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B S T R A C T

ormlike micelles are self-assemblies of polymer chains that can break and recombine reversibly. In this paper, we derive a thermodynamically consistent two-
pecies micro–macro model of wormlike micellar solutions by employing an energetic variational approach. The model incorporates a breakage and combination
rocess of polymer chains into the classical micro–macro dumbbell model of polymeric fluids in a unified variational framework. We also study different maximum
ntropy closure approximations to the micro-macro model by ‘‘variation-then-closure’’ and ‘‘closure-then-variation’’ approaches. By imposing a proper dissipation
n the coarse-grained level, the closure model, obtained by ‘‘closure-then-variation’’, preserves the thermodynamical structure of both mechanical and chemical
arts of the original system. Several numerical examples show that the closure model can capture the key rheological features of wormlike micellar solutions in
hear flows.
. Introduction

Wormlike micelles, also known as ‘‘living polymers’’, are long,
ylindrical aggregates of self-assembled surfactants that can break and
ecombine reversibly [1]. There are substantial interests in studying
ormlike micellar solutions for the purpose of fundamental research
nd industrial applications [2–6]. In particular, it has been observed
hat many wormlike micellar solutions exhibit shear banding, where
he material splits into layers with different viscosities when under-
oing strong shearing deformation [7]. Theoretically, shear banding is
hought to arise from a non-monotonic rheological constitutive curve
f the shear stress versus the applied shear rate in steady homoge-
eous flow [8,9]. Understanding this unusual rheological behavior of
ormlike micellar solutions has been a focus of many theoretical and
xperimental studies [10,11].

During the last couple of decades, a number of mathematical models
ave been proposed for wormlike micellar solutions [1,10,12–16].
any theoretical models, such as the Johnson–Segalman model [16]

nd Rolie-Poly model [12], are one-species models, which did not
eflect the ‘‘living’’ nature of wormlike micelles. To account for the
eversible breakage and combination process of micellar chains, Cates
roposed a reptation–reaction model, in which the reaction kinetics
s introduced to account for the reversible breakage and combination
rocess [1,17]. Inspired by Cates’ seminal work, a two-species, scission–
ombination model for wormlike micellar solutions is proposed in [10],
nown as the VCM (Vasquez-Cook-McKinley) model. Although the
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E-mail addresses: ywang487@iit.edu (Y. Wang), zhangtf@cug.edu.cn (T.-F. Zhang), cliu124@iit.edu (C. Liu).

VCM model was derived from a highly simplified discrete version of
Cates’ model [11], it can capture the key rheological properties of
wormlike micellar solutions [10,18,19]. As pointed out in [20], the
VCM model is thermodynamically inconsistent, due to the assumption
that the break rate depends on the velocity gradient explicitly. The
VCM model was later revisited into a thermodynamically consistent
form [8,11], which is known as the GCB (Germann–Cook–Beris) model,
by using generalized bracket approach [21]. Under the framework of
GENERIC [22,23], Grmela et al. formulate a mesoscopic tube model
that includes the scission–recombination process, the reptation, Brow-
nian relaxation and the diffusion, for wormlike micellar solutions [15],
in which the wormlike micelles were modeled as different length
chains composed of Hookean dumbbells. Same framework can be used
to derive several reduced models, including a VCM-type two-species
model and a three-species model.

For many complex fluids, two-scale macro–micro models, which
couple the evolution of the microscopic density distribution function
of polymeric molecules, with the macroscopic flow, have been widely
used to describe their dynamics [24–26]. In these models, the micro–
macro interaction is coupled through a transport of the microscopic
Fokker–Planck equation and the induced elastic stress tensor in the
macroscopic equation. The competition between the kinetic energy and
the multiscale elastic energies leads to different interesting hydrody-
namical and rheological properties. The goal of this paper is to extend
such a micro–macro approach to model wormlike micellar solutions
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by incorporating it with the microscopic breakage and combination
reaction kinetics. Following the setting in the VCM model [10], we rep-
resent the wormlike micelles by two species of dumbbells of different
molecular weights respectively. Instead of constructing some empirical
constitutive equation, we employ an energetic variational approach to
derive the governing equation from an prescribed energy-dissipation
law.

We also study different maximum entropy closure approximations
to the new micro–macro model. We adopt both ‘‘closure-then-variation’’
and ‘‘variation-then-closure’’ approaches. The first approach, which has
been widely used in literature [27,28], applies the maximum entropy
closure at the PDE level, while the later approach first reformulates
an energy-dissipation law at a coarse grained level and derives the
closure system by a variation procedure [29,30]. Due to the presence
of reaction kinetics, these two approaches are not equivalent. Although
the ‘‘closure-then-variation’’ approach can obtain a model satisfying
an energy-dissipation property, the model fails to produce a non-
monotonic rheological constitutive curve of the shear stress versus the
applied shear rate in steady homogeneous flows. In contrast, by for-
mulating the dissipation part in the coarse-grained level properly, the
‘‘closure-then-variation’’ approach can result in a model that preserves
the thermodynamical structures of the mechanical and chemical parts
of the original system. The resulting closure system takes the same form
as the VCM [10] and GCB models [11]. Numerical simulations show
that the moment closure model can capture the key rheological features
of wormlike micellar solutions as the VCM [10] and GCB [11] models.

The paper is organized as follows. In Section 2, we formally derive
the micro–macro model for wormlike micellar solutions by employing
an energetic variational approach. A detailed investigation of maximum
entropy closure approximations to the micro–macro model is presented
in Section 3. In Section 4, we show the closure model, obtained by
‘‘closure-then-variation’’ can capture the key rheological features of
wormlike micellar solutions in planar shear flows.

2. Energetic variational formation of the new micro–macro model

In this section, we employ an energetic variational approach to
derive a thermodynamically consistent two-species micro–macro model
for wormlike micellar solutions.

2.1. Energetic variational approach

Originated from pioneering works of Rayleigh [31] and Onsager
[32,33], the energetic variational approach (EnVarA) provides a gen-
eral framework to derive the dynamics of a nonequilibrium thermo-
dynamic system from a prescribed energy-dissipation law through two
distinct variational processes: the Least Action Principle (LAP) and the
Maximum Dissipation Principle (MDP) [34,35]. The energy-dissipation
law, which comes from the first and second laws of thermodynam-
ics [34,36], can be formulated as
d
d𝑡
𝐸total(𝑡) = − ▵, (2.1)

for an isothermal closed system. Here 𝐸total is the total energy, which is
the sum of the Helmholtz free energy  and the kinetic energy ; ▵ is
the rate of energy dissipation, which is equal to the entropy production
in this case. The LAP states that the dynamics of a Hamiltonian system
is determined as a critical point of the action functional (𝒙) = ∫ 𝑇0 (−
 )d𝑡 with respect to 𝒙 (the trajectory in Lagrangian coordinates for
mechanical systems) [34,37], i.e.,

𝛿 = ∫

𝑇

0 ∫𝛺(𝑡)
(𝑓inertial − 𝑓conv) ⋅ 𝛿𝒙 d𝒙d𝑡. (2.2)

In the meantime, for a dissipative system, the dissipative force can be
determined by minimizing the dissipation functional  = 1

2 ▵ with
espect to the ‘‘rate’’ 𝒙𝑡 in the linear response regime [38], i.e.,

 = 𝑓diss ⋅ 𝛿𝒙𝑡 d𝒙. (2.3)
2

∫𝛺(𝑡)
This principle is known as Onsager’s MDP [32,33]. Thus, according to
force balance (Newton’s second law, in which the inertial force plays
role of 𝑚𝑎), we have
𝛿𝐴
𝛿𝒙

= 𝛿
𝛿𝒙𝑡

(2.4)

in Eulerian coordinates, which is the dynamics of the system. In the
framework of EnVarA, the dynamics of the system is totally determined
by the energy-dissipation law and the kinematic relation, which shifts
the main task of modeling complex nonequilibrium systems to the con-
struction of energy-dissipation laws. The EnVarA framework has been
proved to be a powerful tool to build up thermodynamically consistent
mathematical models for many complicated system, especially those in
complex fluids [34,35].

Complex fluids are fluids with complicated rheological phenomena,
arising from the interaction between the microscopic elastic properties
and the macroscopic flow motions [26,35]. A central problem in mod-
eling complex fluids is to construct a constitutive relation, which links
the stress tensor 𝝉 and the velocity field ∇𝒖 [39]. Unlike a Newtonian
fluid, there is no simple linear relation 𝝉 = 𝜇𝜸̇, where 𝜸̇ = 1

2 (∇𝒖 +∇𝒖T)
is the strain rate and 𝜇 is the viscosity, for complex fluids. Instead
of constructing an empirical constitutive equation that often takes the
form of

𝜕𝑡𝝉 + (𝒖 ⋅ ∇)𝝉 = 𝒇 (𝝉 ,∇𝒖), (2.5)

the EnVarA framework derives the constitutive relation from the giving
energy-dissipation law through the variation procedure. Hence, the
multiscale coupling and competition among multiphysics can be dealt
with systematically.

As an illustration, we first give a formal derivation of a one-species
incompressible micro–macro model of a dilute polymeric fluid by em-
ploying the EnVarA. A more detailed description to this model can be
found in [26,34]. In this model, it is assumed that the polymeric fluid
consists of beads joined by springs, and a molecular configuration is
described by an end-to-end vector 𝒒 ∈ R𝑑 [40,41]. At the microscopic
level, the system is described by a Fokker–Planck equation of the num-
ber density distribution function 𝜓(𝒙, 𝒒, 𝑡) with a drift term depending
on the macroscopic velocity 𝒖. While the macroscopic motion of the
fluid is described by a Navier–Stokes equation with an elastic stress
depending on 𝜓(𝒙, 𝒒, 𝑡).

To derive the dynamics of the system by the EnVarA, we need to
introduce Lagrangian descriptions in both microscopic and macroscopic
scales. In the macroscopic domain 𝛺, we define the flow map 𝒙(𝐗, 𝑡) ∶
𝛺 → 𝛺, where 𝐗 are Lagrangian coordinates and 𝒙 are Eulerian
coordinates. For fixed 𝐗, 𝒙(𝐗, 𝑡) is the trajectory of a particle labeled by
𝐗, while for fixed 𝑡, 𝒙(𝐗, 𝑡) is an orientation-preserving diffeomorphism
between the initial domain to the current domain. For a given flow map
𝒙(𝐗, 𝑡), we can define the associated velocity

𝒖(𝒙(𝐗, 𝑡), 𝑡) = d
d𝑡
𝒙(𝐗, 𝑡), (2.6)

and the deformation tensor

𝖥(𝒙(𝐗, 𝑡), 𝑡) = 𝖥(𝐗, 𝑡) = ∇𝐗𝒙(𝐗, 𝑡). (2.7)

Without ambiguity, we will not distinguish 𝖥 and 𝖥 in the following. It
is easy to verify that 𝖥(𝒙, 𝑡) satisfies the transport equation [26]

𝖥𝑡 + 𝒖 ⋅ ∇𝖥 = ∇𝒖𝖥 (2.8)

in Eulerian coordinates, where 𝒖 ⋅ ∇𝖥 stands for 𝑢𝑘𝜕𝑘𝐹𝑖𝑗 . The deforma-
tion tensor 𝖥 carries all the kinematic information of the microstruc-
tures, patterns, and configurations in complex fluids [42]. Similar to
the macroscopic flow map 𝒙(𝐗, 𝑡), we can also introduce the micro-
scopic flow map 𝒒(𝐗,𝑸, 𝑡), where 𝑿 and 𝑸 are Lagrangian coordinates
in physical and configuration spaces respectively. The corresponding
microscopic velocity 𝐕 is defined as

𝐕(𝒙(𝐗, 𝑡), 𝒒(𝐗,𝑸, 𝑡), 𝑡) = d 𝒒(𝐗,𝑸, 𝑡). (2.9)

d𝑡
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Due to the conservation of mass, the number density distribution
function 𝜓(𝒙, 𝒒, 𝑡) satisfies the following kinematics

𝜕𝑡𝜓 + ∇𝒙 ⋅ (𝒖𝜓) + ∇𝒒 ⋅ (𝑽 𝜓) = 0, (2.10)

where 𝒖 and 𝑽 are effective velocities in the macroscopic domain and
the microscopic configuration space respectively. After the specification
of the kinematics (2.10), the micro–macro system can be modeled
through the energy-dissipation law

d
d𝑡 ∫𝛺

[

1
2
𝜌|𝒖|2 + 𝜆∫ 𝜓(ln𝜓 − 1) + 𝜓𝑈d𝒒

]

d𝒙

= −∫𝛺

[

𝜂|∇𝒖|2 + ∫R𝑑
𝜆
𝜉
𝜓|𝑽 − ∇𝒖𝒒|2d𝒒

]

d𝒙,
(2.11)

here  = ∫𝛺
1
2𝜌|𝒖|

2d𝒙 is the kinetic energy, 𝜆 is a constant that repre-
sents the ratio between the kinetic energy and the elastic energy, 𝑈 (𝒒)
s the spring potential energy, and 𝜉 is the constant that is related to the
olymer relaxation time. We assume that 𝒖 satisfies the incompressible
ondition ∇ ⋅ 𝒖 = 0. The second-term in the dissipation accounts
or the relative friction of microscopic particle to the macroscopic
low, where (∇𝒖)𝒒 is velocity induced by the macroscopic flow due
o the Cauchy–Born rule [26]. The Cauchy–Born rule states that the
ovement in configuration space follows the flow on the macroscopic

evel, i.e., 𝒒 = 𝖥𝑸 without the microscopic evolution, where 𝑸 are La-
rangian coordinates in the configuration space. A direct computation
hows that

̃ = d
d𝑡
(𝖥𝑸) = ∇𝒖𝖥𝑸 = ∇𝒖𝒒, (2.12)

which is the microscopic velocity induced by the macroscopic flow.
Now we are ready to perform the energetic variational approach

in both microscopic and macroscopic scales. It is import to keep the
‘‘separation of scales’’ in mind when applying the LAP and the MDP
in both scales. On the microscopic scale, since 𝒙(𝐗, 𝑡) is treated being
independent from 𝒒(𝑸,𝐗, 𝑡), a standard energetic variational approach
results in
1
𝜉
𝜓(𝑽 − ∇𝒖𝒒) = −𝜓∇𝒒(ln𝜓 + 𝑈 (𝒒)), (2.13)

where the right-hand side is obtained by the LAP, taking the variation
of −𝒒 = − ∫ 𝜓 ln𝜓 +𝜓𝑈d𝒒 with respect to 𝒒, and the left-hand side is
obtained by the MDP, taking the variation of 𝒒 = 1

2𝜉 ∫ 𝜓|𝑽 − ∇𝒖𝒒|2d𝒒
ith respect to 𝑽 [34,43]. Combining (2.13) with the kinematics

2.10), we have

𝑡 + ∇ ⋅ (𝒖𝜓) + ∇𝒒 ⋅ (∇𝒖𝒒𝜓) = 𝜉
(

𝛥𝒒𝜓 + ∇𝒒 ⋅ (𝜓∇𝒒𝑈 )
)

. (2.14)

On the macroscopic scale, due to the ‘‘separation of scales’’, we treat
𝒒(𝐗,𝑸, 𝑡) as being independent from 𝒙(𝐗, 𝑡). The Cauchy–Born rule is
taken into account by the dissipation term |𝑽 − (∇𝒖)𝒒|2. The action
unctional is defined by

(𝑥) = ∫

𝑇

0 ∫𝛺

[

1
2
𝜌|𝒖|2 − 𝜆∫R𝑑

(𝜓(ln𝜓 − 1) + 𝑈𝜓)d𝒒
]

d𝒙d𝑡, (2.15)

By the LAP, i.e., taking variation of (𝒙) with respect to 𝒙, we obtain
𝛿
𝛿𝒙

= −𝜌𝒙𝑡𝑡 = −𝜌(𝒖𝑡 + 𝒖 ⋅ ∇𝒖). (2.16)

Meanwhile, for the dissipation part, the MDP results in

𝛿
𝛿𝒙𝑡

= −𝜂𝛥𝒖 + 𝜆
𝜉
∇ ⋅ ∫ 𝜓(𝑉 − ∇𝒖𝒒)⊗ 𝒒d𝒒. (2.17)

Notice

𝜆
𝜉
∇ ⋅ ∫ 𝜓(𝑽 − ∇𝒖𝒒)⊗ 𝒒d𝒒 = 𝜆∇ ⋅ ∫

(

−∇𝒒𝜓 ⊗ 𝒒 − ∇𝒒𝑈 ⊗ 𝒒𝜓
)

d𝒒

= −𝜆∇ ⋅
(

∫ ∇𝒒𝑈 ⊗ 𝒒𝜓d𝒒 − 𝑛𝐈
)

,

3

(2.18)
where the first equality is obtained by using (2.13), and 𝑛 = ∫ 𝜓d𝒒
is the number density. Thus, the force balance condition leads to the
macroscopic momentum equation:

𝜌(𝒖𝑡 + 𝒖 ⋅ ∇𝒖) + ∇𝑝 = 𝜂𝛥𝒖 + ∇ ⋅ 𝝉 , (2.19)

where 𝑝 is the Lagrangian multiplier for the incompressible condition
∇ ⋅ 𝒖, and 𝝉 is the induced elastic stress tensor given by

𝝉 = 𝜆
(

∫R𝑑
𝜓∇𝒒𝑈 ⊗ 𝒒d𝒒 − 𝑛𝐈

)

. (2.20)

The form of the induced elastic stress tensor 𝝉 is exactly the Kramers’
expression of the polymeric stress [25], which reflects the microscopic
contribution to the macroscopic flow.

Remark 2.1. In the above derivation, the induced elastic stress tensor
is derived from the dissipation part of the energy-dissipation law. Al-
ternatively, one can derive the equivalent induced elastic stress tensor
from the conservative part [26,44]. Due to the Cauchy–Born rule,
we can assume that the configuration space follows the flow in the
macroscopic scale, i.e., 𝒒 = 𝐹𝑸 and 𝐕 = ∇𝒖𝒒. Thus, the macroscopic
action functional can be defined by

(𝒙) = ∫

𝑇

0 ∫𝛺0

1
2
𝜌0|𝒙𝑡|2 − 𝜆∫ 𝜓0

(

ln𝜓0 − 1
)

+ 𝑈 (𝐹𝑸)𝜓0d𝑸d𝐗 (2.21)

and the macroscopic dissipation is simply  = 1
2 ∫ 𝜂|∇𝒖|

2d𝒙 (the second
term in the dissipation vanishes since the Cauchy–Born rule is used). By
taking variation of (𝒙) with respect to 𝒙, we have [26]

𝛿
𝛿𝒙

= −𝜌𝒙𝑡𝑡 + 𝜆∇ ⋅ (∫ 𝜓∇𝒒𝑈 ⊗ 𝒒d𝒒). (2.22)

Meanwhile, 𝛿
𝛿𝒙𝑡

= −𝜂𝛥𝒖. Hence, we end up with the same macroscopic
equation with 𝝉 given by

𝝉 = 𝜆∫R𝑑
𝜓∇𝒒𝑈 ⊗ 𝒒d𝒒, (2.23)

which is equivalent to the (2.20) in the incompressible case since
∇ ⋅ (−𝑛𝐈) will contribute to the pressure and can be dropped [25].

The classic energetic variational approach, as well as other vari-
ational principles [22,23,45–47], which is indeed based on classical
mechanics, cannot be applied to systems involving chemical reactions
directly. Since 1950’s, a large amount of works tried to developed
an Onsager type variational theory for reaction kinetics by building
analogies between Newtonian mechanics and chemical reactions [21,
48–54]. For instance, a dissipation potential formulation of chemical
reactions was introduced in [50]. The formulation was extended to
general mass-action kinetics involving inertia and fluctuations under
the GENERIC framework in [51,52,55]. Motivated by these pioneering
work, the energetic variational formulation to chemical reactions was
developed in a recent work [56] by using the reaction trajectory
𝑹 as the state variable. The reaction trajectory, also known as the
extent of reaction or degree of advancement, was originally intro-
duced by De Donder [57,58]. For a general reversible chemical reac-
tion system containing 𝑁 species {𝑋1, 𝑋2,… , 𝑋𝑁} and 𝑀 reactions,
represented by

𝛼 l
1 X1 + 𝛼

l
2 X2 +⋯𝛼 l

N XN
←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←← 𝛽 l

1 X1 + 𝛽
l

2 X2 +⋯𝛽 l
N XN, 𝑙 = 1,… ,𝑀.

(2.24)

We can define a reaction trajectory 𝑹 ∈ R𝑀 , where each component
𝑅𝑙 accounts for the ‘‘number’’ of 𝑙th chemical reactions that has oc-
curred in the forward direction by time 𝑡. The relation between species
concentration 𝒄 ∈ R𝑁+ and the reaction trajectory 𝑹 is given by

𝒄 = 𝒄0 + 𝝈𝑹, (2.25)

where 𝒄0 is the initial concentration, and 𝝈 ∈ R𝑁×𝑀 is the stoichiomet-
ric matrix with 𝜎 = 𝛽𝑙 − 𝛼𝑙. One can view (2.25) as the kinematics of
𝑖𝑙 𝑖 𝑖
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the chemical reaction system [59]. With the kinematics (2.25), one can
reformulate the free energy  , which is a functional of 𝒄, in terms of
the reaction trajectory 𝑹 [56,59], Moreover, notice that

𝛿
𝛿𝑅𝑙

=
𝑁
∑

𝑖=1
𝜎𝑖𝑙
𝛿
𝛿𝑐𝑖

=
𝑁
∑

𝑖=1
𝜎𝑖𝑙𝜇𝑖, (2.26)

which is exactly the affinity of 𝑙−th chemical reaction, as defined by De
Donder [58]. It is worth pointing out that 𝑹 corresponds to the internal
state variable defined in [60].

The affinity plays a role of the ‘‘force’’ that drives the chemical
reaction, which vanishes at the chemical equilibrium [61]. The reaction
trajectory 𝐑 is the conjugate variable of the chemical affinity, which
is analogous to the flow map 𝒙(𝐗, 𝑡) in mechanical systems [54]. The
reaction rate 𝒓 is defined as 𝜕𝑡𝑹, which can be viewed as the reaction
velocity [61]. Similar to a mechanical system, the reaction rate can be
obtained from a prescribed energy-dissipation law in terms of 𝑹 and
𝜕𝑡𝑹:

d
d𝑡
 [𝑹] = −chem[𝑹, 𝜕𝑡𝑹], (2.27)

where chem[𝑹, 𝜕𝑡𝑹] is the rate of energy dissipation due to the chemi-
cal reaction procedure. Since the linear response assumption for chem-
ical system may not be valid unless at the last stage of chemical
reactions [21,38], chem is not quadratic in terms of 𝜕𝑡𝑹 in general.
For a general nonlinear dissipation

chem[𝑹, 𝜕𝑡𝑹] =
(

𝜞 (𝑹, 𝜕𝑡𝑹), 𝜕𝑡𝑹
)

=
𝑀
∑

𝑙=1
𝛤𝑙(𝑹, 𝜕𝑡𝑹)𝜕𝑡𝑅𝑙 ≥ 0,

the reaction rate can be derived as [56,59]:

𝛤𝑙(𝑹, 𝜕𝑡𝑹) = − 𝛿
𝛿𝑅𝑙

, (2.28)

which is the ‘‘force balance’’ equation for the chemical part [56,59].
It is often assumed that 𝛤𝑙(𝑹, 𝜕𝑡𝑹) = 𝛤𝑙(𝑅𝑙 , 𝜕𝑡𝑅𝑙). So equation (2.28)
specify the reaction rate of 𝑙−th chemical reaction. In this formulation,
the choice of the free energy determines the chemical equilibrium,
while the choice of the dissipation functional chem[𝑹, 𝜕𝑡𝑹] determines
the reaction rate.

2.2. Micro–macro model for wormlike micellar solutions

Now we are ready to derive a thermodynamically consistent two-
species micro–macro model for wormlike micellar solutions. Following
the setting of the VCM model [10], we consider there exist only two
species in the system. A molecule of species 𝐴 can break into two
molecules of species 𝐵, and two molecules of species 𝐵 can reform
species 𝐴. At a microscopic level, molecules of both species are mod-
eled as elastic dumbbells as in classical models of dilute polymeric
fluids [40,41]. We denote the number density distribution of finding
each molecule with end-to-end vector 𝒒 at position 𝒙 by 𝜓𝐴(𝒙, 𝒒, 𝑡) and
𝜓𝐵(𝒙, 𝒒, 𝑡) respectively. The number density of species 𝛼 is defined by

𝑛𝛼(𝒙, 𝑡) = ∫ 𝜓𝛼d𝒒. (2.29)

We should emphasize that this is a coarse-grained description and the
end-to-end vector 𝒒 has no information on the length of polymer chains.

In general, the breakage and combination processes can be regarded
as chemical reactions

𝒒 + 𝒒′ ←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←← 𝒒′′, (2.30)

where 𝒒 and 𝒒′ are end-to-end vectors of species 𝐵 and 𝒒′′ is an end-to-
end of species 𝐴 [see Fig. 2.1(a) for illustration]. We denote the forward
and backward reaction rate of (2.30) by 𝑊 +(𝒒, 𝒒′; 𝒒′′) and 𝑊 −(𝒒, 𝒒′; 𝒒′′)
4

respectively. The kinematics of 𝜓𝐴 and 𝜓𝐵 can be written as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑡𝜓𝐴 + ∇ ⋅ (𝒖𝐴𝜓𝐴) + ∇𝒒 ⋅ (𝑽 𝐴𝜓𝐴) = ∫ 𝑅𝑡(𝒒′, 𝒒′′; 𝒒)d𝒒′d𝒒′′

𝜕𝑡𝜓𝐵 + ∇ ⋅ (𝒖𝐵𝜓𝐵) + ∇𝒒 ⋅ (𝑽 𝐵𝜓𝐵) = − ∫ 𝑅𝑡(𝒒, 𝒒′; 𝒒′′)d𝒒′d𝒒′′

− ∫ 𝑅𝑡(𝒒′, 𝒒; 𝒒′′)d𝒒′d𝒒′′

𝑅𝑡(𝒒, 𝒒′; 𝒒′′) = 𝑊 +(𝒒, 𝒒′; 𝒒′′)𝜓𝐵(𝒒)𝜓𝐵(𝒒′)
−𝑊 −(𝒒, 𝒒′; 𝒒′′)𝜓𝐴(𝒒′′),

(2.31)

where 𝒖𝛼 and 𝑽 𝛼 are effective macroscopic and microscopic veloci-
ties. Different models can be obtained by choosing 𝑊 +(𝒒, 𝒒′; 𝒒′′) and
𝑊 −(𝒒, 𝒒′; 𝒒′′) differently. In this paper, we take

𝑊 ±(𝒒, 𝒒′; 𝒒′′) ≠ 0 if and only if 𝒒 = 𝒒′ = 𝒒′′, (2.32)

which corresponds to the case that an 𝐴 molecule at position 𝒙 with
end-to-end vector 𝒒 can only break into two 𝐵 molecules with same
end-to-end vector, and the combination process can only happen be-
tween two 𝐵 molecules at the same position 𝒙 with the same end-to-end
vector. This is a special case of a reversible microscopic reaction
mechanism 𝒒 + 𝒒 ←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←← 𝛼𝒒, illustrated in Fig. 2.1(b), with 𝛼 = 1. 𝛼 can
be viewed as a parameter for fast conformational changes of species 𝐴.
Within this assumption, one can have a detailed balance condition for
each 𝒙 and 𝒒 and the kinematics can reduce to
{

𝜕𝑡𝜓𝐴 + ∇ ⋅ (𝒖𝐴𝜓𝐴) + ∇𝒒 ⋅ (𝑉𝐴𝜓𝐴) = −𝑅𝑡
𝜕𝑡𝜓𝐵 + ∇ ⋅ (𝒖𝐵𝜓𝐵) + ∇𝒒 ⋅ (𝑉𝐵𝜓𝐵) = 2𝑅𝑡,

(2.33)

where 𝑅(𝒙, 𝒒, 𝑡) is the reaction trajectory for the breakage and combina-
tion for given 𝒒 and 𝒙. We should emphasize that the assumption here
is only for the mathematical simplicity, which may not fully reflect the
complicated physical scenario.

Remark 2.2. In the original VCM model [10], the authors assume
that
{

𝜕𝑡𝜓𝐴 + ∇ ⋅ (𝒖𝐴𝜓𝐴) + ∇𝒒 ⋅ (𝑽 𝐴𝜓𝐴) = −𝑘1𝜓𝐴 + 𝑘2𝜓𝐵 ∗ 𝜓𝐵
𝜕𝑡𝜓𝐵 + ∇ ⋅ (𝒖𝐵𝜓𝐵) + ∇𝒒 ⋅ (𝑽 𝐵𝜓𝐵) = 2𝑘1𝜓𝐴 − 2𝑘2𝜓𝐵 ∗ 𝜓𝐵 ,

(2.34)

where

𝜓𝐵 ∗ 𝜓𝐵 = ∫ 𝜓𝐵(𝒙, 𝒒 − 𝒒̃, 𝑡)𝜓𝐵(𝒙, 𝒒̃, 𝑡)d𝑞 (2.35)

The advantage of the assumption (2.34) is that the system will satisfy
the law of mass action for 𝑛𝐴 and 𝑛𝐵 in the macroscopic scale, that is
{

𝜕𝑡𝑛𝐴 + ∇ ⋅ (𝑛𝐴𝒖𝐴) = −𝑘1𝑛𝐴 + 𝑘2𝑛2𝐵
𝜕𝑡𝑛𝐵 + ∇ ⋅ (𝑛𝐵𝒖𝐵) = 2𝑘1𝑛𝐴 − 2𝑘2𝑛2𝐵 .

(2.36)

by integrating both sides of (2.34) with respect to 𝒒. However, as
pointed out in [62], the reaction mechanism in the VCM model is not
microscopically reversible, as an 𝐴 molecule can only break in the
middle to give two equal-length 𝐵 molecules and two 𝐵 molecules can
combine through adding the end-to-end vector. As a consequence, it
seems to difficult to obtain a variational structure for the breakage
and combination mechanism (2.34). To repair the thermodynamic
problem, in [62], the author proposed a microscopic reversible reaction
mechanism with

𝑊 ±(𝒒, 𝒒′; 𝒒′′) ≠ 0, if and only if 𝒒′′ = 𝒒 + 𝒒′ or 𝒒′′ = 𝒒 − 𝒒′, (2.37)

in their Brownian dynamics simulations.

Remark 2.3. The previous kinematic assumption for the breakage and
combination process is based on a two-species approach. An alternative
approach, which is a direct extension of Cates’ original work, is to view
all micelles as one species with different end-to-end vector 𝒒. Then the
reaction assumption (2.30) gives a kinematics

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝜓 + ∇ ⋅ (𝒖𝜓) + ∇𝒒 ⋅ (𝑽 𝜓)
= − ∫ 𝑅𝑡(𝒒, 𝒒′; 𝒒′′)d𝒒′d𝒒′′ − ∫ 𝑅𝑡(𝒒′, 𝒒; 𝒒′′)d𝒒′d𝒒′′

+ ∫ 𝑅𝑡(𝒒′, 𝒒′′; 𝒒)d𝒒′d𝒒′′,
𝑅𝑡(𝒒, 𝒒′; 𝒒′′) = 𝑊 +(𝒒, 𝒒′; 𝒒′′)𝜓(𝒒)𝜓(𝒒′) −𝑊 −(𝒒, 𝒒′; 𝒒′′)𝜓(𝒒′′)

(2.38)
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Fig. 2.1. Schematic diagram of breakage and combination processes in wormlike micellar solutions, in which different species are indicated by different colors. The reaction
echanism considered in this paper is (b) with 𝛼 = 1.
Similar to the one-species micro–macro model, the total energy of
he system can be written as

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫𝛺

[ 1
2
𝜌|𝒖|2 + 𝜆∫ 𝜓𝐴(ln𝜓𝐴 − 1) + 𝜓𝐴𝑈𝐴(𝒒)

+ 𝜓𝐵(ln𝜓𝐵 − 1) + 𝜓𝐵𝑈𝐵(𝒒)d𝒒
]

d𝒙,
(2.39)

where 𝒖 is the velocity field of the macroscopic flow satisfying the in-
compressible condition ∇ ⋅𝒖 = 0, 𝜆 is the ratio between the macroscopic
inetic energy and microscopic elastic energy, and 𝑈𝛼(𝒒) is the potential

energy associated with each species.
Throughout this paper, we disregard the diffusive effects of 𝐴 and

, and assume 𝒖𝐴 = 𝒖𝐵 = 𝒖, which is the velocity of the macroscopic
luids. Then the dissipation can be formulated as

▵ = −∫𝛺

[

𝜂|∇𝒖|2 + 𝜆∫
𝜓𝐴
𝜉𝐴

|𝑽 𝐴 − ∇𝒖𝒒|2 +
𝜓𝐵
𝜉𝐵

|𝑽 𝐵 − ∇𝒖𝒒|2

+ 𝜕𝑡𝑅 𝛤 (𝑅, 𝜕𝑡𝑅)d𝒒
]

d𝒙,
(2.40)

where 𝜉𝛼 is a constant related to the relaxation time of each species, and
𝜕𝑡𝑅 𝛤 (𝑅, 𝜕𝑡𝑅) ≥ 0 is the additional dissipation due to the breakage and
combination process. Different choices of 𝛤 (𝑅, 𝜕𝑡𝑅) determine different
reaction rates. A typical choice of 𝛤 (𝑅, 𝜕𝑡𝑅) is

𝛤 (𝑅, 𝜕𝑡𝑅) = ln
(

𝜕𝑡𝑅
𝜂(𝜓𝐴(𝑅), 𝜓𝐵(𝑅))

+ 1
)

. (2.41)

Recall (2.28), we can obtain the equation of 𝑅 as

ln
(

𝜕𝑡𝑅
𝜂(𝜓𝐴(𝑅), 𝜓𝐵(𝑅))

+ 1
)

= 𝜇𝐴 − 2𝜇𝐵 , (2.42)

where 𝜇𝛼 = 𝛿
𝛿𝜓𝛼

= ln𝜓𝛼 +𝑈𝛼 is the chemical potential of species 𝐴 and
. A further calculation leads to

𝑡𝑅 = 𝜂(𝜓𝐴(𝑅), 𝜓𝐵(𝑅))

(

exp
(

−(𝑈𝐵 − 2𝑈𝐴)
) 𝜓𝐴
𝜓2
𝐵

− 1

)

. (2.43)

If 𝜂(𝜓𝐴, 𝜓𝐵 = 𝑘2(𝒒)𝜓2
𝐵 , (2.43) can be further simplified as

𝜕𝑡𝑅 = 𝑘1(𝒒)𝜓𝐴 − 𝑘2(𝒒)𝜓2
𝐵 , (2.44)

where

𝑘1(𝒒) =
𝑘2(𝒒)
𝐾𝑒𝑞(𝒒)

, 𝐾𝑒𝑞(𝒒) =
𝜓∞
𝐴

(𝜓∞
𝐵 )2

= exp
(

2𝑈𝐵 − 𝑈𝐴
)

,

which is the law of mass action at the microscopic level. 𝐾𝑒𝑞(𝒒) is the
equilibrium constant for given 𝒒.

The derivation of the mechanical part of the two-species model is
almost same to that in the one-species case. In the microscopic scale, a
standard EnVarA leads to

𝜓𝛼∇𝒒𝜇𝛼 = − 1
𝜉𝛼
𝜓𝛼(𝑉𝛼 − (∇𝒖)𝒒) (2.45)

that is

𝜓 𝑉 = −𝜉 (𝜓 ∇ 𝑈 + ∇ 𝜓 ) + (∇𝒖)𝒒𝜓 . (2.46)
5

𝛼 𝛼 𝛼 𝛼 𝒒 𝛼 𝒒 𝛼 𝛼
Hence, the microscopic equation is given by
{

𝜕𝑡𝜓𝐴 + 𝒖 ⋅ ∇𝜓𝐴 + ∇𝒒 ⋅ (∇𝒖𝒒𝜓𝐴) − 𝜉𝐴∇𝒒 ⋅ (∇𝒒𝜓𝐴 + ∇𝒒𝑈𝐴𝜓𝐴) = −𝜕𝑡𝑅,
𝜕𝑡𝜓𝐵 + 𝒖 ⋅ ∇𝜓𝐵 + ∇𝒒 ⋅ (∇𝒖𝒒𝜓𝐵) − 𝜉𝐵∇𝒒 ⋅ (∇𝒒𝜓𝐵 + ∇𝒒𝑈𝐵𝜓𝐵) = 2𝜕𝑡𝑅,

(2.47)

where 𝜕𝑡𝑅 is defined in (2.44). On the macroscopic scale, similar to the
one species case, by an energetic variational approach, we can obtain

𝜌(𝒖𝑡 + (𝒖 ⋅ ∇)𝒖) + ∇𝑝 = 𝜂𝛥𝒖 + 𝜆∇ ⋅ 𝝉 (2.48)

where 𝝉 is the induced stress from the microscopic configurations

𝝉 = ∫ 𝜓𝐴∇𝑞𝜇𝐴 ⊗ 𝑞d𝑞 + ∫ 𝜓𝐵∇𝑞𝜇𝐵 ⊗ 𝒒d𝒒

= ∫
(

∇𝑞𝑈𝐴 ⊗ 𝒒𝜓𝐴 + ∇𝑞𝑈𝐵 ⊗ 𝒒𝜓𝐵
)

d𝒒 − (𝑛𝐴 + 𝑛𝐵)I
(2.49)

Hence, the final macro–micro system is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌(𝜕𝑡𝒖 + (𝒖 ⋅ ∇)𝒖) + ∇𝑝 = 𝜂𝛥𝒖 + 𝜆∇ ⋅ 𝝉
∇ ⋅ 𝒖 = 0
𝜕𝑡𝜓𝐴 + 𝒖 ⋅ ∇𝜓𝐴 + ∇𝒒 ⋅ (∇𝒖𝒒𝜓𝐴) − 𝜉𝐴∇𝒒 ⋅ (∇𝒒𝜓𝐴 + ∇𝒒𝑈𝐴𝜓𝐴) = −𝜕𝑡𝑅
𝜕𝑡𝜓𝐵 + 𝒖 ⋅ ∇𝜓𝐵 + ∇𝒒 ⋅ (∇𝒖𝒒𝜓𝐵) − 𝜉𝐵∇𝒒 ⋅ (∇𝒒𝜓𝐵 + ∇𝒒𝑈𝐵𝜓𝐵) = 2𝜕𝑡𝑅

(2.50)

where

𝜕𝑡𝑅 = 𝑘1(𝒒)𝜓𝐴 − 𝑘2(𝒒)𝜓2
𝐵 , (2.51)

and 𝝉 is the stress tensor given by (2.49). According to the previous
derivation, it is easy to show that the system satisfies the following
energy-dissipation property:

d
d𝑡 ∫

[

1
2
𝜌|𝒖|2 + 𝜆∫ 𝜓𝐴(ln𝜓𝐴 − 1 + 𝑈𝐴) + 𝜓𝐵(ln𝜓𝐵 − 1 + 𝑈𝐵)d𝒒

]

d𝒙

= −∫

[

𝜂|∇𝒖|2 + 𝜆
𝜉𝐴 ∫ 𝜓𝐴|∇𝒒(ln𝜙𝐴 + 𝑈𝐴)|

2d𝒒

+ 𝜆
𝜉𝐵 ∫ 𝜓𝐵|∇𝒒(ln𝜓𝐵 + 𝑈𝐵)|

2d𝒒

+𝜆∫ (𝑘1(𝒒)𝜓𝐴 − 𝑘2(𝒒)𝜓2
𝐵) ln

(

𝑘1(𝒒)𝜓𝐴
𝑘2(𝒒)𝜓2

𝐵

)

d𝒒

]

d𝒙.

(2.52)

3. Moment closure models

The micro–macro model (2.50) provides a thermodynamically con-
sistent multi-scale description to wormlike micellar solutions. However,
it might be difficult to study this model directly, as the microscopic
equation (2.47) is high dimensional. Notice that the macroscopic stress
tensor only involves the zeroth and second moments of the number
distribution functions of two species, it is a natural idea to derive
a coarse-grained macroscopic model from the original micro–macro
model through moment closure. Moment closure is a powerful tool to
obtain coarse-grained macroscopic constitutive equations from more
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detailed micro–macro models for complex fluids [63–67]. One chal-
lenge in moment closure is to preserve the thermodynamic structures,
i.e., the coarse-grained system should satisfy a energy-dissipation law
analogous to the energy-dissipation law of the original system [27,66].
The presence of the chemical reaction imposes additional difficulties
for closure approximations.

Throughout this section, we assume the potential energy 𝑈𝛼 to be

𝐴 = 1
2
𝐻𝐴|𝒒|2 + 𝜎𝐴, 𝑈𝐵 = 1

2
𝐻𝐵|𝒒|2 + 𝜎𝐵 , (3.1)

here 𝜎𝐴 and 𝜎𝐵 are constants related to the equilibrium of the
reakage and combination procedure, 𝐻𝐴 and 𝐻𝐵 are Hookean spring
onstants associated with species 𝐴 and 𝐵. Moreover, we assume that

𝐴 = 2𝐻𝐵 , (3.2)

then 𝐾𝑒𝑞 = exp(2𝜎𝐵−𝜎𝐴) is a constant, which enables us to have a model
ith both 𝑘1 and 𝑘2 being constants. Same assumption is used in the
CB model [11]. Other types of potential energies can be considered
ut will result in more complicated closure systems.

emark 3.1. The assumption 𝐻𝐴 = 2𝐻𝐵 is the consequence of the

detailed balance condition for the reaction 𝒒 + 𝒒
𝑘2

←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝑘1

𝒒 with constant
reaction rates 𝑘𝑖, i.e.,

𝑘1𝜓
∞
𝐴 (𝒒) = 𝑘2(𝜓∞

𝐵 (𝒒))2, 𝜓∞
𝛼 = 𝐶𝛼 exp

(

−1
2
𝐻𝛼𝒒T𝒒

)

, (3.3)

here 𝜓∞
𝛼 is an equilibrium number density distribution for each

pecies and 𝐶𝛼 is a constant. If the reaction mechanism

+ 𝒒
𝑘2

←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝑘1

𝛼𝒒 is assumed, then the detailed balance condition requires

2𝐻𝐴 = 2𝐻𝐵 . (3.4)

e have 2𝐻𝐴 = 𝐻𝐵 for 𝛼 = 2, which is assumption in the VCM model.

With the assumption 𝐻𝐴 = 2𝐻𝐵 , the global equilibrium distribution
f the system is given by

𝜓∞
𝐴 =

𝑛∞𝐴
(2𝜋𝐻−1

𝐴 )𝑑∕2
exp

(

−1
2
𝐻𝐴𝒒T𝒒

)

,

𝜓∞
𝐵 =

𝑛∞𝐵
(2𝜋𝐻−1

𝐵 )𝑑∕2
exp

(

−1
2
𝐻𝐵𝒒T𝒒

)

,
(3.5)

where 𝑛∞𝐴 and 𝑛∞𝐵 are number densities at the global equilibrium.
orrespondingly, the second moments at the global equilibrium are
iven by

eq = ∫ 𝒒 ⊗ 𝒒𝜓∞
𝐴 d𝒙 =

𝑛∞𝐴
𝐻𝐴

𝐈, 𝐁eq = ∫ 𝒒 ⊗ 𝒒𝜓∞
𝐵 d𝒙 =

𝑛∞𝐵
𝐻𝐵

𝐈. (3.6)

Let 𝐾macro
𝑒𝑞 =

𝑛∞𝐴
(𝑛∞𝐵 )2 be the macroscopic equilibrium constant and a direct

omputation shows that

eq = 𝑒2𝜎𝐵−𝜎𝐴 =
𝜓∞
𝐴

(𝜓∞
𝐵 )2

= 2𝑑𝜋𝑑∕2

𝐻𝑑∕2
𝐵

𝐾macro
𝑒𝑞 , (3.7)

which reveals the connection between 𝐾𝑒𝑞 and 𝐾macro
𝑒𝑞 .

.1. Maximum entropy closures

Maximum entropy closures, also known as quasi-equilibrium ap-
roximations [27,28,30,55,68], have been successfully used to de-
ive effective macroscopic equations from the micro–macro multi-scale
odels for polymeric fluids, including nonlinear dumbbell models [27,
8] and liquid crystal polymers [69–72]. For nonlinear dumbbell mod-
ls with FENE potential, it has been shown that maximum entropy
losure can capture the hysteretic behavior and maintain the energy-
issipation property [27,28].

The idea of the maximum entropy closure is to maximize the
‘relative entropy’’ subjected to moments [27,28,66,68]. For our system,
6

we can approximate 𝜓𝛼 (𝛼 = 𝐴,𝐵) based on its zeroth moment 𝑛𝛼 and
second moment 𝐌𝛼 by solving the constrained optimization problem

𝜓∗
𝛼 = argmin ∫R𝑑

𝜓 ln𝜓 + 𝜓𝑈𝛼(𝒒)d𝒒, (3.8)

where

 =
{

𝜓 ∶ R𝑑 → R, 𝜓 ≥ 0 ∣ ∫ 𝜓d𝒒 = 𝑛𝛼 , ∫ (𝒒 ⊗ 𝒒)𝜓d𝒒 = 𝐌𝛼

}

. (3.9)

Proposition 3.1. For the Hookean potential 𝑈𝛼 = 1
2𝐻𝛼|𝒒|2 + 𝜎𝛼 , the

minimization problem (3.8) has a unique minimizer 𝜓∗
𝛼 in the class  for

given 𝑛𝛼 > 0 and a symmetric positive-definite matrix 𝐌𝛼 . Moreover, 𝜓∗
𝛼 is

given by

𝜓∗
𝛼 (𝒒) =

𝑛𝛼
(2𝜋)𝑑∕2(det 𝐌̃𝛼)1∕2

exp(−1
2
𝒒T𝐌̃−1

𝛼 𝒒),

where 𝐌̃𝛼 = 𝐌𝛼∕𝑛𝛼 . We call 𝜓∗
𝛼 is the quasi-equilibrium state associated

with 𝑛𝛼 and 𝐌𝛼 .

Proof. The solution to the constrained optimization problem (3.8) is
given by

𝛿
𝛿𝜓

{

∫ 𝜓 ln𝜓 + 𝑈𝛼(𝒒)𝜓d𝒒 + 𝜆0

[

∫ 𝜓d𝒒 − 𝑛𝛼

]

+
∑

𝑖𝑗
𝜆𝑖𝑗

[

∫ 𝑞𝑖𝑞𝑗𝜓d𝒒 − (𝐌𝛼)𝑖𝑗

]

}

= 0,
(3.10)

where 𝜆0 and 𝜆𝑖𝑗 are Lagrangian multipliers. From (3.10), one can
obtain that

𝜓∗
𝛼 = 𝐶 exp(−1

2
𝐻𝛼|𝒒|2 − 𝜎𝛼) exp

(

−𝜆0 −
∑

𝑖𝑗
𝜆𝑖𝑗𝑞𝑖𝑞𝑗

)

, (3.11)

where 𝐶 > 0 is a constant. Since ∫ 𝜓∗
𝛼 d𝒙 = 𝑛𝛼 , 𝜓∗

𝛼 can be written as

𝜓∗
𝛼 =

𝑛𝛼
𝑍(𝜆𝑖𝑗 )

exp

(

−1
2
𝐻𝛼|𝒒|2 −

∑

𝑖𝑗
𝜆𝑖𝑗𝑞𝑖𝑞𝑗

)

. (3.12)

where 𝑍(𝜆𝑖𝑗 ) = ∫ exp(− 1
2𝐻𝛼|𝒒|2) exp

(

−
∑

𝑖𝑗 𝜆𝑖𝑗𝑞𝑖𝑞𝑗
)

d𝒒 is the normal-
izing constant. Since 𝜓∗

𝛼∕𝑛𝛼 is the multivariate normal distribution
 (0,𝜮) with the covariance matrix given by

𝜮 = (𝐻𝛼𝐈 + 2𝜦)−1, (3.13)

which is uniquely determined by its second moment, i.e., 𝜮 = (𝐻𝛼𝐈 +
2𝜦)−1 = 𝐌𝛼∕𝑛𝛼 [73]. □

Thus, for given 𝑛𝐴 > 0, 𝑛𝐵 > 0, positive-definite matrices 𝐀 and 𝐁,
we can define the unique quasi-equilibrium states

𝜓∗
𝐴 =

𝑛𝐴
(2𝜋)𝑑∕2(det 𝐀̃)1∕2

exp
(

−1
2
𝒒T𝐀̃−1𝒒

)

.

𝜓∗
𝐵 =

𝑛𝐵
(2𝜋)𝑑∕2(det 𝐁̃)1∕2

exp
(

−1
2
𝒒T𝐁̃−1𝒒

)

,
(3.14)

where 𝐀̃ = 𝐀∕𝑛𝐴 and 𝐁̃ = 𝐁∕𝑛𝐵 are conformation tensors [11]. We
call the manifold formed by all quasi-equilibrium distributions as the
quasi-equilibrium manifold, denoted by

∗ =

{

𝜓∗ = 𝑛
(2𝜋)𝑑∕2(det 𝐌̃)1∕2

exp
(

−1
2
𝒒T𝐌̃−1𝒒

)

∣ 𝑛 > 0, 𝐌̃ symmetric, positive-definite
}

(3.15)

For 𝜓∗
𝛼 ∈ ∗, its second moment 𝐌𝛼 = 𝑛𝛼𝐌̃𝛼 depends on its zeroth

moment 𝑛 .
𝛼
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3.2. The moment closure model: variation-then-closure

We can apply the maximum entropy closure to the micro–macro
model (2.50) directly. Since 𝑘1 and 𝑘2 are constants, by integrating
(2.33) over 𝒒, we have
{

𝜕𝑡𝑛𝐴 + ∇ ⋅ (𝑛𝐴𝒖) = −𝑘1𝑛𝐴 + 𝑘2 ∫ 𝜓2
𝐵d𝒒

𝜕𝑡𝑛𝐵 + ∇ ⋅ (𝑛𝐵𝒖) = 2𝑘1𝑛𝐴 − 2𝑘2 ∫ 𝜓2
𝐵d𝒒.

(3.16)

Meanwhile, multiplying both side of (2.33) by 𝒒 ⊗ 𝒒 and integrating
over 𝒒 arrives at

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝐀 + (𝒖 ⋅ ∇)𝐀 − (∇𝒖)𝐀 − 𝐀(∇𝒖)T = 𝜉𝐴(2𝑛𝐴𝐈 − 2𝐻𝐴𝐀)
−𝑘1𝐀 + 𝑘2 ∫ 𝒒 ⊗ 𝒒𝜓2

𝐵d𝒒
𝜕𝑡𝐁 + (𝒖 ⋅ ∇)𝐁 − (∇𝒖)𝐁 − 𝐁(∇𝒖)T = 𝜉𝐵(2𝑛𝐵𝐈 − 2𝐻𝐵𝐁)

+2𝑘1𝐀 − 2𝑘2 ∫ 𝒒 ⊗ 𝒒𝜓2
𝐵d𝒒.

(3.17)

Therefore, for Hookean spring potentials and constant reaction rates,
the moment closure is needed only due to the nonlinear reaction term
in the microscopic scale. With the maximum entropy closure (3.14),
these two terms can be computed out explicitly. Indeed, notice that

∫ (𝜓∗
𝐵)

2d𝒒 = ∫R𝑑
𝑛2𝐵
𝑍2
𝐵

exp(−𝒒T𝐁̃−1𝒒)d𝒒, (3.18)

by letting 𝒒 = 1
√

2
𝒒, we have

∫ (𝜓∗
𝐵)

2d𝒒 = 2−𝑑∕2 ∫R𝑑
𝑛2𝐵
𝑍2
𝐵

exp(−1
2
𝒒T𝐁̃−1𝒒)d𝒒 =

𝑛𝑑∕2𝐵

2𝑑𝜋𝑑∕2(det 𝐵)1∕2
𝑛2𝐵 .

(3.19)

Hence,

∫ 𝑘1𝜓
∗
𝐴 − 𝑘2(𝜓∗

𝐵)
2d𝒒 = 𝑘1𝑛𝐴 − 𝑘̃2(𝐁)𝑛2𝐵 , (3.20)

where 𝑘̃2(𝐁) is given by

𝑘2(𝐁) =
𝑛𝑑∕2𝐵

2𝑑 (𝜋)𝑑∕2(det(𝐁))1∕2
𝑘2. (3.21)

Interestingly, in this case, the maximum entropy closure gives us the
law of mass action on number densities A

𝑘1
←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝑘̃2

2B, as in the VCM and

GCB models. By a similar calculation, we have

𝑘2 ∫ (𝜓∗
𝐵)

2(𝒒 ⊗ 𝒒)d𝒒 =
(
√

2)−𝑑

2 ∫R𝑑
𝑛2𝐵
𝑍2
𝐵

exp(−1
2
𝒒T𝐁̃−1𝒒)𝒒̃ ⊗ 𝒒̃d𝒒̃

= 1
2
𝑘̃2(𝐁)𝑛𝐵𝐁.

(3.22)

Therefore, applying the maximum entropy approximation to (2.50), we
can obtain a moment closure system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜌(𝜕𝑡𝒖 + (𝒖 ⋅ ∇)𝒖) + ∇𝑝 = 𝜂𝛥𝒖 + 𝜆∇ ⋅
(

𝐻𝐴𝐀 +𝐻𝐵𝐁 − (𝑛𝐴 + 𝑛𝐵)𝐈
)

∇ ⋅ 𝒖 = 0
𝜕𝑡𝑛𝐴 + ∇ ⋅ (𝑛𝐴𝒖) = −𝑘1𝑛𝐴 + 𝑘̃2(𝐁)𝑛2𝐵 ,
𝜕𝑡𝑛𝐵 + ∇ ⋅ (𝑛𝐵𝒖) = 2𝑘1𝑛𝐴 − 2𝑘̃2(𝐁)𝑛2𝐵 ,
𝜕𝑡𝐀 + (𝒖 ⋅ ∇)𝐀 − (∇𝒖)𝐀 − 𝐀(∇𝒖)T = 2𝜉𝐴(𝑛𝐴𝐈 −𝐻𝐴𝐀)

−𝑘1𝐀 + 1
2 𝑘̃2(𝐁)𝑛𝐵𝐁

𝜕𝑡𝐁 + (𝒖 ⋅ ∇)𝐁 − (∇𝒖)𝐁 − 𝐁(∇𝒖)T = 2𝜉𝐵(𝑛𝐵𝐈 −𝐻𝐵𝐁)
+2𝑘1𝐀 − 𝑘̃2(𝐁)𝑛𝐵𝐁.

(3.23)

where

𝑘2(𝐁) =
𝑛𝑑∕2𝐵 𝑘2.
7

2𝑑 (𝜋)𝑑∕2(det(𝐁))1∕2
This is the model obtained by the ‘‘variation-then-closure’’, i.e., apply-
ing the maximum entropy closure at the PDE level. One can prove that
the closure system (3.23) possesses an energy-dissipation law. To show
this, we first look at the case with 𝒖 = 0.

Proposition 3.2. In absence of the flow field 𝒖 = 0, given 𝑛𝐴 > 0, 𝑛𝐵 > 0
and symmetric, positive-definite matrices 𝐀 and 𝐁, the closure system (3.23)
satisfies the energy-dissipation law

d
d𝑡
CL(𝑛𝐴, 𝑛𝐵 ,𝐀,𝐁) = − ▵CL≤ 0, (3.24)

where CL(𝑛𝐴, 𝑛𝐵 ,𝐀,𝐁) is the coarse-grained free energy given by

CL(𝑛𝐴, 𝑛𝐵 ,𝐀,𝐁) = ∫ 𝑛𝐴

(

ln
(

𝑛𝐴
𝑛∞𝐴

)

− 1
)

+ 𝑛𝐵

(

ln
(

𝑛𝐵
𝑛∞𝐵

)

− 1
)

−
𝑛𝐴
2

ln det
(

𝐻𝐴𝐀
𝑛𝐴

)

+ 1
2
tr(𝐻𝐴𝐀 − 𝑛𝐴𝐈)

−
𝑛𝐵
2

ln det
(

𝐻𝐵𝐁
𝑛𝐵

)

+ 1
2
tr(𝐻𝐵𝐁 − 𝑛𝐵𝐈) d𝒙,

(3.25)

and ▵CL is the rate of energy dissipation, given by

▵CL= ∫ 𝜉𝐴tr
(

(𝐻𝐴𝐈 − 𝑛𝐴𝐀−1)2𝐀
)

+ 𝜉𝐵 tr
(

(𝐻𝐵𝐈 − 𝑛𝐵𝐁−1)2𝐁
)

+ (𝑘1𝑛𝐴 − 𝑘̃2(𝐁)𝑛2𝐵)
(

ln
(

𝑛𝐴
𝑛∞𝐴

)

− 2 ln
(

𝑛𝐵
𝑛∞𝐵

)

+ ln
det(𝐻𝐵𝐁∕𝑛𝐵)
√

det(𝐻𝐴𝐀∕𝑛𝐴)

)

+ tr
(

(𝑘1𝐀 − 1
2
𝑘̃2(𝐁)𝑛𝐵𝐁)(𝑛𝐵𝐁−1 − 1

2
𝑛𝐴𝐀−1)

)

d𝒙.

(3.26)

In particular, under the condition that 𝑛𝐴 > 0, 𝑛𝐵 > 0, and 𝐀 and 𝐁 are
symmetric positive-definite, ▵CL≥ 0.

Remark 3.2. The coarse-grained free energy CL(𝑛𝐴, 𝑛𝐵 ,𝐀,𝐁) is same
to the macroscopic free energy given in [11]. The free energy contains
two part: the Oldroyd-B type elastic energy associated with species 𝐴
and 𝐵 [73,74], and the Lyapunov function of the chemical reaction
A

𝑘1
←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝑘̃eq2

2B on number densities with 𝑘1𝑛∞𝐴 = 𝑘̃𝑒𝑞2 (𝑛∞𝐵 )2 and 𝑘̃eq2 =

𝐻𝑑∕2∕(2𝑑𝜋𝑑∕2).

Proof.
We first show that we have the identity (3.24) if 𝑛𝐴, 𝑛𝐵 , 𝐀 and 𝐁

satisfy equation (3.23) with 𝒖 = 0. Indeed, for CL(𝑛𝐴, 𝑛𝐵 ,𝐀,𝐁), a direct
computation leads to

d
d𝑡
CL = d

d𝑡 ∫
𝑛𝐴

(

ln
(

𝑛𝐴∕𝑛∞𝐴
)

− 1
)

+ 𝑛𝐵
(

ln
(

𝑛𝐵∕𝑛∞𝐵
)

− 1
)

− 𝑛𝐴 ln det
(

𝐻𝐴𝐀∕𝑛𝐴
)

∕2 + tr(𝐻𝐴𝐀 − 𝑛𝐴𝐈)∕2
− 𝑛𝐵 ln det

(

𝐻𝐵𝐁∕𝑛𝐵
)

∕2 + tr(𝐻𝐵𝐁 − 𝑛𝐵𝐈)∕2 d𝒙.

= ∫ (ln 𝑛𝐴 − ln 𝑛∞𝐴 − ln det(𝐻𝐴𝐀)∕2 + 𝑑 ln(𝑛𝐴)∕2)𝜕𝑡𝑛𝐴

+ (ln 𝑛𝐵 − ln 𝑛∞𝐵 − ln det(𝐻𝐵𝐁)∕2 + 𝑑 ln(𝑛𝐵)∕2)𝜕𝑡𝑛𝐵
+ tr((𝐻𝐴𝐈 − 𝑛𝐴𝐀−1)𝜕𝑡𝐀)∕2 + tr((𝐻𝐵𝐈 − 𝑛𝐵𝐁−1)𝜕𝑡𝐁)∕2 d𝒙.

(3.27)

Substituting (3.23) into (3.27), and rearranging term, we have

d
d𝑡
CL = −∫ 𝜉𝐴tr

(

(𝐻𝐴𝐈 − 𝑛𝐴𝐀−1)2𝐀
)

+ 𝜉𝐵 tr
(

(𝐻𝐵𝐈 − 𝑛𝐵𝐁−1)2𝐁
)

+ (𝑘1𝑛𝐴 − 𝑘̃2(𝐁)𝑛2𝐵)
(

ln
(

𝑛𝐴
𝑛∞𝐴

)

− 2 ln
(

𝑛𝐵
𝑛∞𝐵

)

+ ln
det(𝐻𝐵𝐁∕𝑛𝐵)
√

det(𝐻𝐴𝐀∕𝑛𝐴)

)

+ tr
(

(𝑘1𝐀 − 𝑘̃2(𝐁)𝑛𝐵𝐁∕2)(𝑛𝐵𝐁−1 − 𝑛𝐴𝐀−1∕2)
)

d𝒙.

To prove ▵CL≥ 0, we first define the quasi-equilibrium state 𝜓∗
𝐴 and

𝜓∗
𝐵 for given 𝑛𝐴 > 0, 𝑛𝐵 > 0 and symmetric, positive-definite matrices

𝐀 and 𝐁. The existence and uniqueness of 𝜓∗ and 𝜓∗ have been shown
𝐴 𝐵
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a

in Proposition 3.1. Notice that for

𝜓∗
𝛼 (𝒒) =

𝑛𝛼
√

(2𝜋)𝑑 det(𝐌)
exp(−1

2
𝒒𝑇𝐌−1

𝛼 𝒒).

𝜓∞
𝛼 =

𝑛∞𝛼
√

(2𝜋)𝑑𝐻−𝑑
𝛼

exp(−1
2
𝐻𝛼𝒒𝑇 𝒒),

(3.28)

we have

∫ 𝜓∗
𝛼 ln

( 𝜓∗
𝛼

𝜓∞
𝛼

)

d𝒒

= ∫ 𝜓∗
𝛼

(

ln
𝑛𝛼
𝑛∞𝛼

+ ln 1
√

det(𝐻𝛼𝐌𝛼)
+ 1

2
(

−𝒒𝑇𝐌−1
𝛼 𝒒 +𝐻𝛼𝒒𝑇 𝒒

)

)

d𝒒

= 𝑛𝛼 ln
𝑛𝛼
𝑛∞𝛼

−
𝑛𝛼
2

ln det(𝐻𝛼𝐌𝛼) + tr(𝐻𝛼𝑛𝛼𝐌𝛼 − 𝑛𝛼𝐈),

(3.29)

and

∫ 𝜓∗
𝛼

|

|

|

|

|

∇𝒒

(

ln
𝜓∗
𝛼

𝜓∞
𝛼

)

|

|

|

|

|

2

d𝒒 = ∫ 𝜓𝛼
|

|

|

|

∇𝒒(−
1
2
𝒒𝑇𝐌−1

𝛼 𝒒 + 1
2
𝐻𝛼𝒒𝑇 𝒒)

|

|

|

|

2
d𝒒

= tr(−𝐌−1
𝛼 +𝐻𝛼𝐼)2𝑛𝛼𝐌𝛼 .

(3.30)

Moreover, by using the fact that 𝑘1𝜓∞
𝐴 = 𝑘2(𝜓∞

𝐵 )2, we have

∫ (𝑘1𝜓∗
𝐴 − 𝑘2(𝜓∗

𝐵)
2)
(

ln
𝜓∗
𝐴

𝜓∞
𝐴

− 2 ln
𝜓∗
𝐵

𝜓∞
𝐵

)

d𝒒

= ∫ (𝑘1𝜓∗
𝐴 − 𝑘2(𝜓∗

𝐵)
2)

[

ln
𝑛𝐴
𝑛∞𝐴

+ ln 1
√

det(𝐻𝐴𝐀̃)
+ 1

2

(

−𝒒𝑇 𝐀̃−1𝒒 +𝐻𝐴𝒒𝑇 𝒒
)

− 2

⎛

⎜

⎜

⎜

⎝

ln
𝑛𝐵
𝑛∞𝐵

+ ln 1
√

det(𝐻𝐵𝐁̃)
+ 1

2

(

−𝒒𝑇 𝐁̃−1𝒒 +𝐻𝐵𝒒𝑇 𝒒
)

⎞

⎟

⎟

⎟

⎠

]

= (𝑘1𝑛𝐴 − 𝑘̃2(𝐁)𝑛2𝐵)
⎛

⎜

⎜

⎜

⎝

ln
(

𝑛𝐴
𝑛∞𝐴

)

− 2 ln
(

𝑛𝐵
𝑛∞𝐵

)

+ ln
det𝐻𝐵𝐁̃

√

det𝐻𝐴𝐀̃

⎞

⎟

⎟

⎟

⎠

+ 1
2
tr
(

(−𝐀̃−1 +𝐻𝐴𝐈 + 2𝐁̃−1 − 2𝐻𝐵𝐈)(𝑘1𝐀 − 1
2
𝑘2(𝐁)𝑛𝐵𝐁̃)

)

,

(3.31)

where the last equality follows (3.20) and (3.22). Using 𝐻𝐴 = 2𝐻𝐵
and combining the above calculations ((3.29)–(3.31)), we can show the
(3.24) is exactly same to

d
d𝑡 ∬

𝜓∗
𝐴

(

ln
( 𝜓∗

𝐴
𝜓∞
𝐴

)

− 1
)

+ 𝜓∗
𝐵

(

ln
( 𝜓∗

𝐵
𝜓∞
𝐵

)

− 1
)

d𝒒d𝒙

= −∬ 𝜉𝐴𝜓𝐴
|

|

|

|

|

∇𝒒

(

ln
( 𝜓∗

𝐴
𝜓∞
𝐴

))

|

|

|

|

|

2

+ 𝜉𝐵𝜓𝐵
|

|

|

|

|

∇𝒒

(

ln
( 𝜓∗

𝐵
𝜓∞
𝐵

))

|

|

|

|

|

2

+ (𝑘1𝜓∗
𝐴 − 𝑘2(𝜓∗

𝐵)
2) ln

(

𝑘1𝜓∗
𝐴

𝑘2(𝜓∗
𝐵)

2

)

d𝒒d𝒙,

(3.32)

which is obtained by replacing 𝜓𝛼 by 𝜓∗
𝛼 in the original micro–macro

energy-dissipation law (2.52). It is clear that the right-hand side of
(3.32) is nonnegative, i.e., ▵CL≥ 0. □

With Proposition 3.2, it is straightforward to show that the closure
model (3.23) satisfies the energy-dissipation law

d
d𝑡

(

∫
1
2
𝜌|𝒖|2d𝒙 + CL(𝑛𝐴, 𝑛𝐵 ,𝐀,𝐁)

)

= −
(

∫ 𝜂|∇𝒖|2d𝒙+ ▵CL
)

≤ 0

(3.33)

for 𝑛𝐴 > 0, 𝑛𝐵 > 0 and symmetric, positive-definite matrices 𝐀
8

nd 𝐁. However, it is not straightforward to derive Eq. (3.23) from
the energy-dissipation law (3.33). Moreover, due to presence of the
reaction procedure, the dynamics (3.23) no longer lies on the quasi-
equilibrium manifold ∗. Indeed, the maximum entropy closure only
use the information of the free energy part of the original system, it
is unclear whether it is suitable for the dissipation part. As discussed
in the next section, the closure model (3.23) fails to procedure a non-
monotonic curve of the shear stress versus the applied shear rate in
steady homogeneous flows. Such a closure approximation may only be
valid when the elastic part reaches its equilibrium much faster then
the reaction part in the original system, i.e., the solution will move
to ∗ rapidly [68]. Unfortunately, in a high shear rate region, the
macroscopic flow prevents the elastic part to reach its equilibrium.

3.3. The moment closure model: closure-then-variation

To obtain a thermodynamically consistent macroscopic model that
is suitable for the high shear rate region, we consider a different closure
approximation procedure, known as closure-then-variation. The idea is
to apply the closure approximation to the energy dissipation law first,
and derive the closure system by applying the energetic variational
approach in the coarse-grained level. This approach is similar to the
Onsager principle based dynamic coarse graining method proposed
in [29]. By imposing a proper dissipation mechanism on the quasi-
equilibrium manifold ∗, we can have a thermodynamically consistent
closure model for both mechanical and chemical parts of the system.

On the quasi-equilibrium manifold ∗, we have 𝐀 = 𝑛𝐴𝐀̃ and
𝐁 = 𝑛𝐵𝐁̃. So the free energy CL(𝑛𝐴, 𝑛𝐵 ,𝐀,𝐁) for the closure system,
defined in (3.25), can be reformulated in terms of number densities 𝑛𝐴
and 𝑛𝐵 , and the conformation tensors of two species 𝐀̃ and 𝐁̃, given by

̃CL(𝑛𝐴, 𝑛𝐵 , 𝐀̃, 𝐁̃) = ∫ 𝑛𝐴

(

ln
(

𝑛𝐴
𝑛∞𝐴

)

− 1
)

+ 𝑛𝐵

(

ln
(

𝑛𝐵
𝑛∞𝐵

)

− 1
)

+
𝑛𝐴
2

(

− ln det
(

𝐻𝐴𝐀̃
)

+ tr
(

𝐻𝐴𝐀̃ − 𝐈
))

+
𝑛𝐵
2

(

− ln det
(

𝐻𝐵𝐁̃
)

+ tr
(

𝐻𝐵𝐁̃ − 𝐈
))

.

(3.34)

We can impose the kinematics on 𝑛𝐴 and 𝑛𝐵 to account for the macro-
scopic breakage and combination procedure:
{

𝜕𝑡𝑛𝐴 + ∇ ⋅ (𝑛𝐴𝒖) = −𝜕𝑡𝑅𝑛

𝜕𝑡𝑛𝐵 + ∇ ⋅ (𝑛𝐵𝒖) = 2𝜕𝑡𝑅𝑛,
(3.35)

where 𝑅𝑛 is the macroscopic reaction trajectory.
The dissipation of the macroscopic moment closure system on ∗

consists of three parts: the viscosity of the macroscopic flow, the
evolution of the conformation tensors and the reaction on the number
densities, which can be formulated as

▵̃
∗ = ∫ 𝜂|∇𝒖|2 + tr

(

𝖬𝐴

(

d𝐀̃
d𝑡

)2)

+ tr

(

𝖬𝐵

(

d𝐁̃
d𝑡

)2)

+ 𝐷̃chem(𝑅𝑛, 𝜕𝑡𝑅𝑛)d𝒙,

(3.36)

where d∙
d𝑡 = 𝜕𝑡 ∙ +(𝒖 ⋅ ∇) ∙ −(∇𝒖) ∙ − ∙ (∇𝒖)T is the kinematic transport of

the conformation tensors [75], 𝖬𝐴(𝑛𝐴, 𝐀̃) and 𝖬𝐵(𝑛𝐵 , 𝐁̃) are mobility
matrices. 𝐷̃chem(𝑅𝑛, 𝜕𝑡𝑅𝑛), defined by

𝐷̃chem(𝑅𝑛, 𝜕𝑡𝑅𝑛) = 𝜕𝑡𝑅
𝑛 ln

(

𝜂𝑛(𝑅𝑛)𝜕𝑡𝑅𝑛 + 1
)

. (3.37)

is the dissipation for breakage and combination process at the macro-
scopic scale. The choice of 𝜂𝑛(𝑅𝑛) determines the macroscopic reaction
rate in the closure system. One can view (3.36) as a projection of the
original dissipation on the quasi-equilibrium manifold ∗. We then
apply the energetic variational approach to obtain the dynamics on ∗,
i.e., the moment closure system.
The chemical reaction on the number densities: By performing
energetic variational approach with respect to 𝑅𝑛 and 𝜕𝑡𝑅𝑛, we obtain

ln
(

𝜂 (𝑅𝑛)𝜕 𝑅𝑛 + 1
)

= − 𝛿̃
CL

= 𝜇𝑛 − 2𝜇𝑛 . (3.38)
𝑛 𝑡 𝛿𝑅𝑛 𝐴 𝐵
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e
t
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s
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𝐀

a

For the closure energy ̃CL[𝑛𝐴, 𝑛𝐵 , 𝐀̃, 𝐁̃], we can compute the corre-
sponding chemical potential of number densities 𝑛𝐴 and 𝑛𝐵 as

𝜇𝑛𝐴 = ln 𝑛𝐴 − ln 𝑛∞𝐴 − 1
2
ln
(

det
(

𝐻𝐴𝐀̃
))

+ 1
2
tr
(

𝐻𝐴𝐀̃ − 𝐈
)

,

𝜇𝑛𝐵 = ln 𝑛𝐵 − ln 𝑛∞𝐵 − 1
2
ln
(

det
(

𝐻𝐵𝐁̃
))

+ 1
2
tr
(

𝐻𝐵𝐁̃ − 𝐈
)

,
(3.39)

which is same to the generalized chemical potential defined in [11].
At the chemical equilibrium for given 𝐀̃ and 𝐁̃, 𝜇𝑛𝐴 = 2𝜇𝑛𝐵 , we have

𝐾neq
𝑒𝑞 =

𝑛neq𝐴
(𝑛neq𝐵 )2

=
𝑛∞𝐴 exp(− 1

2 tr(𝝉𝐴∕𝑛𝐴))
√

det
(

𝐻𝐴𝐀̃
)

(𝑛∞𝐵 )2 exp(−tr(𝝉𝐵∕𝑛𝐵)) det
(

𝐻𝐵𝐁̃
) , (3.40)

where

𝝉𝐴 = 𝐻𝐴𝐀 − 𝑛𝐴𝐈, 𝝉𝑩 = 𝐻𝐵𝐁 − 𝑛𝐵𝐈 (3.41)

is the induced stress tensor associated with species 𝐴 and 𝐵 respec-
tively. Following [11], we take

1∕𝜂𝑛(𝑅𝑛) = 𝑘̃2 exp(tr(𝝉𝐵)∕𝑛𝐵)∕ det(𝐻𝐵𝐁̃)𝑛2𝐵 , (3.42)

which gives

𝑘neq1 = 𝑘𝑒𝑞1
exp( 12 tr(𝝉𝐴∕𝑛𝐴))
√

det(𝐻𝐴𝐀̃)
, 𝑘neq2 = 𝑘̃𝑒𝑞2

exp(tr(𝝉𝐵∕𝑛𝐵))

det(𝐻𝐵𝐁̃)
. (3.43)

Thus, the number densities satisfy

𝜕𝑡𝑛𝐴 + ∇ ⋅ (𝑛𝐴𝒖) = −𝑘neq1 𝑛𝐴 + 𝑘neq2 𝑛2𝐵 ,

𝜕𝑡𝑛𝐵 + ∇ ⋅ (𝑛𝐵𝒖) = 2𝑘neq1 𝑛𝐴 − 2𝑘neq2 𝑛2𝐵 ,
(3.44)

The resulting non-equilibrium reaction rates of number densities are
exact same to those in the GCB model [8,11].
Gradient flows with convection on conformation tensors: The evo-
lution of conformation tensors can be obtained by performing energetic
variational approach in terms of 𝐀 (𝐁) and d𝐀

d𝑡 ( d𝐁d𝑡 ) [34,74], which
results in
⎧

⎪

⎨

⎪

⎩

𝖬𝐴(𝜕𝑡𝐀̃ + (𝒖 ⋅ ∇)𝐀̃ − (∇𝒖)𝐀̃ − 𝐀̃(∇𝒖)T) = − 𝛿
CL

𝛿𝐀

𝖬𝐵(𝜕𝑡𝐁̃ + (𝒖 ⋅ ∇)𝐁̃ − (∇𝒖)𝐁̃ − 𝐁̃(∇𝒖)T) = − 𝛿
CL

𝛿𝐁
.

(3.45)

By taking 𝖬𝐴 = 𝑛𝐴𝐀̃−1∕4𝜉𝐴 and 𝖬𝐵 = 𝑛𝐵𝐁̃−1∕4𝜉𝐵 , we have

𝜕𝑡𝐀̃ + (𝒖 ⋅ ∇)𝐀̃ − (∇𝒖)𝐀̃ − 𝐀̃(∇𝒖)T = 𝜉𝐴(2𝐈 − 2𝐻𝐴𝐀̃)

𝜕𝑡𝐁̃ + (𝒖 ⋅ ∇)𝐁̃ − (∇𝒖)𝐁̃ − 𝐁̃(∇𝒖)T = 𝜉𝐵(2𝐈 − 2𝐻𝐵𝐁̃).
(3.46)

Macroscopic flow equation: Now we compute the macroscopic flow
quation by performing the energetic variational approach with respect
o the flow map 𝒙(𝐗, 𝑡). When writing the macroscopic force balance,
e should assume that the number densities and the conformation ten-

ors to be purely transported with the flow. Under the incompressible
ondition (det 𝖥 = 1), we have the kinematics [75]

̃ = 𝖥𝐀̃0𝖥
T, 𝐁̃ = 𝖥𝐁̃0𝖥

T, 𝑛𝐴 = 𝑛0𝐴, 𝑛𝐵 = 𝑛0𝐵 , (3.47)

and the action functional for the moment closure system is given by

̃[𝒙] = ∫

𝑇

0 ∫
1
2
𝜌0|𝒙𝑡|

2 − 𝜆

[

𝑛0𝐴
2
tr
(

𝐻𝐴𝖥𝐀̃0𝖥
T
)

+
𝑛0𝐵
2
tr
(

𝐻𝐵𝖥𝐁̃0𝖥
T
)

]

d𝐗d𝑡

(3.48)

fter dropping all the constant terms. A direct computation results in

𝛿̃
𝛿𝒙

= −𝜌(𝒖𝑡 + 𝒖 ⋅ ∇𝒖) + 𝜆∇ ⋅ (𝐻𝐴𝐀 +𝐻𝐵𝐁). (3.49)

The only dissipation term for the macroscopic flow is the viscosity
part 𝜂 = 1

2 ∫ 𝜂|∇𝒖|
2d𝒙 [34], so the dissipative can be computed as

𝛿𝜂
𝛿𝒙𝑡

= −𝜂𝛥𝒖. The final macroscopic force balance can be written as
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𝜌(𝒖𝑡 + 𝒖 ⋅ ∇𝒖) + ∇𝑝̃ = 𝜂𝛥𝒖 + 𝜆∇ ⋅ (𝐻𝐴𝐀 +𝐻𝐵𝐁), (3.50)
where 𝑝̃ is a Lagrangian multiplier for the incompressible condition.
Eq. (3.50) is equivalent to

𝜌(𝒖𝑡 + 𝒖 ⋅ ∇𝒖) + ∇𝑝 = 𝜂𝛥𝒖 + 𝜆∇ ⋅ (𝐻𝐴𝐀 +𝐻𝐵𝐁 − (𝑛𝐴 + 𝑛𝐵)𝐈), (3.51)

in the incompressible case.
Finally, we get the closure system

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜌(𝜕𝑡𝒖 + (𝒖 ⋅ ∇)𝒖) + ∇𝑝 = 𝜂𝛥𝒖
+ 𝜆∇ ⋅

(

𝐻𝐴𝑛𝐴𝐀̃ +𝐻𝐵𝑛𝐵𝐁̃ − (𝑛𝐴 + 𝑛𝐵)𝐈
)

∇ ⋅ 𝒖 = 0
𝜕𝑡𝑛𝐴 + ∇ ⋅ (𝑛𝐴𝒖) = −𝑘neq1 𝑛𝐴 + 𝑘neq2 𝑛2𝐵 ,
𝜕𝑡𝑛𝐵 + ∇ ⋅ (𝑛𝐵𝒖) = 2𝑘neq1 𝑛𝐴 − 2𝑘neq2 𝑛2𝐵 ,
𝜕𝑡𝐀̃ + (𝒖 ⋅ ∇)𝐀̃ − (∇𝒖)𝐀̃ − 𝐀̃(∇𝒖)T = 2𝜉𝐴(𝐈 −𝐻𝐴𝐀̃)
𝜕𝑡𝐁̃ + (𝒖 ⋅ ∇)𝐁̃ − (∇𝒖)𝐁̃ − 𝐁̃(∇𝒖)T = 2𝜉𝐵(𝐈 −𝐻𝐵𝐁̃),

(3.52)

where 𝑘neq1 and 𝑘neq2 are defined in (3.43). One can view (3.52) as a
dynamics restricted in the quasi-equilibrium manifold ∗. Recall that
𝐀 = 𝑛𝐴𝐀̃ and 𝐁 = 𝑛𝐵𝐁̃ on ∗. Combining (3.46) with (3.44), we have
the second moment equations

𝜕𝑡𝐀 + (𝒖 ⋅ ∇)𝐀 − (∇𝒖)𝐀 − 𝐀(∇𝒖)T = 2𝜉𝐴(𝑛𝐴𝐈 −𝐻𝐴𝐀) − 𝑘
neq
1 𝐀 + 𝑘neq2 𝑛2𝐵𝐀̃

𝜕𝑡𝐁 + (𝒖 ⋅ ∇)𝐁 − (∇𝒖)𝐁 − 𝐁(∇𝒖)T = 2𝜉𝐵(𝑛𝐵𝐈 −𝐻𝐵𝐁)

+ 2𝑘neq1 𝑛𝐴𝐁̃ − 2𝑘neq2 𝑛𝐵𝐁.

(3.53)

Remark 3.3. The breakage and combination process actually create
an active stress in the momentum equation if there exists an addi-
tional mechanism to maintain the breakage and combination process
away from an steady-state, as we can decompose 𝑛𝛼 into two part,
i.e., 𝑛𝛼(𝒙, 𝑡) = 𝑛∞𝛼 (𝒙) + 𝑛a𝛼(𝒙, 𝑡) [76].

Remark 3.4. We notice that the reaction terms in the celebrate
VCM [10] and GCB models [11] take a different form. As mentioned in
Remark 2.2, the VCM model assumes the microscopic reaction takes the
form 𝑘1𝜓𝐴−𝑘2𝜓𝐵 ∗ 𝜓𝐵 from (3.53), which leads to the term 𝑘𝐴𝐀−𝑘2𝑛𝐵𝐁
in the second moment equation. The GCB model also take such a form
as a starting point. To obtain the same form of reaction terms, one need
further assume 2𝐀̃ = 𝐁̃, then

− 𝑘neq1 𝐀 + 𝑘neq2 𝑛2𝐵𝐀̃ ≈ −𝑘neq1 𝐀 + 1
2
𝑘neq2 𝑛𝐵𝐁,

2𝑘neq1 𝑛𝐴𝐁̃ − 2𝑘neq2 𝑛𝐵𝐁 ≈ 4𝑘neq1 𝐀 − 2𝑘neq2 𝑛𝐵𝐁.
(3.54)

The assumption (3.54) is reasonable, since for given number densities
𝑛𝐴 and 𝑛𝐵 , we have 𝐀̃𝑒𝑞 = 1

𝐻𝐴
𝐈, 𝐁̃𝑒𝑞 = 1

𝐻𝐵
𝐈, which implies that

2𝐀̃𝑒𝑞 = 𝐁̃𝑒𝑞 at the local equilibrium. So 2𝐀̃ ≈ 𝐁̃ is valid at least near
the local equilibrium. Under the approximation (3.54), we can reach a
closure model

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜌(𝜕𝑡𝒖 + (𝒖 ⋅ ∇)𝒖) + ∇𝑝
= 𝜂𝛥𝒖 + 𝜆∇ ⋅

(

𝐻𝐴𝐀 +𝐻𝐵𝐁 − (𝑛𝐴 + 𝑛𝐵)𝐈
)

∇ ⋅ 𝒖 = 0
𝜕𝑡𝑛𝐴 + ∇ ⋅ (𝑛𝐴𝒖) = −𝑘neq1 𝑛𝐴 + 𝑘neq2 𝑛2𝐵 ,
𝜕𝑡𝑛𝐵 + ∇ ⋅ (𝑛𝐵𝒖) = 2𝑘neq1 𝑛𝐴 − 2𝑘neq2 𝑛2𝐵 ,
𝜕𝑡𝐀 + (𝒖 ⋅ ∇)𝐀 − (∇𝒖)𝐀 − 𝐀(∇𝒖)T

= 2𝜉𝐴(𝑛𝐴𝐈 −𝐻𝐴𝐀) − 𝑘
neq
1 𝐀 + 1

2𝑘
neq
2 𝑛𝐵𝐁

𝜕𝑡𝐁 + (𝒖 ⋅ ∇)𝐁 − (∇𝒖)𝐁 − 𝐁(∇𝒖)T

= 2𝜉𝐵(𝑛𝐵𝐈 −𝐻𝐵𝐁) + 4𝑘neq1 𝐀 − 2𝑘neq2 𝑛𝐵𝐁,

(3.55)

which has the same form of the VCM and GCB models. Although the
dynamics (3.55) no longer lies on the quasi-equilibrium, it can produce
more reasonable shear-stress curve in a high shearing rate region.
Compare with (3.52), (3.55) can force |

|

|

2𝐀̃ − 𝐁̃||
|

to be small due to the
approximation (3.54). We will compare these two models in details in

the future work.
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Fig. 4.2. Calculated shear stress and species number density as a function of 𝜅 (𝑘𝑒𝑞1 = 0.9, 𝑘̃𝑒𝑞2 = 0.15, 𝜉𝐴 = 0.9, 𝜉𝐴∕𝜉𝐵 = 10−3, 𝐻𝐴 = 2, 𝐻𝐵 = 1). (a)–(b) Model (3.23); (c)–(d) Model
3.52); (e)–(f) Model (3.55).
emark 3.5. In the above derivation, we assume the second moments
an be written as the multiplication of number density and the con-
ormation tensor, i.e. 𝐀 = 𝑛𝐴𝐀̃ and 𝐁 = 𝑛𝐵𝐁̃. Such a decomposition is
alid on the submanifold formed by the quasi-equilibrium states, but
ay not true in general. A different moment closure system can be

btained if one treat the number densities and the second moments to
e independent. Then the free energy of the closure system (3.25) can
e written as

CL(𝑛𝐴, 𝑛𝐵 ,𝐀,𝐁) = ∫ 𝑛𝐴

(

ln
(

𝑛𝐴
𝑛∞𝐴

)

− 1
2
det𝐻𝐴𝐀 − 1

)

+ 𝑛𝐵

(

ln
(

𝑛𝐵
𝑛∞𝐵

)

− 1 − 1
2
det(𝐻𝐵𝐁)

)

+ 𝑑
2
(𝑛𝐴 ln 𝑛𝐴 − 𝑛𝐴 + 𝑛𝐵 ln 𝑛𝐵 − 𝑛𝐵) +

1
2
tr(𝐻𝐴𝐀) +

1
2
tr(𝐻𝐵𝐁),

(3.56)
10
which implies that

𝜇𝑛𝐴 = ln 𝑛𝐴−ln 𝑛∞𝐴 − 1
2
det(𝐻𝐴𝐀∕𝑛𝐴), 𝜇𝑛𝐵 = ln 𝑛𝐵−ln 𝑛∞𝐵 − 1

2
det(𝐻𝐵𝐁∕𝑛𝐵).

(3.57)

We can simply modify the reaction rates in (3.23) by

𝑘neq1 = 𝑘𝑒𝑞1 ∕ det(𝐻𝐴𝐀∕𝑛𝐴), 𝑘neq2 = 𝑘𝑒𝑞2 ∕ det(𝐻𝐵𝐁∕𝑛𝐵) (3.58)

to obtain another closure model. We will explore this in the future.

Remark 3.6. It is worth mentioning that the derivation in this section
can be viewed as a pure macroscopic approach to model wormlike
micellar solutions in the framework of EnVarA, which starts with the
free energy ̃CL[𝑛𝐴, 𝑛𝐵 , 𝐀̃, 𝐁̃] and the dissipation ▵̃

∗ given by (3.34)
and (3.36) respectively. As a pure macroscopic approach, it is not

necessary to assume 𝐻𝐴 = 2𝐻𝐵 . If we assume 𝐻𝐵 = 2𝐻𝐴, and adopt
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Fig. 4.3. Transient behavior of the closure model (3.55) in a planar Couette flow: (a) Calculated shear stress at moving wall for different ramp-up rate 𝑎. (b) The wall shear stress
as a function of 𝑡, (c) Species number densities at the wall.
the approximation 𝐀∕𝑛𝐴 ≈ 2𝐁∕𝑛𝐵 , then we have

− 𝑘neq1 𝐀 + 𝑘neq2 𝑛2𝐵𝐀̃ ≈ −𝑘neq1 𝐀 + 2𝑘neq2 𝑛𝐵𝐁,

2𝑘neq1 𝑛𝐴𝐁̃ − 2𝑘neq2 𝑛𝐵𝐁 ≈ 𝑘neq1 𝐀 − 2𝑘neq2 𝑛𝐵𝐁,
(3.59)

hich is exactly same to those in the GCB model [8,11].

. Numerics

In this section, we discuss the prediction of the above moment
losure models through a few toy examples. Detailed numerical studies
or the original micro–macro model and the closure models will be
arried out in future work.

.1. Steady homogeneous shear flow

First we consider a steady homogeneous shear flow with the velocity
ield given by

= (𝜅𝑦, 0),

here 𝜅 is the constant shear rate. Moreover, we assume that the
umber density of each species is spatial homogeneous. So the original
DE system is reduced to an ODE system of 𝑛𝛼 , 𝐀 and 𝐁. We solve the
DE system by the standard explicit Euler scheme. We take the initial
ondition as

0
𝐴 = 1, 𝑛0𝐵 = 2.5, 𝐀0 =

𝑛0𝐴
𝐻𝐴

𝐈, 𝐁0 =
𝑛0𝐵
𝐻𝐵

𝐈. (4.1)

For each 𝜅, we compute the number density of each species, and the
induced shear stress 𝜏12 = 𝐻𝐴𝐴12+𝐻𝐵𝐵12. We compare the predictions
for three models (3.23), (3.52) and (3.55). The terminal criterion for
the numerical calculation is 𝑇 = 2 or 𝑛𝐴 < 10−5. Fig. 4.2 shows the
calculated shear stress and the number densities of two species as a
function of 𝜅 for three models (𝑘𝑒𝑞1 = 0.9, 𝑘̃𝑒𝑞2 = 0.15, 𝜉𝐴 = 0.9,
𝜉𝐴∕𝜉𝐵 = 10−3, 𝐻𝐴 = 2, 𝐻𝐵 = 1). At small shear rates, all three

odels can produce similar results, due to the fact that 𝐀̃ and 𝐁̃ are
lose to their equilibria. The closure model (3.23), obtained by applying
he maximum entropy closure to the equation directly, fails to obtain

non-monotonic shear-stress curve. The main reason might be the
11

act that the break rate 𝑘1 is independent with the shear rate in this
model, which cannot lead to a pronounced breakage of species 𝐴. The
predictions of model (3.52) and (3.55) are also different in the high
shear rate region. The model (3.52) leads to a rapidly breakage of
species 𝐴 (Fig. 4.2(c) - (d)), which does not seem to match previous
experimental and simulation results [11]. The curves produced by the
model (3.55), shown in Fig. 4.2(e)–(f), is consistent with the results
by the VCM and GCB models qualitatively [11]. As mentioned earlier,
the approximation (3.54) can be viewed as an implicit regularization
term such that |2𝐀̃ − 𝐁̃| to be small, which prevent 𝐴12 to be too large.
This simple numerical test shows the importance of choosing a proper
dissipation in the course-grained level in order to capture the non-
equilibrium rheological properties of wormlike micellar solutions. A
detailed comparison of different closure models will be made in future
work.

4.2. Transient behavior in a planar shear flow

In this subsection, we investigate the transient behavior of the
model in a planar shear flow for the closure model (3.55). Let 𝒖 =
(𝑢(𝑦), 0) and 𝑢(𝑦) satisfies
{

𝑢𝑡 = 𝜂𝜕𝑦𝑦𝑢 + 𝜆𝜕𝑦(𝐻𝐴𝐴12 +𝐻𝐵𝐵12),
𝑢(𝑙) = 𝜅(𝑡), 𝑢(0) = 0,

(4.2)

we take 𝜅(𝑡) = 𝛾 tanh(𝑎𝑡), where 𝑎 is a parameter controls how the wall
velocity approaches a steady-state [8,19]. Other parameters are set as:
𝑙 = 0.1, 𝐻𝐴 = 2, 𝐻𝐵 = 1, 𝜉𝐴 = 0.9, 𝜉𝐴∕𝜉𝐵 = 10−3, 𝜂 = 1, 𝜆 = 1, 𝑘1 = 1
and 𝑘̃eq2 = 6.25. The numerical setup is close to the case considered
in [8], but we consider the Couette flow between two surface instead
of the Taylor–Couette flow in the gap between two rotating cylinders
for simplicity. We fix 𝛾 = 50 through this subsection.

Fig. 4.3(a) shows the transient response of the wall shear stress ten-
sor for different ramp-up rates 𝑎. In all three cases, the shear stress will
reach its maximum during the ramp-up process. Different ramp-up rates
do not significantly affect the steady-state. Fig. 4.3(b) shows temporal
evolution of the total stress at the moving surface for 𝜅(𝑡) = 50 tanh(5𝑡),
the individual contributions of species of 𝐴 and 𝐵 are represented by
dashed and dash-dotted lines. The number densities of species 𝐴 and
𝐵 are plotted in Fig. 4.3(c). The above results are qualitatively agree
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with rheological characteristics predicted by the GCB model in circular
Taylor–Couette flow (see Fig. 4 and Fig. 5 in [8]).

5. Summary

In this paper, inspired by the celebrated VCM type models [10,11],
we derive a thermodynamically consistent two-species micro–macro
model of wormlike micellar solutions by employing an energetic vari-
ational approach. Our model incorporates a breakage and combination
process of polymer chains into a classical micro–macro dumbbell model
for polymeric fluids in a unified variational framework. The energetic
variational formulation for the micro–macro model opens a new door
for both numerical studies and theoretical analysis [77]. The modeling
approach also provides a framework to integrate other mechanisms,
and can be applied to other chemo-mechanical systems beyond the
wormlike micellar solutions, such as active soft matter systems [76,78–
81].

We also study the maximum entropy closure approximation to
the micro–macro model of wormlike micellar solutions. The maxi-
mum entropy closure links the micro–macro model with the VCM-type
macroscopic model [10,11,15]. We compare closure approximations by
both ‘‘variation-then-closure’’ and ‘‘closure-then-variation’’ approaches.
We show that these two approaches result in different closure mod-
els due to presence of the chemical reaction. Since maximum en-
tropy closure only uses the information from the free energy part of
the original system [68], applying the closure approximation on the
PDE level cannot guarantee the thermodynamical consistency. By a
‘‘closure-then-variation’’ approach, we can restrict the dynamics on
the coarse-grained manifold by choosing the dissipation properly. As a
consequence, the closure system preserves the thermodynamical struc-
tures of the original system for both chemical and mechanical parts.
Several numerical examples show that the closure model, obtained by
‘‘closure-then-variation’’ can capture the key rheological features of
wormlike micellar solutions. The variational structures of models in
both levels are crucial for the stability of whole system and the accuracy
of structure-preserving numerical simulations [43,82,83]. A detailed
numerical study for our models will be carried out in future work.
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