
SoftwareX 12 (2020) 100613

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original Software Publication

Pykat: Python package formodelling precision optical interferometers

Daniel D. Brown a,∗, Philip Jones b, Samuel Rowlinson b, Sean Leavey e,f, Anna C. Green g,
Daniel Töyrä h, Andreas Freise b,c,d

a OzGrav-Adelaide, School of Physical Sciences, University of Adelaide, 5005, Adelaide, Australia
b School of Physics and Astronomy, and Institute of Gravitational Wave Astronomy, University of Birmingham, Edgbaston, Birmingham B15

2TT, United Kingdom
c Department of Physics and Astronomy, VU Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
d Nikhef, Science Park 105, 1098, XG Amsterdam, The Netherlands
e Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Hannover, Germany
f Leibniz Universität Hannover, Germany
g University of Florida, Gainesville, FL 32611, USA
h OzGrav-ANU, Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra, ACT 2601 Australia

a r t i c l e i n f o

Article history:

Received 14 March 2020

Received in revised form 17 August 2020

Accepted 8 October 2020

Keywords:

Interferometry modelling

Gravitational wave detector modelling

Quantum optics

Quantum noise

a b s t r a c t

Pykat is a Python package which extends the popular optical interferometer modelling software

Finesse. It provides a more modern and efficient user interface for conducting complex numerical

simulations, as well as enabling the use of Python’s extensive scientific software ecosystem. In this

paper we highlight the relationship between Pykat and Finesse, how it is used, and provide an

illustrative example of how it has helped to better understand the characteristics of the current

generation of gravitational wave interferometers.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.2

Permanent link to code/repository used for this code version For example: https://github.com/ElsevierSoftwareX/SOFTX_2020_117

Legal Code License GPL v2

Code versioning system used Git

Software code languages, tools, and services used Python

Compilation requirements, operating environments & dependencies Numpy, scipy, six, h5py, pandas, matplotlib, tabulate, click

If available Link to developer documentation/manual http://www.gwoptics.org/learn/

Support email for questions Finesse-dev@nikhef.nl

1. Introduction

In order to design the precision interferometers at the heart

of advanced gravitational wave detectors, a multitude of bespoke

and generic optical simulation software packages have been de-

veloped [1]. One of the most popular approaches to modelling

these interferometers is to use the frequency domain picture,

which allows the user to study the quasi-steady state behaviour

∗ Corresponding author.

E-mail address: daniel.d.brown@adelaide.edu.au (D.D. Brown).

of an interferometer. Such tools are used to model noise cou-

plings, design control systems, and how defects in an interferom-

eter affect the behaviour of both. As the physical complexity of

these interferometers has increased to meet improved sensitivity

goals, so has the complexity of the modelling packages to keep

up with the issues the community has faced. Several packages

using this frequency domain method have been developed over

the years: Melody [2], Optickle [3], MIST [4], and Finesse [5,6].

The interferometers typically used for gravitational wave de-

tection are well described by a set of linear coupling equations

between the various components. This set of equations grows

rapidly when the number of optical components, frequencies of

the light fields, and higher-order spatial modes of those light

https://doi.org/10.1016/j.softx.2020.100613

2352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

D.D. Brown, P. Jones, S. Rowlinson et al. SoftwareX 12 (2020) 100613

Fig. 1. A schematic of the typical workflow a user has with Pykat. Initially the user must have a concrete idea of the physical setup they want to model, and

then express this setup in kat-script. This script can then be loaded into a Pykat object which allows the user to run multiple simulations, perform more complex

analyses, and generate plots. Behind the scenes, Pykat will seamlessly setup and call the Finesse binary to run the required simulations.

fields increases. All of the above packages take in some descrip-
tion of the interferometer, construct a sparse matrix representing
the set of equations describing the system, then solve it for
various excitations and configurations.

Finesse is one of the most feature-rich packages available
and has had extensive usage throughout the gravitational wave
community. It is programmed in C, is free, open source, and
cross platform. It consists of a single binary executable, called
kat, that performs the required numerical computations. The
user provides a text file, known as a kat-file, that describes both
the model of an interferometer and the type of simulation to be
executed, using a domain-specific language, kat-script. The binary
then outputs a text file with the output data requested by the
user. This interaction is performed entirely via a command-line
interface from a system terminal.

Despite Finesse being very computationally efficient, the sim-
plistic user interface began to become a hindrance as the com-
plexity of the modelling tasks grew. However, due to the simple
command-line interface it was easily called and manipulated via
other higher level programming languages such as Bash, Perl,
MATLAB, and eventually Python. The Python wrapper, Pykat, is
the latest and by far the most advanced wrapper available. It
enables a user to easily perform complex sets of modelling tasks
efficiently and enables Finesse to be used in conjunction with
the wide variety of Python packages, for example, for generating
plots, for solving complex optimisation problems or for producing
reduced-order models [7].

Pykat has grown extensively from what it was first conceived
to be. Originally it aimed to just simply read kat-script and pro-
duce an object-oriented description of the model and simulation
to produce a graphical user-interface (GUI). The object-oriented
description however proved much more useful for developing
and running simulations. We then developed Pykat to be much
more focused on providing better interoperability with Finesse
binary. As of today, the majority of all Finesse-based modelling
tasks are now undertaken through Pykat.

In this article we highlight how Pykat works with Finesse to
run simulations in a more efficient and procedural manner. We
also provide an illustrative example of how Pykat was used in
practice to better understand the behaviour of real gravitational
wave interferometer.

2. Installation

Pykat is available from http://www.gwoptics.org/pykat/ with
links to a git repository with the source code, including the
most recent version under development. The release version can

be installed through the Conda package management system
https://anaconda.org/gwoptics/pykat or from PyPi https://pypi.
org/project/PyKat/. At the time of writing Conda is the recom-
mended method to install Pykat, because Conda also hosts the
Finesse binaries for multiple platforms, and Finesse must be
installed for Pykat to work.

3. Wrapping up Finesse with Python

Pykat should be thought of as a wrapper to run Finesse sim-
ulations. Thus, to effectively use it the user must be familiar
with how Finesse works computationally, what it can and cannot
compute, and how to use kat-script. For that, the best reference
is the Finesse user manual [8] and the review article by Bond
et al. [9]. Additional learning materials can also be found at http:
//www.gwoptics.org/learn/, which contains online notebooks for
learning about interferometry as well as the materials for several
workshops we have taught using Pykat.

Kat-script has three distinct classes of instruction: components,
detectors, and commands. Components are objects such as mirrors,
beam splitters, lenses, etc. Components can be connected to-
gether to form a network. Each component has a number of nodes
to represent the incoming and outgoing light fields; the edges of
the network describe how that light goes from one component
to the next. Detectors are objects that produce an output when
a simulation is run. For example, if you want to measure the
optical power at a particular location in the interferometer, you
would place a ‘photodiode’ detector there. Detectors can be more
abstract, however, such as for measuring particular properties
of a laser beam’s shape that would otherwise be difficult or
impossible in a real setup. Commands are those instructions that
configure a component or detector, or setup the type of simula-
tion to run. The Python code for these three classes of instructions
can be found in pykat.components, pykat.detectors, and
pykat.commands.

When using Finesse in the traditional way, the user would
write their kat-script into a text file and then from the command
line call the binary to run it, kat my_simulation.kat. This
would then produce a text file called my_simulation.out con-
taining simulation output data and display a plot of the detector
outputs as a function of some model parameter being varied.

Fig. 1 shows an overview of how a user would typically in-
teract with Pykat instead. Pykat aims to offer Python classes
that represent all available kat-script instructions. Models and
simulations can be built in Pykat through two interfaces: by
parsing the kat-script; or by using the object-oriented interface.
Kat-script instructions are parsed into an instance of Pykat’s Kat

2

D.D. Brown, P. Jones, S. Rowlinson et al. SoftwareX 12 (2020) 100613

object. It is constructive for the user to imagine a Kat object
like a kat-file that you would pass to the Finesse binary at the
command-line, except the kat-file is dynamically generated by
Pykat.

Parsing the kat-script converts the instructions into Python
objects which are added to the Kat object which the user can
interact with. These objects can be manipulated as required, such
as changing properties, parsing further commands, etc. Once the
user is ready a simulation can be run. The Kat object will first
construct a kat-file from the objects contained within it, then pass
it to the Finesse binary. Pykat and Finesse then communicate
with each other during the running of a simulation via an inter-
process communication pipe, allowing data and commands to
be exchanged. Once completed, the outputted text file with the
simulation result is loaded and processed into a KatRun object,
which provides an easy interface for the user to access all the
detector outputs via numpy arrays.

Consider the example in Listing 1 where we create a simple
model with a single laser and a mirror. In this model we add
two detectors to measure the complex amplitude of the light
fields being reflected and transmitted through the mirror. These
commands are parsed into a Kat object. We then change the
mirror’s reflectivity and transmissivity and run it. The output
file is then accessed much like a dictionary using the detectors’
names. This allows the user to quickly plot and manipulate any
outputs.

1 import pykat
2

3 kat = pykat.finesse.kat()
4 kat.parse(" " "
5 l l1 1 0 n1 % laser with P=1W
6 s s1 1 n1 n2 % space of 1m length
7 m m1 0.5 0.5 0 n2 n3 % mirror
8

9 % an ‘amplitude’ detector for transmitted light
10 ad ad_t 0 n3
11 ad ad_r 0 n2
12

13 % changing the transmittance of the mirror ‘m1’
14 xaxis m1 t lin 0.5 0 100
15 % plotting amplitude and phase of the results
16 yaxis abs:deg
17 " " ")
18 # Change some properties of the mirror
19 kat.m1.R = 0.6
20 kat.m1.T = 0.4
21

22 # Generate the kat-file and then run Finesse
23 out = kat.run()
24

25 # Detector outputs are accessed from the
26 # returned output object by name
27 print(out[’ad_r’])
28 # Can easily do math with various outputs
29 # as they are numpy arrays
30 P_total = abs(out[’ad_r’])**2 + abs(out[’ad_r’])**2
31

32 plt.plot(out.x, P_total)

Listing 1: Simple Pykat usage to run a Finesse simulation

The second interface option is to directly use the object-
oriented interface to build and run simulations as shown in
Listing 2. Most commonly used Finesse features and components
are supported by Python objects, however not all of the advanced
features are. This interface is ideal for programmatically building
a model of an optical experiment as it does not rely on excessive
string operations and manipulations. Parameters of components
and detectors can be set more easily using keyword-arguments,
rather than relying on the strict and terse kat-script instructions.

1 import pykat
2 from pykat.components import laser, mirror, space

3 from pykat.detectors import pd
4 from pykat.commands import xaxis
5

6 kat = pykat.finesse.kat()
7 kat.add(laser(’l1’, ’n1’, P=1))
8 kat.add(mirror(’m1’, ’n1’, ’n2’, R=0.99, T=0.01))
9 kat.add(space(’s1’, ’n2’, ’n3’, L=4000))

10 kat.add(mirror(’m2’, ’n3’, ’n4’, R=0.99, T=0.01))
11 kat.add(pd(’P_t’, 0, ’n4’))
12 kat.add(xaxis(’lin’, (0, 100e3), kat.l1.f, 100))
13 out = kat.run()

Listing 2: Object-oriented interface building a cavity and
scanning the laser frequency.

Although this interface is likely more favoured by programmers,
it does remove the more direct connection the user has to the
Finesse binary. Thus, they must be mindful of what Finesse is ac-
tually running. For more complex modelling tasks, and for debug-
ging, this information is sometimes required explicitly. The user
can then quickly see the current kat-script that would be sent
to Finesse by simplying printing the kat object, print(kat).
However, it is entirely possible to use a mix of both interfaces.

While the example in Listing 1 shows a task that could in prin-
ciple be accomplished using only Finesse and a single kat-script,
users often require running multiple simulations to produce spe-
cific results, which would be a tedious manual task without
Pykat. A common example of such a task is the optimisation of
some experimental parameter. Using Pykat we can easily access
a variety of packages for such a task, such as Scipy. Listing
3 depicts a toy optimisation problem where we wish to find
the optimal transmissivity of the second mirror in the cavity to
optimise the amount of power being transmitted. When run, the
result should be that it is equal to the transmission of the first
mirror [9], in what is known as an impedance matched cavity
configuration.

1 import pykat
2 import scipy
3

4 base = pykat.finesse.kat()
5 base.parse(" " "
6 l l1 1 0 n1
7 s s1 1 n1 n2
8 m m1 0.99 0.01 0 n2 n3
9 attr m1 Rc -10

10 s s2 1 n3 n4
11 m m2 1 0 0 n4 n5
12 attr m2 Rc 10
13 cav c m1 n3 m2 n4
14

15 pd P_t n5
16 pd P_r n2
17

18 maxtem 0
19 " " ")
20

21 base.verbose = False
22 base.noxaxis = True
23

24 def func(T):
25 if T > 1 or T <= 0: return float(’inf’)
26 kat = base.deepcopy()
27 kat.m2.R = 1-T
28 kat.m2.T = T
29 out = kat.run()
30 return -1 * out[’P_t’]
31

32 res = scipy.optimize.minimize(func, x0=0.1)
33 # Update the base model now with
34 # the new optimised parameters
35 base.m2.setRTL(R=1-res.x, T=res.x)

Listing 3: Toy example for optimising transmitted power.
Highlights the base-model-deepcopy pattern for running

multiple simulations.

3

D.D. Brown, P. Jones, S. Rowlinson et al. SoftwareX 12 (2020) 100613

Listing 3 also introduces an important coding pattern in Pykat:
deepcopying a Kat object. Here we borrow from the Python term
of deep-copying, whereby we make an entirely new Kat object
that is completely separate from the original. Again this can be
thought of as making a separate kat-file that can be altered to run
an alternative simulation. The pattern is that the user should first
create a basemodel that describes the optical setup and detectors.
For each simulation that is required, a new deepcopy of base
model should be made, extra simulation code added to it, then
the new model can be run.

Finesse itself does not significantly benefit from parallelisation
when running a single simulation, as many of the core com-
putations must run sequentially: filling the matrices, inverting
them, computing the detector outputs, and repeating this over
a large parameter sweep. Typically users are often faced with
having to explore some large parameter space, in these cases
to improve run times multiple simulations must be performed
in parallel. This requires creating many different kat-script files
and passing them to the Finesse binary, which is cumbersome
to perform manually. Pykat offers an easy to use interface for
quickly running multiples simulations. The interface uses the

Ipyparallel package, which allows it to utilise anything from
the multiple cores on a single machine to distributing the tasks
to an entire cluster. Listing 4 provides an overview of how this
works.

1 import pykat
2 from pykat.parallel import parakat
3

4 pk = parakat()
5

6 kat = pykat.finesse.kat()
7 kat.parse(" " "
8 ...
9 [kat-script instructions]

10 ...
11 " " ")
12

13 for value in values:
14 kat.component.parameter = value
15 pk.run(kat)
16

17 outs = pk.getResults()

Listing 4: Code for running parallel Finesse simulations.

4. Illustrative example: modelling noise couplings in advanced
LIGO

A typical problem encountered by instrument scientists work-
ing on gravitational wave detectors is to understand how various
sources of noise in the interferometer couple into the output
channel that measures passing gravitational waves. Sometimes
these couplings can be explained or explored with simple an-
alytical models. However, as the complexity of the instrument
has grown, simple models often no longer represent what is
happening in reality. This is where Finesse becomes particularly
useful as it allows us to simulate such complex setups.

In this example, we highlight a modelling task undertaken on
measurements from one of the Advanced LIGO [10] interferom-
eters. The issue at hand was understanding how the frequency
noise of the input laser couples into the gravitational wave output
channel. The measured transfer function for this noise coupling is
shown in Fig. 2. Simple models predict that the frequency noise
coupling drops as ∝ 1/f , however the measurement shows some
structure around 100 Hz which smoothly rises above 1 kHz.

To model this type of problem we first have to produce a
realistic model of the Advanced LIGO detectors. This has to in-
clude realistic defects that we know or expect to be present. Then

Fig. 2. Shown is a measured transfer function of input laser frequency noise

to the gravitational wave channel as function of frequency (black, dashed).

Plotted for comparison are various model configurations that were found to

have the best fit from the 100k simulations performed. The colour bar shows

how much the shape of the laser beam generated by the input mode cleaner

(IMC) is mismatched to that of the interferometer. For combinations of mirror

astigmatism and IMC mismatch this noise a noise coupling similar shape to the

measurement around 100 Hz and at 1–8 kHz.

we model different specific configurations and output how the
frequency noise injected at the laser source propagates to the
gravitational readout channel. Finally we can compare the result
to the measured values and ask which configuration best fits the
data.

A Finesse model that describes a realistic interferometer in a
gravitational wave detector can easily reach 300+ instructions.
When using a single kat-file and Finesse, such a model can
become large and cumbersome to work with. Pykat has trivialised
creating models of the advanced detectors, for example here we
show how we can create an Advanced LIGO model and initialise
it to be at its correct operating point in just a handful of lines:

1 import pykat
2 from pykat.ifo import aligo
3 import pykat.ifo.aligo.plot
4 # Create a new base model of the as designed
5 # Advanced LIGO interferometer
6 base = aligo.make_kat()
7 # This then sets up all the locks, error signals,
8 # and operating points for the interferometer model
9 aligo.setup(base)

10 # Finally plot the quantum noise limited strain
11 # sensitivity
12 aligo.plot.strain_sensitivity(base)
13 # Plot all the length sensing error signals
14 aligo.plot.error_signals(base)

Listing 5: Getting an Advanced LIGO model

This base model represents an ideal interferometer, no defects
are included. The setup() function is optimising all the mirror
positions to ensure they are at the correct operating point [9].
Simply put, this means the mirrors are held at the correct micro-
scopic position to ensure that the optical fields resonate in the
interferometer as designed.

From this idealised model of LIGO we can begin to introduce
defects: incorrectly sized laser beams; deviations in mirror prop-
erties, such as optical loss, radii of curvature, or alignment; and
errors in how well we microscopically position the mirrors. All
these effects are likely to be present in the experiment, we have
ranges of how strong each of these deviations might be but the
exact amount and relative proportions of each is not well known.

In this case, given the number of free parameters, we chose
to run a simple Monte-Carlo search computing the frequency

4

D.D. Brown, P. Jones, S. Rowlinson et al. SoftwareX 12 (2020) 100613

noise coupling for each. Using the Pykat parallelisation features
the parameter space was quickly explored using a computer
cluster. For each of these potential defected configurations we
have to make sure our interferometer still operates correctly;
otherwise we may model the noise coupling in an interferom-
eter state that cannot be used for gravitational wave detection.
One important figure of merit is ensuring we can still effec-
tively sense and control all the lengths of the interferometer, also
known as locking the interferometer. Pykat includes functionality
(See kat.IFO.lock_drag()) for performing a technique called
lock-dragging [11] which allows a user to find a suitable oper-
ating point easily—which when not performed correctly, or at
all, results in unphysical and incorrect models and is a common
stumbling point for new users.

Of the order 100k simulations were run looking at different
geometric configurations of the interferometer and input laser
beam states. The configuration with the best-fits are shown in
Fig. 2. It was found that generating a noise coupling with this form
requires that some astigmatism must be present in the surface
figure of the LIGO test mass optics, while the shape of the beam
generated by the input mode cleaner must also differ by several
percent compared to the interferometers beam shape, known as
mode-mismatch [9]. This configuration might not be the exact
state of the real interferometer, however it highlights features
that can be investigated further experimentally, to either rule out
or confirm the hypothetical source of this extra noise coupling.
Clearly, performing this analysis over such a large parameter
space using only Finesse would have been impractical.

5. Impact

In the past 20 years Finesse alone has had a significant im-
pact in the field of gravitational wave science [12]. However,
with Pykat we have significantly increased the capabilities and
reach of our simulation software. First of all, Pykat has enabled
significantly more complex modelling tasks to be undertaken
with Finesse with ease. It achieves this by providing a more
modern and adaptable user interface allowing Finesse to be con-
nected with a wide variety of scientific packages in Python. Expert
users can now code up their knowledge into functions, such as
aligo.setup() shown in Listing 5, that other users can easily
call on. It also significantly reduces errors from working with
multiple kat-files, by providing the tools to do so in a more
procedural manner.

The use of Pykat from Python scripts has enabled researchers
to share their modelling via version controlled repositories with
ease leading to increased research software sustainability [13].
In particular, Jupyter Notebooks [14] have provided a far more
interactive format for conducting, documenting, and distributing
numerical modelling tasks and results—which has led them to
becoming the preferred method of using Pykat and Finesse now
for many users.

Pykat was the key tool to leverage the entire Python ecosys-
tem and to benefit from the rising popularity of the Python lan-
guage in the science community. More importantly, the notebook
format has enabled us to produce more engaging and interactive
learning materials, not only for using Finesse, but also for teach-
ing undergraduate students and early career researchers about
precision interferometry in a more hands-on environment. This
has resulted in an unprecedented amount of training in inter-
ferometer simulation for gravitational wave detection, through
online resources or workshops. This is of particular importance
for young researchers in new gravitational wave group. This
year we created dedicated training material and organized a
‘hackathon’ as part of the effort to train students for the new
LIGO detector planned in India [15]. Pykat is the key component
around which such training and teaching is being developed. Mul-
tiple examples of similar workshops and the respective materials
can be found at http://www.gwoptics.org/learn.

6. Conclusion

In this paper we have described the interferometer simu-
lation software Pykat and the symbiotic relationship between
Pykat and Finesse. Pykat provides a new modern and efficient
Python interface that enables us to simulate precision optical
experiments previously not possible. We outlines an illustrative
example of how it enabled us to perform a complex modelling
task to better understand current noise couplings in of one of
the LIGO gravitational wave interferometers. The success of Pykat
has enabled us to provide better learning materials for students,
improved the software sustainability, and allows researchers to
tackle more complex problems.

Although Pykat is primarily for modelling optical experiments
using Finesse, it includes several other features that have not
been discussed here. It has also become the home for several
other computational tools which users may find helpful, such
as, a Fast-Fourier-transform optical modelling tool, based on the
software package Oscar [16], ABCD Gaussian beam propaga-
tion code, routines for computing higher-order-mode Gaussian
beam scattering, and generating reduced-order-models for light
scattering [7].

Looking forward, much of what has been learnt developing
Pykat and Finesse will be combined and further improved upon
in Finesse v3. The core engine in C code will be kept to ensure
simulation times are kept to a minimum. Whereas all the parsing,
user-interface and components will be written in Python to pro-
vide a more adaptable and open programming interface in Python
for tackling future problems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to extend their thanks to the inter-
national gravitational wave community for their feedback and
support in developing both Pykat and Finesse. DDB and DT were
supported by the ARC grant CE170100004. SL has been supported
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC-2123
QuantumFrontiers - 390837967. AF has been supported by the
Science and Technology Facilities Council (STFC) and by a Royal
Society Wolfson Fellowship which is jointly funded by the Royal
Society and the Wolfson Foundation. The authors would like to
thank Aaron Jones for providing the ‘Birmingham Environment
for Software Testing’ (BEST) which we used for testing Pykat dur-
ing development. DDB also thanks Craig Cahillane for the fruitful
discussions on modelling interferometers and the data for the
frequency noise coupling. The Authors would also like to thank
the LIGO-Virgo Collaboration for use of the computing cluster for
running our Finesse models. This document has been given the
LIGO DCC number P2000104. The authors have no competing or
financial interests to declare.

References

[1] Reitze David, Saulson Peter, Grote Hartmut. Advanced interferometric

gravitational-wave detectors. World Scientific; 2019, http://dx.doi.org/10.

1142/10181, URL https://www.worldscientific.com/doi/abs/10.1142/10181.

[2] Beausoleil Raymond G. Melody. 2001, https://dcc.ligo.org/public/0034/

G010301/000/G010301-00.pdf, URL https://dcc.ligo.org/public/0034/

G010301/000/G010301-00.pdf.

[3] Evans Matt. Optickle simulation software. 2004, https://git.ligo.org/IFOsim/

Optickle2, URL https://git.ligo.org/IFOsim/Optickle2.

5

D.D. Brown, P. Jones, S. Rowlinson et al. SoftwareX 12 (2020) 100613

[4] Vajente Gabriele. Fast modal simulation of paraxial optical systems: the

MIST open source toolbox. Classical Quantum Gravity 2013;30(7):075014.

http://dx.doi.org/10.1088/0264-9381/30/7/075014.

[5] Brown Daniel David, Freise Andreas. Finesse. 2014, http://dx.doi.org/10.

5281/zenodo.821364, http://www.gwoptics.org/finesse. URL http://www.

gwoptics.org/finesse. You can download the binaries and source code at

http://www.gwoptics.org/finesse.

[6] Freise A, Heinzel G, Lück H, Schilling R, Willke B, Danzmann K.

Frequency-domain interferometer simulation with higher-order spatial

modes. Classical Quantum Gravity 2004;21(5):S1067–74, URL http://stacks.

iop.org/0264-9381/21/S1067. Finesse is available at http://www.gwoptics.

org/finesse.

[7] Brown D, Smith RJE, Freise A. Fast simulation of gaussian-mode scattering

for precision interferometry. J Opt 2016;18(2):025604. http://dx.doi.org/10.

1088/2040-8978/18/2/025604.

[8] Freise Andreas, Brown Daniel, Bond Charlotte. Finesse, frequency domain

interferometer simulation software. 2013, arXiv e-prints, art. arXiv:1306.

2973.

[9] Bond Charlotte, Brown Daniel, Freise Andreas, Strain Kenneth A. Inter-

ferometer techniques for gravitational-wave detection. Living Rev Relativ

2017;19(1):3. http://dx.doi.org/10.1007/s41114-016-0002-8.

[10] LIGO Scientific Collaboration. Advanced LIGO. Classical Quantum Gravity

2015;32(7):074001. http://dx.doi.org/10.1088/0264-9381/32/7/074001.

[11] Brown Daniel David. Interactions of light and mirrors : advanced tech-

niques for modelling future gravitational wave detectors (Ph.D. thesis),

2016.

[12] Freise Andreas, Brown Daniel David. Finesse, history and impact. 2017,

http://www.gwoptics.org/finesse/impact.php, URL http://www.gwoptics.

org/finesse/impact.php.

[13] de Souza Mário Rosado, Haines Robert, Vigo Markel, Jay Caroline. What

makes research software sustainable? An interview study with research

software engineers. In: Proceedings of the 12th international workshop on

cooperative and human aspects of software engineering. CHASE ’19, IEEE

Press; 2019, p. 135–8. http://dx.doi.org/10.1109/CHASE.2019.00039.

[14] Kluyver Thomas, Ragan-Kelley Benjamin, Pérez Fernando, Granger Brian,

Bussonnier Matthias, Frederic Jonathan, Kelley Kyle, Hamrick Jessica,

Grout Jason, Corlay Sylvain, Ivanov Paul, Avila Damián, Abdalla Safia,

Willing Carol. Jupyter notebooks – a publishing format for reproducible

computational workflows. In: Loizides F, Schmidt B, editors. Positioning

and power in academic publishing: Players, agents and agendas. IOS Press;

2016, p. 87–90.

[15] Iyer Bala, Souradeep Tarun, Unnikrishnan CS, Dhurandhar Sanjeev,

Raja Sendhil, Sengupta Anand. Ligo-india, proposal of the consortium

for indian initiative in gravitational-wave observations (indigo). 2015,

URL https://dcc.ligo.org/LIGO-M1100296/public, https://dcc.ligo.org/LIGO-

M1100296/public.

[16] Degallaix J. Oscar: a matlab based fft code. Matlab Cent File Exch 2008.

6

