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Abstract It is known that inhomogeneous second-order macroscopic traffic models
can reproduce the phantom traffic jam phenomenon: whenever the sub-characteristic
condition is violated, uniform traffic flow is unstable, and small perturbations grow
into nonlinear traveling waves, called jamitons. In contrast, what is essentially
unstudied is the question: which jamiton solutions are dynamically stable? To
understand which stop-and-go traffic waves can arise through the dynamics of the
model, this question is critical. This paper first presents a computational study
demonstrating which types of jamitons do arise dynamically, and which do not.
Then, a procedure is presented that characterizes the stability of jamitons. The
study reveals that a critical component of this analysis is the proper treatment of
the perturbations to the shocks, and of the neighborhood of the sonic points.

1 Introduction

The modeling of vehicular traffic flow via mathematical equations is a key building
block in traffic simulation, state estimation, and control. Important ways to describe
traffic flow dynamics are microscopic/vehicle-based [5, 47, 54], cellular [11, 46],
and continuum models. This last class is the focus of this paper, particularly:
inviscid macroscopic models [3, 37, 43, 51, 52, 55, 62] that describe the spatio-
temporal evolution of the vehicle density (and other field quantities) via hyperbolic
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conservation laws. Other types of continuum models exist as well, including gas-
kinetic [26, 28, 53], dispersive [34, 35], and viscous [32, 33] models. Hyperbolic
models do not resolve zones of strong braking, but rather approximate them by
traveling discontinuities (shocks) whose dynamics are described by appropriate
jump conditions [15]. Macroscopic models play a central role in traffic flow theory
and practice because:

• Mathematically, other types of descriptions reduce/converge to macroscopic
models in certain limits, including: microscopic [4], cellular [1], and gas-kinetic
[1, 28].

• Practically, macroscopic models are best-suited for state estimation [63, 66], for
incorporating sparse GPS data [2, 27], and for control [50].

• Computationally, a macroscopic description is a natural framework to upscale
millions of vehicles to a cell-transmission model [11] with much fewer degrees
of freedom.

• Societally, traffic descriptions that do not resolve individual vehicles are desirable
for privacy and data security.

In this work, we focus on the lane-aggregated description of traffic flow
dynamics on uniform highways without any road variations, let alone intersections
or bottlenecks. The reason is that even in this simple scenario, real traffic flow
tends to develop complex nonlinear dynamics, particularly the phantom traffic jam
phenomenon [24, 31]: initially uniform flow develops (under small perturbations)
into nonlinear traveling waves, called jamitons [19]. This occurrence of instabilities
and waves without discernible reason has been demonstrated and reproduced
experimentally [57, 59]. While these features can be reproduced in microscopic car-
following models, a key goal is to capture these non-equilibrium phenomena via
macroscopic models (to facilitate the model advantages described above).

The archetype macroscopic model is the Lighthill-Whitham-Richards (LWR)
model [43, 55]

ρt + Q(ρ)x = 0 (1)

that describes the evolution of the vehicle density ρ(x, t) where x is the road
position and t is time. The fundamental diagram (FD) function Q(ρ) = ρU(ρ),
where the equilibrium velocity function U(ρ) is the bulk flow velocity as a function
of density, is motivated by the 1935 measurements by Greenshields [22], and many
types of FD have been proposed [11, 20, 43, 48, 62]. As a matter of fact, real FD
data exhibits a substantial spread in the congested regime [31]. More complex traffic
models capture this spread [9, 16, 17, 56], but the LWR model does not. Yet, due to
its simplicity it nevertheless is widely used. Moreover, as we highlight below, it also
is motivated as a reduced equation for more complex models.

Another critical shortcoming of the LWR model is that it cannot reproduce
the phantom traffic jam phenomenon: being a first-order model, it exhibits a
maximum principle, and thus small perturbations to a uniform solution cannot
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amplify (instead, they turn into N-waves and decay). In this work, we focus on
second-order models that augment the vehicle density ρ(x, t) by an independent
field variable for the bulk velocity u(x, t), and describe their evolution via a 2 × 2
balance law system, specifically: a hyperbolic conservation law system with a
relaxation term in the velocity equation. Due to conservation of vehicles, the density
always evolves by the continuity equation, ρt + (ρu)x = 0. In turn, the velocity
equation encodes the actual modeling of the vehicle dynamics and interactions. The
Payne-Whitham (PW) model [51, 65]

ρt + (ρu)x = 0 ,

ut + uux + p(ρ)x/ρ = 1
τ
(U(ρ) − u)

(2)

was the first second-order model proposed. Here U(ρ) is the desired velocity
function, and τ is the relaxation time that determines how fast drivers adjust to their
desired velocity U(ρ). The traffic pressure p(ρ) models preventive driving. Even
though the PW model does capture traffic waves accurately [19, 56], it is generally
rejected [12] due to spurious shocks that overtake vehicles from behind; and other
hyperbolic models are preferred (see below). However, the fundamental structure of
a 2× 2 hyperbolic system with a relaxation in the second equation is common to all
models of interest in this study.

Models with the structure described above possess a critical phase transition. If
the sub-characteristic condition (SCC) is satisfied, then uniform flow is stable [7,
44, 64, 65]. Conversely, when it is violated, uniform flow is unstable and nonlinear
traveling wave solutions exist [19, 29, 41, 49, 56]. The SCC is defined as follows.
Let λ1 < λ2 be the two characteristic speeds of the hyperbolic part of the model, and
let μ = Q′(ρ) be the characteristic speed of the reduced equation (1) (with Q(ρ) =
ρU(ρ)), which arises in the formal limit τ → 0; in which u relaxes infinitely fast to
U(ρ). Then the SCC is: λ1 ≤ μ ≤ λ2.

The case of the SCC satisfied is well studied [7, 42, 44, 64, 65]. In particular, it is
related to positive diffusion when conducting a Chapman-Enskog expansion of the
model [25, 35]. In contrast, this paper focuses on understanding the behavior and
stability of solutions when the SCC is violated.

This paper is organized as follows. In Sect. 2, we introduce the equations. Then
we characterize the nature of the instabilities to uniform flow, and the traveling
wave solutions that then arise: the jamitons. In Sect. 3, a systematic computational
study of the stability of jamitons is conducted. Those results then motivate a stability
analysis of those nonlinear traveling waves, presented in Sect. 4. We close with a
discussion and a broader outlook in Sect. 5.



38 R. Ramadan et al.

2 Macroscopic Traffic Models with Instabilities and
Traveling Waves

While the general results and methodologies apply to a wide class of second-order
models with relaxation (including the PW model (2) and generic second-order
models [16, 38]), we focus this study on the inhomogeneous Aw-Rascle-Zhang
(ARZ) model [3, 67]. In non-conservative form it reads as

ρt + (ρu)x = 0 ,

(u + h(ρ))t + u(u + h(ρ))x = 1
τ
(U(ρ) − u) ,

(3)

where h(ρ) is called the hesitation function. We assume that: U(ρ) is strictly
decreasing, Q(ρ) = ρU(ρ) is strictly concave, h(ρ) is strictly increasing, and
ρh(ρ) is strictly convex. In particular these assumptions yield a hyperbolic system,
which has no waves that overtake vehicles (the 2-waves are contacts) [3]. While
originally proposed in homogeneous form, the addition of the relaxation term [21]
allows for the violation of the SCC.

In the homogeneous ARZ model, the field w = u + h(ρ) can be interpreted as a
convected quantity moving with the flow (the hesitation function reduces the empty
road velocityw by h(ρ)). Hence, the conserved variables are ρ and q = ρ(u+h(ρ)),
and the conservative form of the equations is

ρt + (q − ρh(ρ))x = 0 ,

qt +
(

q2

ρ
− qh(ρ)

)
x

= 1
τ

(ρ(U(ρ) + h(ρ)) − q) ,
(4)

with associated Rankine-Hugoniot jump conditions

s [ρ] − [ρu] = 0 ,

s
[
ρ
(
u + h(ρ)

)] −
[
ρu2 + ρuh(ρ)

]
= 0 .

(5)

Here [ζ ] denotes the jump of the variable ζ across the discontinuity, and s is the
speed. In addition, the Lax entropy conditions [15] must be satisfied. Specifically:
one family of characteristics goes through the discontinuity, while the other
converges into it (for a shock), or is parallel to it (for a contact). In particular,
the assumptions on h made below (3) guarantee that the entropy conditions are
equivalent to: the shocks are compressive (i.e., as vehicles go through a shock, the
density increases) and move slower than the vehicles [56].

The characteristic speeds of (4) are

λ1 = q/ρ −h(ρ)−ρh′(ρ) = u−ρh′(ρ) , and λ2 = q/ρ −h(ρ) = u , (6)
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where the λ1 is genuinely nonlinear (associated with shocks and rarefactions), while
the λ2 is linearly degenerate (associated with contacts).

2.1 Specific Model Functions

While the analysis and general results derived below hold for generic models (4), the
computational study and the illustrative graphs are presented for a specific choice
of model functions. As in [56], we choose ρmax = 1/7.5m, umax = 20m/s, and
construct the fundamental diagram function

Q(ρ) = c
(
g(0) + (g(1) − g(0)) ρ

ρmax
− g

(
ρ

ρmax

))
, where g(y) =

√
1 +

(
y−b
λ

)2
,

that is a smoothed version of the Newell-Daganzo triangular flux [11, 48]. The
parameters are chosen c = 0.078ρmaxumax, b = 1

3 , and λ = 1
10 to have the

function fit real sensor data [56]. Hence U(ρ) = Q(ρ)/ρ. Moreover, we choose

h(ρ) = 8m/s
√

ρ
ρmax−ρ

, and the relaxation time τ = 3s. Note that these values

are for a single lane. When considering multi-lane traffic, realistic values result by
scaling ρ and Q by the number of lanes.

2.2 Linear Stability of Uniform Flow

Before analyzing the stability of nonlinear waves, we discuss important aspects
regarding the stability of uniform flow, i.e., base state solutions of (3) in which
ρ = ρ̃ and u = U(ρ̃) are constant in space and time. The linear stability analysis
itself is a well-established normal model analysis [19, 32], and we briefly outline the
key steps. Consider infinitesimal wave perturbations (where k is the wave number
and σ the complex growth rate) of the base state ,

ρ̂ = R̂eikx+σ t and û = Ûeikx+σ t ,

substitute the perturbed solution ρ = ρ̃+ ρ̂ and u = U(ρ̃)+ û into (3), and consider
only constant and linear terms. This leads to the system

[
σ + ikψ ikρ̃

σφ + ikψφ − ξ
τ

σ + ikψ + 1
τ

] [
R̂

Û

]
=

[
0
0

]
, (7)

for the perturbation amplitudes, where ψ = U(ρ̃) > 0, φ = h′(ρ̃) > 0, and
ξ = U ′(ρ̃) < 0. Nontrivial solutions can only exist if the matrix in (7) has vanishing
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determinant, which requires

σ = −ikψ + ik 1
2 ρ̃φ − 1

2τ (1 + 
) ,

where 
 satisfies 
2 = 1 − k2τ 2ρ̃2φ2 − 2ikτ ρ̃(φ + 2ξ). Writing 
 = �1 + i�2
in terms of its real and imaginary part yields the two equations �2

1 − �2
2 = 1 −

k2τ 2ρ̃2φ2 and �1�2 = kτ ρ̃(φ + 2ξ), which then leads to the following quadratic
equations for z = (�1)

2:

z2 − (1 − β2k2)z − γ 2k2 = 0 . (8)

Here β = τ ρ̃φ and γ = τ ρ̃(φ + 2ξ). The positive solution of (8), as a function of
k, is

z+(k) = 1
2

(
(1 − β2k2) +

√
(1 − β2k2)2 + 4γ 2k2

)
(9)

= 1
2

(
(1 − β2k2) +

√
(1 + β2k2)2 + 4(γ 2 − β2)k2

)
. (10)

This function has the following properties:

(i) z+(0) = 1.
(ii) limk→∞ z+(k) = (γ /β)2, which follows from (9) and the asymptotic (k � 1)

formula:
√

(1 − β2k2)2 + 4γ 2k2 ∼ β2k2
√
1 + 2(2γ 2 − β2)β−4k−2 ∼ β2k2+(2(γ /β)2−1) .

(iii) It is strictly monotonic if |γ | �= |β|, i.e., it is strictly increasing if |γ | > |β|
and strictly decreasing if |γ | < |β|. This fact follows from (9), because the
sign of the term 4(γ 2 − β2)k2 determines the slope of z+(k): if |γ | = |β|, it
is constant; and if the term is positive (negative), the function goes up (down)
with k.

The growth rate of normal modes is

gρ̃(k) = Re(σ ) = − 1
2τ (1 + Re(
)) = − 1

2τ (1 + �1) = − 1
2τ

(
1 ±

√
z+(k)

)
.

Linear stability, i.e., Re(σ ) ≤ 0, is equivalent to z+ ≤ 1 (only the negative root of√
z+ could cause positive growth). Hence, stability holds exactly if |γ | < |β|, or

equivalently φ + ξ > 0, or equivalently

h′(ρ̃) + U ′(ρ̃) ≥ 0 . (11)
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This last condition is exactly what the sub-characteristic condition (SCC) [64, 65]
yields as well [56]: the LWR characteristic speed, μ = Q′(ρ̃) = U(ρ̃)+ρ̃U ′(ρ̃) lies
in between the two ARZ characteristic speeds, λ1 = U(ρ̃)−ρ̃h′(ρ̃) and λ2 = U(ρ̃),
exactly if (11) holds.

To recap, for the inhomogeneous ARZ model (3), there are exactly two pos-
sibilities: Either the stability condition (the SCC) (11) holds; then all basic wave
perturbations eikx have non-positive growth rates, and solutions are linearly stable.
Or (11) is violated; then all waves grow. Moreover, the rate of growth gρ̃(k) is an
increasing function of the wave number k, that has gρ̃(0) = 0, and approaches (as
k → ∞) the asymptotic growth rate

g∞
ρ̃ = lim

k→∞ gρ̃(k) = 1
2τ (|γ /β| − 1) = 1

2τ (|1 + 2 ξ/φ| − 1) = 1
τ

(−U ′(ρ̃)
h′(ρ̃)

− 1
)

.

Figure 1 shows the growth rate functions gρ̃(k) for the specific model given in
Sect. 2.1, with stable base states in Fig. 1a and unstable base states in Fig. 1b. In the
latter, one can clearly see the strict increase of gρ̃ with k, and the asymptotic limit
g∞

ρ̃
. Figure 1c shows a plot of the asymptotic growth rate g∞

ρ̃
as a function of ρ̃.

Clearly, base states that satisfy (11) are well-behaved. However, with regards
to modeling phantom traffic jams and jamitons, we are particularly interested in
base states that violate (11). These require some more careful discussion. While
instabilities to uniform states are ubiquitous in science and engineering, having a
growth rate that is increasing for all wave numbers is unusual. The much more
common scenario (for example, fluid instabilities moderated by viscosity or surface
tension [13]) is that medium wave length are unstable and short waves (i.e., k large)
are stable again, yielding a critical wave number k∗ of maximal growth. In that
case, one can argue that out of infinitesimal perturbations, in which all wave lengths
are present, the linearized dynamics will single out the ones with dominant growth.
Hence, the wave number k∗ will be selected to first enter the nonlinear regime.

(a) (b) (c)

Fig. 1 Plots of the growth rate gρ̃(k) = Re(σ ) as a function of the wave number k, for different
constant base states ρ̃, as well as the asymptotic growth rate g∞

ρ̃
as a function of ρ̃. (a) Growth

rates gρ̃(k) for different ρ̃ that satisfy (11), i.e., are linearly stable. (b) Growth rates gρ̃(k) for
different ρ̃ that violate (11), i.e., are linearly unstable. (c) Asymptotic growth rate (worst case)
g∞

ρ̃
= limk→∞ gρ̃(k) as a function of ρ̃
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However, arguments of that type do not work for (3) because, as we have shown,
its growth function gρ̃(k) has no maximum. Rather, the shorter the waves in the
perturbation, the faster their growth. It should be stressed that despite this behavior,
the linearized model for (3) is mathematically well-posed: for any final time t , the
amplification of normal modes is bounded by exp(t g∞

ρ̃
). Still, from an application

perspective, properly answering the question of which wave lengths dominate once
an amplified perturbation leaves the linear regime, is important; but it is more
challenging than in the usual situation.

While the PDE model (3) has no maximum wave number, reality does, namely
the vehicle scale. Specifically, wave numbers beyond a kmax, given by the minimum
spacing between vehicles, have no practical meaning. One possible way to exclude
features on such unphysically short length scales is to add a small amount of
viscosity to the ARZ model (3), as in Kerner-Konhäuser [32, 33] for the PW
model (2). In Fig. 1b, this would change the functions gρ̃(k) to drop off once k gets
close to the vehicle scale. Similarly, the numerical discretization of the PDE (3) on
grids that are never finer than the vehicle scale will produce a wave number cut-off
via numerical viscosity of the method [39].

Another possibility (employed here in Sect. 3) is to consider small perturbations,
rather than infinitesimal perturbations, and provide a model for the noise. Specifi-
cally, we argue that on real roads, perturbations of all wave lengths k ∈ [0, kmax]
will act: k < kmax due to small variations in road features, wind, etc.; and k ≈ kmax
due to variabilities across vehicles. The simplest such noise model is one where all
wave numbers k ∈ [0, kmax] appear with equal amplitudes, and perturbations with
k > kmax do not occur.

Because the growth function tends to have a plateau near kmax (see Fig. 1),
this linear growth/noise model will yield that all wave numbers k near but below
kmax will be amplified to reach the nonlinear regime at the same time. This is not
unrealistic, as it means that noise close to the vehicle scale will dominate before
systematic nonlinear wave effects kick in.

As a final remark we wish to point out that once solutions of the ARZ model (3)
leave the linear regime (around a uniform base state), the nonlinear dynamics tend
to turn those vehicle-scale waves into oscillations with shocks that then collide and
merge to form nonlinear wave structures of much smaller amplitude to wave-length
ratios. However, those nonlinear transient dynamics are extremely complicated, and
this insight is merely based on our observations from numerous highly resolved
computations (like those done in Sect. 3). What we will study, though, is the stability
of true traveling wave solutions of (3) (jamitons) in the situation when the SCC (11)
is violated (see Sect. 4).

2.3 Traveling Wave Analysis and Jamitons

Before studying waves, it is important to stress that macroscopic models (without
explicit lane changing) can equivalently be written in Lagrangian variables. In (4)
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the equations are cast in Eulerian variables ρ(x, t) and q(x, t). The Lagrangian
formulation, as used in [21, 56], employs the variables v(σ, t) and u(σ, t), where σ

is the (continuous) vehicle number, defined so that dσ = ρ dx−ρu dt , and v = 1/ρ
is the specific traffic volume, i.e., the road length per vehicle. In these variables the
ARZ model reads as

vt − uσ = 0 ,

(u + ĥ(v))t = 1
τ
(Û (v) − u) ,

(12)

where ĥ(v) = h(1/v) and Û (v) = U(1/v). The assumptions on the model functions

in Eulerian variables ( dUdρ < 0, d2Q
dρ2 < 0, dh

dρ > 0, d2

dρ2 ρh(ρ) > 0) translate to the

following assumptions in Lagrangian variables: dÛ
dv > 0, d2Û

dv2
< 0, dĥ

dv < 0, and
d2ĥ
dv2

> 0. For simplicity, we now omit the hats, unless explicitly required for clarity.
The characteristic speeds of (12) are λ1 = h′(v) and λ2 = 0, and the associated
Rankine-Hugoniot shock jump conditions are

m [v] − [u] = 0 ,

[u] + [h(v)] = 0 ,
(13)

where −m is the propagation speed of the shock in the Lagrangian variables (in the
Eulerian frame m is the flux of vehicles through the shock). Note that, for contact
discontinuities, the conditions are: m = 0 and [u] = 0.

Below, we are going to employ both types of (equivalent) descriptions of the ARZ
model. Eulerian (4) for the computational study of the nonlinear model in Sect. 3,
and Lagrangian (12) for the jamiton stability analysis in Sect. 4.

Jamiton solutions can now be constructed via the Zel’dovich-von Neumann-
Döring (ZND) theory [18]. One starts out with a traveling wave ansatz. In Eulerian
variables, one seeks for solutions ρ(x, t) = ρ(η), u(x, t) = u(η) of (4) that depend
on the single variable η = x−st

τ
. In Lagrangian variables, one considers solutions

v(σ, t) = v(χ), u(σ, t) = u(χ) of (12), where χ = σ+mt
τ

. Here s is the traveling
wave speed in the road frame, while the Lagrangian wave speed −m relates to the
mass flux m of vehicles through the wave.

We start with the Lagrangian formulation [56]. The traveling wave ansatz leads
to

m
τ
v′(χ) − 1

τ
u′(χ) = 0 , (14)

m
τ
u′(χ) + h′(v(χ))m

τ
v′(χ) = 1

τ
(U(v(χ)) − u(χ)) . (15)

Equation (14) yields that

mv − u = −s , (16)
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where s is a constant of integration. Using (16) to substitute u by v in (15), we obtain
the scalar first-order jamiton ODE

v′(χ) = w(v(χ))

r ′(v(χ))
, (17)

where the two functions w and r are defined as

w(v) = U(v) − (mv + s) and r(v) = mh(v) + m2v .

Because h′(v) < 0 and h′′(v) > 0, the denominator in (17) has exactly one root, the
sonic value vS (occurring at the sonic point), such that h′(vS) = −m. The ODE (17)
can be integrated through vS if the numerator in (17) has a simple root at vS as well.
This leads to the Chapman-Jouguet condition [18]

mvS + s = U(vS) ,

which yields a relationship between the constants m and s as follows:

m = −h′(vS) and s = U(vS) − mvS .

One therefore has a one-parameter family of smooth traveling wave solutions,
parameterized by vS, each being solutions of (17).

Into these smooth profiles shocks can be inserted that move with the same speed
−m. The first condition in (13) implies that the quantity mv−u is conserved across
the shock (in addition to being conserved along the smooth parts by (16)). And both
conditions in (13) together imply that r(v) is conserved across shocks. Hence, when
integrating (17), one can at any value v− insert a shock that jumps to a value v+ with
r(v+) = r(v−) and continue integrating (17) from there. Moreover, one can only
jump downwards to satisfy the Lax entropy conditions [65], i.e., v+ < vS < v−.
This, in turn requires that the smooth jamiton profile v(χ) must be an increasing
function. Using L’Hôpital’s rule in (17) at the sonic point yields that

0 <
w′(vS)
r ′′(vS)

= U ′(vS) − m

mh′′(vS)
= U ′(vS) + h′(vS)

mh′′(vS)
,

which means exactly that the SCC is violated. In other words, as shown in [56],
jamiton profiles with shocks can exist if and only if the SCC is violated.

The construction in Eulerian variables is analogous, albeit a bit more technical
(cf. [19]). The traveling wave ansatz leads to

−sρ′ + (ρu)′ = 0 ,

(u − s − ρh′(ρ))u′ = U(ρ) − u .



Structural Properties of the Stability of Jamitons 45

Integrating the first equation yields ρ(u − s) = m, which allows one to substitute ρ

via u and vice versa. The second equation becomes the jamiton ODE

u′(η) = (u − s)(U(ρ) − u)

(u − s)2 − mh′(ρ)
,

where ρ = m
u−s

. The Chapman-Jouguet condition (matching roots of numerator and

denominator) leads to the relations: m = ρ2
Sh

′(ρS) and s = U(ρS) − ρSh
′(ρS).

Shock and entropy conditions are then implemented analogous to the Lagrangian
situation.

With these rules, jamiton solutions can be constructed (in either choice of
variables). For a given choice of vS (and thus uniform propagation speed), any
pattern of solutions to (17) connected by shocks (satisfying the above conditions)
results in a traveling wave solution. The jamitons between any two shocks can be
arbitrarily short (with a small variation around vS), or may be arbitrarily long. In
fact, it is not even required for the jamitons between shocks to have the same length
(see [19, 56] for visualizations of jamiton profiles).

While all of these constitute feasible traveling wave solutions of the ARZ
model (4), it does not mean that all such profiles would be dynamically stable under
perturbations. In fact, both numerical evidence (see Sect. 3) as well as intuition
dictate that neither very short nor very long jamitons should be stable. The former
because they can be thought of as a small (sawtooth) perturbation of the constant vS
state (which is unstable because the SCC is violated, see Sect. 2.2); and the latter
because their long tail will itself be close to a constant which, if that state violates
the SCC, will be dynamically unstable. In other words, too short jamitons merge
and have longer wave forms between them; and long jamitons have new instabilities
grow in their tails. It is only the middle range of jamitons (not too short and not too
long) that is expected to be dynamically stable; and only those should arise in actual
practice.

This dynamic stability (of the jamitons themselves) has not been studied before.
We do so, by first conducting a computational study in Sect. 3 that confirms the
intuition above and quantifies it; and then deriving and analyzing linear perturbation
equations for the jamiton solutions in Sect. 4.

3 Computational Study of Jamiton Stability

To understand the dynamic stability of jamitons, we conduct a systematic study of
the ARZ model (4) via direct numerical computation. After constructing a periodic
jamiton as outlined in Sect. 2.3, we insert that profile as an initial condition into a
numerical scheme (Sect. 3.1) and investigate whether the profile is maintained under
small perturbations (Sect. 3.2).
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3.1 Numerical Scheme for the ARZ Model with Relaxation
Term

The ARZ model (4) is a system of hyperbolic conservation laws with a relaxation
term. The hyperbolic part of the system can be solved using a finite volume scheme
based on an approximate Riemann solver [40]. To find the numerical flux at the cell
boundaries, we use the HLL approximate Riemann solver [23], which guarantees
that the numerical fluxes satisfy the entropy condition [36]. Given the grid cell Ci =
[xi − �x/2, xi + �x/2], where �x is the cell size, let

Un
i =

[
ρn

i

qn
i

]
and Fn

i+ 1
2

=
⎡
⎣(Fρ)n

i+ 1
2

(Fq)n
i+ 1

2

⎤
⎦

denote the approximate solution (cell average) in cell Ci and the numerical flux at
the boundary between cells Ci and Ci+1, respectively, at time n�t (n-th time step).

A numerically robust treatment of the relaxation term is achieved by treating it
implicitly, resulting in the semi-implicit update rule

[
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(
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i )

)
− qn+1

i

]
.

This ensures stability even when τ is small. Note that, because the implicit term
appears only in the q-equation and because it is linear in qn+1

i , the formally semi-
implicit numerical scheme is actually fully explicit and the update step can be
conducted in two sub-steps:

(1) Update the ρ component explicitly:

ρn+1
i = ρn

i − �t
�x

(
(Fρ)n

i+ 1
2

− (Fρ)n
i− 1

2

)
.

(2) Now, with ρn+1
i known from the first step, update
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i
)
)

.
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3.2 Results on the Stability of Jamitons

Using the numerical scheme described above, we conduct a computational investi-
gation of the stability of jamitons (of the ARZ model (4) with the specific model
functions and parameters described in Sect. 2.1). Specifically, we classify the
jamitons as follows: Evolve the solution up to some large final time, while regularly
adding small perturbations. Then a jamiton is classified as stable if the jamiton
profile is (within a tolerance) maintained at the final time, and unstable otherwise.

To classify a given jamiton J0 = [ρ0(x), u0(x)]T (of length L0, with sonic
density ρs0 , upstream density ρ+

0 , and speed s0), we set up a periodic domain
of length 4L0 with initial conditions [ρic(x), uic(x)]T = [ρ0(x mod L0), u0(x

mod L0)]T , i.e., the initial profile is four consecutive jamitons J0 with shocks in
between. We discretize using 10,000 grid cells, and run the numerical scheme (from
Sect. 3.1) up to tfinal = 3,000 (seconds; we omit units below).

During the numerical solution process, a small smooth perturbation is added to
the vehicle velocity field u = q/ρ − h(ρ) in each step. The perturbation in the n-th
step is

pn(x) = √
�t c(t)

1√
�

�∑
ν=1

ξn
ν sin

(
2πνx

L0

)
,

where the ξn
ν ∈ N (0, 1) are normally distributed random numbers with mean zero

and standard deviation 1. As in the Euler-Maruyama method [45], the additive noise
is scaled with

√
�t . The value � is chosen so that the highest frequency mode has a

period L0
�

that is not below the vehicle length 1/ρmax, i.e., � = �L0ρmax�. In other
words, we have white noise exactly until the vehicle scale, which is well-resolved
by the numerical scheme. Finally, the noise scale is c(t) = 1

100umax for t ≤ 100, and
c(t) = 1

1000umax for t > 100. The rationale for this larger initial “thermal noise” is,
like in probabilistic optimization techniques, to make it easier for the solutions to
escape their initial configuration in case it is only mildly unstable.

Once the solution at tfinal is found, we first determine the number of shocks.
If that number is not equal to 4, we immediately classify the jamiton J0
as unstable. Otherwise, we check the jamiton speed s by plotting the points
(ρ(xi, tfinal), ρ(xi, tfinal)u(xi, tfinal)) for i = 1, . . . , 10000 in the fundamental
diagram (FD), and calculate s as the least squares best fit slope of these data
points (see [56] for the reason why s is the slope in the FD). If |s − s0| > 0.5m/s,
we classify J0 as unstable. Otherwise, we classify J0 as stable.

This process is now conducted (and run in parallel on a HPC cluster) for 980
different jamitons that are sampled as follows. First we sample 35 values of ρS
equidistant in the ρ-interval where the SCC is violated. Then, for each ρS, we pick
28 values of ρ+ in [ρS, ρM], where ρM is the upstream density corresponding to the
infinite jamiton [56].
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The results of this classification are displayed in Fig. 2. Each of the four panels
shows the same results, but in four different “phase planes.” Each jamiton is
uniquely determined by two parameters: (i) the sonic density ρS or equivalently the
wave speed s; and (ii) the downstream shock density ρ+, or equivalently, the average
density ρ̄ across the jamiton, or equivalently, the jamiton length L. Figures 2a, c,
and d have the ρS on the horizontal axis, and L, ρ+, and ρ̄, respectively, on the
vertical axis. Figure 2b displays s vs. ρ̄. In each quantity except L, the jamiton
region (where the SCC (11) is violated) spans an interval. The dashed brown curve
corresponds the zero-length jamiton limit (in which ρS = ρ+ = ρ̄), while the solid
dark blue curve represents the limit of infinitely long jamitons. Inside that jamiton
domain, the 980 investigated jamitons are displayed as colored dots: stable jamitons
are light blue; unstable jamitons are red. Note that the void regions visible in Fig. 2a
(top left), Fig. 2b (bottom left), and Fig. 2d (bottom right), also possess jamitons
that were not simulated due to the sampling strategy of the 980 examples.

The results display intriguingly clear patterns: there appear to be two smooth
curves inside the jamiton region that separate the stable from the unstable jamitons.

Fig. 2 Classification of 980 jamitons into stable and unstable, displayed in four different phase
planes. In each plane, the dashed brown line represents the zero-length jamiton, and the dark blue
line is the limit of jamitons with infinite length. The two disconnected red regions correspond to the
“splitting” and “merging” instabilities, respectively. (a) Stability classification in the phase plane
(ρS, L). (b) Stability classification in the phase plane (ρ̄, s). (c) Stability classification in the phase
plane (ρS, ρ

+). (d) Stability classification in the phase plane (ρS, ρ̄)
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Specifically, there are two unstable regions separated by a stable region: short
jamitons which perturbations cause to coalesce into bigger ones (a “merging”
instability); and long jamitons in which the long tail is linearly unstable and sheds
growing waves (a “splitting” instability). This last characterization of these two
mechanisms is based on observing the time-evolution of the computations, as well
as the stability analysis below.

4 Stability Analysis of Jamiton Solutions

We now move towards a mathematical analysis of the dynamic stability of jamitons.
For this we switch to the Lagrangian variables introduced in Sect. 2.3. Consider a
given jamiton [v0(σ, t), u0(σ, t)]T with sonic specific volume vs0 , and Lagrangian
length (which is actually the number of vehicles in the jamiton) N0. We start by
writing the (Lagrangian) ARZ model (12) in the frame of reference of this jamiton,
which has a propagation speed −m0 = h′(vs0). Thus we introduce the variables
χ = σ+m0t

τ
(the same variable used in Sect. 2.3 to construct the jamitons) and the

non-dimensional time t∗ = t
τ
(for consistency with the scaling used for χ ). Because

of that last choice, any instability growth rate computed with these variables needs
to be scaled by τ to recover physical units.

In the coordinates defined above, Eqs. (12) become

vt∗ + (m0v − u)χ = 0 ,

(u + h(v))t∗ + m0 (u + h(v))χ = U(v) − u .
(18)

This system is in conservative form, with conserved quantities v and q = u + h(v).
The characteristic speeds of (18) are

λ1 = m0 + h′(v) and λ2 = m0 . (19)

The Rankine-Hugoniot shock jump conditions associated with (18) are

(−m0 + m̃) [v] + [u] = 0 ,

[u] + [h(v)] = 0 ,
(20)

where m̃ is the shock speed in the χ–t∗ frame. Contacts require m̃ = m0 and [u] = 0.

4.1 Perturbation System for Single-Jamiton Waves

We now formulate a linear perturbation system of (18). There are two fundamental
differences to the linear perturbation analysis for uniform flow presented in
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Sect. 2.2. First, because the jamiton profile is non-constant, we obtain a variable-
coefficient linear system. Second, because the jamiton contains a shock, we must
introduce a perturbation to the shock’s position as an additional variable (a variable
not needed for perturbations of smooth solutions). As we will see below in more
detail, both aspects render this analysis significantly more complicated than the one
in Sect. 2.2.

Here we consider the stability of periodic jamiton profiles with one shock per
period, under periodic perturbations. Note that this setup excludes the possibility of
jamitons merging by means of adjacent shocks approaching each other. Hence, we
only study the “splitting instability” for long jamitons, not the “merging instability”
for short jamitons (see Sect. 3.2).

Consider a periodic jamiton profile [v0(σ, t), u0(σ, t)]T of length N0 between
shocks, and write it as [v0(χ), u0(χ)]T —a solution of (18) on [0, N0] with the
shock placed at 0. Now write v(χ, t∗) = v0(χ) + δv(χ, t∗) and u(χ, t∗) = u0(χ) +
δu(χ, t∗), where δv and δu are infinitesimal perturbations. Substituting into (18)
yields the linear system for δv and δu:

δvt∗ + (m0δv − δu)χ = 0 ,
(
δu + h′(v0)δv

)
t∗ + m0

(
δu + h′(v0)δv

)
χ

= U ′(v0)δv − δu .
(21)

We also need to track the infinitesimal perturbation of the shock position χ =
μ(t∗). We do so by implementing the Rankine-Hugoniot conditions (20) in a way
consistent with solving (18) on [0, N0] with periodic boundary conditions. This then
generates boundary conditions for (21). The first equation in (20) yields

(μ̇ − m0)
(
[v0] + [δv] + μ[v0χ ]

)
+ [u0] + [δu] + μ[u0χ ] = 0 .

Expanding this equation, ignoring terms beyond O(μ), and using that [u0] −
m0[v0] = 0 and u0χ − m0v0χ = 0, we obtain

μ̇[v0] − m0[δv] + [δu] = 0 .

The second equation in (20) becomes

[u0] + [δu] + μ[u0χ ] + [v0] + [h′(v0)δv] + μ[h(v0)χ ] = 0 .

Again, ignoring terms beyond O(μ) and using that [u0] + [h(v0)] = 0, we get

[δu] + [h′(v0)δv] + μ[u0χ + h′(v0)χ ] = 0 .

In this setup the bracket notation denotes [ζ ] = ζ(0+)−ζ(N−
0 ). Therefore, we have

derived the following variable-coefficient linear model for δv and δu on [0, N0],
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with boundary conditions that involve the shock position perturbation μ:

δvt∗ + (m0δv − δu)χ = 0 ,
(
δu + h′(v0)δv

)
t∗ + m0

(
δu + h′(v0)δv

)
χ

= U ′(v0)δv − δu , (22)

with boundary condition:
[
δu + h′(v0)δv

] = −μ
[
u0χ + h′(v0)χ

]
,

where μ satisfies the ODE: μ̇ = m0[δv] − [δu]
[v0] . (23)

We conduct two further simplifications to the model. First, we transform it to
characteristic form by writing it in terms of the Riemann variables δu and δq = δu+
h′(v0)δv. Second, we replace the shock perturbation variable μ by a Robin b.c. for
the PDE, as follows. Differentiating the boundary conditions [δq] = −μ[u0χ +
h′(v0)χ ] with respect to time yields

d

dt∗
[δq] = − [

u0χ + h′(v0)χ
]
μ̇

= − [
u0χ + h′(v0)χ

]

[v0]
([

m0

h′(v0)
δq

]
−

[(
1 + m0

h′(v0)

)
δu

])
.

Using the fact that δqt∗ = −m0δqχ +
(−h′(v0)−U ′(v0)

h′(v0)

)
δu +

(
U ′(v0)
h′(v0)

)
δq, we obtain

Robin boundary conditions for the PDE. Altogether, we obtain the following system

δut∗ + (
m0 + h′(v0)

)
δuχ =

(
m0h

′(v0)χ−h′(v0)−U ′(v0)
h′(v0)

)
δu +

(
U ′(v0)−m0h

′(v0)χ
h′(v0)

)
δq ,

δqt∗ + m0δqχ =
(−h′(v0)−U ′(v0)

h′(v0)

)
δu +

(
U ′(v0)
h′(v0)

)
δq ,

(24)

with boundary condition

δqχ (0) + kLδq(0) = δqχ (N0) + kRδq(N0) + cLδu(0) + cRδu(N0) . (25)

The coefficients are computable from the jamiton functions as

kL = K(0) , kR = K(N0) , cL = −C(0) , and cR = C(N0) ,

where

K(χ) = 1
m0

− [u0χ+h′(v0)χ ]
[v0]

1
h′(v0(χ))

− h′(v0(χ))+U ′(v0(χ))
m0h

′(v0(χ))
,

C(χ) = [u0χ+h′(v0)χ ]
[v0]

(
1

m0
+ 1

h′(v0(χ))

)
+ h′(v0(χ))+U ′(v0(χ))

m0h
′(v0(χ))

.
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4.2 Qualitative Characterization of the Jamiton Perturbation
System

We now adopt a short notation for the jamiton perturbation system (24), with
b.c. (25), by writing (u, q) and (x, t) in place of (δu, δq) and (χ, t∗), and introducing
coefficient functions to obtain

ut + b1(x)ux = a11(x)u + a12(x)q ,

qt + b2 qx = a21(x)u + a22(x)q ,
(26)

with b.c. (qx + kLq)(0) = (qx + kRq)(N0) + cLu(0) + cRu(N0). The characteristic
speed b2 > 0 is constant and positive. In turn, b1(x) vanishes at the sonic point
xS, and is negative (positive) for x < xS (x > xS). Hence, the only in-going
characteristic is at x = 0, for q (consistent with a single b.c.). The function
a11(x) crosses from negative to positive at xS as well, and it is always negative
for x < xS; it may or may not cross back to negative for some x > xS. Finally,
a22(x) < 0 everywhere. Figures 3 and 4 display the functions and characteristic
curves, respectively, for an example jamiton.

Qualitatively, the solutions of (26) behave as follows. Being an advection-
reaction system, its solutions are generally wave-like in nature. Waves enter the
q-field at x = 0 and are transported with the q-field to the right with constant
speed b2, while being dampened by the a22-term and modified (via the u-field)
through the a21-term. Likewise, the q-field constantly feeds into the u-field via
the a12-term. Moreover, for x < xS, the u-field is transported towards x = 0 and
dampened by a11; while for x > xS, the u-field is transported towards x = N0 and
amplified/dampened by a11. Finally, the outgoing characteristics at x = 0 (u) and
x = N0 (u and q) combine via (25) and feed back into q at x = 0.

Our goal is now to (a) characterize the dynamic stability of the given jamiton
by means of the behavior of the solutions of its associated perturbation system (26)
(incl. b.c.), and (b) use this insight to explain and understand the computational
results of the fully nonlinear ARZ model (4) presented in Sect. 3. To that end, we

(a) (b) (c)

Fig. 3 Coefficient functions for (26) and a jamiton with vS = 12.5 m/veh and v+ = 8.9 m/veh.
This jamiton has a length of 561m and contains 40 vehicles. Note that here we revert to physical
units (vehicles) for the horizontal axis. (a) b1(x) and b2. (b) a11(x) and a21(x). (c) a22(x) and
a12(x)
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start by establishing that there are (at least) two distinct notions of (in)stability that
must be considered here.

First, asymptotic stability under infinitesimal perturbations (studied in Sect. 4.4).
This is captured by the t → ∞ behavior of linear model (26): if for any
i.c. [u(x, 0), q(x, 0)]T the solution decays exponentially as t → ∞, then this notion
of stability is met. Strong linear instability occurs when there is a positive feedback
mechanism that produces an exponential growth of an initial perturbation in time,
eventually driving the full model (4) out of the linear regime, no matter how small
the initial (non-zero) perturbation is. At the borderline between these two behaviors,
the solutions to the linear system may remain bounded for all time, or grow/decay
at a sub-exponential rate.

The second notion of stability is given by the maximum transient growth
criteria (studied in Sect. 4.5). Because (26) is non-normal, even if asymptotic
stability applies, an initially small perturbation may be amplified significantly at
transient times, before eventually dying off as t → ∞. However, if that amplified
perturbation becomes sufficiently large, nonlinear effects will take over in the full
ARZ model (4). In this scenario, how far the system ends up from equilibrium
depends both on the transient growth factor (see below) and the magnitude of the
perturbations.

4.3 Fundamental Challenges Caused by the Sonic Point

In the same way as the original inhomogenous ARZ model may look misleadingly
innocuous (“just a hyperbolic system with a relaxation term”), yet develops
extremely complex dynamics if the SCC is violated, the jamiton perturbation
system (24) may look innocent as well—and also that impression would be false.
The fact that the characteristic speed b1 transitions from negative to positive at xS
(a direct consequence of this being a sonic point), causes fundamental structural
challenges.

It may seem rather natural to attempt to study (24) by expanding its solutions
using eigenmodes, and seek solutions to the eigenvalue problem

{
λu = −b1(x)ux + a11(x)u + a12(x)q ,

λq = −b2qx + a21(x)u + a22(x)q .
(27)

However, the right-hand side operator here is non-normal; and it is well known that
for non-normal operators, spectral calculations can be extremely unreliable [14, 60,
61].

Furthermore, the presence of the sonic point makes the situation substantially
worse, even if one were to have access to “exact” computations. To illustrate the
issue consider the simple model problem

ut + (xu)x = 3
4u , −1 < x < 1 . (28)
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The exact solution of (28) is easily obtained using characteristics: u =
u0(x e−t )e− 1

4 t , where u0 is the initial data. This clearly is a stable situation by any
“physically reasonable” definition. On the other hand, if we look for eigenfunctions
by separating u = φ(x)eλ t , we find that: φ = |x|α , with α = −(λ + 1

4 ) and any
λ with Re(λ) < 1

4 , is an acceptable square-integrable eigenfunction. Even worse:

every eigenvalue has infinite multiplicity (apply dn

dαn to the eigenvalue equation with
the solutions above).

Thus from a naive eigenvalue calculation one would conclude that an exponential
instability occurs! But here, with an exact solution, the situation is clear: the
presence of a sonic point allows the existence of solutions that are not smooth. Then
stability and growth/decay rates depend on the smoothness restrictions imposed.
While L2 yields instability, L∞ or H 1 yield stability, but with different bounds on
the decay rates. Thus, in a numerical computation one would have to worry about
what restriction (if any) the computation enforces as the resolution increases.

Because of these issues we refrain from using the approach in (27), and instead
characterize (in)stability via alternative ways that do not use eigenmode expansions.

4.4 Quantitative Results: Asymptotic Stability

The t → ∞ behavior of the solutions of the jamiton perturbation system (26)
(incl. b.c.) depends on a delicate balance of growth vs. decay effects. And because
those are governed by the functions aij (x), bi(x), and the b.c. constants, we do not
attempt a fully analytical characterization here. Instead, we formulate a sequence of
approximations to the solutions of (26) and analyze their behavior. Specifically, we
formulate the following approximation scheme.

We discretize the spatial domain into a regular grid {x0, . . . , xm} =
{0, h, 2h, . . . , N0 − h,N0} and conduct time steps of size �t = h/b2, see Fig. 4.
We denote the grid approximations Un

j ≈ u(jh, n�t) and Qn
j ≈ q(jh, n�t),

and denote the full state vector at time n�t by Yn = [Un,Qn]T , where
Un = [Un

1 , . . . , Un
m]T and Qn = [Qn

1, . . . ,Q
n
m]T . An update matrix for the

Fig. 4 Illustration of the discretization used to approximate (26), as described in Sect. 4.4. The
left (right) graphic shows the characteristic curves corresponding to the u (q) variable. The u-
characteristics expand away from the sonic point towards the domain boundaries (where the shock
is). The scheme’s time step is selected so that the q-characteristics advance by h per time step
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transport part of (26) (incl. b.c., but neglecting the aij -terms) is obtained via
tracking characteristics: for each grid point xj = jh, determine the associated foot
point x̊j as the solution of the ODE ẋ(s) = −b1(x(s)) with x(0) = xj , evaluated at
s = �t . Then, Un+1

j = �Un (̊xj ), where �Un(x) is the piecewise-linear interpolant
based on the grid data Un. Due to the clever choice of time step, the q-update can
be solved exactly via Qn+1

j = Qn
j−1 for all j ≥ 1. The b.c. are used to update

Qn+1
0 = 1

kL−h−1 ((kR − h−1)Qn
m−1 + cL�Un (̊x0) + cR�Un (̊xm)). We denote this

update matrix M1.
A second matrix for the growth/decay part (i.e., neglecting the advection terms) is

formulated as follows: [Un+1
j ,Qn+1

j ]T = exp(�tA(xj )) · [Un
j ,Qn

j ]T , where A(x)

is the 2 × 2 matrix formed by the aij (x) values. We denote the resulting update
matrix M2.

One step of the numerical scheme, Yn+1 = M ·Yn, is given by the update matrix
M = M2 · M1. This first-order method is carefully designed to not incur any slow
drifts. Because the scheme is linear with time-independent coefficients, the t → ∞
behavior of the solutions is fully characterized by its one-step update matrix M ,
specifically by its spectral radius ρ(M): asymptotic stability (of the approximation)
is given exactly if ρ(M) < 1. Once M is set up, this stability condition can be
checked via Matlab’s numerical linear algebra routines, resulting in a systematic
classification of jamitons into asymptotically stable vs. unstable.

A caveat in this approach is that for any choice of grid size h, we check the
asymptotic stability of an approximation to (26). However, because we have a
convergent sequence of approximations, we approach the true answer for (26) as
h → 0. Moreover, for any h > 0, the approximation slightly overestimates stability
due to the scheme’s numerical diffusion (which vanishes as h → 0), resulting in a
too small but growing (as h → 0) unstable jamiton region.

Figure 5 displays the results. It shows the classification of the same jamitons
as in Fig. 2 into asymptotically stable and unstable using the asymptotic stability
criterion: ρ(M) < 1 (unstable: ρ(M) > 1), where for each jamiton, M is the
one-step update matrix that comes from a discretization with 8000 grid points.
Comparing those results to the nonlinear system results in Fig. 2, we indeed see
that (i) only the splitting instability (long jamitons) can be captured; and (ii) the
unstable region is underestimated. This last aspect is likely also affected by the fact
that asymptotic stability does not account for transient growth effects; which we
consider next.

4.5 Quantitative Results: Transient Growth

Even if the system (26) is asymptotically stable, small perturbations may be
amplified significantly at transient times. Via asymptotic arguments we can argue
that the dominant wave amplitude growth mechanism is the growth of the u-field
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(a) (b)

Fig. 5 Classification of 980 jamitons into asymptotically stable vs. unstable, where asymptotic
stability is given by ρ(M) < 1 (and instability by ρ(M) > 1). Here, for each jamiton, M is
the one-step update matrix that comes from a discretization with 8000 grid points. Note that the
criterion used here can only detect “splitting” instabilities. (a) Classification of asymptotic stability
in the phase plane (ρS, L). (b) Classification of asymptotic stability in the phase plane (ρ̄, s)

as it travels between the sonic point xS and the right domain boundary N0. The
argument (which can be made rigorous via a WKB expansion [6]) is as follows.

Consider high frequency solutions of (26), i.e., solutions that are rapidly varying
in space and time. In this situation the behavior is dominated by the left-hand side,
and we can see that such solutions generally consist of a superposition of two waves:
the “u-wave,” dominated by the excitation in u, and the “q-wave,” dominated by the
excitation in q. Consider first the u-wave. Then, because u � q, we can simplify
the equations to obtain

ut + b1(x)ux ≈ a11(x)u ,

qt + b2 qx ≈ a21(x)u .

From this we can see that q is “slaved” to u (since the homogeneous part of the
solution to the second equation should be considered as belonging to the q-wave). A
similar argument applies to the q-wave; however, the u-wave will dominate because
a11 > 0 to the right of xS, while a22 < 0.

Hence, neglecting the q-wave (and its influence on u) we obtain that u evolves
(approximately) according to the characteristic equations dx

dt = b1(x) and du
dt =

a11(x)u. The speed b1 vanishes at xS, but so does the growth rate a11, resulting in
an overall finite net growth. By the chain rule, the characteristic equations lead to
the ODE du

dx = a11(x)
b1(x)

u, with normalized i.c. u(xS) = 1, to estimate the transient
amplification factor F . Solving the ODE yields

F = exp

(∫ N0

xS

a11(x)

b1(x)
dx

)
. (29)
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This quantity can be computed via quadrature, using L’Hôpital’s rule at/near xS.
However, note that the arguments above do not apply across the sonic point,
even though the integrand is not singular, because the parameterization of the
characteristics by x (i.e., dt

dx = 1
b1(x)

) implicit in the calculation above breaks down
there.

An important fact is that the quantity F can be computed without solving the
jamiton ODE. This is achieved by parameterizing the jamiton in terms of vS and the
left shock state vN0 = v(N0). Then, because a11 and b1 are functions of x only via
the jamiton v(x), one can apply a change of variables to replace x-integration by v-
integration. The Jacobian for the transformation follows from the jamiton ODE (17).
This yields the formula

F = exp

(∫ vN0

vS

m0h
′′(v)

h′(v)(h′(v) + m0)
− m0(h

′(v) + U ′(v))
h′(v)(U(v) − m0v − s0)

dv

)
.

Figure 6 shows the stability classification via this criterion for the same jamitons
studied in Fig. 2. As in Fig. 5, we do not capture merging instabilities. For the
splitting instability, we consider two thresholds for the amplification factor: F1 =
105 and F2 = 1015. Classifying jamitons below the 105 amplification factor as stable
is consistent with the magnitude of noise in the nonlinear computation (Sect. 3.2),
which was roughly 10−5. The results show that the stability boundary in Fig. 2 is not
reproduced perfectly, but reasonably well. An interesting advantage of this measure
of “instability” is that it is not just a yes/no criterion, but rather provides a measure of
the “badness” of the instability. One key missing piece in this criterion is that it does
not characterize the “pumping” mechanism of perturbations from q into u at/near
the sonic point. Hence, we do not know how large the perturbation magnitude really
is near xS.

(a) (b)

Fig. 6 Classification of 980 jamitons according to the transient growth factor (29). Three levels
of F are displayed, with the thresholds at F1 = 105 and F2 = 1015 to yield: stable if F < F1,
moderately unstable if F1 < F < F2, and unstable if F2 < F . (a) Classification of jamitons
according to F in the phase plane (ρS, L). (b) Classification of jamitons according to F in the
phase plane (ρ̄, s)
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5 Discussion and Outlook

The study presented in this paper highlights important structural properties of
hyperbolic conservation law systems with relaxation terms, in the regime when the
sub-characteristic condition (SCC) is violated. Such PDE are of importance in the
macroscopic modeling of vehicular traffic flow (the main focus here), but also for
other applications, such as roll waves in open channels [49] and circular hydraulic
jumps [30]. Furthermore, many of the issues are similar to those that appear in the
context of the ZND theory for the stability of Chapman-Jouguet (CJ) detonations
[18]. In fact, jamitons are mathematical analogs of detonation waves [19]. While for
detonation waves the notion of an SCC does not seem to apply, CJ detonations do
have a sonic point, which renders their stability analysis [8, 58] difficult. It is our
hope that the relative simplicity of systems such as the ARZ model will provide a
route to advance in this challenging topic.

This work provides a pathway to understanding important stability questions for
the inhomogeneous ARZ model (3). In the regime of violated SCC, this model can
reproduce the practically relevant [57] phenomena of phantom traffic jams and stop-
and-go traffic waves, while preserving the advantages of a macroscopic description
(see Sect. 1). The dynamic stability of jamitons determines which of the many
theoretically possible jamiton solutions of the model can/will be selected by the
equations’ dynamics. The study in Sect. 3 reveals that short jamitons tend to merge,
and long jamitons tend to split, resulting in a middle range of stable jamiton wave
lengths. A remarkable aspect about this dynamic selection via (in)stability is that it
selects a length scale (range), even though there is no length scale that is explicitly
inserted into the model.

The perturbation analysis of jamiton solutions presented here leads to a variable-
coefficient linear advection-reaction system whose solutions characterize jamiton
stability. As shown in Sect. 4, this system exhibits extremely complex dynamics that
may not be suspected at first glance, given its simple fundamental structure. A key
reason for those complex dynamics is the zero-transition of one characteristic field,
which corresponds to the sonic point in the nonlinear jamiton. While a complete
analysis of the behavior of the solutions to the perturbation system remains to
be conducted in future work (including a full WKB analysis [6]), the qualitative
characterization presented herein reveals that there are two key mechanisms for
instability that must be considered: first, asymptotic stability that captures the net
amplification or decay of infinitesimal perturbation that traverse through periodic
jamiton patterns; and second, the transient growth of small perturbations as they
travel from near the sonic point down the jamiton profile until they eventually hit
the next shock. The quantitative study in Sect. 4 reveals that for some jamitons, such
transient amplifications may yield noise amplification by many orders of magnitude,
which for many practical situations will definitely push the solutions into the fully
nonlinear regime.

Based on those stability concepts, two criteria have been developed that are
directly verifiable in terms of the model functions rather than requiring nonlinear
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hyperbolic system simulations. Asymptotic stability reduces to finding the spectral
radius of a sparse matrix, which in itself is a nontrivial problem as well, but it is
an established standard task in numerical linear algebra. For the transient growth,
a proxy criterion has been devised that boils down to a straightforward quadrature
of two model functions. When compared with the “brute force” nonlinear stability
results (Sect. 3), those two criteria capture the key qualitative essence of the stability
boundary for long jamitons; but to reproduce the precise shape there is still room
for improvement via more refined stability criteria.

Mathematically, understanding the solution behavior of relaxation system in
which the SCC is violated is a crucial challenge [29, 41, 44], and this work provides
some insight. In addition, the jamiton perturbation system (24) is full of challenging
structure (see Sect. 4.3), and this paper provides criteria to characterize its stability
properties.

For the key application of traffic flow, the understanding of which jamiton
solutions are dynamically stable is a critical step towards determining which models
reproduce real-world phenomena best. Moreover, the non-normal structure of the
system in (24), leading to the transient growth behavior it exhibits (Sect. 4.5),
has interesting connections to the task of stabilizing traffic flow with a single
autonomous vehicle [10].

Finally, an obvious extension is to tackle the merging instability as well, and we
plan to do so in future work. At least in principle, the methodology of this current
work can be extended to include the merging instabilities by allowing multiple shock
perturbation.
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