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Abstract

We prove some uniqueness result for solutions to the heat equation on Riemannian mani-
folds. In particular, we prove the uniqueness of L” solutions with 0 < p < 1 and improves
the L' uniqueness result of Li (J Differ Geom 20:447—457, 1984) by weakening the curva-
ture assumption.

Keywords Uniqueness problem - Heat equation on manifolds - Complete noncompact
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1 Introduction

In this article, we consider the uniqueness problem for solutions to the heat equation on
complete Riemannian manifolds (M, g):

(0, —A) =0,

where A is the Laplace—Beltrami operator with respect to the metric g.

It is well-known that uniqueness may fail in general unless we restrict the solutions on
some suitable class of functions. A example is the set of functions bounded from below.
In [7], the uniqueness of nonnegative solutions to the heat equation has been established
under the quadratic Ricci lower bound assumption

Ric(x) > —C(r(x) + 1)%, (1.1)

where r(x) is the geodesic distance from some fixed point and C is a nonnegative constant.
Another typical of class where uniqueness holds is the set of functions with appropri-
ate growth rate in the spirit of [10]. For solutions with L? integrals on geodesic balls or
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parabolic cylinders growing under certain rate, the uniqueness was proved in [1, 3]. The
same result holds if L? is replaced by I” with 1 < p <2, and for a special class of mani-
folds when p = 1[8]. These results imply uniqueness for solutions with suitable pointwise
growth rate, provided that the manifold has some volume growth constraint. A case of par-
ticular interest is for bounded solutions, see [2] for a survey.

Our first theorem is an improvement in the results in [1, 3]. Namely, we allow the inte-
gral to be weighted by a positive power of the time variable. We will also demonstrate an
example in Sect. 3.

Theorem 1.1 Let M be a complete Riemannian manifold, and let f(x, t) be a nonnegative
subsolution to the heat equation on M X (0, 1] with initial data f(x,0) = 0 in the sense of
L2 (M). Suppose for some point g € M, and constant a > 0,

loc
1
/ I f2<e vr>o,
0 B,(r)

where L(r) is a positive nondecreasing function satisfying

0 r

Then f =0o0n M x (0, 1].

In [5], Li considered the uniqueness for L? solutions to the heat equation. When p > 1,
the uniqueness holds without further assumption. However when p = 1 the uniqueness may
fail on sufficiently negatively curved manifolds, it was proved in [5] that the uniqueness for
L' solutions holds under the assumption (1.1).

As an application of Theorem 1.1, we prove the following theorem which can be applied
to improve the L' uniqueness result for the heat equation in [5]. It also implies uniqueness
of L” solutions with 0 < p < 1. The curvature assumption (1.3) and (1.4) is slightly more
general than (1.1) since functions such as r In r are allowed.

Theorem 1.2 Let (M", g) be a complete Riemannian manifold with
Ric(x) > —k*(r,(x)), (1.3)

where r,(x) is the distance function to a fixed point ¢ € M, and k(r) is a positive nonde-
creasing function satisfying

R |
/]mdr=oo. (1.4)

Suppose f is a nonnegative subsolution to the heat equation on M X (0, 1], with initial data
f(0) = 0in sense ofL%OC(M). If for some 0 < p < 1,

Crk(r
”f“U(Bq(r)x[O,I]) < e, for any r>0,

for some constant C, then f = 0on M x (0, 1].
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For the proof of Theorem 1.2, we use mean value inequality to get a pointwise bound
for the solution, which is non-uniform and blows up as t — 0, and we can verify that the
assumptions in Theorem 1.1 are satisfied.

To prove the uniqueness of solutions to the heat equation, we can consider a solution
starting with O initial data and apply Theorems 1.1 or 1.2 to its absolute value which is a
nonnegative subsolution.

Furthermore, the above results imply the maximum principle. For instances, if u is a
subsolution to the heat equation with #(0) < 0, then one can apply Theorems 1.1 or 1.2 to
(u — 0), to show that u(#) < 0 provided that the assumptions are met.

2 Proof

Proof of Theorem 1.1 The proof is a modification of the arguments due to Karp-Li [3] and
Grigor’yan [1]. Define the function

(r(x) = R2

f(xvt)=_ 4(T—t) >

where r(x) is the distance function to the fixed point ¢, then it is a direct calculation to
check

0.+ |VEPr <.

For any R > 0, let w(r) be a nonincreasing cut-off function with |y’ < % and

1, r < 3R
_ s TSRS
v {0,r>2R.

Let ¢p(x) = w™(r(x)) where m > 0 is some large number to be chosen later, then

¢2—2/m.

2 100m2
IVoI™ < —3—

Forany 0 < 7 < T < 1, we have
/ Tf‘ / P* 0.8 + 27 e fof
< / Tt_l / D*ef20,€ + 27 FAf
-/ o [ #érog =20 Erve vy - 22N 49 (V0.9 @1
</ o [ #érosvivet v averer

T
<4 / ! / IVI2er2,

By the choice of ¢, using similar arguments as in [4], we can apply the Holder inequality
and Young’s inequality to show the following.
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R2

2 (1=1/m) i
([ wer) (] er) @2)
R spr(V ) spH(Vh)
m—1
< l(/ ¢265f2> + C(mgfn </ e§f2>’
A\ S pivg) R spt(Vp)

where C(m) = 400"~ 'm>" and spt(V¢) is the compact support of V. Combines with the
previous inequality, we obtain

T T
" / BT - 1 / Pef2(r) = / ! / Be120, + 242 Fo f — / z'2< / ¢2e'=‘f2>
T T T

T
< Cm) 2 / &1
T spt(Ve)

2
/|V¢|2e‘ff2 < 100m / ¢2—2/m€§f2
spt(Vep)

R2m
(2.3)
On spt(V¢) C Bq(ZR)\Bq(%R), we have
R2
-
‘< 16(T — 7)
Therefore, if we choose m > a + 2, the growth assumption on f will imply
T 2
/ tm—Z/ e§f2 < Tm—a—2€—m+L(2R)'
T spt(V)
Now if we require that
2
(T-1) < —
16L(2R)
then
1 ) 1 N C(m)Tm—2
= f-= o) ——7mp—. 24
T Jpw) 7 JbeR) R2m @4

To proceed, we take an increasing sequence of R;, and a decreasing sequence of z; in the
following way. Let R; = 2R, 7, = 7 and take 7,,, such that
R?
T, — ——— <7, <T,.
i 16L(2Rl) = Yitl i

Then for any N, apply (2.4) inductively we have
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1 1 1
2 Po==] Pap+ Z Pay-— [ Faw
T JBwR) TN JB®Ry) B(R,) Tiv1 JB®R,,)
N—- 1 m—1—-a
Cim)t!
< 1 fz(TN) + Z + 2.5)
™ JBRy) = R
1 2 2C(m)r™m1-a
< — FFay)+ ——mp—.
o Jowy Rom

By the assumption on L(r) (1.2), we must have

> R?
2 LR)

i=0 i

hence we can choose the sequence {z;} such that z; becomes zero in finite steps.
To show that the first term in the last line of (2.5) can be dropped, we claim that for any
R > 0, we have

lim 1 20 =0

t—=0*+ ¢ B(R)

To prove the claim. For any cut-off function ¢, since lim,_ . [ ¢*f2(1) = 0, we have

0> [ [ #ror-an
=5 [#rox [ [ewreea [ [ oo @6)
>3 [ero- [ [ verr.
0

Choose a cut-off function ¢ similarly as before such that |V¢| < C¢'~!/" for some m > 2,
then the above inequality yields

/¢2f2(t) <C/ /((]52f2 m
S () (L)
o spt()
- 2.7
<CSZI(JOR) “f(s)lle(spt((ﬁ)) / (/ ¢2f2>

<C 50D WOy 500 [ ¢2f2(S)> :

se(0

Since the RHS is nondecreasing in ¢, we have

<sup / ¢2f2(s)> <€ 80D IO

s€(0,r)
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and hence / @*f*(t) = o(t™). Since the cut-off function ¢ is chosen for an arbitrary radius,
this proves the claim.

By letting R — oo in (2.5), we show that f(z) = 0 for any = € (0, 1]. This completes the
proof. O

Proof of Theorem 1.2 By [9], the curvature assumption (1.3) implies that there is a Sobolev
inequality in the following form:

(/ ¢f—"z>ﬂ; < L [qvgp +rg),
Vol(B,(R)):

for any smooth function ¢ compactly supported in the geodesic ball B (R). With the
Sobolev inequality, we can apply Nash—Moser iteration to prove a mean value inequality
for f (see Chapter 19 of [6]), for any ¢ € (0, 1],

1
1 1Y R\\»
CaRk(R P
1l e, g .1y < € P )<ﬁ + ;) VOZ(’%(;)) W Wl s, oto0.0-

where «, ff, y are positive constants depending on n and p. Without loss of generality, we
can assume R > 2 and hence

Vol(B,(R/2)) > vy := Vol(B,(1)).

Now the assumption of the theorem implies

eCr(x)k(Zr(x))
Lf(x7t)| S t—‘l, t€(07 1]7

for some constants C depending on n, p, v, and the constant a only depends on n and p. By
(1.1) and volume comparison theorem, we have the volume growth estimate

Vol(Bq(R)) < C(n)ec(n)Rk(R)’

for any R > 0, see for example [2]. Hence, we have

1
/ 4 f2 < eL(R) ,
0 B(R)

with
L(R) = CRk(2R),

for some constant C. By (1.4), the function L(R) satisfies (1.2). The result now follows
from Theorem 1.1. O
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3 Example

In this section, we describe the construction of a solution to the heat equation, which
belongs to the uniqueness class of Theorem 1.1, but not in that of [1, 3] or [8]. Intuitively,
we want to construct a solution which has a sequence of ‘spikes’ with fast growing heights,
while supported on decaying domains so that we have some integral control of the solution
locally.

Take M = R” with n > 3, and we will make several assumptions for simplicity; how-
ever, the same method can be used to construct more complicated examples.

To start with, let i, be a continuous function on R” with growth rate slower than e
For simplicity, we take i, > 0 and i, € L'(R").

We will construct a “spiked” initial function u, by modifying i,: for each positive inte-
geri=1,2,3,..., choose a geodesic ball

B(p;,r;) € BO,i+ D\B(0, i),

1

( 1 >r1

rn=\—74 35 -
1 2 i3
w,1°¢'

Here w,, is the volume of the unit ball in R". Denote

Clxl?

where the radii is chosen to be

- T

7= T/

We now modify i in each B(p;, r;) to obtain the desired initial data u,. Define

i3

e, on B(p;,T,),
. 3 ~
Uy =4 continuous and <e', on B(p;, r)\B@p;, 7)),
iy, otherwise.

The new function u, is a continuous function which is L' on the modified region
Uz, B, 1)

Solve the Cauchy problem of the heat equation with initial function u, by convoluting
with the heat kernel:

L=yl

- up(y)dy.

_ 1 _
u(x,t)—/—(4m)n/2e

For each x € B(p;,#;) and ¢ > 0,

1 _bl?
u(x, t) >———— e 4w uy(y)d
(x, 1) Gniy 2 ./B(p,-,?,) o(dy
7o
e w, ! 3.1

n'j

b
=@ny2®
1 _n
=—e !
202(4ty/?

Hence
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1 1
/ / u(x, 1 > / / u(x, 1)*
0 JBO.i+1) o JBp.w)

=n
(M

7 1 -
> / Arty e ¥i/1ds
4t Jo (3.2)
o, 1

[oo]
n—2 _—s
= s"Ce™ds
2 @ryr 22 /1

>Cn)e' ="

Thus u violates the assumption in either [3] or [1] when n > 3. For L” integrals with p > 1
one can compute similarly.
On the other hand, since we assumed u, to be L', we have

”uo”u(Rn)

,D| < )
a0l <~

hence it satisfies the assumption of Theorem 1.1.

To construct examples which are not in L', we can start with &z = 1 instead of a L' func-
tion; and to construct examples not bounded from either side, we can add a sequence of
“negative spikes” to u, sufficiently far away from the positive one.
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