribution.

In Examples 2—-3, with nonGaussian errors, the population variances are

O’Zi < 0'2;1- in Example 2, and J?ﬂ- > Ug;i in Example 3. Figures 4 and 5 indi-
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cate that within each example, there is little difference in the performance of the
calibration methods applied to the test statistics {78}, {TPookAy (adiustiTy

2;M1,M2 211,02 2;M1,M2

and {72581 However, {TP°° } behaves substantially differently in Example

1ina,n2 3M1,M2
2 and Example 3, where the FWERs are conservatively controlled in Example 2
(as seen in the top row, second column panel of Figure 4), but are not controlled
in Example 3 (as seen in the top row, second column panel of Figure 5, even
2 .
Pl < 110
> 1 in Example 3,

if n increases). Again, the difference is caused by the quantity o
2

Example 2, with n; < ns and a?.i < oZ,;, whereas o

2
p;e(s,e);i
with ny < ng and af;i > azﬂ-. The comparison thus supports that the “adaptively

. LA . ) . - .
pooled” version T, is a valid substitute for the originally “pooled” version
31,2

pool
E;nl,ny
general
in,ng
Moreover, in Example 3, because the sixth moment does not exist for the

and that its performance compares with that of the “general” version

ty-distribution, Ji3 x/n? — M3y /n3 performs poorly in estimating ps x.;/n? —

2 adjust;E . . adjust;T . .
w3 ysi/n5. Thus, T o deviates significantly from T n, » as seen in Fig-
2 _stage . general
ure 5. Nonetheless, T """ is as good as T, " =

Recall that for Examples 1-3, u37x;i/n% — p3y.i/n3 = 0 (as shown in Table

adjust;T general . . 2 _stage
1). Thus Ti;nl,nz and Ti;nl,nz are identical and the best, and Ti;nl,nz compares
Tgeneral

s As a comparison, Examples 4-5 assess the utility of the pro-

well with

posed “two-stage” t-test procedure in the presence of skewness. In Example 4,

3. x:i /% — p3y.i/n3 is relatively large. Figure 6 reveals that 7T fgjluz?E

than ﬂgZ?e;jl, and 1}2.;??; is close to the better of @%Z?e;jl and EéS{UZZ;E. The
theoretical T2Y"5T still controls the FWER in the best way. In Example 5,

1M1 ,MNo

is better

13 x:i/n3 — psy.i/n3 depends on whether b; = 0 or 1, as given in Table 1. In

. . 2.t 1
this case, we observe from Figure 7 that 7,9 outperforms both 75 ""* and
yN1,M2 23M1,M2
adjust;E

5n1,n2
5.2. Dependent data

For Model I associated with the dependence mechanism in Examples ¢(I),
for £ = 1,...,5, it is apparent that the top and middle rows of Figures 3-12
are nearly indistinguishable, regardless of the magnitude of o,, > 0. This agrees
with the analysis in Section 4.2. By the same argument, the calculated FDPs of
the BH procedure in the left column of Figure 13 resemble those in the middle
column of Figure 13.

In striking contrast, for Examples ¢(II), for £ = 1,...,5, with a dependence
mechanism described by Model II, the loss of control over FWER; and FWER»
is noticeable in the bottom rows of Figures 3-7 and Figures 8-12, even if oy,
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is as low as 0.1, lending support to the discussion in Section 4.3. The right
column of Figure 13 shows that the FDPs based on the N(0, 1) calibration for
approximating the p-values no longer mimic the actuals proportions. Again,
this is because when the data are generated from Model II, the variances in the
asymptotic distributions of TZ%Z??;Z‘I (as well as Tlpfflnlz) and TZPE?IM escalate by
factors fo in (4.14) and fs4 in (4.15), respectively. As anticipated, the exact
Tpool

oy m, 1 Example 1(II), continues to perform

tn,+n,—2 calibration, available for
well.

6. Real-Data Examples

We apply the Gaussian calibration for two-sample t-tests to analyze three
real-data sets. As expected, Table 2 reveals a discrepancy between the results
delivered by the “pooled” and “general” versions. Nonetheless, the results based
on the “adaptively pooled” version always agree well with those of the “general”
version. This lends further support to the superiority of the “adaptively pooled”
version to the “pooled” version in statistical practice. The proposed “two-stage”
procedure resembles the “general” version.

First, we analyze the prostate cancer data set of Efron (2010), which contains
genetic expression levels for 6,033 genes, obtained for 102 men, comprising 50
normal control subjects and 52 prostate cancer patients. The primary goal of
this study was to discover a small number of “interesting” genes that have ex-
pression levels that differ between the prostate and normal subjects. Using the
BH multiple-testing procedure, Table 2 compares the number of genes detected
as significant, where the p-values are calculated from the N(0, 1)-distribution for

general . . . pool . . . pool
inimg 0 tnitn,—2-distribution for T° . and N(0,1)-distributions for 77"
pool; A 2_stage . . . . .

imymge and T "0 Recall that the simulation studies in Figure 13 support

the Gaussian calibration used in the BH procedure with independent data, with
the combined sample size n around 100 and m as large as 10,000. The differ-
ence between the detected numbers 21 (using the ¢-distribution) and 51 and 50
(using the N(0, 1) calibration methods) could be caused by the nonGaussian sam-
ples or the unequal population variances; as a result, Ti’g?}nz may not follow the
tn, +n,—2-distribution.

Second, we apply the calibration method to the gene expression data produced
by Kim et al. (2007) in a study on prostate cancer progression. The study aims to
identify genes that show evidence of differential expression in cancerous tumors.
The data set includes gene expressions for m = 8,648 genes using prostate cell

populations from low-grade (n; = 27) and high-grade (ng = 17) samples of can-
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cerous tissue. Using the BH multiple-testing procedure, where p-values are calcu-
lated from the N(0, 1)-distribution for T ¢, .. _,-distribution for TP°°

311,12 25M1,N2
c e . pool pool;A 2_stage
and N(0, 1)-distributions for T nys Liony my» and T 0700 the numbers of genes

declared to be significant are 565, 196, 436, 563, and 565, respectively; see Table
2. In this example, the detection difference between using the t-distribution and
using the approximate N(0, 1)-distribution could be caused by the nonGaussian

samples or the unequal population variances; as a result, the ¢,,, 1, _2-distribution
Tpool

(HOWIPY
n = 44 is not large enough for the Gaussian calibration. Interestingly, the “adap-
TPOOI;A

- . 1
number of significant genes to those of its “general” counterparts {T7,, """ }.

As a third illustration, we analyze the Acute Lymphoblastic Leukemia (ALL)
data set. Refer to Bourgon, Gentleman and Huber (2010) for details of the ALL
data set, containing data on 12,625 genes measured for two groups of samples

may not be valid for The difference may also be because the sample size

tively pooled” two-sample t-statistics { } continue to detect a comparable

sizes, 37 and 42. Table 2 presents the number of genes differentially expressed
in the BCR/ABL versus NEG comparison for the four methods. The “pooled”
two-sample t-statistics 132?,1712 using the t,, +n,_o-distribution identify 169 genes
(identical to that given in Table S2 of Bourgon, Gentleman and Huber (2010)),
which differs from the results of the other four calibration methods. Again, we

W

observe that the numbers of genes identified by the “two-stage,” “adaptively

pooled,” and “general” two-sample ¢-statistics are comparable.

7. Discussion

We have examined the validity of a calibration method used simultaneously
in two-sample t-tests, the exact distributions of which are typically unknown in
many practical applications. In that instance, the inaccuracy of the distributional
approximation, associated with realistic samples sizes ny and nsy will degrade the
overall significance level, ultimately limiting the effective number of tests m. The
relationship between m and (n1, n2) is studied to ensure control of the overall level
accuracy, as well as to control the FDR for some multiple-testing procedures. A
distinction is made between the choice of “general” and “pooled” two-sample t-
statistics in cases where the typical form of the independence assumption between
tests either holds or is violated. The proposed “adaptively pooled” two-sample
t-statistics, when used simultaneously in the calibration method, perform as well
as the simultaneous “general” version, whereas the original “pooled” version may
behave abnormally. The proposed “two-stage” procedure compares well with the
above methods when the errors are symmetric, but outperforms the others when
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the errors are skewed and is less sensitive to error asymmetry.

Simulation studies demonstrate that under appropriate independence as-
sumptions, the calculated FDPs of some conventional multiple-testing procedures,
such as the BH procedure, can be controlled when the p-values are approximated

using the calibrated distribution for the “general,” “two-stage,”

and “adaptively
pooled” two-sample t-statistics.

The dependence structure poses challenges related to controlling the overall
significance level and FDR. In Section 4, we demonstrated that the FWER and
FWER} can be controlled under arbitrary dependence between tests, but that
the FDR would not be controlled if we simply followed the same procedure in
Section 3 without any modification. To deal with the jointly Gaussian distributed
test statistics, we introduce the factor model to decompose these dependent test
statistics into nearly independent test statistics, such that the FDP and FDR
can both be controlled asymptotically. In addition, we addressed explicitly the
performance of the “general,” “pooled,” and “adaptively pooled” two-sample t-
statistics in the more interesting and practically motivated models (4.10), (4.12),
and (B.1), allowing dependence between and within groups.

Several issues are left to future research. First, the bootstrap method pro-
vides an alternative method for the calibrated distribution of the two-sample
t-tests, potentially relaxing log(m) = o(n'/3) to log(m) = o(n'/?), at the expense
of requiring more technical restrictions and a much heavier computational cost.
Second, the power of a given multiple-testing procedure can be improved when the
p-values need to be approximated, and should be studied on a case-by-case basis.
Third, in Propositions 1, 2, 4, and 5, the condition 7, € (0, 1] excludes 7, = 0,
which is the case of “dense true non-nulls.” In practice, information on m, or
7, can be learned from prior knowledge or estimated using empirical procedures
Benjamini, Krieger and Yekutieli (2006); Kim and Zhang (2014); Storey, Taylor
and Siegmund (2004). If the resulting 7, is close to zero, it is more reasonable to
use other approaches that suit the dense case well.

Supplementary Material
All technical details, figures, and tables are relegated to the online Supple-
mentary Material.
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Appendix A: Conditions and Proofs of Main Results

Conditions. The following technical conditions are not the weakest possible, but facili-

tate the derivations.

Al. For each i, &;1,...,6;,, are i.i.d. with E(g;1) = 0 and var(e; 1) = afﬂ € (0,00).
A2. For each i, €;1,. .., €, are i.i.d. with E(e; 1) = 0 and var(e; 1) = agﬂ- € (0,00).
A3. For each i, (g;1,...,€in,) is independent of (e;1,...,€;n,)-

A4. For each i, E(|e;1]*) < oo and E(|e;1]?) < oo.

A5. Two-sample t-statistics corresponding to true nulls are identically distributed.

A5, Two-sample t-statistics corresponding to true non-nulls are identically distributed.
A6. There are constants ¢; and ¢y satisfying 0 < ¢; < ¢y < 00, such that ¢; < ny/ny < cs.
AT7. Two-sample t-statistics corresponding to true nulls are independent.

AT7. Two-sample t-statistics are independent.

A8. Let Fyr(;n) and Fir(-;n) denote the C.D.F. of two-sample t-statistics under the

true null and non-null, respectively.

A9. The marginal C.D.F. and p.d.f. of two-sample t-statistics are Fip(;n) = m,Fo.r(-;n) +
(1 —7,)Fi.r(;n) and fr(;n) = Fp(-;n), where fr(t;n) is Lipschitz continuous in ¢

uniformly in n.

A10. The marginal C.D.F. of true p-values { P; } is Fp(-;n) = w,Fo.p(-;n)+(1—m, ) F1.p(-; n),
where Fy.p(-;n) is the C.D.F. of the standard uniform distribution, and Fi.p(-;n) is

the C.D.F. of {P;} under the true non-null. Assume Fi.p(¢;n) is continuous in t.



Note that condition A5 is valid when {¢;; : i € Zy} are identically distributed and {e;; : i €
Ty} are identically distributed. Condition A7 holds if {(&;1, ..., Ein;€i1s---»€iny) 11 € I}
are independent.

We first present Lemma 1, which will be used in proving Propositions 1, 2, 4 and 5.

Notation. For sequences {a,},>1 and {b,},>1, a, < b, denotes lim a, /b, = 1.
- - n—o0

Lemma 1 Assume model (2.1) and conditions A1-A6, and the general two-sample t-

Tgeneral

iy Yo are used. Assume a € (0,1), my/m — m, € (0,1], m — 00, n — oo,

statistics {

and (m,n) satisfies (3.1).

(i) Ift2., is given in (3.2) and (m,n) satisfies (3.1), then

a;m

{1 + 0(1)}’ and Z Qisng,no (tz;m) - 71-oﬁl;ow (Al)

i€y

51;04
MAX iy g (Vaim) < ==

where B, = —log(l — a).

(i) If tp. i s given in (3.4) and (m,n) satisfies (3.1), then for k > 2,

Bk’;a

) S 7{1 + 0(1)}7 cmd Z ai%"lﬂlz (tz;m;k) — 7.‘-0/8!?;067 (AQ)

i€y

a
max o .
icTo z,n1,n2( aym;k

where By solves the equation (3.5).

Proof: We first show part (i). For t7 . given in (3.2) and N(0,1) random variables

{T?}™,, we obtain
a(thm) = POT > th,) = 2{1 - @(6,,)} =1 - (1 - )™, i=1...,m, (A3)

and as m — o0,

maad(th,,) = 1 (1-0)"" =251 4 o1)) = (1) (A4)
S adt) = mofl— (1= )"} = {1 + (1)} (A5)



where
Br.a = —log(l — a) € (0,00). (A.6)

For v, ny (1), it can be rewritten as a.p, n, (t) = a2(t) + d;(t), where

a(t) = app{timee® )

(U o)

o) = apo] izt )
max i) < {mgsaro} {max| st -1} (A7)
Zdi(t)‘ > ldi(t)] < (max|d ) . (A.8)

This leads to

Uiy ny (8) < 0 (t) + |di(0)],
< .
MAX Cijny ng () < MAX 07 () + max [di(t)], (A.9)
Z Qisng no (t) = Z Oé?(t) + Z d; (t) (AlO)
i€y i€ly 1€Zp

Thus, if the condition

- 1‘ = o(1) (A.11)

1€Zo

holds, then (A.7), (A.4), (A.11) and (A.8) imply that

o (2,1 < 2221+ o(1}o(1) = 220(1), | S dift8,)| < mBreol), (412

i€Zg

which combined with (A.9), (A.4), (A.10), and (A.5) gives

s i) S D210+ 2201) = 221 4 o(1))
> (i) = el o)+ o) = mba{l oD} (A1)

Hence condition (A.11) indeed implies (A.1).

Now, we justify that (A.11) holds. Recall

aj(t) = P(T7[>t)

(2



= P(T7 >1t)+P(I} < —t)
= {1=2(t)} + &(=t) = 2{1 — B(t)},

Tgeneral| > t)

Lny,n2

Ming no (t) = PHO,z‘ (

_ PHoyi (Tgeneral > t) + PHOJ (Tgeneral < —t)

iny,n2 iny,na

It follows that

PHo,i (Tgeneral > t) + PHoyi (Tgeneral < —t)

Qizny s () 1 = in,no in,no

woe 21— (0]
P, (T > 0) + P, (T > 0

{ 1 —®(t) - 2}
ProThiiae > 1 Py (T >

[{ 1—®(t) B } { 1= a(t) _1}}7

1
2
1
2

and thus

1
= —max
2 i€Zo

PHo,z'(Ti%Z?,e;:l > t) 1 PHo,i(_n%Z??;zl > t) 1
{ 1— ®(t) - } { 1— ®(t) a H
PHO’Z‘ (Tgeneral > t) PHOJ(_T'general > t)

;11,12 ;11,12

1— ot 1— a(t)

max
i€Zp

IN

— 1‘ + max
i€Zy

- 1’. (A.14)

From (A.3), we observe that

I—(1—a)/m

O(t2 ) =1
(t,) )

—1- Bl#‘ﬂﬂ +o(1)}—1, (A.15)

as m — 00, where (1., is as defined in (A.6), and thus we conclude t3,,, — oc. To find the
explicit convergence rate of t7,,  defined in (3.2), we use the tail probability (DasGupta,

2008, p. 655) of a N(0, 1) distribution,

1 1

1= D(t2,,) = —— e tam)®/2, A.16
(o) = G2 e (A.16)
Combining (A.15) and (A.16) gives T l(tg.m)2/2 = 61;2/2, which is equivalent to v/ 27 tz;me(tg;m)Q/Q =

G- This gives (t2.,)% = O(log(m)), ie., t2, = O({log(m)}'/?), which together with
(3.1) gives t2.,, = o(n'/®). An application of Theorem 1.2 of Cao (2007) to (A.14), together

4



Oéi;’ﬂb’ﬂz (toe m)

with condition A5, give max;ez, e
@

— 1| = o(1) as m — oo and n — oo. Hence

sm)

(A.11) is verified.

Next, we show part (ii). The critical values t2. . given in (3.4) satisfy

aym;k

Bk;a

z(thk) <|Ta|>tozmk)_2{]'_ (amk)}: .

i=1,...,m, (A.17)

where (3.5) implies that S, € (0,00). Thus, we obtain

B m
maxal( amk) : ) ZO& amk‘ - ﬁﬂk;a = Woﬂkﬁ—{—o(l)'

i€Zy m
€1y

Also, ®(t7,,..) =1 — B a/2 — 1. The rest of the proof is similar to that used in part (i). B

Proof of Proposition 1. From (2.4) and condition A7, it suffices to consider N(0, 1)
random variables {72}, with {T? : i € Zy} being independent. Direct calculations give
FWER{(t3,,) = P( Y1077 > t3,,) = 1)
€1y
= P(Uien{IT7] > tom})
= 1=P(icr{IT7] > t&,.})
— 1= [[PATT =

i€Zg

= 1-[J[{t—ap(th,)} =1 (1 —a)™/™, (A.18)

i€Zo
where 1 — (1 — a)™/™ < a. This shows the second part of (3.3).

To show the first part of (3.3), note that derivations similar to (A.18) together with
condition A7 give FWER(t5,,,) = 1 — [Ticz, {1 — Qisnymo (£,,,) }- It thus suffices to show
iz, {1 = Qitny ns (8,00) F = Tlicz, {1 = af (t80) 3 = o(1). From (A.18), [[icz, {1 —af(tg,)} =
(1 — a)motoll) = e=mol=logl=a)} 4 5(1) = e~™f1e 4 o(1), we thus will show that

H{l — Mingng (tZ;m>} = ¢ oM o(1) (A.19)

i€Zp

as m — oo and n — oo. According to Leadbetter et al. (1983) (Lemma 6.1.1, p. 125),

(A.19) will be deduced from (A.1). The proof is completed. B

5



Proof of Proposition 2. Similar to the proof of Proposition 1, it suffices to consider
N(0,1) random variables {7}, with {T? : ¢ € Zy} being independent.

To show the first part of (3.6), note that

FWERR(t) = P(Va(tni) 2 F) = P(DOT(TY > ) > k)

€Ly
— (ZI|Ta]>tamk)<k—1>,
€Ly
FWERK(t) = P(Vin(t) = F) = P( DT > 1) > k)
€Ly
_ LJ{E:mﬁﬁﬁw>%mg<k_Q.
€Ly

Define by ¢, (u) and ¢, . (u) the characteristic functions of V;,(t) and V;(t) respec-

77L(t)
tively, where u € R. It suffices to show that as m — oo and n — oo,
Praes W) =@y o (u) =o(1). (A.20)

a;m ;k amk)

Direct calculations give

SOV%“)(U) _ E{eiuv,i(t)} _ H E{eiuI(|Tg‘|>t)}

YA

= [lleie™ + {1 —ai®)}] = [[{1+ai(t)(e™ — 1)},

leTy ey

where i = v/—1 denotes the imaginary number. By (A.17),

i Bk'a i Bk'a
v = —’1“—1‘<2 2 _ (1),
%raz(amw(e 1= e p] <2 S oty
i ki s iu ki
> lap(t) @ =D = 30 [P (e 1) £ 2x T, < 281 < ox,
ledy yasn)
Z a@ amk - 1) = { Z a?(tz;m;k)}(elu - 1) = Woﬁk;a(elu - 1) + 0(1)
LeTy eIy
According to Chung (2001) (a lemma on p. 208),
P (1) = exp{m, Ba(e — 1)} (A21)

as m — oo. Similarly,

vamm(u) = E{eiuVm(t)} — H E{eiUI(‘TZ;nl,ngbt)}

JASI)



= H [af;m,m (t>€iu + {1 — nyny (t)}] = H{l t Qing ny (t>(6iu - 1>}’

ey L€y

Note that as m — oo and n — oo, an application of (A.2) gives

08X [0t (Ee) (€ = D] = 0(1),

Sl () (€ = D] < M < o0,

LeTy
Z Wy s (b)) (€ — 1) = T Bale™ — 1),
LeTy

Applying Chung (2001) (a lemma on p. 208) again implies

Prmin (W) = exp{mfrale™ — 1)} (A.22)
Thus (A.21) and (A.22) imply (A.20).
To show the second part of (3.6), note that (A.21) yields V3 (t5.,..) 2 Poisson(m, fk.a ),

where Poisson(f) denotes the Poisson random variable with the parameter 5. Thus as

m — 00,

FWER}(t5.,,..) = P(Poisson(m,fra) > k) 4 o(1)
= Gk<7T05k;a) + 0(1)

Since Gi(f) is monotone increasing in 4 € (0, 00), we obtain Gi(7,fka) < Gi(Bi:a). This

combined with (3.5) completes the proof. B

Proof of Proposition 3. Consider Hy; : pi,, > p,,; the two-sided alternative can be

treated similarly. It suffices to show

gi;n_ga;n = On(1)7 (A23)
FDR(7) = @+ 0a(1) + Op(m 1), (A.24)

where 0,(1) denotes a term converging to zero as n — oo.
To show (A.23), let ¢, = Fy7(1 —2,;n) and d, = (1 —2,,). Then

1= Forlenn) = &, = 1 — (dy). (A.25)

7



By condition (3.7) and Cao (2007) (Theorem 1.2), we have

1 — For(dn;n)
’ 1. A2
o) (4.26)
Since ﬂgﬁﬁeﬁf A N(0,1) under Hy,;, we have 1 — Fyr(x;n) — 1 —®(z) for any z. By (A.25),
. 1-— @(Cn) . 1-— FO'T(CH) TL)
lim ——— ) ] ,
noo 1— ®(dy)  novoo 1 — Fog(di)
1 — Fp. : — —
— lim O,T(cn,n) 1 (I)(dn) — lim 1 (I)(dn) _ 17
n—00 1-— (I)(dn) 1-— FO;T(dn; TL) n—oo 1 — FO;T(dn; n)
which implies
Cn = dn = Foz(1 = ¢3im) — 71— ¢,) = on(1). (A.27)

Then Jing et al. (2014) (result (A.6)) together with (A.27) imply H(s5.,;n) — H(Gam;n) =
on(1). Since H'(t;n) is bounded below for ¢ in an open interval with endpoints ¢,., and

Sy Sam — Sam = 0n(1) holds.

We now show (A.24). By the definition of 74, ﬁ)?{(m;mm) = «, which yields

ﬁ(Ts;m;n) — = F/'T%(Ts;m;n) - ﬁ(gg;n)

- - - - (A.28)
+FDR(s%,,) — FDR(San) + FDR(Saen) — FDR (7).
Utilizing Jing et al. (2014) (results (A.10), (A.11) and (A.9)) yields
FDR () ~ FDR(S3,) = Op(m™"72),
FDR(s,,) = FDR(sa) = 0a(1) + Op(m™"7), (A.29)

F/]jTR,(Ta;m;n) — ﬁ(ga;n) — Op(m*1/2),
respectively, where the second equality also utilizes (A.23). Substituting (A.29) into (A.28),
we get (A.24).

Finally, an application of Storey et al. (2004) (Theorem 6) shows that
P(FDR(72,,..) < FDR(r2,,..) = 1. (A.30)

By (A.30), together with (A.24), we obtain FDR(73,,.,) < a + o(1). This completes the

proof. W



Proof of Proposition 4. For the critical value t,  given in (3.2), we observe

FWER; (tZ;m) = P(UiGIO{|T’general‘ > tz;m})

un1,n2

< S P(IES > t2,0)
i€y

= Z QXisng ny (tZ;m)

i€Zp
= 71-oﬁl;a + 0(1)7

where the last equality comes from (A.1). W

a

Proof of Proposition 5. For the critical value t3. ., given in (3.4), an application of

Markov inequality gives

E{V,,(t2
FWER, (t2,,,.) EVin (g )} (k mik)}
_ Ziefo P(|712%Zr11?7221| > tz;m;k)
_ ZieID Qisng ng (tz;m;k)
k
= ToBra/k +o(1),
where the last equality is obtained from (A.2). B
Derivation of (2.6). Under Hy; in (2.2), (2.5) becomes
pool € €;
in1,n2
Y
0%i | %eay /(1 1
m—am V&R
U?;i + Ug;i Spoolx;y;i
ni no
Z, — € \/(1 - p)o-g;i + pag;i
= : : : {1+0(1)} (A.31)
9ci + Teii spoolx;y;z
ni no

as n; — oo and ny — oo, where g; = Z?;l gij/m and € = 2221 e;.;/na.

(i) By CLT, —==%_ B N(0,1).

__Ei—€
£;1 et




3 P P
(ii) By law of large numbers, s%.; — o2, and sy, = 07, and thus

e’

52 o (nl - 1)‘9%(;7; + (n2 - 1)8%;1‘
pooly.yst (nl + Ny — 2)
3} pasz;i + (1 - P)Uz;i‘
. . . . . pool D (1=p)oZ +po?,
This combined with (A.31) and (2.7) implies that T}, =~ — N(0,1) - pr g gl
N(0,1) - 0y, @

Appendix B: Extensions of Models (4.10) and (4.12)

More generally, consider observations {X;;} and {Y;;} described by the following model:

_ T . .
Xi; = Py T Eij 7y, Wi, 1<i1<m, 1 <7 < ny, (B.1)
Yij = fy, teijtylwi, 1<i<m, 1<) <ny,
. . . Lid.

where w; are unobserved d,,-dimensional random vectors, with {w, ..., w,,} ~ N(0,%,);
‘ i Lid. 9 iid. 9
or each i, errors {g;1,...,6in,} ~ N(0,02;), errors {e;1,...,€in,} ~ N(0,02;), and
{(ein, - €imy), (€1, .., €in,), w;} are mutually independent; {(g;1, ..., in;€i1y- s Ciny Wi) :

i € Iy} are independent. Clearly, the factor w; describes both the dependence between
the X-group and Y-group, the dependence within the X-group, as well as the dependence
within the Y-group, where the amount of the dependence is described by non-random pa-

rameters v and 7, . Asseen from (B.2) and (B.3), test statistics (using either {reereraly

nny,n2

I LA : : : :
or {177, } or T2” ") associated with true nulls continue to be independent.

Case (i). The case of v, =, , which includes Model (4.10), indicates that the influ-
ence of common factors w; are identical between the X-group and Y-group. The

. general pool pool;A . . . .
conclusions on T3 " "% T2 and T; 7 are identical to those in Section 4.2.

Case (ii). The caseof v, # -, , which includes Model (4.12), indicates that the common

Tgeneral

factors w; in the X-group and Y-group are different. The conclusions on T} ™,

pool pool;A . . . .
Ty n, and T30 are identical to those in Section 4.3.

10



. . . general pool pool;A .
Detailed discussions on the performance of T3, " ™, T2 - and T7" - are given below.

Case (i): v,, = v, in model (B.1). This case means that the influence of common
factors w; are identical between the X- and Y-groups. It follows that two-sample t-statistics

under Hy,; reduce to the following forms,

— _ _ _ pool
general € — € pool € — € pool; A Timi,ne B2
ini,ne ini,ne 1 1 ini,ne o ~ ’ ( : )
s2.;/n1 + 82, /nz Spool..esiv/ mr T s Pile.e)ii

It is interesting to note that Case (i) involves dependence between different groups, as well

as within a same group, but test statistics (using either {ngzrlleflzl} {ﬂpsflnz} ﬂpﬁln/;)

associated with true nulls are independent.

Under this special case, we can show two distributional results below for the “general”

Tgeneral

two-sample {-statistic 77, "~

under HO,i:

AN 2 _ 2 _ general .
(cl) if o2, = o7, and ny = ny, then T3 ™ ~ ty,, o

(c2') if ny — oo and ny — 0o, then T2 B N(0, 1).

n1,m2

Hence, conclusions of Propositions 1-3 carry through to the “general” two-sample

s general m
t-statistics {17, i1

. L 1
As a comparison, for the “pooled” two-sample t-statistic ngo n, under Hy;, we make

two conclusions below.

(dr) If o2, = then T~ t, in,_o. In this case, the results in Propositions 1-3

ez? 3n1,n2

pool m
T; ini,no Ji=1"

continue to apply for the “pooled” choice {

(d2) If n;y — oo and ny — oo such that ni/(ny +ny) — p € (0,1), then (2.6) gives

ﬂpﬁf}m = N(0,07, c.,)- Similar to the discussion in Section 3.2, there will be no

guarantee in the case of 0,4, > 1 for achieving level bounds « in (2.11) and (2.12)

: pool m
using {715,7,, Fit1-

11



But according to (B.2), the “adaptively pooled” version satisfies TP°°5 2 N(0,1), and

111,12

thus the N(0, 1) calibration remains valid for {ﬂpsfln‘z m.

Case (ii): v, , # 7, , in model (B.1). This case means that the common factors w; in
the X-group and Y-group are different. The explicit forms of two-sample ¢-statistics can

be derived as follows,

= _ 5. _ Topy. = _ 3. _ Tapy. pool
general & € + (’7X;i ’YY;i) w; pool i € + <’7X;z‘ 7Y;i) w; poo;A E;nl,ng
tny,ng T ) Gni,ne ) inine . °
2 2 /1 1 o
Ss;i/nl + Se;i/nQ Spools;e;i 1 + P p0(c,e):i
(B.3)

which differ from those in (B.2). Again, dependence between different groups, as well as
within a same group, exist in the dataset, where the extent of dependence is captured by
the magnitude of (v, —~, ) wi ~ N, (v, —7,.) Zw(¥y, = 7y.)), but two-sample
t-statistics associated with true nulls remain independent.

In the context of (B.3), we can show two results for the null distribution of the

Tgeneral .

“general’ two-sample {-statistic T;, " "

(el’) if 02, = 02, = 07 and ny = ny, then

X
general / I i i .
Ti;m,ng ~ 232711*2 X flv where fl - \/1 + 2 )

(€2') if ny — oo and ny — oo, then

(Y = V) 2w (Y — Vy)
neo? + nyo?

(B.4)

Y

ngirfeﬁ?l = Z x fy{140p(1)} 5 oo, where fy = \/1 +

Z ~N(0,1) and % denotes converges in probability.

We can also show that ﬂp,jfln[z has the same limit null distribution as ﬂgz?efgl For the null

distribution of the “pooled” two-sample t-statistic ﬂ?ﬁf}m, we make two conclusions below.

12



(f') If 02, = 02, = 07, then

ning (’7)(;1' B 7Y;i)Tzw(7X;i B 7Y;i>

ni + neo O'i2

pool , ;L
,I;Ullyng ~ tn1+n2—2 X f3, where f3 = \/1 -+

(f2") If ny — oo and ny — oo such that ny/(ny +ny) — p € (0,1), then

ning <7X;~L B 7Y;1)T2w(7)(;i B 7Y;i)
ny + na po?+ (1 —p)o? .
(B.5)

T;’ﬁflm =Zx fi{l+op(1)} L 0o, where f; = \/Uﬁ;g(g " +

Tgeneral m

iy m Jie1s SIDCE

Thus, conclusions of Propositions 1-3 will fail for two-sample ¢-statistics {
the factor f; in (B.4) invariably exceeds one. As a comparison, Propositions 1-3 may fail

for {TP°° 37 | particularly when the factor f} in (B.5) substantially exceeds one. In

ini,ne Ji=17

Tpool;A m

inrms Jie1 Will not ameliorate

the case of fi > fi, the “adaptively pooled” versions {

{TPOOl m

ini,me Ji=1"

Appendix C: Figures and Tables in the Paper

o>1 o<1
150 " i '
-~ — — —o=11 =
5 oc=2 \H/
Y T =3 E (=]
‘ 100’ _-L ‘
— K —
— . —
g ~
-~ =
o (S)
g ~
B B
= KA
| |
— —
= —

Figure 1: Plots of {1—®(x/0o)}/{1—®(z)} versus x. Left panel: o > 1; right panel: o < 1.
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Figure 2: Left panel: plot of a/f1., versus o. Right panel: compare plots of fy,, and «
Versus .

Ex 1, general Ex 1, pooled Ex 1, pooled; Adaptive Ex 1, adjusted; Theoretical Ex 1, adjusted;Empirical Ex 1, two-stage
1 1 1 1 1 1
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= < = = &3]
z = z = 2
= &%) 1= 1= [
- — — = B=p8- -6}
0
100 200 300 100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
n=mn;+ny n=mny+ny n=mn;+ny n=mny+ny n=n+ny n=n+ny
Ex 1(1), general Ex 1(1), pooled Ex 1(1), pooled;Adaptive Ex 1(1), adjusted; Theoretical Ex 1(1), adjusted;Empirical Ex 1(T), two-stage
1 1 1 1 1 1
= Z 05 & 4 05 4
E £ 8 E & &
3 = 3 = 3 =
1= 1= 1= 1= 1= =
e pez====% S0
100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
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Ex 1(II), general Ex 1(I1), pooled Ex 1(I1), pooled;Adaptive Ex 1(11), adjusted; Theoretical Ex 1(11), adjusted;Empirical Ex 1(II), two-stage
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= = = = = z
1= 1= 1= 1= 1= =
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100 200 300 100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
n=n;+ny n=mn+ny n=n;+ny n=n+ny n=mn +ny n=n+ny
(a) general (b) pool (C) pool; A (d) adjust; T (e) adjust; E (f) 2_stage

Figure 3: (Empirical estimates of FWER(t..,,) (using o).) The horizontal dashed

line indicates a. Two-sample t-tests in columns (a)—(f) are Tlgfl?e;? in (2.3), ﬂpﬁflnz in (2.5),
ooL;A . adjust;T - adjust;E - 2_stage - .
T, i (3.12), TR0 in (3.13), T U0 in (3.16), T, in (3.19). Top row panels:

for Example 1; middle row panels: for Example 1(I); bottom row panels: for Example
1(I1).
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Figure 4:
2(I), Example 2(1I).
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The caption is similar to that of Figure 3, except for Example 2, Example
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Figure 5:
3(I), Example 3(1I).
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Ex 4, general Ex 4, pooled Ex 4, pooled;Adaptive Ex 4, adjusted;Theoretical Ex 4, adjusted;Empirical Ex 4, two-stage
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Figure 6: The caption is similar to that of Figure 3, except for Example 4, Example
4(1), Example 4(II).
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Figure 7: The caption is similar to that of Figure 3, except for Example 5, Example
5(1), Example 5(1I).
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Figure 8: (Empirical estimates of FWER(t2, ,) (using o) with k = 2.)  The

aym;k
horizontal dashed line indicates «. Two-sample t-tests in columns (a)—(f) are ngirlleflzl '

ool . ool;A . adjust;T . adjust;E . 2_stage -
(2.3), fl’il;)m’n2 in (2.5), 7}?”1,”2 in (3.12), Timjm2 in (3.13), Timjm2 in (3.16), Timl’ng2 in

(3.19). Top row panels: for Example 1; middle row panels: for Example 1(I); bottom
row panels: for Example 1(11).
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Figure 9: The caption is similar to that of Figure 8, except for Example 2, Example
2(I), Example 2(1I).
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Figure 10: The caption is similar to that of Figure 8, except for Example 3, Example
3(1), Example 3(1I).
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Figure 11: The caption is similar to that of Figure 8, except for Example 4, Example
4(T), Example 4(11).
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Figure 13: (Calculated FDP of the BH procedure.) The p-values are calculated via
the N(0,1) (using —o) for TE™ ™ (exact t,, 4 n,_o-distribution (using red —o) for T*°* in

in1,ng in1,n2
Example 1), N(0,1) (using —0) for ngflm, N(0, 1) (using —x) for Zp;ifln‘:, N(0,1) (using
——V ) for ﬂasjluZtQT, N(0,1) (using — —+ ) for Zasjlufbg’E, N(0,1) (using — — o) for Tpo%.

The horizontal dashed line indicates «.
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Table 1: Quantities in simulations examples in (5.1).

2 2 2
Example O p0e 1 N3,X;i/n1 - M3,Y;z‘/n2

1 1 0
2 0.8 0

3 125 0

4 1 16/n? 4 16/n3

5 1.9769  32/n2 — (2b; — 1) x 128/n2

Table 2: Number of genes called differentially expressed at o = 0.05.

data Efron (2010) Kim et al. (2007) Bourgon et al. (2010)
m;ny;na 6033; 50; 52 8648;27; 17 12625; 37; 42
TEe! via N(0, 1) 51 565 214
TP Via typny—a 21 196 169
TP via N(0,1) 51 436 210
TP via N(0, 1) 51 563 215
T2t via N(0, 1) 50 565 213
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