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Some local maximum principles along
Ricci flows

Man-Chun Lee and Luen-Fai Tam

Abstract. In this work, we obtain a local maximum principle along the Ricci flow g(¢) under the
condition that Ric(g(t)) < at™! for t > 0 for some constant & > 0. As an application, we will prove
that under this condition, various kinds of curvatures will still be nonnegative for t > 0, provided
they are non-negative initially. These extend the corresponding known results for Ricci flows on
compact manifolds or on complete noncompact manifolds with bounded curvature. By combining
the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct
proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower
bound of different kinds of curvatures along the Ricci flows for t > 0.

Introduction

Given a Riemannian manifold (M, go), the Ricci flow on M is a family of metrics g(¢)
on M satistying

g(0) = go.

Here, we denote g(x, t) simply by g(¢). In this work, we always assume that the family
is smooth in space and time.

Ricci flow is a useful tool in the study of structures of manifolds. Ricci flow is useful
because it tends to preserve certain geometric structures. In many cases, the behavior
of a geometric structure is reflected by the behavior of a scalar function ¢, which
satisfies certain differential inequalities. One of the simplest ways to obtain useful
information on ¢, and hence on the corresponding geometric structure, for ¢ > 0 is
to apply maximum principles. In this work, we are interested in the following two
frequently used differential inequalities along the Ricci flows:

{atg(t) = —2Ric(g(t)), onMx[0,T];

Ry (9 = Agn) 9 < Lo,
for some continuous function L(x, ) on M x [0, T] and
(1.2) (0: = Ag(1))9 < R + Kg?
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2 M. Lee and L. Tam

where K is a positive constant and R is the scalar curvature of g(t). We will obtain

two maximum principles for the two cases. The first one is the following:

Theorem 1.1 Let (M", g(t)),t € [0, T] be a smooth solution to the Ricci flow which is

possibly incomplete. Suppose

(1.3) Ric(g(t)) < at™

on M x (0, T] forsome a > 0. Let ¢(x, t) be a continuous function on M x [0, T which

satisfies p(x,t) < at™ on M x (0, T] and

)
(14) (E _Ag(t))q)‘(xo,[o) SL(Xo,to)(p(Xo,to)

whenever ¢(xg, to) > 0 in the sense of barrier, for some continuous function L(x,t)
on M x [0, T] with L(x,t) < at™'. Suppose p € M such that Bgy(o)(p,2) € M and
¢(x,0) <0 on Bg(g)(p,2). Then for any I > & + 1, there exists T(n,a,1) > 0 such that

forte[0,T A T],
o(p,t) <t
Here and below, we denote

a A b=:min{a,b}.

For the definition of “in the sense of barrier,” we refer readers to [6, Chapter 18].
Theorem 1.1 is known to be true if M is compact without boundary or M is
noncompact and g(t) is a complete solution with uniformly bounded curvature, see
[11, 23] for example. Nevertheless, there are interesting results of the existence of the
Ricci flows in which the initial metrics and the flows g(¢) may not be complete and
may have unbounded curvatures, see [1, 2, 3, 7, 10, 12, 14, 15, 16, 24, 26, 28]. However,
most of the Ricci flow solutions mentioned above satisfy the condition (1.3), which
is invariant under parabolic rescaling. This motivates us to obtain the maximum
principles, Theorem 1.1 and Theorem 1.2 below. As an immediate application, Theorem
1.1 will imply the preservation of non-negativity of most known curvature conditions
under the assumption that |Rm(g(t))| < at™! in the complete noncompact case. See
Theorem 3.1 for the full list of the curvature conditions. The theorem also implies the
preservation of the Kahler condition, which is the first step in the use of the Kéhler-
Ricci flow to study the uniformization of complete noncompact Kéhler manifolds with

nonnegative bisectional curvature. See [23, 11] for more information.

In Theorem 1.1, the condition that ¢(0) < 0 is crucial and the analogous result
is not true if ¢ is only assumed to be bounded from above initially. This can be
seen by considering Euclidean space with the time function ¢, (t) = (££)%. The
function satisfies ¢.(0) =1and (1.4) with L(x,t) = a(t+¢)7", but g.(ty) = +oo as
€ — 0 for any fixed #, > 0. Hence, if the geometric quantity ¢(0) is only assumed to
be bounded from above, one cannot expect the analogous conclusion of Theorem 1.1
holds. However, if ¢ satisfies (1.2), we have the following local upper estimates of ¢ for

a short time. This was first proved by Hochard in [13, Proposition I.2.1].
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Some local maximum principles along Ricci flows 3

Theorem 1.2 Let g(t) be a smooth Ricci flow on M" x [0, T] which is possibly
incomplete. Suppose g(t) satisfies the following:

Rm(g(x,t))| < at™, forall (x,t) e M x (0, T];
inj,(, (x) > Va't, forall (x,t) € M x (0, T] with

Bg(t) (x, iV, (X‘lt) € M;
R(g(0)) >-0oT™* on M;

Vo(x,7) < " exp(vorT™2)  forallr > 0,and x € M with By(x,1) € M,

for some a,vg > 0,0 >0 where R(g(0)) is the scalar curvature of g(0). Let ¢ be a
nonnegative continuous function on M x [0, T] satisfying (1.2) in the sense of barrier.
Assume that

¢(0) <9, on M for some 8 > 0;
p(t) <at™, onMx(0,T].

Suppose p € M is a point such that Bg, (p, 3RTz) € M for some R > 0. Then
9(p:t) < C((RT7) ™ +6)
for t € [0, T] for some constant C > 0 depending only on n, K, a, vy, 0.

Remark 1.1 By volume comparison, if Ric(g(0)) > -+ 0T, then the conditions on
R(g(0)) and Vy(x, r) in the theorem will be satisfied for o and for some v > 0.

Maximum principle for the evolution equation (1.2) along the Ricci flow was first
considered by Bamler et al. in [1]. In particular, they showed that if ¢ is the negative
part of the smallest eigenvalue of Rm(x, t) with respect to certain curvature cones,
then ¢ satisfies (1.2) in the barrier sense. They proved that for the Ricci flow g(¢) ona
compact manifold or on a complete noncompact manifold with bounded curvature,
if g(¢) and @(¢) satisfy the conditions in Theorem 1.2 and ¢(0) < &, then ¢(¢) < C§
within a short time-interval [0, Tp | for some constant C > 0 both depending only on
n,a, 0,and vy. Theorem 1.2 is a localized version of this result. In [13], Hochard proved
Theorem 1.2 by obtaining estimates of the heat kernels together with their gradients
for the backward heat equation on a nested sequences of domains. In this work, we
will give a more direct proof by combining the Dirichlet heat kernel estimates on a
fixed g(0)-geodesic ball with Theorem 1.1. The proof is in the spirit of work [1].

The localized maximum principle Theorem 1.2 is particularly useful when we
consider the partial Ricci flow. Combining the maximum principle with the partial
Ricci flow method [12, 26], Lai [14] constructed a complete Ricci flow solution starting
from a complete noncollapsed metric which is of almost weakly PIC;, and remains
almost weakly PIC; for a short time. In [21], McLeod and Topping combined Theorem
1.2, Lai’s Ricci flow solutions [14] and the techniques developed in their earlier work
[20] to obtain a smooth structure on the noncollapsed IC;-limit space. In [16], the
authors used Theorem 1.2 to construct a local Kéhler-Ricci flow starting from a
noncollapsed Kahler manifold with almost nonnegative curvature and improve a
result of Liu [18] on the complex structure of the corresponding Gromov-Hausdorft
limit of this class of Kahler manifolds. See the recent work by Lott [19] for further
development.
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4 M. Lee and L. Tam

The paper is organized as follows: In Section 2, we will collect some useful lemmas
which allow us to compare g(0)-geodesic balls and g(t)-geodesic balls. In Section
3, we will give a proof of Theorem 1.1 and a unified proof for preservation of non-
negativity of some curvature conditions. In Section 4, we will obtain Dirichlet heat
kernel estimates for the backward heat equation and give a proof of Theorem 1.2.

2 Shrinking and expanding balls Lemmas

Let (M", g(t)) beaRicci flow defined on M x [0, T]. Since g(¢) may not be complete,
we use the following convention: Let (M, g) be a Riemannian manifold without
boundary which may be incomplete. Let x € M, r > 0. If exp, . is defined on the
ball B(r) of radius r in the tangent space Ty (M) with center at the origin, then we
denote Bg(x,r) = Image(exp, ,(B(r)). We say that By(x,r) € M if it is compactly
contained in M. We say that the injectivity radius inj, (x) of x satisfies inj, (x) > 1o, if
Bg(x,10) € Mand exp, , isa diffeomorphism from the ball of radius 1 onto its image
Bg(x,19). Observe that if Bg(x, r) € M, then any point in B, (x, r) can be joined to x
by a minimizing geodesic in M. If B, (x, 2r) € M, then any two points in Bg(x, ) can
be joined by a minimizing geodesic lying inside By (x, 2r). In this case, the distance
function is well-defined on Bg(x, r). We will omit the subscript ¢ when the content
is clear. In the rest of the work, we denote the ball of radius r with respect to g(t) by
B;(x,r) and its volume Vol (B:(x, 7)) by V;(x, r). Moreover, the distance function
with respect to g(t) is denoted by d;.

Since g(t) is not necessarily complete, it is important to compare balls with respect
to g(t) at different time. Some basic results on this will be used later. The first one is
the following shrinking balls Lemma by Simon-Topping [25, Corollary 3.3]:

Lemma 2.1 There exists a constant f§ = f(n) 21 depending only on n such that
the following is true. Suppose (M", g(t)) is a Ricci flow for t € [0, T] and xo € M
with Bo(x,7) € M for some r > 0. Suppose g(t) satisfies Ric(g(t)) < (n—1)a/t on
Bo(x0, 1) for some a > 0 for all t € (0, T]. Then

By (xo,r—ﬂ\/a) c Bo(xo,7),
and in general for0 <s < t < T,
By (xorr - B/at) € By (x0.7 - Bo/as).

In particular,
di(yx0) > dy(y,%0) = pV/a(t? - s7)
forall y € B, (xo,7 - p/at).

We also need the following expanding balls Lemma by He [10].

Lemma 2.2 For any positive integer n € N and for any vy, a,0 >0, there exists
u(n,vo,a,0) >1 and Ry = Ro(n,vp,a,0) >0 such that the following is true: Let
(M™", g(t)) be a Ricci flow for t € [0, T]| with T < 1. Suppose p € M with Bo(p,R) € M
for some R > Ry such that:
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(@) Rm(x,t)| < at™ forall x € Bo(p,R) and t € (0, T];

(b) Vi(x,v/t) 2 a”t"? for all t € (0, T] and for all x with B;(x,/t) c Bo(p, R);
(c) Vo(x,r) <wor”, forall 0 < r <1and x € By(p, R) with By(x,r) c Bo(p, R);
(d) Ro > -0, in Bo(p,R), where R; is the scalar curvature of g(t).

Then for all t € [0, T], we have

_ 1
Bo(p.u”'R) < Bi(p. 5 R).

Proof By Lemma 2.1, we have B;(p, 3R) € M forall t € [0, T] provided

(Cl): R> C].

Here and below, C; will denote a positive constant depending only on n, vy, «, 0.

By [25, Lemma 8.1], there is Ty = Ti(n, &, 0) > 0, such that R, > 20 on B,(p, 3R)
for t € [0, T A T1], if C; is large enough.

Let0 <7< T ATy < landlet = B(n) be the constant from Lemma 2.1. Let R; = eR
where 0 < € <1/2 is a constant to be chosen later. Define

ro = max{r € [0, R;] : Bo(p,7) € B,(p,R1/2)}.

By Lemma 2.1 again, ro < 1R, + /& < IR, provided C; in (cl) is large enough.
By definition, there exists y € M such that do(p, y) = ro and d.(p, y) = R;/2. Let y :
[0, 9] be a minimizing g(0)-geodesic from p to y. Let N be the positive integer such
that

(2.1) ro + ZﬁT% > ZﬁT%N > 19.

Then we can find {x;}¥, on y so that By(x;, f/7) are all disjoint and y is covered
by UN, Bo(x;,28\/7) Wthh is a subset of By(p, R) provided C; is large. Choose C;
large enough so that for each i, and for each z € By(x;,2+/7), we have B, (z,2\/7) ¢

Bo(p, R). For each i, let {ZJ(.i) };‘:1 be the maximal set of points in By (x;,2f+/7) such

that Br(zﬁi), \/7) are mutually disjoint and
ki
UB:(2{",V/7) © Bo(x:,2pV/7) © UB(z(’) 2V/7)

j=1

Then y will be covered by uY. 1u '\B (z( ) ,2+/7). Hence by (2.1), we have

1
(2.2) ERI =d:(p,y) < 2\/;2?;1{1'-

We want to estimate k; from above.
Let 7 = min{T, Ty, (28) }. By (b), we have

kia T2 < Y V(2 V/7)
< Vi(Bo(xi,2BV/7))
< Gy Vo(Bo (x4, 2/3\/;))

< CzV()’l'3 .
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6 M. Lee and L. Tam

The third inequality follows from d,dy, = -R,d . and the lower bound on R,. Hence
k; < C5. By (2.2) and (2.1), we have:
1 T+ ZﬁT%

1
“R,<2C3NT2 <2Cs77 - :
2 2B12

Therefore ry > C;'R; — 2,87% > C;'R; — 1and hence
(2.3) Bo(p,eC;'R - 1)  Bo(p, %R).
Suppose T < Ty A (28) 7%, then 7 = T. Forall t < T = 7, by Lemma 2.1,
€ e 1 1
B.(p, ER) < B:(p, ER +pt2) c Bi(ps ER)

provided Ci in (cl) is large enough and & < . If T > Ty A (28) 2, then for t < 7, the
above inequality is still true. For T > t > 7, by condition (a), we have

1
Be(p, SR) € Bu(p,eCR) € By(p R).

provided that we choose & = By (2.3), one can see that if C; is large enough,

1
4(Cs+1) "
then the Lemma is true. [ ]

3 Local maximum principle Theorem 1.1

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let g(t) be a Ricci flow on M" x [0, T] so that Ric(g(¢)) <
at™! for some a > 0. Let ¢ be a continuous function defined on M x [0, T] which
satisfies (1.1) in the sense of barrier at those points where ¢ > 0. Assume ¢ <Oatt = 0.
Let p € M with By(p,2) € M. We want to prove that ¢(p, t) < t' for large I provided
t < T AT(n,a1). We will first show that ¢ < ¢2 near ¢ = 0, and then we improve the
estimate to higher powers of ¢.

By replacing L by its positive part if necessary, we may assume that L > 0. By Lemma
2.1, thereis Ty = Ti(n, a) > O such that B,(p, ) € Mif t < T A Ty. Let d(x) to be the
distance function from p with respect to g(t). Then d;(x) is defined on B;(p,1) and is
realized by a minimizing geodesic from p. By [22, Lemma 8.3], there exists ¢;(n) > 0
such that

(3.1) (% - Ag(t)) (de(x) + cla/t) 2 0

for x € B;(p,1)\B;(p,/t) in the sense of barrier.
Let ¢ : [0, 00) — [0,1] be a smooth function such that

1 for0<s< %;
(3.2) ¢(s) = exp(—ﬁ) for 3 <s<y;
0, fors >1,

and such that ¢’ <0, ¢ > —c¢ for some absolute constant ¢ > 0.

Downloaded from https://www.cambridge.org/core. 01 Jul 2021 at 09:47:22, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Some local maximum principles along Ricci flows 7

Forr e [2%,,1], let

Then supp(®, (-, t)) c B;(p, r). Note that

% <d(x)+aat<r
ifand only if r — c;a/t > d;(x) > 7= cia/t. Henceif t < Ty = zls(cloc +1)7%,and 0 <
¢(x,t) <1, then1> d;(x) > \/t. Therefore, by (3.1), we have

0
(3.3) (E—Ag(,))CDrsO

in the sense of barrier on By (p,2) x [0, Ty A T]. We may also choose T; small enough

sothate " T > 1.Letn(t) > 0 beasmooth function in ¢ such that 7(t) > 0 for ¢ > 0.
We consider the function

F=-0"¢+n.

Here, m is a positive integer to be determined later. Assume # is chosen so that F > 0
near t = 0. In this case, if F(x,t) < 0 for some (x,t) € Bo(p,2) x [0, T; ] then there is
(x0,t0) € Bo(p,2) x (0, Ty] with 0 < t5 < T; such that F(xo, %) =0, and F(x,t) >0
on By(p,2) x [0, tp]. At (%9, t), @, > 0and ¢ > 0.

By (3.3) and (1.1), for any & > 0, there exists C* functions ¢ (x), {(x) near x, such
that o(x) < @,(x,t9), 0(x0) = P,(x0,%0), {(x) < p(x,t0), and {(x9) = ¢(x0,10).
Moreover, the following are true:

o
ECD,(X(), to) - Ag(t)a(x) <s,

and

%(P(xo: to) = Ag(r){(x0) — L(x0, t0){(x0) < &.

Here, for a function f(x, ),

a— 1 . f(xO’tO)_f(XO)tO_h)
atf(xo,to) _h;?lérff ; .

The function G(x,t) =-0™(x){(x)+#(t) is C* in space and time so that
G(x9,t9) = F(x9,1t9) = 0. For x near x,, since ¢(x, ty) > 0 near xo and ¢ is contin-
uous, for x sufficiently close to xo,

G(x,t9) 2 —OF (x,t0)@(x,t0) + n(to) = F(x, ) > 0.
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Hence at (xo, to ), we have

(= @i;n;
v = -mve,
Vol <[,
and
0< AynG

= —UmAg(t)(— (Ag(t)(fm -2(vae™, V()
=—0"Ag(y{ - m{c"  Ag(yo — m(m —1){c" *|Vo|* - 2me™ (Vo, V()

<or (—%q) +Lo+ s) +md" g (—%CD,(xO, to) + s) -2m®" v, v{)

3.
= —F-n'+ @) (Lp+¢) +en®) ¢ +2m° 0" *{|Vo]’

ot
D, ?
<y +Ly+ed" +em®" g+ Zmzn—wq)2 | ,
because
o_
- <
ot (x05t0)

By letting ¢ — 0, we conclude that at (xo, to),

1’ (to) < n(to) (L(xm to) +2m” g;tro'))
(3.4) ﬂ(to)(Lo-FClsz(ﬂ(a:O))m); or

ﬂ(to)(g +Cim’ (tol’l(to)) )

where Lo = maXg, (5,2)x[0,7] L @0 = MaXp,(5,2)x[0,7] |¢|- In the above inequalities, we
have used the fact that at (xo, to),

1 [0 . { o ag }
— =< <min , .
o n ton(to) n(to)
Here and below, Cy will denote a positive constant depending only on n, a.

First, we show that ¢(t) = O(/?). Forany1> 8 > 0, let #(t) = tz + 8. Then F > 0
near t = 0. By the first inequality on the second line of (3.4), we have

2

1 1 C?m2al

t02 S(té +5)(L0+11—02)
(g +0)m

8| =
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Choose m = 2and r = 1, we see that there is 7 > 0, small enough but independent of
8so that to > 7. Hence by letting & — 0, we conclude that ¢ < 2¢7 on B(p, 1-aaVt)
near t = 0.

Next, we improve the estimate of ¢ as t - 0*. Given an integer k > 1 and § > 0, let
n=>=0 ti+tkandr = 1. By the first inequality on the second line of (3.4), we have

2,2 %
lSt(;% +ktf < (6t§ +t5) (LO + Cﬂm—a‘))
4 1 (k)2

(0t +t5)m
Choose m large enough so that 2k/m < 1, then we can find 7; > 0 such that ¢, > 73.
Therefore, we may conclude that ¢(x, t) < 2¢* near t = 0 on By (p, 1 - cja/1).

Now, we will show that under (1.3), for each [ > « + 1, the above 7; can be chosen
so that it is bounded from below away from zero depending only on n, a, I. Let =
%tl, r = 1. By the above upper estimate of ¢ near ¢ = 0, we see that F > 0 near ¢ = 0.
Therefore, we can use the second inequality on the second line of (3.4) to show that

2
o a \"

lt(l)_lﬁt(l) —+C12m2 T .
to l‘o+

_ 2 J-2(]+1
< CmPam ity nY,

This implies:

Choose m sufficiently large so that = (I +1) < 1, we conclude that to > T>(n, a, ) and
hence

o(p,t) <t
ift < T, A Ty A T. This completes the proof. [ ]

Theorem 1.1 is invariant under parabolic rescaling in the following sense: Let
(M, g(t)), ¢, L be as in the theorem. For any A > 0, we define g (x, t) = Ag(x, 17'¢),
@1(x,t) =217 p(x, A7), and Ly (x, t) = A'L(x, A7't). Then g (t) satisfies the curva-
ture condition (1.3) with the same « and

P1(x,t) = A p(x, A7) < ATTa(A ) T =t

Similarly, L;(x,t) < at™. Moreover, let s = A7t

0 (0
(a - Agl(t)) o1(x,t) =21 2 (g - Ag(s)) o(x,s)
<A L(x,5)9(x,5)
=Li(x, t)p1(x, t)

in the sense of barrier whenever ¢;(x,t) = A ¢(x,A7't) > 0. Hence, we have the
following rescaled version of Theorem 1.1.

Corollary 3.1 Let (M,g(t)),t€[0,T], ¢,L be as in the Theorem 1.1. Let p € M,
r> 0 with Bo(p,r) @ M. Then for any positive integer | > « + 1, there is Ty(n, a,1)> 0
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depending only on n, a, | such that

¢(P> t) < 1’_2(1+1)tl

forallt <[0,T Ar*T].
Proof Let A = r~24. Define g1, ¢1, Ly as above. Then By, g)(p,2) € M. By Theorem
L1, forany [ > a +1

pi(p.t) <t
for t € [0, T/ A AT] for some T{ > 0, depending only on n, «, I. Hence

¢(p, 1) = Apr(p, At)
< AlJrltl
_ r—2(l+1)4—(l+1) tl+1

< 7’_2(1+1) tl

for t € [0, (r*Ty) A T] where T; = 4T . From this, the result follows. |

When g(t) is a complete solution to the Ricci flow, then the corollary implies that
¢ <0 for t > 0 by letting » — oo. In fact, in this case by using the trick of Chen [5],
we do not need the assumption that Ric(g(t)) < at™!. Namely, we have following
corollary of our method:

Corollary 3.2 Let (M", g(t)) be a complete solution of the Ricci flow on M x [0, T].
Let ¢, L be as in Theorem 1.1. Then ¢ < 0 for t > 0.

Proof For any compact set Q, we have Ric(g(t)) <t on Q provided ¢t is small
enough. Hence by Corollary 3.1, for any [ > 1and compact set Q, we have ¢ < t' on Q
provided ¢ is small depending only on #, [, and Q.

Let p € M and let b be a positive number such that Ric(g(t)) < b* on B;(p, 1) for
all ¢ € [0, T]. Then as before

9
(E - Ag(t)) (di(x) + e1bt) > 0

in the sense of barrier on M\B(p, ;) for some ¢; = ¢;(n). Let ¢ be as in (3.2). Then
for A > 1 sufficiently large,

(%‘Agm)qﬁ(w) . %Qb(w)

in the sense of barrier. Define ®(x, t) = exp(~-zt)¢ so that

)
(E —Ag(t))q)ﬁ 0.

in the sense of barrier. For any integer m >2, [ >1+ &, and € > 0, we define F =
~®™¢ + et!. The argument in the beginning of the proof of Theorem 1.1 shows that
F(x,t) >0 on M x (0,t") for some ¢ > 0. If F(x,t) <0 somewhere, then there is
X0 € M, T >ty >0 so that F(xg,%) =0 and F(x,t) >0 on M x [0, to]. As in (3.4),
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_ a Cm? fo4
eltht <etl | = + 2 ; .
tO A2 $t0+1

2 _ I-2(1+1) 2
smAzt(l) '< ty n )ocmemz,

we have

S

And hence,

where we have used the fact that £ > o + 1.
For a fixed [, we choose m sufficiently large such that = (I +1) < 3, then we have
_2
en Ay <ty Y.
Therefore, if we choose A large enough so that e A2C, > T'~# ("), We conclude that

to > T which is impossible. By letting A — +o0 and followed by ¢ - 0, we conclude
that ¢(p, t) < 0. Since p is an arbitrary point on M, the result follows. [ ]

Corollary 3.3 Let (M", g) be a complete Riemannian manifold with Ric(g) > —1. Let
@, L be as in Theorem 1.1 with respect to d; — A, instead. Then ¢ < 0 for t > 0.

Proof By Laplacian comparison, we have (9; — Ag)(d,(x, p) + Ct) > 0 in the sense
of barrier for some fixed p € M and C > 0 whenever d,(x, p) > 1. Hence, the proof of
Corollary 3.2 can be carried over. [ ]

Using the idea in [23], we may use Corollary 3.2 to prove that complete Ricci flows
satisfying curvature condition |[Rm(g(t))| < at™! preserve the Kihler condition. This
recovers results in [11, 23]. Another application of Corollary 3.2 is on the preservation
of non-negativity of various curvatures along the Ricci flows which may not be
complete or may have unbounded curvature. We will follow the set-up in [1]. See [27]
for a unified approach in compact case and the case that g(t) is complete noncompact
with bounded curvature. Information about previous contributions by others can also
be found in [27].

Theorem 3.1 Let (M", g(t)) be a smooth solution to the Ricci flow on M x [0, T},
where g(t) may not be complete. Assume the scalar curvature R satisfies R(g(t)) < at™
for some a > 0 on M x (0, T]. Consider one of the following curvature conditions C:

(1) non-negative curvature operator;

(2) 2-non-negative curvature operator, (i.e. the sum of the lowest two eigenvalues is non-
negative);

(3) weakly PIC; (i.e. taking the Cartesian product with R? produces a non-negative
isotropic curvature operator);

(4) weakly PIC, (i.e. taking the Cartesian product with R produces a non-negative
isotropic curvature operator);

(5) non-negative bisectional curvature, in the case in which (M, g(t)) is Kdhler;

(6) non-negative orthogonal bisectional curvature, in the case in which (M, g(t)) is
Kihler .

Let p € M and r > 0 be such that Bo(p,r) € M, Rm(g(x,0)) € C, and Rm(g(¢)) +
at™'T are in the same C for (x,t) € Bo(p,r) x (0, T]. Then for all | > a +1, there is
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12 M. Lee and L. Tam

T(n,a,1) > 0suchthatforallt € [0, T A Tr*], Rm(g(p, t)) + r 2V ¢'Lis in the same
C. In particular, if g(t) is a complete solution and the assumption holds for all r > 0, then
Rm(g(t)) € Cforallt>O0.

Proof Fix a curvature condition C. Let
{(x,t) = inf{e > 0| Rm(g(x,t)) + el € C}.

Then by [1] for (1)-(5) and by [17] for (6), we have

(% - Agm)z <RE+ c(n)?

in the sense of barrier for some constant c(#n) depending only on n. By the assumption
on R and the assumption that Rm(g(t)) + at™'I € C, we conclude that

(% - Ag(t)) (<at™

for some a > 0. Since £ = 0 at t = 0 as Rm(g(0)) € C, the conclusion at p follows from
Corollary 3.1. When g(t) is a complete solution, we can let r - +oo to conclude that
Rm(g(p,t)) € C. Since p is arbitrary, the result follows. |

Local maximum principle Theorem 1.2

In this section, we will use Theorem 1.1 to prove Theorem 1.2. Let g(t) be a Ricci flow
on M x [0, T] satisfying:

il Rm(g(x,t))| < at™, forall (x,t) e M x (0,T]
(4D inj, ) (x) 2 Va't,  forall (x,) e M x (0, T] with Bs(x,Va™lt) € M,

for some a > 1. We will consider the continuous function ¢(x,t) >0 on M x [0, T]
which satisfies:

0
(4.2) (E —Ag(,))(pSfR(p-i—Kgoz

in the sense of barrier, where R(g(¢)) is the scalar curvature of g(¢) and K >0 is a

constant.
Before we prove Theorem 1.2, we first give the following application of the theorem.

Corollary 4.1 Let (M", g(t)) be as in Theorem 1.2. Suppose
Rm(go) +8I€C

for some & > 0 where C is one of the curvature cones (1)-(6) in Theorem 3.1. Let p, R be
as in Theorem 1.2. Then there is a constant Cy = Co(n, a, vo, 0) > 0 such that

Rm(g(p,t))+8"I€C

for t € [0, T] where 8* = Co((RT?)2 + 8). In particular, if g(t) is a complete solution,
then Rm(g(t)) + Cod € C.
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Proof As in the proof of Theorem 3.1, let
O(x,t) =inf{e > 0| Rm(g(x,t)) + &l € C}.
Then

(% - Agm)e <RE+ c(n)l?

in the sense of barrier for some constant c¢(n) depending only on n. By (4.1), £(x, t) <
o't ! for some &’ > 0 depending only on a, n. The first result follows from the Theorem
1.2. The second result follows by letting R — oo. [

We may reduce the proof of Theorem 1.2 to the case that T = 1. More precisely,
let g1(t) = T™'g(Tt), ¢1(x,t) = Te(x, Tt). Then g (t) satisfies (4.1) and ¢,(x,t)
satisfies (4.2) with R(g(t)) replaced by R(g:1(¢t)) . Moreover, ¢;(0) and ¢ satisfy

43) R(g1(0)) =2 -0 on M;
‘ Va0y)(x,1) <" exp(vor) forall r >0, and x € M with By(x,7) € M,

and

¢1(0) < TS,  onM;
¢1(t) <at™, onMx(0,T].

If we can prove Theorem 1.2 with T =1, then the upper bound for ¢; will imply the
required upper bound for ¢.

Theorem 1.2 has been obtained earlier by Hochard [13, Propositions I.2.1 and I1.2.6].
The approach here is a localized version of the original method in [1]. The main
ingredients are the local maximum principle Theorem 1.1 and an upper bound of the
Dirichlet heat kernel for a fixed domain.

4.1 Upper estimates of the Dirichlet heat kernel

Let (M", go) be a Riemannian manifold and let g(¢) be a Ricci flow on M x [0, T]
with g(0) = go. Here g(t) may be incomplete. Let QO @ M be an open set with smooth
boundary. We let Go(x, t; y,s), t > s be the Dirichlet heat kernel for the backward
heat equation coupled with the Ricci flow g(t):

(0s+A,5)Ga(x,t;y,5) =0, inint (Q) xint (Q) x [0, );
lim_¢- Ga(x, ;5 y,s) = 0x(y), forx eint (Q);
Ga(x,t;,5) =0, for y € 0Q, x € int (Q),

where A, () is denoted by A ;. Then
(0t — Ayt = Rt) Ga(x, t;7,5) =0, inint (Q) xint (Q) x (s, T];
lim;¢+ Ga(x,t;y,5) = 8,(x), for y € int (Q);
Ga(x,t;,5) =0, for x € 0Q), y € int (Q),

where R; is the scalar curvature of g(t). Such Gq exists and is positive in the interior
of Q, see [8].
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14 M. Lee and L. Tam

We want to estimate the upper bound of G (x, t; y, s) with respect to y and g(s)
under the conditions (4.1). The following Dirichlet heat kernel estimate was implicitly
proved in [4, Theorem 5.1].

Lemma 4.1 Let (M", go) be a Riemannian manifold and p € M. Suppose g(t) is a
solution to the Ricci flow on M x [0,1] with g(0) = go such that Bo(p,2(r +1)) € M
for some r > 1 and [Rm(x,t)| < A on M x [0,1]. If Q is an open set in M with smooth
boundary such that Q € By, (p,r) and Ga(x, t; y,s) is the Dirichlet heat with respect
to the backward heat equation on Q x Q x [0,1]. Then there is C(n, A) > 0 such that
forall0<s<t<Lx,yeQ,

2
Ga(x,t;p,5) < ¢ _do(x,y))_

1 1 x eXp (
Vi (6, VE=$)VE (1t =s) C(t-s)
Proof Let Q be a bounded open domain with smooth boundary so that By(p, 7 +
1) € Q € By(p, r +1). In particular, any two points in ) can be joined by a minimizing
geodesicin M. Let G be the heat kernel on Q x Q x [0,1]. By the maximum principle,
we have G < Gg on Q x Q x [0, 1]. In the following, C; will denote positive constants

depending only on n, A.
Step 1: Denote Gg by G.For0 <s <t <1,

0 oG
e G )t; > d X :/ AX Gd X :[ _SO)
8t(/5 (x.67,5)du ’t) gt T s

because G > 0 on int(Q) and G = 0 on Q. Since lim_,s+ [ 5G(x, 5 ,5)dpy, = 1, we
have for all y € Q.

fﬁGa(x, t;y,8)dpy, < L.

Let f € C*°(Q) with0< f <lonQand f = 0 on Q. Let

u(.t) = [ Ggx.t95)f () ditye.

Then u satisfies (0; — Ag(;) — R¢)u = 0 with zero boundary data and with initial data f.
By the maximum principle, we have u(x, t) < C; for t > 5. Letting f — 1, we conclude
that

fﬁG@(x, t;y,s) duy,s < Cr.

Step 2 : Apply the argument of [4, Lemma 5.3] and Step 1, using the mean value
inequality [4, Lemma 3.1], volume comparison and the fact that B, (x, %) € Q forall
x € Q, we have pointwise estimate:

C, C, }

Ga(x,t9,5) < Gg(x, 5 y,5) < min{ ,
o Vo(x,Vt-s) Vo(y,V/t—5s)
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Combining this with the integral estimates in Step 1, we conclude that for y € Q and
s<t,

Cs

G3(x,t;9,8) dpy g < ————;
[Q (% 67:5) dpcs Vo(y,c\/m)

GY(x,t9,8) dpys < — .
fn a(x:57:5) dpy, Vo(x,Vt—s)

Step 3 : Apply the method of proof in [9, Theorem 2.1], (see also [4, Lemma 2.2]),

we have
g (xy) Cy
G%(x,1;9,5)etst d <——— forallye Q; and
,[Q Q( y ) Ux,t Vo()’,\/:) y
f G (x, 8 y,5) 53y, <— G forall x € Q
x,t;y,5)eCaCt=s s S—————— forallxeQ.
o ¢ 4 Hys Vo(x, Vt—s)

Step 4: By the semigroup property of Dirichlet heat kernel (see [6, Lemma 26.12]
for example), and by using arguments in the proof of [4, Theorem 5.5], we have

2
Ga(x,5y,5) < 1 CS; Xexp(_ dO(x)y))'
Ve (x5, V=)V (3, VE - 5) Cs(t-s)

Using Lemma 4.1, we can now proceed as in [1, Proposition 3.1] to obtain the
following heat kernel estimate.

Proposition 4.1 For any n, a > 0, there exists C(n, «) > 0 such that the following is
true: Suppose (M", g(t)) is a solution to the Ricci flow on M x [0, 1] with initial metric
go satisfying the conditions (4.1). Let p € M be a fixed point so that B,(p,4r) € M
for some r >1 for all t €[0,1]. Let Q be a domain with smooth boundary so that
Q @ By(p,r) for all t € [0,1]. Then the Dirichlet heat kernel G(x, t;y,s) with respect
to the backward heat equation on Q x Q x [0,1] satisfies:

C d2(x,y)
(t-5) e"p(‘cu—s))'

forall0 < s < t<1and x, y € Q, where d is the distance function with respect to g(s).

G(x,t;y,5) <

Remark 4.1 'The condition that Q € B;(p,r) c B¢(p,4r) € M is assumed so that for
all x,y € Q, di(x,y) is well-defined and is realized by a minimizing g(t)-geodesic
lying in B(p, 4r).

By Lemma 2.2, we have the following:

Corollary 4.2 Thereexist Ry(n, a, 0,vo) > 1, u(n, a, 0,vo) > 1such that the following
is true: Suppose (M", go) is a Riemannian manifold and g(t) is a solution to the Ricci
flow on M x [0, T] with g(0) = go satisfying conditions (4.1) and

R(go) >-0T™ on M;
Vo(x,7) Sver®  for0O<r< Tz,
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Then we can find C(n, &) > 0 so that if p € M with By(p, R) € M and R > T Ry, then
the heat kernel G(x, t; y,s) on Bg, (p, u'R) x [0, T] satisfies

_df(x,y))‘

C
G(x,t;y,s) < TEDE eXp( C(t-s)

Proof Letg(t) =T 'g(Tt). Then g (t) isa Ricciflow defined on M x [0,1] satisfy-
ing (4.1) and (4.3). By Lemma 2.2 and Proposition 4.1, the results follows by parabolic
rescaling. [ ]

4.2 Proof of Theorem 1.2

The following Lemma reduces the upper bound of ¢ to the integral bound of the heat
kernel.

Lemma 4.2 Suppose (M", g(t)),t € [0, T] is a smooth solution to the Ricci flow with
initial metric go which may not be complete. Suppose g(t) satisfies:

Ric(x,t) <

\#lSQ

for (x,t) € M x (0, T] for some a > 0. Let ¢ be a nonnegative continuous function on
M x [0, T] such that (0) < 8 and ¢(t) < at™ for some 8 > 0. Assume ¢ satisfies

d
(& - Ag(t)) < .'R(p + Kgoz

in the sense of barrier, where K >0 is a constant and R = R(g(t)) is the scalar
curvature of g(t). Let p € M such that By, (p,r) € M. Then there exists constants
C(n,a,K), Ti(n,a,K) > 0 so that

p(p.t) <C(r?+48)

forallt e [0, T Ar*Ty], where
8 = sup f G(x,t;5,0)du,.0,
,2TIAT] Bgy (p51)

Bo(p,r)x[0

and G(x, t; y,s) is the heat kernel for the backward heat equation on By, (p, ).

Proof Let g(x,7)=r"2g(x,7*7) and ¢,(x,7) = r*¢(x,r*7) which are defined
on M x [0,772T]. Then the rescaled Ricci flow and the rescaled function satisfy
Ric(g1(7)) < at™ ¢1(1) <at™, 91(0) < 728, Ry (1) = R(g@ (7)) = *R(g(t)), where
t = r*7. Moreover, ¢, satisfies:

0
(g - Agl(r)) 91 S Rigr + Koj
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in the sense of barrier on M x [0,r 2T]. Let G;(x, 7; y, u) be the heat kernel with
respect to g1(7) and let G(x, t; y, s) be the heat kernel with respect to g(¢). Then

rgG(x, t;y,s) = Gi(x, 13y, u)

where t = 7,5 = r*u. So

Gi(x,139,0)(d :f G(x,t;¥,0)d
Sy G 0o = [ G 2,00ty

20 (P57

where (dp); is the volume element of g;. Therefore, it is sufficient to prove the case of
r=1L
Since ¢(t) < at™ < a for t > 1, we may assume that T < 1. Let

p(x) = sup{r| Bo(x,7) € Bo(p, 1)},

and set
X, t ——8/ G(x,t9,0 dy .
f( ) Bo(po1) ( Yy ) 7,0

Then f(x,0) =4 for x € Bo(p,1) and (% —Agy) f=Rf. Let A>3 be a con-
stant. Then Ap™2 — ¢ > 0 at t = 0 and near dBo(p,1). If Ap™> — ¢ < 0 somewhere on
Bo(p,1) x [0, T], then there is xg € Bo(p,1), to < T such that

Apy? = 9(x0, 1)

and Ap~2(x) > ¢(x, t) for all x € Bo(p,1) x [0, to]. Here py = p(xo). Therefore for
x € Bo(x0, 3po) and t € [0, £o],

p(x,t) < Ap~?(x) < 4Apy°.

By the assumption on ¢, we have

d -
(a - Ag(,)) ¢ <R +4AKpy*¢.
in the sense of barrier on By(xo, 3po) x [0, to]. Let b = 4AKp;? and

u=e"q-f.
Then u satisfies:

0
(a - Ag(t)) u < Ru.

in the sense of barrier on By (xo, 3po) x [0, fo] and u(0) < 0. By Corollary 3.1, for any
integer | > max{a, K} +1, there is T; (I, n, &, K) € (0,1] such that

1 _
M(XO, t) < (EPO) 2(1+1) tl
forall £ € [0, o A (5p§ T1)]. On the other hand,

(4.4) Apy? = ¢(x0,t0) < aty'.
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Suppose A > 4a/Tj, then

>R
SN
IN
-
)
(=3 S}
g
IN
N~
o N

Hence, we have
e Apg? - f(x0, to) = (0, to)

_ _ 1
<4py” - ((4p5")t0)
< 4py’.

This implies that
A < pletbio (f(x0.t0) +4py”) < C1 (88 +1)
for some C; > 1 depending only on n, a, K, because po < 1and by (4.4)
bty = 4AKpy*ty < 4Ka.

By choosing a larger C; = C(n, a, Ty) and A = C;(8(8 + ¢) + 1) with & > 0, we can
conclude that

p(x.1) < Ap(x)

for all (x,t) € Bo(p,1) x [0, Ty A T]. By letting € — 0 and taking x = p, we have

o(p,t) < CI(1+88)p~2(p) = Ci(1+ 88).

The result follows. u
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 As mentioned before, we may assume T =1 by parabolic
rescaling. Let Ry, 4 be as in Corollary 4.2 with v, replaced by e"°. And let T} be the
constant obtained from Lemma 4.2. First consider the case R > Ry. Then the heat
kernel G(x,t;y,5) on Bo(p, u™'R) x Bo(p, p'R) x [0, T] satisfies:

n di(x,
(4.5) G(x,t;9,0) < Cit™ 2 exp (—M)
Cit
for x,y € Bo(p, 4 'R) and t € [0, T]. By Lemma 4.2, we have
p(p,t) < Co(88 +R7?)

for some constant C, = Cy(a, n,K) and t € [0, T A T,R*], where T, = 4~ T depends
only on n, «, K, and

S= sup

G(x,t;9,0)duyy.
(x,)€Bo(p,u~'R)x[0, TAT,R?] fBo(p,u‘lR) y
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By (4.5), for (x,t) € Bo(p, 4™ 'R) x [0, T A T,R?],

G(x,t;9,0)d
[Bo(p,;r‘R) (o 57,0)dtyo

. dg (x, y)
cart [ ),
! Bo(p,u~'R) eXP( Cit Hy.0
2 dg(x, )
cart [ ),
! Bo(x,2u"'R) exp( Cit Hy0
2y_1R 7’2
<C f A PYS Y
1/, exp( Clt) (r)dr
2

_n - 4u~*R? L nyq [WR r
<C |t 2Vy(x, 247 'R AN Yo 1t2+1/ " \vird
1( o(x, 2u )exp( X )+ 1 . rexp X (r)dr

<G

for some Cs = C3(n, a, K, vy). Here, we have used the fact that V(r) = Vy(x,7) <
r" exp(vor) for r > 0. Here A(r) is the area of 0By (x,r) with respect to gy. To
summarize, we have

¢(p, 1) < C4(R7* +6)
for t € [0, T A TyR?*] for some Cy(n, &, K,v) > 0.If T > T,R* and R*T, < t < T, then
p(p,t) <at™ <aT,'R72

This completes the proof of the theorem in the case of R > Ry.

When R < Ry, let T = T, A Ry, By Corollary 4.2, the heat kernel G(x, t; y,s) on
Bo(p, u'R) x Bo(p, 4 'R) x [0, T;R* A T] satisfies the same bound as in (4.5). Now
the same argument above shows that for all ¢ € [0, T3R* A T],

o(p,t) < C5(R72 +96).

For t € [TsR%, T], ¢(p,t) < CsR™% as ¢ < at™" for some Cy(, a, K, vy, 0). We com-
plete the proof by combining two cases. [ ]
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