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Abstract

We present a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar
PSR J0537—6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled
by a contemporaneous timing ephemeris obtained using Neutron star Interior Composition Explorer (NICER) data.
The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537
—6910 has the largest spin-down luminosity of any pulsar and exhibits fRequent and strong glitches. Analyses of
its long-term and interglitch braking indices provide intriguing evidence that its spin-down energy budget may
include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency
also puts its possible gravitational-wave emission in the most sensitive band of the LIGO/Virgo detectors.
Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation
frequency from PSR J0537—6910. We find no signal, however, and report upper limits. Assuming a rigidly
rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first
time by more than a factor of 2 and limit gravitational waves from the [ = m = 2 mode to account for less than 14%
of the spin-down energy budget. The fiducial equatorial ellipticity is constrained to less than about 3 x 10~>, which
is the third best constraint for any young pulsar.

Key words: Gravitational waves

1. Introduction

The young (1-5 kyr) energetic pulsar PSR J0537—6910 (Wang
& Gotthelf 1998; Chen et al. 2006) resides in the Large
Magellanic Cloud at a distance of 49.6 kpc (Pietrzynski et al.
2019). Its pulsations are only detectable at X-ray energies, and the
pulsar was first observed by Marshall et al. (1998) using the Rossi
X-ray Timing Explorer (RXTE) during searches for pulsations
from the remnant of SN1987A. Further observations with RXTE,

Middleditch et al. 2006; Andersson et al. 2018; Antonopoulou
et al. 2018; Ferdman et al. 2018). Observations of the pulsar
resumed from 2017 to 2020 using the Neutron star Interior
Composition Explorer (NICER) on board the International Space
Station (Gendreau et al. 2012), which revealed more glitches and
a continuation of the timing behavior seen with RXTE (Ho et al.
2020b).

PSR J0537—-6910 is a particularly intriguing potential gravita-

prior to its decommissioning in early 2012, revealed that
PSR J0537—6910 often undergoes sudden changes in rotation
frequency, i.e., glitches, at a rate of more than three per year, and
exhibits interesting interglitch behavior (Marshall et al. 2004;

291 Deceased, 2020 August.

tional-wave source. It is the fastest-spinning known young pulsar
(with rotation frequency f, = 62Hz), which places its gravita-
tional-wave frequency f (e.g., at twice f.; see Section 2.1) in the
most sensitive band of ground-based gravitational-wave detectors.
PSR J0537—6910 also has the highest spin-down luminosity
(E = 4.9 x 10°® erg s') among the ~2900 known pulsars in the
ATNF Pulsar Catalogue (Manchester et al. 2005). Its spin-down
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Figure 1. Interglitch braking index n;, calculated from the spin parameters of
each segment between glitches as a function of time since the last glitch. Large
and small circles denote NICER and RXTE values, respectively, with the
former from Tables 1 and 2 and from Ho et al. (2020b) and the latter from
Antonopoulou et al. (2018). Errors in n;, are 1o uncertainty. Orange horizontal
dotted lines indicate braking index n = 5 and 7, which are expected for pulsar
spin-down by gravitational-wave emission due to an ellipticity and r-mode
oscillation, respectively. Green dotted—dashed and dashed lines indicate
exponential decay to n =5 with a best-fit timescale of 24 days and to n =7
with a best-fit timescale of 21 days, respectively.

behavior appears to be driven by a process other than pure
electromagnetic dipole radiation loss (at constant stellar magnetic
field and moment of inertia). Specifically, its (long-term) braking

index n = f, f, /frit = —1.25 %+ 0.01, as measured over more
than 20 yr (Ho et al. 2020b), indicates an accelerating spin-down
rate and significantly deviates from the measured values of most
pulsars, n =3, that imply dipole radiation (Shapiro & Teukolsky
1983).

More importantly, observations of PSR J0537—6910 show
the pulsar’s (short-term) interglitch braking index nj,, as
measured during intervals between ~50 glitches, has values
typically > 10, and approaches an asymptotic value of <7 at
long times after a glitch, i.e., when the effects of a preceding
glitch are diminished (see Figure 1; see also Andersson et al.
2018). It is this behavior that provides tantalizing suggestions
that PSR J0537—6910 could be losing some of its rotational
energy to gravitational-wave emission. In particular, a slightly
deformed pulsar can emit gravitational waves that results in
n=>35, and an r-mode fluid oscillation in a pulsar can emit
gravitational waves that results in n =7 (see, e.g., Riles 2017;
Andersson et al. 2018; Glampedakis & Gualtieri 2018; Gao
et al. 2020).

In this work, we search for mass quadrupolar gravitational-
wave emission from PSR J0537—6910 that follows the same
phase as that of the pulsar’s rotation. Previously, data from
initial LIGO’s fifth and sixth science runs (S5 and S6) and
Virgo’s second and fourth science runs (VSR2 and VSR4), in
conjunction with RXTE timing measurements, were used to set
limits on gravitational-wave emission by PSR J0537—-6910 that
closely approached the spin-down limit (Abbott et al. 2010;
Aasi et al. 2014). Here, we analyze data from the second and

Abbott et al.

third observing runs (O2 and O3) of LIGO and Virgo, tracking
the rotation phase with the contemporaneous NICER timing
ephemeris. In doing so, we also provide an updated ephemeris
that includes the latest six months of NICER observations of
PSR J0537—-6910.

Investigations of r-mode gravitational-wave emission (n = 7)
are not presented here; such searches are more technically
challenging and require different methods that search over a
range of frequencies (see, e.g., Mytidis et al. 2015, 2019;
Abbott et al. 2019b; Fesik & Papa 2020a, 2020b) due to
uncertainty in gravitational-wave frequency for a given rotation
frequency (Andersson et al. 2014; Idrisy et al. 2015; Caride
et al. 2019). Nevertheless, we are able to reach below the spin-
down limit of PSR J0537—6910 for the first time, which means
that the minimum amplitude we could detect in our analysis is
lower than the one obtained by assuming all of the pulsar’s
rotational energy loss is converted to gravitational waves (see
Section 2.1). In other words, we can now obtain physically
meaningful constraints.

2. Search Method
2.1. Model of Gravitational-wave Emission

The first model considered here allows for gravitational-wave
emission at once and twice the spin frequency simultaneously,
which has been searched for previously (Pitkin et al. 2015; Abbott
et al. 2017a, 2019a, 2020), and can result from a triaxial star
spinning about an axis that is not its principal axis (Jones 2010,
2015). The amplitudes of each harmonic at once and twice the spin
frequency of the star, denoted /,(7) and hx,(7), respectively, can be
written as

oy = —%{Ff(a, 8, 4; t)sin . cos L cos [(r) + O]
+ FP(a, 6, ¥; t)sincsin [®(r) + D51}, (1)

hyy = —C{FP(a, 6, 1; H)(1 + cos?1)cos [2D(1) + DF]
+ 2FP(a, 6, 1; t)cos ¢ sin [28(1) + D51}
2

Here, C>; and C,, are dimensionless constant component
amplitudes, and ®S, and S, are phase angles. F f and FP are
antenna or beam functions and describe how the two
polarization components of the signal are projected onto the
detector (see, e.g., Jaranowski et al. 1998). The angles («, 0)
are the R.A. and decl. of the source, while the angles (¢, V)
specify the orientation of the star’s spin axis relative to the
observer. ®(¢) is the rotational phase of the source.

The second model is a special case of the first model and is
used for gravitational-wave emission at only twice the
rotational frequency (C,; =0), implying a triaxial star that is
spinning about a principal axis, such as its z-axis. In this case, it
is simpler to write the gravitational-wave amplitude in terms
of the dimensionless value Ay, which requires substituting
Cor = — ho/2 in Equation (2) (Abbott et al. 2019a). The sign
change simply maintains consistency with the model from
Jaranowski et al. (1998). The cause of such gravitational-wave
emission is a deviation from axial symmetry, which can
be written in terms of a dimensionless equatorial ellipticity
€, defined in terms of the star’s principal moments of inertia
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Table 1
Timing Model Parameters for Segments between Epochs of New Glitches of PSR J0537—6910
Segment Epoch Start End TOAs Srot (fm[ oﬁ‘)‘ Nig Residual rms x?/dof
(MID) (MJID) (MID) (Hz) 107"%Hzs™) (10 Hzs™? (us)
8 58931 58871.5 58991.2 17 61.908808739(3) —1.997535(7) 1.06(8) 16(1) 173.7 9.9
9 59020 58995.6 59046.3 11 61.907273376(2) —1.99699(4) [1* 147.8 6.7
10 59074 59050.4 59098.7 10 61.906349948(5) —1.99762(2) 3.6(8) 56(13) 60.9 1.5
11 59129 59108.7 59150.7 11 61.905434556(6) —1.99809(3) 2.2(13) 34(20) 72.3 2.1

Note. Columns from left to right are segment number, timing model epoch, segment start and end dates, number of times of arrival, rotation frequency and its first two
time derivatives, interglitch braking index, and timing model residual and goodness-of-fit measure. Number in parentheses is 1o uncertainty in last digit. Segments 1-7

are presented in Ho et al. (2020b).

& fo s fixed at 1072 Hzs ™2

(Ixx’ Iyy’ IZZ):

|Ixx - Iyy|

[ZZ (3)

The gravitational-wave amplitude is directly proportional to the
ellipticity:

_167°G

2
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b
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where d is the star’s distance from the Earth. When setting
upper limits, we use a fiducial value for the z-component of the
moment of inertia, i.e., I = 10% kg m® The combination of
the ellipticity and fiducial moment of inertia can be cast in
terms of the mass quadrupole moment of the / = m =2 mode of
the star via Oy = /15/87 ¢ (Owen 2005). The gravita-
tional-wave amplitude %, can be compared to the spin-down
limit amplitude héd, which is the gravitational-wave amplitude
produced assuming that all of the rotational energy lost by the
pulsar is converted into gravitational waves:

N
hsd — l(SGIZZ |fl“0t|) . (5)

O al 2 £,

Our results for the single harmonic case are quoted in terms
of hgd.

NICER observations of PSRJ0537—6910 allow for the
ephemeris of the pulsar to be determined, which means we
know the expected signal frequency and its evolution. With this
information, we can perform a targeted search for gravitational
waves from this pulsar based on the two signal models
discussed, with the phase tracking that of the pulsar rotation.

2.2. NICER Data

In Ho et al. (2020b), timing analysis is performed on NICER
data of PSR J0537—6910 from 2017 August 17 to 2020 April
25, with eight glitches detected during this timespan and the
last three glitches during O3. Here we present an update and
results on timing analysis since the work of Ho et al. (2020b).
In particular, data from 2020 May 12 to October 29 are
analyzed using the methodology as described in Ho et al.
(2020b). Our analysis reveals continuing accelerated spin-down
(see Table 1) and three subsequent glitches (see Table 2 and
Figure 2), including the smallest glitch of PSR J0537—-6910 yet
detected using NICER. Note that the timing model of segment
8 uses three additional subsequent times of arrival (TOAs)

10

Table 2
Parameters of New Glitches of PSR J0537—-6910
Glitch Glitch Epoch A Afror Afooy Afs,
(MID) (cycle)  (uHz) (107" Hzs") (107°Hzs?)

8 58868(5) 0.08(12) 24.0(1) —2.3(6) =5(1)

9 58993(3) 0.06(12)  0.4(1) —0.3(8) .

10 59049(3) —0.22(2) 8.46(3) —1.3(5)

11 59103(5) 0.42(2) 33.958(7) —2.0(3)

Note. Columns from left to right are glitch number and epoch, change in
rotation phase and changes in rotation frequency, and its first two time
derivatives at each glitch. Number in parentheses is 1o uncertainty in last digit.
Glitches 1-7 are presented in Ho et al. (2020b).

beyond those in Table 1 of Ho et al. (2020b) and, as a result,
the epoch and other parameters of the model differ; e.g.,
segment 8 is associated with the data point at 63 days and
nig = 16 in Figure 1 compared to 50 days and n;, = 22 in Figure
6 of Ho et al. (2020b). Meanwhile, the relatively short timespan
of segment 9 means the timing model for this segment is not
able to constrain f,,. For the most recent glitch 11, its
magnitude is large (Af;or = 33.9u Hz), which suggests the time
to the next glitch will be long (~200 420 days; Ho et al.
2020b). If the interglitch period is indeed long, then NICER
measurements could eventually yield n;, <7 for segment 11,
which would lend further support for gravitational-wave
emission (see Section 1 and Figure 1).

The gravitational-wave search performed here uses the
timing model of Ho et al. (2020b). The differences between
the model of Ho et al. (2020b) and the model presented here are
well within the former’s uncertainties, and thus use of the latter
would not yield significantly different results.

2.3. LIGO and Virgo Data

We use a combination of data from the second and third
observing runs of the Advanced LIGO (Aasi et al. 2015) and
Virgo (Acernese et al. 2015) gravitational-wave detectors.
During O2, LIGO Livingston (L1) and LIGO Hanford (H1)
took data from 2016 November 30 to 2017 August 25 and had
duty factors of ~57% and ~ 59%, respectively (including
commissioning breaks), while Virgo took data from 2017
August 1 to 2017 August 25 with a duty factor of ~ 85%. As
noted in Section 2.2, NICER data start on 2017 August 17, and
thus one set of searches we undertake uses only about six days
of 02 data overlapping with the NICER data in addition to the
03 data (explicitly 5.3, 5.5, and 6.0 days of data for H1, L1,
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Figure 2. Glitch Af,, (top) and Af,, (bottom) as functions of time. Glitch
numbers and values from Table 2 and Ho et al. (2020b). Errors in A, are 1o
uncertainty, while errors in Af;, are not shown because they are generally
smaller than the symbols. Shaded regions denote second observing run (02)
and third observing run (03) of LIGO/Virgo. Vertical long- and short-dashed
lines indicate two possible start dates of O2 data used in the present work (see
Section 2.3).

and V1, respectively). Alternatively, we can consider a more
optimistic and much longer time series of O2 data by taking
advantage of the correlation between glitch size and time to
next glitch seen for PSR J0537—6910 (Middleditch et al. 2006;
Antonopoulou et al. 2018; Ferdman et al. 2018; Ho et al.
2020b). Assuming a (unobserved) glitch occurred on 2017
March 22 with the same size as the largest NICER glitch (i.e.,
glitch 2 with Af;,  =36uHz), we would expect a subsequent
glitch 224 days later (at 68% confidence) on 2017 November 1,
which is the earliest estimated date at which glitch 1 occurred
(see Figure 2 and Ho et al. 2020b). Thus, 2017 March 22 to
November 1 is the longest period over which we would expect
PSR J0537—6910 to not have undergone a glitch and the
NICER ephemeris to be valid. O3 lasted from 2019 April 1 to
2020 March 27, with a one-month pause in data collection in
2019 October. The three detectors’ data sets H1, L1, and V1
had duty factors of ~ 72%, ~ 69%, and ~ 69%, or 259, 248,
and 248 days of data, respectively, during O3.

In the case of a detection, calibration uncertainties limit our
ability to provide robust estimates of the amplitude of the
gravitational-wave signal and corresponding ellipticity (Abbott
et al. 2017b). Even without a detection, these uncertainties
affect the estimated instrument sensitivity and inferred upper
limits. The uncertainties vary over the course of a run but do
not change by large values, so we do not explicitly consider
time-dependent calibration uncertainties in our analysis. For
further information on O2 calibration techniques, see discus-
sions in Abbott et al. (2019a).

The full raw strain data from the O2 run are publicly
available from the Gravitational Wave Open Science Center*">

292 hitps: / /www.gw-openscience.org /data
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(Vallisneri et al. 2015; Abbott et al. 2021). For the LIGO O3 data
set, the analysis uses the “CO1” calibration. The CO1 calibration
has estimated maximum amplitude and phase uncertainties
of ~ 7% and ~ 4°, respectively (Sun et al. 2020), which we use
as conservative estimates of the true calibration uncertainty near
the frequencies analyzed here. For the Virgo O3 data set, we use
the “V0” calibration with estimated maximum amplitude and
phase uncertainties of 5% and 2°, respectively.

2.4. Search Pipeline

The time-domain Bayesian method performs a coherent analysis
of the interferometers’ data, meaning that we analyze the entire
data set with an effective single Fourier Transform, thereby
preserving the phase information. First, the raw strain data are
heterodyned (Dupuis & Woan 2005) using the expected signal
phase evolution, known precisely from the electromagnetic timing
ephemeris. Then a low-pass filter with a knee frequency of 0.25 Hz
is applied, and the data are downsampled so that the sampling time
is 1 minute, compared to 60 ms originally. This heterodyning is
performed for an expected signal whose frequency is at once or
twice the rotational frequency of the pulsar. The heterodyned data
are the input to a nested sampling algorithm that is a part of the
LALINFERENCE package (Veitch & Vecchio 2010; Veitch et al.
2015), which infers the unknown signal parameters depending on
the model of gravitational-wave emission.

PSR J0537—6910 glitched three times over the course of the
gravitational-wave observations (see Figure 2). For each glitch,
we assume an unknown phase offset between the electro-
magnetic and gravitational-wave phase. The individual phase
offsets of multiple glitches that occurred between O2 and O3
cannot be disentangled, so only one phase offset is included for
these glitches. This means that we introduce four additional
phase parameters when performing parameter estimation.

We also make use of restricted and unrestricted priors when
performing the analysis. In the first case, we use estimates of
the orientation of the pulsar relative to the Earth based on a
model fit of the observed pulsar wind nebulae torus (Ng &
Romani 2008), which imply narrow priors in our analysis on
the polarization and inclination angles. Therefore, we use a
Gaussian prior on ¥ of 2.2864 £ 0.0384 rad and a bimodal
Gaussian prior on ¢ with modes at 1.522+0.016 and
1.620 +=0.016 rad (see Jones 2015, for reasons behind the
bimodality). This range of ¢« would suggest the pulsar’s rotation
axis is almost perpendicular to the line of sight, which would in
turn lead to a linearly polarized gravitational-wave signal
dominated by the “+4” polarization component. The second
case assumes a uniform isotropic prior on the axis direction,
which therefore does not rely on assumptions about the pulsar’s
orientation matching that of the wind nebula or uncertainties in
the above modeling of the not-well-resolved X-ray observa-
tions. The initial signal phase and glitch phase offsets all use
uniform priors over their full ranges. For the single harmonic
search, we parameterize the signals using the mass quadrupole
0y and distance. As a conservative approach, we use an
unphysical flat prior on Q,, with a lower bound at zero and an
upper bound of 5 x 10%” kg m?, which is well above the largest
upper limits found in Abbott et al. (2019a). For the distance, we
use a Gaussian prior with mean of 49.59 kpc and standard
deviation of 0.55 kpc based on the value given in Pietrzyriski
et al. (2019), combining the statistical and systematic errors in
quadrature. For the dual harmonic search, which uses the
amplitudes C,; and C,, rather than the physical parameters of
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Figure 3. Two-sided amplitude spectral density (ASD) after heterodyning,
low-pass filtering, and downsampling the raw strain data for the [=m =2
gravitational-wave mode. Different color lines indicate the Hanford (H1),
Livingston (L1), and Virgo (V1) detectors.

01, and d, we use flat priors that are bounded between zero and
1 x 10722, which is again well above the limit implied in
Abbott et al. (2019a). To analyze multiple detectors’ data sets
simultaneously, we combine the product of the Student’s z-
likelihoods calculated for each detector (Dupuis & Woan
2005).

The outputs of the analysis are posterior distributions of the
parameters of interest, which are hg/Qy,/¢ for the single
harmonic search, C,; and C,, for the dual harmonic search, and
the angles cos ¢ and 1) for both choices of priors. In Section 3,
we present results on the amplitude parameters marginalized
over the rest of the parameter space. We also provide odds
ratios between two hypotheses: the data contain a coherent
signal in the detectors, or incoherent signals or noise in the
different detectors. These values are used to assess the presence
of a signal in the data and, for a given prior choice, can be
thought of as a “detection statistic.”

3. Results

Results from our searches do not show evidence for
gravitational-wave emission from PSR J0537—6910 via the
two models that we assume. For the single harmonic model, the
Bayesian odds of the data containing a coherent signal between
detectors versus incoherent signals or noise in the different
detectors (see Equation (A6) of Abbott et al. 2017a) favor the
latter case by ~ 20,000 and ~ 31,000 for the unrestricted and
restricted priors, respectively. For the dual harmonic model, the
case of an incoherent signal or noise in the detectors is favored
by <2 x 10® for both prior choices.

An amplitude spectral density obtained after the heterodyne
correction is displayed in Figure 3 for each of the three
detectors. If a loud continuous gravitational-wave signal was
present, we would expect to see a narrow line feature in the
spectrum. The amplitude spectral densities also give an
estimation of the sensitivity of the search.

Given the lack of evidence for a signal from either the single
or dual harmonic models, we expect the odds between these
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Figure 4. Posterior probability distribution for ellipticity and h, for the
analyses with unrestricted and restricted priors on the pulsar orientation. The
95% credible upper limits are shown as vertical colored lines, while the spin-
down limit is given by the vertical dashed black line.

Table 3
95% Upper Limits on Gravitational-wave Strain, Ellipticity, and Other
Quantities Based on Unrestricted (UR) and Restricted (R) Choices for Priors on
Polarization and Inclination Angles

Prior  ng®% Rt S o B
(107%%) (1075 (10%%) (10™%)

UR 1.1 34 0.37 22 5.6

R 1.0 3.1 0.33 1.8 5.0

Note. Results here come from analyzing all O3 data and the last 6 days of
02 data.

models to favor the simpler single harmonic model. Indeed, we
find that the single harmonic model is strongly favored by
factors of ~5700 and ~9200 for the restricted and unrestricted
orientation cases, respectively. However, it is worth noting that
the odds between models will depend on our choice of the
uniform prior range on the amplitude parameters.

Though no gravitational waves are detected, we can still
determine upper limits on possible gravitational-wave emission
from PSR J0537—6910. Here, we use 95% credible upper
bounds on the amplitude parameters based on their margin-
alized probability distributions.””®> The dimensionless gravita-
tional-wave amplitude hy and coefficients Cp; and C,, are
constrained for the single and dual harmonic searches,
respectively. For the single harmonic search, 4, can be mapped
to a limit on the maximum ellipticity € using Equation (4). In
Table 3, we show the different constraints for both searches
using all O3 data and the last ~6 days of O2 data (see
Section 2.3). In addition to the detector calibration uncertainties
discussed in Section 2.3, we estimate that the statistical
uncertainty on the upper limits due to the use of a finite number
of posterior samples is on the order of 1%.

Figure 4 shows the marginalized posterior probability distribu-
tions on the pulsar ellipticity and 4, for the single harmonic search

293 Simulations on independent and identically distributed noise realizations

show that the different noise instantiations can produce upper limits that vary
by ~ 20% at a 1o confidence level. However, the Bayesian credible limits we
present are valid for our particular data set.
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Figure 5. Posterior probability distributions for the amplitudes C,; and Cy, with unrestricted and restricted priors on the pulsar orientation. The 95% credible upper

limits are shown as vertical colored lines.

with unrestricted and restricted source orientation priors. The
posteriors show significant support at ellipticities of zero,
indicating no evidence of a signal at current sensitivities. We
therefore show 95% credible upper limits on the ellipticity for
both prior choices along with the fiducial spin-down limit.

Figure 5 shows a similar posterior distribution on the
dimensionless amplitudes C,; and C,, for the dual harmonic
model. For this model, no evidence of gravitational waves is
found, so an upper limit at 95% is indicated in both panels of this
figure. The model given by Equation (1) implies that the value of
C,; becomes completely unconstrained when sin ¢ = 0. For the
unrestricted orientation prior result shown in the left panel of
Figure 5, this leads to a long high amplitude tail in the C5,
posterior distribution. In Figures 4 and 5, we see that the
amplitude posteriors can peak away from zero. This behavior was
unsurprising and can occur even for pure Gaussian noise. Even
with these peaks, the posteriors are still entirely consistent with
zero ellipticity. For example, for the unrestricted posterior
distribution shown in Figure 4, a value of zero ellipticity is
within the minimum 66% credible interval around the mode.

In contrast to emission in the single harmonic case, an
energy-based limit on gravitational-wave emission is rather
complex in the dual harmonic case. The relevant constraint is
that the observed spin-down energy is equal to the sum of the
luminosities at the two harmonics. These two emissions have
different beam patterns: the emission at the rotation frequency
is strongest along the rotational equator (¢ =7/2 direction),
where the polarization is linear, while emission at twice the
rotation frequency is strongest along the axis of rotation (v = 0),
where the polarization is circular. Therefore, the spin-down
limit on the maximum amplitudes of the two harmonics
depends on both the relative size of the intrinsic strength of the
two components and the orientation of the spin axis relative to
the observer. To provide some insight, if we compare the sky-
averaged emission strength at only the rotation frequency to
emission at only twice the rotation frequency, the spin-down
limit would allow the amplitude of the radiation at the rotation
frequency to be approximately twice as strong as that at twice
the rotation frequency (see Section 3 of Jones 2010 for more
details).
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The results presented above use all O3 data in combination
with about six days of O2 data, when NICER was operating
and monitoring PSR J0537—6910. We also conducted searches
using only O3 data or using O3 data plus O2 data from 2017
March 22 to the end of O2. The latter analysis assumes no
glitches occurred during the additional time and represents the
estimated maximum time that can be safely included without a
contemporaneous timing model (see Section 2.3). For only O3
data, we obtain s and ¢ limits that are worse by ~ 7% for the
unrestricted prior and unchanged for the restricted prior,
compared to those shown in Table 3. For O3 data plus the
extra O2 data, we obtain amplitude limits that are improved
by <20% compared to those shown in Table 3.

4. Conclusions

Using data from LIGO/Virgo’s second and third observing
runs, we searched for mass quadrupolar-sourced gravitational
waves from the young, dynamic PSR J0537—6910 at once or
twice the pulsar’s rotational frequency of 62 Hz. For the first
time, we reached below the gravitational-wave spin-down limit
for PSRJ0537—6910 and showed that gravitational-wave
emission for a pure /=m =2 mode accounts for less than
14% of the pulsar’s spin-down energy budget. We placed the
third most stringent constraint on the ellipticity (¢ < 3 x 107°)
of any young pulsar (behind only the Crab pulsar and B1951
+32/J1952+4-3252; Abbott et al. 2019a, 2020). While this limit
is much higher than those of old recycled millisecond pulsars
(for which £ < 10®; Abbott et al. 2020), young pulsars such as
PSR J0537—6910 and the Crab pulsar are important because
they have much stronger magnetic fields (and are hotter) and
thus might have greater ellipticities. The ellipticity constraint of
PSR J0537—6910 is also above or near estimates of the
maximum ellipticity that can be sustained by an elastically
deformed neutron star crust (Johnson-McDaniel & Owen 2013;
Caplan et al. 2018; Gittins et al. 2021).

PSR J0537—6910 is a frequently glitching pulsar and
potential source of continuous gravitational waves. The X-ray
data from NICER give us the necessary tools to account for the
phase evolution of a gravitational-wave signal over time, which
allows us to perform a fully coherent and sensitive search for
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such a signal. While our multimessenger analysis focuses on
gravitational waves from a time-varying mass quadrupole
(n=15), another search could be performed for gravitational
waves from an r-mode fluid oscillation (n =7) using wider-
band techniques (e.g., Fesik & Papa 2020a, 2020b, using
02 data). The strain sensitivity achieved in our analysis
(1 x 107%°) is also comparable to the (2 —3) x 107%° esti-
mated in Andersson et al. (2018) for r-mode emission from
PSR J0537—-6910.

Finally, from the observed correlation between glitch size
and time to next glitch for PSR J0537—6910 (Middleditch et al.
2006; Antonopoulou et al. 2018; Ferdman et al. 2018; Ho et al.
2020b), we can hope to measure in the future low braking
indices (7 or even lower) after the largest glitches. As noted
above, braking indices of 5 and 7 are predicted by gravita-
tional-wave-emitting mechanisms. The observed evolution of
nig to lower values than those shown in Figure 1, which may
occur after the effects of glitches on the pulsar’s spin-down
behavior have decayed, may indicate that gravitational waves
are continuously emitted between glitches. On the other hand,
glitches may trigger detectable transient gravitational waves
(Prix et al. 2011; Ho et al. 2020a; Yim & Jones 2020), and
gravitational-wave searches at glitch epochs of other pulsars
have been conducted (Keitel et al. 2019). It is therefore vital to
continue to monitor the spin evolution of PSR J0537—-6910,
not only to obtain the timing ephemeris and measure braking
indices, but also to know when this pulsar undergoes a glitch.
Since the spin period of PSR J0537—6910 is only detectable at
X-ray energies, NICER is the only effective means to perform
the necessary observations. Fortunately NICER is anticipated
to operate until at least late 2022, overlapping with the fourth
observing run of LIGO/Virgo and KAGRA (Aso et al. 2013),
which is likely to begin in 2022 and continue into 2023.
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