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Abstract

We introduce a new variational inference (VI) framework, called energetic variational inference (EVI). It minimizes the VI
objective function based on a prescribed energy-dissipation law. Using the EVI framework, we can derive many existing
particle-based variational inference (ParVI) methods, including the popular Stein variational gradient descent (SVGD). More
importantly, many new ParVI schemes can be created under this framework. For illustration, we propose a new particle-based
EVI scheme, which performs the particle-based approximation of the density first and then uses the approximated density in
the variational procedure, or “Approximation-then-Variation” for short. Thanks to this order of approximation and variation,
the new scheme can maintain the variational structure at the particle level, and can significantly decrease the KL-divergence
in each iteration. Numerical experiments show the proposed method outperforms some existing ParVI methods in terms of
fidelity to the target distribution.

Keywords KL-divergence - Energetic variational approach - Gaussian mixture model - Kernel function - Implicit-Euler -

Variational inference

1 Introduction

Bayesian methods play an important role in statistics and
data science nowadays. They provide a rigorous framework
for uncertainty quantification of various statistical learning
models (Stuart 2010; Gelman et al. 2013). The main compo-
nents of a Bayesian model include a set of observational data
{y;}_, with y; € RP, the model assumption of the likeli-
hood p({y;} ll _|x) with certain unknown parameters x € R4,
and a user-specified prior distribution for the parameters
po(x). The key step in Bayesian inference is to obtain the
posterior distribution, denoted by p(x|{ y,-}l.lzl). Following
the Bayes’ theorem, the posterior distribution of the unknown
parameters is
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However, it is a long standing challenge to obtain the
posterior distribution in practice when the analytical for-
mula of p(x|{ yi}{zl) is not tractable due to the integration
pUyi_p = [ pUyi}{_ %) po(x)dx.

Many approximate inference methods have been devel-
oped to approximate the posterior distribution. Among them,
two popular classes of methods are Markov Chain Monte
Carlo MCMC) algorithms (Metropolis et al. 1953; Hast-
ings 1970; Geman and Geman 1984; Welling and Teh 2011)
and Variational Inference (VI) methods (Jordan et al. 1999;
Neal and Hinton 1998; Wainwright and Jordan 2008; Blei
et al. 2017). MCMC is a family of methods that generate
samples by constructing a Markov chain whose equilib-
rium distribution is the target distribution. Examples include
the Metropolis—Hastings algorithm (Metropolis et al. 1953;
Hastings 1970), Gibbs sampling (Geman and Geman 1984,
Casella and George 1992), Langevin Monte Carlo (LMC)
(Rossky et al. 1978; Parisi 1981; Roberts and Tweedie
1996; Welling and Teh 2011), and Hamiltonian Monte Carlo
(HMC) (Neal 1993; Duane et al. 1987).

The VI framework essentially transforms the inference
problem into an optimization problem, which minimizes
some kind of objective functional over a prescribed family
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of distributions denoted by Q (Blei et al. 2017). The objec-
tive functional measures the difference between a candidate
distribution in Q and the target distribution. For Bayesian
models, the target distribution is the posterior distribution. VI
has a wide application that goes beyond Bayesian statistics
and is a powerful tool for approximating probability den-
sities. A common choice of the objective functional is the
Kullback-Leibler (KL) divergence (Blei et al. 2017). For any
two distributions p(x) and p*(x), the KL-divergence from
p to p* is given by

KL(p(x)[[p*(x)) = /p(x) In ( px) ) dx.
p*(x)

(1.1)

In the review paper (Blei et al. 2017), the authors have
made a detailed comparison between MCMC and VI meth-
ods, both conceptually and numerically. Essentially, MCMC
methods guarantee the convergence of the generated samples
to the target distribution when certain conditions are met. But
the price of this asymptotic property is that MCMC methods
tend to be more computationally intensive and thus might not
be suitable for large datasets. On the contrary, VI methods
do not have this asymptotic guarantee. For particle-based VI,
the fidelity of the empirical distribution of the particles to the
target distribution depends on the VI algorithm as well as the
number of particles. On the other hand, since VI is essen-
tially an optimization problem and it can take advantage of
the stochastic optimization methods, VI methods can be sig-
nificantly faster than MCMC. For detailed differences and
connections between the two types of methods, see MacKay
and Mac Kay (2003) and Salimans et al. (2015). In this paper,
we only focus on the VI approaches.

The VI framework minimizes KL(p(x)||p*(x)) with
respect to p € Q in order to approximate the target dis-
tribution p*. In traditional VI methods (Blei et al. 2017), Q
is often taken as a family of parametric distributions. There
also have been growing interests in flow-based VI methods,
in which Q consists of distributions obtained by a series of
smooth transformations from a tractable initial reference dis-
tribution. Examples include normalizing flow VI methods
(Rezende and Mohamed 2015; Kingma et al. 2016; Salman
et al. 2018) and particle-based VI methods (ParVIs) (Liu and
Wang 2016; Liu 2017; Liu and Zhu 2018; Chen et al. 2018;
Liu et al. 2019; Chen et al. 2019). One ParVI method that
has attracted much attention is the Stein Variational Gradi-
ent Descent (SVGD) (Liu and Wang 2016; Detommaso et al.
2018; Wang et al. 2019; Li et al. 2019). Many existing ParVI
methods can be viewed as some versions of the approximated
Wasserstein gradient flow of the KL-divergence (Liu 2017).
As explained in Sect. 3, these methods may not preserve the
variational structure at the particle level because approxima-
tion of the density function is performed after the variational
step.

@ Springer

In this paper, we introduce a new variational inference
framework, named as Energetic Variational Inference (EVI).
It consists of two ingredients, a continuous formulation of the
variational inference, and a discretization strategy that leads
to a practical algorithm. Inspired by the non-equilibrium ther-
modynamics, we propose using an energy-dissipation law
to describe the mechanism of minimizing the VI objective
functional, for instance, the KL-divergence. An energetic
variational inference algorithm can be obtained by employing
an energetic variational approach and a proper discretiza-
tion. Using the EVI framework, we can derive and explain
many existing ParVI methods, such as the SVGD method.
More importantly, many new ParVI schemes can be created
under the EVI framework. To demonstrate how to develop
a new EVI method, we propose a new particle-based EVI
scheme, which performs the particle-based approximation
of the density first and then uses the approximated density
in the variational procedure. Thanks to this “Approximation-
then-Variation” order, we can derive a system of ordinary
differential equations (ODEs) of particles that preserves the
variational structure at the particle level, which is different
from many existing methods. Such an ODE system can be
solved via the implicit Euler method, which can be refor-
mulated into an optimization problem. By the virtue of the
variational structure at the particle level, we can significantly
decrease the discretized KL-divergence in every iteration and
push the density of the particles close to the target distribution
efficiently.

In the remaining sections, we first introduce some pre-
liminary background on the flow map and the energetic
variational approach that is commonly used in mathe-
matical modeling in Sect. 2. In Sect. 3, we propose the
energetic variational inference (EVI) framework. Specifi-
cally, we first lay out the general continuous formulation
of the EVI, and then introduce two different ways to
discretize the continuous EVI. One is the “Approximation-
then-Variation” approach and the other is the “Variation-
then-Approximation” approach. Both lead to particle-based
EVImethods. The dynamics of the particles are described by
an ODE system, which can be solved by explicit or implicit
Euler methods. Using the implicit-Euler, we propose one new
example of particle-based EVI, called EVI-Im. In Sect. 4, we
compare the EVI-Im with some existing particle-based VI
methods. The paper is concluded in Sect. 5.

2 Preliminary

Before reviewing the preliminary topics on flow maps and the
energetic variational approach, we first clarify some nota-
tions used in this paper. Let f(x,f) be a scalar function
of d-dimensional space variable x € X C RY and time
t € [0, 0o). We denote the derivative of f(x, t) with respect
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totas f (x,t)or f for short, and thus f is still a scalar func-
tion. The gradient of f (x, t) with respecttox is V f(x, t) or
V f,and thus V f is a d-dimensional function. When the time
t is taken at a series of discrete values, i.e.,t = 0,1,2, ...,
the discrete 1 becomes the index of a sequence of function
values of f evaluated at x. We write the integer index in the
superscript position of f,i.e., f’(x). The subscript position
of f is to label different functions.

2.1 Minimizing KL-divergence through flow maps

The goal of the variational inference is to find a density func-
tion p from a family of density functions Q by minimizing
the VI objective functional, such as the KL-divergence from
p(x) to the target density function p*(x). The complexity of
this optimization problem is decided by the feasible region,
i.e., the family Q. Traditional variational inference methods
choose Q as a parametric family of probability distributions.
For example, the mean-field variational family assumes the
mutual independence between the d dimensions of random
variable x, i.e., p(x) = ]_[?=1 pi(x;), where p; is a density
function from a user specified family of one-dimensional
probability densities (Bishop 2006; Blei et al. 2017).

In the flow-based VI methods, the set O consists of dis-
tributions obtained by smooth transformations of a tractable
initial reference distribution (Li et al. 2019). The idea of using
maps to transform a distribution to another has been explored
in many earlier papers (Tabak and Vanden-Eijnden 2010; El
Moselhy and Marzouk 2012). Specifically, given a tractable
reference distribution pp(z) : X% — Rt and a sufficiently
smooth one-to-one map ¢(-), such that x = ¢(z), the family
Q is defined by

Q = {pg1(x) = po(p~" (x)) |det[ V™" (x)]

o X% - X is a smooth one-to-one map.}

= ¢((zf.’1)

We assume X0 = X = R throughout this paper, but all the

results can be generalized to the case where X0 % X'. More-

over, since ¢ is one-to-one, we can enforce det[V,¢(z)] > 0.
Given Q in (2.1), solving the following problem

popt = arg min KL(p||p") (2.2)
peQ

is equivalent to finding the optimal smooth one-to-one map
@ opt such that

Popt(X) = p0 (o (X)) det[ Ve ()].

As in many optimization approaches, we expect it requires a
number of transformations, say K steps, to find the optimal
map, or equivalently,

b () =¥ F 0y X oyl

Each ¥'(-) is a smooth and one-to-one map such that x’ =
¥ (x'~1). At the rth step, suppose ¢'(-) = ¢ oy’ ~' ... 0
¢! (") is a proper transform, then

p'(x") = p" N ()T (x")) det[ V() T (x")]
= po((¢") "' (x")) det[ V(") (x")].

Intuitively, the series of transformations should move the
initial density pg closer and closer to the target density p*
and eventually achieve convergence in terms of the KL-
divergence. Therefore, KL(p'|| p*) should be decreased after
each step, i.e.,

KL(p'||p*) — KL(p'"!|p*) < 0.

If we generalize the meaning of ¢ from the discrete step index
to the continuous time ¢ € [0, 00), we can consider p’(x)
as a density function evolving continuously with respect to
time ¢. To emphasize this point, we use the notation p(x, )
instead of p’(x). Therefore, KL(p(x,t)||p*(x)) should be
decreased with respect to z, i.e.,

SKL(oe Dllp* @) 0.
The key to minimizing the KL-divergence is to determine
the speed of decreasing KL(p(x,t)||p*(x)). In Sect. 3,
we show how to use an energy-dissipating law to specify
SKL(p(x, Dllp*(x)).

When ¢ is generalized to continuous time, ¢’ (-) becomes
a smooth one-to-one map that also continuously evolves.
Therefore, we use the notation ¢ (-, t) instead of ¢’ (-). Since
¢ (-, t) is a smooth one-to-one map, it can be defined through
a smooth, bounded velocity field u € RY x [0, 00) as in Def-
inition 1. This definition is also used in Sonoda and Murata
(2019).

Definition 1 Given a smooth and bounded velocity field u :
R? x [0, 00) — R?, aflowmap ¢(z, 1) : R? x [0, 00) — R4
is a map specified by an ordinary differential equation (for
any fixed z)

z € RY,
zeR.

t>0

:¢(z, 1 =@z, 1), 1), 03

¢(z,0) =z,

In continuum mechanics, ¢(z, t) is known as the flow map
(Temam and Miranville 2005; Gonzalez and Stuart 2008). To
better illustrate the idea of the flow map, we plot it conceptu-
ally in Fig. 1. For fixed z, ¢(z, t) is the trajectory of a particle
(or sample) with initial position z. For fixed #, ¢(z, ¢) is a dif-
feomorphism between X (the initial domain) and X’ (the
domain after ¢ transformations). An intuitive interpretation

@ Springer
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x b(z.1) Xt

Fig.1 An illustration of a flow map ¢(z, 1)

of u is that u is the speed of the probability mass, which
is transported due to the transformation ¢ (-, ¢). But directly
finding ¢ (-, ¢) is a difficult task. Thanks to this relationship
(2.3), we can decide the transform ¢ (-, ) by specifying u.

When the flow map is defined by the velocity field u(x, ),
the corresponding distribution p(x, t) is given by

00(z)

POED0= N 6@ DT

The relation between u and p(x, ¢) is described by the fol-
lowing proposition.

Proposition 1 (Transportation equation) If ¢(z,t) satisfies
(2.3)andx = ¢(z, t), the time-dependent probability density
p(x,t), which is induced by ¢(z,t), satisfies the transport
equation

p+V-(pu) =0,

2.4
p(x,0) = po(x),
where pq is the initial density and p is the derivative of p(x, t)
with respect to t.

Equation (2.4) is known as the transport equation or con-
tinuity equation (Villani 2008; Sonoda and Murata 2019).
Its derivation is in “Appendix B”. Definition 1 and Proposi-
tion 1 indicate that we only need to determine the transport
velocity u (x, t) so as to determine the flow map ¢(z, ¢) and

p(P(z,1),1).
2.2 Energetic variational approach

Here, we briefly introduce the energetic variational approach
in mathematical modeling (Liu 2009; Gigaetal.2017), which
is originated from the pioneering works of Rayleigh (1873),
Onsager (1931a, b). It provides a unique way to determine the
dynamics of a system via a prescribed energy-dissipation law

d .
5,7 191=—2Di¢. ¢]. (2.5)

which describes how the total energy of the system decreases
with respect to time. Here, F is the Helmholtz free energy,
—2D < 0 is the rate of energy dissipation, ¢ is the state

@ Springer

variable of the system, and ¢ is the derivative of ¢ with
respect to ¢. For a given energy-dissipation law (2.5), the
energetic variational approach derives the dynamics of the
system (or how energy F dissipates over time) through two
variational procedure, the least action principle (LAP) and
the maximum dissipation principle (MDP), which leads to

b _ 37 2.6)
5 5

where %— denotes the Fréchet derivative of F with respect
to ¢, defined as (%—, ¥) = lime_g M, and %?

denotes the Fréchet derivative of D with respect to ¢. More
details on the energetic variational approach and the deriva-
tion of (2.6) are shown in “Appendix A”.

3 Energetic variational inference
3.1 Continuous formulation

In this subsection, we first propose a continuous formulation
of EVI. The idea is to specify the dynamics of minimizing
KL-divergence via an energy-dissipation law, and we can
employ the energetic variational approach to obtain the equa-
tion of the flow map ¢(z, ). More specifically, as an analogy
to physics, the KL-divergence is viewed as the Helmholtz
free energy (Murphy 2012), i.e., F[¢p] = KL(p(x,1)||p*).
The free energy F depends on ¢ since x = ¢(z, ) as aresult
of the flow map. We can impose an energy-dissipation law

d .
—mwummﬂ=—/mmwwm, 3.1

dr

where D = %f n(p)||(i3||2dx. Because the flow map ¢ can
be defined by the velocity field u (Definition 1), thus

1 20 1 2
D=3 [n@iidiPax = 5 [ neouiiax = o

The functional n(p) is a user-specified functional of p sat-
isfying n(p) > 0if p > 0. We denote ||a|| = VaTa for
a € R? as the [, norm of a vector.

Since p(x,t) = ,oo((/)_](x, t)) is determined by ¢(z, t)
for a given po(z), the KL-divergence can be viewed as a
functional of ¢. By taking variation of KL with respect to ¢
(see “Appendix C” for the detailed derivation), we can obtain

_ SKL(pig)l1p")

56 =—(Vp+pVV), 3.2)

where pj¢)(x, 1) = ,oo(d)_l(x, t))and V = —1In p*.
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Meanwhile, taking variational of D with respect to ¢
yields

LY

5p np)d.

Then according to (2.6), (iS, i.e., the transport velocity u sat-
isfies

() = —~(Vo +pVV). (3.3)
This equation gives us the specification of the transport veloc-
ity u based on the energy-dissipation law (3.1). Thanks to the
transport equation (2.4), p can be obtained from the specified
u. Therefore, (3.3) can be used to find the p that minimizes
the KL-divergence in the admissible set. Indeed, combining
(3.3) with the transport equation (2.4), we have

p=V. (L(Vp + pVV)) , (3.4)

n(p)

which is the continuous differential equation formulation for
p.One can choose 1(p) to control the dynamics of the system.
In the remainder of the paper, we choose 1(p) = p, which is
consistent with Wasserstein gradient flow (Jordan et al. 1998;
Santambrogio 2017; Frogner and Poggio 2018). We should
emphasize the above derivation is rather formal. Under the
suitable assumptions, one can show the existence of ¢(z, 1)
for the equation (3.3). We refer interested readers to Evans
et al. (2005), Ambrosio et al. (2006) and Carrillo and Lisini
(2010) for theoretical discussions.

Remark 1 Different choices of energy-dissipation laws lead
to different dynamics to an equilibrium. For instance, we can
take the energy-dissipation law, as in Liu and Wang (2020b),

d
KL 0110 = = [ (0ol + o)Vl .
(3.5)

In this paper, we show that even with the simplest choice of
the dissipation n(p) = p, the EVI framework can already
lead to several new and existing ParVI methods. We will
study the benefit of other choices of dissipations in future
work.

3.2 Particle-based EVI

In practice, there are two ways to approximate a probabil-
ity density in Q defined in (2.1). One is to approximate the
transport map ¢(z, t) directly, as used in variational infer-
ence with normalizing flow (Rezende and Mohamed 2015).
The transport map can be approximated either by a fam-
ily of parametric transformations (Rezende and Mohamed

2015) or a piece-wise linear map (Carrillo et al. 2018; Liu
and Wang 2020a). The main difficulty in such approaches is
how to compute det[V ¢(z, t)] efficiently. We refer readers
to Rezende and Mohamed (2015), Carrillo et al. (2018), Liu
and Wang (2020a) and Papamakarios et al. (2019) for details.

Alternatively, a probability density in Q can be approx-
imated by an empirical measure defined by a set of sample
points {x; (t)}lN: {- As used in many ParVI methods,

N
p(x, 1)~ py (¥, 1) = %Za(x —x;i (1)), (3.6)

i=1

where x;(t) = ¢(x;(0), 1) and x;(0) is sampled from the
initial reference distribution pg. The sample points {x; (£)} lN: |
attime f are called “particles” in the ParVIs literature. Instead
of computing the map ¢(z, t) explicitly at each time-step,
only {xi(t)}fV: | are computed in ParVIs. One can view this
as a deterministic method to sample from the posterior. The
evolution of particles {x,-(t)}lN: | can be characterized by a
system of ODEs, and it can be derived from the energy-
dissipation law (3.1) using the proposed EVI framework, as
shown in the follows.

There are two ways to derive such an ODE system.
For short, we call them “Approximation-then-Variation” and
“Variation-then-Approximation” approaches. Essentially, the
two approaches use different orders of density approximation
and variational procedure, which may lead to different ODE
systems.

The Approximation-then-Variation approach starts with a
discrete energy-dissipation law

d
afh<{x,-<r)}£il) = 2Dl O}, (W), BT

which can be obtained by inserting the empirical approx-
imation (3.6) into the continuous energy-dissipation law
with a suitable kernel regularization. For instance, a dis-
crete version of (3.1), which is the proposed dissipation
mechanism of the KL-divergence, can be obtained by apply-
ing the particle approximation py(x,t) to (3.1). To avoid
In§(x — x;(t)) operation, we replace py by the convolu-
tion Kj * py inside the log function, where K} is a kernel
function. This particle-based approximation leads to the reg-
ularized discrete energy-dissipation law

d
O / pn In(Kj % py) + Voydx = —/ pn|luldx,
2
(3.8)

where
N
Kpxpy = | Kn(x — y)pn(y,)d =iZK(x—x~(z>)
h * PN h N (Y, 1)dy N'1 h j .
j=

@ Springer
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We denote Kj,(x — x ;) by Kj,(x, x ;), which is a more con-
ventional notation in the literature. A typical choice of K}, is
the Gaussian kernel

_ 1 X1 — x2]?
Kh(xl,xz)—mexp <_T> (39)

The regularized free energy (3.8) is proposed in Carrillo
et al. (2019) and has been used to design the Blob varia-
tional inference method in Chen et al. (2018). By assuming
u(x;(t),t) =~ x;(t), the discrete energy is

Fi (i)
1 N

ZNZ In

N (3.10)
5 2 Knixp [+ v |,
i=1 j=1

and the discrete dissipation is
N
N N . 2
=205 (Il ()L ) = ~ LSOOI, @1
1=

where X; (1) = %x ; 1s the velocity of each particle.
We can derive the equation of x; (¢) via a discrete energetic
variational approach (Liu and Wang 2020a)

8Dy, _ 8T
§xi(1)  Sx;i’

(3.12)

which is the energetic variational approach performed at
the particle level. An advantage of employing the discrete
energetic variational approach is that the resulting system
of x;(t)’s preserves the variational structure at the particle
level. The benefit of this property is discussed in Remark 2
in Sect. 3.3. By direct derivation of the variations of the both
sides of (3.12), we obtain a systems of ODEs for x; (¢) as

. YN Ve Kn(xi, x )
> =1 Kn(xi, xj)
N

+Z Vi Kn(x, x;)
k=1 Zj'vzl Kp(xp, xj)

fori =1,..., N.

(3.13)

+Vx,-V(xi)>,

It corresponds to the ODE system of the Blob scheme
proposed in Chen et al. (2018) for ParVI. However, our
derivation of (3.13) is different from Chen et al. (2018).
The Variation-then-Approximation approach inserts the
empirical approximation (3.6) to (3.3). Note that (3.3) is
obtained after the variational step in (2.6). Thus, variation
step is done before the approximation step. Formally, the
main difficulty in applying the empirical approximation (3.6)

@ Springer

to (3.3) is how to evaluate Vpy(x,t), since py(x,?) is
defined by 6 functions as in (3.6), and V§ is not well defined.
One way to circumvent this difficulty is to introduce a suitable
kernel regularization (Degond and Mustieles 1990; Lacombe
and Mas-Gallic 1999). Different kernel regularization meth-
ods will result in different ODE systems of particles. In the
following, we show that by applying approximation to (3.3),
which is the result of variation procedure, we can obtain some
existing ParVI methods.

As pointed outin Liu (2017) and Lu et al. (2019), the ODE
system corresponding to the standard SVGD is

N

2i(1) ==Y (Kn(xi. x)VV(x;) + Vi, Kp(xi. x,)) .
j=1

This ODE system can also be obtained using the EVI frame-
work as well. After approximating p by py in (3.3), we can
convolute to the right-hand side of (3.3) by a kernel function
K}, to obtain

pon(x, Hu = Kj * (onVV + Vpy(x, 1)),

which directly leads to the same ODE system as the above
one of SVGD.

Another ParVI method is the Gradient Flow with Smoothed
test Function (GFSF), proposed by Liu et al. (2019). Using
the EVI framework, GFSF can be obtained by applying con-
volution to both sides of (3.3) with a kernel function K,

Ky * (pyw) = —Kp * (onVV + Vpp),
which gives us (let K;; = Ky (x;, x ;) for short)

N N
3 i 0 = 37 (K Vi) + ¥ Kyt
j=1 j=1

Although its right hand is exactly the descent direction in
SVGD, the left is different from SVGD.

The third ParVI method we discuss is the Gradient Flow
with Smoothed Density (GFSD), proposed in Lacombe and
Mas-Gallic (1999), Degond and Mustieles (1990) and Liu
et al. (2019). Under the EVI framework, GFSD can be
obtained from u = —Vp/p — VV, by applying convolu-
tion to both the numerator and denominator of the first term
with a kernel function Kj, i.e.,

PN * VKj

u(x) = * Ky,

—VV(x).

It leads to the same ODE system of the GFSD

5i(t) = — (27=1 Ve Knlxi, %))

+VVvx)].
S0 Knxiox)) )
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In SVGD and GFSF, kernel function are applied to the veloc-
ity equation directly, whereas in GFSD, the § function in the
empirical measure (3.6) is approximated by a suitable kernel
K (x), that is

(3.14)

1 N
pn 0 =) Knx —x;0),

j=1

which is more widely used in statistics (Gershman et al.
2012).

Here, we aim to show readers that EVI is a very gen-
eral framework for variational inference. Even if we choose
a simple form of n(p) = p, exchanging the variation and
approximation steps can lead to various ODE systems of the
particles. Some of these ODE systems have already been cre-
ated from other perspectives as shown above. But many new
ParVI methods can be created, as shown in Sect. 3.3. This is
an appealing advantage of the proposed EVI.

3.3 Explicit versus implicit Euler

In this subsection, we discuss how to derive a ParVI algorithm
from a ODE system. To solve the ODE system (3.13) derived
from the “Approximation-then-Variation” approach, one can
use the explicit or implicit Euler method. Using the explicit
Euler method, we obtain the following numerical scheme

X _ Y 3.15
N 1, sx; \Kidi=1 (.15

where 7, is the step-size. Here, F}, is the discrete KL-
divergence defined in (3.10), and 5]:7’1! is

8Fi ({ ) = 1 (XN Ve Kn(x, x™)
8x; N ¥

N noy.n
j=1 Kh(xi 7xj)

N

Z Vx,-Kh(xzax?)
k=1 Zj’vzl K (xy, x;?)

+ vx,.V(x;?)> .

Scheme (3.15) is exactly the Blob scheme proposed in Chen
et al. (2018). The explicit Euler scheme is also used to solve
various ODE systems associated with other existing ParVI
methods (Liu and Wang 2016; Chen et al. 2018; Liu and
Zhu 2018; Liu et al. 2019). To implement these methods,
AdaGrad (Duchi et al. 2011) is often used to update the step-
size. Although these algorithms perform well in practice, the
AdaGrad scales each component of the updating direction
differently. As a result, the updating directions of these algo-
rithms are different from their original ODE systems. So the
Blob scheme is equivalent to minimize the discrete energy
fh({xi}f\’: 1) by the AdaGrad algorithm.

An alternative approach is to adopt the implicit Euler
scheme for the temporal discretization, i.e.,

+1
1 xrth—xn 8Fn Y
N T T Sx; i iy

(3.16)

The equations (3.16) for i = 1,..., N form a system of
nonlinear equations. To solve them, we first define

1 N
T} ) = > ; llxi — xT12/N + Fr(fxi ).
(3.17)

In fact, (3.16) is the gradient of Jn({xi}f.\': 1) with respect
to the vectorized {x,-}lN: | (see the proof of Theorem 1 in
“Appendix D). Therefore, we can solve the nonlinear equa-
tions by solving the optimization problem.

{xrthN (3.18)

j=1 = argmin, }Nlln({x,-}fvzl),
which is the celebrated proximal point algorithm (PPA)
(Rockafellar 1976). The first term in (3.17) can be viewed as
a regularization term. Intuitively, when t is relatively small,
the first term can be the dominating term of J,, ({x; }1 1) com-
pared with F, ({x; }N 1)- Since it is also quadratic in {x; }l 1
it can make the optimization relatlvely easier to solve than
directly minimizing F ({x; } . ;). Besides, with a properly
chosen t value, the minimizer of (3.18) can lead to a smaller
value of Fj({x; } ), which is also close to {x”}N The
optimization problem (3.18) can be solved by a sultable non-
linear optimization. We can show the following convergence
result. Its proof is in “Appendix D”.

Theorem 1 For a suﬁ‘iciently smooth target distribution p*
and any given {x”} i, there exists at least one minimal solu-

tion of (3.18) {x”H}N | that also satisfies

Fr((xMN ) — Fu(xm ) Xy ||2

1N
T _Ng

(3.19)

Moreover, if the series {x"}N | satisfies (3.19), then {x"}N
converges to a stationary point of Fj, ({x; },N:1) asn — oo.

Theorem 1 guarantees the existence of a solution of (3.16)
that also decreases the discrete KL-divergence in each itera-
tion. We summarize the algorithm of using the implicit Euler
scheme to solve the ODE system (3.13) into Algorithm 1.
Here, MaxlIter is the maximum number of iteration of the
outer loop.

Using Algorithm 1, we update the position of particles
by closely following the continuous energy-dissipation law,
which provides an efficient way to push the particles to
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Algorithm 1 EVI with Implicit Euler Scheme (EVI-Im)
Input: The target distribution p*(x) and a set of initial particles
{x?}fv: | drawn from a prior pg (x).
Output: A set of particles {x;.“}l.N: 1
for n = 0 to MaxIter do

approximating p*.

Solve {J\:?'H}i:1 = .5|Igmin[x/_}iN:1 Ju ({x,-}lNzl).
Update {x?}fvzl by {x;""l}lN:l.
end for

approximate the target distribution. In practice, it is not nec-
essary to obtain the exact minimizer of Jn({xi}fv: 1) in each
iteration. In fact, we only need to find {x;’+1 }lN: | such that

Fr(@x™ N ) < Fdem),

which usually can be achieved in a few steps via the gra-
dient descent method or Newton-like methods with suitable
step sizes to J, ({xi}lNzl). One can even adopt a line search
procedure to guarantee that Jn({x?H}lNzl) < Jn({x;’}f\’:]).
This optimization perspective can also lead to other ParVI
methods. For example, the idea of Stein Variational New-
ton (SVN) type algorithms (Detommaso et al. 2018; Chen
etal. 2019) is the same as doing one Newton step to decrease
Tn(x}L)-

To implement Algorithm 1, we adopt the gradient descent
with Barzilai—-Borwein step size (Barzilai and Borwein 1988)
to solve the optimization problem (3.18). Numerical experi-
ments show that such algorithm usually can find a stationary
point of Jn({x}f.v: 1) that also satisfies (3.19) with relatively
small value of 7. Since it is not necessary to find the exact
optimal solution of J, ({x}[N: 1) especially in the early stage
of the outer loop in Algorithm 1, we can fix the maximum
number of iterations for the inner loop (the loop of minimiz-

ing J,,({x}lN: 1)) to reduce computation.

Remark 2 The key point in the proposed numerical algorithm
is to reformulate the implicit Euler scheme into the opti-
mization problem (3.18), which is equivalent to apply the
proximal point algorithm (PPA) (Rockafellar 1976) to the
discrete energy fh({xi}fvzl). We can decrease fh({xi}fvzl)
in each iteration and have the convergence of the algo-
rithm at the discrete level. In other words, in each iteration,
the particles are moved as they are intended by the spec-
ified dissipation law or the mechanism of decreasing the
KL-divergence. This is the benefit of the Variation-then-
Approximation approach. For other ParVI methods, it is
unclear whether the right-hand sides of the ODEs are the gra-
dients of some functions. Therefore, even though the implicit
Euler scheme can be applied to these ParVI methods, the
resulted ODE system can not be reformulated as an opti-
mization problem, as we have shown in (3.18).

High-order temporal discretizations can also be used to
solve (3.13), such as the Crank—Nicolson and BDF2 schemes
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(Iserles 2009). Within the variational structure at the particle
level, these schemes can also be formulated into optimization
problems (Matthes and Plazotta 2019; Du and Feng 2019).

3.4 Choice of kernel

We briefly discuss the choice of kernel, or more precisely, the
choice of bandwidth /. The role of kernel function K, (x —x;)
is essentially to approximate § (x —x;). Considering this role,
h should be as small as possible when the number of particles
is large. However, in practice, since the number of particles
is finite, it is not clear how small 4 should be. Intuitively, for
the Gaussian kernel, & controls the inter-particle distances.
In the original SVGD (Liu and Wang 2016), the bandwidth
is set to be 1 = med”/log N where med is the median of the
pairwise distance between the current particles. The median
trick updates the bandwidth after each iteration. However,
as shown in Liu et al. (2019), the median trick only works
well for the SVGD. In Liu et al. (2019), the authors proposed
a heat equation-based (HE) method. Their idea is to com-
pute the optimal bandwidth after each iteration such that the
evolution of approximated density matches the rule of the
heat equation. Although the HE method works well during
the numerical experiments, it requires solving an optimiza-
tion problem to obtain the optimal % after each iteration,
which is time-consuming. Recently, a matrix-valued kernel
for SVGD has been proposed in Wang et al. (2019), in which
some anisotropic kernels are used. The selection of kernels is
based on the Fisher information, i.e., the Hessian of the V (x).
Although the matrix-valued kernel works well in practice, as
shown in Sect. 4.2, the computational costs will be large.

The optimal bandwidth and the choice of kernel function
are problem-dependent. Sometimes, a non-Gaussian kernel
might be better (Francois et al. 2005). We do not intend to
further the discussion here. In the examples of Sect. 4, we fix
the bandwidth of the Gaussian kernel by conducting multiple
trials. The results show that a fixed kernel bandwidth works
well in many situations for the proposed Algorithm 1.

4 Experiments

We present several examples that demonstrate the proposed
EVI scheme summarized in Algorithm 1 (or EVI-Im for
short). The results are compared with some other determinis-
tic ParVImethods, including AdaGrad based classical SVGD
(Liu and Wang 2016), matrix-valued SVGD (Liu et al. 2019),
and Blob method (Chen et al. 2018). Additionally, we also
compare our method with a gradient-based MCMC sampling
method, Langevin Monte Carlo (LMC) (Rossky et al. 1978;
Parisi 1981; Roberts and Tweedie 1996) or its stochastic gra-
dient variant, SGLD (Welling and Teh 2011), given by
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Fig. 2 Particles obtained by EVI-Im algorithm approximating three
target distributions plotted as contours

X" =x" — ¢, V(og p*) + /268,

where £ is the random term & ~ A(0, 1), and p* is the
target/posterior distribution.

In EVI-Im, the number of iterations is “n”’ defined in the
outer loop in Algorithm 1. Therefore, one iteration leads to
one update of the positions of all the particles. We need to
point out that the amount of computation in one iteration of
the outer loop of the EVI-Im method is much larger than the
other ParVI methods discussed here since the optimization
problem (3.18) needs to be solved in each iteration of EVI-
Im. To compare the computational costs, we also show the
actual CPU time of each method in Sects. 4.2 and 4.4.

4.1 Toy examples via EVI-Im

We first test the EVI-Im on three toy examples, which are
widely used as benchmark tests in existing VI literature
(Rezende and Mohamed 2015; Chen et al. 2018; Liu et al.
2019). In all three examples, the target distributions are
known up to a constant, and we can view the EVI-Im as a
deterministic sampling method for these unnormalized prob-
ability densities.

The first example is modified from Haario et al. (1999).
The target distribution is given by

xlz 1 2 2
p(x) x exp —?—5(10x2+3x1—3) .

The second example is similar to the examples tested in
Rezende and Mohamed (2015) and Liu et al. (2019), and
the target distribution is

p(x) o exp {—2((x12 +x3) —3)?

+ log <672(x172)2 + 672(xz+2)2)} ’

which has two components. The third example is adapted
from Rezende and Mohamed (2015) and Chen et al. (2018)
with the target distribution given by

_ . ﬂ 2
p(x) o exp :—% [%Tz)} } .

In all three examples, the initial particles are sampled from
the two-dimensional standard Gaussian distribution. We use
N = 50 particles for the first example and N = 120 particles
for the second and third examples. The bandwidth of the
kernel is &~ = 0.05 for the first and second examples and
h = 0.2 for the third example. We set t = 0.01 for all
examples. The final results in Fig. 2 show that the particles
returned by the EVI-Im approximate the target distributions
reasonably well. The second example is the most challenging
one and requires more iterations because the support region
(where the density is significantly larger than 0) of the target
distribution is not connected and contains two banana-shaped
areas.

4.2 Comparison on a star-shaped distribution

The two-dimensional synthesized example studied in Wang
et al. (2019) is a challenging one, as the posterior has a star-
shaped contour plot shown in Fig. 3. We compare the EVI-Im
(set T = 0.5) with the Blob method (Ir = 0.5), the classical
SVGD (Ir = 0.5), the matrix-valued SVGD (mixture pre-
conditioning matrix kernel (Wang et al. 2019), Ir = 0.5),
and the LMC method (¢, = a(b + n)~¢ with a = 0.1,
b = 1 and ¢ = 0.55). The maximum number of iterations
of the inner loop in EVI-Im is set to be 100. Here, Ir stands
for the learning rate. In all five methods, we use N = 200
particles and the same initial set of particles sampled from
the two-dimensional standard Gaussian distribution. For the
EVI-Im and the Blob method, we fix the kernel bandwidth
to be & = 0.1. The bandwidth matrix in the matrix-valued
SVGD is set as the exact Hessian matrices as in Wang et al.

@ Springer



34 Page100f17

Statistics and Computing (2021) 31:34

Fig. 3 Particles obtained by various methods [200 particles]: a EVI-Im after 20 iterations, b Blob method (after 1000 iterations), ¢ SVGD (after
1000 iterations), d matrix-valued SVGD (after 200 iterations) and ¢ LMC (after 3000 iterations)

—o— EVHm 25
—— Blob

—o— EVHm
Blob
—o— SVGD
—v— M-SVGD
—= MC

0 1 2 3 4 5 6 7 8 0 25 50 75 100 125 150 175 200
CPU Time Iterations

Fig. 4 MMD? of each method with respect to CPU time and number
of iterations

(2019). To compare the fidelity of the particles to the target
distribution, we compute the squared maximum mean dis-
crepancy (MMD?) defined as Arbel et al. (2019)

N M
1 1
MMD? = =5 3 0 k(i %)) + 75 D k(. y)
ij=1 i,j=1
, N oM
—szk(xisyj)

i=1 j=1

with a polynomial kernel k(x, y) = (x"y/3 + 1)3, where
{x,~}lN= | are N = 200 particles generated by the different
methods, and {y ;} 1 are 5000 samples that generated from
p* directly.

The sampling results returned by different methods are
shown in Fig. 3. The MMD? of each method with respect
to the CPU time and the number of iterations is shown in
Fig. 4. We observe that the results returned by the EVI-Im
and the Blob method are most similar compared to the other
methods. As we mentioned earlier, they minimize the same
discrete KL-divergence defined in (3.10) with different opti-
mization methods. The EVI-Im uses PPA, whereas the Blob
uses AdaGrad. The CPU time for both approaches is also
comparable. The particles returned by the EVI-Im, the Blob,
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and the matrix-valued SVGD appear to align more regularly
than those returned by the standard SVGD. Moreover, the
particles returned by the three methods are more likely to
be concentrated in high probability areas, compared with
SVGD and LMC. Using the EVI-Im, we can obtain a good
approximation within less than 20 iterations with T = 0.5.
However, since it solves an optimization problem in each
iteration, the total CPU time is slightly larger than the Blob
method. All methods have similar computational efficiency
to the LMC in terms of MMD? versus CPU time, except for
the matrix-valued SVGD. Its computational cost increases
dramatically for computing anisotropic kernels in each itera-
tion. We should emphasize that the total CPU time is sensitive
to the choice of learning rate. The learning rate presented
here is chosen to have the best performances according to
our tests. For EVI-Im, a slightly large time step size t value
is preferred for computational efficiency, but the robustness
of the algorithm requires a relatively small t.

4.3 Mixture model

In this subsection, we consider an example of a simple
but interesting mixture model, which is studied in Dai
et al. (2016) and Welling and Teh (2011). We sample 1000
observed data from y; ~ %(N(wl ,02) + N(w; + w2, 02)),
where (w1, w2) = (1, —2) and 0 = 2.5. Using the prior
w1, wy ~ N(0, 1), the posterior distribution is known except
the constant, which is the marginal distribution of the data.
But it is easy to obtain its two modes, (1, —2) and (—1, 2).
The contour plot of the posterior distribution up to the con-
stant is in Fig. Sa.

Figure 5 shows the posterior distribution approximated
by EVI-Im and SVGD (Ir = 1.0). We have tried the SVGD
with learning rate Ir = 0.01, 0.1, 0.5, 1.0 and choose the best
learning rate Ir = 1. For the EVI-Im, we set T = 0.01. The
same N = 100 initial particles sampled from the prior are
used in both methods, as shown in Fig. 5b. Kernel density esti-
mation with optimal bandwidth selected via cross-validation
is used to generate the estimated posterior distribution for
both methods. It also shows the approximated distributions
of the EVI-Im and the SVGD at different iterations. When
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Fig.5 Comparison of EVI-Im and the classic SVGD (Ir = 1) at differ-
ent stages of iterations

both methods converge, the EVI-Im (100 iterations) approx-
imates the true posterior distribution better than the SVGD
(1000 iterations). During the iterations, the particles returned
by the EVI-Im also appear to be aligned more regularly. But
among the particles returned by the SVGD, some are clus-
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tered but some are scattered widely. In Dai et al. (2016),
the authors compared many other methods, such as Gibbs
sampling, SGLD, and the one-pass sequential Monte Carlo
(SMC). Compared to numerical results in Dai et al. (2016),
the EVI-Im has better results than Gibbs sampling, SGLD,
and SMC, and is also comparable to the particle mirror
descent algorithm proposed in Dai et al. (2016).

4.4 Bayesian logistic regression with real data sets

In this subsection, we apply EVI-Im to Bayesian logistic
regression models. We first consider a small dataset SPLICE
(1000 training entries, 60 features), a benchmark data set
used in Mika et al. (1999). Given the data set {c;, y,}} 2},
the logistic regression model is p(y; = ll¢;, w) = [1 +
exp(—®’ ¢;)]~!. The unknown parameters @ are the regres-
sion coefficients, whose prior is N(®; 0, oI). We compare
the EVI-Im method with the classic SVGD and the LMC.
We use N = 20 particles for each method. The learning rate
in SVGD is setto be 0.1. For LMC, we take ¢, = a(b+n)~¢
witha = 107%, b = 1 and ¢ = 0.55. For EVI-Im, we take
v = 0.01 and set the maximum number of iteration in the
inner loop to be 50. We should emphasize these parameters
may not be optimal for all the methods. Figure 6 shows the
log-likelihood of the training data and test accuracy for all
methods with respect to the CPU time. Although the test
accuracies of the three methods are similar and the EVI-Im
has a slight advantage, the EVI-Im is shown to achieve a
larger log-likelihood with less CPU time of the training data.

We also apply the EVI-Im to a large data set Covertype
(Wang et al. 2019), which contains 581,012 data entries and
54 features, and compare the proposed EVI-Im algorithm and
the original SVGD method. The prior of the unknown regres-

0.80 +

0.75 +

0.70 +

0.65 +

Test accuracy

0.60

0.55

—O0— EVI-Im

0.50 —— LMC
——

:

SVGD

T T T T
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Fig.6 The log-likelihood of the training data and test accuracy of the SPLICE dataset returned by EVI-Im, SVGD and LMC methods
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sion coefficients is chosen to be p(w) = N(w; 0, I). Due to
the large size of the data, the computation of log-likelihood
V In p* is expensive. Hence, we randomly sample a batch of
data to compute a stochastic approximation of V In p*. The
batch size is set to be 256 for all methods. Recall that in the
EVI-Im algorithm, we need to solve a minimization prob-
lem to update the positions of the particles in each iteration
of the outer loop. Since we only estimate V In p* using a
subset of the complete data, which is only an approximation
of the exact estimate using the complete data, the EVI-Im
algorithm does not need to achieve the exact local optimal-
ity in each iteration. Thus, we choose the stochastic gradient
descent method AdaGrad (Duchi et al. 2011) with learning
rate Ir = 0.1 to minimize J,,({xi}lNz )- We set the maximum
number of iterations for the inner loop of AdaGrad to be 100
in the EVI-Im algorithm. Meanwhile, the time step-size, t, is
setto be 0.1 in the EVI-Im algorithm. For the SVGD method,
we choose the best learning rate among Ir =0.01, 0.05, 0.1,
0.5, 1.0. For all methods, we use N = 20 particles, as in
Wang et al. (2019).

In the statistical analysis of real data, it is a common
practice to standardize all columns of inputs via their individ-
ual mean and standard deviation in the preprocessing stage.
Thus, we apply both the EVI-Im and the SVGD algorithms
(with Ir = 0.1) to the standardized data. We also apply the
SVGD (with Ir = 1) to the non-standardized data, which was
done in the same way as in Wang et al. (2019). The SVGD
is implemented using the codes' by Wang et al. (2019). For
each method, we have run a total of 20 simulations. In each
simulation, we randomly partition the data into training (80%
of the whole) and testing (20% of the whole) sets. Figure 7
shows the test accuracy of the classification of EVI-Im and
SVGD applied to standardized data and SVGD applied to
non-standardized data. The test accuracy is the average of 20
simulations. The CPU time of each pointin (b) of Fig. 7 is the
average CPU time of 20 simulations of every 100 AdaGrad
steps for all three methods under comparison.

For the SVGD (both versions), the number of iterations
counts the iterations of the single layer of loop. For the EVI-
Im, there are two layers of loops. The outer loop is the for-
loop in Algorithm 1 and the inner loop is for the AdaGrad
algorithm. As mentioned above, the inner loop of AdaGrad
has 100 iterations. To compare it with SVGD, the number of
iterations for EVI-Im in Fig. 7a is defined as

No. of Outer Iterations x 100(No. of Inner Iterations).
Since both methods use the AdaGrad with the same batch
size, both methods conduct a very similar amount of com-

putation in each iteration, which is confirmed by the close

1" Available from https:/github.com/dilinwang820/Stein- Variational-
Gradient-Descent.
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resemblance between (a) and (b) of Fig. 7. The proposed
EVI-Im is the best among the three. We can also compare the
EVI-Im algorithm with the matrix-valued SVGD. As shown
in Wang et al. (2019), the matrix-valued SVGD can reach an
accuracy of 0.75 in less than 500 iterations. Using the EVI-
Im algorithm with standardized data, we can reach the same
accuracy of 0.75 around 200 iterations.

From Fig. 7, we can first conclude that standardization sig-
nificantly improves the accuracy and reduce the variance of
the SVGD method. This is expected because standardization
is essentially applying different bandwidth values to differ-
ent input dimensions inside the kernel function. As a result,
the original SVGD with standardization performs similarly
to the matrix-valued SVGD proposed in Wang et al. (2019),
although the latter also linearly transforms the SVGD direc-
tion by multiplying a preconditioning matrix on the original
SVGD direction. For the same reason, EVI-Im algorithm also
benefits from standardization, as it is also a kernel-based
method.

At last, we point out that the proposed EVI-Im algo-
rithm, the SVGD with or without standardized data, and the
matrix-valued SVGD method (Wang et al. 2019) have similar
performance when they reach convergence. A major reason
is that due to the large size of the data, the KL-divergence is
entirely dominated by the log-likelihood. Consequently, the
interactions between particles play little effect in the updat-
ing of the particles. Thus, there is no significant distinction
between different methods when they all reach convergence.

5 Conclusion

In this paper, we introduce a new variational inference frame-
work, called energetic variational inference (EVI), in which
the procedure of minimizing VI object function is charac-
terized by an energy-dissipation law. A VI algorithm can be
obtained by employing an energetic variational approach and
a proper discretization. The EVI is a general framework. By
specifying different components of EVI, we can derive many
ParVI algorithms. These components include

— the continuous energy-dissipation law, such as (3.1) and
(3.5);

— the order of approximation and variation steps;

— numerical schemes or optimization techniques, such as
implicit and explicit Euler, first-order and higher-order
temporal discretizations.

We have shown that some combinations of these choices
lead to some existing ParVI methods. But many new meth-
ods can be created as such. In particular, by using the
“Approximation-then-Variation” order, we can derive a par-
ticle system that inherits the variational structure from the
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Fig. 7 Test accuracy of 20 simulations for Bayesian logistic regres-
sion on Covertype dataset using different methods with respect to a the
number of iterations and b CPU time (in seconds). The number of iter-
ations for EVI-Im is defined as No. of Outer Iterations x 100 (No. of
Inner Iterations). The error bar in each curve corresponds to the standard
deviation of 20 simulations.

original energy-dissipation law. Numerical examples show
that the proposed method has comparable performance with
the latest ParVI methods. Another significant aspect is that
the EVI framework is not restricted to KL-divergence, and it
can be used to minimize other discrepancy measures on the
difference between two distributions, such as f-divergence
(Ali and Silvey 1966). This opens doors to many varieties
in the variational inference literature. The codes and data for
all examples are available from Github https://github.com/
SimonKatka/EVI.
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A Energetic variational approach

In this appendix, we gives a brief introduction to the ener-
getic variational approach. We refer interested readers to Liu
(2009) and Giga et al. (2017) for a more comprehensive
description.

Asmentioned previously, the energetic variational approach
provides a paradigm to determine the dynamics of a dissipa-
tive system from a prescribed energy-dissipation law, which
shifts the main task in the modeling of a dynamic system to
the construction of the energy-dissipation law. In physics, an
energy-dissipation law, yielded by the first and second law
of thermodynamics (Giga et al. 2017), is often given by

d .
E(K + F)l¢l = —2D[¢. ¢1. (A.D)

where ¢ is the state variable, /C is the kinetic energy, F is
the Helmholtz free energy, and 2D is the rate of energy dis-
sipation. If C = 0, one can view (A.1) as a generalization of
gradient flow (Hohenberg and Halperin 1977).

The Least Action Principle states that the equation of
motion for a Hamiltonian system can be derived from the
variation of the action functional A = fOT (K — F)dx with
respect to ¢(z, t) (the trajectory), i.e.,

o — iy LB+ Y] = Aig]

e—0 €

T
= / / (finertial - fconv) . 31/Idxdt
0 Xt

This procedure yields the conservative forces of the system,
that is (finertial — feonv) = %‘. Meanwhile, according to the
MDP, the dissipative force can be obtained by minimizing
the dissipation functional with respect to the “rate” éﬁ, i.e.,

5D = iy D18 +<0¥1 = Dl

= / Jdiss - 6¥rdx,
B

or faiss = %. According to the Newton’s second law (F =
ma), we have the force balance condition finertial = feonv +
fdiss (finerdal plays role of ma), which defines the dynamics
of the system

5D SA

oY _ oA A2
56~ 36 (A.2)
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In the case that K = 0, we have

Q = —8'—7:, (A.3)
3¢ 3¢

Notice that the free energy is decreasing with respect to the
time when C = 0. As an analogy, if we consider VI objec-
tive functional as F, (A.1) gives a continuous mechanism to
decrease the free energy, and (A.2) or (A.3) gives the equa-
tion ¢(z, 1).

B Derivation of the transport equation

The transport equation can be derived from the conservation
of probability mass directly. Let

Flz,1) = Vz¢(z. 1) (B.1)

be the deformation tensor associate with the flow map ¢ (z, 1),
i.e., the Jacobian matrix of ¢, then due to the conservation of
probability mass, we have

d d
0= @ . o(x,)dx = T /XU p(p(z, 1), t)det(F(z, 1))dz

=/Xo(p+vp-u+p(F—T

=/ (p+Vp-u+p(V-u)dx =0,
Xt

dF) det Fd
—_— (&)
dr z

which implies that
p+V-(pu)=0.

Here the operation “:” between two matrix, A : B =
>_i 2_j AijBij, is the Frobenius inner product between two
matrices A, B € R"*",

C Computation of Equation (2.10)

In this part, we give a detailed derivation of the variation of
KL (p1g1lp*) with respect to the flow map ¢(z) : X0 — X"
Consider a small perturbation of ¢

¢°(2) == ¢(2) + €Y (2),
where ¥ (z) = %(q&(z)) is a smooth map satisfying
¥-v=0, on dx"

with v be the outward pomtmg unit normal on the boundary,
X", Thus, 1# ¥ (¢~ (x)) and the above condition indi-
cates that 1,0 is diffused to zero at the boundary of X”. For

@ Springer

X0 = xd =RI, ¢ C5° (RY). We denote F as the Jacobian

9%i

EEE and F€ is the Jacobian matrix of

matrix of ¢, i.e., Fj =

o, e,
F€:= V.9 + €V, 9.

Then we have

d *
—| _ KLl

de le
d
/ PO 1o (22 ) det(Fé)dz
=0 \ o det(Fe) det(FF)

~ de
+/ . det(Ff V(¢©(z)) det(F )dz)

(C.1)
_d (/ poln po — po Indet F€ 4 POV(‘i’e(Z))d:)
de le=0
_ /X _po_’ (In det(F) + V(¢ (2))) dz

= /Xo —po(F~T 2 Vo) + (Vi V - ¥) podz.

For two matrices of the same size, define A : B =
D Z/ AijB;j = tr(ATB). Since

d det(F¢ dFe¢
4det®) _ gercroye | r) 1
de de

we have
d det(F¢) . _1
e |, = det(Prer [F vzq/,]

=det(F)(F~" : V,¥).

Hence, we have the last result in (C.1).
Based on the definition of ¢, we have the following.

x=¢r), z=¢"x)

V(@) =¥ (@) =¥ ()

p(x) = po(¢~" (x)) det (Ve ™' (x))
p(x)

— —1(x)) =
po(z) = po(¢~ (x)) = et Vep )

The second summand of (C.1) becomes

[X e [(ev)7¥] a2

_ p(x) T —1
= /X TSI (V) Tw |dg~' )

T oy e
B '/;(I det(vx¢*1(x)) I:(va) '/’] det(Vy@™ (x))dx

= / p) [(VaV) - ¥]dx

1
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Now, we investigate the first summand in (C.1). Based on
the definition of ¥, we can see that

LEINED LN LTS
xV)ij = PR g
J P 1azk 3x/ Py ¢
Veh = Vo [Ves™'] = venr T,
_ _ [ dx -1 _ (dz =
because F = V ¢(z) = (az,) J o= (ax-f)i,j B

(Vo™ Laepy~! . Divergence of 1//(x) is

d ~

~ oY ~

Ve ¥(x) = Z 3—1)/;1 = tr(Jacobian of ¥)
i—1 i

= w(Vey) = tr((V¥)F 1) = r(F V).

Therefore, the first summand in (C.1) becomes,
—/ po(F~" 2 Vo¥)dz = —/ p(x)(Vy - P)dx.
X X,

Following the corollary of divergence theorem,
~ ~T
fX p(xX)(Vyx - ¥)dx + /X ¥ (Vxp(x))dx

= f p(xX) (¥ - v)dS =0,
X,
because the boundary condition 1/~f -v=0o0ndAX;. So

- / p(x)(Vy - ¥)dx

t

~ T ~
= / ¥ (Vep(x))dx = / Vep(x) - Ydx.
X X
Therefore, in X, by performing integration by parts, we have

| KL(ogelo®)
de le=0 Pieallp
= /X —pig1(Ve - ¥) + pVV - Pdx
= [ (Vo4 0vv) Fax.
Xt

which implies that

SKL *
szp+pvv (C.2)
é¢
Recall V = —In p*. One can notice that if F is an identity

matrix, the result in (C.1) can be written as

—Epoltrace(Vo 9 + Vn p*y 1),

which is exactly the form given by the Stein operator in Liu
and Wang (2016).

D Proof of Theorem 1

Proof Let X € R be vectorized {x;}_,, that is

1 1 d d
(x() . x1(v)’- .xf). ())

where D = N x d. Recall that V(x) = — In p*. For a suf-
ficient smooth target distribution p*(x), it is easy to show
that

N

1 N
Fa(fxilll) = — Z ~ 2 K [+ Ve

i=1 j=1

is continuous, coercive and bounded from below as a function
of X € RP. We denote 7 ({x;}Y_) by F(X).
For any given {x”}l 1» recall

1
In(X) = —IIX — X" 4+ Fr(X),

where || - ||§( is a norm for X, defined by

N
1
IX = X" = 5 D i = x|

i=1
Since
={J(X) < J(X")}

is a non-empty, bounded, and closed set, by the coerciveness
and continuity of F(X), J,(X) admits a global minimizer
X"+ in S. Since X"*! is a global minimizer of J(X), we
have

1
2—||X”+1 — X"k + Fr (XM < FxXm,
T

which gives us equation (3.19).
For series {X"}, since
IX* = XN < 20 (A X = Fx),

we have

n
D OIXE =X < 20(F(X0) — Fu(XM) < C,
k=1
for some constant C that is independent with n. Hence

lim X" —X""!Ix =0,
n—oo
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which indicates the convergence of {X"}. Moreover, since
X" = X" — rVxF (X7,

we have

lim VxF,(X") =0,

n—00

so {X"} converges to a stationary point of Fj,(X). O
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