Narrowing the Speedup Factor Gap of Partitioned-EDF

Xingwu Liu

School of Mathematical Sciences, Dalian University of Technology
SKL Computer Architecture, ICT, CAS

University of Chinese Academy of Sciences, China

Xin Han*

Software School, Dalian University of Technology
Key Lab for Ubiquitous Network and Service Software of Liaoning Province, China

Liang Zhao
Software School, Dalian Unwversity of Technology, China

Zhishan Guo*

Department of Electrical and Computer Engineering, University of Central Florida,
Orlando, FL 32766, USA

Abstract

Schedulability is a fundamental problem in analyzing real-time systems, but
it often has to be approximated due to the intrinsic computational hardness. As
the most popular polynomial-time and practical algorithm for deciding schedu-
lability on multiprocessor platforms, the speedup factor of Partitioned-EDF is
challenging to analyze and is far from being determined. Partitioned-EDF was
first proposed in 2005 by Barush and Fisher and was shown to have a speedup
factor at most 3 — 1/m, i.e., if the input set of sporadic tasks is schedulable
on m unit-speed processors, partitioned-EDF will always succeed on m proces-
sors with speed 3 — 1/m. For the constrained deadline case where the relative
deadline of each task is at most its period, this upper bound was improved to
2.6322—1/m by Chen and Chakraborty in 2011. No improvement has appeared
since then. In this paper, we further improve the factor to 2.5556 — 1/m for both
constrained- and arbitrary-deadline cases, which is very close to the lower bound
2.5 — 1/m [1]. The key ideas are that: we develop a novel method to discretize
and regularize sporadic task sets which are schedulable on uniprocessors, and
obtain that the ratio (p) of the approximate demand bound value to machine
capacity is upper bounded by 1.5556 for the arbitrary deadline case, which plays
an important role in estimating the speed factor of Partitioned-EDF.

*Corresponding authors:
Email address: hanxin@dlut.edu.cn (Xin Han), zsguoQucf.edu (Zhishan Guo)

Preprint submitted to Information and Computation July 1, 2021

20

25

30

35

Keywords: Real-time sporadic tasks, resource augmentation bound,
partitioned scheduling, approximate demand bound function

1. Introduction

Scheduling plays a fundamental role in real-time systems. Basically, given a
finite set of tasks, each sequentially releasing infinitely many jobs, the mission
of real-time scheduling is to allocate computing resources so that all the jobs
are done in a timely manner. Formally, a schedule defines at each time instant,
which jobs receive the required computing resources (while others must wait).
The fundamental question of schedulability naturally arises: is it possible at all
to successfully schedule these tasks so as to meet all the deadlines?

Unfortunately, answering this question is often not ‘easy’; e.g., the schedula-
bility of a set of constrained-deadline ! sporadic tasks, which is the focus of this
paper, is co-NP-hard even on a uniprocessor platform [2]. For multiprocessor
case, it remains NP-hard for partitioned scheduling, even for implicit-deadline
task sets where the relative deadline of each task equals its period [3]. Here
partitioned scheduling means that once a task is assigned to a processor, all the
jobs released by the task will be scheduled on the dedicated processor. These
hardness results imply that it is impossible to exactly decide schedulability in
polynomial time, unless P=NP.

Due to the hardness, real-time schedulability problems are usually solved
approximately by pessimistic algorithms which always answer ‘No’ unless some
sufficient conditions for schedulability are met. To evaluate the performance
of such an approximate algorithm (say, .A), the concept of speedup factor, also
known as resource augmentation bound, has been proposed. Specifically, Algo-
rithm A has a speedup factor of s > 1 if whenever a set of tasks is schedulable
(by an optimal approach) on a platform with speed one, A will return ‘Yes’ when
the speed of the platform is augmented to s. Despite of some recent discussion
on potential pitfalls [4] [5] [6], speedup factor has been a major metric and stan-
dard theoretical tool for assessing scheduling algorithms since the seminal work
in 2000 [7].

Recent years has witnessed impressive progress on finding scheduling al-
gorithms with low speedup factors. For preemptive scheduling (i.e. running
jobs might be interrupted by emergent ones), Global-EDF has a speedup fac-
tor 2 — 1/m [8] for scheduling tasks on m identical processors, and there is a
polynomial-time algorithm for uniprocessors whose speedup factor is 1 + € [9],
where € > 0 is arbitrarily small. For non-preemptive scheduling, there are also
a variety of results [10, 11]. In addition to the speedup factor, there are several
papers concerning about the utilization bound [12, 13, 14].

Although the speedup factor on uniprocessors is tight, the multiprocessor
case remains open. Among all schedulers, partitioned scheduling is of partic-

LA set of tasks is said to be constrained-deadline if the relative deadline of each task is at
most its period (otherwise it is arbitrary-deadline).

40

45

50

55

60

65

70

75

80

ular interest due to its implementation-friendly, simplicity, and capability of
extending most uniprocessor results to the multiprocessor scenario directly un-
der naive ‘partition’ heuristics; i.e., once the task-to-core mapping is fixed, the
scheduling of multiprocessor case is reduced to multiple uniprocessor scheduling
problems, where classical solutions exist. Since EDF is an optimal preemp-
tive scheduler on uniprocessor, this paper focuses on Partitioned-EDF2. Note
that Partitioned-Deadline-Monotonic [15] is also commonly implemented with
a best known speedup factor of 2.8431, while Global-EDF is not of partitioned
paradigm.

Breakthrough in Partitioned-EDF was made in the year of 2005, when
Baruah and Fisher [16] established a 3 — 1/m (4 — 2/m, respectively) upper
bound for the speedup factor on constrained-deadline (arbitrary-deadline, re-
spectively) task sets, where m is the number of identical processors. In 2011,
Chen and Chakraborty [1] further improved the speedup factor to 2.6322 —1/m
(3 — 1/m, respectively) for the constrained-deadline case (arbitrary-deadline
case, respectively). Also in the same paper, an asymptotical lower bound 2.5
of the speedup factor was established for the constrained-deadline case. Since
then, the speedup factor bounds have never been improved.

It is worth noting that deriving the upper bound of the speedup factor of
Partitioned-EDF relies heavily on a quantity p about scheduling on unipro-
cessors. The quantity p, called the relaxzation factor in this paper and formally
defined in Formula (1) of Section 2, roughly indicates how much the approximate
demand bound function (defined in Section 2) deviates from machine-capacity.
Baruah and Fisher [16] bridged the relaxation factor and the speedup factor of
Partitioned-EDF by showing that in case of constrained deadlines, the speedup
factor is at most 14+ p—1/m. As a result, upper-bounding the speedup factor is
reduced to upper-bounding p, and it is in this manner that both [16] and [1] ob-
tained their estimates of the speedup factor. Hence, the relaxation factor itself
deserves a deep investigation. Actually, Baruah and Fisher [16] upper-bounded
it by 2, and Chen and Chakraborty [1] narrowed its range into [1.5,1.6322].

On this ground, this paper will explore a better upper bound of the relax-
ation factor, and on this basis, provide a better estimate of the speedup factor
of partitioned-EDF for sets of constrained-deadline sporadic tasks. The contri-
butions are summarized into the following three aspects.

1. We improve the best existing upper bound of the relaxation factor from
1.6322 to 1.5556 (Theorem 1), which is very close to the lower bound 1.5
for the uni-processor case. Note that the result holds for both constrained
deadline and arbitrary deadline tasks. Accordingly, the speedup factor of
Partitioned-EDF for the constrained-deadline tasks decreases from 2.632—
1/m to 2.5556 — 1/m (Theorem 2) for the multi-processor case.

2. We identify a lossless way to discretize and regularize the tasks. As a
result, the execution times of the tasks of interest can be fixed to be 1 and

2In Partitioned-EDF, each task will be assigned one and only one processor for the execu-
tion of all the jobs this task releases, while on each processor the jobs are executed according
to the earliest-deadline-first priority rule.

85

90

95

100

105

110

115

120

the deadlines be 1,2, -+ n respectively, where n is number of tasks to be
scheduled (Lemmas 3, 7, 8). The only parameter that varies is the period.
The transformation is lossless in the sense that the relaxation factor does
not change although the parameters are extremely simplified.

3. We invent a method to further transform the tasks so that the period
of each task ranges over integers between 1 to 2n (Lemma 9). Although
this transformation is not guaranteed to be lossless, the loss, if any, is
negligible since we prove that the relaxation factor increases by at most
0.0556 (for both constrained- and arbitrary- deadline task sets). These
transformation techniques may be further applied to real-time scheduling
analysis or other problems.

The rest of the paper is organized as follows. Section II presents the model
and preliminaries. Section III focuses on uniprocessor case and derives a new
upper bound (14/9) of the relaxation factor. Section IV provides a new upper
bound (23/9—1/m) of the speedup factor for Partitioned-EDF. Finally, Section
V concludes the paper and mentions some potential future directions.

2. System Model and Preliminaries

We consider a finite set 7 of sporadic tasks. Each task 7; can be represented
by a triple ; = (e;,d;, p;), where ¢e; is the worst-case execution time, d; is its
relative deadline, and p; is the minimum inter-arrival separation length (also
known as period), respectively. Such a task releases infinitely many jobs, each
of which has an execution time at most e; and has to be finished within time d;
since arrival, while the inter-arrival time of consecutive jobs is at least p;. The
task 7; is said to be constrained-deadline if d; < p;, and arbitrary-deadline if no
restriction is set between d; and p;. Note that when d; > p;, a job cannot start
its execution until its predecessor (released by the same task one period ahead)
finishes its execution.

We follow the widely-adopted identical multiprocessor model, which consists
of m > 1 processors of speed s (unless explicitly mentioned, s = 1 by default).
For any task (e,d,p), its jobs can be executed on any of the processors, and
the execution of any job takes at most £ time units. The aim of schedulability
testing is to decide weather a set of sporadic tasks is schedulable on a platform.
Here schedulable means that there exists a schedule for the set of tasks such that
each job can cumulatively receive enough execution time between its release and
deadline.

Given a set of tasks, a schedulability test is a set of conditions to check
that returns success when all the deadlines can be guaranteed to be met. A
schedulability test has a speedup factor (a.k.a. resource augmentation factor)
of s(> 1), if any task set that is schedulable on a unit-speed platform will
successfully pass this test upon a platform with speed s. Informally, speedup
factor measures how “far away” a given schedulability test is from an optimal
one — it reflects the effectiveness of a schedulability test. Smaller speedup
factor indicates a better schedulability test, while a speedup factor of 1 indicates

125

130

135

optimal. Our objective is to estimate the speedup factor of Partitioned-EDF on
multiprocessor platforms.

Before continuing, we introduce some notations. Given a task 7;, the demand
bound function dbf(7;,t) [17] and its approximation dbf*(7;,t) [9] are defined

to be

dbf(r;,t) = ({%J + 1) -e;, otherwise

. 0 ift <d;
dbf*(m,t) = (% + 1) -e;, otherwise.

Roughly speaking, dbf(7;,t) represents the total amount of workload of task 7;
that has to be finished by time ¢, and dbf* is a linear approximation of dbf.
These functions can be extended to task sets. For any set 7 of tasks, define

dbf(r,t) =Y dbf(ri,t), dbf*(r,t) =" dbf*(7i,t).

T; €T T; €T

It is well-known that the demand bound function fully determines the schedu-
lability on uniprocessors, according to the following lemma.

Lemma 1 ([17]). A set 7 of tasks is schedulable on uniprocessors if and only
if dbf(r,t) <t for anyt > 0.

Now we are ready to define the relaxation factor p, which plays a critical
role in fulfilling our objective in this paper:

dbf*(r,d)
p = sup ———"—=
Tel d

; (1)

where I' is the family of sporadic task sets that are schedulable on uni-proecessors,
and d is the largest relative deadline in 7. Roughly speaking, p approximately
stands for the growth rate of the demand over [0, d) of schedulable task sets. A
moment of thought should convince the readers that such a growth rate would
take larger values at some deadline points, and thus elaborating all the deadlines
(d) would sulffice.

In fact, we will see that the relaxation factor p is the optimum value of the
following mathematical program M Py:

dbf*(r,d,
sup BT), MP) @)
subject to dbf(r,t) <t, Vt>0 (3)
di+p;>d,, 1<i<n-—1, (4)
dy <dy < -+ < dy, (5)
ne€Z e di,ps €RY, 1<i<n. (6)

140

145

150

dbf'(zly) ¢

-,
,
P
-’

v
-,

Tdbf (el

0 t 0 t
Figure 1: Illustration of the task transformation in Lemma 2.

where ZT is the set of positive integers while R™ stands for the set of positive real
numbers (the superscript ‘*’ in this paper excludes 0). Condition (3) means T
is schedulable due to Lemma 1, and Condition (4) means that each task releases
exactly one job during the period [0, d,,).

Lemma 2. The relaxation factor is the optimum value of M Py.

PROOF. Let 7 = {1, = (e;,d;,p;) : 1 < i < n} be an arbitrary set of sporadic
tasks that is schedulable on a uniprocessor with speed 1. Assume that d; <

dy < --- <d,. Apply the transformation proposed in [1]:

/ dn, — d;
A) +1> e, 7
(- pi] @
/ dp —d;
by = (+ 1) " Piy (8)
L Pi]
/ dn —d;
L Pi
Let 7 = {1], 79, - ,7,} with 7, = (e, d;, p;) for any 1 < i < n. The transfor-

mation is illustrated in Figure 1. The underlying idea is to enlarge parameters
ei, d;, and p;, such that each task releases exactly one job before d, while the
system is as busy as before.

In [1], it was proven that the following results hold simultaneously:

i) dbf*(r,t) = dbf*(r ,t) for any t > d,,;

ii) dbf(r,t) > dbf(r ,t) for t > 0 ;

iii) d,, < d; +p; for 1 < i <n;
iv) d, =d,.

This immediately leads to our lemma. Wl

155

160

165

Sporadic tasks:
arbitrary parameters

Theorem 1 [

0

The optimum

Lemma 3: .
value remains p

Aligned, so all p; take

Rational parameters
bounded values

MP, MP,
A
Lemma 7: The optlmm Lemma 9: The optimum
value remains p value = p
d; = d;_y + e; forany i . =| All e;s are equal, so all

The optimum e; and d; are fixed

MP,| Lemma 8:] MP.
value remains p 3

Figure 2: The flow of the proofs of Section 3. The constraints are added incrementally, so
each box only presents the new constraint. The overall constraints in each box is formulated
into a mathematical program whose name M P, is labeled at the lower-right corner of the box.

3. Improved Upper Bound of the Relaxation Factor

In order to estimate the speedup factor for multiprocessor partitioned schedul-
ing, we first analyze the relaxation factor and hence focus on uniprocessors. The
main result of this section is Theorem 1, which establishes 14/9 as an upper
bound of the relaxation factor for sporadic tasks.

The basic idea of our proof is to discretize any given task set into a regular
form, thus reducing the problem into an optimization one on bounded integers
with several constraints (MP4). Roughly speaking, Lemma 3 makes sure that
the optimum value remains p if the parameters of the tasks are restricted to
be rational numbers. Lemma 7 claims that further requiring d; = e; + d;_1
for all ¢ keeps the optimum value unchanged. The trend continues in Lemma
8 even if all the tasks are required to have the same worst-case execution time.
Finally, Lemma 9 enables us to only consider tasks with bounded periods. These
transformations reduce estimating p to a simpler optimization problem which is
solved approximately in Lemma 11. These results immediately lead to Theorem
1. The overall proof flow is illustrated in Figure 2.

3.1. Rationalizing the parameters

We first observe that the optimum value of M Py remains unchanged even if
the domain R™T is replaced by Q7, the set of positive rational numbers.

dbf*(r,d
sup S (MP) ()
subject to dbf(r,t) <t, Vt>0 (11)
di+p; >dp, 1<i<n-—1, (12)
dy <dg < -+ <ody, (13)
neZb e di,pi €QF, 1<i<n. (14)

170

175

180

Lemma 3. M Py and M Py have the same optimum value.

PRrROOF. The lemma immediately holds if the following two claims are true:

1. The objective functions of M Py and M P; are the same and continuous.

2. The domain of M P; is a dense subset of that of M P,. The term “dense”
means that for any e > 0 and any feasible solution 7 = {7; = (e;,d;, p;) :
1 <i<n}to MP,, there is a feasible solution 7" = {7] = (e}, d},p}) : 1 <

i <n} to MP; such that for any 1 <i < n,

lef — e < |di —d;| <e|p;—pi| <e. (15)

It suffices to prove Claim 2 since Claim 1 obviously holds.

Let 7 = {1; = (e;,di,pi) : 1 < i < n} be an arbitrary set of tasks that is a
feasible solution to M Py, and € be an arbitrary positive real number. Without
loss of generality, assume that € < minj<;<y e;. For any 1 <7 < n, arbitrarily

choose

€
pi€ (pi+5pite)NQY,

2
(i-1)

)
d;€<d7,+ 27’L evdi+2;>m(@+a

e € (e —ee)NQT.

Obviously, we have p, > p;,d. > d;,e} < e;. Let 7/ denote the set of tasks
{7l = (chdip) s 1 i <).

Now we show that 7’ is a feasible solution to M P;. Since 7’ meets Conditions
(14) and (15) by definition, it is enough to check Conditions (11)-(13).

To continue, arbitrarily fix an integer 1 < i < n.

Observe that

(i —1)e

(i —1)e

d; >d; + >di—1 + >di_y.

185

Hence, 7' satisfies Condition (13) of M P;.
The task set 7’ satisfies Condition (12) because

1 —1)e €
d§+p§>di+()—l-pi—&-*
2n 2

€

>d; +pi + 5

= +p+2

>d, + % (since T satisfies (4))
>dl,.

As to Condition (11), arbitrarily fix ¢ > 0. When ¢ < d}, we have
dbf(r],t) =0 < dbf(m;,t).

When t > d}, because p} > p;,d; > d;, e} < e;, we have

dbf(r],t) = Qtp,_d;J +1) el

< Qt;idiJ + 1) ce; = dbf(Tit).

As a result, we always have dbf(7',t) < dbf(r,t). Since dbf(r,t) < t by

Condition (3), we also have dbf(7’,t) < t, so 7/ satisfies Condition (11).
Altogether, 7/ is a feasible solution to M P;. B

3.2. Tightening the deadlines

Hereunder, let dy = dj, = 0. The objective of this subsection is to prove
that the optimum value of M P; remains unchanged even if the deadlines are
tight. Here “tightness” requires that d; = d;_1 + e; for all 1 <1 < n, intuitively
meaning that the system keeps busy in the early phase. The proof mainly
consists of two steps: Lemma 5 justifies tightening the first n — 1 deadlines,
while Lemma 6 enables us to handle the last deadline. This immediately leads
to the equivalence between M P; and the following mathematical program:

sup b (7 dn) (MP) (16)
dn,
subject to dbf(r,t) <t, Vt>0 (17)
di+p;>d,, 1<i<n-—1, (18)
d;i=e;+di—1, 1<i<n, (19)
neZt e,di,p; €Qt, 1<i<n. (20)

Now we present a technical lemma that will be frequently used.

190

_—
+ =p + d’

Figure 3: Illustration of the proof to Lemma 4

Lemma 4. Suppose d,p,d’,p’ € RT are such thatd+p=d +p and d > d'.

For any real number t,
t—d _t—d
> —_
p p

/

if and only if t < d + p.

PROOF. The basic idea is illustrated in Figure 3. Let 6 =d —d' =p' — p.
Then

t—d t—d
>——op-t-d)>p - (t—-d
o 5 P ()>p' - (t—d)

ep-(t—d+06)>(p+4d)-(t—d)
ep-d>0-(t—d)
sp>t—d. 1

The following definition M (7) will be used in Lemmas 5 and 6. For any

feasible solution 7 = {7; = (e;,d;,p;) : 1 < i <n}to MP,let S(r)={i:1<
1 <n,d; e + di—1}~ Define

[n—minS(r) iS(T)#0
M(r) = { -1 otherwise.

We further prove a property of M P;.

Lemma 5. For any feasible solution T to M Py with M () > 1, there is another
feasible solution ' to M Py such that M(7') < M(7) and dbf*((;,'/’dl) > dbf*d(T’d) ,

where d and d' are the mazimum relative deadlines in T and 7', respectively.

PROOF. Arbitrarily fix a feasible solution 7 to M P; with M(7) > 1. Suppose
T={n=(eidi,p;) : 1 <i<n}. Let k=n—M(7) =minS(r) < n.

10

dbf (zi) — dbf (zi,) r

Figure 4: Task transformation in Lemma 5.

dbf (7))
,'"::j‘-, dbf*(ri’" dn)
0= “ e 0 L1 t
di—q d; t di_,d; d,
(b)
Figure 5: (a) 7/ remains feasible. (b) The objective value of 7/ is at least that of 7.
105 Basically, we will modify di to be ex + dx_1, and prove that the new task

set remains feasible and that the objective value does not decrease. Figures 4
and 5 demonstrate such transformation and relationship.
Specifically, by the definition of k, we have dy # er + dx_1, d; = e; +d;_1

for all i < k, and
k—1
> e =dy. (21)
i=1
Since dy, > d; for any i < k, one has
k k
Z e; < Z dbf(r;,dy) (by definition of dbf)
i=1 i=1

< dbf(T, dk) < d,

where the last inequality holds because 7 satisfies Condition (11). This, together
with Formula (21), leads to ey < di — dp—1. By the assumption that ey #

dy — dg—1, we get
er < dk — dk71. (22)
Construct 7/ = {7/ = (e}, d},p}) : 1 <i < n} where

d; = d;,p; = p;, e; = e; for any i # k,

11

200

and e, = eg,dy, = dr—1 + ex, Py = di + pr — dj,.

By Formula (22), d}, < di. By definition, d} = e} + d}_; for all i < k, so
M) <n—(k+1)<n—k=M(T).

Now we prove that 7’ is a feasible solution to M P;.
First of all, 7/ satisfies Condition (14) by definition.
Then, note that 7/ = 7; for any ¢ # k. Since 7 satisfies Conditions (12), 7/

satisfies Condition (12) for ¢ # k. Furthermore,

pi, +di, = di, + pr, (by definition of p},)
> d, (because 7 satisfies Conditions (12))

=d), (by definition of d,,),

so 7/ also satisfies Condition (12) for ¢ = k. Likewise, considering that d; = d;
for i # k and di—1 < d}, < d < dp41, 7' satisfies Condition (13) because so
does 7.

To show that Condition (11) is satisfied by 7/, we arbitrarily choose t > 0
and proceed case by case.

Case 1: if t < d},. Then
dbf(r',t) = Y dbf(r}1)
1<i<n

Z dbf(r;,t) (because t < dj for j > k)

1<i<k

> dbf(ri,t) (because 7] = 7; for i < k)
1<i<k

< dbf(r,t)

<t (because T satisfies Condition (11)).

12

Case 2: if d), <t < dj.

dbf(r',t)= > dbf(r],t)

1<i<n

t—d
- B[54
1<i<k Py

= Z e; (because d; + p; > d,, = d,, > dj, >t for any 1)
1<i<k

=) e=d, <t
1<i<k
Case 3: if dj, <t < dj, + p). Then

t—d
dbf(rh,t) = < o k +1> -ep,
L kA

=ep, (because dj, < dy <t < d}, + p}.)

(155 +)
= +1]) e,
Pk

205 where the last equality is due to dy <t < dj, + p}, = dy + pr.
For any i # k, dbf(7],t) = dbf(7;,t) since 7/ = 7;.
As a result, dbf(7',t) = dbf(r,t) <t because 7 satisfies Condition (11).
Case 4: if t > d}, + p}.. Because

dj, < dy, and pj, + dj, = dj, + pr,
by Lemma 4, we have

J— / J—
t /dk < t dk'
Dy Pk

Then

dbf(r',t) = > dbf(r],t)

1<i<n

=D dbf(r],t) + (Vp,d;“J +1> ey

ik k

< S abf(r,t) + (V;kd’“J + 1) e

i£k

= dbf(ri,t) + dbf (i, t) (since 7/ = 7 for i # k)
ik

=dbf(r,t) <t (since 7 satisfies Condition (11)).

13

210

215

220

Altogether, 7/ satisfies Condition (11), so it is a feasible solution to M P;.

Finally, we show that

dbf*(r,dn) _ ()
dn = d,

Since k < n, we have d], = d,,, so it suffices to show dbf* (7, d,,) < dbf*(7’,d)).
By definition of 7/, for any ¢ # k,

dbf* (i, dy) = dbf* (], d.,).
Furthermore, note three facts:

L. p, +dj, = di + pr;
2. d% < dy;
3. d,, < dj + px due to Conditions (12).

By Lemma 4, these facts mean

d,, — dy - d, — dy,
Dk D),

b

then

d, —d d —d
b l)e, < (F2k
Pk P

As a result, dbf*(7,d,) < dbf*(7',d,). &

dbf* (1, dn) = (+ e = dbf*(4,dy).

When M(7) =0, ie., d; = ¢e; + d;— for all i < n, and d,, > e, + d,,—1, the
proof above does not work. Hence, we need the following lemma which plays a
key role in proving Lemma 7.

Lemma 6. For any feasible solution 7 to M Py with M(t) = 0, there is a

feasible solution 7' to M Py such that dbf*gl’d,) > dbf*d(T’d), where d and d' are

the mazximum relative deadlines in T and 7', respectively.

PROOF. Arbitrarily fix a feasible solution 7 to M Py with M (7) = 0. We prove
the lemma by induction on |7], the number of tasks in 7.
Base: |7| = 1. 7 consists of one task (e, d,p). By straightforward calcula-

tion, dbf(r,d) = dbf*(r,d) = e. Applying Condition (11) with ¢t = d, we have

14

»s dbf(r,d) < d, so M < 1. Consider the singleton task set 7/ = {(d, d,d)}.
It is a solution to M P,, and L) =1> w. Hence 7/ satisfies the
requirement.

Hypothesis: The lemma holds when |7] < n.
Induction: Suppose |7| = n. Let 7 = {1; = (e;,d;,p;) : 1 < i < n}. Since
M(7) =0, one has d,, # e, + d,—1 and

dj=€j+dj_1, for1<j<n-1. (23)

Like Inequality (22) in the proof of Lemma 5, we also have d,, > e,, + dp, 1.

230 Basically, we enlarge e,, to be d,, —d,,_1, but this might overload the system.
For adjustment, we accordingly offload the task 7; whose job arrives earliest after
time d,, and modify the period p,, to be sufficiently large.

Formally, let i = argmin, ;<,, d; + p;. There are three cases.
Case l: i<nandd, —d, 1 —e, <e;. Let 0 =d, —d,_1 —e,. Note that
/

s 0 > 0since d,, > e, +dn_1. We construct a new task set 7/ = {r} = (e;, d},p;) :

1 < j < n} as follows:
o ¢ = en+20,d, = dn, = | 2] p,
e ci=¢—0,d,=d;,—0,p, =p; +0,
e Fori<j<m,e)=e;d;=d;—0,p;=p;+0,
240 e For j <i, 7} =1;.

Now we show that 7’ is a feasible solution to MP,. Since Conditions
(18)-(20) hold by definition, we prove that Condition (17) for any ¢ > 0:
1. Suppose t < d,,. Let 0 < k < n be such that dj, <t < dj_ ;. Then,
k
dbf(r',t) = Ze; (since 7’ satisfies Condition (18)
j=1
=dj, (since 7’ satisfies Condition (19)

<t. (by the definition of k)

15

2. Suppose d,, <t < d; +p;. We have dbf(r',t) =377, €} =d, <t.
3. Consider ¢t > d; + p;. We first prove that dbf(7;,t) decreases at least
25 20, then dbf(7,,t) increases at most 26, and for any other j the value

dbf(7;,t) does not increase.

First,
t—d.
dbf(r},t) = < — +1> -e]
L Pi
t—d; ,
< +1]-e; (by Lemma 4)
L Pi |
t—d;
= d +1> . 61'79
<_ bi ()

< dbf(ri,t) — 20.

Then, when t < pl, +d,,, dbf(7],,t) =€), = e, +20 < dbf(7,,,t)+20. When
t > pl +d,, let k > 1 be the integer such that kp), +d, <t < (k+1)p], +d.,,

and we have
dvf(r),t) =(k + 1)el,
<2kel,
(2])
en
=dbf (Tn, kp, + dy)
<dbf(7n,t)

<dbf (7, t) + 26.

Finally, for any j & {i,n}, dbf(7j,t) < dbf(7;,t) due to two facts. On the

one hand, when t < d; + p;, dbf(7},t) = ¢} = e; = dbf(7;,t). On the
t—d
Pj

dbf(r),t) = t=d 11 ¢
J p; J

other hand, when ¢ > d; + p;, by Lemma 4, < t;—‘_ij, which means
J

As a result, dbf(7',t) = Y20, dbf(r],t) < 377 , dbf(ry,t) = dbf(r,t).

Hence, dbf(7',t) <t because 7 is a feasible solution to M P;.

Altogether, we have proven that 7/ satisfies (17).

250 Then we prove dof C(;) > dbf d(T’d"). Since d, = d,, it is equivalent to

show dbf*(7',d,) > dbf*(r,dy). This follows from
o dbf*(7),dyn) — dbf*(n,dy) =€, — e, = 26.

o dbf*(r!,dn) — dbf*(r;,dn) > —20 because

- d
dbf*(r!,d,) = (dnp, di + 1) -e)

7

> (dnp_dz + 1) -(e; —0) (by Lemma 4)

=dbf* (71, dy) — (d" —di | 1))
Di

>dbf* (r;,dy) — 26

e Fori < j<mn,dbf*(r},d,) > dbf*(7;,dn) because

’ dn — d; ’
dbf* (75, dn) = — 41 ¢
> (dn_d] + 1> -e; (by Lemma 4)

=dbf* (75, dn).

e For j <i, dbf*(7},dn) — dbf*(7j,dy) = 0 since 7] = 7;.

Hence, the proof of Case 1 is finished.
255 Case 2: i <nandd, —d,_1 —e, > e;. Let 0 = ¢;. We construct a new

task set 7' = {7} = (e}, d},p}) : 1 <j <n—1} as follows:

24/
i e;L—l =en + 20, d/n—l =dn, piz—l = ’7 2:1—‘ Pn;
° FOI‘ZS]S(TL—Q), 63:€j+17 d;':dj+1_97 p;:pj+1+07

S,
e For j <i, 7; =1;.

17

260

Next we prove that 7’ is a feasible solution to M P;. Since Conditions

(12)-(14) hold by definition, we prove that Condition (11) holds for any ¢ > 0:

1. Suppose t < dp,. Let 0 < k < (n—1) be such that dj, <t <d} . If k <1,

then we have dbf(7',t) = Z?:l ej = di = dj, < t. Otherwise,

k
dbf (7', t) = Z ¢ (since 7’ satisfies Condition (12))
P

i—1 k+1
= E ej + E ej:dk“—ei
7j=1 j=i1+1

=dpr1 — 0 =d) (by the definition of 7")

<t. (by the definition of k)

2. Suppose d,, <t < d; + p;. We have dbf(7/,t) = Z;:ll e; <d, <t

3. Consider t > d; + p;. First of all, we have dbf(7;,t) > 2e; = 26.
Then, when t < pl,_;+dy,, dbf(7}_1,t) =€l = en+20 < dbf(1p,t)+26.
When ¢ > p!,_; +d,, let k > 1 be the integer such that kp],_; +d, <t <

(k+1)pl,_4 + dy, and we have

dbf(r}_1,t) =(k+ el _,

<2ke!

n—1

2ep, 4
<|(k|——|+1) e,
€n
p/
— <k:”_1 + 1> en
Pn

=dbf (Tp, kply—1 + dn)
<dbf(7n,t)

<dbf(7n,t) + 26.

In addition, for any j < i, dbf(7},t) < dbf(7;,t) by definition.

Finally, for any i > j < (n — 2), dbf(7},t) < dbf(7j41,t) due to two
facts. On the one hand, when t < dji1 + pji1, dbf(7],t) = €} = ej1 =
dbf(Tj+1,t). On the other hand, when ¢ > d;i1 + pj41, by Lemma 4,

18

t—d, t—d; .
o< f’f, which means

p; - Pj+
t—d.
dbf (7}, t) = L +1) €
pj

t—d;
< QJHJ + 1) “€jt1
Pj+1

=dbf(7j+1,1).

As a result, dbf(r',t) = Y02 dbf(r],t) < S0, dbf(rj,t) = dbf(r,t).

Hence, dbf(7',t) <t because 7 is a feasible solution to M P;.

Altogether, we have proven that 7/ satisfies (11).

dbf*(r',d.,
Then we prove ! fl, noi)

n—1

to show dbf*(7’',d,) > dbf*(r,d,). This follows from

> dbf*d(?dn). Since d},_; = d,,, it is equivalent

270 o dbf*(1)_y,dy) — dbf*(Tn,dy) = €

n—

1~ 6n = 20.
o dbf*(ri,dn) = (dnijdl + 1) ce; < 2e; = 26.

p

e Fori<j<mn-—2 dbf*(},dy,) > dbf*(7j41,d,) because

wp) = (G)
f(Tj7 n)* p, + ej

J

d, —d;
- (ijH + 1) ~ejy1 (by Lemma 4)
j

:dbf*(7j+1, dn)

e For j <i, dbf*(7},dn) — dbf*(7j,dp) = 0 since 7] = 7;.

Then we proceed in two sub-cases.
Case 2.1: d,, —d,—1 — e, > ¢;. Then 7' is a feasible solution to M P; with
zs M(7') = 0. The lemma follows from the induction hypothesis.
Case 2.2: d,, — d,_1 — e, = e;. By the definition of 7/, one can see that
Condition (19) also holds, so 7’ is a desired feasible solution to M P,. The
lemma thus holds.

Hence, the proof of Case 2 is finished.

19

280 Case 3: i = n. Choose k such that d, + kp, > di + p1. Define tasks T]’. =T
for 1 < j <nand 71, = (en,dn,kppn). Let 7/ = {7]:1 < j < n}. We observe

three facts:

dbf*(t',dn) _ dbf*(7,dn)
dp - :

n

1. By the construction,

2. For any t > 0, dbf(7,,t) < dbf(7n,t) and dbf(7],t) = dbf(7;,t) for any

265 1 < j < n, meaning that dbf(7',t) < dbf(r,t) <t. Hence, 7 is a feasible
solution to M P;.

3. M(r') =0 and n > argmin, < ;<,, d; +p};, where d; and p’; are the relative

deadline and period of task T]'-, respectively. The proof is thus reduced to

Case 1 or Case 2.

200 Altogether, we have finished the proof. B

Applying Lemmas 5 and 6, we immediately get the following result.

Lemma 7. M P, and M P have the same optimum value.

8.8. Unifying execution times

In this subsection, a further constraint will be imposed on M P5, namely,
all the tasks have identical execution time (into M P3). We will show that this
modification does not change the optimum value.

dbf*(1,dy)
4
subject to dbf(r,t) <t, Vt>0
di+pi>dy,, 1<i<n-—1,
di=e;+di—1, 1<i<n,

e; =dp/n, 1<i<n,
neZ e di,p; €QF, 1<i<n.

sup (M Py)

~ o~ o~ —~ —~
NN
~N O
D D D

Lemma 8. M P, and M Ps have the same optimum value.

2s Basic idea of the proof: for any feasible solution to M P, we will construct a
feasible solution to M P3; whose objective value is no smaller. This leads to the
lemma since the feasible domain of M Pj is included in that of M P, and the
two mathematical programs have the same objective function.

Roughly speaking, the construction is to split each task into a set of smaller

a0 subtasks with identical execution times, as demonstrated in Figure 6. The fact

that the splitting keeps the feasibility and does not reduce the dbf* value is
intuitively shown in Figure 7.

20

dbf(Tyln(i/k(i))") i
0 t

- 1 .

dbf (r,) dbf(Tm(i,z)")]
-) , —— :

k(i) k(i dbf (Tmi,1),) I
2 t 0 R,

dl.—i d; dn dl'.—l =1 d,_ d-n
Figure 6: Splitting each 7; into 7/(¢) = {T:n(i Hil<is< k(i)}.

dbf* (o @) r
0 t

dbf*(Tyn(i2), dn)/// j// The sum is

dbf* (s, dy)

dbf* Ty dn) e

(b)

Figure 7: (a) The splitting keeps the feasibility. (b) The dbf* value is not reduced.

21

PRrROOF. Let 7 = {7, = (e;,d;,p;) : 1 < i < n} be an arbitrary feasible solution
to M P,. Due to Condition (20), we can choose § € Q1 such that

k(i) 2 2

is an integer for any 1 <i <n. Let ' =7 | k(4).
For any 1 <[< n/, define task 7/ = (e],d},p;) as below, where 1 < i <n
and 1 < j < k(i) are such that { = m(i,5) £ j + >, .p-; k(h):

e; =0,

d=di_y + ﬁ(di —di_1) = di_y + J,

p,=p; +d; —d.

Let 7/(i) = {7),;.; 1 1 < < k(i)} for any 1 <4 < n, and 7/ = UL 7'(i). Let
ws dfy = 0. Next we will prove that 7’ is a feasible solution to M Ps.
Since 7/ satisfies Conditions (26)-(29) by definition, we now investigate Con-
dition (25) by arbitrarily fixing ¢ > 0 and proceeding case by case.
Case 1: t < d,. Let integer h > 0 be such that dj, <t < dj_;. Then

dbf(r',t) =) dbf(7],1)
1<r<n’

= Z dbf(r),t) (because t < dj_)
1<r<h

t—d
=¥ (|55 +1)
1<r<h Pr
= > e =d,<t

1<r<h

where the fourth equality holds due to the inequality p!. > ¢ — d.. which in turn

follows from three facts:

1. Forany 1 <i<mnand 1 <j <Ek(i), we have
Prn(ijy = Pi +di — d,; ;) by definition;
310 2. From (18), p; +d; > d, holds Vi, 1 < i < n;

22

3. d’ﬂ :d,/n/ > t.

Case 2: t > d),. It suffices to prove that for any 1 <i < n,

dbf (7' (i),t) < dbf(mi,t).

Suppose t < d; + p;. We observe that

k(i)
dbf(r'(i),t) = dbf(rh,; 1)
j=1

k(7) t— d/
m(i,5)
j=1 Pini.j)

=k(i)6 (because t < d; + p; = d;n(i’j) -|-p;n(i7j))
=e; (By definition of k(i))

=dbf(r;,t) (because d; <t < d; + p;)

Then consider ¢ > d; + p;. For any 1 < j < k(4), since d; > d;n(ij) and

di +pi = d;n(i,j) +p’m(i,j), Lemma 4 implies

t—d . —d
miig) o t=di

p/m,(i,j) Di

which further leads to

KO-,
dbf (' (i),t) = Q’”“)J + 1) 5
)

Altogether, Condition (25) is satisfied in both cases, so 7/ is a feasible
solution to M Ps.
The rest of the proof is to show that

dvf*(r',d,,) > dbf*(r,dy).

23

315

320

325

Note that for any 1 <i <n,1 < j <k(7),
r) oy / ')
= < i+ di = dyy; 5y + P) A0 o 5y < i
Lemma 4 implies that

! I
dy — dm(i,j) S dy — di'

/

PGy P

Then for any 1 < i < n, we have

k(2) d// _ d/ o
dbf* (7' (i), dly) = 3 (" i) 1) 5

=1 Prni.g)

(=55 +1)
> +1)e;
Di

=dbf* (7, dp).

Therefore, dbf*(r',d},) > dbf*(r,d,). B

3.4. Aligning the periods

It is still difficult to estimate the optimum value of M Pz, partly because
Condition (25) is hard to handle. Thus, instead of Conditions (25) and (26) ,
we require that the task set be aligned, as defined below:
Definition 1. Given a task set 7 = {1, = (e;,d;, p;) : 1 <1 < n}, a permutation

7 over {1,2,--- ,n} is called an aligning permutation of 7 if
for any 1 <i<mn. 7 is said to be aligned if it has an aligning permutation.

Remark 1. We will consider aligned task sets in the context of Conditions (32)
and (38) as in the following M Py. Then being aligned means that every d; time
during period [0,2d,], there is a job (the first or second job released by some
task) reaches its deadline. Since any job needs execution time %“, the system
has to execute the jobs one after another, having no idle time during [0,2d,]
at all. Hence, neither the periods nor the deadlines of the tasks can be further
shrunk to keep the task set schedulable. Intuitively, aligned task sets make the
system as busy as possible during [0, 2d,], so they might lead to an upper-bound

of the value p.

24

330

335

dbf (Tr(iy) dbf (Tng))

Pr(i) Pray < Pri)
0 e —— 0 e ——
dngy t dny d, +d; t

Figure 8: Illustration of proof of Lemma 9.

Actually, being aligned implies Condition (26), and in some sense “relaxes”
Condition (25) for ease of analysis. Hence, we replace these conditions in M Ps
with “aligned”, and show that the optimum value of M Ps does not decrease
after the modification. Specifically, define a new mathematical program:

dbf*(r,dy)

sup 7 , (MPy) (30)
subject to T is aligned, (31)
di=e+di—1, 1<i<n, (32)

e; =dp/n, 1<i<n, (33)

ne’Z" e,d,p;eQf, 1<i<n. (34)

Lemma 9. The optimum value of M Ps is not more than that of M Py.

Basic idea of the proof: given any feasible solution to M Ps, sort the tasks
increasingly according to their second deadlines, namely p; + d;. Adjust the
periods of the tasks so that for any ith task (order in the sorting), its second
deadline is d,, + d;. This transformation trivially guarantees alignment.

PROOF. Arbitrarily choose a feasible solution 7 = {r; = (e;,d;,p;) : 1 <i <n}

to M Ps. Let m be a permutation over {1,2,--- n} such that

dry + Pr) < dr2) +Pr2) < oo S dr(n) + Pr(n)- (35)

For any 1 < i < n, construct a task T;(i) = (e;(i),d;(i),p;(i)) where

/

/ _ / _ / _ L
Cr(i) = €m(i)s dﬂ(i) = dw(i)apﬂ(i) =d, +d; OR

Let 7/ = {7/ : 1 <i < n}. The construction is demonstrated in Figure 8.

We will show that 7’ is a feasible solution to M P,. Since Conditions
(32)-(34) are satisfied by definition, we only need to prove Condition (31). Be-
cause p;(i) + d;(i) =d,+d; =d, +dj forany 1 < i < n, 7 is an aligning

permutation of 7" and Condition (31) is satisfied.

25

dbf* (t},dn)

s dbf* (1, dy)
t

Figure 9: The transformation in Lemma 9 does not reduce the objective value.

Now it is time to prove dbf* (7', d.,) > dbf*(r,dy), as illustrated in Figure
s 9. Let’s first derive an inequality as tool:

For any 1 <i < n, let j = 771(i), i.e., m(j) = i, and we have

d; + p; >dbf(7,d; + p;) (since 7 satisfies Condition (25))

= > dbf(rey.di+pi) + Y dbf(Taqy. di + pi)

1<I<j j<l<n
> Z 2er) + Z 20)
1<I<j j<i<n
27d,, n—j)d,
_2jdn (n—J)
n n

=d, +d; (due to Conditions (27) and (28)),
where the second inequality is because
di + pi = dr(j)y + Pr(j) = dr@) + Pxq) for any [< j
and d; + p; > dn > dr() for any | > j. Hence, by definition of 7/, we have
di +pi > dp +dj = dp + dr-1¢y = di + . (36)

For any 1 < i < n, by (36) and d; = d}, we have p, < p;. This, together
with e} = e;,d} = d; for any 1 <4 < n, implies dbf*(7',d})) > dbf*(7,d,). As a

result,

dbf*(r,dy) < dbf*(r',d)
dy, - dl, '
The lemma thus holds. W

We present a technical lemma before moving on.

26

Lemma 10. For any x1,%2, - ,Tn € RT such that

we have

ProoFr. By Cauchy’s Inequality,

Note that

Z\/ > / Vzdr (by the monotonicity of \/z)

- /fd:z:

N\W

CO\[\D

Therefore,
i A3 yp
I
Pk n? 9
Hence we have this lemma. B

Lemma 11. The optimum value of M Py is at most 3.

PROOF. Arbitrarily choose a feasible solution 7 = {7; = (e;,d;,p;) : 1 <i <n}
to MPy. Let 6 = %=, By Conditions (32) and (33),

n

e; =0 and d; = 10

us forany 1 < i <n.

Let 7 be an aligning permutation of 7. Then we have

pr(i)zzd +d; — d())—ndn—n5
=1 i=1

27

which implies Y7 ;| #2 = n2. By Lemma 10,

LR 4n
me SN

i=1

Hence,
i dj +pj —dn _ i dr(i) + Pr(s) — dn
J=1 Dj i—1 Pr(i)
= Z (since 7 is aligned)
i=1 pT"()
N 4n
— Z —_—
= Priy 9
As a result,

dbf*(r,dy) Zdbf (15, d

_pitdi—dn
_ Z e;
by

pj +d;

) 52 J J
= Pj
<2n5—l‘5_%dn

The lemma holds. W

8.5. Upper-bounding the relaxation factor

We are ready to present one of the main results of this paper, which claims
that the relaxation factor is at most 1.5556.

Theorem 1. The relazation factor p is at most %.

PRrROOF. It follows from Lemmas 3,7, 8,9, and 11.

28

355

360

365

370

375

380

385

4. Partitioned Scheduling on Multiprocessors

This section is devoted to partitioning sporadic tasks on multiprocessors,
where the tasks are assumed to have constrained deadlines. Note that although
Theorem 1 holds for arbitrary deadlines, the extension to multiprocessor applies
only for the constrained-deadline case. We focus on the algorithm of Deadline-
Monotonic Partitioned-EDF, namely, Algorithm PARTITION in [16].

Basically, Algorithm PARTITION assigns tasks sequentially in non-decreasing
order of relative deadlines to processors that are numbered by distinct integers.
Suppose the (i — 1)-th task has just been assigned. Let 7(k) be the set of tasks
that have been assigned to processor k, for any k. Then the i-th task is as-
signed to the least-numbered processor k that can safely serve the task, i.e.,
e; +dbf*(r(k),d;) < d;.

Remember that we have upper-bounded the relaxation factor p. The follow-
ing lemma bridges p and the speedup factor of PARTITION.

Lemma 12 ([16], [1]). The speedup factor of Algorithm PARTITION on constrained-

deadline tasks is 1 + p — 1/m, where m is the number of processors.

It is time to present the other main result of this paper.

Theorem 2. The speedup factor of Algorithm PARTITION on constrained-
deadline tasks is at most 2.5556 — 1/m.

PROOF. The theorem immediately follows from Theorem 1 and Lemma 12. B

5. Conclusion and Future Work

In this paper, we improve the upper bound of the speedup factor of (polynomial-
time) Partitioned-EDF from 2.6322 — 1/m to 2.5556 — 1/m for constrained-
deadline sporadic tasks on m identical processors, narrowing the gap between
the upper and the lower bounds from 0.1322 to 0.0556. This is an immediate
corollary of our improved upper bound of the relaxation factor from 1.6322 to
1.5556, which holds for both constrained- and arbitrary-deadline scenarios.

Technically, our improvements root at a novel discretization that transforms
the tasks into regular form. The discretization essentially restricts attention to
the tasks with fixed execution times and deadlines. Only the period parameter
remains flexible to some extent—ranging over the set {1,2,---,2n}, where n is
the number of tasks to be scheduled. With such transformation, the estimation
of the relaxation factor is reduced to a much simpler optimization problem.
However, we have not yet proved that the last-step transformation (for periods)
is lossless. This means that the discretization might enlarge the relaxation
factor. The good news is that the incurred loss, if not zero at all, is guaranteed
to be no more than 0.0556.

29

390

395

400

405

410

415

420

425

As to future directions, we conjecture that a 1.5 upper bound of the re-
laxation factor can be derived, thus closing the gap between the upper and the
lower bounds. If this is the case, the speedup factor of Partitioned-EDF becomes
fully determined, at least in the case of constrained deadlines.

Acknowledgment

The authors would like to thank Prof. Sanjoy Baruah from Washington
University at St. Louis and Prof. Yungang Bao from Institute of Computing
Technology, CAS for the fruitful discussions. This work is partially supported
by Key-Area Research and Development Program of Guangdong Province (NO.
2020B010164003), the National Natural Science Foundation of China (11971091,
62072433, 62090020), Liaoning Natural Science Foundation (2019-MS-062), Youth
Innovation Promotion Association of Chinese Academy of Sciences (2013073),
the Strategic Priority Research Program of Chinese Academy of Sciences (Grant
NO. XDC05030200), and National Science Foundation (of the US, CNS-1850851).

References

[1] J.-J. Chen, S. Chakraborty, Resource augmentation bounds for approx-
imate demand bound functions, in: Real-Time Systems Symposium
(RTSS), 2011 IEEE 32nd, IEEE, 2011, pp. 272-281.

[2] F. Eisenbrand, T. Rothvof}, EDF-schedulability of synchronous periodic
task systems is conp-hard, in: Proceedings of the twenty-first annual ACM-
SIAM symposium on Discrete Algorithms, STAM, 2010, pp. 1029-1034.

[3] A. K.-L. Mok, Fundamental design problems of distributed systems for
the hard-real-time environment, Ph.D. thesis, Massachusetts Institute of
Technology, 1983.

[4] J.-J. Chen, G. von der Briggen, W.-H. Huang, R. I. Davis, On the Pitfalls
of Resource Augmentation Factors and Utilization Bounds in Real-Time
Scheduling, in: 29th Euromicro Conference on Real-Time Systems (ECRTS
2017), Leibniz International Proceedings in Informatics (LIPIcs), 2017, pp.
9:1-9:25.

[5] Z. Guo, Regarding the optimality of speedup bounds of mixed-criticality
schedulability tests, Mixed Criticality on Multicore/Manycore Platforms
(Dagstuhl Seminar Reports) 17131 (2017).

[6] K. Agrawal, S. Baruah, Intractability issues in mixed-criticality scheduling,
in: the 30th Euromicro Conference on Real-Time Systems (ECRTS’18),
2018. To appear.

[7] B. Kalyanasundaram, K. Pruhs, Speed is as powerful as clairvoyance, J.
ACM 47 (2000) 617-643.

30

430

435

440

445

450

8]

[9]

[12]

[13]

[14]

C. A. Phillips, C. Stein, E. Torng, J. Wein, Optimal time-critical scheduling
via resource augmentation, Algorithmica 32 (2002) 163-200.

K. Albers, F. Slomka, An event stream driven approximation for the anal-
ysis of real-time systems, in: Real-Time Systems, 2004. ECRTS 2004.
Proceedings. 16th Euromicro Conference on, IEEE, 2004, pp. 187-195.

R. R. Devillers, J. Goossens, Liu and Layland’s schedulability test revisited,
Inf. Process. Lett. 73 (2000) 157-161.

R. 1. Davis, A. Thekkilakattil, O. Gettings, R. Dobrin, S. Punnekkat,
J. Chen, Exact speedup factors and sub-optimality for non-preemptive
scheduling, Real-Time Systems 54 (2018) 208—246.

E. Bini, G. C. Buttazzo, Measuring the performance of schedulability tests,
Real-Time Systems 30 (2005) 129-154.

E. Bini, The quadratic utilization upper bound for arbitrary deadline real-
time tasks, IEEE Trans. Computers 64 (2015) 593-599.

J. Theis, G. Fohler, Transformation of sporadic tasks for off-line scheduling
with utilization and response time trade-offs, in: 19th International Con-
ference on Real-Time and Network Systems, RTNS 11, Nantes, France,
September 29-30, 2011. Proceedings, 2011, pp. 119-128.

J. Chen, Partitioned multiprocessor fixed-priority scheduling of sporadic
real-time tasks, in: 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), 2016, pp. 251-261. doi:10.1109/ECRTS . 2016. 26.

S. Baruah, N. Fisher, The partitioned multiprocessor scheduling of sporadic
task systems, in: Real-Time Systems Symposium, 2005. RTSS 2005. 26th
IEEE International, IEEE, 2005, pp. 321-329.

S. K. Baruah, A. K. Mok, L. E. Rosier, Preemptively scheduling hard-real-
time sporadic tasks on one processor, in: Real-Time Systems Symposium,
1990. Proceedings., 11th, IEEE, 1990, pp. 182-190.

31

http://dx.doi.org/10.1109/ECRTS.2016.26

	Introduction
	System Model and Preliminaries
	Improved Upper Bound of the Relaxation Factor
	Rationalizing the parameters
	Tightening the deadlines
	Unifying execution times
	Aligning the periods
	Upper-bounding the relaxation factor

	Partitioned Scheduling on Multiprocessors
	Conclusion and Future Work

