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Abstract

Schedulability is a fundamental problem in analyzing real-time systems, but
it often has to be approximated due to the intrinsic computational hardness. As
the most popular polynomial-time and practical algorithm for deciding schedu-
lability on multiprocessor platforms, the speedup factor of Partitioned-EDF is
challenging to analyze and is far from being determined. Partitioned-EDF was
first proposed in 2005 by Barush and Fisher and was shown to have a speedup
factor at most 3 − 1/m, i.e., if the input set of sporadic tasks is schedulable
on m unit-speed processors, partitioned-EDF will always succeed on m proces-
sors with speed 3 − 1/m. For the constrained deadline case where the relative
deadline of each task is at most its period, this upper bound was improved to
2.6322−1/m by Chen and Chakraborty in 2011. No improvement has appeared
since then. In this paper, we further improve the factor to 2.5556−1/m for both
constrained- and arbitrary-deadline cases, which is very close to the lower bound
2.5− 1/m [1]. The key ideas are that: we develop a novel method to discretize
and regularize sporadic task sets which are schedulable on uniprocessors, and
obtain that the ratio (ρ) of the approximate demand bound value to machine
capacity is upper bounded by 1.5556 for the arbitrary deadline case, which plays
an important role in estimating the speed factor of Partitioned-EDF.
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1. Introduction

Scheduling plays a fundamental role in real-time systems. Basically, given a
finite set of tasks, each sequentially releasing infinitely many jobs, the mission
of real-time scheduling is to allocate computing resources so that all the jobs
are done in a timely manner. Formally, a schedule defines at each time instant,5

which jobs receive the required computing resources (while others must wait).
The fundamental question of schedulability naturally arises: is it possible at all
to successfully schedule these tasks so as to meet all the deadlines?

Unfortunately, answering this question is often not ‘easy’; e.g., the schedula-
bility of a set of constrained-deadline 1 sporadic tasks, which is the focus of this10

paper, is co-NP-hard even on a uniprocessor platform [2]. For multiprocessor
case, it remains NP-hard for partitioned scheduling, even for implicit-deadline
task sets where the relative deadline of each task equals its period [3]. Here
partitioned scheduling means that once a task is assigned to a processor, all the
jobs released by the task will be scheduled on the dedicated processor. These15

hardness results imply that it is impossible to exactly decide schedulability in
polynomial time, unless P=NP.

Due to the hardness, real-time schedulability problems are usually solved
approximately by pessimistic algorithms which always answer ‘No’ unless some
sufficient conditions for schedulability are met. To evaluate the performance20

of such an approximate algorithm (say, A), the concept of speedup factor, also
known as resource augmentation bound, has been proposed. Specifically, Algo-
rithm A has a speedup factor of s ≥ 1 if whenever a set of tasks is schedulable
(by an optimal approach) on a platform with speed one, A will return ‘Yes’ when
the speed of the platform is augmented to s. Despite of some recent discussion25

on potential pitfalls [4] [5] [6], speedup factor has been a major metric and stan-
dard theoretical tool for assessing scheduling algorithms since the seminal work
in 2000 [7].

Recent years has witnessed impressive progress on finding scheduling al-
gorithms with low speedup factors. For preemptive scheduling (i.e. running30

jobs might be interrupted by emergent ones), Global-EDF has a speedup fac-
tor 2 − 1/m [8] for scheduling tasks on m identical processors, and there is a
polynomial-time algorithm for uniprocessors whose speedup factor is 1 + ε [9],
where ε > 0 is arbitrarily small. For non-preemptive scheduling, there are also
a variety of results [10, 11]. In addition to the speedup factor, there are several35

papers concerning about the utilization bound [12, 13, 14].
Although the speedup factor on uniprocessors is tight, the multiprocessor

case remains open. Among all schedulers, partitioned scheduling is of partic-

1A set of tasks is said to be constrained-deadline if the relative deadline of each task is at
most its period (otherwise it is arbitrary-deadline).
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ular interest due to its implementation-friendly, simplicity, and capability of
extending most uniprocessor results to the multiprocessor scenario directly un-40

der naive ‘partition’ heuristics; i.e., once the task-to-core mapping is fixed, the
scheduling of multiprocessor case is reduced to multiple uniprocessor scheduling
problems, where classical solutions exist. Since EDF is an optimal preemp-
tive scheduler on uniprocessor, this paper focuses on Partitioned-EDF2. Note
that Partitioned-Deadline-Monotonic [15] is also commonly implemented with45

a best known speedup factor of 2.8431, while Global-EDF is not of partitioned
paradigm.

Breakthrough in Partitioned-EDF was made in the year of 2005, when
Baruah and Fisher [16] established a 3 − 1/m (4 − 2/m, respectively) upper
bound for the speedup factor on constrained-deadline (arbitrary-deadline, re-50

spectively) task sets, where m is the number of identical processors. In 2011,
Chen and Chakraborty [1] further improved the speedup factor to 2.6322−1/m
(3 − 1/m, respectively) for the constrained-deadline case (arbitrary-deadline
case, respectively). Also in the same paper, an asymptotical lower bound 2.5
of the speedup factor was established for the constrained-deadline case. Since55

then, the speedup factor bounds have never been improved.
It is worth noting that deriving the upper bound of the speedup factor of

Partitioned-EDF relies heavily on a quantity ρ about scheduling on unipro-
cessors. The quantity ρ, called the relaxation factor in this paper and formally
defined in Formula (1) of Section 2, roughly indicates how much the approximate60

demand bound function (defined in Section 2) deviates from machine-capacity.
Baruah and Fisher [16] bridged the relaxation factor and the speedup factor of
Partitioned-EDF by showing that in case of constrained deadlines, the speedup
factor is at most 1+ρ−1/m. As a result, upper-bounding the speedup factor is
reduced to upper-bounding ρ, and it is in this manner that both [16] and [1] ob-65

tained their estimates of the speedup factor. Hence, the relaxation factor itself
deserves a deep investigation. Actually, Baruah and Fisher [16] upper-bounded
it by 2, and Chen and Chakraborty [1] narrowed its range into [1.5, 1.6322].

On this ground, this paper will explore a better upper bound of the relax-
ation factor, and on this basis, provide a better estimate of the speedup factor70

of partitioned-EDF for sets of constrained-deadline sporadic tasks. The contri-
butions are summarized into the following three aspects.

1. We improve the best existing upper bound of the relaxation factor from
1.6322 to 1.5556 (Theorem 1), which is very close to the lower bound 1.5
for the uni-processor case. Note that the result holds for both constrained75

deadline and arbitrary deadline tasks. Accordingly, the speedup factor of
Partitioned-EDF for the constrained-deadline tasks decreases from 2.632−
1/m to 2.5556− 1/m (Theorem 2) for the multi-processor case.

2. We identify a lossless way to discretize and regularize the tasks. As a
result, the execution times of the tasks of interest can be fixed to be 1 and80

2In Partitioned-EDF, each task will be assigned one and only one processor for the execu-
tion of all the jobs this task releases, while on each processor the jobs are executed according
to the earliest-deadline-first priority rule.
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the deadlines be 1, 2, · · · , n respectively, where n is number of tasks to be
scheduled (Lemmas 3, 7, 8). The only parameter that varies is the period.
The transformation is lossless in the sense that the relaxation factor does
not change although the parameters are extremely simplified.

3. We invent a method to further transform the tasks so that the period85

of each task ranges over integers between 1 to 2n (Lemma 9). Although
this transformation is not guaranteed to be lossless, the loss, if any, is
negligible since we prove that the relaxation factor increases by at most
0.0556 (for both constrained- and arbitrary- deadline task sets). These
transformation techniques may be further applied to real-time scheduling90

analysis or other problems.

The rest of the paper is organized as follows. Section II presents the model
and preliminaries. Section III focuses on uniprocessor case and derives a new
upper bound (14/9) of the relaxation factor. Section IV provides a new upper
bound (23/9−1/m) of the speedup factor for Partitioned-EDF. Finally, Section95

V concludes the paper and mentions some potential future directions.

2. System Model and Preliminaries

We consider a finite set τ of sporadic tasks. Each task τi can be represented
by a triple τi = (ei, di, pi), where ei is the worst-case execution time, di is its
relative deadline, and pi is the minimum inter-arrival separation length (also100

known as period), respectively. Such a task releases infinitely many jobs, each
of which has an execution time at most ei and has to be finished within time di
since arrival, while the inter-arrival time of consecutive jobs is at least pi. The
task τi is said to be constrained-deadline if di ≤ pi, and arbitrary-deadline if no
restriction is set between di and pi. Note that when di > pi, a job cannot start105

its execution until its predecessor (released by the same task one period ahead)
finishes its execution.

We follow the widely-adopted identical multiprocessor model, which consists
of m ≥ 1 processors of speed s (unless explicitly mentioned, s = 1 by default).
For any task (e, d, p), its jobs can be executed on any of the processors, and110

the execution of any job takes at most e
s time units. The aim of schedulability

testing is to decide weather a set of sporadic tasks is schedulable on a platform.
Here schedulable means that there exists a schedule for the set of tasks such that
each job can cumulatively receive enough execution time between its release and
deadline.115

Given a set of tasks, a schedulability test is a set of conditions to check
that returns success when all the deadlines can be guaranteed to be met. A
schedulability test has a speedup factor (a.k.a. resource augmentation factor)
of s(≥ 1), if any task set that is schedulable on a unit-speed platform will
successfully pass this test upon a platform with speed s. Informally, speedup120

factor measures how “far away” a given schedulability test is from an optimal
one — it reflects the effectiveness of a schedulability test. Smaller speedup
factor indicates a better schedulability test, while a speedup factor of 1 indicates
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optimal. Our objective is to estimate the speedup factor of Partitioned-EDF on
multiprocessor platforms.125

Before continuing, we introduce some notations. Given a task τi, the demand
bound function dbf(τi, t) [17] and its approximation dbf∗(τi, t) [9] are defined
to be

dbf(τi, t) =

{
0 if t < di(⌊

t−di
pi

⌋
+ 1
)
· ei, otherwise

dbf∗(τi, t) =

{
0 if t < di(
t−di
pi

+ 1
)
· ei, otherwise.

Roughly speaking, dbf(τi, t) represents the total amount of workload of task τi
that has to be finished by time t, and dbf∗ is a linear approximation of dbf .

These functions can be extended to task sets. For any set τ of tasks, define

dbf(τ, t) =
∑
τi∈τ

dbf(τi, t), dbf∗(τ, t) =
∑
τi∈τ

dbf∗(τi, t).

It is well-known that the demand bound function fully determines the schedu-
lability on uniprocessors, according to the following lemma.

Lemma 1 ([17]). A set τ of tasks is schedulable on uniprocessors if and only130

if dbf(τ, t) ≤ t for any t ≥ 0.

Now we are ready to define the relaxation factor ρ, which plays a critical
role in fulfilling our objective in this paper:

ρ = sup
τ∈Γ

dbf∗(τ, d)

d
, (1)

where Γ is the family of sporadic task sets that are schedulable on uni-proecessors,
and d is the largest relative deadline in τ . Roughly speaking, ρ approximately
stands for the growth rate of the demand over [0, d) of schedulable task sets. A
moment of thought should convince the readers that such a growth rate would135

take larger values at some deadline points, and thus elaborating all the deadlines
(d) would suffice.

In fact, we will see that the relaxation factor ρ is the optimum value of the
following mathematical program MP0:

sup
dbf∗(τ, dn)

dn
, (MP0) (2)

subject to dbf(τ, t) ≤ t, ∀t > 0 (3)

di + pi > dn, 1 ≤ i ≤ n− 1, (4)

d1 ≤ d2 ≤ · · · ≤ dn, (5)

n ∈ Z+, ei, di, pi ∈ R+, 1 ≤ i ≤ n. (6)
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Figure 1: Illustration of the task transformation in Lemma 2.

where Z+ is the set of positive integers while R+ stands for the set of positive real
numbers (the superscript ‘+’ in this paper excludes 0). Condition (3) means τ
is schedulable due to Lemma 1, and Condition (4) means that each task releases140

exactly one job during the period [0, dn).

Lemma 2. The relaxation factor is the optimum value of MP0.

Proof. Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary set of sporadic

tasks that is schedulable on a uniprocessor with speed 1. Assume that d1 ≤

d2 ≤ · · · ≤ dn. Apply the transformation proposed in [1]:

e
′

i =

(⌊
dn − di
pi

⌋
+ 1

)
· ei, (7)

p
′

i =

(⌊
dn − di
pi

⌋
+ 1

)
· pi, (8)

d
′

i =

(⌊
dn − di
pi

⌋)
· pi + di. (9)

Let τ
′

= {τ ′1, τ
′

2, · · · , τ
′

n} with τ
′

i = (e
′

i, d
′

i, p
′

i) for any 1 ≤ i ≤ n. The transfor-

mation is illustrated in Figure 1. The underlying idea is to enlarge parameters

ei, di, and pi, such that each task releases exactly one job before dn while the145

system is as busy as before.

In [1], it was proven that the following results hold simultaneously:

i) dbf∗(τ, t) = dbf∗(τ
′
, t) for any t ≥ dn;

ii) dbf(τ, t) ≥ dbf(τ
′
, t) for t > 0 ;

iii) d
′

n < d
′

i + p
′

i for 1 ≤ i ≤ n;150

iv) d
′

n = dn.

This immediately leads to our lemma. �
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Figure 2: The flow of the proofs of Section 3. The constraints are added incrementally, so
each box only presents the new constraint. The overall constraints in each box is formulated
into a mathematical program whose name MP∗ is labeled at the lower-right corner of the box.

3. Improved Upper Bound of the Relaxation Factor

In order to estimate the speedup factor for multiprocessor partitioned schedul-
ing, we first analyze the relaxation factor and hence focus on uniprocessors. The155

main result of this section is Theorem 1, which establishes 14/9 as an upper
bound of the relaxation factor for sporadic tasks.

The basic idea of our proof is to discretize any given task set into a regular
form, thus reducing the problem into an optimization one on bounded integers
with several constraints (MP4). Roughly speaking, Lemma 3 makes sure that160

the optimum value remains ρ if the parameters of the tasks are restricted to
be rational numbers. Lemma 7 claims that further requiring di = ei + di−1

for all i keeps the optimum value unchanged. The trend continues in Lemma
8 even if all the tasks are required to have the same worst-case execution time.
Finally, Lemma 9 enables us to only consider tasks with bounded periods. These165

transformations reduce estimating ρ to a simpler optimization problem which is
solved approximately in Lemma 11. These results immediately lead to Theorem
1. The overall proof flow is illustrated in Figure 2.

3.1. Rationalizing the parameters

We first observe that the optimum value of MP0 remains unchanged even if
the domain R+ is replaced by Q+, the set of positive rational numbers.

sup
dbf∗(τ, dn)

dn
, (MP1) (10)

subject to dbf(τ, t) ≤ t, ∀t > 0 (11)

di + pi > dn, 1 ≤ i ≤ n− 1, (12)

d1 ≤ d2 ≤ · · · ≤ dn, (13)

n ∈ Z+, ei, di, pi ∈ Q+, 1 ≤ i ≤ n. (14)
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170

Lemma 3. MP0 and MP1 have the same optimum value.

Proof. The lemma immediately holds if the following two claims are true:

1. The objective functions of MP0 and MP1 are the same and continuous.

2. The domain of MP1 is a dense subset of that of MP0. The term “dense”

means that for any ε > 0 and any feasible solution τ = {τi = (ei, di, pi) :

1 ≤ i ≤ n} to MP0, there is a feasible solution τ ′ = {τ ′i = (e′i, d
′
i, p
′
i) : 1 ≤

i ≤ n} to MP1 such that for any 1 ≤ i ≤ n,

|e′i − ei| < ε, |d′i − di| < ε, |p′i − pi| < ε. (15)

It suffices to prove Claim 2 since Claim 1 obviously holds.175

Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary set of tasks that is a

feasible solution to MP0, and ε be an arbitrary positive real number. Without

loss of generality, assume that ε < min1≤i≤n ei. For any 1 ≤ i ≤ n, arbitrarily

choose

p′i ∈
(
pi +

ε

2
, pi + ε

)
∩Q+,

d′i ∈
(
di +

(i− 1)ε

2n
, di +

iε

2n

)
∩Q+,

e′i ∈ (ei − ε, ei) ∩Q+.

Obviously, we have p′i > pi, d
′
i > di, e

′
i < ei. Let τ ′ denote the set of tasks

{τ ′i = (e′i, d
′
i, p
′
i) : 1 ≤ i ≤ n}.

Now we show that τ ′ is a feasible solution to MP1. Since τ ′ meets Conditions

(14) and (15) by definition, it is enough to check Conditions (11)-(13).

To continue, arbitrarily fix an integer 1 ≤ i ≤ n.180

Observe that

d′i > di +
(i− 1)ε

2n
≥ di−1 +

(i− 1)ε

2n
> d′i−1.

8



Hence, τ ′ satisfies Condition (13) of MP1.

The task set τ ′ satisfies Condition (12) because

d′i + p′i > di +
(i− 1)ε

2n
+ pi +

ε

2

≥ di + pi +
ε

2

> dn +
ε

2
(since τ satisfies (4))

> d′n.

As to Condition (11), arbitrarily fix t > 0. When t < d′i, we have

dbf(τ ′i , t) = 0 ≤ dbf(τi, t).

When t ≥ d′i, because p′i > pi, d
′
i > di, e

′
i < ei, we have

dbf(τ ′i , t) =

(⌊
t− d′i
p′i

⌋
+ 1

)
· e′i

<

(⌊
t− di
pi

⌋
+ 1

)
· ei = dbf(τi, t).

As a result, we always have dbf(τ ′, t) ≤ dbf(τ, t). Since dbf(τ, t) ≤ t by

Condition (3), we also have dbf(τ ′, t) ≤ t, so τ ′ satisfies Condition (11).

Altogether, τ ′ is a feasible solution to MP1. �

3.2. Tightening the deadlines185

Hereunder, let d0 = d′0 = 0. The objective of this subsection is to prove
that the optimum value of MP1 remains unchanged even if the deadlines are
tight. Here “tightness” requires that di = di−1 + ei for all 1 ≤ i ≤ n, intuitively
meaning that the system keeps busy in the early phase. The proof mainly
consists of two steps: Lemma 5 justifies tightening the first n − 1 deadlines,
while Lemma 6 enables us to handle the last deadline. This immediately leads
to the equivalence between MP1 and the following mathematical program:

sup
dbf∗(τ, dn)

dn
, (MP2) (16)

subject to dbf(τ, t) ≤ t, ∀t > 0 (17)

di + pi > dn, 1 ≤ i ≤ n− 1, (18)

di = ei + di−1, 1 ≤ i ≤ n, (19)

n ∈ Z+, ei, di, pi ∈ Q+, 1 ≤ i ≤ n. (20)

Now we present a technical lemma that will be frequently used.
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𝑑 𝑝 + 𝑑 = 𝑝′+ 𝑑′ 𝑑′ 𝑡 

𝑡 − 𝑑

𝑝
 

𝑡 − 𝑑′

𝑝′
 

1 

Figure 3: Illustration of the proof to Lemma 4

Lemma 4. Suppose d, p, d′, p′ ∈ R+ are such that d + p = d′ + p′ and d > d′.

For any real number t,
t− d′

p′
>
t− d
p

if and only if t < d+ p.

Proof. The basic idea is illustrated in Figure 3. Let δ = d− d′ = p′ − p.

Then

t− d′

p′
>
t− d
p
⇔p · (t− d′) > p′ · (t− d)

⇔p · (t− d+ δ) > (p+ δ) · (t− d)

⇔p · δ > δ · (t− d)

⇔p > t− d. �

The following definition M(τ) will be used in Lemmas 5 and 6. For any
feasible solution τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} to MP1, let S(τ) = {i : 1 ≤
i ≤ n, di 6= ei + di−1}. Define

M(τ) =

{
n−minS(τ) if S(τ) 6= ∅
−1 otherwise.

We further prove a property of MP1.

Lemma 5. For any feasible solution τ to MP1 with M(τ) ≥ 1, there is another190

feasible solution τ ′ to MP1 such that M(τ ′) < M(τ) and dbf∗(τ ′,d′)
d′ ≥ dbf∗(τ,d)

d ,

where d and d′ are the maximum relative deadlines in τ and τ ′, respectively.

Proof. Arbitrarily fix a feasible solution τ to MP1 with M(τ) ≥ 1. Suppose

τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}. Let k = n−M(τ) = minS(τ) < n.

10



Figure 4: Task transformation in Lemma 5.

Figure 5: (a) τ ′ remains feasible. (b) The objective value of τ ′ is at least that of τ .

Basically, we will modify dk to be ek + dk−1, and prove that the new task195

set remains feasible and that the objective value does not decrease. Figures 4

and 5 demonstrate such transformation and relationship.

Specifically, by the definition of k, we have dk 6= ek + dk−1, di = ei + di−1

for all i < k, and

k−1∑
i=1

ei = dk−1. (21)

Since dk ≥ di for any i < k, one has

k∑
i=1

ei ≤
k∑
i=1

dbf(τi, dk) (by definition of dbf)

≤ dbf(τ, dk) ≤ dk,

where the last inequality holds because τ satisfies Condition (11). This, together

with Formula (21), leads to ek ≤ dk − dk−1. By the assumption that ek 6=

dk − dk−1, we get

ek < dk − dk−1. (22)

Construct τ ′ = {τ ′i = (e′i, d
′
i, p
′
i) : 1 ≤ i ≤ n} where

d′i = di, p
′
i = pi, e

′
i = ei for any i 6= k,

11



and e′k = ek, d
′
k = dk−1 + ek, p

′
k = dk + pk − d′k.

By Formula (22), d′k < dk. By definition, d′i = e′i + d′i−1 for all i ≤ k, so

M(τ ′) ≤ n− (k + 1) < n− k = M(τ).

Now we prove that τ ′ is a feasible solution to MP1.

First of all, τ ′ satisfies Condition (14) by definition.

Then, note that τ ′i = τi for any i 6= k. Since τ satisfies Conditions (12), τ ′

satisfies Condition (12) for i 6= k. Furthermore,

p′k + d′k = dk + pk (by definition of p′k)

> dn (because τ satisfies Conditions (12))

= d′n (by definition of d′n),

so τ ′ also satisfies Condition (12) for i = k. Likewise, considering that d′i = di200

for i 6= k and dk−1 < d′k < dk ≤ dk+1, τ ′ satisfies Condition (13) because so

does τ .

To show that Condition (11) is satisfied by τ ′, we arbitrarily choose t > 0

and proceed case by case.

Case 1: if t < d′k. Then

dbf(τ ′, t) =
∑

1≤i≤n

dbf(τ ′i , t)

=
∑

1≤i<k

dbf(τ ′i , t) (because t < d′j for j ≥ k)

=
∑

1≤i<k

dbf(τi, t) (because τ ′i = τi for i < k)

≤ dbf(τ, t)

≤ t (because τ satisfies Condition (11)).

12



Case 2: if d′k ≤ t < dk.

dbf(τ ′, t) =
∑

1≤i≤n

dbf(τ ′i , t)

=
∑

1≤i≤k

(⌊
t− d′i
p′i

⌋
+ 1

)
· e′i

=
∑

1≤i≤k

e′i (because d′i + p′i > d′n = dn ≥ dk > t for any i)

=
∑

1≤i≤k

ei = d′k ≤ t.

Case 3: if dk ≤ t < d′k + p′k. Then

dbf(τ ′k, t) =

(⌊
t− d′k
p′k

⌋
+ 1

)
· ek

= ek (because d′k < dk ≤ t < d′k + p′k)

=

(⌊
t− dk
pk

⌋
+ 1

)
· ek,

where the last equality is due to dk ≤ t < d′k + p′k = dk + pk.205

For any i 6= k, dbf(τ ′i , t) = dbf(τi, t) since τ ′i = τi.

As a result, dbf(τ ′, t) = dbf(τ, t) ≤ t because τ satisfies Condition (11).

Case 4: if t ≥ d′k + p′k. Because

d′k < dk and p′k + d′k = dk + pk,

by Lemma 4, we have
t− d′k
p′k

≤ t− dk
pk

.

Then

dbf(τ ′, t) =
∑

1≤i≤n

dbf(τ ′i , t)

=
∑
i6=k

dbf(τ ′i , t) +

(⌊
t− d′k
p′k

⌋
+ 1

)
· ek

≤
∑
i6=k

dbf(τ ′i , t) +

(⌊
t− dk
pk

⌋
+ 1

)
· ek

=
∑
i6=k

dbf(τi, t) + dbf(τk, t) (since τ ′i = τi for i 6= k)

= dbf(τ, t) ≤ t (since τ satisfies Condition (11)).

13



Altogether, τ ′ satisfies Condition (11), so it is a feasible solution to MP1.

Finally, we show that

dbf∗(τ, dn)

dn
≤ dbf∗(τ ′, d′n)

d′n
.

Since k < n, we have d′n = dn, so it suffices to show dbf∗(τ, dn) ≤ dbf∗(τ ′, d′n).

By definition of τ ′, for any i 6= k,

dbf∗(τi, dn) = dbf∗(τ ′i , d
′
n).

Furthermore, note three facts:210

1. p′k + d′k = dk + pk;

2. d′k < dk;

3. dn < dk + pk due to Conditions (12).

By Lemma 4, these facts mean

dn − dk
pk

<
d′n − d′k
p′k

,

then

dbf∗(τk, dn) = (
dn − dk
pk

+ 1)ek ≤ (
d′n − d′k
p′k

+ 1)ek = dbf∗(τ ′k, dn).

As a result, dbf∗(τ, dn) ≤ dbf∗(τ ′, d′n). �

When M(τ) = 0, i.e., di = ei + di−1 for all i < n, and dn > en + dn−1, the215

proof above does not work. Hence, we need the following lemma which plays a
key role in proving Lemma 7.

Lemma 6. For any feasible solution τ to MP1 with M(τ) = 0, there is a

feasible solution τ ′ to MP2 such that dbf∗(τ ′,d′)
d′ ≥ dbf∗(τ,d)

d , where d and d′ are

the maximum relative deadlines in τ and τ ′, respectively.220

Proof. Arbitrarily fix a feasible solution τ to MP1 with M(τ) = 0. We prove

the lemma by induction on |τ |, the number of tasks in τ .

Base: |τ | = 1. τ consists of one task (e, d, p). By straightforward calcula-

tion, dbf(τ, d) = dbf∗(τ, d) = e. Applying Condition (11) with t = d, we have
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dbf(τ, d) ≤ d, so dbf∗(τ,d)
d ≤ 1. Consider the singleton task set τ ′ = {(d, d, d)}.225

It is a solution to MP2, and dbf∗(τ ′,d)
d = 1 ≥ dbf∗(τ,d)

d . Hence τ ′ satisfies the

requirement.

Hypothesis: The lemma holds when |τ | < n.

Induction: Suppose |τ | = n. Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}. Since

M(τ) = 0, one has dn 6= en + dn−1 and

dj = ej + dj−1, for 1 ≤ j ≤ n− 1. (23)

Like Inequality (22) in the proof of Lemma 5, we also have dn > en + dn−1.

Basically, we enlarge en to be dn−dn−1, but this might overload the system.230

For adjustment, we accordingly offload the task τi whose job arrives earliest after

time dn, and modify the period pn to be sufficiently large.

Formally, let i = arg min1≤j≤n dj + pj . There are three cases.

Case 1: i < n and dn − dn−1 − en < ei. Let θ = dn − dn−1 − en. Note that

θ > 0 since dn > en+dn−1. We construct a new task set τ ′ = {τ ′j = (e′j , d
′
j , p
′
j) :235

1 ≤ j ≤ n} as follows:

• e′n = en + 2θ, d′n = dn, p
′
n =

⌈
2e′n
en

⌉
pn,

• e′i = ei − θ, d′i = di − θ, p′i = pi + θ,

• For i < j < n, e′j = ej , d
′
j = dj − θ, p′j = pj + θ,

• For j < i, τ ′j = τj .240

Now we show that τ ′ is a feasible solution to MP2. Since Conditions

(18)-(20) hold by definition, we prove that Condition (17) for any t > 0:

1. Suppose t < dn. Let 0 ≤ k < n be such that d′k ≤ t < d′k+1. Then,

dbf(τ ′, t) =

k∑
j=1

e′j (since τ ′ satisfies Condition (18)

= d′k (since τ ′ satisfies Condition (19)

≤ t. (by the definition of k)
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2. Suppose dn ≤ t < di + pi. We have dbf(τ ′, t) =
∑n
j=1 e

′
j = dn ≤ t.

3. Consider t ≥ di + pi. We first prove that dbf(τi, t) decreases at least

2θ, then dbf(τn, t) increases at most 2θ, and for any other j the value245

dbf(τj , t) does not increase.

First,

dbf(τ ′i , t) =

(⌊
t− d′i
p′i

⌋
+ 1

)
· e′i

≤
(⌊

t− di
pi

⌋
+ 1

)
· e′i (by Lemma 4)

=

(⌊
t− di
pi

⌋
+ 1

)
· (ei − θ)

≤ dbf(τi, t)− 2θ.

Then, when t < p′n+dn, dbf(τ ′n, t) = e′n = en+2θ ≤ dbf(τn, t)+2θ. When

t ≥ p′n+dn, let k ≥ 1 be the integer such that kp′n+dn ≤ t < (k+1)p′n+dn,

and we have

dbf(τ ′n, t) =(k + 1)e′n

≤2ke′n

≤
(
k

⌈
2e′n
en

⌉
+ 1

)
· en

=dbf(τn, kp
′
n + dn)

≤dbf(τn, t)

<dbf(τn, t) + 2θ.

Finally, for any j /∈ {i, n}, dbf(τ ′j , t) ≤ dbf(τj , t) due to two facts. On the

one hand, when t < dj + pj , dbf(τ ′j , t) = e′j = ej = dbf(τj , t). On the

other hand, when t ≥ dj + pj , by Lemma 4,
t−d′j
p′j
≤ t−dj

pj
, which means

dbf(τ ′j , t) =

(⌊
t− d′j
p′j

⌋
+ 1

)
· e′j

≤
(⌊

t− dj
pj

⌋
+ 1

)
· ej

=dbf(τj , t).
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As a result, dbf(τ ′, t) =
∑n
j=1 dbf(τ ′j , t) ≤

∑n
j=1 dbf(τj , t) = dbf(τ, t).

Hence, dbf(τ ′, t) ≤ t because τ is a feasible solution to MP1.

Altogether, we have proven that τ ′ satisfies (17).

Then we prove
dbf∗(τ ′,d′n)

d′n
≥ dbf∗(τ,dn)

dn
. Since d′n = dn, it is equivalent to250

show dbf∗(τ ′, dn) ≥ dbf∗(τ, dn). This follows from

• dbf∗(τ ′n, dn)− dbf∗(τn, dn) = e′n − en = 2θ.

• dbf∗(τ ′i , dn)− dbf∗(τi, dn) ≥ −2θ because

dbf∗(τ ′i , dn) =

(
dn − d′i
p′i

+ 1

)
· e′i

≥
(
dn − di
pi

+ 1

)
· (ei − θ) (by Lemma 4)

=dbf∗(τi, dn)−
(
dn − di
pi

+ 1

)
θ

≥dbf∗(τi, dn)− 2θ.

• For i < j < n, dbf∗(τ ′j , dn) ≥ dbf∗(τj , dn) because

dbf∗(τ ′j , dn) =

(
dn − d′j
p′j

+ 1

)
· e′j

≥
(
dn − dj
pj

+ 1

)
· ej (by Lemma 4)

=dbf∗(τj , dn).

• For j < i, dbf∗(τ ′j , dn)− dbf∗(τj , dn) = 0 since τ ′j = τj .

Hence, the proof of Case 1 is finished.

Case 2: i < n and dn − dn−1 − en ≥ ei. Let θ = ei. We construct a new255

task set τ ′ = {τ ′j = (e′j , d
′
j , p
′
j) : 1 ≤ j ≤ n− 1} as follows:

• e′n−1 = en + 2θ, d′n−1 = dn, p′n−1 =
⌈

2e′n−1

en

⌉
pn,

• For i ≤ j ≤ (n− 2), e′j = ej+1, d′j = dj+1 − θ, p′j = pj+1 + θ,

• For j < i, τ ′j = τj .
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Next we prove that τ ′ is a feasible solution to MP1. Since Conditions260

(12)-(14) hold by definition, we prove that Condition (11) holds for any t > 0:

1. Suppose t < dn. Let 0 ≤ k < (n−1) be such that d′k ≤ t < d′k+1. If k < i,

then we have dbf(τ ′, t) =
∑k
j=1 ej = dk = d′k ≤ t. Otherwise,

dbf(τ ′, t) =
k∑
j=1

e′j (since τ ′ satisfies Condition (12))

=
i−1∑
j=1

ej +
k+1∑
j=i+1

ej = dk+1 − ei

= dk+1 − θ = d′k (by the definition of τ ′)

≤ t. (by the definition of k)

2. Suppose dn ≤ t < di + pi. We have dbf(τ ′, t) =
∑n−1
j=1 e

′
j ≤ dn ≤ t.

3. Consider t ≥ di + pi. First of all, we have dbf(τi, t) ≥ 2ei = 2θ.

Then, when t < p′n−1+dn, dbf(τ ′n−1, t) = e′n−1 = en+2θ ≤ dbf(τn, t)+2θ.

When t ≥ p′n−1 + dn, let k ≥ 1 be the integer such that kp′n−1 + dn ≤ t <

(k + 1)p′n−1 + dn, and we have

dbf(τ ′n−1, t) =(k + 1)e′n−1

≤2ke′n−1

≤
(
k

⌈
2e′n−1

en

⌉
+ 1

)
· en

=

(
k
p′n−1

pn
+ 1

)
· en

=dbf(τn, kp
′
n−1 + dn)

≤dbf(τn, t)

<dbf(τn, t) + 2θ.

In addition, for any j < i, dbf(τ ′j , t) ≤ dbf(τj , t) by definition.

Finally, for any i ≥ j ≤ (n − 2), dbf(τ ′j , t) ≤ dbf(τj+1, t) due to two

facts. On the one hand, when t < dj+1 + pj+1, dbf(τ ′j , t) = e′j = ej+1 =

dbf(τj+1, t). On the other hand, when t ≥ dj+1 + pj+1, by Lemma 4,
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t−d′j
p′j
≤ t−dj+1

pj+1
, which means

dbf(τ ′j , t) =

(⌊
t− d′j
p′j

⌋
+ 1

)
· e′j

≤
(⌊

t− dj+1

pj+1

⌋
+ 1

)
· ej+1

=dbf(τj+1, t).

As a result, dbf(τ ′, t) =
∑n−1
j=1 dbf(τ ′j , t) ≤

∑n
j=1 dbf(τj , t) = dbf(τ, t).265

Hence, dbf(τ ′, t) ≤ t because τ is a feasible solution to MP1.

Altogether, we have proven that τ ′ satisfies (11).

Then we prove
dbf∗(τ ′,d′n−1)

d′n−1
≥ dbf∗(τ,dn)

dn
. Since d′n−1 = dn, it is equivalent

to show dbf∗(τ ′, dn) ≥ dbf∗(τ, dn). This follows from

• dbf∗(τ ′n−1, dn)− dbf∗(τn, dn) = e′n−1 − en = 2θ.270

• dbf∗(τi, dn) =
(
dn−di
pi

+ 1
)
· ei < 2ei = 2θ.

• For i ≤ j ≤ n− 2, dbf∗(τ ′j , dn) ≥ dbf∗(τj+1, dn) because

dbf∗(τ ′j , dn) =

(
dn − d′j
p′j

+ 1

)
· e′j

≥
(
dn − dj+1

pj+1
+ 1

)
· ej+1 (by Lemma 4)

=dbf∗(τj+1, dn).

• For j < i, dbf∗(τ ′j , dn)− dbf∗(τj , dn) = 0 since τ ′j = τj .

Then we proceed in two sub-cases.

Case 2.1: dn − dn−1 − en > ei. Then τ ′ is a feasible solution to MP1 with

M(τ ′) = 0. The lemma follows from the induction hypothesis.275

Case 2.2: dn − dn−1 − en = ei. By the definition of τ ′, one can see that

Condition (19) also holds, so τ ′ is a desired feasible solution to MP2. The

lemma thus holds.

Hence, the proof of Case 2 is finished.
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Case 3: i = n. Choose k such that dn+kpn > d1 +p1. Define tasks τ ′j = τj280

for 1 ≤ j < n and τ ′n = (en, dn, kpn). Let τ ′ = {τ ′j : 1 ≤ j ≤ n}. We observe

three facts:

1. By the construction, dbf∗(τ ′,dn)
dn

= dbf∗(τ,dn)
dn

.

2. For any t > 0, dbf(τ ′n, t) ≤ dbf(τn, t) and dbf(τ ′j , t) = dbf(τj , t) for any

1 ≤ j < n, meaning that dbf(τ ′, t) ≤ dbf(τ, t) ≤ t. Hence, τ ′ is a feasible285

solution to MP1.

3. M(τ ′) = 0 and n > arg min1≤j≤n d
′
j + p′j , where d′j and p′j are the relative

deadline and period of task τ ′j , respectively. The proof is thus reduced to

Case 1 or Case 2.

Altogether, we have finished the proof. �290

Applying Lemmas 5 and 6, we immediately get the following result.

Lemma 7. MP1 and MP2 have the same optimum value.

3.3. Unifying execution times

In this subsection, a further constraint will be imposed on MP2, namely,
all the tasks have identical execution time (into MP3). We will show that this
modification does not change the optimum value.

sup
dbf∗(τ, dn)

dn
, (MP3) (24)

subject to dbf(τ, t) ≤ t, ∀t > 0 (25)

di + pi > dn, 1 ≤ i ≤ n− 1, (26)

di = ei + di−1, 1 ≤ i ≤ n, (27)

ei = dn/n, 1 ≤ i ≤ n, (28)

n ∈ Z+, ei, di, pi ∈ Q+, 1 ≤ i ≤ n. (29)

Lemma 8. MP2 and MP3 have the same optimum value.

Basic idea of the proof: for any feasible solution to MP2, we will construct a295

feasible solution to MP3 whose objective value is no smaller. This leads to the
lemma since the feasible domain of MP3 is included in that of MP2 and the
two mathematical programs have the same objective function.

Roughly speaking, the construction is to split each task into a set of smaller
subtasks with identical execution times, as demonstrated in Figure 6. The fact300

that the splitting keeps the feasibility and does not reduce the dbf∗ value is
intuitively shown in Figure 7.
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Figure 6: Splitting each τi into τ ′(i) = {τ ′
m(i,j)

: 1 ≤ j ≤ k(i)}.

Figure 7: (a) The splitting keeps the feasibility. (b) The dbf∗ value is not reduced.
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Proof. Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary feasible solution

to MP2. Due to Condition (20), we can choose δ ∈ Q+ such that

k(i) ,
ei
δ

is an integer for any 1 ≤ i ≤ n. Let n′ =
∑n
i=1 k(i).

For any 1 ≤ l ≤ n′, define task τ ′l = (e′l, d
′
l, p
′
l) as below, where 1 ≤ i ≤ n

and 1 ≤ j ≤ k(i) are such that l = m(i, j) , j +
∑

1≤h<i k(h):

e′l = δ,

d′l = di−1 +
j

k(i)
(di − di−1) = di−1 + jδ,

p′l = pi + di − d′l.

Let τ ′(i) = {τ ′m(i,j) : 1 ≤ j ≤ k(i)} for any 1 ≤ i ≤ n, and τ ′ = ∪ni=1τ
′(i). Let

d′0 = 0. Next we will prove that τ ′ is a feasible solution to MP3.305

Since τ ′ satisfies Conditions (26)-(29) by definition, we now investigate Con-

dition (25) by arbitrarily fixing t > 0 and proceeding case by case.

Case 1: t < d′n′ . Let integer h ≥ 0 be such that d′h ≤ t < d′h+1. Then

dbf(τ ′, t) =
∑

1≤r≤n′
dbf(τ ′r, t)

=
∑

1≤r≤h

dbf(τ ′r, t) (because t < d′h+1)

=
∑

1≤r≤h

(⌊
t− d′r
p′r

⌋
+ 1

)
· e′r

=
∑

1≤r≤h

e′r = d′h ≤ t

where the fourth equality holds due to the inequality p′r > t− d′r which in turn

follows from three facts:

1. For any 1 ≤ i ≤ n and 1 ≤ j ≤ k(i), we have

p′m(i,j) = pi + di − d′m(i,j) by definition;

2. From (18), pi + di > dn holds ∀i, 1 ≤ i ≤ n;310
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3. dn = d′n′ > t.

Case 2: t ≥ d′n′ . It suffices to prove that for any 1 ≤ i ≤ n,

dbf(τ ′(i), t) ≤ dbf(τi, t).

Suppose t < di + pi. We observe that

dbf(τ ′(i), t) =

k(i)∑
j=1

dbf(τ ′m(i,j), t)

=

k(i)∑
j=1

(⌊
t− d′m(i,j)

p′m(i,j)

⌋
+ 1

)
δ

=k(i)δ (because t < di + pi = d′m(i,j) + p′m(i,j))

=ei (By definition of k(i))

=dbf(τi, t) (because di ≤ t < di + pi)

Then consider t ≥ di + pi. For any 1 ≤ j ≤ k(i), since di ≥ d′m(i,j) and

di + pi = d′m(i,j) + p′m(i,j), Lemma 4 implies

t− d′m(i,j)

p′m(i,j)

≤ t− di
pi

,

which further leads to

dbf(τ ′(i), t) =

k(i)∑
j=1

(⌊
t− d′m(i,j)

p′m(i,j)

⌋
+ 1

)
δ

≤
k(i)∑
j=1

(⌊
t− di
pi

⌋
+ 1

)
δ

=

(⌊
t− di
pi

⌋
+ 1

)
ei

=dbf(τi, t)

Altogether, Condition (25) is satisfied in both cases, so τ ′ is a feasible

solution to MP3.

The rest of the proof is to show that

dbf∗(τ ′, d′n′) ≥ dbf∗(τ, dn).
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Note that for any 1 ≤ i ≤ n, 1 ≤ j ≤ k(i),

d′n′ = dn < pi + di = d′m(i,j) + p′m(i,j) and d′m(i,j) ≤ di.

Lemma 4 implies that
d′n′ − d′m(i,j)

p′m(i,j)

≥ dn − di
pi

.

Then for any 1 ≤ i ≤ n, we have

dbf∗(τ ′(i), d′n′) =

k(i)∑
j=1

(
d′n′ − d′m(i,j)

p′m(i,j)

+ 1

)
δ

≥
(
dn − di
pi

+ 1

)
ei

= dbf∗(τi, dn).

Therefore, dbf∗(τ ′, d′n′) ≥ dbf∗(τ, dn). �

3.4. Aligning the periods315

It is still difficult to estimate the optimum value of MP3, partly because
Condition (25) is hard to handle. Thus, instead of Conditions (25) and (26) ,
we require that the task set be aligned, as defined below:

Definition 1. Given a task set τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}, a permutation

π over {1, 2, · · · , n} is called an aligning permutation of τ if

dπ(i) + pπ(i) = dn + di

for any 1 ≤ i ≤ n. τ is said to be aligned if it has an aligning permutation.

Remark 1. We will consider aligned task sets in the context of Conditions (32)320

and (33) as in the following MP4. Then being aligned means that every d1 time

during period [0, 2dn], there is a job (the first or second job released by some

task) reaches its deadline. Since any job needs execution time dn
n , the system

has to execute the jobs one after another, having no idle time during [0, 2dn]

at all. Hence, neither the periods nor the deadlines of the tasks can be further325

shrunk to keep the task set schedulable. Intuitively, aligned task sets make the

system as busy as possible during [0, 2dn], so they might lead to an upper-bound

of the value ρ.
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Figure 8: Illustration of proof of Lemma 9.

Actually, being aligned implies Condition (26), and in some sense “relaxes”
Condition (25) for ease of analysis. Hence, we replace these conditions in MP3

with “aligned”, and show that the optimum value of MP3 does not decrease
after the modification. Specifically, define a new mathematical program:

sup
dbf∗(τ, dn)

dn
, (MP4) (30)

subject to τ is aligned, (31)

di = ei + di−1, 1 ≤ i ≤ n, (32)

ei = dn/n, 1 ≤ i ≤ n, (33)

n ∈ Z+, ei, di, pi ∈ Q+, 1 ≤ i ≤ n. (34)

Lemma 9. The optimum value of MP3 is not more than that of MP4.

Basic idea of the proof: given any feasible solution to MP3, sort the tasks330

increasingly according to their second deadlines, namely pi + di. Adjust the
periods of the tasks so that for any ith task (order in the sorting), its second
deadline is dn + di. This transformation trivially guarantees alignment.

Proof. Arbitrarily choose a feasible solution τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}

to MP3. Let π be a permutation over {1, 2, · · · , n} such that

dπ(1) + pπ(1) ≤ dπ(2) + pπ(2) ≤ ... ≤ dπ(n) + pπ(n). (35)

For any 1 ≤ i ≤ n, construct a task τ ′π(i) = (e′π(i), d
′
π(i), p

′
π(i)) where

e′π(i) = eπ(i), d
′
π(i) = dπ(i), p

′
π(i) = dn + di − d′π(i).

Let τ ′ = {τ ′i : 1 ≤ i ≤ n}. The construction is demonstrated in Figure 8.

We will show that τ ′ is a feasible solution to MP4. Since Conditions335

(32)-(34) are satisfied by definition, we only need to prove Condition (31). Be-

cause p′π(i) + d′π(i) = dn + di = d′n + d′i for any 1 ≤ i ≤ n, π is an aligning

permutation of τ ′ and Condition (31) is satisfied.
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Figure 9: The transformation in Lemma 9 does not reduce the objective value.

Now it is time to prove dbf∗(τ ′, d′n) ≥ dbf∗(τ, dn), as illustrated in Figure

9. Let’s first derive an inequality as tool:340

For any 1 ≤ i ≤ n, let j = π−1(i), i.e., π(j) = i, and we have

di + pi ≥dbf(τ, di + pi) (since τ satisfies Condition (25))

=
∑

1≤l≤j

dbf(τπ(l), di + pi) +
∑
j<l≤n

dbf(τπ(l), di + pi)

≥
∑

1≤l≤j

2eπ(l) +
∑
j<l≤n

eπ(l)

=
2jdn
n

+
(n− j)dn

n

=dn + dj (due to Conditions (27) and (28)),

where the second inequality is because

di + pi = dπ(j) + pπ(j) ≥ dπ(l) + pπ(l) for any l ≤ j

and di + pi > dn ≥ dπ(l) for any l > j. Hence, by definition of τ ′, we have

di + pi ≥ dn + dj = dn + dπ−1(i) = d′i + p′i. (36)

For any 1 ≤ i ≤ n, by (36) and di = d′i, we have p′i ≤ pi. This, together

with e′i = ei, d
′
i = di for any 1 ≤ i ≤ n, implies dbf∗(τ ′, d′n) ≥ dbf∗(τ, dn). As a

result,
dbf∗(τ, dn)

dn
≤ dbf∗(τ ′, d′n)

d′n
.

The lemma thus holds. �

We present a technical lemma before moving on.
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Lemma 10. For any x1, x2, · · · , xn ∈ R+ such that

n∑
i=1

xi = n2,

we have
n∑
i=1

i

xi
≥ 4n

9
.

Proof. By Cauchy’s Inequality,(
n∑
i=1

i

xi

)(
n∑
i=1

xi

)
≥

(
n∑
i=1

√
i

)2

.

Note that

n∑
i=1

√
i ≥

n∑
i=1

∫ i

i−1

√
xdx (by the monotonicity of

√
x)

=

∫ n

0

√
xdx

=
2

3
n

3
2 .

Therefore,

n∑
i=1

i

xi
≥

4
9n

3

n2
=

4n

9
.

Hence we have this lemma. �

Lemma 11. The optimum value of MP4 is at most 14
9 .

Proof. Arbitrarily choose a feasible solution τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}

to MP4. Let δ = dn
n . By Conditions (32) and (33),

ei = δ and di = iδ

for any 1 ≤ i ≤ n.345

Let π be an aligning permutation of τ . Then we have

n∑
i=1

pπ(i) =
n∑
i=1

(dn + di − dπ(i)) = ndn = n2δ,
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which implies
∑n
i=1

pπ(i)

δ = n2. By Lemma 10,

n∑
i=1

iδ

pπ(i)
≥ 4n

9
.

Hence,

n∑
j=1

dj + pj − dn
pj

=
n∑
i=1

dπ(i) + pπ(i) − dn
pπ(i)

=
n∑
i=1

di
pπ(i)

(since τ is aligned)

=
n∑
i=1

iδ

pπ(i)
≥ 4n

9
.

As a result,

dbf∗(τ, dn) =
n∑
j=1

dbf∗(τj , dn)

=
n∑
j=1

(
2− pj + dj − dn

pj

)
ej

=
n∑
j=1

(
2− pj + dj − dn

pj

)
δ

= 2nδ − δ
n∑
j=1

pj + dj − dn
pj

≤ 2nδ − 4n

9
δ =

14

9
dn

The lemma holds. �

3.5. Upper-bounding the relaxation factor

We are ready to present one of the main results of this paper, which claims
that the relaxation factor is at most 1.5556.

Theorem 1. The relaxation factor ρ is at most 14
9 .350

Proof. It follows from Lemmas 3, 7, 8, 9, and 11. �
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4. Partitioned Scheduling on Multiprocessors

This section is devoted to partitioning sporadic tasks on multiprocessors,
where the tasks are assumed to have constrained deadlines. Note that although
Theorem 1 holds for arbitrary deadlines, the extension to multiprocessor applies355

only for the constrained-deadline case. We focus on the algorithm of Deadline-
Monotonic Partitioned-EDF, namely, Algorithm PARTITION in [16].

Basically, Algorithm PARTITION assigns tasks sequentially in non-decreasing
order of relative deadlines to processors that are numbered by distinct integers.
Suppose the (i− 1)-th task has just been assigned. Let τ(k) be the set of tasks360

that have been assigned to processor k, for any k. Then the i-th task is as-
signed to the least-numbered processor k that can safely serve the task, i.e.,
ei + dbf∗(τ(k), di) ≤ di.

Remember that we have upper-bounded the relaxation factor ρ. The follow-
ing lemma bridges ρ and the speedup factor of PARTITION.365

Lemma 12 ([16], [1]). The speedup factor of Algorithm PARTITION on constrained-

deadline tasks is 1 + ρ− 1/m, where m is the number of processors.

It is time to present the other main result of this paper.

Theorem 2. The speedup factor of Algorithm PARTITION on constrained-

deadline tasks is at most 2.5556− 1/m.370

Proof. The theorem immediately follows from Theorem 1 and Lemma 12. �

5. Conclusion and Future Work

In this paper, we improve the upper bound of the speedup factor of (polynomial-
time) Partitioned-EDF from 2.6322 − 1/m to 2.5556 − 1/m for constrained-
deadline sporadic tasks on m identical processors, narrowing the gap between375

the upper and the lower bounds from 0.1322 to 0.0556. This is an immediate
corollary of our improved upper bound of the relaxation factor from 1.6322 to
1.5556, which holds for both constrained- and arbitrary-deadline scenarios.

Technically, our improvements root at a novel discretization that transforms
the tasks into regular form. The discretization essentially restricts attention to380

the tasks with fixed execution times and deadlines. Only the period parameter
remains flexible to some extent—ranging over the set {1, 2, · · · , 2n}, where n is
the number of tasks to be scheduled. With such transformation, the estimation
of the relaxation factor is reduced to a much simpler optimization problem.
However, we have not yet proved that the last-step transformation (for periods)385

is lossless. This means that the discretization might enlarge the relaxation
factor. The good news is that the incurred loss, if not zero at all, is guaranteed
to be no more than 0.0556.
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As to future directions, we conjecture that a 1.5 upper bound of the re-
laxation factor can be derived, thus closing the gap between the upper and the390

lower bounds. If this is the case, the speedup factor of Partitioned-EDF becomes
fully determined, at least in the case of constrained deadlines.
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