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Abstract
We prove some uniqueness result for solutions to the heat equation on Riemannian mani-
folds. In particular, we prove the uniqueness of Lp solutions with 0 < p < 1 and improves 
the L1 uniqueness result of Li (J Differ Geom 20:447–457, 1984) by weakening the curva-
ture assumption.

Keywords  Uniqueness problem · Heat equation on manifolds · Complete noncompact 
manifolds

1  Introduction

In this article, we consider the uniqueness problem for solutions to the heat equation on 
complete Riemannian manifolds (M, g):

where Δ is the Laplace–Beltrami operator with respect to the metric g.
It is well-known that uniqueness may fail in general unless we restrict the solutions on 

some suitable class of functions. A example is the set of functions bounded from below. 
In [7], the uniqueness of nonnegative solutions to the heat equation has been established 
under the quadratic Ricci lower bound assumption

where r(x) is the geodesic distance from some fixed point and C is a nonnegative constant.
Another typical of class where uniqueness holds is the set of functions with appropri-

ate growth rate in the spirit of [10]. For solutions with L2 integrals on geodesic balls or 

(�t − Δ)f = 0,

(1.1)Ric(x) ≥ −C(r(x) + 1)2,
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parabolic cylinders growing under certain rate, the uniqueness was proved in [1, 3]. The 
same result holds if L2 is replaced by Lp with 1 < p ≤ 2 , and for a special class of mani-
folds when p = 1 [8]. These results imply uniqueness for solutions with suitable pointwise 
growth rate, provided that the manifold has some volume growth constraint. A case of par-
ticular interest is for bounded solutions, see [2] for a survey.

Our first theorem is an improvement in the results in [1, 3]. Namely, we allow the inte-
gral to be weighted by a positive power of the time variable. We will also demonstrate an 
example in Sect. 3.

Theorem 1.1  Let M be a complete Riemannian manifold, and let f(x, t) be a nonnegative 
subsolution to the heat equation on M × (0, 1] with initial data f (x, 0) = 0 in the sense of 
L2
loc
(M) . Suppose for some point q ∈ M , and constant a > 0,

where L(r) is a positive nondecreasing function satisfying

Then f ≡ 0 on M × (0, 1].

In [5], Li considered the uniqueness for Lp solutions to the heat equation. When p > 1 , 
the uniqueness holds without further assumption. However when p = 1 the uniqueness may 
fail on sufficiently negatively curved manifolds, it was proved in [5] that the uniqueness for 
L1 solutions holds under the assumption (1.1).

As an application of Theorem 1.1, we prove the following theorem which can be applied 
to improve the L1 uniqueness result for the heat equation in [5]. It also implies uniqueness 
of Lp solutions with 0 < p < 1 . The curvature assumption (1.3) and (1.4) is slightly more 
general than (1.1) since functions such as r ln r are allowed.

Theorem 1.2  Let (Mn, g) be a complete Riemannian manifold with

where rp(x) is the distance function to a fixed point q ∈ M , and k(r) is a positive nonde-
creasing function satisfying

Suppose f is a nonnegative subsolution to the heat equation on M × (0, 1] , with initial data 
f (0) = 0 in sense of L2

loc
(M) . If for some 0 < p ≤ 1,

for some constant C, then f ≡ 0 on M × (0, 1].

�
1

0

ta �Bq(r)

f 2 ≤ eL(r), ∀r > 0,

(1.2)∫
∞

1

r

L(r)
dr = ∞.

(1.3)Ric(x) ≥ −k2(rq(x)),

(1.4)∫
∞

1

1

k(r)
dr = ∞.

‖f‖Lp(Bq(r)×[0,1])
≤ eCrk(r), for any r > 0,
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For the proof of Theorem 1.2, we use mean value inequality to get a pointwise bound 
for the solution, which is non-uniform and blows up as t → 0 , and we can verify that the 
assumptions in Theorem 1.1 are satisfied.

To prove the uniqueness of solutions to the heat equation, we can consider a solution 
starting with 0 initial data and apply Theorems 1.1 or 1.2 to its absolute value which is a 
nonnegative subsolution.

Furthermore, the above results imply the maximum principle. For instances, if u is a 
subsolution to the heat equation with u(0) ≤ 0 , then one can apply Theorems 1.1 or 1.2 to 
(u − 0)+ to show that u(t) ≤ 0 provided that the assumptions are met.

2 � Proof

Proof of Theorem 1.1  The proof is a modification of the arguments due to Karp–Li [3] and 
Grigor’yan [1]. Define the function

where r(x) is the distance function to the fixed point q, then it is a direct calculation to 
check

For any R > 0 , let �(r) be a nonincreasing cut-off function with |� ′| ≤ 4

R
 and

Let �(x) = �m(r(x)) where m > 0 is some large number to be chosen later, then

For any 0 < 𝜏 < T ≤ 1 , we have

By the choice of � , using similar arguments as in [4], we can apply the Hölder inequality 
and Young’s inequality to show the following.

�(x, t) = −
(r(x) − R)2

+

4(T − t)
,

�t� + |∇�|2 ≤ 0.

𝜓(r) =

{
1, r ≤ 3

2
R;

0, r > 2R.

|∇�|2 ≤ 100m2

R2
�2−2∕m.

(2.1)

�
T

�

t−1 � �2e� f 2�t� + 2�2e� f �tf

≤ �
T

�

t−1 � �2e� f 2�t� + 2�2e� fΔf

= �
T

�

t−1 � �2e� f 2�t� − 2�2e� f ⟨∇�,∇f ⟩ − 2�2e��∇f �2 − 4�e� f ⟨∇�,∇f ⟩

≤ �
T

�

t−1 � �2e� f 2(�t� + �∇��2) + 4�∇��2e� f 2

≤ 4�
T

�

t−1 � �∇��2e� f 2.
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where C(m) = 4002m−1m2m and spt(∇�) is the compact support of ∇� . Combines with the 
previous inequality, we obtain

On spt(∇𝜙) ⊂ Bq(2R)�Bq(
3

2
R) , we have

Therefore, if we choose m > a + 2 , the growth assumption on f will imply

Now if we require that

then

To proceed, we take an increasing sequence of Ri , and a decreasing sequence of �i in the 
following way. Let Ri = 2iR , �0 = � and take �i+1 such that

Then for any N, apply (2.4) inductively we have

(2.2)

� |∇�|2e� f 2 ≤ 100m2

R2 �spt(∇�)

�2−2∕me� f 2

≤ 100m2

R2

(
�spt(∇�)

�2e� f 2
)(1−1∕m)(

�spt(∇�)

e� f 2
) 1

m

≤ 1

4t

(
�spt(∇�)

�2e� f 2
)
+

C(m)tm−1

R2m

(
�spt(∇�)

e� f 2
)
,

(2.3)

1

T � �2e� f 2(T) −
1

� � �2e� f 2(�) = �
T

�

t−1 � �2e� f 2�t� + 2�2e� f �tf − �
T

�

t−2
(
� �2e� f 2

)

≤ C(m)

R2m �
T

�

tm−2 �spt(∇�)

e� f 2.

� ≤ −
R2

16(T − �)
.

�
T

�

tm−2 �spt(∇�)

e� f 2 ≤ Tm−a−2e
−

R2

16(T−�)
+L(2R)

.

(T − �) ≤ R2

16L(2R)
,

(2.4)
1

T �B(R)

f 2(T) −
1

� �B(2R)

f 2(�) ≤ C(m)Tm−a−2

R2m
.

𝜏i −
R2
i

16L(2Ri)
≤ 𝜏i+1 < 𝜏i.
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By the assumption on L(r) (1.2), we must have

hence we can choose the sequence {�i} such that �i becomes zero in finite steps.
To show that the first term in the last line of (2.5) can be dropped, we claim that for any 

R > 0 , we have

To prove the claim. For any cut-off function � , since limt→0+ ∫ �2f 2(t) = 0 , we have

Choose a cut-off function � similarly as before such that |∇�| ≤ C�1−1∕m for some m ≥ 2 , 
then the above inequality yields

 Since the RHS is nondecreasing in t, we have

(2.5)

1

� �B(R)

f 2(�) =
1

�N �B(RN )

f 2(�N) +

N−1∑
i=0

(
1

�i �B(Ri)

f 2(�i) −
1

�i+1 �B(Ri+1)

f 2(�i+1)

)

≤ 1

�N �B(RN )

f 2(�N) +

N−1∑
i=0

C(m)�m−1−a
i

R2m
i

≤ 1

�N �B(RN )

f 2(�N) +
2C(m)�m−1−a

R2m
.

∞∑
i=0

R2
i

L(Ri)
= ∞,

lim
t→0+

1

t ∫B(R)

f 2(t) = 0.

(2.6)

0 ≥ �
t

0 � �2f (�tf − Δf )

=
1

2 � �2f 2(t) + �
t

0 � �2�∇f �2 + 2�
t

0 � �f ⟨∇�,∇f ⟩

≥ 1

2 � �2f 2(t) − �
t

0 � �∇��2f 2.

(2.7)

� �2f 2(t) ≤C �
t

0 � (�2f 2)
m−1

m f
2

m

≤C �
t

0

�
� �2f 2

� m−1

m
�
�spt(�)

f 2
� 1

m

≤C sup
s∈(0,t)

‖f (s)‖
1

m

L2(spt(�)) �
t

0

�
� �2f 2

� m−1

m

≤C sup
s∈(0,t)

‖f (s)‖
1

m

L2(spt(�))

�
sup
s∈(0,t)� �2f 2(s)

� m−1

m

t.

�
sup
s∈(0,t)� �2f 2(s)

� 1

m ≤ C sup
s∈(0,t)

‖f (s)‖
1

m

L2(spt(�))
t,
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and hence ∫ �2f 2(t) = o(tm) . Since the cut-off function � is chosen for an arbitrary radius, 
this proves the claim.

By letting R → ∞ in (2.5), we show that f (�) ≡ 0 for any � ∈ (0, 1] . This completes the 
proof. 	�  ◻

Proof of Theorem 1.2  By [9], the curvature assumption (1.3) implies that there is a Sobolev 
inequality in the following form:

for any smooth function � compactly supported in the geodesic ball Bq(R) . With the 
Sobolev inequality, we can apply Nash–Moser iteration to prove a mean value inequality 
for f (see Chapter 19 of [6]), for any t ∈ (0, 1],

where �, �, � are positive constants depending on n and p. Without loss of generality, we 
can assume R > 2 and hence

Now the assumption of the theorem implies

for some constants C depending on n, p, v0 , and the constant a only depends on n and p. By 
(1.1) and volume comparison theorem, we have the volume growth estimate

for any R > 0 , see for example [2]. Hence, we have

with

for some constant C. By (1.4), the function L(R) satisfies (1.2). The result now follows 
from Theorem 1.1.	� ◻

(
� �

2n

n−2

) n−2

n ≤ R2eC(n)Rk(R)

Vol(Bq(R))
2

n
� (|∇�|2 + R−2�2),

‖f‖L∞(Bq(
R

2
)×[

t

2
,t]) ≤ C(n, p)eC�Rk(R)

�
1

R�
+

1

t

��

Vol
�
Bq

�
R

2

��−
1

p ‖f‖Lp(Bq(R)×[0,t])
,

Vol(Bq(R∕2)) ≥ v0 ∶= Vol(Bq(1)).

|f (x, t)| ≤ eCr(x)k(2r(x))

ta
, t ∈ (0, 1],

Vol(Bq(R)) ≤ C(n)ec(n)Rk(R),

�
1

0

ta �B(R)

f 2 ≤ eL(R),

L(R) = CRk(2R),
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3 � Example

In this section, we describe the construction of a solution to the heat equation, which 
belongs to the uniqueness class of Theorem 1.1, but not in that of [1, 3] or [8]. Intuitively, 
we want to construct a solution which has a sequence of ‘spikes’ with fast growing heights, 
while supported on decaying domains so that we have some integral control of the solution 
locally.

Take M = ℝ
n with n ≥ 3 , and we will make several assumptions for simplicity; how-

ever, the same method can be used to construct more complicated examples.
To start with, let ũ0 be a continuous function on ℝn with growth rate slower than eC|x|2 . 

For simplicity, we take ũ0 ≥ 0 and ũ0 ∈ L1(ℝn).
We will construct a “spiked” initial function u0 by modifying ũ0 : for each positive inte-

ger i = 1, 2, 3, ... , choose a geodesic ball

where the radii is chosen to be

Here �n is the volume of the unit ball in ℝn . Denote

We now modify ũ0 in each B(pi, ri) to obtain the desired initial data u0 . Define

The new function u0 is a continuous function which is L1 on the modified region 
∪∞
i=1

B(pi, ri).
Solve the Cauchy problem of the heat equation with initial function u0 by convoluting 

with the heat kernel:

For each x ∈ B(pi, r̃i) and t > 0,

Hence

B(pi, ri) ⊂ B(0, i + 1)�B(0, i),

ri =

(
1

�ni
2ei

3

) 1

n

.

r̃i =
ri

21∕n
.

u0 =

⎧⎪⎨⎪⎩

ei
3

, on B(pi, r̃i),

continuous and ≤ ei
3

, on B(pi, ri)�B(pi, r̃i),

ũ0, otherwise.

u(x, t) = ∫
1

(4�t)n∕2
e
−

|x−y|2
4t u0(y)dy.

(3.1)

u(x, t) ≥ 1

(4𝜋t)n∕2 �B(pi,r̃i)

e
−

|x−y|2
4t u0(y)dy

≥ 1

(4𝜋t)n∕2
e
−

4r̃2
i

4t ei
3

𝜔nr̃
n
i

=
1

2i2(4𝜋t)n∕2
e
−

r̃2
i

t .
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Thus u violates the assumption in either [3] or [1] when n ≥ 3 . For Lp integrals with p > 1 
one can compute similarly.

On the other hand, since we assumed u0 to be L1 , we have

hence it satisfies the assumption of Theorem 1.1.
To construct examples which are not in L1 , we can start with ũ ≡ 1 instead of a L1 func-

tion; and to construct examples not bounded from either side, we can add a sequence of 
“negative spikes” to u0 sufficiently far away from the positive one.
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(3.2)

�
1

0 �B(0,i+1)

u(x, t)2 ≥�
1

0 �B(pi,r̃i)

u(x, t)2

≥𝜔nr̃
n
i

4i4 �
1

0

(4𝜋t)−ne−2r̃
2
i
∕tdt

=
𝜔n

2n+1(4𝜋)n
1

i2r̃n−2
i

�
∞

1

sn−2e−sds

≥C(n)e n−2

n
i3
.

�u(x, t)� ≤ ‖u0‖L1(ℝn)

(4�t)n∕2
,
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