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Some local maximum principles along
Ricci flows

Man-Chun Lee and Luen-Fai Tam

Abstract. In this work, we obtain a local maximum principle along the Ricci flow g(t) under the

condition that Ric(g(t)) ≤ αt−1 for t > 0 for some constant α > 0. As an application, we will prove

that under this condition, various kinds of curvatures will still be nonnegative for t > 0, provided

they are non-negative initially. �ese extend the corresponding known results for Ricci flows on

compact manifolds or on complete noncompact manifolds with bounded curvature. By combining

the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct

proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower

bound of different kinds of curvatures along the Ricci flows for t > 0.

1 Introduction

Given a Riemannianmanifold (M , g0), the Ricci flow onM is a family of metrics g(t)
onM satisfying

{∂t g(t) = −2Ric(g(t)), on M × [0, T];
g(0) = g0 .

Here, we denote g(x , t) simply by g(t). In this work, we always assume that the family
is smooth in space and time.

Ricci flow is a useful tool in the study of structures of manifolds. Ricci flow is useful
because it tends to preserve certain geometric structures. In many cases, the behavior
of a geometric structure is reflected by the behavior of a scalar function φ, which
satisfies certain differential inequalities. One of the simplest ways to obtain useful
information on φ, and hence on the corresponding geometric structure, for t > 0 is
to apply maximum principles. In this work, we are interested in the following two
frequently used differential inequalities along the Ricci flows:

(∂t − ∆g(t))φ ≤ Lφ,(1.1)

for some continuous function L(x , t) on M × [0, T] and
(∂t − ∆g(t))φ ≤ Rφ + Kφ2(1.2)
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2 M. Lee and L. Tam

where K is a positive constant and R is the scalar curvature of g(t). We will obtain
two maximum principles for the two cases. �e first one is the following:

�eorem 1.1 Let (Mn , g(t)), t ∈ [0, T] be a smooth solution to the Ricci flow which is
possibly incomplete. Suppose

Ric(g(t)) ≤ αt−1(1.3)

onM × (0, T] for some α > 0. Let φ(x , t) be a continuous function onM × [0, T]which
satisfies φ(x , t) ≤ αt−1 on M × (0, T] and

( ∂
∂t
− ∆g(t))φ∣

(x0 ,t0)
≤ L(x0 , t0)φ(x0 , t0)(1.4)

whenever φ(x0 , t0) > 0 in the sense of barrier, for some continuous function L(x , t)
on M × [0, T] with L(x , t) ≤ αt−1. Suppose p ∈ M such that Bg(0)(p, 2) ⋐ M and

φ(x , 0) ≤ 0 on Bg(0)(p, 2).�en for any l > α + 1, there exists T̂(n, α, l) > 0 such that
for t ∈ [0, T ∧ T̂],

φ(p, t) ≤ t l .
Here and below, we denote

a ∧ b =∶ min{a, b}.
For the definition of “in the sense of barrier,” we refer readers to [6, Chapter 18].

�eorem 1.1 is known to be true if M is compact without boundary or M is
noncompact and g(t) is a complete solution with uniformly bounded curvature, see
[11, 23] for example. Nevertheless, there are interesting results of the existence of the
Ricci flows in which the initial metrics and the flows g(t) may not be complete and
may have unbounded curvatures, see [1, 2, 3, 7, 10, 12, 14, 15, 16, 24, 26, 28]. However,
most of the Ricci flow solutions mentioned above satisfy the condition (1.3), which
is invariant under parabolic rescaling. �is motivates us to obtain the maximum
principles,�eorem 1.1 and�eorem 1.2 below. As an immediate application,�eorem
1.1 will imply the preservation of non-negativity of most known curvature conditions
under the assumption that ∣Rm(g(t))∣ ≤ αt−1 in the complete noncompact case. See
�eorem 3.1 for the full list of the curvature conditions. �e theorem also implies the
preservation of the Kähler condition, which is the first step in the use of the Kähler-
Ricci flow to study the uniformization of complete noncompact Kählermanifoldswith
nonnegative bisectional curvature. See [23, 11] for more information.

In �eorem 1.1, the condition that φ(0) ≤ 0 is crucial and the analogous result
is not true if φ is only assumed to be bounded from above initially. �is can be
seen by considering Euclidean space with the time function φε(t) = ( t+εε )α . �e

function satisfies φε(0) = 1 and (1.4) with L(x , t) = α(t + ε)−1, but φε(t0)→ +∞ as
ε → 0 for any fixed t0 > 0. Hence, if the geometric quantity φ(0) is only assumed to
be bounded from above, one cannot expect the analogous conclusion of �eorem 1.1
holds. However, if φ satisfies (1.2), we have the following local upper estimates of φ for
a short time. �is was first proved by Hochard in [13, Proposition I.2.1].
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Some local maximum principles along Ricci flows 3

�eorem 1.2 Let g(t) be a smooth Ricci flow on Mn × [0, T] which is possibly
incomplete. Suppose g(t) satisfies the following:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣Rm(g(x , t))∣ ≤ αt−1 , for all (x , t) ∈ M × (0, T];
injg(t)(x) ≥√α−1 t, for all (x , t) ∈ M × (0, T] with

Bg(t)(x ,√α−1 t) ⋐ M;
R(g(0)) ≥ −σT−1 on M;

V0(x , r) ≤ rn exp(v0rT− 1
2 ) for all r > 0, and x ∈ M with B0(x , r) ⋐ M ,

for some α, v0 > 0, σ ≥ 0 where R(g(0)) is the scalar curvature of g(0). Let φ be a
nonnegative continuous function on M × [0, T] satisfying (1.2) in the sense of barrier.
Assume that

{ φ(0) ≤ δ, on M for some δ > 0;
φ(t) ≤ αt−1 , on M × (0, T].

Suppose p ∈ M is a point such that Bg0(p, 3RT 1
2 ) ⋐ M for some R > 0.�en

φ(p, t) ≤ C((RT 1
2 )−2 + δ)

for t ∈ [0, T] for some constant C > 0 depending only on n,K , α, v0 , σ .

Remark 1.1 By volume comparison, if Ric(g(0)) ≥ − 1
n
σT−1, then the conditions on

R(g(0)) and V0(x , r) in the theorem will be satisfied for σ and for some v0 > 0.
Maximum principle for the evolution equation (1.2) along the Ricci flow was first

considered by Bamler et al. in [1]. In particular, they showed that if φ is the negative
part of the smallest eigenvalue of Rm(x , t) with respect to certain curvature cones,
then φ satisfies (1.2) in the barrier sense. �ey proved that for the Ricci flow g(t) on a
compact manifold or on a complete noncompact manifold with bounded curvature,
if g(t) and φ(t) satisfy the conditions in �eorem 1.2 and φ(0) ≤ δ, then φ(t) ≤ Cδ
within a short time-interval [0, T0] for some constant C > 0 both depending only on
n, α, σ , and v0.�eorem 1.2 is a localized version of this result. In [13], Hochard proved
�eorem 1.2 by obtaining estimates of the heat kernels together with their gradients
for the backward heat equation on a nested sequences of domains. In this work, we
will give a more direct proof by combining the Dirichlet heat kernel estimates on a
fixed g(0)-geodesic ball with �eorem 1.1. �e proof is in the spirit of work [1].

�e localized maximum principle �eorem 1.2 is particularly useful when we
consider the partial Ricci flow. Combining the maximum principle with the partial
Ricci flowmethod [12, 26], Lai [14] constructed a complete Ricci flow solution starting
from a complete noncollapsed metric which is of almost weakly PIC1, and remains
almost weaklyPIC1 for a short time. In [21],McLeod and Topping combined�eorem
1.2, Lai’s Ricci flow solutions [14] and the techniques developed in their earlier work
[20] to obtain a smooth structure on the noncollapsed IC1-limit space. In [16], the
authors used �eorem 1.2 to construct a local Kähler-Ricci flow starting from a
noncollapsed Kähler manifold with almost nonnegative curvature and improve a
result of Liu [18] on the complex structure of the corresponding Gromov–Hausdorff
limit of this class of Kähler manifolds. See the recent work by Lott [19] for further
development.
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4 M. Lee and L. Tam

�e paper is organized as follows: In Section 2, we will collect some useful lemmas
which allow us to compare g(0)-geodesic balls and g(t)-geodesic balls. In Section
3, we will give a proof of �eorem 1.1 and a unified proof for preservation of non-
negativity of some curvature conditions. In Section 4, we will obtain Dirichlet heat
kernel estimates for the backward heat equation and give a proof of �eorem 1.2.

2 Shrinking and expanding balls Lemmas

Let (Mn , g(t)) be a Ricci flow defined onM × [0, T]. Since g(t)may not be complete,
we use the following convention: Let (M , g) be a Riemannian manifold without
boundary which may be incomplete. Let x ∈ M, r > 0. If expg ,x is defined on the

ball B(r) of radius r in the tangent space Tx(M) with center at the origin, then we
denote Bg(x , r) = Image(expg ,x(B(r)). We say that Bg(x , r) ⋐ M if it is compactly

contained inM. We say that the injectivity radius injg(x) of x satisfies injg(x) ≥ ι0, if
Bg(x , ι0) ⋐ M and expg ,x is a diffeomorphism from the ball of radius ι0 onto its image

Bg(x , ι0). Observe that if Bg(x , r) ⋐ M, then any point in Bg(x , r) can be joined to x
by a minimizing geodesic inM. If Bg(x , 2r) ⋐ M, then any two points in Bg(x , r) can
be joined by a minimizing geodesic lying inside Bg(x , 2r). In this case, the distance
function is well-defined on Bg(x , r). We will omit the subscript g when the content
is clear. In the rest of the work, we denote the ball of radius r with respect to g(t) by
Bt(x , r) and its volumeVolg(t)(Bt(x , r)) byVt(x , r). Moreover, the distance function
with respect to g(t) is denoted by dt .

Since g(t) is not necessarily complete, it is important to compare balls with respect
to g(t) at different time. Some basic results on this will be used later. �e first one is
the following shrinking balls Lemma by Simon-Topping [25, Corollary 3.3]:

Lemma 2.1 �ere exists a constant β = β(n) ≥ 1 depending only on n such that
the following is true. Suppose (Mn , g(t)) is a Ricci flow for t ∈ [0, T] and x0 ∈ M
with B0(x0 , r) ⋐ M for some r > 0. Suppose g(t) satisfies Ric(g(t)) ≤ (n − 1)a/t on
B0(x0 , r) for some a > 0 for all t ∈ (0, T].�en

Bt (x0 , r − β√at) ⊂ B0(x0 , r),
and in general for 0 < s < t < T,

Bt (x0 , r − β√at) ⊂ Bs (x0 , r − β√as) .
In particular,

dt(y, x0) ≥ ds(y, x0) − β√a(t 1
2 − s 1

2 )
for all y ∈ Bt (x0 , r − β√at).

We also need the following expanding balls Lemma by He [10].

Lemma 2.2 For any positive integer n ∈ N and for any v0 , α, σ > 0, there exists
µ(n, v0 , α, σ) > 1 and R0 = R0(n, v0 , α, σ) > 0 such that the following is true: Let(Mn , g(t)) be a Ricci flow for t ∈ [0, T] with T ≤ 1. Suppose p ∈ M with B0(p, R) ⋐ M
for some R ≥ R0 such that:
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(a) ∣Rm(x , t)∣ ≤ αt−1 for all x ∈ B0(p, R) and t ∈ (0, T];
(b) Vt(x ,

√
t) ≥ α−1 tn/2 for all t ∈ (0, T] and for all x with Bt(x ,

√
t) ⊂ B0(p, R);

(c) V0(x , r) ≤ v0rn , for all 0 < r ≤ 1 and x ∈ B0(p, R) with B0(x , r) ⊂ B0(p, R);
(d) R0 ≥ −σ , in B0(p, R), where Rt is the scalar curvature of g(t).
�en for all t ∈ [0, T], we have

B0(p, µ−1R) ⊂ Bt(p, 1
2
R).

Proof By Lemma 2.1, we have Bt(p, 34R) ⋐ M for all t ∈ [0, T] provided
(c1): R ≥ C1.
Here and below, C l will denote a positive constant depending only on n, v0 , α, σ .
By [25, Lemma 8.1], there is T1 = T1(n, α, σ) > 0, such thatRt ≥ −2σ on Bt(p, 23R)

for t ∈ [0, T ∧ T1], if C1 is large enough.
Let 0 < τ ≤ T ∧ T1 ≤ 1 and let β = β(n)be the constant fromLemma2.1. LetR1 = εR

where 0 < ε < 1/2 is a constant to be chosen later. Define

r0 =max{r ∈ [0, R1] ∶ B0(p, r) ⋐ Bτ(p, R1/2)}.
By Lemma 2.1 again, r0 ≤ 1

2
R1 + β√α ≤ 1

2
R, provided C1 in (c1) is large enough.

By definition, there exists y ∈ M such that d0(p, y) = r0 and dτ(p, y) = R1/2. Let γ ∶[0, r0] be a minimizing g(0)-geodesic from p to y. Let N be the positive integer such
that

r0 + 2βτ 1
2 ≥ 2βτ 1

2 N ≥ r0 .(2.1)

�en we can find {x i}Ni=1 on γ so that B0(x i , β√τ) are all disjoint and γ is covered
by ⋃N

i=1 B0(x i , 2β√τ) which is a subset of B0(p, R) provided C1 is large. Choose C1

large enough so that for each i, and for each z ∈ B0(x i , 2β√τ), we have Bτ(z, 2√τ) ⊂
B0(p, R). For each i, let {z(i)j }k ij=1 be the maximal set of points in B0(x i , 2β√τ) such
that Bτ(z(i)j ,

√
τ) are mutually disjoint and

k i

⋃
j=1

Bτ(z(i)j ,
√
τ) ⊂ B0(x i , 2β√τ) ⊂ k i

⋃
j=1

Bτ(z(i)j , 2
√
τ)

�en γ will be covered by ∪Ni=1∪k ij=1Bτ(z(i)j , 2
√
τ). Hence by (2.1), we have

1

2
R1 = dτ(p, y) ≤ 2√τ∑N

i=1
k i .(2.2)

We want to estimate k i from above.
Let τ =min{T , T1 , (2β)−2}. By (b), we have

k iα
−1τn/2 ≤∑k i

j=1
Vτ(z(i)j ,

√
τ)

≤ Vτ(B0(x i , 2β√τ))
≤ C2V0(B0(x i , 2β√τ))
≤ C2v0τ

n
2 .
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6 M. Lee and L. Tam

�e third inequality follows from ∂tdµt = −Rtdµt and the lower bound onRt . Hence
k i ≤ C3. By (2.2) and (2.1), we have:

1

2
R1 ≤ 2C3Nτ

1
2 ≤ 2C3τ

1
2 ⋅ r0 + 2βτ

1
2

2βτ
1
2

�erefore r0 ≥ C−14 R1 − 2βτ 1
2 ≥ C−14 R1 − 1 and hence

B0(p, εC−14 R − 1) ⊂ Bτ(p, ε
2
R).(2.3)

Suppose T ≤ T1 ∧ (2β)−2, then τ = T . For all t ≤ T = τ, by Lemma 2.1,

Bτ(p, ε
2
R) ⊂ Bt(p, ε

2
R + βτ 1

2 ) ⊂ Bt(p, 1
2
R)

provided C1 in (c1) is large enough and ε < 1
4
. If T > T1 ∧ (2β)−2, then for t ≤ τ, the

above inequality is still true. For T ≥ t ≥ τ, by condition (a), we have

Bτ(p, ε
2
R) ⊂ Bt(p, εC5R) ⊂ Bt(p, 1

4
R).

provided that we choose ε = 1
4(C5+1)

. By (2.3), one can see that if C1 is large enough,

then the Lemma is true. ∎

3 Local maximum principle Theorem 1.1

We are now ready to prove�eorem 1.1.

Proof of �eorem 1.1 Let g(t) be a Ricci flow on Mn × [0, T] so that Ric(g(t)) ≤
αt−1 for some α > 0. Let φ be a continuous function defined on M × [0, T] which
satisfies (1.1) in the sense of barrier at those points where φ > 0. Assume φ ≤ 0 at t = 0.
Let p ∈ M with B0(p, 2) ⋐ M. We want to prove that φ(p, t) ≤ t l for large l provided
t ≤ T ∧ T̂(n, α, l). We will first show that φ ≤ t 1

2 near t = 0, and then we improve the
estimate to higher powers of t.

By replacingL by its positive part if necessary, wemay assume that L ≥ 0. By Lemma
2.1, there is T1 = T1(n, α) > 0 such that Bt(p, 32 ) ⋐ M if t ≤ T ∧ T1. Let dt(x) to be the
distance function from pwith respect to g(t).�en dt(x) is defined on Bt(p, 1) and is
realized by a minimizing geodesic from p. By [22, Lemma 8.3], there exists c1(n) > 0
such that

( ∂
∂t
− ∆g(t))(dt(x) + c1α√t) ≥ 0(3.1)

for x ∈ Bt(p, 1)/Bt(p,√t) in the sense of barrier.
Let ϕ ∶ [0,∞)→ [0, 1] be a smooth function such that

ϕ(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for 0 ≤ s ≤ 1

2
;

exp(− 1
(1−s)
) for 3

4
≤ s ≤ 1;

0, for s ≥ 1,
(3.2)

and such that ϕ′ ≤ 0, ϕ′′ ≥ −cϕ for some absolute constant c > 0.
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For r ∈ [ 1
24
, 1], let

Φr(x , t) = exp(−cr−2 t) ⋅ ϕ(dt(x) + c1α√t

r
) .

�en supp(Φr(⋅, t)) ⊂ Bt(p, r). Note that
r

2
≤ dt(x) + c1α√t ≤ r

if and only if r − c1α√t ≥ dt(x) ≥ r
2
− c1α√t. Hence if t ≤ T1 = 1

25
(c1α + 1)−2, and 0 <

ϕ(x , t) < 1, then 1 ≥ dt(x) ≥√t. �erefore, by (3.1), we have

( ∂
∂t
− ∆g(t))Φr ≤ 0(3.3)

in the sense of barrier on B0(p, 2) × [0, T1 ∧ T]. We may also choose T1 small enough

so that e−cr
−2T1 ≥ 1

2
. Let η(t) ≥ 0 be a smooth function in t such that η(t) > 0 for t > 0.

We consider the function

F = −Φm
r φ + η.

Here,m is a positive integer to be determined later. Assume η is chosen so that F > 0
near t = 0. In this case, if F(x , t) < 0 for some (x , t) ∈ B0(p, 2) × [0, T1] then there is(x0 , t0) ∈ B0(p, 2) × (0, T1] with 0 < t0 ≤ T1 such that F(x0 , t0) = 0, and F(x , t) ≥ 0
on B0(p, 2) × [0, t0]. At (x0 , t0), Φr > 0 and φ > 0.

By (3.3) and (1.1), for any ε > 0, there exists C2 functions σ(x), ζ(x) near x0 such
that σ(x) ≤ Φr(x , t0), σ(x0) = Φr(x0 , t0), ζ(x) ≤ φ(x , t0), and ζ(x0) = φ(x0 , t0).
Moreover, the following are true:

∂−
∂t

Φr(x0 , t0) − ∆g(t)σ(x) ≤ ε,
and

∂−
∂t

φ(x0 , t0) − ∆g(t)ζ(x0) − L(x0 , t0)ζ(x0) ≤ ε.
Here, for a function f (x , t),

∂−
∂t

f (x0 , t0) = lim inf
h→0+

f (x0 , t0) − f (x0 , t0 − h)
h

.

�e function G(x , t) = −σm(x)ζ(x) + η(t) is C2 in space and time so that
G(x0 , t0) = F(x0 , t0) = 0. For x near x0, since φ(x , t0) > 0 near x0 and φ is contin-
uous, for x sufficiently close to x0,

G(x , t0) ≥ −Φm
r (x , t0)φ(x , t0) + η(t0) = F(x , t0) ≥ 0.
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8 M. Lee and L. Tam

Hence at (x0 , t0), we have
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ζ = η

Φm
r

;

∇ζ = −mζ∇σ
σ

;

∣∇σ ∣ ≤ ∣∇Φr ∣,
and

0 ≤ ∆g(t)G

= −σm∆g(t)ζ − ζ∆g(t)σ
m − 2⟨∇σm ,∇ζ⟩

= −σm∆g(t)ζ −mζσm−1∆g(t)σ −m(m − 1)ζσm−2∣∇σ ∣2 − 2mσm−1⟨∇σ ,∇ζ⟩
≤ Φm

r (−∂−∂t φ + Lφ + ε) +mΦm−1
r φ (−∂−

∂t
Φr(x0 , t0) + ε) − 2mΦm−1

r ⟨∇σ ,∇ζ⟩
= ∂−
∂t

F − η′ +Φm
r (Lφ + ε) + εnΦm−1

r φ + 2m2σm−2ζ ∣∇σ ∣2
≤ −η′ + Lη + εΦm

r + εmΦm−1
r φ + 2m2η

∣∇Φr ∣2
Φ2

,

because

∂−
∂t

F∣
(x0 ,t0)

≤ 0.
By letting ε → 0, we conclude that at (x0 , t0),

η′(t0) ≤ η(t0)(L(x0 , t0) + 2m2 ∣∇Φr ∣2
Φ2

r(t0))

≤
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(t0)⎛⎝L0 + C2
1m

2( a0

η(t0))
2
m ⎞
⎠ ; or

η(t0)⎛⎝
α

t0
+ C2

1m
2 ( α

t0η(t0))
2
m ⎞
⎠ ,

(3.4)

where L0 =maxB0(p,2)×[0,T] L, a0 =maxB0(p,2)×[0,T] ∣φ∣. In the above inequalities, we
have used the fact that at (x0 , t0),

1

Φm
r

= φ

η
≤min{ α

t0η(t0) ,
a0

η(t0)} .
Here and below, Ck will denote a positive constant depending only on n, α.

First, we show that φ(t) = O(t1/2). For any 1 > δ > 0, let η(t) = t 1
2 + δ. �en F > 0

near t = 0. By the first inequality on the second line of (3.4), we have

1

2
t
− 1

2

0 ≤ (t 1
2

0 + δ)⎛⎝L0 + C2
1m

2a
2
m

0

(t 1
2

0 + δ) 2
m

⎞
⎠ .
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Choosem = 2 and r = 1, we see that there is τ > 0, small enough but independent of

δ so that t0 ≥ τ. Hence by letting δ → 0, we conclude that φ ≤ 2t 1
2 on Bt(p, 1

2
− c1α√t)

near t = 0.
Next, we improve the estimate of φ as t → 0+. Given an integer k ≥ 1 and δ > 0, let

η = δt 1
4 + tk and r = 1

2
. By the first inequality on the second line of (3.4), we have

1

4
δt
− 1

4

0 + ktk−10 ≤ (δt 1
4

0 + tk0)⎛⎝L0 + C2
1m

2a
2
m

0

(δt 1
4

0 + tk0) 2
m

⎞
⎠ .

Choose m large enough so that 2k/m < 1, then we can find τ1 > 0 such that t0 > τ1.
�erefore, we may conclude that φ(x , t) ≤ 2tk near t = 0 on B0(p, 1

4
− c1α√t).

Now, we will show that under (1.3), for each l ≥ α + 1, the above τ1 can be chosen
so that it is bounded from below away from zero depending only on n, α, l . Let η =
1
2
t l , r = 1

4
. By the above upper estimate of φ near t = 0, we see that F > 0 near t = 0.

�erefore, we can use the second inequality on the second line of (3.4) to show that

l t l−10 ≤ t l0 ⎛⎝
α

t0
+ C2

1m
2 ( α

t l+10

)
2
m ⎞
⎠ .

�is implies:

t l−10 ≤ C2
1m

2α
2
m t

l− 2
m
(l+1)

0 .

Choosem sufficiently large so that 2
m
(l + 1) < 1

2
, we conclude that t0 ≥ T2(n, α, l) and

hence

φ(p, t) ≤ t l
if t ≤ T2 ∧ T1 ∧ T . �is completes the proof. ∎

�eorem 1.1 is invariant under parabolic rescaling in the following sense: Let(M , g(t)), φ, L be as in the theorem. For any λ > 0, we define g1(x , t) = λg(x , λ−1 t),
φ1(x , t) = λ−1φ(x , λ−1 t), and L1(x , t) = λ−1L(x , λ−1 t).�en g1(t) satisfies the curva-
ture condition (1.3) with the same α and

φ1(x , t) = λ−1φ(x , λ−1 t) ≤ λ−1α(λ−1 t)−1 = αt−1 .
Similarly, L1(x , t) ≤ αt−1. Moreover, let s = λ−1 t

( ∂
∂t
− ∆g1(t))φ1(x , t) = λ−2 ( ∂

∂s
− ∆g(s))φ(x , s)

≤ λ−2L(x , s)φ(x , s)
= L1(x , t)φ1(x , t)

in the sense of barrier whenever φ1(x , t) = λ−1φ(x , λ−1 t) > 0. Hence, we have the
following rescaled version of �eorem 1.1.

Corollary 3.1 Let (M , g(t)), t ∈ [0, T], φ, L be as in the �eorem 1.1. Let p ∈ M,
r > 0 with B0(p, r) ⋐ M. �en for any positive integer l ≥ α + 1, there is T1(n, α, l)> 0
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10 M. Lee and L. Tam

depending only on n, α, l such that

φ(p, t) ≤ r−2(l+1)t l
for all t ≤ [0, T ∧ r2T1].
Proof Let λ = r−24. Define g1 , φ1 , L1 as above. �en Bg1(0)(p, 2) ⋐ M. By �eorem
1.1, for any l ≥ α + 1

φ1(p, t) ≤ t l
for t ∈ [0, T ′1 ∧ λT] for some T ′1 > 0, depending only on n, α, l . Hence

φ(p, t) = λφ1(p, λt)
≤ λ l+1 t l
= r−2(l+1)4−(l+1)t l+1
≤ r−2(l+1)t l

for t ∈ [0, (r2T1) ∧ T] where T1 = 4T ′1 . From this, the result follows. ∎
When g(t) is a complete solution to the Ricci flow, then the corollary implies that

φ ≤ 0 for t > 0 by letting r →∞. In fact, in this case by using the trick of Chen [5],
we do not need the assumption that Ric(g(t)) ≤ αt−1. Namely, we have following
corollary of our method:

Corollary 3.2 Let (Mn , g(t)) be a complete solution of the Ricci flow on M × [0, T].
Let φ, L be as in�eorem 1.1.�en φ ≤ 0 for t > 0.
Proof For any compact set Ω, we have Ric(g(t)) ≤ t−1 on Ω provided t is small
enough. Hence by Corollary 3.1, for any l ≥ 1 and compact set Ω, we have φ ≤ t l on Ω
provided t is small depending only on n, l , and Ω.

Let p ∈ M and let b be a positive number such that Ric(g(t)) ≤ b2 on Bt(p, 1) for
all t ∈ [0, T]. �en as before

( ∂
∂t
− ∆g(t))(dt(x) + c1bt) ≥ 0

in the sense of barrier on M/Bt(p, 1
b
) for some c1 = c1(n). Let ϕ be as in (3.2). �en

for A > 1 sufficiently large,

( ∂
∂t
− ∆g(t))ϕ(dt(x) + c1bt

A
) ≤ c

A2
ϕ (dt + c1bt

A
)

in the sense of barrier. Define Φ(x , t) = exp(− c
A2 t)ϕ so that

( ∂
∂t
− ∆g(t))Φ ≤ 0.

in the sense of barrier. For any integer m ≥ 2, l > 1 + α, and ε > 0, we define F =
−Φmφ + εt l . �e argument in the beginning of the proof of �eorem 1.1 shows that
F(x , t) > 0 on M × (0, t′) for some t′ > 0. If F(x , t) < 0 somewhere, then there is
x0 ∈ M, T ≥ t0 > 0 so that F(x0 , t0) = 0 and F(x , t) ≥ 0 on M × [0, t0]. As in (3.4),
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Some local maximum principles along Ricci flows 11

we have

εl t l−10 ≤ εt l0 ⎛⎝
α

t0
+ C2

1m
2

A2
( α

εt l+10

)
2
m ⎞
⎠ .

And hence,

ε
2
m A2 t l−10 ≤ t l− 2

m
(l+1)

0 α
2
m C2

1m
2 ,

where we have used the fact that ℓ > α + 1.
For a fixed l, we choosem sufficiently large such that 2

m
(l + 1) < 1

2
, then we have

ε
2
m A2C2 ≤ t1− 2

m
(l+1)

0 .

�erefore, if we chooseA large enough so that ε
2
m A2C2 > T 1− 2

m
(l+1). We conclude that

t0 > T which is impossible. By letting A→ +∞ and followed by ε → 0, we conclude
that φ(p, t) ≤ 0. Since p is an arbitrary point onM, the result follows. ∎
Corollary 3.3 Let (Mn , g) be a complete Riemannian manifold with Ric(g) ≥ −1. Let
φ, L be as in�eorem 1.1 with respect to ∂t − ∆g instead.�en φ ≤ 0 for t > 0.
Proof By Laplacian comparison, we have (∂t − ∆g)(dg(x , p) + Ct) ≥ 0 in the sense
of barrier for some fixed p ∈ M and C > 0 whenever dg(x , p) > 1. Hence, the proof of
Corollary 3.2 can be carried over. ∎

Using the idea in [23], we may use Corollary 3.2 to prove that complete Ricci flows
satisfying curvature condition ∣Rm(g(t))∣ ≤ αt−1 preserve the Kähler condition.�is
recovers results in [11, 23]. Another application of Corollary 3.2 is on the preservation
of non-negativity of various curvatures along the Ricci flows which may not be
complete or may have unbounded curvature. We will follow the set-up in [1]. See [27]
for a unified approach in compact case and the case that g(t) is complete noncompact
with bounded curvature. Information about previous contributions by others can also
be found in [27].

�eorem 3.1 Let (Mn , g(t)) be a smooth solution to the Ricci flow on M × [0, T],
where g(t)may not be complete. Assume the scalar curvatureR satisfiesR(g(t)) ≤ αt−1
for some α > 0 on M × (0, T]. Consider one of the following curvature conditions C:
(1) non-negative curvature operator;
(2) 2-non-negative curvature operator, (i.e. the sumof the lowest two eigenvalues is non-

negative);
(3) weakly PIC2 (i.e. taking the Cartesian product with R

2 produces a non-negative
isotropic curvature operator);

(4) weakly PIC1 (i.e. taking the Cartesian product with R produces a non-negative
isotropic curvature operator);

(5) non-negative bisectional curvature, in the case in which (M , g(t)) is Kähler;
(6) non-negative orthogonal bisectional curvature, in the case in which (M , g(t)) is

Kähler .

Let p ∈ M and r > 0 be such that B0(p, r) ⋐ M, Rm(g(x , 0)) ∈ C, and Rm(g(t)) +
αt−1I are in the same C for (x , t) ∈ B0(p, r) × (0, T]. �en for all l > α + 1, there is
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12 M. Lee and L. Tam

T̂(n, α, l) > 0 such that for all t ∈ [0, T ∧ T̂r2],Rm(g(p, t)) + r−2(l+1)t l I is in the same
C. In particular, if g(t) is a complete solution and the assumption holds for all r > 0, then
Rm(g(t)) ∈ C for all t > 0.
Proof Fix a curvature condition C. Let

ℓ(x , t) = inf{ε > 0∣ Rm(g(x , t)) + εI ∈ C}.
�en by [1] for (1)–(5) and by [17] for (6), we have

( ∂
∂t
− ∆g(t)) ℓ ≤ Rℓ + c(n)ℓ2

in the sense of barrier for some constant c(n) depending only on n. By the assumption
on R and the assumption that Rm(g(t)) + αt−1I ∈ C, we conclude that

( ∂
∂t
− ∆g(t)) ℓ ≤ at−1ℓ

for some a > 0. Since ℓ = 0 at t = 0 as Rm(g(0)) ∈ C, the conclusion at p follows from
Corollary 3.1. When g(t) is a complete solution, we can let r → +∞ to conclude that
Rm(g(p, t)) ∈ C. Since p is arbitrary, the result follows. ∎

4 Local maximum principle Theorem 1.2

In this section, we will use �eorem 1.1 to prove�eorem 1.2. Let g(t) be a Ricci flow
on M × [0, T] satisfying:

{∣Rm(g(x , t))∣ ≤ αt−1 , for all (x , t) ∈ M × (0, T]
injg(t)(x) ≥√α−1 t, for all (x , t) ∈ M × (0, T] with Bt(x ,√α−1 t) ⋐ M ,

(4.1)

for some α > 1. We will consider the continuous function φ(x , t) ≥ 0 on M × [0, T]
which satisfies:

( ∂
∂t
− ∆g(t))φ ≤ Rφ + Kφ2(4.2)

in the sense of barrier, where R(g(t)) is the scalar curvature of g(t) and K ≥ 0 is a
constant.

Before we prove�eorem 1.2, we first give the following application of the theorem.

Corollary 4.1 Let (Mn , g(t)) be as in�eorem 1.2. Suppose

Rm(g0) + δI ∈ C
for some δ > 0 where C is one of the curvature cones (1)–(6) in�eorem 3.1. Let p, R be
as in�eorem 1.2.�en there is a constant C0 = C0(n, α, v0 , σ) > 0 such that

Rm(g(p, t)) + δ∗I ∈ C
for t ∈ [0, T]where δ∗ = C0((RT 1

2 )−2 + δ). In particular, if g(t) is a complete solution,
then Rm(g(t)) + C0δ ∈ C.
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Some local maximum principles along Ricci flows 13

Proof As in the proof of �eorem 3.1, let

ℓ(x , t) = inf{ε > 0∣ Rm(g(x , t)) + εI ∈ C}.
�en

( ∂
∂t
− ∆g(t)) ℓ ≤ Rℓ + c(n)ℓ2

in the sense of barrier for some constant c(n) depending only on n. By (4.1), ℓ(x , t) ≤
α′t−1 for some α′ > 0 depending only on α, n.�efirst result follows from the�eorem
1.2. �e second result follows by letting R →∞. ∎

We may reduce the proof of �eorem 1.2 to the case that T = 1. More precisely,
let g1(t) = T−1g(Tt), φ1(x , t) = Tφ(x , Tt). �en g1(t) satisfies (4.1) and φ1(x , t)
satisfies (4.2) with R(g(t)) replaced by R(g1(t)) . Moreover, g1(0) and φ1 satisfy

{R(g1(0)) ≥ −σ on M;
Vg1(0)(x , r) ≤ rn exp(v0r) for all r > 0, and x ∈ M with B0(x , r) ⋐ M ,

(4.3)

and

{φ1(0) ≤ Tδ, on M;
φ1(t) ≤ αt−1 , on M × (0, T].

If we can prove �eorem 1.2 with T = 1, then the upper bound for φ1 will imply the
required upper bound for φ.

�eorem 1.2 has been obtained earlier byHochard [13, Propositions I.2.1 and II.2.6].
�e approach here is a localized version of the original method in [1]. �e main
ingredients are the local maximum principle �eorem 1.1 and an upper bound of the
Dirichlet heat kernel for a fixed domain.

4.1 Upper estimates of the Dirichlet heat kernel

Let (Mn , g0) be a Riemannian manifold and let g(t) be a Ricci flow on M × [0, T]
with g(0) = g0. Here g(t)may be incomplete. Let Ω ⋐ M be an open set with smooth
boundary. We let GΩ(x , t; y, s), t > s be the Dirichlet heat kernel for the backward
heat equation coupled with the Ricci flow g(t):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∂s + ∆y ,s)GΩ(x , t; y, s) = 0, in int (Ω) × int (Ω) × [0, t);
lims→t− GΩ(x , t; y, s) = δx(y), for x ∈ int (Ω);
GΩ(x , t; y, s) = 0, for y ∈ ∂Ω, x ∈ int (Ω),

where ∆y ,g(s) is denoted by ∆y ,s . �en

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∂t − ∆x ,t −Rt)GΩ(x , t; y, s) = 0, in int (Ω) × int (Ω) × (s, T];
limt→s+ GΩ(x , t; y, s) = δy(x), for y ∈ int (Ω);
GΩ(x , t; y, s) = 0, for x ∈ ∂Ω, y ∈ int (Ω),

where Rt is the scalar curvature of g(t). Such GΩ exists and is positive in the interior
of Ω, see [8].
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14 M. Lee and L. Tam

We want to estimate the upper bound of GΩ(x , t; y, s) with respect to y and g(s)
under the conditions (4.1).�e following Dirichlet heat kernel estimate was implicitly
proved in [4, �eorem 5.1].

Lemma 4.1 Let (Mn , g0) be a Riemannian manifold and p ∈ M. Suppose g(t) is a
solution to the Ricci flow on M × [0, 1] with g(0) = g0 such that B0(p, 2(r + 1)) ⋐ M
for some r ≥ 1 and ∣Rm(x , t)∣ ≤ A on M × [0, 1]. If Ω is an open set in M with smooth
boundary such that Ω ⋐ Bg0(p, r) and GΩ(x , t; y, s) is the Dirichlet heat with respect
to the backward heat equation on Ω ×Ω × [0, 1]. �en there is C(n,A) > 0 such that
for all 0 ≤ s < t ≤ 1, x , y ∈ Ω,

GΩ(x , t; y, s) ≤ C

V
1
2

0 (x ,√t − s)V 1
2

0 (y,√t − s) × exp(−
d2
0(x , y)

C(t − s)) .

Proof Let Ω̃ be a bounded open domain with smooth boundary so that B0(p, r +
1
2
) ⋐ Ω̃ ⋐ B0(p, r + 1). In particular, any twopoints in Ω̃ can be joined by aminimizing

geodesic inM. LetGΩ̃ be the heat kernel on Ω̃ × Ω̃ × [0, 1]. By themaximumprinciple,
we haveGΩ ≤ GΩ̃ onΩ ×Ω × [0, 1]. In the following,C i will denote positive constants
depending only on n,A.

Step 1 : Denote GΩ̃ by G. For 0 < s < t ≤ 1,
∂

∂t
(∫

Ω̃
G(x , t; y, s)dµx ,t) = ∫

Ω̃
∆x ,tG dµx ,t = ∫

∂Ω̃

∂G

∂ν
≤ 0,

becauseG > 0 on int(Ω̃) andG = 0 on ∂Ω̃. Since limt→s+ ∫ Ω̃G(x , t; y, s)dµx ,t = 1, we
have for all y ∈ Ω̃.

∫
Ω̃
GΩ̃(x , t; y, s)dµx ,t ≤ 1.

Let f ∈ C∞(Ω̃) with 0 ≤ f ≤ 1 on Ω̃ and f = 0 on ∂Ω̃. Let

u(x , t) = ∫
Ω̃
GΩ̃(x , t; y, s) f (y) dµy ,s .

�en u satisfies (∂t − ∆g(t) −Rt)u = 0with zero boundary data andwith initial data f.
By the maximum principle, we have u(x , t) ≤ C1 for t ≥ s. Letting f → 1, we conclude
that

∫
Ω̃
GΩ̃(x , t; y, s) dµy ,s ≤ C1 .

Step 2 : Apply the argument of [4, Lemma 5.3] and Step 1, using the mean value
inequality [4, Lemma 3.1], volume comparison and the fact that Bg0(x , 1

2
) ⋐ Ω̃ for all

x ∈ Ω, we have pointwise estimate:

GΩ(x , t; y, s) ≤ GΩ̃(x , t; y, s) ≤min{ C2

V0(x ,√t − s) ,
C2

V0(y,√t − s)} .
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Some local maximum principles along Ricci flows 15

Combining this with the integral estimates in Step 1, we conclude that for y ∈ Ω and
s < t,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫

Ω
G2

Ω(x , t; y, s) dµx ,t ≤ C3

V0(y,√t − s) ;
∫

Ω
G2

Ω(x , t; y, s) dµy ,s ≤ C3

V0(x ,√t − s) .
Step 3 : Apply the method of proof in [9, �eorem 2.1], (see also [4, Lemma 2.2]),

we have

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω
G2

Ω(x , t; y, s)e d2
0
(x ,y)

C4(t−s) dµx ,t ≤ C4

V0(y,√t − s) for all y ∈ Ω; and

∫
Ω
G2

Ω(x , t; y, s)e d2
0
(x ,y)

C4(t−s) dµy ,s ≤ C4

V0(x ,√t − s) for all x ∈ Ω.

Step 4: By the semigroup property of Dirichlet heat kernel (see [6, Lemma 26.12]
for example), and by using arguments in the proof of [4, �eorem 5.5], we have

GΩ(x , t; y, s) ≤ C5

V
1
2

0 (x ,√t − s)V 1
2

0 (y,√t − s) × exp(−
d2
0(x , y)

C5(t − s)) . ∎
Using Lemma 4.1, we can now proceed as in [1, Proposition 3.1] to obtain the

following heat kernel estimate.

Proposition 4.1 For any n, α > 0, there exists C(n, α) > 0 such that the following is
true: Suppose (Mn , g(t)) is a solution to the Ricci flow on M × [0, 1] with initial metric
g0 satisfying the conditions (4.1). Let p ∈ M be a fixed point so that Bt(p, 4r) ⋐ M
for some r ≥ 1 for all t ∈ [0, 1]. Let Ω be a domain with smooth boundary so that
Ω ⋐ Bt(p, r) for all t ∈ [0, 1]. �en the Dirichlet heat kernel G(x , t; y, s) with respect
to the backward heat equation on Ω ×Ω × [0, 1] satisfies:

G(x , t; y, s) ≤ C

(t − s) n
2

exp(−d2
s (x , y)

C(t − s)) .
for all 0 ≤ s < t ≤ 1 and x , y ∈ Ω, where ds is the distance function with respect to g(s).
Remark 4.1 �e condition that Ω ⋐ Bt(p, r) ⊂ Bt(p, 4r) ⋐ M is assumed so that for
all x , y ∈ Ω, dt(x , y) is well-defined and is realized by a minimizing g(t)-geodesic
lying in Bt(p, 4r).

By Lemma 2.2, we have the following:

Corollary 4.2 �ere exist R0(n, α, σ , v0) > 1, µ(n, α, σ , v0) > 1 such that the following
is true: Suppose (Mn , g0) is a Riemannian manifold and g(t) is a solution to the Ricci
flow on M × [0, T] with g(0) = g0 satisfying conditions (4.1) and

{R(g0) ≥ −σT−1 on M;

V0(x , r) ≤ v0rn for 0 < r ≤ T 1
2 .

Downloaded from https://www.cambridge.org/core. 01 Jul 2021 at 09:47:22, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


16 M. Lee and L. Tam

�en we can find C(n, α) > 0 so that if p ∈ M with B0(p, R) ⋐ M and R ≥ T 1
2 R0, then

the heat kernel G(x , t; y, s) on Bg0(p, µ−1R) × [0, T] satisfies

G(x , t; y, s) ≤ C

(t − s) n
2

exp(−d2
s (x , y)

C(t − s)) .

Proof Let g1(t) = T−1g(Tt).�en g1(t) is a Ricci flow defined onM × [0, 1] satisfy-
ing (4.1) and (4.3). By Lemma 2.2 and Proposition 4.1, the results follows by parabolic
rescaling. ∎

4.2 Proof of Theorem 1.2

�e following Lemma reduces the upper bound of φ to the integral bound of the heat
kernel.

Lemma 4.2 Suppose (Mn , g(t)), t ∈ [0, T] is a smooth solution to the Ricci flow with
initial metric g0 which may not be complete. Suppose g(t) satisfies:

Ric(x , t) ≤ α

t

for (x , t) ∈ M × (0, T] for some α > 0. Let φ be a nonnegative continuous function on
M × [0, T] such that φ(0) ≤ δ and φ(t) ≤ αt−1 for some δ > 0. Assume φ satisfies

( ∂
∂t
− ∆g(t))φ ≤ Rφ + Kφ2

in the sense of barrier, where K > 0 is a constant and R = R(g(t)) is the scalar
curvature of g(t). Let p ∈ M such that Bg0(p, r) ⋐ M. �en there exists constants
C(n, α,K), T1(n, α,K) > 0 so that

φ(p, t) ≤ C (r−2 + δS)
for all t ∈ [0, T ∧ r2T1], where

S = sup
B0(p,r)×[0,r2T1∧T]

∫
Bg0
(p,r)

G(x , t; y, 0)dµy ,0 ,

and G(x , t; y, s) is the heat kernel for the backward heat equation on Bg0(p, r).
Proof Let g1(x , τ) = r−2g(x , r2τ) and φ1(x , τ) = r2φ(x , r2τ) which are defined
on M × [0, r−2T]. �en the rescaled Ricci flow and the rescaled function satisfy
Ric(g1(τ)) ≤ ατ−1, φ1(τ) ≤ ατ−1, φ1(0) ≤ r2δ,R1(τ) = R(g1(τ)) = r2R(g(t)), where
t = r2τ. Moreover, φ1 satisfies:

( ∂

∂τ
− ∆g1(τ))φ1 ≤ R1φ1 + Kφ2

1
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in the sense of barrier on M × [0, r−2T]. Let G1(x , τ; y, u) be the heat kernel with
respect to g1(τ) and let G(x , t; y, s) be the heat kernel with respect to g(t). �en

r
n
2 G(x , t; y, s) = G1(x , τ; y, u)

where t = r2τ, s = r2u. So
∫

Bg1(0)
(p,1)

G1(x , τ; y, 0)(dµ1)y ,0 = ∫
Bg0
(p,r)

G(x , t; y, 0)dµy ,0

where (dµ)1 is the volume element of g1. �erefore, it is sufficient to prove the case of
r = 1.

Since φ(t) ≤ αt−1 ≤ α for t ≥ 1, we may assume that T ≤ 1. Let
ρ(x) = sup{r∣ B0(x , r) ⊂ B0(p, 1)},

and set

f (x , t) = δ∫
B0(p,1)

G(x , t; y, 0)dµy ,0 .

�en f (x , 0) = δ for x ∈ B0(p, 1) and ( ∂
∂t
− ∆g(t)) f = R f . Let A > δ be a con-

stant. �en Aρ−2 − φ > 0 at t = 0 and near ∂B0(p, 1). If Aρ−2 − φ < 0 somewhere on
B0(p, 1) × [0, T], then there is x0 ∈ B0(p, 1), t0 ≤ T such that

Aρ−20 = φ(x0 , t0)
and Aρ−2(x) ≥ φ(x , t) for all x ∈ B0(p, 1) × [0, t0]. Here ρ0 =∶ ρ(x0). �erefore for
x ∈ B0(x0 , 1

2
ρ0) and t ∈ [0, t0],

φ(x , t) ≤ Aρ−2(x) ≤ 4Aρ−20 .

By the assumption on φ, we have

( ∂
∂t
− ∆g(t))φ ≤ Rφ + 4AKρ−20 φ.

in the sense of barrier on B0(x0 , 1
2
ρ0) × [0, t0]. Let b = 4AKρ−20 and

u = e−btφ − f .

�en u satisfies:

( ∂
∂t
− ∆g(t))u ≤ Ru.

in the sense of barrier on B0(x0 , 1
2
ρ0) × [0, t0] and u(0) ≤ 0. By Corollary 3.1, for any

integer l >max{α,K} + 1, there is T1(l , n, α,K) ∈ (0, 1] such that

u(x0 , t) ≤ ( 1
2
ρ0)−2(l+1)t l

for all t ∈ [0, t0 ∧ ( 14 ρ20T1)]. On the other hand,

Aρ−20 = φ(x0 , t0) ≤ αt−10 .(4.4)
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Suppose A ≥ 4α/T1, then

t0 ≤ α

A
ρ20 ≤ 1

4
ρ20T1 ≤ 1

4
ρ20 .

Hence, we have

e−2bt0Aρ−20 − f (x0 , t0) = u(x0 , t0)
≤ 4ρ−20 ⋅ ((4ρ−20 )t0)l
≤ 4ρ−20 .

�is implies that

A ≤ ρ20e2bt0 ( f (x0 , t0) + 4ρ−20 ) ≤ C1(δS + 1)
for some C1 > 1 depending only on n, α,K, because ρ0 ≤ 1 and by (4.4)

bt0 = 4AKρ−20 t0 ≤ 4Kα.
By choosing a larger C1 = C1(n, α, T1) and A = C1(δ(S + ε) + 1)with ε > 0, we can

conclude that

φ(x , t) ≤ Aρ−2(x)
for all (x , t) ∈ B0(p, 1) × [0, T1 ∧ T]. By letting ε → 0 and taking x = p, we have

φ(p, t) ≤ C1(1 + δS)ρ−2(p) = C1(1 + δS).
�e result follows. ∎

Now we are ready to prove�eorem 1.2.

Proof of �eorem 1.2 As mentioned before, we may assume T = 1 by parabolic
rescaling. Let R0 , µ be as in Corollary 4.2 with v0 replaced by ev0 . And let T1 be the
constant obtained from Lemma 4.2. First consider the case R ≥ R0. �en the heat
kernel G(x , t; y, s) on B0(p, µ−1R) × B0(p, µ−1R) × [0, T] satisfies:

G(x , t; y, 0) ≤ C1 t
− n

2 exp(−d2
0(x , y)
C1 t

)(4.5)

for x , y ∈ B0(p, µ−1R) and t ∈ [0, T]. By Lemma 4.2, we have

φ(p, t) ≤ C2(δS + R−2)
for some constant C2 = C2(α, n,K) and t ∈ [0, T ∧ T2R

2], where T2 = µ−2T1 depends
only on n, α,K, and

S = sup
(x ,t)∈B0(p,µ−1R)×[0,T∧T2R2]

∫
B0(p,µ−1R)

G(x , t; y, 0)dµy ,0 .
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By (4.5), for (x , t) ∈ B0(p, µ−1R) × [0, T ∧ T2R
2],

∫
B0(p,µ−1R)

G(x , t; y, 0)dµy ,0

≤ C1 t
− n

2 ∫
B0(p,µ−1R)

exp(−d2
0(x , y)
C1 t

) dµy ,0

≤ C1 t
− n

2 ∫
B0(x ,2µ−1R)

exp(−d2
0(x , y)
C1 t

) dµy ,0

≤ C1∫
2µ−1R

0
exp(− r2

C1 t
)A(r)dr

≤ C1 (t− n
2 V0(x , 2µ−1R) exp(−4µ−2R2

C1 t
) + 2C−11 t

n
2
+1∫

2µ−1R

0
r exp(− r2

C1 t
)V(r)dr)

≤ C3

for some C3 = C3(n, α,K , v0). Here, we have used the fact that V(r) = V0(x , r) ≤
rn exp(v0r) for r > 0. Here A(r) is the area of ∂B0(x , r) with respect to g0. To
summarize, we have

φ(p, t) ≤ C4(R−2 + δ)
for t ∈ [0, T ∧ T2R

2] for someC4(n, α,K , v0) > 0. If T > T2R
2 and R2T2 ≤ t ≤ T , then

φ(p, t) ≤ αt−1 ≤ αT−12 R−2 .

�is completes the proof of the theorem in the case of R ≥ R0.
When R < R0, let T3 = T2 ∧ R−20 . By Corollary 4.2, the heat kernel G(x , t; y, s) on

B0(p, µ−1R) × B0(p, µ−1R) × [0, T3R
2 ∧ T] satisfies the same bound as in (4.5). Now

the same argument above shows that for all t ∈ [0, T3R
2 ∧ T],

φ(p, t) ≤ C5(R−2 + δ).
For t ∈ [T3R

2 , T], φ(p, t) ≤ C6R
−2 as φ ≤ αt−1 for some C6(n, α,K , v0 , σ). We com-

plete the proof by combining two cases. ∎
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