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ABSTRACT

Materials that convert wasted heat into electricity are needed to help solve global warming and other
climate challenges. Thermoelectric nanowires are novel metamaterials for such applications. Non-
adiabatic coupling computations are critical in understanding thermally activated charge transfer
in thermoelectric materials. Here, non-adiabatic computations are used to evaluate electron relax-
ation rates in lead telluride nanowires. This work reports results on PbTe (lead telluride) atomistic
models doped with sodium and iodine that contain 288 atoms in simulation cells with periodic
boundary conditions. The calculations are performed on the basis of ground-state DFT under the
VASP software. The transitions between states are modelled in terms of Redfield equation of motion
parameterised by on-the-fly non-adiabatic couplings along thermalised molecular dynamic tra-
jectory. The initial states are approximated by the promotion of an electron from occupied to
unoccupied Kohn-Sham orbital. In each transition, the change of the energy and spatial charge
distribution with respect to time were calculated, demonstrating formation of charge transfer. The
trends of electron and hole relaxation rates comply with the energy gap law.
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Introduction . - .
temperature [1]. One aims to maximise this parameter.

Semiconductors are utilised in modern technologies for ~ Oftentimes one achieves such improvements by doping

cellphones, refrigerators, automobiles, microwaves and
numerous other ones. Applying thermoelectric materi-
als to semiconductors can convert their excess waste heat
into electricity, thus improving their efficiency. Thermo-
electric materials use a temperature gradient between
heat source and heat sink to produce a current. The phe-
nomenon, where an electric potential (Voltage) is pro-
duced in a thermoelectric material placed between heat
source and heat sink, is known as the Seebeck effect. This
effect is measured by a material’s figure of merit given
by zT = ((6S*T)/«) where S is the Seebeck coefficient,
k thermal conductivity, o electrical conductivity, and T

(adding impurities) various materials [2]. In case the
free charges are positive (the material is p-type), posi-
tive charge will build up near the heat sink (on the cold
end) which will have a positive potential. Similarly, nega-
tive free charges (n-type material) will produce a negative
potential near the heat sink (at the cold end). See SI for
details.

Lead telluride is considered a promising thermoelec-
tric material due to the reported high figure of merit.
Heremans et al. achieved a figure of merit of 1.5 at
773 K with a thallium-doped lead telluride [3]. Snyder
et al. obtained a 1.4 figure of merit at 750 K with a
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Figure 1. Electronic structures of various doped and un-doped nanowires (A) In the un-doped state, both valence and conduction bands
are unchanged (B) In Na-doped state, one electron is taken from the valence band. (C) In the I-doped state, a hole from the conduction
band is removed. In other words, this hole is filled with an electron. (D) This combines both Na and | doping. Charge transfer of an electron
upon photo-excitation from sodium'’s valence band to sodium’s conduction band is illustrated.

sodium-doped lead telluride [4], and a 1.8 figure of merit
at 850 K with a sodium-doped PbTe;_Sey alloy [5].
Also, a different group of researchers produced a figure
of merit of 2.2 with the material [6,7]. See Figure 1 for a
schematic diagram of sodium and iodine doping, which
are typical implementations of p- and n- doping for lead
telluride.

The basis for computational and theoretical chemistry
is the time-dependent molecular Schrodinger equation
(see details in SI). Since the ions’ mass is much greater
than electrons’, the molecular Schrdédinger equation
is solved by separating the equation into an elec-
tronic and ionic part. These equations are then solved
by using one of the established methods. Examples
include Hartree-Fock, CI Coupled Cluster, or the den-
sity functional theory (DFT) method in order to cal-
culate electronic properties. Although DFT is accu-
rate enough for the ground-state properties, one finds
that more advanced and computationally extensive
methods are needed for excited state dynamics and
analysis.

This complex modelling helps researchers obtain
more accurate predictions of excitation states’ properties.
The two types of excitations are optical and thermal. Pho-
tons induce optical excitations that change the electronic
state. Thermal excitations by phonons change the motion
of ions’ position and change population of states near
the bandgap. Thermalised molecular dynamics models
the motion of atoms along with their change in energy
with time. The motion of the atoms is defined by New-
ton’s equation of motion and the potential energy and
force are incorporated using force fields or recomputed
at each step via electronic structure methods and using
Hellman-Feynman Theorem.

An important challenge is assessing changes in elec-
tronic degrees of freedom induced by interaction with
nuclear degree of freedom. The explicit monitoring of
both electronic and nuclear degrees of freedom is often

forbidden by high computational cost. There is a popular
way to address this challenge by using the so-called open
quantum system approach, where the primary system
of interest experiences influence of environment in the
thermal equilibrium. Often, the primary system is rep-
resented by electronic degrees of freedom and environ-
ment in thermal equilibrium is represented by nuclear
degrees of freedom. This approach extends the con-
cept of density operator from static domain to dynamic
domain.

Density operator characterises quantum state of the
system and is a more general concept than the wave
function. In case density operator is available, one can
use it for calculating expectation value for any opera-
tor representing an observable, by the trace operation:
A = Tr(pyrA). The density operator of the complete sys-
tem can be converted into reduced density operator of
the electronic degrees of freedom, by performing an aver-
aging procedure over all nuclear degrees of freedom,
which are assumed to reside in thermal equilibrium.
Most interesting and useful is the application of the den-
sity operator concept to situations when the primary
system is prepared in the non-equilibrium states and
performs time evolution towards the equilibrium. There
are several practical implementations for describing such
dynamic such as the Redfield equation [8,9]. The Born-
Oppenheimer approximation is of limited applicability to
important processes such as charge transfer and relax-
ation in one-dimensional lead telluride nanowires, which
is due to the energy flow between the electronic part
and nuclear part [10,11]. The electronic relaxation pro-
cess based on surface hopping between potential energy
surfaces was successfully completed by several groups
[12]. Various methods, ranging from density functional
theory [13-15] to high-precision non-adiabatic excited
state molecular dynamics [16-19], have been utilised
to model this process in other structures. The feasi-
bility of molecular dynamic trajectory for computing



the electron-to-lattice coupling in semiconductors seems
very efficient [20,21]. The integration of TDDFT and
molecular dynamic methods was recently proved to be an
efficient

approach [22,23].

According to Egorova et al. [24], multilevel Redfield
theory is a useful approach for electronic relaxation.
This theory is efficient in the limits of the dynamics
that occurs on extended time intervals, low couplings,
and multiple electronic states [8,24-31]. This theory is
further supported by a compromise between precision
and practical efficiency. The balance between the fol-
lowing benefits, shortcomings, and features of Redfield
theory is considered while selecting a method for this
work: (i) Redfield theory is a specific application of the
density matrix equation of motion and, therefore it pre-
dicts the electronic properties of more phenomena as
opposed to the wavefunction, surface hopping, or Pauli
Master equation approaches: (ii) Redfield theory is eas-
ily used in tandem with ab initio computation. It is
clear which parameters must be computed and used,
with an efficient algorithm for computation. (iii) Red-
field theory might not be the most precise, for example
a method of non-equilibrium Green’s function is more
general and potentially precise, but much less practical
[32]. There is an attempt to combine Redfield theory with
electrons-to-lattice coupling to achieve on-the-fly elec-
tron and hole relaxation [33,34]. Optimum results are
expected in the following conditions: ions are consid-
ered as point charges, lattice vibrations instantaneously
equilibrate with a thermostat, coupling autocorrelation
function decays abruptly leading to Markov approxima-
tion. In addition, we assume that the inter-nuclear forces
and distances do not respond to the change in elec-
tronic state. Thus, nuclear reorganisation is neglected,
and excited state potential energy surfaces are assumed to
have the same shape as the ground-state potential energy
surfaces.

The paper is organised as follows: The key steps of
the computational protocol are sketched in the Meth-
ods section, for consistency of notation. The Results
section starts with the discussion of computational
model composition and later provides results on static
and dynamic observables for this model. Choices of
exchange—-correlation functional are analysed in the Dis-
cussion section. The main findings of this work are out-
lined in the conclusions section.

Methods

The electronic structure is determined by using the den-
sity functional theory (DFT) [35] implemented in the
VASP software [36]. The main equation is a fictitious
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one-electron Kohn-Sham [37] equation
", = N (R KS (1P =
5V +v (A le@LARY) ) o ((Ri),7)

= & ({R1}) @& ({R1), 7) (1)

where the first term corresponds to kinetic energy T
and uses symbol of gradient V = (9/9x, 3/dy, 3/93z).
In Equation (1) we find a set of one-electron orbital’s
gofs({ﬁj},?)and their energies ¢;. The orbitals are com-
bined with orbital occupation function f; for constructing
the total density of electrons

p® = fiokS Bl ) 2)

Note that here the density is composed out of pairs of
orbitals with coinciding indices. Total density determines
the potential

V[T, p] = 8/8p(E*'[p] — Tlp)) (3)

which is defined as functional derivative of the total
energy in respect to variation of the total density
and includes interactions of electrons with ions, and
three electron interactions: Coulomb, correlation, and
exchange. Rectangular brackets symbolise functional.
Equations (1)-(3) are solved in the iterative, self-
consistent manner by using VASP software according to
Perdew-Burke-Ernzerhof procedure (PBE-functional)
[38,39] although the use of other functional is also pos-
sible. The choice of functional does affect results for the
bandgaps, electronic density of states, spatial distribution
of orbitals, MD trajectories, and non-adiabatic couplings.
The choice of functional effect of each of these charac-
teristics in different extent is analysed in the Discussion
section.

The electron density of states (DOS) describes the
number of states per interval of energy. One uses DOS to
characterise electronic structures of the studied models.
DOS is defined as

n(e) = Z (e — &) (4a)

where the Dirac delta function was approximated with a
finite width Gaussian function.

One of the parameters obtained from the DFT calcula-
tion is the oscillator strength representing probability that
a model, which absorbs a photon, will undergo an elec-
tronic transition. Thus, the oscillator strength is related
to the rate of absorption and is defined as

dnrmewij -

fi= a2 Dyl? (4b)

where wjj = ((¢; — ¢j)/h) is the angular frequency
required to excite an electron from state i to state j. D;j =
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e [ drg}(F) - 7 - ¢;(7) is the transition dipole moment for
transition from state i to state j, and me, h, and e are fun-
damental constants. The spectral density of absorption
was calculated analogously to the DOS using

a(@) =Y > fi(ho — hwy)

i<HOj>LU

(5a)

Here, two sums run over pairs of orbitals. Each delta
function is weighted by the oscillator strength corre-
sponding to the transition, so that the more probable
transitions are given a greater weight in the total absorp-
tion spectrum. Delta function is approximated by the
finite width function with width parameter correspond-
ing to a spectral line broadening due to the Heisenberg
uncertainty principle and thermal fluctuations.

The orbitals computed by Equation (1) are visualised
and interpreted in the form of 3D iso-surfaces of par-
tial charge density, for selected orbital |¢X5(7)|? or by 1D
distributions

pi(z) = / dxdy|pXS (x, y, 2)|? (5b)

The main goal of this work is to explore non-
equilibrium dynamics of electronic state of the models of
interest. There are two important factors that determine
non-equilibrium dynamics: initial excitation and non-
radiative relaxation originating from interaction between
electronic and nuclear degrees of freedom. Generally, one
can assess interaction of electronic and nuclear degrees
of freedom based on the response of electronic system to
elongation of nuclear degrees of freedom along normal
mode coordinates. Such approach is often used for solids
atlow temperatures when the nuclear motion is described
as harmonic oscillations near equilibrium. However, at
elevated temperatures, in the non-harmonic regime, one
often uses the so-called ‘on-the-fly’ evaluation, which
is computed along nuclear trajectories. This approach
was developed by researchers such as John Tully, David
Micha, Sharon Hammes-Schiffer, Oleg Prezhdo, Sergei
Tretiak, Hans Lishka, and others. In order to implement
this approach, one first needs to review basics of the com-
putation of first principles molecular dynamics trajectory
which is accomplished in two stages: heating and actual
molecular dynamics.

Heating. The heating algorithm then reheats or cools
the system depending on if the average atoms’ momenta
are higher or lower for the specific temperature. After
initial calculations using DFT and VASP software, the
system is then heated to a specific temperature which
increases its kinetic energy.

- 2

v () X By’ 3 )
T 7 N _CNkgT (6
— 2 §2M1 ks (6)
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The system is then allowed to move for an infinitesi-
mal amount of time to redistribute between kinetic and
potential energy domains. This procedure is repeated
several times until kinetic energy stabilises near the
requested value. The heating step provides initial condi-
tions for the next step, for the molecular dynamics. The
positions {fil(t)} and momenta {I’I(t)} at the last steps of
the heating stage are used as input parameters, as initial
conditions for the molecular dynamic stage.

Molecular dynamics. After the heating step, the molec-
ular dynamics step begins.

dzl_i[(t) 1

R EFI(t) (7)

Here, the trajectory of each ion R;(t) is obtained by inte-
grating Newton’s equation motion with initial conditions
originating from the heating stage. Note that, in the ab
initio molecular dynamics, the Force E 71(t) is recomputed
at each time step, based on electronic structure data, as
an observable, using Hellman Feynman theorem.

After obtaining trajectories of position of ions and
set of Kohn-Sham orbitals at each step of the trajectory
using first principles molecular dynamics, non-adiabatic
couplings were computed. The non-adiabatic coupling
is the tool to assess the interaction between electronic
and nuclear degrees of freedom. The non-adiabatic cou-
pling is the measure of maintaining or violating of the
orthogonality between two orbitals.

o= d .
Vi(t) = —ih < Y (7 RO | 197 (7 Ru)

_ —ih KSx (=
_ E/f/ dF (@S (7, Rit + AD)

x @fSE R0} + 9 7, Ri(v)
x @fS{F Ri(t+ AD)) (8)

In Equation (11) we find how the orthogonality of two
orbitals, goiKS({I_iI},?) and (DJ-KS({I_i[}, 7) is kept or violated
if the orbitals are evaluated at nearby steps of the nuclear
trajectory, offset by time step At. One computes the cou-
pling Vi;j(t) for all available pair of the orbitals. The value
of such coupling for a provided pair of orbitals does expe-
rience fast oscillations, and needs two things: (A) to be
averaged and (B) to be transferred from time domain to
frequency domain, as described in what follows:

(A) The averaging procedure is performed in terms of
the autocorrelation function computed for two pairs
of orbitals Vé\]A (t+171)and V}(\IJA(t) evaluated at dif-
ferent times.

1 T
Mijkl(f):?/ VA + Vi mde (%)
0
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This autocorrelation function uses an average over
the time interval T, which is the duration of the whole
trajectory. In addition, thee autocorrelation function is
related to the transition rate between orbitals. Also, note
that most important elements of the autocorrelation are
those with coinciding pairs of indices M;j;j, which deal
with population relaxation. Other values do correspond
to de-coherence.

(B) The Fourier transform of M;j(t) is often referred to
and Redfield tensor and is denoted as Rjj.

_ pt - + -
Rij = Uy + Ui — 85 PRPETSS -
m m
(9b)

Fiﬁcl: /dTMijkl(T)exp(—iwkl‘t), (9¢)

Fi;kl = /d‘[Mijkl(T)exp(—i(l)ijT)a (9d)

The details on the computation of this tensor are avail-
able in the original paper by A.G. Redfield and a range of
papers on non-equilibrium dynamics.

The elements of the Redfield tensor have an analogy
to Fermi’s golden rule. A transition from instantaneous
non-adiabatic coupling to the rates averaged over trajec-
tory corresponds to Markoff approximation and allows
formulating differential equation of motion for density
operator without memory kernel.

After calculating this transition rates, reduced density
matrix dynamics is used to find how the density operator
changes with time. Equation of motion for density matrix
includes Liouvillian —(i/%)[H, 4 (¢)] and Redfield R (¢)
terms.

d i R
—p(t) = ——[H, p(t)] + Rp(t 10
dt'o() h[ p(®] + Rp(t) (10a)

After flugin in the definition of density p(7) =
> p,-jtp]KS (?)(piKS(?) into Equation (10a) one obtains the
7

equation in terms of density matrix and matrix elements.

d i
Epij(t) =3 Z(Hikpkj — pikHij) + Z Rij 0 (t)
k ki
(10b)

Note that the density considered here is time dependent.
It contrasts the ground-state density in the original den-
sity functional theory, which is time-independent. It is
interesting to discuss similarities and differences between
equation of motion for density matrix (10b) and kinetic
Boltzman equation introduced in e.g. Ref. [40]. The Red-
field term of (10b) would correspond to scattering term
in Boltzman equation, while Liouvillian term of (10b)
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approximately relates to diffusive and filed-related terms
of Boltzman equation. For an adequate comparison, both
equations must be compared in either time-dependent
form or for the stationary state, when (d/dt) p;j(t) = 0.
Also, for the complete analogy, to introduce a concept of
local temperature for both Boltzman and Redfield equa-
tions. After the density matrix dynamics trajectory p;;(t)
is calculated, one can move to the task of computing
observables. Note that the diagonal elements of density
matrix p;; correspond to the population of orbital i.

Another important aspect is that features of the
dynamics depend on the initial condition

pij(0) = pij(00) — &ia + 8y (10c)

defined here as an electron promoted from the occupied
orbital a to the unoccupied orbital b.

Observables

The overall picture of charge density evolution in time
can be analysed in the form of mapping solution for
density matrix into distribution as function of energy

An(e,1) =y (pi(t) — pi(00))d(s — &) (11)

The expectation value of electron and hole energy is
calculated using

(Eo) (1) =Y piD)ei(t) (12a)
i>LU

(En) () = Y piHei(t) (12b)
i<HO

Note that >  p; = Y pi = 1. Interestingly, for

i<HO i=LU
excitations defined in Equation (10c) at t = 0 expecta-
tion energy of the charge carrier is equal to the energy of
excited orbital (E) (t = 0) = gi—p; (Ep) (t = 0) = &j=a.
Finally, the rate of relaxation is calculated using either one
of the following equations:

dEe/h (®)
dt

00 —1
keyn = {t/"71 = { / Ee/h(odt} (14)
0

ke = (13)

The main goal of this study is to determine if the
relaxation rates follow the band gap law as follows:

ke/n = Ae™AE; In keyp —InA = —aAE (15)

Also, it is important to note that charge density evolu-
tion in time can be analysed in the form of mapping solu-
tion for density matrix into a charge density distribution
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as a function of position in space

Ar*(zt) =Y (pi(t) — pi(c0))pi(z)  (16a)
i>LU

Anf(z,t) = Y (pilt) — pi(00))pi(z)  (16b)
i<HO

An(z, t) = Anf(z,t) — Anh(z, t) (16¢)

Here p;(z)is defined in Equation (5b). The distribu-
tions An(z,t) serve as a complementary tool for the
analysis of solution for density matrix and, they also may
help in establishing similarities and differences between
density-matrix approach and Boltzmann equation, as
discussed in Ref. [40]. The distributions An(z,t) allow
tracking expected spatial position of negative (z.)(t) and
positive (zy,) (t) charge carriers.

(ze) (1) = /zAne(z, tdz (16d)

(zn) () = / zAn"(z, t)dz (16€)

The spatial separation of positive and negative charge
carriers

(d)(t) = (zp) (1) — (ze) () (16f)
is related to the electric field and voltage at the interface,
as shown in Refs. [41-43]. It is interesting to discuss dif-
ferences and similarities of voltage in the same interface,
originating from a photoinduced charge separation and
voltage created by a temperature gradient E = Q grad T,
as introduced in Equation (59) in Ref. [44].

Results

In this study, a periodic lead telluride nanowire, doped
with sodium and iodine (Figure 2), was examined. The
nanowire is surrounded by Inm of vacuum in x- and
y- directions, separating it from the periodic images. The
simulation cell length is 110 angstroms along z-direction
and possesses a cubic structure with 288 atoms. Lead and
telluride occur in a 1:1 ratio, with two iodine and sodium
atoms. Lead donates its two excess electrons to telluride,
so it can complete its valence shell. This is illustrated in

A \ (O B [ O\ O 9)-
PeOPOEeOOOEEE il' o
{ | \ o
D OOeReROReeeeed
P P ¢ o,z o ©
2REeRPRREeEReeE@®

(Po-Te—~Pb
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the following equation:

Pb*t 4+ Te*™ = PbTe (17)

This work is based on understanding of the charge bal-
ancing of dopants in the doping process. Doping is the
process of inserting impurities into a semiconductor to
modify its properties. For instance, sodium doping works
as follows:

[Na©@ — Na"" 4 1e7 |-[Pb® — Pb?H) 4 2¢7]

= Na@® —Pb©® — 17 —2¢7 = —1e (18)

In Equation (18), sodium has one extra electron in its
valence band. In contrast, lead has two extra electrons.
When sodium replaces lead in the doping process, one
electron is displaced from the valence band.

NQ - 1079 —1e7]—[Te® - Te®) —2¢7]

=19 _Te® 5 —1e” —(=2e7)=1e" (19)

In Equation (19), iodine has a hole in its valence
shell. As previously stated, telluride has two holes in its
shell. In iodine doping, the iodine replaces the telluride.
After doping, one hole is removed from the conduction
band, which is equivalent to adding an electon to the
conduction band.

Figure 3 shows density of states for the un-doped and
co-doped PbTe NW, computed according to Equation
4(a). Figure 3(a) shows an un-doped lead telluride rectan-
gular nanowire. The computed bandgap here is approx-
imately 1 eV. In the conduction band, the numerous
orbitals with energies ranging from 1.5 to 2 eV provode
larger density of states. This is compared to Figure 3(b)
for the co-doped nanowire. In the valence band, in the
range from —2 eV to 0 eV there is the larger number
of states available. Note the purple colour indicates that
these states are occupied by electrons. Note that a larger
number of states are available for the doped model. Fur-
thermore, the bandgap here has slightly decreased to 0.9
eV. These two changes indicate a drastic increase in the
co-doped nanowire’s ability to facilitate charge transfer.

Unoccupied conduction band peaks B,D in Figure 3(a)
correspond to unoccupied conduction band peaks b, d in

‘ B\ (@0 (®- B ®-@-®-@
peeetetoReteReORe
i [ L o) O (O
pooLeeeoDSOeeRDE
T L L L . o o) (o &
P PORPOPRIeOREeDETER

Figure 2. A rectangular PbTe nanowire doped with iodine (pink) and sodium (blue). The original, undoped model of the nanowire is
composed of 16 pairs of alternating layers PbsTe4 and Pb4Tes, yielding composition Pbys4Teas. In the doped model, sodium replaces
lead atoms due to excess electrons in their valence band. Conversely, iodine replaces telluride due to excess holes in their conduction
band, yielding composition Pby43Na;Teq4;15. This study examines if this doping configuration improves charge transfer.
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a) Undoped Nanowire
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b) Doped Nanowire

density of states

orbital energy, eV

density of states

orbital energy, eV

Figure 3. Density of States. Note that the filled area for doped nanowire is greater than un-doped, indicating a greater number of states.
Furthermore, the doping process added extra states a and c in the conduction band and a’ in the valence band. a and a" are congruent

with the extra states added to both bands in Figure 1(d).
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Figure 4. Absorption spectra (a) un-doped and (b) doped
nanowires. In (a), the lowest transition is bright due to non-
overlap between B and B’ in Figure 6(a). In contrast, lowest
transition in (b) is dark due to charge transfer excitation.

Figure 3(b). Peaks a, ¢ in the co-doped model are unique
and do not have counterparts as they are contributed by
iodine. Occupied peaks B’, C’, D’ in the valence band
of Figure 3(a) correspond to occupied peaks b’, ¢’, d” in
valence band of Figure 3(b). The occupied peak a’ in co-
doped VB does not have analogues as it is contributed by
sodium. So, it can be concluded from the analysis of DOS
that the frontier orbitals of the co-doped model are con-
tributed by dopants and the lowest excitation is expected
to have the charge transfer character.

Figure 4 presents absorption spectra of the un-doped
and co-doped models, computed by Equation (5). Over-
all intensity of absorption is higher for un-doped than for

the co-doped model. In notations of Figure 3(a), the tran-
sition from B’ to B is expected to be bright due to their
delocalisation over telluride and lead ions, respectively.
Thus, these states will have significant overlap and there-
fore increased value of oscillator strength.One expects
that transitions between orbitals of the similar symme-
try (b’ to b) are available in the doped nanowire and
contribute intense features to absorption spectrum.

Additionally, in Figure 4(b), the absorption spectra of
the doped nanowire are shown in comparison with the
un-doped nanowire. Note that the lowest transition (I)
in Figure 4(b) corresponds to transition from a’ to a in
Figure 3(b) and is dark due to charge transfer excita-
tion. This is congruent with the expected results since
the electron is experiencing a transition between orbitals
with different spatial localisation, and negligible overlap,
that disables the intensity of optical transition. Note that
features a’ and a in Figure 3(b) correspond to orbitals
localised near the sodium and iodine dopants, respec-
tively. In short, spectral features shown in Figure 4(a) and
Figure 4(b) differ due to the dopants-contributed states a
and a’ in the DOS of the doped model.

Figure 5 shows some representative orbitals that were
considered in the study. The most important trend to
note here is orbital localisation. In other words, all the
occupied orbitals are found near the sodium dopants, and
the unoccupied orbitals are near the iodine dopants. This
is consistent with the chemical structure of both iodine
and sodium. The best example for this is in Figure 5(d)
which illustrates the HOMO. In this case, it is clearly
shown that all occupied orbitals are localised in the part
of the nanowire doped by sodium. Likewise, all the unoc-
cupied orbitals are localized near the part of the nanowire
doped by iodine.

Figure 6 illustrates 1D distributions of Kohn-Sham
orbitals computed by Equation 5(b). Figure 6 further
supports Figure 5. This shows that the orbitals of the
conduction and valence bands are in the vicinity of the

Wondershare
PDFelement



8 (&) KGIMAETAL

Trial Version g

(1)
LEL]
11
iy
usth
(11
[T1]
LEL)
(1.1
Ll
11}

| nih
111}
BUS
(LA
[11]
L1l
(31}
(1.1
ahs

Na i
L13]
(11
L11]
11
[11]
(111
(111

Naj «#*
(11]
(11
(.11}

h) LU+19

Araw

e
I}
»

T T

l&ahﬁi

)

il

T

e - s s

Figure 5. Kohn-Sham Orbitals’ localisation. This figure shows all orbitals that were considered in this study. Note that all HO orbitals are
localised near the sodium dopants. Conversely, all LU orbitals are localised around the iodine dopants.
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Figure 6. Probability density as a function of atomic distance and orbital energy. Congruent with Figure 5, the conduction and valence
bands are localised around the sodium (z < 0) and iodine (z > 0) dopants. Note that probability appears highest at the conduction band

(0-60 Angstroms).

I and Na dopants, respectively, in agreement with the
preceding figure. Also, theabsolute values of density for
the unoccupied orbitals are higher. Unoccupied orbitals
are localized in the close vicinity of I -dopants, while
occupied orbitals are delocalized over the whole space
region doped by Na.This is expected since the electron
is travelling to fill the hole in iodine.

Kohn-Sham orbital energies are fluctuating along
molecular dynamics trajectory. It is very interesting to
discuss how the band gap changes with time. Since Ry =
fil(t) and &; = ¢;(R), this implies that &; = ¢; ({fl;}(t))
where TQI and ¢; stand for the position of thel-th nucleus
and energy of the i-th orbital, respectively. Positions
are computed by Equation (7) and energies of orbitals
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Figure 7. Redfield tensors at various temperatures. This figure shows the transition rates for pairs of orbitals in the range from HO-10 to
LU4-10. The rates undergo a substantial increase at 700 K. Subsequently, the rates appear to equalise along the main diagonal.

are computed by Equation (1). Note that upper-case
Latin indices I label nuclei and lower-case Latin indices
i label orbitals. In other words, the energies depend
on the nucleus’ position, which, in turn, depends on
time. Figure S1 represents an example of Kohn-Sham
energy fluctuations when the system was heated to
1100 K. Initially, the bandgap is approximately 1 eV at
t=0 femtoseconds. The interval from 0 fs to 150 fs in
Figure S1 shows the dynamics when the model is on
the way to approach thermal equilibrium. During this
time interval, there is an interesting observation of the
gap dynamically changing in time. As time progresses,
the bandgap decreases until it eventually becomes zero.
After t > 150fs, the model is in the equilibrium and
can be used for productive generation of non-adiabatic
couplings. Note that at lower temperatures the gap
remains open.

Figure 7 shows elements of Redfield tensors computed
by Equations (9b)-(9d). Figure 7 shows that the rates of
transitions between orbitals increase if we put system on
a thermostat with larger temperature. One interpretation
of this is as follows. At higher temperatures, the ampli-
tude of fluctuations increases and orbitals gaps/sub-gaps
temporarily close. This could be one of the underly-
ing mechanisms increases the transition rate. Another
underlying mechanism is that larger amplitude of nuclear
motion gives larger violation of the orthogonality or pairs
of orbitals. Note that temperature fluctuations, as shown
in Figure S1, contribute to the enhancement of relaxation
rates.

At lower temperatures, the transition rates near the
bandgap are close to zero. Note that Figure 7 shows a pos-
itive correlation between the temperature and transition
rate. This is expected. As temperature increases electrons
will have more energy to jump between orbitals. Note
that this is also due to a change in time. Furthermore,
as temperature increases the gap between the conduction
and valence band decreases. Another feature of interest
is that at lower temperatures transitions between HOMO
and LUMO have negligible transition rates compared to
other pairs of orbitals. However, as temperature increases

transition rates are more evenly distributed among pairs
orbitals. States in middle contribute to PbTe — PbTe
transitions, states in top right are PbTe — I transitions,
and states in top left are PbTe— Na transitions.

Additionally, the orbitals furthest away from HOMO
and LUMO have very high transition rates, as shown in
Figure 7. This is consistent with Figure 1. At the start
of the time step the bandgap is around 1 eV. However,
as time goes on and temperature increases, the bandgap
decreases and the transition rates for orbitals adjacent
to HOMO and LUMO increase. There are two causes:
the temperature increase and non-equilibrium dynam-
ics. The second one is congruent with the differences in
panels a and e of Figure 7. At 1100 K Figure 7(panel
e), the values of transition rates among orbitals are
quite homogeneous somewhat more in congruent than
in Figure 7(panel a). However, at later temperatures these
transition rates increase.

After computing the individual elements of the R-
tensor, one is able to solve the equation of motion for
density matrix at a range of different initial conditions.
The initial conditions introduced in Equation (10c) are
specified by a pair of orbitals (HO-a, LU+ b) that have
been driven away from equilibrium configuration. Here,
we label initial excitation by the pairs of orbitals: first, an
orbital a that was occupied before the excitation event,
that is typically an orbital in the valence band labelled
as HO-a, and second, an orbital b to where the electron
has been promoted as a result of the initial excitation, the
second orbital is typically in the conduction band and
is labelled as LU + b. Solutions for each initial condition
can be used for computing distributions, observables and
their visual interpretation.

First, in Figure 8 charge density distribution is shown
as a function of energy by using density matrix dynamics
(which studied how density changed with time). They are
computed according to Equation (11). Yellow and Blue
colours correspond to excess n(e,t) > 0 and deficiency
n(e,t) < 0 of electron at certain energy, at certain time.
Green corresponds to equilibrium distribution n(e, t) =
0. The expectation values of electron and hole energy
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Figure 8. Representative dynamics of density distribution as
function of energy An(g, t)introduced in Equation (11) for initial
excitation HO-4—LU+9, at T = 300K. Yellow and Blue colours
correspond to excess An > 0 and deficiency An < 0 of elec-
tron at certain energies at certain times. Green corresponds to
equilibrium distribution An = 0. Dashed and solid lines corre-
spond to expectation values of energy of electron (E) (t)and
hole (Ep) (t), as defined in Equation (12a)—(12b). At lower tem-
peratures, the change in energy for both the electron and hole
are relatively negligible compared to the dynamics computed for
higher temperatures. Note that one can obtain relaxation rates for
both electron and hole as time derivatives or integration of these
expectation values, as defined in Equations (13)-(14). More info in
Figure S2.

were computed by Equations (12a) and (12b) and repre-
sented by dashed and solid line, respectively. More details
are provided in Figure S2. Figure S2 shows that at lower
temperatures the electron and hole relaxation rates were
almost negligible. However, at higher values of temper-
atures relaxation occurs at earlier times. There is one
expected trend from these figures. As the temperature
increases, the energy difference between the electron and
hole decreases.

In Figure 9, density distribution is studied in rela-
tion to the electron’s position in space, computed with
Equation (16). Colour codes math those fo Figure 8.
Additional details are provided in Figure S3. As time
passes by, the distance between average position of elec-
tron and hole increases. Two conclusions can be inferred
from a qualitative examination of the graphs. First, all
charge transfer is localised near the iodine dopants. This
finding agrees with the chemical nature of iodine. Since
iodine only needs one valence electron to complete its
outer shell, it makes sense that an electron from the
sodium dopant would travel toward the iodine dopant.

50

-3 -2 -1 0 1
time, Iog1o(t/1 ps)

Figure 9. Dynamics of density distribution as a function of dis-
tance An(z,t) defined by Equation (16¢), for initial excitation
(HO-4; LU+9), at T = 300K. Solid line = hole position com-
puted by Equation (16d); Dashed line = electron position com-
puted by Equation (16e). Yellow = excess of electron An > 0.
Green = excess of hole An < 0. Blue = equilibrium An = 0.
Solid and dashed lines start at the same point; as time passes
bythey follow different trajectories: dashed tent to I, solid leans
towards Na. More info in Figure S3. Note that all charge transfer is
localised around the iodine dopants and that the transition rates
increase with temperature.

Also, the electron appears to be travelling to the outer-
most iodine dopant.

Furthermore, according to Figure S3 the transition
rate (fs~!) increases with temperature until 700 K after
which it plateaus. That is, the higher the temperature the
quicker the electron’s displacement between its initial and
final points. This finding agrees with Figure 7. At lower
temperatures, only outlier orbital pair transitions away
from the HOMO and LUMO had the nonvanishing rates.
However, as the temperature increases, all orbital pair
transitions, including the ones near HOMO and LUMO,
have nearly equal probability. The electron can travel
quicker because it has a greater number of pathways avail-
able to it. Greater number of states implies more options
for the electron to travel quicker.

Figure 10 reports rates computed by Equation (14)
for different initial excitations of the model and at dif-
ferent temperatures. In Figure 10, a more quantitative
examination is taken. Relaxation rates are studied as a
function of excitation energy (related to the total amount
of energy dissipated into heat during relaxation). A look
at Figure 10(a) shows that the bandgap law (K., =
Ae~®AE) appears to only apply to orbital transitions at
higher temperatures. Also, there is negligible change of
the relaxation rate with energy at the lower tempera-
tures. Perhaps one reason for this is the decrease with the
bandgap with respect to temperature. When the bandgap
decreases at higher temperatures (this is corroborated
by Figure S1), the ‘energy’ an electron needs to emit
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Figure 10. Relaxation rates k. (left panel) and ki, (right panel) computed by Equation (14) as a function of Energy of initial excitation
AE = gy — ey for electrons and AE = eyo — &4, Where the pair of initially perturbed orbitals (a,b) determine initial condition. Relax-
ation rates for both the electron and hole are plotted in lo scale to check the agreement between computed data and expected trend of
the bandgap law, defined in Equation (15). Results demonstrate moderate agreement for electron and little correlation for the hole.
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Figure 11. Relaxation rates k. (left panel) and ky, (right panel) computed by Equation (14) as a function of inverse Temperature.
Results show that the change of relaxation rates with respect to temperature is very similar regardless of initial orbital conditions. This
demonstrates that the relaxation rates follow functional form of Arrhenius law originating form Boltzmann distribution.

decreases. As a result, it is easier for an electron to go
down an orbital. Figure 10(b) shows limited correlation
of the hole with the bandgap law.

Additionally, Figure 11 shows that the trends in the
dependence of the electron and hole relaxation rates with
temperature are independent of orbital pair transitions.
A qualitative examination of these figures illustrates that
these figures agree with the Arrhenijus law and Boltzmnn
distribution, where the relaxation rates have an expo-
nential relation to temperature. Specifically, this proves
that « = 1/kpT where T is the temperature and kg is the
Boltzmann
constant.

Discussion

This section contains interpretation and discussion on
the use of certain exchange-correlation functionals:
One scheme to accurately describe the bandgap is to
perform calculations at the Heyd-Scuseria-Ernzerhof
(HSE06) [45,46] hybrid functional level with the inclu-
sion of SOC effect. The work by Stevanovich et al. [47]
reports the following trend of matching the bandgap of

un-doped lead telluride by using a range of function-
als: PBE without spin-orbit correction gives moderate
overestimation of the bandgap. Hybrid functional HSE06
without spin-orbit correction drastically overestimates
bandgap. HSE06 with spin-orbit correction provides the
bandgap closest to the experimental value, however, stays
expensive for computation on non-adiabatic couplings.
The adoption of PBE without SOC is still meaningful to
follow qualitative trends. There are expectations that the
use of the hybrid functional HSE06 with SOC corrections
will keep the main trends observed in this work, while
providing quantitative improvement, as it was recently
done for other semiconductor nanostructures [48,49].
Discussion and validation for the use of PBE vs HSE06
exchange—correlation functionals for non-adiabatic cou-
plings has been analysed in the literature, with the com-
mon opinion that the values of energies have sensitivity
to the choice of functional, while shapes of orbitals and
non-adiabatic couplings have less sensitivity to the choice
of the functional [49,50].

This work reports case study of excited state dynam-
ics of a candidate thermoelectric material. Based on
the observed trends one may suggest future exploration
of differences and similarities between approaches in
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computational modelling of photovoltaic and thermo-
electric effects.

Conclusions

This first principle numerical experiment has yielded
several interesting findings. One of such findings is that
doping improves a lead telluride nanowire’s ability for
charge transfer. Specifically, replacing two lead and two
telluride atoms with sodium and iodine, respectively,
enables charge transfer. When contrasting results for a
doped and un-doped model, one finds that co-doped lead
telluride has a lower rate of absorbing photoenergy at the
bandgap. Note that it could still be efficient above the gap.
This, in turn, leads to fast phonon-induced non-radiative
transitions between the conduction and valence bands.

The most important aspect of this study is how well the
energy relaxation rates correlate with the energy gap law.
Computations reveal two fashions of relaxation: sequen-
tial and parallel. Only sequential pathway of relaxation
follows the energy gap law. The paralle] pathway often
violates gap law as there are more and more parallel
channels available as one increases the excitation energy.
This atomistic computational study shows that in the
studied material/nanostructures, the energy gap law only
applies to electrons at higher temperatures and shows less
correlation with the trends in relaxation rates of holes.
Furthermore, this study has shown that the general trend
in the relaxation rates’ dependence on temperature is
independent of initial choice of excited orbitals/initial
conditions.

However, in the future, one could be interested in
analysing transitions starting from initial conditions
represented by a superposition of orbitals to deter-
mine if the energy gap law still applies in that situ-
ation. This is important since real-world applications
often have such type of initial photo- or thermal-
excitation. Other future research direction is to con-
trast the findings of this numerical experiment with
exploration of other models, such as doped and un-
doped corresponding to a nanowire grown in <111 >
direction. Relaxation rates, density of states, absorp-
tion spectra and other observables may need to be
computed to compare with this study. Note that pre-
vious studies have shown that there is no momen-
tum dispersion for < 111> nanowires. Furthermore,
doping a helical nanowire is expected to affect its
bandgap.

The findings, observations, and trends obtained in
this atomistic computational modelling of photoinduced
dynamics in certain classes of nanostructures have a
potential of applicability to industry. First, this work pro-
vides a numerical proof of intuitively expected trend
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that doping facilitates charge transfer. Second, for a long
time, researchers and producers have to undergo long
and laborious studies to calculate relaxation rates for a
material. However, if future studies corroborate the find-
ings of this work and prove that the bandgap law has at
least limited applicability, then the time for research and
development in industry can be greatly reduced. Addi-
tionally, the greater the correlation between the relax-
ation rates and the bandgap law, the more efficient a
thermoelectric material is. The authors would like to
share curiosity and enthusiasm to the exploration of pos-
sible differences and similarities in the selection crite-
ria of best materials for photovoltaic and thermoelectric
applications.
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