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Abstract

Pressure Poisson equation (PPE) reformulations of the incompressible Navier–Stokes equations (NSE) replace the incom-
ressibility constraint by a Poisson equation for the pressure and a suitable choice of boundary conditions. This yields a
ime-evolution equation for the velocity field only, with the pressure gradient acting as a nonlocal operator. Thus, numerical

ethods based on PPE reformulations are representatives of a class of methods that have no principal limitations in achieving
igh order. In this paper, it is studied to what extent high-order methods for the NSE can be obtained from a specific PPE
eformulation with electric boundary conditions (EBC). To that end, implicit–explicit (IMEX) time-stepping is used to decouple
he pressure solve from the velocity update, while avoiding a parabolic time-step restriction; and mixed finite elements are
sed in space, to capture the structure imposed by the EBC. Via numerical examples, it is demonstrated that the methodology
an yield at least third order accuracy in space and time.
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Developing efficient high-order time stepping methods for the incompressible Navier–Stokes equations (NSE) is
hallenging due to the fact that the velocity and pressure are coupled via an incompressibility constraint. Numerical
ethods that treat both the velocity u and the pressure p in an implicit fashion [1] provide a comparatively

traightforward pathway towards high-order. However, approaches that are implicit in both u and p result in large
possibly nonlinear) saddle-point systems. This imposes a requirement to select spatial discretizations that ensure
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stable solutions of the resulting discrete equations (i.e. staggered grids [2], or finite elements satisfying the inf–
sup condition [3]). In addition, the resulting discrete saddle point problems are sometimes non-trivial to solve
efficiently [4,5]. Improvements to preconditioning and multigrid methods (see, for instance, [6,7] for applications
to the linearized Navier–Stokes/Oseen equation, and [8–11] for the Stokes equation), as well as finite element spaces
(see [12,13]), have led to more robust and faster fully implicit schemes. For instance, highly accurate benchmark tests
and large eddy simulations [14,15], as well as finite element libraries such as Deal.II [16,17] implement and solve
schemes implicit in both (u, p). Nevertheless, due to the broad importance of the NSE, possible software/legacy
onstraints, as well as fundamental mathematical interest, alternative approaches that are not implicit in both (u, p)
emain of interest.

Many numerical approaches that decouple u and p result in smaller systems of equations with fewer coupled
ariables, and often times avoid a saddle-point structure. Hence, such methodologies are attractive for certain large-
cale problems. Historically, it has been challenging to achieve high-order in time when decoupling velocity and
ressure, particularly in a unified systematic fashion; and only recently such methodologies have been introduced.
his paper develops finite element approaches for certain pressure Poisson equation (PPE) reformulations of the
avier–Stokes equations that allow for a systematic pathway towards high order while decoupling velocity and
ressure. We also stress that there is a merit in presenting such methods, as not every existing Navier–Stokes
quations framework is compatible with using recently developed saddle-point solvers.

Numerical methods for the NSE that decouple velocity and pressure date back to the late 1960s with the
ntroduction of projection methods [18,19]. The idea of projection methods is to first evolve the velocity without
he pressure, and then project the velocity back into the space of divergence-free fields via a Poisson problem.
rojection methods are one example of a larger class of methods known as fractional step methods [20]. Efforts
ave been made in the past few decades to improve the accuracy of projection and fractional step methods to second
rder (in time), and higher, [21–24]. In particular, accurate methods that go beyond second order are an ongoing
rea of research [25,26]. In addition to the difficulties of achieving high order in time accuracy, projection methods
arry the risk of producing numerical boundary layers via the Poisson equation for the pressure, which causes a
egradation in spatial error convergence. An extensive overview of projection methods is given by Guermond, Minev,
nd Shen in [27], where projection methods and various improvements, as well as their theoretical and numerical
onvergence results are discussed. Despite the difficulties, recent work [28,29] has devised projection methods with
eferred correction time-stepping demonstrating up to 8th, respectively 12th, order in time (in the absence of order
eduction effects). Lastly, recent progress on generalizing the artificial compressibility method [30,31] (which has
raditionally been first order in time) has lead to alternative avenues that obtain high-order (beyond second order)
n time schemes.

PPE reformulations of the Navier–Stokes equations [32–45] provide an alternate route towards devising high-
rder in time numerical methods. The basic idea underlying PPE approaches is not to discretize the NSE directly,
ut instead to (i) reformulate the NSE into a system of PDEs with a Poisson equation for the pressure in lieu of the
ivergence constraint (the PPE system), (ii) devise boundary conditions that ensure that the new set of equations
uarantees incompressibility [22,32,33,41], and then (iii) discretize and solve the resulting PPE system. The solution
o the Poisson equation for the pressure is designed so that the PPE reformulation is equivalent to the original NSE
or solutions that are sufficiently smooth. In other words, at the continuous level, solving the PPE is equivalent
o solving the Navier–Stokes equations. In a sequence of work by Henshaw et al. [33–35,46], the recovery of the
ressure through the solution of a pressure Poisson problem was done in a discrete setting (with finite differences),
sing the boundary condition ∇ · u = 0 together with other numerical boundary conditions. PPE formulations as
DEs were introduced in [38] by Johnston and Liu, and in [42] by Shirokoff and Rosales. Once the PPE has been
ormulated as a set of continuous PDEs, one may then examine a variety of different numerical discretizations (in
oth space and time) to solve the PPE system (and hence, equivalently, the NSE).

One important advantage of PPE reformulations compared to the standard form of the NSE is that by solving the
oisson equation, the pressure can be viewed as a global function of the velocity field p = P(u). The fact that the

pressure can be written as a function of the velocity enables straightforward numerical approaches for decoupling
the velocity and pressure, i.e. to enable implicit–explicit time-stepping strategies. PPE reformulations then provide
the possibility to devise high-order in time numerical methods within a systematic framework. Note also that (unlike
the NSE) PPE reformulations are defined even if the initial conditions are not incompressible [42,47], which can be

an important advantage when dealing with real data. Drawbacks of PPE reformulations are: (i) For the numerical
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solution, the (numerical) divergence field may not always be exactly zero. (ii) The pressure boundary conditions
are typically complicated. Thus their interaction with the velocity is not straightforward to understand and analyze.

Here we focus on numerical methods based on the Shirokoff–Rosales (SR) PPE reformulation proposed in [42].
Numerical discretizations for the SR PPE reformulation have been proposed in the context of standard finite
difference methods [42] and meshfree finite difference method [48]. In [42], a second order finite difference
scheme was proposed using a staggered spatial grid and a second order semi-implicit strategy in time where the
viscous term was treated implicitly via Crank–Nicolson and the pressure was treated explicitly using a second order
Adams–Bashforth method. Curved boundaries were embedded into a Cartesian grid, which could successfully handle
irregular domains, but it was cumbersome to implement and did not generalize to arbitrary order. Meshfree finite
difference methods for the SR PPE reformulation were devised in [48] as an alternative to allow for the handling of
irregular domains (without re-entrant corners). Specifically, [48] devised second order schemes with implicit–explicit
time-stepping. Extensions to higher spatial order require larger stencils, thus lead to denser matrices and more costly
computations.

In this paper we investigate a finite element discretization for a PPE reformulation with electric boundary
conditions motivated by the SR PPE. The approach has the advantage of allowing for a systematic extension to
higher spatial order. We also use implicit–explicit (IMEX) time-stepping, specifically IMEX Runge–Kutta (RK)
methods that decouple the velocity and the pressure solves. We study the extent to which this yields desirable
convergence and stability properties — i.e. better than second order in time, while avoiding a parabolic time step
restriction ∆t = O(∆x2). As a final note, we remark that the global existence of weak solutions to the SR PPE
reformulation, as well as to the Johnston and Liu [38] PPE reformulation, has been proved [47] for no-slip boundary
conditions. The proofs provide appropriate function spaces for the weak solutions, but they do not pursue finite
element discretizations of the weak solutions.

This paper is organized as follows. In Section 2, we introduce a PPE reformulation motivated by the SR PPE
of the Navier–Stokes equations. This reformulation uses non-standard boundary conditions for the velocity —
i.e. electric boundary conditions (EBC). The resulting vector Poisson-type problem with EBC, when solved with
standard nodal FEM, exhibits the Babus̆ka paradox, which can be overcome by using a mixed FEM formulation.
In Section 3, we present a numerical method for the linear time-dependent problem (i.e. without the nonlinear
advection term), based on mixed FEM and IMEX RK time-stepping. We illustrate, via numerical tests, that the
proposed method can achieve (at least) 3rd order in space and in time. In Section 4, we discuss how to extend the
proposed method to the nonlinear case. Numerical results are shown, for manufactured solutions in 2D and 3D, as
well as for practical benchmark examples (lid-driven cavity, backward-facing step).

2. Pressure Poisson equation reformulation of the Navier–Stokes equations

In this section, we introduce a pressure Poisson equation reformulation of the Navier–Stokes equations with
electric boundary conditions similar to the one proposed in [42]. Consider the time-dependent incompressible
Navier–Stokes equations (NSE) in a connected domain Ω ∈ RN , where N = 2 or 3, with a piece-wise smooth
boundary ∂Ω , for domains with Dirichlet boundary data,

ut + (u · ∇)u = ν∆u −∇ p + f in Ω × (0, T ], (2.1a)

∇ · u = 0 in Ω × (0, T ], (2.1b)

u(x, t) = g(x, t) on ∂Ω × [0, T ], (2.1c)

u(x, 0) = u0(x) in Ω , (2.1d)

where ν > 0 is the kinematic viscosity. Eq. (2.1a) follows from the conservation of momentum, and (2.1b) is
conservation of mass. Furthermore, we impose the following compatibility conditions:

Continuity between the initial and the boundary conditions: u0(x) = g(x, 0) on ∂Ω . (2.2)

Incompressibility of the initial condition: ∇ · u0 = 0 in Ω . (2.3)

Zero net flux through the boundary:
∫
∂Ω

n · g dS = 0. (2.4)

For the numerical solution of (2.1) we will instead solve a PPE reformulation, whose fundamental difference

from previously proposed PPE reformulations lies in the velocity boundary conditions: incompressibility and the
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tangential flow are prescribed at the boundary. Further, the normal velocity is enforced via a relaxation term in the
pressure equation. The PPE reformulation reads as follows

ut + (u · ∇)u = ν∆u −∇P(u)+ f in Ω × (0, T ], (2.5a)

n× u = n× g on ∂Ω × [0, T ], (2.5b)

∇ · u = 0 on ∂Ω × [0, T ]. (2.5c)

ere P(u) is the solution to the pressure Poisson equation:

∆p = ∇ · ( f − (u · ∇)u) in Ω , (2.6a)
∂p
∂n
= n ·

(
f − gt − ν∇ × ∇ × u − (u · ∇)u

)
+ λn · (u − g) on ∂Ω . (2.6b)

ote that two notations are used for the pressure: p to denote the field quantity, and P(u) to denote the fact that
2.6) defines the pressure as a function of the velocity u, i.e. p = P(u). Note that the operator P also depends on
he normal boundary data n · g and the forcing f , through which it may be time-dependent. The term λn · (u − g),
here λ > 0 is a constant, is a relaxation term that guarantees that the normal velocity condition at the boundary
Ω is exponentially attracting — see Eq. (2.8).

The tangential boundary conditions, together with the divergence-free boundary condition in (2.5), often appear
n electrostatics as “electric boundary conditions” (EBC). We adopt this terminology in this paper. The PPE system
2.5)–(2.6) is almost identical to the one introduced in [42], the difference being here that n · ∇ ×∇ × u appears in
he boundary condition for p in lieu of n ·∆u (which appeared in [42]). The choice of n ·∇ ×∇×u in the pressure
oundary condition is done to yield a simpler finite element discretization for the pressure than n ·∆u. Note that
he pressure boundary condition n · ∇ × ∇ × u has appeared in several projection method and PPE formulations
ith Dirichlet boundary conditions for the velocity such as [22,26,38]. We re-emphasize that our goal is to examine
PE schemes with EBC in the velocity.

.1. Equivalence of the PPE system with Navier–Stokes for strong solutions

In previous works, the PPE systems in [42] and [38] were shown to be, for sufficiently smooth (up to the
oundary) solutions (u, p), equivalent to the NSE (2.1). It is relatively straightforward to show that smooth solutions
o the NSE solve (2.5)–(2.6) and hence the PPE system contains the NSE solutions. We now show that solutions to
he PPE system (2.5)–(2.6) solve the NSE — the approach follows closely to [38,42] with a minor difference due
o the combination of the EBC for the velocity and n · ∇ × ∇ × u boundary condition for the pressure.

Assume that (u, p) is a smooth solution to (2.5)–(2.6). Then the PPE reformulation recovers the incompressibility
onstraint: apply the divergence to the momentum equation (2.5a) and substitute into (2.6a). This yields the heat
quation for the divergence φ = ∇ · u, with homogeneous Dirichlet boundary conditions due to (2.5c). That is:{

φt = ν∆φ in Ω ,

φ = 0 on ∂Ω .
(2.7)

herefore, if φ(t = 0) = ∇ · u0 = 0, then φ = 0 for all time, and u is incompressible. If, due to numerical
pproximation errors, the velocity field starts to depart from the ∇ · u = 0 subspace, the heat equation dynamics
nsure that u is driven back towards incompressibility. This property indicates that there is no need to impose a
iscrete incompressibility principle in PPE reformulations, thus providing more flexibility in the design of numerical
pproximation methods.

Secondly, the PPE ensures that the normal velocity at the boundary, i.e. n · u = n · g, is enforced implicitly
hrough the ordinary differential equation{

n · (ut − gt ) = νn · ∇φ − λn · (u − g) on ∂Ω × (0, T ],
n · (u − g)|∂Ω = 0 at t = 0,

(2.8)

hich is obtained by evaluating the normal component of the momentum equation (2.5a) at the boundary, and
sing the pressure boundary condition (2.6b) along with the identity that ∆u = ∇(∇ · u)− ∇ × ∇ × u. By virtue
f Eq. (2.7), we have that φ = 0, so that (2.8) reduces to a simple ODE at every point x ∈ ∂Ω : α̇ = −λα where
= n · (u − g). Hence, n · u = n · g for all time.
4
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Remark 2.1 (Solvability Condition for the Pressure Poisson Equation). A solvability condition is required in order
for the pressure Poisson equation (2.6) to have a solution, that is:∫

Ω

−ν∇ · (∇ × ∇ × u)+ λ∇ · u dV −
∫
∂Ω

n · gt + λn · g dS = 0. (2.9)

The incompressibility condition ∇ · u = 0 and the zero net flux condition (2.4) ensure that both the volume integral
and the boundary integral in Eq. (2.9) vanish. However, numerical approximation errors in the discrete Poisson
equation may result in schemes that do not exactly satisfy the discrete version of the solvability condition (2.9).
One possibility, when this occurs, is to solve the discrete Poisson equation in the least squares sense. The least
squares solution is achieved by formulating an augmented system that projects the right hand side of the pressure
Poisson problem onto one for which the solvability condition is satisfied, see the Appendix.

Remark 2.2. There is a rich variety of possible PPE reformulations. At the continuum level, one can add ∇ · u
anywhere (because ∇ · u = 0), as long as the resulting systems are well-posed and are equivalent to the original
problem. However, in the presence of approximation errors, one generally has ∇ ·uh ̸= 0, thus adding ∇ ·u will lead
to different numerical schemes. For example, Henshaw and Petersson [35] add a divergence damping term δ∇ · u,
with δ ≥ 0, to the pressure Poisson equation to obtain

∆p = ∇ · ( f − (u · ∇)u)+ δ∇ · u.

With this, the divergence satisfies the PDE φt = ∆φ − δφ. In the discretized case, where the divergence is not
exactly zero, the damping term adds an exponential decay that can further help keeping the discrete divergence
small.

3. Numerical method for the time-dependent Stokes problem

In this section, we present a numerical method for the PPE reformulation (2.5)–(2.6) of the time-dependent
Stokes equation

ut = ν∆u −∇P(u)+ f in Ω × (0, T ], n× u = n× g and ∇ · u = 0 on ∂Ω × [0, T ], (3.1)

where P(u) solves the pressure Poisson equation

∆p = ∇ · f in Ω ,
∂p
∂n
= n · ( f − gt − ν∇ × ∇ × u)+ λn · (u − g) on ∂Ω . (3.2)

To handle irregular domains we adopt a mixed finite element method (FEM) for the spatial discretizations of u
(see Section 3.1), and nodal FEM for p (see Section 3.2). Note that the motivation for adopting a mixed FEM
for u is to address structural issues (discussed below) that arise from the electric boundary conditions (EBC) in
the momentum equation. Unlike mixed approaches for the Stokes/Navier–Stokes equations in which the elements
approximating u and p need to satisfy a discrete inf–sup condition [3,49], the mixed formulation employed here
is solely for the velocity, and the nodal elements for the pressure do not need to satisfy an inf–sup condition with
the velocity elements. For the time evolution (see Section 3.3), we adopt an implicit–explicit (IMEX) Runge–Kutta
(RK) scheme that (due to the PPE formulation) leads to natural approaches for decoupling the velocity u from the
pressure p. That is, we treat the viscous term ∆u implicitly and the pressure term ∇ p explicitly. We carry out
convergence studies via the method of manufactured solutions in Section 3.4.

3.1. Spatial discretization of the velocity via mixed finite elements

In this section we outline the spatial discretization of the velocity via mixed finite elements [3]. The choice of a
mixed FEM over other element choices (such as nodal FEM) is due to the EBC in the momentum equation. To be
precise, nodal FEM for problems involving electric boundary conditions may converge to the wrong solution, see
Remark 3.1. In contrast, mixed FE provide a natural way to handle the EBC.

The mixed formulation presented in this paper is applied to the discretization of the momentum equation (2.5)
only, and introduced to handle the EBC by introducing the vorticity ω = ∇ × u as a new variable. Hence, there
is no inf–sup condition for (u, p), but instead, an inf–sup condition for the velocity and vorticity (u,ω). Using the
5
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vector identity ∆u = ∇(∇ · u)− ∇ × ∇ × u, and introducing the new variable ω = ∇ × u (cf. [50,51]), Eq. (3.1)
n the PPE reformulation can be recast as:

ω = ∇ × u in Ω , (3.3a)

ut = ν(∇(∇ · u)−∇ × ω)−∇P(u)+ f in Ω , (3.3b)

n× u = n× g on ∂Ω , (3.3c)

∇ · u = 0 on ∂Ω . (3.3d)

To obtain the weak formulation of Eqs. (3.3), we use the spaces

H (curl;Ω ) =
{

u ∈ L2(Ω )N
: ∇ × u ∈ L2(Ω )N ′

}
,

H (div;Ω ) =
{
u ∈ L2(Ω )N

: ∇ · u ∈ L2(Ω )
}
,

with N ′ = 1 for N = 2 and N ′ = 3 for N = 3. We then multiply (3.3a) by a test function τ and (3.3b) by a test
function v, and then apply the integral identities

⟨∇ × u, τ ⟩ = ⟨u,∇ × τ ⟩ +

∫
∂Ω

τ · (n× u) dS,

⟨∇ × ω −∇(∇ · u), v⟩ = ⟨∇ × ω, v⟩ + ⟨∇ · u,∇ · v⟩ −
∫
∂Ω

(∇ · u)(v · n) dS,

along with the tangential boundary condition (3.3c) and the divergence-free boundary condition (3.3d). This
procedure yields the following mixed formulation for (3.3): Find ω ∈ X , u ∈ H (div;Ω ) such that

⟨ω, τ ⟩ − ⟨u,∇ × τ ⟩ =

∫
∂Ω

τ · (n× g) dS ∀τ ∈ X, (3.4a)

⟨ut , v⟩ + ν⟨∇ × ω, v⟩ + ν⟨∇ · u,∇ · v⟩ = ⟨ f −∇P(u), v⟩ ∀v ∈ H (div;Ω ). (3.4b)

Here X = H 1(Ω ) when N = 2 and X = H (curl;Ω ) when N = 3. Notice that both the tangential boundary
condition and the divergence boundary condition from (2.5) appear in the weak form (3.4) as natural boundary
conditions (the spaces of functions X and H (div;Ω ) do not enforce the boundary conditions).

Let Σ h and V h be finite dimensional subspaces for X and H (div;Ω ) respectively. The semi-discrete mixed
formulation of (3.4) is as follows: Find (ωh, uh) ∈ Σ h

× V h such that uh(t = 0) = u0h and

⟨ωh, τ h⟩ − ⟨uh,∇ × τ h⟩ =

∫
∂Ω

τ h · (n× g) dS ∀τ h ∈ Σ h, (3.5a)

⟨(uh)t , vh⟩ = −ν⟨∇ · uh,∇ · vh⟩ − ν⟨∇ × ωh, vh⟩ + ⟨ f −∇P(uh), vh⟩ ∀vh ∈ V h, (3.5b)

here u0h is the projection of the initial condition u0 onto the space V h , and P(uh) is the solution to the discretized
ressure Poisson problem using the velocity approximation (see Section 3.2).

There are different stable pairs of finite elements for the spaces Σ h and V h [50,52,53]. Here in the case of
N = 2, we choose nodal finite elements (Lagrange finite elements Pr ) of degree r ≥ 1 for ωh and Raviart–Thomas
lements (RTr−1) of the same degree for the vector field uh . That is

Σ h
× V h

= Pr × RTr−1 for r ≥ 1.

n the 3-dimensional case, the corresponding space for ω is H (curl;Ω ), and Nédélec elements (N E D1
r ) are used.

emark 3.1 (Failure of Nodal FEM). Nodal FEM may fail to converge to the true solution for EBC problems,
or two different reasons: (i) the Babus̆ka paradox [54,55], and (ii) the inability to approximate singularities in the
olution, such as those caused by re-entrant corners in the domain. The Babus̆ka paradox [54,55] occurs when FEM
olutions on polygonal approximations of domains with curved boundaries converge to a function (as the mesh size
oes to zero) that is not the solution of the underlying continuum problem. For instance, the vector Laplace problem
with ∇ · f = 0)
∆u = f in Ω , with b.c. ∇ · u = 0 and n× u = 0 on ∂Ω , (3.6)

6
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has the weak formulation: Given f ∈ L2(Ω )N , ∇ · f = 0, find u ∈ V , such that for every v ∈ V

⟨∇ × u,∇ × v⟩ + ⟨∇ · u,∇ · v⟩ = ⟨ f , v⟩. (3.7)

Nodal FEM approximations based on V = H 1
0t (Ω )N

= {u ∈ H 1(Ω )N
: n × u|∂Ω = 0} exhibit the Babus̆ka

aradox and may not converge to the solution of (3.6) [48].
The second issue with nodal elements is an approximation theory result. The weak formulation (3.7) is uniquely

olvable for the following two choices of space: V = H 1
0t (Ω )N or V = H0(curl;Ω ) ∩ H (div;Ω ) = {u ∈ L2(Ω )N

:

· u ∈ L2(Ω )N ,∇ × u ∈ L2(Ω )N ′ , n× u|∂Ω = 0}. When the domain Ω is convex or has a globally C2 boundary,
hen H 1

0t (Ω )N
= H0(curl;Ω ) ∩ H (div;Ω ) and the solution is divergence-free. When Ω has re-entrant corners, we

ave H 1
0t (Ω )N ⊊ H0(curl;Ω ) ∩ H (div;Ω ) and the divergence-free solution may not in H 1

0t (Ω )N [56]. Hence, in
eneral H 1 nodal FEM is not guaranteed to converge to the divergence-free solution.

.2. Spatial discretization of the pressure

The pressure p satisfies a Poisson problem with Neumann boundary condition (3.2). Therefore, given the velocity,
tandard nodal-based finite elements can be used to discretize the pressure Poisson equation. Following the usual
rocedure for deriving weak formulations, we multiply equation (3.2) by a test function q ∈ H 1(Ω ) and apply
ntegration by parts to obtain

⟨∇ p,∇q⟩ = ⟨ f ,∇q⟩ − ν
∫
∂Ω

(n · ∇ × ∇ × u)q dS + λ
∫
∂Ω

n · (u − g)q dS −
∫
∂Ω

(n · gt )q dS.

e further substitute ω = ∇ × u, which gives rise to two possible different weak formulations for the pressure
oisson equation:

1. Choosing the boundary integral that involves n · (∇ × ω) yields the first weak formulation

⟨∇ p,∇q⟩ = ⟨ f ,∇q⟩−ν
∫
∂Ω

n · (∇ × ω)q dS+λ
∫
∂Ω

n · (u − g)q dS−
∫
∂Ω

(n · gt )q dS, ∀q ∈ H 1(Ω ).

(3.8)

2. Choosing the volume integral of (∇ × ω) · ∇q gives the second weak formulation

⟨∇ p,∇q⟩ = ⟨ f ,∇q⟩−ν⟨∇×ω,∇q⟩+λ
∫
∂Ω

n · (u − g)q dS−
∫
∂Ω

(n · gt )q dS, ∀q ∈ H 1(Ω ). (3.9)

The two formulations (3.8) and (3.9) differ only in one term: (3.9) contains an integral over the domain
i.e. ⟨∇×ω,∇q⟩) while (3.8) is the integration by parts of (3.9) which (due to the curl), leaves only an integral along
he boundary (i.e.

∫
∂Ω n · (∇ × ω)q dS). For spatial discretizations that satisfy a summation-by-parts formula, (3.8)

nd (3.9) will yield discrete formulations with identical solutions. For spatial discretizations that do not satisfy
summation-by-parts formula, the two terms in (3.8) and (3.9) differ slightly — the difference being due to

uadrature errors incurred by the discrete failure to satisfy a summation by parts formula. Algorithmically, solving
iscretizations of the two formulas lead to some notable differences: the integral over the domain formulation (3.9)
nvolves computing many more quadrature integrals and results in a denser matrix. In numerical tests both choices
eturn almost identical results. Therefore in this paper we show only the results of numerical experiments conducted
ith the first formulation, (3.8).

.3. Time discretization via IMEX schemes

One advantage of the PPE reformulation is that the pressure appears as a global function of the velocity in the
omentum equation. This enables conceptually straightforward implicit–explicit (IMEX) time discretizations of the
PE system that treat the pressure explicitly and viscosity implicitly. An implicit treatment of the viscosity term is
esirable for low to moderate Reynolds numbers as to avoid a parabolic time step stability restriction. In addition,
n explicit treatment of the pressure is desirable to avoid solving large coupled systems involving (p, u).

IMEX schemes are based on an additive splitting of an ODE that takes the representative form:
du
= F (u)+ G(u). (3.10)
dt
7
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Popular IMEX methods are linear multistep IMEX schemes [57] and IMEX Runge–Kutta (RK) methods [58]. Here
we focus on IMEX RK schemes because they have less restrictive stability properties than IMEX multistep methods.
We consider IMEX RK schemes that combine two different Runge–Kutta schemes: an explicit RK (ERK) method
for F (u), and a diagonally implicit RK (DIRK) method for G(u). Let A ∈ Rs×s , b, c ∈ Rs be the coefficients of an
-stage DIRK scheme, and Â ∈ R(s+1)×(s+1), b̂, ĉ ∈ Rs+1 be the coefficients of an (s + 1)-stage ERK scheme with

ĉT
= (0, cT ) in the Butcher notation [59], i.e.

c A
bT =

c1 a11
c2 a21 a22
...

...
...

. . .

cs as1 as2 · · · ass

b1 b2 · · · bs

ĉ Â

b̂
T =

0 0
c1 â21 0
c2 â31 â32 0
...

...
...

...
. . .

cs âs+1,1 âs+1,2 âs+1,3 · · · 0
b̂1 b̂2 b̂3 · · · b̂s+1

One step of an IMEX scheme from time tn to tn+1 = tn +∆t for the splitting (3.10) can be written as follows:

u(i)
= un

+∆t
i∑

j=1

ai jG(u( j))+∆t
i∑

j=1

âi+1, jF (u( j−1)) for i = 1, . . . , s (3.11)

un+1
= un

+∆t
s∑

i=1

b jG(u( j))+∆t
s+1∑
j=1

b̂ jF (u( j−1)) (3.12)

where u(0)
= un .

3.3.1. Stability of IMEX Runge–Kutta schemes applied to the time-dependent Stokes equations
IMEX schemes applied to the time-dependent Stokes equations (3.1)–(3.2) (and more generally to the PPE system

(2.5)–(2.6)) may encounter subtle stability issues when the pressure is treated explicitly. First we will examine the
numerical stability of an IMEX RK scheme applied to a scalar ODE model for the system (3.1)–(3.2). The model
problem will then yield a stability criterion, which will dictate our choice of IMEX coefficients.

Using the vector identity ∆ = ∇(∇·)−∇×∇×, and introducing A := −∇×∇×, B := ∇(∇·), the time-dependent
Stokes system (3.1)–(3.2) can be (exactly) recast (with ν = 1, when f = 0, g = 0) as the following non-local
evolution

ut = Au + Bu  
G(u)

−P(Au)− λPu  
F (u)

in Ω with b.c. n× u = 0, ∇ · u = 0 on ∂Ω . (3.13)

ere the operator P (not to be confused with the pressure operator P(u)) is defined by

Pw = ∇ p, (3.14)

here p solves the Poisson equation

∆p = 0 in Ω , with b.c.
∂p
∂n
= n · w − w̄ on ∂Ω , where w̄ :=

1
|∂Ω |

∫
∂Ω

n · w dS. (3.15)

By definition, Pw generates a divergence-free field, with normal component n ·w − w̄ at the boundary. It follows
that P2

= P , i.e. P is a projection.
We adopt IMEX discretizations of (3.13) that treat Au + Bu implicitly and −P(Au)− λPu explicitly. Due to

he structure of the projection, P(Au) is stiff since A has two spatial derivatives (i.e. may incur a parabolic time
tep restriction). Thus both the implicit term (which includes Au) and the explicit term (∇ p, which includes PAu)
re stiff. To investigate the stability of IMEX RK schemes for solving the PPE reformulation, we consider a scalar
odel problem for Eq. (3.13)

ut = −γ u + µu, (3.16)

here −γ u is treated implicitly and µu explicitly. The model equation (3.16) is frequently used to understand IMEX
tability. However, commonly one considers γ > 0 real and µ purely imaginary, e.g. to understand time-stepping
8
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for advection–diffusion problems [57,58]. In contrast, here we interpret γ as an eigenvalue of −Au and µ as an
eigenvalue of −PAu. Since −A is symmetric positive semi-definite (in the L2 inner product on vector fields with
EBC), and P is a projection, the values of γ and µ are both real and non-negative. Moreover, because P is a
projection (and thus has no eigenvalues larger than 1), we consider (3.16) with 0 < µ ≤ γ . The motivation is
that if A and PA commute (which they are not guaranteed to do), then they would share the same eigenvectors,
i.e. −Av = γ v and −PAv = µv, and hence v would also be an eigenvector of P with eigenvalue µ/γ ∈ {0, 1}. We
believe that a more detailed analysis justifying (3.16) that incorporates B, and the fact that the operators involved
do not commute, can be done using the methodology introduced in [60], however we will not attempt this here.

The situation (γ, µ) ∈ R2 was studied in [61], to understand the stability properties for certain 1st and 2nd order
IMEX RK schemes in the context of reaction–diffusion equations. However, both the stiffness behavior and the
important wedge property introduced below (see Definition 3.1) were not discussed in [61].

Let us pad the s-stage implicit Runge–Kutta scheme with zeros to obtain the tableau

c̃ Ã

b̃
T =

0 0 0
c 0 A

0 bT
, (3.17)

and introduce the vector Un+1
= (un, un+1

1 , . . . , un+1
s )T that includes the s intermediate stage solutions and the

approximation from previous time step. Then one step of the IMEX RK scheme applied to the model problem
(3.16) can be expressed as

Un+1
= un e− γ∆t ÃUn+1

+ µ∆t ÂUn+1, (3.18)

un+1
= un

− γ∆t b̃
T

Un+1
+ µ∆t b̂

T
Un+1, (3.19)

where e is an (s + 1)-vector of all ones. The above expressions yield

un+1
= R(γ∆t, µ∆t)un, (3.20)

where

R(α, β) = 1+ (−α b̃
T
+ β b̂

T
)(I + α Ã − β Â)−1e

=
det(I + α Ã − β Â − αeb̃

T
+ βeb̂

T
)

det(I + α Ã − β Â)
.

is the IMEX RK analogue of the stability function for Runge–Kutta schemes applied to the test problem y′ = λy.
t is now natural to define the stability region as

S = {(α, β) : |R(α, β)| ≤ 1}. (3.21)

or a given IMEX RK scheme, we can plot the stability region in the (α, β)-plane, where α = γ∆t and β = µ∆t .
n general, when both γ and µ are in C, the stability region S is a subset in C2. For the model problem (3.16), it
uffices to look at the cross section of the region S in the first quadrant of R2, which can be easily visualized.

efinition 3.1. An IMEX RK scheme is said to possess the wedge property, if the stability region S contains the
edge {(α, β) : 0 < β ≤ α}. In other words, the scheme is unconditionally stable for the model problem (3.16)
ith any 0 < µ ≤ γ .

A third-order IMEX RK method that satisfies the wedge property is the scheme denoted IMEX(4,4,3) in [58].
t possesses 4 implicit stages and 4 explicit stages and has the Butcher tableau

c A
bT =

1/2 1/2
2/3 1/6 1/2
1/2 −1/2 1/2 1/2
1 3/2 −3/2 1/2 1/2

3/2 −3/2 1/2 1/2

,
ĉ Â

b̂
T =

0 0
1/2 1/2 0
2/3 11/18 1/18 0
1/2 5/6 −5/6 1/2 0
1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

.

(3.22)
9
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Fig. 1. Stability regions of three IMEX RK schemes for the scalar test problem ut = −γ u +µu. Left to right: 3rd order IMEX(4,4,3); 4th
rder IMEX RK scheme by Cavaglieri and Bewley [62]; 4th order IMEX RK scheme by Kennedy and Carpenter [63].

ote that the explicit RK scheme ( Â, b̂, ĉ) is a 4-stage scheme recast as a 5-stage scheme which is stiffly accurate
the last row of Â equals the vector b̂

T
). This scheme is suitable for the PPE reformulation as it is unconditionally

table when solving the linear model problem (3.16) (see the left panel in Fig. 1 for the stability region). We
therefore adopt the 3rd order IMEX RK scheme (3.22) for all numerical computations in this paper.

We are unaware of any existing 4th order (or higher) schemes that satisfy the wedge property. For instance,
two popular 4th order IMEX RK schemes, one by Cavaglieri and Bewley [62] and the other by Kennedy and
Carpenter [63], both violate the wedge property (see Fig. 1 middle and right panels).

Note that the wedge property is a sufficient condition for unconditional stability of the IMEX RK scheme for
nly the model problem (3.16) with 0 < µ ≤ γ . Nevertheless, this condition can provide insight into the stability

property of a given IMEX RK scheme also for the PPE reformulation (2.5)–(2.6). For instance, we generally observe
that 4th order schemes violating the wedge property require a stiff parabolic time step restriction ∆t = O(∆x2).

As a final comment on the RK time discretization, RK schemes (including IMEX RK schemes) suffer from order
eduction when applied to initial boundary value problems with time-dependent boundary conditions or forcings on
he boundary [64–66]. We summarize the order reduction phenomena in the following remark.

emark 3.2. Order reduction is a generic problem of RK schemes where the observed temporal convergence rate
s lower than the formal order of the scheme. Order reduction is often due to the formation of numerical boundary
ayers, caused by enforcing boundary conditions in the RK scheme [67]. While several approaches exist to remedy
rder reduction [63,66–69], they do not easily generalize to PPE reformulations or IMEX settings.

To investigate the high order accuracy of the methods presented in this paper, we choose specific test problems
below) in which the structure of the problem does not lead to order reduction. Because order reduction is a generic
henomenon that is not specific to PPE reformulations, the (important) question of how to avoid order reduction is
f generic nature and not specific to this work.

It is worth pointing out that IMEX multistep methods are devoid of order reduction. A key obstacle to the
pplicability of multistep methods has been their restrictive stability properties, particularly for problems in which
he implicit and explicit parts are both stiff [70], such as PPE reformulations. However, recently proposed IMEX
ultistep methods [60] can achieve unconditional stability for such problems, and thus may provide an alternative

uitable time-stepping strategy for PPE reformulations.

.4. Numerical results for the vector heat equation and time-dependent Stokes equations

Collectively, Sections 3.1–3.3 give rise to the following numerical scheme.
10
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Numerical Scheme 1. Time-dependent Stokes equation (r th order in space, 3rd order in time).

1. Spatial discretization of velocity and pressure via method of lines (MOL) to yield an ODE IVP:

• (Mixed FEM velocity spaces) Discretize (ωh, uh) ∈ Σ h
× V h where for N = 2, Σ h

× V h
=

Pr × RTr−1 with triangular mesh, and for N = 3, Σ h
× V h

= N E D1
r × RTr−1 with tetrahedral

mesh to yield the ODE equations (3.5).
• (Initial data) Set uh(t = 0) = u0h as initial date u0 projected onto the space V h;
• (FEM pressure spaces) Discretize ph ∈ Pr in (3.8) using standard nodal FEM.

Together, the MOL discretization yields Eqs. (3.5)–(3.8) and defines an IVP.

2. Time-discretize (3.5)–(3.8) via 3rd order IMEX (4,4,3) (with coefficients in (3.22)). In the
IMEX scheme steps (3.11), the implicit and explicit parts are given by:

G(un)←−ν⟨∇ · uh,∇ · vh⟩ − ν⟨∇ × ωh, vh⟩,

F (un)← ⟨ f −∇P(uh), vh⟩.

3. Time-advance the full space–time discretized scheme. At each RK stage time-step, the mixed FEM
variables (ωh, uh) solve a saddle-point system; and the pressure variables ph solve a linear system.

The goal of this subsection is to demonstrate via numerical examples that, for the time-dependent Stokes problem
3.1)–(3.2), the proposed method can achieve high-order in space and third order in time. We employ the method of
anufactured solutions and conduct convergence studies for the spatial accuracy (see Section 3.4.2), the temporal

accuracy for the 3rd order IMEX(4,4,3) scheme (3.22) (see Section 3.4.3), and the accuracy of the overall scheme
(see Section 3.4.4).

We implement the numerical methods using the software package FEniCS [71], which contains an extensive
ibrary of finite elements through one of its components: Finite element Automatic Tabulator (FIAT) [72,73]. It
rovides H (div) element spaces such as Raviart–Thomas (RT) elements and H (curl) elements of the Nédélec types.
he triangular meshes used for the computations are generated by the software package Gmsh [74]. Throughout

his section, the linear equations for (ω, u), and Poisson equation for p, are solved using the built-in FEniCS sparse
irect solver. In the latter Navier–Stokes test cases (Sections 4.3.1 and 4.3.4), preconditioned GMRES, with a very
mall error tolerance and incomplete LU preconditioner, is used for the linear solvers.

.4.1. Numerical results for the vector heat equation with EBC
Before presenting the results for the PPE reformulation, we show the convergence results for the vector heat

quation (VHE) with EBC as a benchmark. This provides both: a baseline for the PPE reformulation convergence
tudy, and a verification of the code. Let the problem domain be Ω = [0, 1) × [0, 1] with periodic b.c. applied in
he x-direction and EBC in the y-direction. Hence, we apply the Numerical Scheme 1 to the VHE (i.e. pressure is

set to zero):

ut = ∆u + f for (x, y) ∈ (0, 1)2, (3.23a)

n× u = 0, ∇ · u = 0 for (x, y) ∈ [0, 1)× {0, 1}, (3.23b)

u(0, y) = u(1, y) for 0 < y < 1. (3.23c)

The divergence-free manufactured solution u = (u, v)T
= (ψy,−ψx )T is generated by the stream function

ψ(x, y, t) = cos(t) sin(4π(x + y))(4y(1− y))4.

The manufactured solution is selected so that the velocity field and its derivatives up to certain order vanish at the
boundary to suppress the effect of order reduction due to the IMEX RK time-stepping (Remark 3.2).

To conduct a spatial convergence study we use a series of regular meshes with total number of elements 64, 256,
1024, 4096, and 16 384. For the time evolution we use the third order IMEX (4,4,3) scheme with a fixed small time
step ∆t = 10−5 (so that the error due to the time-stepping is negligible) and a fixed final time T = 10−3 (100 time
steps). The FE spaces are chosen to be (ω , u ) ∈ P × RT , with degrees r = 1, 2, 3, 4, 5. The observed spatial
h h r r−1

11
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Table 1
Observed spatial convergence rates in the L2 norm for the vector heat equation with electric boundary conditions (3.23). The spatial
approximation orders are r = 1, 2, 3, 4, 5.

Spatial approximation order r = 1, (ωh , uh ) ∈ P1 × RT0

∆x u Rate ∇ · u Rate ω Rate ∇ × ω Rate

2.50E−01 6.93E+00 — 9.97E+00 — 1.37E+02 — 2.76E+03 —
1.25E−01 3.26E+00 1.09 5.64E+00 0.82 3.19E+01 2.10 1.45E+03 0.92
6.25E−02 1.65E+00 0.98 1.04E+00 2.43 7.34E+00 2.12 7.24E+02 1.00
3.13E−02 8.24E−01 1.00 1.97E−01 2.41 1.77E+00 2.05 3.62E+02 1.00
1.56E−02 4.12E−01 1.00 4.57E−02 2.10 4.37E−01 2.01 1.81E+02 1.00
7.81E−03 2.06E−01 1.00 1.12E−02 2.03 1.09E−01 2.00 9.05E+01 1.00

Spatial approximation order r = 2, (ωh , uh ) ∈ P2 × RT1

∆x u Rate ∇ · u Rate ω Rate ∇ × ω Rate

2.50E−01 2.13E+00 — 8.82E+00 — 2.46E+01 — 1.25E+03 —
1.25E−01 7.89E−01 1.43 1.27E+00 2.80 7.50E+00 1.71 3.97E+02 1.66
6.25E−02 2.13E−01 1.89 2.31E−01 2.46 1.99E+00 1.91 1.04E+02 1.94
3.13E−02 5.45E−02 1.97 3.09E−02 2.90 5.01E−01 1.99 2.62E+01 1.98
1.56E−02 1.37E−02 1.99 3.92E−03 2.98 1.25E−01 2.00 6.57E+00 2.00

Spatial approximation order r = 3, (ωh , uh ) ∈ P3 × RT2

∆x u Rate ∇ · u Rate ω Rate ∇ × ω Rate

2.50E−01 1.32E+00 — 3.58E+00 — 1.88E+01 — 6.28E+02 —
1.25E−01 1.28E−01 3.37 2.27E−01 3.98 1.26E+00 3.90 7.40E+01 3.09
6.25E−02 1.56E−02 3.04 1.55E−02 3.87 7.96E−02 3.99 8.46E+00 3.13
3.13E−02 1.92E−03 3.02 9.67E−04 4.00 5.05E−03 3.98 1.05E+00 3.02
1.56E−02 2.40E−04 3.00 6.03E−05 4.00 3.17E−04 3.99 1.30E−01 3.00

Spatial approximation order r = 4, (ωh , uh ) ∈ P4 × RT3

∆x u Rate ∇ · u Rate ω Rate ∇ × ω Rate

2.50E−01 2.41E−01 — 1.68E+00 — 2.64E+00 — 1.52E+02 —
1.25E−01 1.74E−02 3.80 6.54E−02 4.68 1.70E−01 3.96 1.01E+01 3.91
6.25E−02 1.20E−03 3.85 1.04E−03 5.97 1.35E−02 3.66 6.98E−01 3.86
3.13E−02 7.73E−05 3.96 4.34E−05 4.58 8.98E−04 3.91 4.50E−02 3.95
1.56E−02 4.87E−06 3.99 2.27E−06 4.26 5.70E−05 3.98 2.84E−03 3.99

Spatial approximation order r = 5, (ωh , uh ) ∈ P5 × RT4

∆x u Rate ∇ · u Rate ω Rate ∇ × ω Rate

2.50E−01 8.56E−02 — 4.14E−01 — 1.27E+00 — 4.39E+01 —
1.25E−01 2.16E−03 5.31 7.33E−03 5.82 2.86E−02 5.48 1.47E+00 4.90
6.25E−02 6.31E−05 5.10 5.62E−05 7.03 4.64E−04 5.94 4.13E−02 5.15
3.13E−02 1.92E−06 5.04 8.70E−07 6.01 7.52E−06 5.95 1.27E−03 5.03
1.56E−02 5.97E−08 5.01 1.36E−08 6.00 1.19E−07 5.99 3.93E−05 5.01

rates of convergence in the L2 norm are shown in Table 1 (the same rates are observed in the L∞ norm). These
esults confirm the error estimate for the semi-discrete (in space) VHE in [51] where the quantities u, ∇ · u, ω and
× ω were proved to be at least r th order convergent for r th order finite elements.
The observed convergence rates are clean, with the exception of r = 4 which shows some degradation in the

onvergence of ∇ · u. Even though they do not contradict the existing error estimates, there are some convergence
atterns that are worth commenting on:

1. The spatial convergence result for ω exhibits an even–odd behavior. Specifically, the rate is r for even order
r , and it is r + 1 when r is odd.

2. Extra orders of convergence (in space) for ∇ · u are observed for both the VPE and the VHE problems when
the exact solution satisfies ∇ · u = 0. When the exact solutions are not divergence-free, there are no extra
convergence orders for the divergence; however, ∇ · u = 0 is the common situation for incompressible fluid
flows, so the extra order is noteworthy.
12



R.R. Rosales, B. Seibold, D. Shirokoff et al. Computer Methods in Applied Mechanics and Engineering 373 (2021) 113451

t

Now that we have established the convergence results for the VHE with EBC, and compared them with the existing
error estimates, we move on to the PPE reformulation. Note that, in this case, theoretical convergence results are
not available. We numerically investigate the performance of the proposed schemes.

3.4.2. Spatial accuracy of the time-dependent Stokes problem
We now conduct a spatial convergence study of the proposed method for the time-dependent Stokes PPE (3.1)–

(3.2) discretized in space according to (3.5) and (3.8) and in time via the IMEX RK scheme (3.22). We consider
the same domain, Ω = [0, 1) × [0, 1], with periodic b.c. in the x-direction, EBC in the y-direction, and the same
divergence-free velocity profile, u(x, y, t), as in Section 3.4.1. The pressure is taken to be

p = cos(t) cos(4π(x + y))(4y(1− y))4.

The forcing is fixed as f = ut − ν∆u+∇ p, and the initial conditions are chosen as u0 = u(x, y, 0) (to match the
manufactured solution). Both the manufactured solution and the forcing vanish at the boundary.

Following the same procedure as with the VHE above, we select the FE space (ωh, uh, ph) ∈ Pr × RTr−1 × Pr ,
with degrees r = 1, 2, 3, 4, 5 on regular meshes. The time-stepping is done via IMEX(4,4,3), with fixed time step
∆t = 10−5 and final time T = 10−3. The stabilization parameter λ is set to be 10, in line with the suggestion
in [42] and discussed in detail in Section 3.4.5.

For the finest mesh resolution, and the 5th order spatial approximation, the sizes of the matrices for (ω, u) and p
are 656 000 × 656 000 and 205 121 × 205 121, respectively, which is close to the maximum that the direct solver
can handle reliably.

Table 2 shows the spatial error convergence results for different degrees of the spatial approximation. The
approximation errors are measured in the L2 norm. For quantities related to u and ω, the rates of convergence
have similar behaviors as for the VHE. Specifically: (i) the velocity u is r th order convergent for an r th order
spatial approximation, and (ii) the extra convergence orders for ∇ · u is carried over to the PPE reformulation.
The convergence rate for the pressure p behaves similarly to ω, which appears in the right hand side of the weak
formulation for the pressure in (3.8) and (3.9). However, non-clean pressure convergence rates are observed for
approximation orders larger then 2.

It should be stressed that we numerically measure the convergence rate for the error in the velocity gradient
∇u, even though the FEM spaces do not guarantee that ∇uh is in L2. In particular, the numerical solution for
the velocity is, generally, discontinuous (in the tangential direction) across Raviart–Thomas element edges. Here
we measure the error in ∇uh by ignoring the jumps across the edges, i.e. by only counting the error within each
element. Note that it is of interest to measure the accuracy of velocity gradients as they relate to fluid stresses
and forces at the boundary of objects. In addition, measuring the accuracy of fluid gradients will be a precursor to
Section 4, in which u · ∇u will be included in the equations.

3.4.3. Temporal accuracy of the time-dependent Stokes problem
To check the temporal accuracy, we consider a manufactured solution on the same domain Ω = [0, 1) × [0, 1]

with periodicity in the x-direction. The manufactured solution follows from the stream function

ψ(x, y, t) = cos(200t) sin2(πx) sin2(πy),

so that the divergence-free condition is automatically satisfied by the velocity field u = (u, v)T
= (ψy,−ψx )T . The

pressure is

p(x, y, t) = cos(200t) sin(2πx) sin(πy).

Again, note that both the solution and the forcing vanish at the domain boundary. To test the temporal errors, we
select a highly oscillatory in time manufactured solution. The high frequency oscillations in time ensure that the
time discretization errors dominate the spatial discretization errors for the mesh resolution we use.

To perform the temporal error convergence study we solve the linear problem on a fixed mesh (mesh size
∆x = 3.125 × 10−2 and 4096 elements), a fixed FE discretization scheme (FE space with degree 4, that is
(ωh, uh, ph) ∈ P4 × RT3 × P4), and a final time T = 0.5. Then we vary the time step: ∆t = 2−k , k = 7, . . . , 13.

The temporal convergence results for the 3rd order IMEX(4,4,3) scheme are shown in Table 3. All quantities,
except for the divergence ∇·u, exhibit a 3rd order convergence in time in the L2 norm, while ∇·u remains small for
all ∆t . The stagnation in the convergence for ∇u, at O(10−4), is due to the spatial approximation error dominating

he temporal error.

13
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Table 2
Spatial error convergence in the L2 norm for the time-dependent Stokes equations (3.1)–(3.2) in Section 3.4.2. The spatial approximations
re (ωh , uh , ph ) ∈ Pr × RTr−1 × Pr , with degrees r = 1, 2, 3, 4, 5. The calculations are done using λ = 10 and the 3rd order IMEX(4,4,3),
ith a fixed small time step ∆t = 10−5 and a fixed final time T = 10−3.

Spatial approximation order r = 1, (ωh , uh , ph ) ∈ P1 × RT0 × P1

∆x u Rate ∇ · u Rate ∇u Rate ω Rate p Rate

2.50E−01 6.93E+00 —- 1.45E+01 —- 1.37E+02 —- 1.37E+02 —- 3.39E+01 —-
1.25E−01 3.26E+00 1.09 6.13E+00 1.25 1.37E+02 0.00 3.19E+01 2.10 3.38E+00 3.33
6.25E−02 1.65E+00 0.98 1.05E+00 2.54 1.37E+02 0.00 7.33E+00 2.12 4.41E−01 2.94
3.13E−02 8.24E−01 1.00 1.96E−01 2.42 1.37E+02 0.00 1.77E+00 2.05 1.08E−01 2.03
1.56E−02 4.12E−01 1.00 4.57E−02 2.10 1.37E+02 0.00 4.37E−01 2.01 2.71E−02 1.99
7.81E−03 2.06E−01 1.00 1.12E−02 2.02 1.37E+02 0.00 1.09E−01 2.00 6.78E−03 2.00

Spatial approximation order r = 2, (ωh , uh , ph ) ∈ P2 × RT1 × P2

∆x u Rate ∇ · u Rate ∇u Rate ω Rate p Rate

2.50E−01 2.09E+00 —- 7.40E+00 —- 9.33E+01 —- 2.46E+01 —- 1.80E+01 —-
1.25E−01 7.88E−01 1.41 1.30E+00 2.51 6.25E+01 0.58 7.50E+00 1.71 7.64E−01 4.56
6.25E−02 2.13E−01 1.89 2.41E−01 2.43 3.27E+01 0.93 1.99E+00 1.91 6.18E−02 3.63
3.13E−02 5.45E−02 1.97 3.12E−02 2.95 1.66E+01 0.98 5.01E−01 1.99 1.05E−02 2.56
1.56E−02 1.37E−02 1.99 3.93E−03 2.99 8.33E+00 0.99 1.25E−01 2.00 2.45E−03 2.09
7.81E−03 3.43E−03 2.00 4.92E−04 3.00 4.17E+00 1.00 3.13E−02 2.00 6.08E−04 2.01

Spatial approximation order r = 3, (ωh , uh , ph ) ∈ P3 × RT2 × P3

∆x u Rate ∇ · u Rate ∇u Rate ω Rate p Rate

2.50E−01 1.33E+00 —- 3.81E+00 —- 7.09E+01 —- 1.88E+01 —- 4.33E+00 —-
1.25E−01 1.28E−01 3.38 2.27E−01 4.07 1.67E+01 2.09 1.26E+00 3.90 1.46E−01 4.89
6.25E−02 1.56E−02 3.04 1.51E−02 3.92 4.24E+00 1.98 7.97E−02 3.99 6.91E−03 4.40
3.13E−02 1.92E−03 3.02 9.58E−04 3.97 1.06E+00 2.00 5.05E−03 3.98 2.96E−04 4.54
1.56E−02 2.40E−04 3.00 6.01E−05 4.00 2.66E−01 2.00 3.17E−04 4.00 1.47E−05 4.34
7.81E−03 2.99E−05 3.00 3.76E−06 4.00 6.65E−02 2.00 1.98E−05 4.00 9.81E−07 3.90

Spatial approximation order r = 4, (ωh , uh , ph ) ∈ P4 × RT3 × P3

∆x u Rate ∇ · u Rate ∇u Rate ω Rate p Rate

2.50E−01 2.41E−01 —- 1.66E+00 —- 1.94E+01 —- 2.66E+00 —- 1.17E+00 —-
1.25E−01 1.74E−02 3.79 6.23E−02 4.74 3.03E+00 2.68 1.75E−01 3.92 4.83E−02 4.60
6.25E−02 1.20E−03 3.86 1.01E−03 5.95 4.04E−01 2.91 1.38E−02 3.67 3.00E−03 4.01
3.13E−02 7.73E−05 3.96 4.31E−05 4.55 5.14E−02 2.97 9.03E−04 3.93 1.12E−04 4.74
1.56E−02 4.87E−06 3.99 2.26E−06 4.25 6.46E−03 2.99 5.71E−05 3.98 4.62E−06 4.60

Spatial approximation order r = 5, (ωh , uh , ph ) ∈ P5 × RT4 × P5

∆x u Rate ∇ · u Rate ∇u Rate ω Rate p Rate

2.50E−01 8.61E−02 — 4.24E−01 — 6.56E+00 — 1.31E+00 — 4.88E−01 —
1.25E−01 2.17E−03 5.31 7.49E−03 5.82 4.80E−01 3.77 3.10E−02 5.40 1.36E−02 5.16
6.25E−02 6.33E−05 5.10 5.48E−05 7.10 3.14E−02 3.94 7.41E−04 5.39 5.86E−04 4.54
3.13E−02 1.93E−06 5.04 8.73E−07 5.97 1.98E−03 3.99 2.31E−05 5.00 2.19E−05 4.74
1.56E−02 5.97E−08 5.01 1.53E−08 5.83 1.24E−04 4.00 6.81E−07 5.09 6.70E−07 5.03

Table 3
Temporal error convergence for (3.1)–(3.2) in the L2 norm for the 3rd order IMEX(4,4,3), on a fixed mesh, with the 4th order spatial
discretization P4 × RT3 × P4. The convergence rates in parentheses stagnate due to the spatial error dominating the temporal error.
∆t u Rate ∇ · u Rate ∇u Rate ω Rate p Rate

7.81E−03 7.725935E−02 — 6.531237E−08 — 5.932904E−01 — 5.932850E−01 — 9.039549E−02 —
3.91E−03 9.910506E−03 2.96 3.476197E−08 (0.91) 7.625508E−02 2.96 7.624960E−02 2.96 2.074725E−02 2.12
1.95E−03 1.269255E−03 2.97 3.004490E−08 (0.21) 9.693504E−03 2.98 9.685865E−03 2.98 3.396972E−03 2.61
9.77E−04 1.616344E−04 2.97 3.032122E−08 (−0.01) 1.233570E−03 2.97 1.207865E−03 3.00 4.883108E−04 2.80
4.88E−04 2.073504E−05 2.96 3.101061E−08 (−0.03) 2.734583E−04 (2.17) 1.495803E−04 3.01 6.545107E−05 2.90
2.44E−04 2.760336E−06 2.91 3.146726E−08 (−0.02) 2.270653E−04 (0.27) 1.894479E−05 2.98 8.380049E−06 2.97
1.22E−04 4.870641E−07 (2.50) 3.171521E−08 (−0.01) 2.259969E−04 (0.01) 2.585832E−06 (2.87) 1.032259E−06 3.02
14
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Table 4
Error convergence for the linear problem without the advection term (3.1)–(3.2) in the L2 norm (top) and the L∞ norm (bottom). The
problem is solved with the 3rd order IMEX RK scheme (IMEX(4,4,3)), the 3rd order spatial discretization P3 × RT2 × P3, and λ = 30.

Error convergence in the L2 norm

∆x u Rate ∇ · u Rate ∇u Rate ω Rate ∇ × ω Rate p Rate ∇ p Rate

2.50E−01 4.27E−02 — 9.84E−02 — 2.91E+00 — 3.22E−01 — 1.40E+01 — 1.99E−01 — 5.37E+00 —
1.25E−01 8.12E−03 2.39 8.25E−03 3.57 1.03E+00 1.51 2.48E−02 3.70 2.08E+00 2.75 2.76E−03 6.17 2.11E−01 4.67
6.25E−02 1.04E−03 2.96 5.87E−04 3.81 2.62E−01 1.97 2.81E−03 3.14 2.76E−01 2.91 3.53E−04 2.96 3.09E−02 2.77
3.13E−02 1.33E−04 2.97 3.76E−05 3.96 6.57E−02 2.00 4.57E−04 2.62 3.56E−02 2.96 9.88E−05 1.84 5.14E−03 2.59
1.56E−02 1.69E−05 2.97 2.37E−06 3.99 1.64E−02 2.00 7.66E−05 2.58 4.56E−03 2.96 2.33E−05 2.08 6.73E−04 2.93
7.81E−03 2.14E−06 2.99 1.49E−07 3.99 4.11E−03 2.00 1.14E−05 2.74 5.83E−04 2.97 2.91E−06 3.00 7.65E−05 3.13

Error convergence in the L∞ norm

∆x u Rate ∇ · u Rate ∇u Rate ω Rate ∇ × ω Rate p Rate ∇ p Rate

2.50E−01 2.42E−01 — 3.10E−01 — 1.30E+01 — 2.32E+00 — 1.05E+02 — 1.23E+00 — 2.87E+01 —
1.25E−01 1.12E−01 1.12 4.46E−02 2.80 7.80E+00 0.74 1.54E−01 3.91 2.26E+01 2.21 3.44E−02 5.16 1.45E+00 4.31
6.25E−02 1.77E−02 2.65 3.17E−03 3.81 2.12E+00 1.88 1.92E−02 3.01 2.52E+00 3.16 3.99E−03 3.11 4.28E−01 1.76
3.13E−02 2.34E−03 2.92 2.06E−04 3.95 5.36E−01 1.98 2.68E−03 2.84 3.66E−01 2.79 7.06E−04 2.50 9.46E−02 2.18
1.56E−02 2.97E−04 2.98 1.29E−05 4.00 1.34E−01 2.00 4.05E−04 2.73 5.34E−02 2.78 1.26E−04 2.48 1.42E−02 2.74
7.81E−03 3.73E−05 2.99 8.00E−07 4.01 3.35E−02 2.00 6.02E−05 2.75 5.91E−03 3.18 1.52E−05 3.05 2.29E−03 2.63

Fig. 2. Errors in the pressure (left) and the divergence (right) for the time-dependent Stokes equations in Section 3.4.4, as functions of
x, y), at the final time T = 3. The plot is for the 3rd order IMEX(4,4,3) with a 3rd order (r = 3) spatial discretization on a regular mesh
ith 4096 elements.

.4.4. Convergence results in both space and time for the time-dependent Stokes equations
Here we present the convergence results for a 3rd order scheme in both space and time applied to the time-

ependent Stokes problem (3.1)–(3.2). We use the 3rd order spatial discretization (ωh, uh, ph) ∈ P3× RT2× P3 and
he 3rd order time-stepping IMEX(4,4,3), with the time step scaled proportional to the mesh size — specifically

t = 0.2∆x . A series of regular meshes with total number of elements 64, 256, 1024, 4096, 16 384 and 65 536 are
sed. On the finest mesh, the sizes of the linear systems are 983 808 for (ω, u) and 295 297 for p. The manufactured
olution is chosen to be

u = ψy, v = −ψx , p = π cos(t) cos(πx) sin(πy)(4x(1− x))4(4y(1− y))4,

here ψ(x, y, t) = cos(t) sin2(πx) sin2(πy)(4x(1 − x))4(4y(1 − y))4, on the unit square domain Ω = [0, 1]2. The
BC are prescribed at all boundaries. This test differs from the previous tests where periodic b.c. in x were used.
gain, the exact solution is constructed so that the velocity and the forcing vanish at the boundary.
Table 4 shows the error convergence results in the L2 norm (top) and in the L∞ norm (bottom). Clean convergence

s observed for u, ∇u and ∇ ·u, with rates 3, 2 and 4 respectively. Non-clean convergence rates occur for ω, ∇×ω,
p and ∇ p. However, they appear to be close to 3.

Fig. 2 shows the pressure error and the divergence, as functions of (x, y), at the final time T = 3. No numerical
boundary layers are observed in the pressure error. The divergence at the final time is small at the boundary, but not
exactly zero. This is due to the fact that the divergence boundary condition is only enforced weakly in the mixed
formulation (appears as a natural boundary condition). The dynamics of the PPE reformulation (∇ · u satisfies a
heat equation) keeps the divergence small across the domain.

In the PPE reformulation, there is no inf–sup condition for the velocity and the pressure. This is in contrast to the
conventional FEM formulation for the Navier–Stokes equations, in which the finite element spaces for the velocity
15
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Fig. 3. Velocity error versus λ for different values of ∆t and ∆x . Left: Velocity error in L2(Ω ) over the full domain. Right: Velocity flux
n · u error along the boundary L1(∂Ω ).

nd the pressure need to satisfy the discrete version of the inf–sup condition to ensure stability. Hence the orders
f the spatial approximations for (ωh, uh) ∈ Pr × RTr−1 and the pressure ph ∈ Pr could be selected independently.
owever, we observed in the numerical experiments that: if the pressure approximation is one order less than the

elocity approximation, the error convergence for the divergence decreases by one compared to the equal-order
ase. Furthermore: increasing the order of approximation for the pressure does not improve the convergence rates
ompared to the equal-order case.

emark 3.3 (Degradation of Convergence Rates). Some of the convergence rates in Table 4 do not exhibit a
lear integer rate. A possible explanation for the reduction in convergence rate is provided in [50] (Theorems
.1–5.2), where it is shown that a mixed finite element approximation for the Stokes equations exhibits a degraded
onvergence rate.

.4.5. The choice of parameter λ and its impact on numerical error
Here we present general guidelines on how to choose the parameter λ, based on numerical results and heuristics

n how the λ affects the numerical error (along the domain boundary and throughout the domain). The value of λ
ontrols the normal boundary velocity n ·u. As long as λ > 0, the solution n ·u = n · g to Eq. (2.8) is asymptotically
table, i.e. small perturbations in n · u decay back to the correct value n · g. When λ = 0, the ODE for n · u still
as the solution n · u = n · g, but it is no longer asymptotically stable. Moreover, for the steady state system, the
ondition λ > 0 is required to have a unique solution.

We first quantify the effect of λ on the numerical error via a systematic numerical study using the same scheme
3rd order IMEX(4,4,3)) and manufactured solution in Section 3.4.4. Fig. 3 displays the global truncation error
left) and normal boundary flux error (right) versus λ for different choices of ∆t ∝ ∆x .

The key observations are: (i) Both errors decay smoothly with increasing λ until (close to) a stability threshold
= O(∆t−1), where they increase steeply. (ii) For small λ the boundary error dominates the global error. Then,

s λ increases, the global error decreases until saturation, i.e., λ has no further influence anymore on the global
rror. While the exact λ-value of this desirable saturation regime (which in the figure occurs at λ = O(1)) depends
n the exact nature of the local truncation error constant, in many problems it is observed that λ between 10 and
00 (in non-dimensional units) is a good choice. (iii) For any fixed λ > 0, the error converges (as ∆t → 0) at
he expected rate for ∆t sufficiently small.

These results lead to two natural strategies for choosing λ. The first approach is to choose λ a fixed parameter,
ndependent of the mesh (∆x , ∆t) and hitting the saturation region. This way one has a fixed continuum problem
nd a convergent sequence of numerical approximations (see (iii) above). In all numerical tests conducted here, this
imple strategy is employed, with λ between 10 and 100.

An alternative strategy is to minimize the total boundary error by selecting λ = O(∆t−1), with a constant chosen
o that one remains safely away from the stability boundary (the steep increase in Fig. 3). This second approach is

ustified because both errors (at the boundary and the global error) tend to decrease with increasing λ (except for

16
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very close to the stability boundary). It will likely yield smaller boundary flux errors at the expense of now having
a sequence of continuum problems with different λ-values.

Next, we provide a theoretical foundation for the behavior seen in Fig. 3 by providing an error bound for an
Euler IMEX semi-discretization of the PPE system (accompanied by EBC):

un+1
− un

∆t
+ un

· ∇un
= ν∆un+1

−∇P(un)+ f n, (3.24)

where tn = n∆t , un
= u(tn). Note that even in this semi-discrete setting, the divergence φn

= 0 is identically zero
for all n (taking the divergence of (3.24) shows that (I − ν∆t∆)φn+1

= φn , where φn
= 0 satisfies homogeneous

boundary conditions and zero initial data φ0
= 0; hence φn

= 0 for all n).
For a fixed x ∈ ∂Ω , let gn

= n · g(tn), gn
t = n · gt (tn), un

= n · un and evaluate (3.24) on the boundary (after
simplification):

un+1
− un

∆t
= −λ(un

− gn)+ gn
t + νn ·∆(un+1

− un). (3.25)

Introducing the error en
= un

− gn , (3.25) becomes

en+1
= Ren

+∆t δn, where R = (1− λ∆t), and δn
= ν∆(un+1

− un)+
(
gn

t −
gn+1
− gn

∆t

)
  

LTE

. (3.26)

The values of δn consist of two contributions: a local truncation error (LTE) which is O(∆t), and a contribution
(un+1

− un) that should be of the order of the scheme, O(∆t). Hence, if the numerical scheme is such that
t satisfies |δn

| ≤ ∆t M for a constant M , then summing the geometric series defined by (3.26) yields the error
estimate:

|en
| ≤ M∆t2 (1− |R|n)

1− |R|
≤

M ∆t
λ

, when e0
= 0, and R > 0, or ∆t < λ−1. (3.27)

ormula (3.27) bounds the error on the boundary as λ−1, a fact that is captured very well in the small ∆t curves
for 10 ≤ λ ≤ 100) in the right panel in Fig. 3.

. Treatment of the nonlinear advection term and Navier–Stokes PPE

Next, in Section 4.1, we explore avenues for discretizing the nonlinear advection term in the mixed finite element
ramework introduced in Section 3. The numerical results in Section 4.2.1 indicate that the full scheme is convergent,

with a little degradation in the rates of convergence relative to the linearized equations. Benchmark test results for
the lid-driven cavity and the backward-facing step flow are presented in Section 4.3, which show good agreement
with the reference data.

4.1. Discretization of the nonlinear advection term

In Section 3, we introduced a mixed finite element spatial discretization as a way to handle the electric
boundary conditions (EBC) for the vector heat equation and time-dependent Stokes equation. While the mixed finite
elements resolve several difficulties for the EBC, they come with a caveat: RT elements approximating u are only
guaranteed to be continuous across interior edges in the normal direction but can jump in the tangential direction.
Therefore, representations of the discrete solution using RT elements are only weakly differentiable along the
normal direction across edges. This creates a problem then for handling nonlinear advection terms N(u) = (u ·∇)u,
and in fact, even linear advection terms (a · ∇)u. Specifically, in 2D, RT elements approximate a function u
v = (v1, v2)T

∈ H (div;Ω ), i.e. v1, v2,∇ · v ∈ L2(Ω ). In general, each component of ∇v is not guaranteed to be in
L2, therefore for any u, v ∈ H (div;Ω ) the inner product

⟨(a · ∇)u, v⟩ =
∫
Ω

(a · ∇)u · v dV (4.1)

is not properly defined.
However, when the numerical approximation uh , which is represented by RT elements, is restricted to each
triangular element T , the components of uh |T are polynomials and thus differentiable within T . Hence, we consider
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the integral (4.1) in an element-wise sense. Let Ωh be a triangulation of the domain Ω ⊂ RN . Then the integral
involving the nonlinear advection term N(u) can then be approximated by

⟨N(uh), vh⟩T :=
∑
T ∈Ωh

∫
T

N(uh) · vh dV, ∀vh ∈ RTr (Ωh), (4.2)

where RTr (Ωh) is the Raviart–Thomas finite element space that approximates H (div;Ωh), with ∇uh defined in each
element T ∈ Ωh .

The mixed FEM (MOL) spatial discretization of (2.5) and (2.6) are: Find (ωh, uh) ∈ Σ h
× V h such that

uh(t = 0) = u0h and

⟨ωh , τh⟩ − ⟨uh ,∇ × τh⟩ =

∫
∂Ω

τh · (n× g) dS ∀τh ∈ Σh , (4.3a)

⟨(uh)t , vh⟩ + ⟨N(uh), vh⟩T = −ν⟨∇ · uh ,∇ · vh⟩ − ν⟨∇ × ωh , vh⟩ + ⟨ f −∇P(uh), vh⟩ ∀vh ∈ V h , (4.3b)

nd

⟨∇ ph,∇qh⟩ = ⟨ f ,∇qh⟩ − ⟨N(uh), vh⟩T − ν

∫
∂Ω

n · (∇ × ω)qh dS

+ λ

∫
∂Ω

n · (u − g)qh dS −
∫
∂Ω

(n · gt )qh dS, ∀qh ∈ Pr . (4.4)

here for N = 2, Σ h
× V h

= Pr × RTr−1 with a triangular mesh, and for N = 3, Σ h
× V h

= N E D1
r × RTr−1

ith a tetrahedral mesh.
The following full numerical scheme closely parallels Numerical Scheme 1, with the key difference being the

nclusion of the nonlinear term:

Numerical Scheme 2. Navier–Stokes PPE equation (r th order in space, 3rd order in time).

1. Method of lines (MOL) spatial discretization yields an ODE IVP: (4.3)–(4.4).
2. Time-discretize (4.3)–(4.4) via 3rd order IMEX (4,4,3) (with coefficients in (3.22)). In the

IMEX scheme steps (3.11), the implicit and explicit parts are given by:

G(un)←−ν⟨∇ · uh,∇ · vh⟩ − ν⟨∇ × ωh, vh⟩,

F (un)← ⟨ f −∇P(uh), vh⟩ − ⟨N(uh), vh⟩T .

3. Time-advance the full space–time discretized scheme. At each RK stage time-step, the mixed FEM
variables (ωh, uh) solve a saddle-point system; and the pressure variables ph solve a linear system.

4.2. Numerical results on manufactured solutions

In this subsection, we present convergence results for the full scheme: PPE reformulation with the nonlinear
dvection term treated as described in the previous subsection. To test the treatment of the advection term without the
omplications from the PPE reformulation, we first study the spatial convergence of the mixed formulation applied to
he vector advection–diffusion equation with electric boundary conditions. We then present the convergence results
or the full problem with the nonlinear term.

.2.1. Nonlinear vector advection–diffusion equation with EBC
To study the performance of the proposed treatment (4.2) of the advection term, we consider the same

semi-periodic domain and manufactured solution as in Section 3.4.1, but for the vector-valued nonlinear advection–
diffusion equation:

ut + (u · ∇)u = ∆u + f for (x, y) ∈ (0, 1)2, (4.5)

n× u = 0, ∇ · u = 0 for (x, y) ∈ [0, 1)× {0, 1}, (4.6)

u(0, y) = u(1, y) for 0 < y < 1. (4.7)
18
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Table 5
Observed spatial convergence rates in the L2 norm for the vector nonlinear advection–diffusion equation with electric boundary
conditions (4.5)–(4.7). The spatial approximation orders are r = 1, 2, 3, 4, 5.

Spatial approximation order r = 1, (ωh , uh , ph ) ∈ P1 × RT0 × P1
∆x u Rate ∇ · u Rate ∇u Rate ω Rate ∇ × ω Rate

2.50E−01 6.93E+00 —- 1.00E+01 —- 1.37E+02 —- 1.37E+02 —- 2.76E+03 —-
1.25E−01 3.28E+00 1.08 5.92E+00 0.76 1.37E+02 0.00 3.19E+01 2.10 1.45E+03 0.92
6.25E−02 1.67E+00 0.97 2.36E+00 1.33 1.37E+02 0.00 7.60E+00 2.07 7.25E+02 1.00
3.13E−02 8.75E−01 0.94 2.24E+00 0.07 1.37E+02 0.00 2.82E+00 1.43 3.65E+02 0.99
1.56E−02 5.07E−01 0.79 2.27E+00 −0.02 1.37E+02 −0.00 2.30E+00 0.30 1.87E+02 0.97
7.81E−03 3.60E−01 0.49 2.28E+00 −0.01 1.37E+02 −0.00 2.27E+00 0.02 1.01E+02 0.88

Spatial approximation order r = 2, (ωh , uh , ph ) ∈ P2 × RT1 × P2
∆x u Rate ∇ · u Rate ∇u Rate ω Rate ∇ × ω Rate

2.50E−01 2.13E+00 —- 9.11E+00 —- 9.33E+01 —- 2.47E+01 —- 1.25E+03 —-
1.25E−01 7.92E−01 1.43 1.77E+00 2.37 6.26E+01 0.58 7.62E+00 1.70 4.03E+02 1.64
6.25E−02 2.14E−01 1.89 4.20E−01 2.07 3.28E+01 0.93 2.07E+00 1.88 1.17E+02 1.79
3.13E−02 5.48E−02 1.97 8.91E−02 2.24 1.66E+01 0.98 5.23E−01 1.98 3.92E+01 1.57
1.56E−02 1.38E−02 1.99 2.10E−02 2.08 8.33E+00 0.99 1.31E−01 2.00 1.63E+01 1.27
7.81E−03 3.45E−03 2.00 5.18E−03 2.02 4.17E+00 1.00 3.27E−02 2.00 7.65E+00 1.09

Spatial approximation order r = 3, (ωh , uh , ph ) ∈ P3 × RT2 × P3
∆x u Rate ∇ · u Rate ∇u Rate ω Rate ∇ × ω Rate

2.50E−01 1.33E+00 —- 3.90E+00 —- 7.10E+01 —- 1.90E+01 —- 6.41E+02 —-
1.25E−01 1.28E−01 3.37 3.47E−01 3.49 1.67E+01 2.09 1.32E+00 3.85 8.12E+01 2.98
6.25E−02 1.58E−02 3.02 4.27E−02 3.02 4.24E+00 1.98 1.00E−01 3.72 1.16E+01 2.80
3.13E−02 2.03E−03 2.96 6.82E−03 2.65 1.06E+00 2.00 1.13E−02 3.16 2.25E+00 2.37
1.56E−02 2.90E−04 2.81 1.43E−03 2.25 2.66E−01 2.00 2.06E−03 2.45 5.15E−01 2.13

Spatial approximation order r = 4, (ωh , uh , ph ) ∈ P4 × RT3 × P4
∆x u Rate ∇ · u Rate ∇u Rate ω Rate ∇ × ω Rate

2.50E−01 2.42E−01 —- 1.72E+00 —- 1.94E+01 —- 2.71E+00 —- 1.57E+02 —-
1.25E−01 1.74E−02 3.80 7.45E−02 4.53 3.03E+00 2.68 1.80E−01 3.91 1.16E+01 3.76
6.25E−02 1.20E−03 3.86 2.53E−03 4.88 4.04E−01 2.91 1.40E−02 3.68 1.09E+00 3.41
3.13E−02 7.74E−05 3.96 1.33E−04 4.25 5.14E−02 2.97 9.28E−04 3.92 1.16E−01 3.22
1.56E−02 4.88E−06 3.99 7.79E−06 4.09 6.46E−03 2.99 5.89E−05 3.98 1.38E−02 3.07

Spatial approximation order r = 5, (ωh , uh , ph ) ∈ P5 × RT4 × P4
∆x u Rate ∇ · u Rate ∇u Rate ω Rate ∇ × ω Rate

2.50E−01 8.59E−02 —- 4.32E−01 —- 6.56E+00 —- 1.28E+00 —- 4.61E+01 —-
1.25E−01 2.17E−03 5.31 8.36E−03 5.69 4.81E−01 3.77 2.93E−02 5.45 1.82E+00 4.66
6.25E−02 6.37E−05 5.09 1.74E−04 5.59 3.14E−02 3.94 5.27E−04 5.80 7.55E−02 4.59
3.13E−02 1.99E−06 5.00 7.18E−06 4.60 1.98E−03 3.99 1.28E−05 5.36 4.10E−03 4.20
1.56E−02 6.80E−08 4.87 3.68E−07 4.29 1.24E−04 4.00 5.41E−07 4.57 2.46E−04 4.06

In the presence of the nonlinear advection term, systematic degradations in the spatial convergence order are
bserved (see Table 5). Specifically, non-convergent result is observed for r = 1. For r = 2, 4, the convergence
ates are r , r , r − 1, r and r − 1 for u, ∇ · u, ∇u, ω and ∇ ×ω, respectively (in both the L2 and L∞ norms). The

convergence rates are less clean when r is odd, but follow a similar pattern as in the even order case. These results
indicate that degradation in the convergence order for the full PPE reformulation (2.5)–(2.6) should be expected.

4.2.2. The PPE reformulation (2.5)–(2.6) (including the nonlinear advection term)
Consider the same manufactured solution, defined on the unit square Ω = [0, 1]2, as in Section 3.4.4. However,

since here we solve the full problem (2.5)–(2.6), the forcing function is given by f = ut + (u · ∇)u− ν∆u+∇ p.
We then use: the 3rd order spatial discretization (ωh, uh, ph) ∈ P3 × RT2 × P3, the 3rd order IMEX(4,4,3) with
time step ∆t = 0.2∆x , the final time T = 3, and λ = 30 (the same as in the previous test cases).

The error convergence is shown in Table 6 in the L2 norm (top) and in the L∞ norm (bottom). Convergent
results are observed for all quantities but with slightly degraded convergence rates in comparison to the linear case
in Table 4. In particular, the convergence rate for ∇ · u is a little bigger than 3 as opposed to 4 in the linear case,
and ∇ × ω, p and ∇ p show a 2nd order convergence.

4.3. Numerical results on benchmark tests

In this subsection, we demonstrate the performance of the proposed method for solving several benchmark
problems: a Taylor–Green vortex flow in Section 4.3.1, lid-driven cavity in Section 4.3.2, and flow over a backward-
facing step in Section 4.3.3. We conclude the subsection with a 3D Couette–Poiseuille flow in a cylindrical pipe.
The results show good agreement with known exact solutions or reference data.
19
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Table 6
Error convergence for the full Navier–Stokes problem (including the nonlinear advection term) in the L2 norm (top) and the L∞ norm
(bottom). The problem is solved with the 3rd order time-stepping IMEX(4,4,3), the 3rd order spatial discretization P3 × RT2 × P3, the final
time T = 3, and λ = 30.

Error convergence in L2 norm

∆x u ∇ · u ∇u ω ∇ × ω p ∇ p

2.50E−01 4.28E−02 — 1.02E−01 — 2.92E+00 — 3.37E−01 — 1.47E+01 — 2.60E−01 — 5.70E+00 —
1.25E−01 8.14E−03 2.40 9.39E−03 3.45 1.03E+00 1.51 3.52E−02 3.26 2.97E+00 2.30 5.33E−02 2.28 9.49E−01 2.59
6.25E−02 1.05E−03 2.96 7.22E−04 3.70 2.62E−01 1.97 4.74E−03 2.89 5.93E−01 2.33 1.45E−02 1.87 2.42E−01 1.97
3.13E−02 1.36E−04 2.95 5.89E−05 3.62 6.57E−02 2.00 8.15E−04 2.54 1.37E−01 2.12 3.69E−03 1.98 6.11E−02 1.99
1.56E−02 1.84E−05 2.88 5.91E−06 3.32 1.64E−02 2.00 1.64E−04 2.31 3.34E−02 2.03 9.18E−04 2.01 1.52E−02 2.01
7.81E−03 2.70E−06 2.77 6.84E−07 3.11 5.64E−03 1.54 3.68E−05 2.16 8.30E−03 2.01 2.28E−04 2.01 3.82E−03 1.99

Error convergence in L∞ norm

∆x u ∇ · u ∇u ω ∇ × ω p ∇ p

2.50E−01 2.37E−01 — 3.20E−01 — 1.30E+01 — 2.32E+00 — 1.05E+02 — 1.24E+00 — 2.87E+01 —
1.25E−01 1.12E−01 1.09 7.30E−02 2.13 7.80E+00 0.74 2.31E−01 3.33 2.30E+01 2.19 3.51E−01 1.83 5.27E+00 2.45
6.25E−02 1.77E−02 2.65 5.69E−03 3.68 2.12E+00 1.88 3.58E−02 2.69 3.97E+00 2.54 9.41E−02 1.90 1.89E+00 1.48
3.13E−02 2.34E−03 2.92 3.56E−04 4.00 5.36E−01 1.98 4.99E−03 2.85 9.46E−01 2.07 2.34E−02 2.01 5.60E−01 1.76
1.56E−02 2.97E−04 2.98 2.98E−05 3.58 1.34E−01 2.00 7.17E−04 2.80 2.38E−01 1.99 5.78E−03 2.02 1.47E−01 1.93
7.81E−03 3.73E−05 2.99 3.15E−06 3.24 3.35E−02 2.00 1.46E−04 2.29 6.02E−02 1.98 1.43E−03 2.01 3.73E−02 1.97

Table 7
Error convergence in the L2 norm and in the L∞ norm for the Taylor–Green vortex problem. The problem is solved with the 3rd order
patial approximation P3 × RT2 × P3 and the 3rd order IMEX(4,4,3) time-stepping scheme.

∆x u (L2/L∞) Rate ∇ · u (L2/L∞) Rate ω (L2/L∞) Rate p (L2/L∞) Rate

1.25E−01 1.56E−03/2.31E−03 — /— 1.09E−04/2.68E−04 — /— 2.73E−02/5.43E−02 — / — 3.73E−05/6.73E−05 —/—
6.25E−02 2.33E−04/3.51E−04 2.75/2.72 1.93E−06/5.66E−06 5.82/5.57 4.08E−03/8.37E−03 2.74/2.70 3.52E−06/7.40E−06 3.41/3.18
3.12E−02 3.23E−05/5.08E−05 2.85/2.79 2.14E−07/1.06E−06 3.17/2.41 5.68E−04/1.15E−03 2.84/2.86 9.15E−08/2.81E−07 5.27/4.72
1.56E−02 3.80E−06/6.50E−06 3.09/2.97 2.37E−08/8.50E−08 3.17/3.65 6.67E−05/1.34E−04 3.09/3.10 1.15E−07/ 2.53E−07 −0.33/0.15
7.81E−03 4.62E−07/8.19E−07 3.04/2.99 2.78E−09/1.08E−08 3.09/2.97 8.09E−06/1.62E−05 3.04/3.05 4.33E−08/9.19E−08 1.41/1.46
3.91E−03 5.86E−08/1.04E−07 2.98/2.97 3.44E−10/1.37E−09 3.02/2.98 1.03E−06/2.06E−06 2.98/2.98 1.25E−08/2.63E−08 1.79/1.80

4.3.1. Taylor–Green vortex problem
We consider the Taylor–Green vortex problem in a unit square domain Ω = [0, 1]2 with periodic boundary

conditions in both directions. The exact solution is

u(x, y, t) = exp(−2k2νt) sin(kx) cos(ky),

v(x, y, t) = − exp(−2k2νt) cos(kx) sin(ky),

p(x, y, t) =
1
4

exp(−4k2νt)(cos(2kx)+ cos(2ky)).

We choose the parameters k = 4π , ν = 0.05 and a final time T = 0.2, the same as in [44]. The time step is taken
s ∆t = 0.5∆x . We solve this problem with the 3rd order spatial approximation (ωh, uh, ph) ∈ P3 × RT2 × P3
nd the 3rd order IMEX(4,4,3). The error convergence is shown in Table 7 in the L2 norm and in the L∞ norm.
he observed convergence rates for u, ∇ · u and ω are 3. The pressure shows a convergence rate that is slightly

less than 2. Fig. 4 shows the computed velocity component u and the pressure at the final time on the mesh with
x = 3.91× 10−3.

.3.2. Lid-driven cavity
For the lid-driven cavity, we compute the flow in the unit square domain [0, 1]2, with λ = 10, using the 3rd

rder spatial approximation P3 × RT2 × P3 and 3rd order IMEX RK time-stepping (time step ∆t = 0.8∆x), on a
egular triangular mesh with 16 384 elements and a mesh size ∆x = 1.5625× 10−2. The velocity field is advanced
orward in time until it reaches steady state, for Reynolds numbers 100, 400 and 1000. The flow starts at rest, with
oundary conditions g = (1, 0)T at the top wall and no-slip elsewhere.

The results for Re = 100, 400 and 1000 are shown in Figs. 5–7. The streamlines for the steady state flow are
hown in the left panel of each figure.1 The velocity profiles along the centerlines of the cavity (i.e. u(0.5, y) and
(x, 0.5)) are plotted in the right panel, together with the reference data from [75]. Note that some streamlines in the
lots end at the domain boundary, without forming closed curves. This is due to the following facts: (i) the numerical

1 The streamlines at the final time, T , are computed by numerically solving the ODE
dx
ds
= u(x, T ) with an explicit 4th order Runge–Kutta

(RK4) scheme.
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Fig. 4. Numerical solution of the Taylor–Green Vortex problem at the final time T = 0.2. Left: first component of the velocity uh . Right:
pressure ph .

Fig. 5. Lid-driven cavity flow with Re = 100. Left: Streamlines at steady state. Right: Velocity profiles along the centerlines (solid line:
u(0.5, y), and dashed line: v(x, 0.5)) compared with the reference data (blue circles and red triangles) in [75].

solution is not exactly divergence-free, (ii) the normal velocity condition at the boundary is not enforced strongly
(in the Dirichlet sense) but rather through the ODE (2.8), which results in a small (as small as the resolution) flow
through the boundary.

The flow through the boundary is more pronounced at the top corners, where discontinuities in the velocity
occurs. Increasing λ makes the enforcing of the normal velocity condition stronger (see Section 3.4.5), and reduces
the flow through the boundary. However, making λ too big would impose an undesirable time step restriction,
∆t < O( 1

λ
), through the relaxation term in (2.8).

4.3.3. Backward-facing step
In this test case, we compute the benchmark problem of flow over a backward-facing step for Re = 100 and

Re = 200. Again, we use the 3rd order spatial discretization P3 × RT2 × P3, a 3rd order IMEX RK scheme
and λ = 10. The computation uses a non-uniform triangular mesh with extra mesh refinement near the reentrant
corner and the region behind the step. The minimum mesh size is ∆x = 1.7028× 10−2 and the time step is set to

t = 0.02∆x . In this case the domain of computation is

Ω = [0, L]× [−0.5, 0.5]\[0, 0.5]× [−0.5, 0],
21
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Fig. 6. Lid-driven cavity flow with Re = 400. Left: Streamlines at steady state. Right: Velocity profiles along the centerlines (solid line:
u(0.5, y), and dashed line: v(x, 0.5)) compared with the reference data (blue circles and red triangles) in [75].

Fig. 7. Lid-driven cavity flow with Re = 1000. Left: Streamlines at steady state. Right: Velocity profiles along the centerlines (solid line:
u(0.5, y), and dashed line: v(x, 0.5)) compared with the reference data (blue circles and red triangles) in [75].

where L is the channel length, set to L = 8. No-slip boundary conditions are imposed everywhere, except for the
inflow and outflow boundaries at x = 0 and x = L . The inflow and outflow boundary conditions are

ginflow = f (t) (12y(1− 2y), 0)T ,

goutflow = f (t)
(
−3y2

+
3
4
, 0

)T

,

here f (t) = 1− e−6t2
, so that the flow is initially at rest and the inflow and outflow increase gradually with time.

he mean inflow velocity U reaches 1 for large enough t . We use the channel height H = 1 as the characteristic
ength, which gives a Reynolds number Re = HU/ν = 1/ν.

For Re = 100 and 200, the only recirculating flow forms behind the step. More regions of recirculating flow
ppear down the channel as the Reynolds number increases. The streamlines shown in Fig. 8 were computed using

he same procedure described in Section 4.3.2.
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Fig. 8. Streamlines for the computation of a flow over a backward-facing step, at steady state, for Re = 100 (top) and Re = 200 (bottom).

To compare our results with the reference data in [76] we use the position of the reattachment point, where the
ine separating the recirculating flow behind the step and the main flow in the channel meets the channel wall, i.e. the
omain boundary. For this purpose introduce the nondimensional ratio L1/S, where L1 is the distance between the
oot of the step and the reattachment point, and S = 0.5 is the step height. For Re = 100, the ratio L1/S = 2.96

in our computation compares well with the reference data ratio: 2.922. For Re = 200, our computation yields a
ratio L1/S = 4.86, while the reference value is 4.982. Our results show a rather good agreement with the reference
values.

4.3.4. 3D Couette-Poiseuille flow in a cylindrical pipe
We consider the Couette–Poiseuille flow in a periodic cylindrical pipe [44] with length 0.5, radius R = 1 and

periodic boundary conditions in the axial direction. The exact solution in cylindrical coordinates is

u = u1ex + ur er + uθ eθ , p(r, t) =
∫ r

0
(uθ (r̄ ))2 1

r̄
dr̄ + C,

where

u1 =
G
2ν

(R2
− r2)+ α0 J0(λ0r )e−λ

2
0νt , ur = 0, uθ = ωr + α1 J1(λ1r )e−λ

2
1νt .

he vectors ex , er and eθ denote unit vectors in the axial, the radial and the angular directions respectively. The
ow is driven by a constant body force f = (2G, 0, 0)T . In Cartesian coordinates, the exact solution becomes

u = uex + vey + wez,

where

u =
G
2ν

(R2
− y2
− z2)+ α0 J0(λ0

√
y2 + z2)e−λ

2
0νt ,

v = −ωz − α1
z√

y2 + z2
J1(λ1

√
y2 + z2)e−λ

2
1νt ,

w = ωy + α1
y√

y2 + z2
J1(λ1

√
y2 + z2)e−λ

2
1νt .
23
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Fig. 9. A sample mesh of the cylindrical pipe, with arrows indicating the computed velocity field.

Table 8
Error convergence in the L2 norm and in the L∞ norm for the 3D Couette–Poiseuille flow in a cylindrical pipe. The problem is solved

ith the 3rd order spatial approximation and the 3rd order IMEX(4,4,3) time-stepping scheme.

∆x u (L2/L∞) Rate ∇ · u (L2/L∞) Rate ω (L2/L∞) Rate ∇ p (L2/L∞) Rate

7.64E−01 1.41E−02/6.42E−02 — /— 2.76E−02/1.01E−01 — /— 9.79E−02/3.47E−01 — /— 6.77E−02/2.14E−01 — /—
3.90E−01 1.97E−03/1.32E−02 2.92/2.35 1.71E−03/8.53E−03 4.14/3.68 1.08E−02/3.73E−02 3.28/3.31 1.06E−02/5.76E−02 2.76/1.95
2.24E−01 8.42E−04/7.63E−03 1.53/0.99 6.01E−04/2.88E−03 1.88/1.95 4.44E−03/2.38E−02 1.60/0.81 4.98E−03/2.28E−02 1.36/1.67
1.21E−01 1.49E−04/2.15E−03 2.80/2.05 9.72E−05/9.56E−04 2.95/1.79 7.93E−04/7.93E−03 2.79/1.78 1.53E−03/7.21E−03 1.91/1.86
6.04E−02 1.85E−05/2.36E−04 3.02/3.19 1.21E−05/1.49E−04 3.00/2.69 1.09E−04/1.88E−03 2.87/2.08 3.97E−04/1.81E−03 1.95/1.99

Note that v = w = 0 when y2
+ z2

= 0. Here λ0 = 2.4048255577 and λ1 = 3.8317059702 are the smallest
positive roots of Bessel functions J0 and J1, respectively. For the computation, we set G = 0.2, ω = 0, ν = 0.1,
nd α0 = α1 = 1. The problem is solved with the 3rd order spatial approximation and the 3rd order IMEX(4,4,3)
ith a stabilizing parameter λ = 10, a final time T = 0.1 and time step ∆t = 0.1∆x . Note that Nédélec elements

re used to approximate ω in 3D.
Fig. 9 shows a sample mesh of the cylindrical pipe together with the computed velocity field of flow coming

ut of the cylinder bottom wall. The convergence results in the L2 norm and in the L∞ norm are shown in Table 8.
he velocity u is observed to have a convergence rate around 3 in both norms. The pressure gradient is 2nd order
onvergent in both norms. For the divergence and the curl, convergence rates are at least 2 in both norms with the

L2 norm rates around 3.

. Conclusions and outlook

We investigated finite element formulations for a PPE reformulation of the incompressible Navier–Stokes
quations. In the PPE reformulation, the momentum equation is in the form of a vector heat equation with electric
oundary conditions, and the pressure appears as a global function of the velocity (obtained, at any time, as the
olution to a Poisson equation). Thus this reformulation allows for high-order time-stepping via standard schemes.
n particular, the decoupling of the velocity and the pressure can be achieved by IMEX time-stepping schemes, and
odern high-order IMEX schemes can be applied in a straightforward manner.
We demonstrated via numerical examples that our proposed numerical schemes, based on the PPE reformulation

2.5)–(2.6), have the potential to achieve high-order both in space and in time, while avoiding severe time step
estrictions. The methods have important advantages:

(i) The use of an IMEX time-stepping strategy decouples the velocity and the pressure in the numerical methods,

and at the same time avoids diffusive time step restrictions.
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(ii) The methods can achieve high-order in time with off-the-shelf high-order IMEX RK schemes. Therefore
the code can be easily adapted to newly developed IMEX schemes with better properties, for instance,
unconditional stability, order reduction avoidance, etc. A natural future research direction includes developing
new IMEX RK time-stepping schemes for the PPE reformulations with such properties.

(iii) Standard mixed finite element formulations of incompressible fluid flow problems (Stokes and Navier–Stokes
equations) require the velocity and pressure approximations to satisfy the inf–sup condition for stability, which
limits the choices of finite element approximations. Our new schemes allow for more flexible choices of finite
element spaces for the velocity and pressure, avoiding the inf–sup condition.

Note also that an interesting feature of the methods studied in this paper is that the quantity ∇ · u converges to
zero at an additional order relative to the accuracy of the velocity field itself. As a consequence, for well-resolved
computations, the methodology will generally yield velocity fields that are extremely close to divergence-free, even
though no discrete incompressibility principle needs to be imposed.

Despite the important advantages mentioned above, the methods also have some limitations:

(i) The discretization of the (nonlinear) advection term does not fit into the finite element formulation due to the
discontinuities across elements in the tangential velocity. The current approach leads to convergent methods
but results in degradations in the error convergence rates.

(ii) The mixed formulation for the velocity deals with the EBC naturally. However, it introduces a saddle point
problem. Therefore the choices for the FE approximations for u and ω need to satisfy the inf–sup condition.
The mixed formulation also increases the degrees of freedom of the discrete problem, as the new variable
ω = ∇ × u is introduced.

s a final comment, the IMEX schemes here provide a stable explicit treatment of the pressure and implicit
reatment of viscosity. As is common in (nonlinear) advection equations, explicit treatments of the advection term

u · ∇u become destabilizing with increasing Reynolds number. Hence, for higher RE flows, additional stabilization
echniques, such as streamline upwind Petrov–Galerkin, will be required.
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ppendix. Discrete solvability of the Poisson equation

The pressure Poisson problem considered here in (3.2) has pure Neumann boundary conditions prescribed, hence
it is solvable only if a compatibility condition is satisfied (see Remark 2.1), and the solution is unique only up to
an additive constant. Note however, in practice other boundary conditions involving the pressure (such as a mixed
boundary condition) may result in cases where the pressure equation does not require a solvability condition and is
unique. The pressure Poisson problem (3.2) has pure Neumann boundary conditions prescribed, hence it is solvable
only if a compatibility condition is satisfied (see Remark 2.1), and the solution is unique only up to an additive
constant. In order to single out a unique solution, and at the same time to obtain a stable approximate solution
in case the compatibility condition is not exactly satisfied (due to approximation errors), we employ the following
standard least-squares approximation procedure. First, we impose an extra zero-mean constraint on the pressure:∫

p dV = 0.

Ω
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This gives rise to an augmented system for the pressure with an additional scalar variable representing the Lagrange
multiplier for the zero-mean constraint. For simplicity, the presentation here is carried out for homogeneous
boundary conditions g = 0. The weak formulation then becomes: Find p ∈ H 1(Ω ) and c ∈ R s.t.

⟨∇ p,∇q⟩ + ⟨c, q⟩ = ⟨ f ,∇q⟩ − ν
∫
∂Ω

n · (∇ × ω)q dS + λ
∫
∂Ω

(n · u)q dS ∀q ∈ H 1(Ω ), (A.1a)

⟨p, d⟩ = 0 ∀d ∈ R. (A.1b)

sing standard nodal-based finite elements yields a linear system of the form(
K r
rT 0

)
·

(
P
c

)
=

(
F
0

)
. (A.2)

Here K is the (symmetric) stiffness matrix of the FEM discretization of the Laplacian operator, r is the vector
orresponding to constant functions (the null-vector of K ), P is the solution vector for the pressure p, and c is the
agrange multiplier. While the stiffness matrix K is singular, the augmented matrix in (A.2) is nonsingular and it
ields the following solution. Left-multiplying the equation K P + cr = F by rT implies that c = (rT F)/(rT r),
hus one has (the orthogonal projection) K P = projR(K ) F, where R(K ) is the range of K ; and rT P = 0 restricts
hat P ∈ R(K ).

Hence, the augmented system (A.1) addresses the two issues arising in solving the pressure Poisson equation:
i) it fixes the additive constant in p by choosing the zero-mean solution, and (ii) it ensures solvability, even when
· u = 0 is violated (see Remark 2.1), by projecting the right hand side F to the range of K . Note that the

ugmented system (A.2) is similar to the one discussed in [33,35,42] where finite difference approaches are used.
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