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PHASE-FIELD DYNAMICS WITH TRANSFER OF MATERIALS: THE
CAHN–HILLARD EQUATION WITH REACTION RATE DEPENDENT

DYNAMIC BOUNDARY CONDITIONS

Patrik Knopf1,*, Kei Fong Lam2, Chun Liu3 and Stefan Metzger4

Abstract. The Cahn–Hilliard equation is one of the most common models to describe phase separation
processes of a mixture of two materials. For a better description of short-range interactions between
the material and the boundary, various dynamic boundary conditions for the Cahn–Hilliard equation
have been proposed and investigated in recent times. Of particular interests are the model by Goldstein
et al. [Phys. D 240 (2011) 754–766] and the model by Liu and Wu [Arch. Ration. Mech. Anal. 233
(2019) 167–247]. Both of these models satisfy similar physical properties but differ greatly in their
mass conservation behaviour. In this paper we introduce a new model which interpolates between these
previous models, and investigate analytical properties such as the existence of unique solutions and
convergence to the previous models mentioned above in both the weak and the strong sense. For the
strong convergences we also establish rates in terms of the interpolation parameter, which are supported
by numerical simulations obtained from a fully discrete, unconditionally stable and convergent finite
element scheme for the new interpolation model.
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1. Introduction

The Cahn–Hilliard equation was originally introduced in [7] to model phase separation and de-mixing pro-
cesses in binary alloys, while later applications have been found in mathematical models of phenomena arising in
material sciences, life sciences and image processing. In certain applications (e.g., in hydrodynamic applications
such as contact line problems), it turned out to be essential to model short-range interactions of the binary
mixture with the solid wall of the container more accurately. To this end, several dynamic boundary conditions
have recently been proposed and investigated in the literature. Below we review two such models in more detail
and introduce a new system with dynamic boundary conditions which can be regarded as an interpolation
between these two previous models.
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The standard Cahn–Hilliard equation as introduced in [7] reads as follows:

𝜕𝑡𝑢 = 𝑚Ω∆𝜇 in 𝑄𝑇 := Ω× (0, 𝑇 ), (1.1a)
𝜇 = −𝜀∆𝑢+ 𝜀−1𝐹 ′(𝑢) in 𝑄𝑇 , (1.1b)
𝑢|𝑡=0 = 𝑢0 in Ω. (1.1c)

Here, Ω ⊂ R𝑑 (where 𝑑 ∈ {2, 3}) denotes a bounded domain with boundary Γ := 𝜕Ω whose unit outer normal
vector field is denoted by n. The functions 𝑢 = 𝑢(𝑥, 𝑡) and 𝜇 = 𝜇(𝑥, 𝑡) depend on time 𝑡 ∈ [0, 𝑇 ] (with fixed
but arbitrary 𝑇 > 0) and position 𝑥 ∈ Ω. The symbol ∆ denotes the Laplace operator in Ω. The symbol
𝑚Ω denotes a mobility parameter which is assumed to be a positive constant. This is a typical assumption,
although non-constant mobilities find a use in some situations (see e.g. [17]). In order to describe a mixture
of two materials, the phase-field variable 𝑢 represents the difference of two local relative concentrations. After
a short period of time, the solution 𝑢 will attain values close to ±1 in large regions of the domain Ω. These
regions, which correspond to the pure phases of the materials, are separated by a small interfacial region whose
thickness is proportional to a small parameter 𝜀 > 0. As the time evolution of the phase-field variable 𝑢 is
governed by chemical reactions, the function 𝜇 stands for the chemical potential in the bulk (i.e., in Ω). It can
be expressed as the Fréchet derivative of the following free energy of Ginzburg–Landau type:

𝐸bulk(𝑢) =
∫︁

Ω

𝜀

2
|∇𝑢|2 +

1
𝜀
𝐹 (𝑢) d𝑥. (1.2)

In this context, the function 𝐹 represents the bulk potential which usually has a double-well shape, i.e., it
attains its minima at −1 and 1 and has a local maximum at 0. A typical choice is the smooth double-well
potential 𝐹 (𝑠) = 1

4 (𝑠2 − 1)2 (see Rem. 2.1). As the time-evolution of 𝑢 is considered in a bounded domain,
suitable boundary conditions have to be imposed. The homogeneous Neumann conditions

𝜕n𝜇 = 0, 𝜕n𝑢 = 0 on Σ𝑇 := Γ× (0, 𝑇 ). (1.3)

are the classical choice. The no-flux condition (1.3)1 leads to mass conservation in the bulk∫︁
Ω

𝑢(𝑡) d𝑥 =
∫︁

Ω

𝑢(0) d𝑥, 𝑡 ∈ [0, 𝑇 ] (1.4)

and both conditions in (1.3) imply that the bulk free energy satisfies the following maximal dissipation law:

d
d𝑡
𝐸bulk (𝑢(𝑡)) +𝑚Ω

∫︁
Ω

|∇𝜇(𝑡)|2 d𝑥 = 0, 𝑡 ∈ (0, 𝑇 ). (1.5)

We point out that the Cahn–Hilliard equation subject to the boundary conditions (1.3) can be interpreted as a
gradient flow of type 𝐻−1 of the bulk free energy 𝐸bulk [14].

The Cahn–Hilliard equation (1.1) with homogeneous Neumann conditions (1.3) is already very well under-
stood and there exists an extensive literature (see, e.g., [1, 4, 9, 17, 19, 40, 43, 45, 51]). However, it became clear
that this model is not satisfactory in some situations as it neglects certain influences of the boundary to the
bulk dynamics, such as separate chemical reactions occurring on the boundary are not taken into account. To
provide a better description of interactions between the solid wall and the binary mixture, physicists suggested
to add a surface free energy that is also of Ginzburg–Landau type (cf. [20, 21,31]):

𝐸surf(𝑢) =
∫︁

Γ

𝜅𝛿

2
|∇Γ𝑢|2 +

1
𝛿
𝐺(𝑢) dΓ. (1.6)

Hence, the total free energy 𝐸 = 𝐸bulk + 𝐸surf reads as

𝐸(𝑢) =
∫︁

Ω

𝜀

2
|∇𝑢|2 +

1
𝜀
𝐹 (𝑢) d𝑥+

∫︁
Γ

𝜅𝛿

2
|∇Γ𝑢|2 +

1
𝛿
𝐺(𝑢) dΓ. (1.7)
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Here ∇Γ denotes the surface gradient on Γ, 𝐺 is a surface potential, 𝜅 is a non-negative parameter acting as a
weight for surface diffusion effects and 𝛿 > 0 is related to the thickness of the interfacial regions on the boundary.
In the case 𝜅 = 0 this problem is related to the moving contact line problem [48]. In view of this energy 𝐸,
various dynamic boundary conditions have been proposed and analysed in the literature, of which we mention
[10,12,13,22–24,34,39,41,42,44,49,50].

In particular, we now want to highlight two Cahn–Hilliard models with dynamic boundary conditions in more
detail. In both models, the dynamic boundary conditions have a Cahn–Hilliard type structure and both systems
can be interpreted as a gradient flow of type 𝐻−1 of the total free energy 𝐸 (see [26], Sect. 3). However, these
models have completely different mass conservation properties.

The GMS model. The following model with dynamic boundary condition has been introduced by Goldstein
et al. [27]:

𝑢𝑡 = 𝑚Ω∆𝜇, 𝜇 = −𝜀∆𝑢+ 𝜀−1𝐹 ′(𝑢) in 𝑄𝑇 , (1.8a)
𝑢𝑡 = 𝑚Γ∆Γ𝜃 − 𝛽𝑚Ω𝜕𝑛𝜇, 𝜃 = −𝛿𝜅∆Γ𝑢+ 𝛿−1𝐺′(𝑢) + 𝜀𝜕𝑛𝑢 on Σ𝑇 , (1.8b)
𝜇|Σ𝑇

= 𝛽𝜃 on Σ𝑇 , (1.8c)

𝑢(0) = 𝑢0 on Ω, (1.8d)

where 𝛽 > 0. The symbol ∆Γ denotes the Laplace–Beltrami operator on the surface Γ. For convenience, we
use the authors’ initials and call it the GMS model. It can be regarded as an extension of a model previously
introduced by Gal [23] who proposed the equation 𝑢𝑡 = −𝛽𝜕𝑛𝜇 + 𝛾𝜇, for some constant 𝛾, instead of (1.8b)1.
In (1.8), the parameter 𝑚Γ denotes the mobility on the boundary and is assumed to be a positive constant.
To describe chemical reactions occurring only at the boundary, an additional chemical potential 𝜃 has been
introduced, and so, chemical reactions between the bulk and the surface are taken into account by the coupling
condition (1.8c). This means that in this model, the chemical potentials in the bulk and on the boundary can
differ by the factor 𝛽, i.e., they are directly proportional. In [27], 𝛽 is even allowed to be a uniformly positive
function in 𝐿∞(Γ). We can thus say that, by the relation (1.8c), the potentials 𝜇 and 𝜃 are in a chemical
equilibrium.

We observe that a (sufficiently regular) solution to the GMS equation satisfies the mass conservation law

𝛽

∫︁
Ω

𝑢(𝑡) d𝑥+
∫︁

Γ

𝑢(𝑡) dΓ = 𝛽

∫︁
Ω

𝑢(0) d𝑥+
∫︁

Γ

𝑢(0) dΓ, 𝑡 ∈ [0, 𝑇 ], (1.9)

which allows one to interpret the parameter 𝛽 as a weight of the bulk mass compared to the surface mass.
Moreover, the maximal energy dissipation law

d
d𝑡
𝐸 (𝑢(𝑡)) +𝑚Ω

∫︁
Ω

|∇𝜇(𝑡)|2 d𝑥+𝑚Γ

∫︁
Γ

|∇Γ𝜃(𝑡)|2 dΓ = 0 (1.10)

is satisfied for all 𝑡 ∈ [0, 𝑇 ]. In particular, we observe that the dissipation rate is greatly influenced by the values
of the mobilities 𝑚Ω and 𝑚Γ.

In addition to [27], the GMS model is also discussed in the recent book [40].

The LW model. Another model with dynamic boundary condition has been derived by an energetic variational
approach by the third author and Wu [35]:

𝑢𝑡 = 𝑚Ω∆𝜇, 𝜇 = −𝜀∆𝑢+ 𝜀−1𝐹 ′(𝑢) in 𝑄𝑇 , (1.11a)
𝑢𝑡 = 𝑚Γ∆Γ𝜃, 𝜃 = −𝛿𝜅∆Γ𝑢+ 𝛿−1𝐺′(𝑢) + 𝜀𝜕𝑛𝑢 on Σ𝑇 , (1.11b)
𝜕𝑛𝜇 = 0 on Σ𝑇 , (1.11c)

𝑢(0) = 𝑢0 on Ω, (1.11d)
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which we will refer to as the LW model. Again, the function 𝜃 can be interpreted as the chemical potential on the
boundary Γ. The crucial difference to the GMS model is that (1.8c) is replaced by the no mass flux condition
𝜕n𝜇 = 0. This means that the chemical potentials 𝜇 and 𝜃 are not directly coupled. However, mechanical
interactions between the bulk and the surface materials are still taken into account by the trace relation for
the phase-field variables. This is reflected in the equations as the elliptic subproblems ((1.11a)1, (1.11c)) and
(1.11b)1 are coupled only by the trace relation for 𝑢𝑡.

Compared to (1.9), we obtain distinctly different mass conservation laws∫︁
Ω

𝑢(𝑡) d𝑥 =
∫︁

Ω

𝑢(0) d𝑥 and
∫︁

Γ

𝑢(𝑡) dΓ =
∫︁

Γ

𝑢(0) dΓ, 𝑡 ∈ [0, 𝑇 ], (1.12)

meaning that the bulk mass and the surface mass are conserved separately. However, the maximal energy
dissipation law (1.10) is still satisfied by solutions of this system.

For an efficient numerical treatment of system (1.11), we refer the reader to [38].
Let us mention that a variant of the system (1.11) was proposed and investigated in [32], where equation

(1.11b) is replaced by

𝑣𝑡 = 𝑚Γ∆Γ𝜃, 𝜃 = −𝛿𝜅∆Γ𝑣 + 𝛿−1𝐺′(𝑣) + 𝜀𝜕𝑛𝑢 on Σ𝑇 ,

with a function 𝑣 that can be interpreted as the difference in volume fractions of two different materials restricted
to the boundary. The relation between 𝑢 and 𝑣 is described by the Robin type transmission condition

𝜀𝐾𝜕n𝑢 = 𝐻(𝑣)− 𝑢 on Σ𝑇

with 𝐾 > 0 and a function 𝐻 ∈ 𝐶2(R) satisfying suitable growth conditions. In particular, it is rigorously
established in [32] that, in the case 𝐻(𝑠) = 𝑠, solutions of this model converge to solutions of (1.11) in the limit
𝐾 → 0 in some suitable sense.

A more general class of dynamic boundary conditions based on finite, positive reaction rates. To
provide a more general description of the interactions between the materials in the bulk and the materials on
the surface, we now propose that 𝜇 and 𝜃 are coupled by the Robin type boundary condition 𝐿𝜕𝑛𝜇 = 𝛽𝜃 − 𝜇
where 𝐿 > 0 acts as a relaxation parameter. The system of equations then reads as

𝑢𝑡 = 𝑚Ω∆𝜇, 𝜇 = −𝜀∆𝑢+ 𝜀−1𝐹 ′(𝑢) in 𝑄𝑇 , (1.13a)
𝑢𝑡 = 𝑚Γ∆Γ𝜃 − 𝛽𝑚Ω𝜕𝑛𝜇, 𝜃 = −𝛿𝜅∆Γ𝑢+ 𝛿−1𝐺′(𝑢) + 𝜀𝜕𝑛𝑢 on Σ𝑇 , (1.13b)
𝐿𝜕𝑛𝜇 = 𝛽𝜃 − 𝜇 on Σ𝑇 , (1.13c)

𝑢(0) = 𝑢0 in Ω, (1.13d)

where 𝛽 ̸= 0 and 𝐿 > 0. Here, in contrast to the GMS model (1.8), the chemical potentials 𝜇 and 𝜃 are generally
not directly proportional, i.e., they are not in equilibrium. Reactions between the materials are taken into
account by the relation (1.13c) where the constant 1/𝐿 can be interpreted as the reaction rate. Here, the term
reactions is to be understood in a general sense including chemical reactions as well as adsorption or desorption
processes. The mass flux 𝜕n𝜇, i.e., the motion of the materials towards and away from the boundary, is directly
driven by differences in the chemical potentials.

We observe that solutions of (1.13) satisfy the same mass conservation law (1.9) as solutions of the GMS model
(1.8). However, we obtain an additional term in the dissipation rate depending on the relaxation parameter 𝐿.
To be precise, it holds that

d
d𝑡
𝐸 (𝑢(𝑡)) +𝑚Ω

∫︁
Ω

|∇𝜇(𝑡)|2 d𝑥+𝑚Γ

∫︁
Γ

|∇Γ𝜃(𝑡)|2 dΓ +
𝑚Ω

𝐿

∫︁
Γ

(𝛽𝜃 − 𝜇)2 dΓ = 0 (1.14)



PHASE-FIELD DYNAMICS WITH TRANSFER OF MATERIALS 233

for all 𝑡 ∈ [0, 𝑇 ]. In particular, this implies that the total free energy 𝐸 is decreasing along solutions and since it
is bounded from below (at least for reasonable choices of 𝐹 and 𝐺), we infer that d

d𝑡𝐸(𝑢(𝑡)) converges to zero as
𝑡→∞. As a consequence, the chemical potentials will tend to the equilibrium 𝜇 = 𝛽𝜃 over the course of time.

The Robin type condition (1.13c) now allows us to establish a connection between the GMS model (1.8) and
the LW model (1.11) despite their very different chemical and physical properties. Suppose that 𝛽 > 0 and that(︀
𝑢𝐿, 𝜇𝐿, 𝜃𝐿

)︀
is a solution of the system (1.13) corresponding to the parameter 𝐿 > 0. Let (𝑢*, 𝜇*, 𝜃*) denote its

formal limit as 𝐿 → 0 and let (𝑢*, 𝜇*, 𝜃*) denote its formal limit as 𝐿 → ∞. Passing to the limit in the Robin
boundary condition, we deduce that

𝛽𝜃* = 𝜇* on Σ𝑇 and 𝜕𝑛𝜇
* = 0 on Σ𝑇 .

This corresponds to the limit cases of instantaneous reactions (1/𝐿 → ∞), where the chemical potentials are
always in equilibrium, and a vanishing reaction rate (1/𝐿 → 0). We infer that (𝑢*, 𝜇*, 𝜃*) is a solution to
the GMS model while (𝑢*, 𝜇*, 𝜃*) is a solution to the LW model. These formal considerations are established
rigorously in Section 4. In this regard, the Cahn–Hilliard system (1.13) can be interpreted as an interpolation
between the GMS model and the LW model by using finite, positive reaction rates.

Structure of this paper. Our paper is structured as follows: In Section 2 we introduce some notation, assump-
tions, preliminaries and important tools. Section 3 is devoted to the existence, uniqueness and regularity of weak
solutions to (1.13), as well as a summary of the well-posedness results for the GMS model (1.8) and the LW
model (1.11). In Section 4 we investigate the asymptotic limits 𝐿 → ∞ and 𝐿 → 0, establishing also conver-
gence rates for these limits. In Section 5 we present an efficient, unconditionally stable numerical scheme to
solve the problems (1.8), (1.11), and (1.13), demonstrating also the convergence of discrete solutions. Finally,
in Section 6 we present and interpret the plots of several numerical simulations to illustrate the convergence
results for 𝐿 → 0 and 𝐿 → ∞. We also measure some of the corresponding numerical convergence rates and
discuss to what extent they match our analytical predictions.

2. Notation and preliminaries

Notation. Throughout this paper we use the following notation: For any 1 ≤ 𝑝 ≤ ∞ and 𝑘 ≥ 0, the standard
Lebesgue and Sobolev spaces defined on Ω are denoted as 𝐿𝑝(Ω) and 𝑊 𝑘,𝑝(Ω), along with the norms ‖·‖𝐿𝑝(Ω) and
‖ · ‖𝑊 𝑘,𝑝(Ω). For the case 𝑝 = 2, these spaces become Hilbert spaces and we use the notation 𝐻𝑘(Ω) = 𝑊 𝑘,2(Ω).
Note that 𝐻0(Ω) can be identified with 𝐿2(Ω). A similar notation is used for Lebesgue and Sobolev spaces on
Γ. For any Banach space 𝑋, we denote its dual space by 𝑋 ′ and the associated duality pairing by ⟨·, ·⟩𝑋 . If 𝑋
is a Hilbert space, we denote its inner product by (·, ·)𝑋 . We define

⟨𝑢⟩Ω :=

{︃
1
|Ω| ⟨𝑢, 1⟩𝐻1(Ω) if 𝑢 ∈ 𝐻1(Ω)′,
1
|Ω|
∫︀
Ω
𝑢d𝑥 if 𝑢 ∈ 𝐿1(Ω)

as the spatial mean of 𝑢, where |Ω| denotes the 𝑑-dimensional Lebesgue measure of Ω. The spatial mean for
𝑣 ∈ 𝐻1(Γ)′ and 𝑣 ∈ 𝐿1(Γ) can be defined analogously. The definition of a tangential gradient on a Lipschitz
surface can be found in Definition 3.1 of [6]. For brevity, we also use the notation

ℒ𝑝 := 𝐿𝑝(Ω)× 𝐿𝑝(Γ) and ℋ𝑘 := 𝐻𝑘(Ω)×𝐻𝑘(Γ) for all 𝑝 ∈ [1,∞] and 𝑘 ≥ 0.

Assumptions

(A1) We take Ω ⊂ R𝑑 with 𝑑 ∈ {2, 3} to be a bounded domain whose Lipschitz boundary is denoted by Γ.
Moreover, we fix an arbitrary final time 𝑇 > 0 and we write 𝑄𝑇 := Ω× (0, 𝑇 ) as well as Σ𝑇 := Γ× (0, 𝑇 ).
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(A2) We assume that the constants that are involved in the systems (1.8), (1.11) and (1.13) satisfy𝑚Ω,𝑚Γ, 𝜀, 𝛿 >
0, 𝐿 > 0, 𝜅 ≥ 0 and 𝛽 ̸= 0. In Sections 3 and 4, we set 𝑚Ω = 𝑚Γ = 𝜀 = 𝛿 = 1 in (1.1) as their values have
no impact on the mathematical analysis we will carry out. Since the regularity of weak solutions to the
systems (1.13), (1.8) and (1.11) will depend on the parameter 𝜅 ≥ 0, it is convenient to use the following
notation:

𝒳 𝜅 :=

{︃
𝐻1/2(Γ) if 𝜅 = 0,
𝐻1(Γ) if 𝜅 > 0,

𝒴𝜅 :=

{︃
𝐻1(Γ)′ if 𝜅 = 0,
𝐿2(Γ) if 𝜅 > 0.

(2.1)

(A3) We assume that the potentials 𝐹 and 𝐺 are non-negative and exhibit a decomposition 𝐹 = 𝐹1 + 𝐹2 and
𝐺 = 𝐺1 +𝐺2 with 𝐹1, 𝐹2, 𝐺1, 𝐺2 ∈ 𝐶1(R) such that the following properties hold:
(A3i) 𝐹1 and 𝐺1 are convex non-negative functions.
(A3ii) There exist exponents 𝑝, 𝑞 ≥ 2 as well as constants 𝑎𝐹 , 𝑐𝐹 > 0 and 𝑏𝐹 ≥ 0 such that for all 𝑠 ∈ R,

𝑎𝐹 |𝑠|𝑝 − 𝑏𝐹 ≤ 𝐹 (𝑠) ≤ 𝑐𝐹 (1 + |𝑠|𝑝) ,
𝑎𝐺 |𝑠|𝑞 − 𝑏𝐺 ≤ 𝐺(𝑠) ≤ 𝑐𝐺 (1 + |𝑠|𝑞) ,

𝑎𝐹 ′ |𝑠|𝑝−1 − 𝑏𝐹 ′ ≤ |𝐹 ′(𝑠)| ≤ 𝑐𝐹 ′
(︁

1 + |𝑠|𝑝−1
)︁
,

𝑎𝐺′ |𝑠|𝑞−1 − 𝑏𝐺′ ≤ |𝐺′(𝑠)| ≤ 𝑐𝐺′
(︁

1 + |𝑠|𝑞−1
)︁
.

This means that 𝐹 and 𝐺 have polynomial growth of order 𝑝 and 𝑞, respectively.
(A3iii) 𝐹 ′2 and 𝐺′2 are Lipschitz continuous. Consequently, there exist positive constants 𝑑𝐹 , 𝑑𝐺, 𝑑𝐹 ′ and

𝑑𝐺′ such that for all 𝑠 ∈ R,

|𝐹 ′2(𝑠)| ≤ 𝑑𝐹 ′ (1 + |𝑠|) , |𝐺′2(𝑠)| ≤ 𝑑𝐺′ (1 + |𝑠|) ,

|𝐹2(𝑠)| ≤ 𝑑𝐹

(︁
1 + |𝑠|2

)︁
, |𝐺2(𝑠)| ≤ 𝑑𝐺

(︁
1 + |𝑠|2

)︁
.

(A4) For the higher regularity results we additionally assume that Ω is of class 𝐶3, that 𝑝 ≤ 4 in (A3ii) and
that there exist a positive constants 𝑐𝐹 ′′ , 𝑐𝐺′′ > 0 such that

0 ≤ 𝐹 ′′1 (𝑠) ≤ 𝑐𝐹 ′′
(︀
1 + |𝑠|𝑝−2

)︀
, 0 ≤ 𝐺′′1(𝑠) ≤

{︃
𝑐𝐺′′

(︀
1 + |𝑠|𝑞−2

)︀
, if 𝜅 > 0,

𝑐𝐺′′ if 𝜅 = 0

for all 𝑠 ∈ R.

Remark 2.1. We point out that the smooth double well potential

𝑊dw(𝑠) = 1
4

(︀
𝑠2 − 1

)︀2
, 𝑠 ∈ R,

is a suitable choice for 𝐹 and 𝐺 as it satisfies (A3) with 𝑝 = 4 and 𝑞 = 4. However, singular potentials like the
logarithmic potential or the obstacle potential are not admissible.

Preliminaries

(P1) For fixed 𝜅 ≥ 0 we define the Hilbert space

𝒱𝜅 :=

{︃{︀
𝜑 ∈ 𝐻1(Ω) : 𝜑|Γ ∈ 𝐻1(Γ)

}︀
, 𝜅 > 0,

𝐻1(Ω), 𝜅 = 0,

endowed with the inner product and its induced norm

(𝜑, 𝜓)𝒱𝜅 :=

{︃
(𝜑, 𝜓)𝐻1(Ω) + (𝜑|Γ, 𝜓|Γ)𝐻1(Γ), 𝜅 > 0,
(𝜑, 𝜓)𝐻1(Ω), 𝜅 = 0,

‖𝜑‖𝒱𝜅 := (𝜑, 𝜑)1/2
𝒱𝜅 .
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Moreover, we use the notation 𝒱 := 𝒱1 =
{︀
𝜑 ∈ 𝐻1(Ω) : 𝜑|Γ ∈ 𝐻1(Γ)

}︀
and we define

⟨𝜑, 𝜁⟩𝒱,𝛽 := 𝛽⟨𝜑, 𝜁⟩𝐻1(Ω) + ⟨𝜑, 𝜁⟩𝐻1(Γ)

for all functions 𝜑 ∈ 𝒱 ′ and 𝜁 ∈ 𝒱. If 𝛽 > 0, this product defines a duality pairing of 𝒱 ′ and 𝒱 which is
equivalent to the standard one. In particular,

‖𝜑‖𝒱′,𝛽 := sup
{︀ ⃒⃒
⟨𝜑, 𝜁⟩𝒱,𝛽

⃒⃒
: 𝜁 ∈ 𝒱 with ‖𝜁‖𝒱 = 1

}︀
for 𝜑 ∈ 𝒱 ′

defines a norm on the space 𝒱 ′ which is equivalent to the standard norm.
(P2) For any 𝛽 ̸= 0 and 𝑚 ∈ R, we define

ℋ𝛽,𝑚 :=
{︀

(𝜂, 𝜉) ∈ ℋ1 : 𝛽 |Ω| ⟨𝜂⟩Ω + |Γ| ⟨𝜉⟩Γ = 𝑚
}︀
.

For any 𝐿 > 0 and 𝛽 ̸= 0 we introduce an inner product on ℋ𝛽,0 by

((𝜑, 𝜓), (𝜂, 𝜉))𝐿,𝛽 :=
∫︁

Ω

∇𝜑 · ∇𝜂 d𝑥+
∫︁

Γ

∇Γ𝜓 · ∇Γ𝜉 +
1
𝐿

(𝛽𝜓 − 𝜑)(𝛽𝜉 − 𝜂) dΓ,

for all (𝜑, 𝜓), (𝜂, 𝜉) ∈ ℋ𝛽,0. Its induced norm is given ‖ · ‖𝐿,𝛽 := (·, ·)1/2
𝐿,𝛽 .

(P3) For any 𝛽 ̸= 0, 𝑚 ∈ R and any 𝜅 ≥ 0, we define

𝒲𝜅
𝛽,𝑚 := {𝜂 ∈ 𝒱𝜅 : 𝛽 |Ω| ⟨𝜂⟩Ω + |Γ| ⟨𝜂⟩Γ = 𝑚} ⊂ 𝒱𝜅,

(𝒲𝜅
𝛽,0)−1 := {𝜑 ∈ (𝒱𝜅)′ : 𝛽 |Ω| ⟨𝜑⟩Ω + |Γ| ⟨𝜑⟩Γ = 0} ⊂ (𝒱𝜅)′.

Let 𝜑 ∈ (𝒲𝜅
𝛽,0)−1 be arbitrary. From Theorem 3.3 of [33] we infer the existence of a unique weak solution

𝒮(𝜑) = (𝒮Ω(𝜑),𝒮Γ(𝜑)) ∈ ℋ𝛽,0 to the elliptic problem

−∆𝒮Ω = −𝜑 in Ω, (2.2a)
−∆Γ𝒮Γ + 𝛽𝜕𝑛𝒮Ω = −𝜑 on Γ, (2.2b)

𝜕𝑛𝒮Ω = 1
𝐿 (𝛽𝒮Γ − 𝒮Ω) on Γ. (2.2c)

This means that 𝒮(𝜑) satisfies the weak formulation

(𝒮(𝜑), (𝜁, 𝜉))𝐿,𝛽 = −⟨𝜑, 𝜁⟩𝐻1(Ω) − ⟨𝜑, 𝜉⟩𝐻1(Γ) (2.3)

for all test functions (𝜁, 𝜉) ∈ ℋ1. Thus, we can define the solution operator

𝒮 : (𝒲𝜅
𝛽,0)−1 → ℋ𝛽,0, 𝜑 ↦→ 𝒮(𝜑) = (𝒮Ω(𝜑),𝒮Γ(𝜑)),

and according to Corollary 3.5 of [33],

(𝜑, 𝜓)𝐿,𝛽,* := (𝒮(𝜑),𝒮(𝜓))𝐿,𝛽 , ‖ · ‖𝐿,𝛽,* := (·, ·)1/2
𝐿,𝛽,* for all 𝜑, 𝜓 ∈ (𝒲𝜅

𝛽,0)−1

defines an inner product and its induced norm on the space (𝒲𝜅
𝛽,0)−1. Since 𝒲𝜅

𝛽,0 ⊂ (𝒲𝜅
𝛽,0)−1, (·, ·)𝐿,𝛽,*

can also be used as an inner product on 𝒲𝜅
𝛽,0. Moreover, ‖ · ‖𝐿,𝛽,* is also a norm on 𝒲𝜅

𝛽,0 but 𝒲𝜅
𝛽,0 is not

complete with respect to this norm.

Remark 2.2. To motivate the implicit time discretisation used in the proof of the well-posedness result Theo-
rem 3.1, we point out that the Cahn–Hilliard system (1.13) can be expressed as a gradient flow of the energy 𝐸
that was introduced in (1.7) with respect to the inner product (·, ·)𝐿,𝛽,* on (𝒲𝜅

𝛽,0)−1. The gradient flow equation
reads as follows:

(𝜕𝑡𝑢, 𝜂)𝐿,𝛽,* = −𝛿𝐸(𝑢)
𝛿𝑢

[𝜂], for all 𝜂 ∈ 𝒲𝜅
𝛽,0 ∩ 𝐿∞(Ω), 𝜂|Γ ∈ 𝐿∞(Γ). (2.4)

The requirement 𝜕𝑡𝑢 ∈ (𝒲𝜅
𝛽,0)−1 will be verified in Theorem 3.1. For a more detailed derivation of the gradient

flow equation in similar situations see Section 3 of [26] and Section 3 of [32].
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We will also need the following interpolation type inequality:

Lemma 2.3. Suppose that (A1) and (A2) hold. Then, for any 𝛼 > 0, there exists a constant 𝐶𝛼 > 0 depending
only on 𝐿, 𝛼, 𝛽 and Ω such that for all 𝑢 ∈ 𝒲𝜅

𝛽,0,

‖𝑢‖2𝐿2(Ω) + ‖𝑢‖2𝐿2(Γ) ≤ 𝛼‖∇𝑢‖2𝐿2(Ω) + 𝐶𝛼‖𝑢‖2𝐿,𝛽,*.

The proof can be found in the Appendix A.

3. Well-posedness

3.1. Weak well-posedness of the reaction rate dependent model

Theorem 3.1 (Weak well-posedness for the system (1.13)). Suppose that (A1)–(A3) hold and let 𝑚 ∈ R be
arbitrary. Then, for any initial datum 𝑢0 ∈ 𝒲𝜅

𝛽,𝑚 satisfying 𝐹 (𝑢0) ∈ 𝐿1(Ω) and 𝐺(𝑢0) ∈ 𝐿1(Γ), there exists a
unique weak solution (𝑢, 𝜇, 𝜃) of the system (1.1) in the following sense:

(i) The functions (𝑢, 𝜇, 𝜃) have the following regularity⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢 ∈ 𝐶0, 1
2
(︀
[0, 𝑇 ];𝐻1(Ω)′

)︀
∩ 𝐶0, 1

4
(︀
[0, 𝑇 ];𝐿2(Ω)

)︀
∩ 𝐿∞

(︀
0, 𝑇 ;𝐻1(Ω) ∩ 𝐿𝑝(Ω)

)︀
∩𝐻1

(︀
0, 𝑇 ;𝐻1(Ω)′

)︀
,

𝑢|Σ𝑇
∈ 𝐶0, 1

2
(︀
[0, 𝑇 ];𝐻1(Γ)′

)︀
∩ 𝐶

(︀
[0, 𝑇 ];𝐿2(Γ)

)︀
∩ 𝐿∞ (0, 𝑇 ;𝒳 𝜅 ∩ 𝐿𝑞(Γ)) ∩𝐻1

(︀
0, 𝑇 ;𝐻1(Γ)′

)︀
,

𝑢|Σ𝑇
∈ 𝐶0, 1

4
(︀
[0, 𝑇 ];𝐿2(Γ)

)︀
if 𝜅 > 0,

𝜇 ∈ 𝐿2
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
, 𝜃 ∈ 𝐿2

(︀
0, 𝑇 ;𝐻1(Γ)

)︀
.

(3.1)

and it holds that 𝑢(𝑡) ∈ 𝒲𝜅
𝛽,𝑚 for all 𝑡 ∈ [0, 𝑇 ].

(ii) The weak formulation

⟨𝜕𝑡𝑢,𝑤⟩𝐻1(Ω) = −
∫︁

Ω

∇𝜇 · ∇𝑤 d𝑥+
∫︁

Γ

1
𝐿 (𝛽𝜃 − 𝜇)𝑤 dΓ, (3.2a)

⟨𝜕𝑡𝑢, 𝑧⟩𝐻1(Γ) = −
∫︁

Γ

∇Γ𝜃 · ∇Γ𝑧 dΓ−
∫︁

Γ

1
𝐿 (𝛽𝜃 − 𝜇)𝛽𝑧 dΓ, (3.2b)∫︁

Ω

𝜇𝜂 d𝑥+
∫︁

Γ

𝜃𝜂 dΓ =
∫︁

Ω

∇𝑢 · ∇𝜂 + 𝐹 ′(𝑢)𝜂 d𝑥

+
∫︁

Γ

𝜅∇Γ𝑢 · ∇Γ𝜂 +𝐺′(𝑢)𝜂 dΓ
(3.2c)

is satisfied almost everywhere in [0, 𝑇 ] for all test functions 𝑤 ∈ 𝐻1(Ω), 𝑧 ∈ 𝐻1(Γ), 𝜂 ∈ 𝒱𝜅 ∩ 𝐿∞(Ω) with
𝜂|Γ ∈ 𝐿∞(Γ). Moreover, the initial condition 𝑢(0) = 𝑢0 is satisfied a.e. in Ω.

(iii) For 𝐸 as defined in (1.7), the energy inequality

𝐸 (𝑢(𝑡)) +
1
2

∫︁ 𝑡

0

‖∇𝜇(𝑠)‖2𝐿2(Ω) + ‖∇Γ𝜃(𝑠)‖2𝐿2(Γ) +
1
𝐿
‖𝛽𝜃(𝑠)− 𝜇(𝑠)‖2𝐿2(Γ) d𝑠

≤ 𝐸(𝑢0)
(3.3)

is satisfied for all 𝑡 ∈ [0, 𝑇 ].

If we additionally assume that (A4) holds, then⎧⎨⎩𝑢 ∈ 𝐿2
(︀
0, 𝑇 ;𝐻3(Ω)

)︀
, and 𝑢|Σ𝑇

∈ 𝐿2
(︀
0, 𝑇 ;𝐻3(Γ)

)︀
if 𝜅 > 0,

𝑢 ∈ 𝐿2
(︁

0, 𝑇 ;𝐻5/2(Ω)
)︁
, and 𝑢|Σ𝑇

∈ 𝐿2
(︀
0, 𝑇 ;𝐻2(Γ)

)︀
if 𝜅 = 0.

(3.4)
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To prove the assertions, we construct approximate solutions via an implicit time discretisation of the gradient
flow equation (2.4). This technique which goes back to [3] was first applied on a Cahn–Hilliard problem with
dynamic boundary conditions in [26], and later also in [32]. In the subsequent proof, we will employ the same
strategy. Although some of the steps will be similar to those in [26] or [32], a lot of arguments require a different
reasoning.

Due to the Robin type coupling condition (1.13c), the vector-spaces and the inner product involved in the
gradient flow equation (2.4) differ greatly from those in [26,32]. The crucial difference is that in the LW model,
the chemical potentials are not coupled via the boundary condition 𝜕n𝜇 = 0, and as a consequence, the bulk
and surface contribution in the inner product can be considered separately. This is not the case in the gradient
flow equation (2.4) as the space 𝒲𝜅

𝛽,𝑚 and the inner product (·, ·)𝐿,𝛽,* already comprises an interaction of bulk
and surface quantities. In particular, we thus require a new customized estimate for functions in 𝒲𝜅

𝛽,0 (see
Lem. 2.3).

Proof. In this proof, we use the letter 𝐶 to denote generic positive constants independent of 𝑁 , 𝑛 and 𝜏 that
may change their value from line to line. The proof is split into several steps.

Step 1: Implicit time discretisation. Let 𝑁 ∈ N be arbitrary and let 𝜏 := 𝑇/𝑁 denote the step size in time.
For 𝑛 ∈ {0, . . . , 𝑁}, we define functions 𝑢𝑛 recursively by the following construction. The iterate with index
zero is defined as the initial datum, i.e., 𝑢0 = 𝑢0. If 𝑢𝑛 is already constructed, we choose 𝑢𝑛+1 as a minimiser
of the functional

𝐽𝑛 : 𝒲𝜅
𝛽,𝑚 → R, 𝑢 ↦→ 1

2𝜏
‖𝑢− 𝑢𝑛‖2𝐿,𝛽,* + 𝐸(𝑢) (3.5)

where 𝒲𝜅
𝛽,𝑚 is defined in (P3). Note that 𝐽𝑛 may attain the value +∞, see Section 4 of [32]. The existence of

such a minimiser will be addressed in Step 2. As 𝐹1 and 𝐺1 are convex, we can proceed as in Lemma 3.2 of [25]
to infer that the Euler–Lagrange equation

0 =
(︂
𝑢𝑛+1 − 𝑢𝑛

𝜏
, 𝜂

)︂
𝐿,𝛽,*

+
∫︁

Ω

∇𝑢𝑛+1 · ∇𝜂 + 𝐹 ′
(︀
𝑢𝑛+1

)︀
𝜂 d𝑥

+
∫︁

Γ

𝜅∇Γ𝑢
𝑛+1 · ∇Γ𝜂 +𝐺′

(︀
𝑢𝑛+1

)︀
𝜂 dΓ (3.6)

holds for all directions 𝜂 ∈ 𝒲𝜅
𝛽,0 ∩ 𝐿∞(Ω) with 𝜂|Γ ∈ 𝐿∞(Γ). This can be interpreted as a discretisation of the

gradient flow equation (2.4). A straightforward computation shows that (3.6) is equivalent to∫︁
Ω

𝜇̊𝑛+1𝜂 d𝑥+
∫︁

Γ

𝜃̊𝑛+1𝜂 dΓ =
∫︁

Ω

∇𝑢𝑛+1 · ∇𝜂 + 𝐹 ′
(︀
𝑢𝑛+1

)︀
𝜂 d𝑥

+
∫︁

Γ

𝜅∇Γ𝑢
𝑛+1 · ∇Γ𝜂 +𝐺′

(︀
𝑢𝑛+1

)︀
𝜂 dΓ (3.7)

for all 𝜂 ∈ 𝒲𝜅
𝛽,0 ∩ 𝐿∞(Ω) with 𝜂|Γ ∈ 𝐿∞(Γ), where(︁

𝜇̊𝑛+1, 𝜃̊𝑛+1
)︁

:= 𝒮
(︀

1
𝜏 (𝑢𝑛+1 − 𝑢𝑛)

)︀
∈ ℋ𝛽,0. (3.8)

For arbitrary 𝜂 ∈ 𝒱𝜅 ∩ 𝐿∞(Ω) with 𝜂|Γ ∈ 𝐿∞(Γ), we see that if 𝛽|Ω|+ |Γ| ≠ 0, then

𝜂 = 𝜂 + 𝑐0, 𝑐0 = −
𝛽
∫︀
Ω
𝜂 d𝑥+

∫︀
Γ
𝜂 dΓ

𝛽|Ω|+ |Γ|

satisfies 𝜂 ∈ 𝒲𝜅
𝛽,0 ∩ 𝐿∞(Ω) with 𝜂|Γ ∈ 𝐿∞(Γ). Then, we define a constant 𝑐𝑛+1 ∈ R independent of the test

function 𝜂 by

𝑐𝑛+1 =

∫︀
Ω
𝐹 ′
(︀
𝑢𝑛+1

)︀
− 𝜇̊𝑛+1 d𝑥+

∫︀
Γ
𝐺′
(︀
𝑢𝑛+1

)︀
− 𝜃̊𝑛+1 dΓ

𝛽|Ω|+ |Γ|
,
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so that the pair of functions

𝜇𝑛+1 := 𝜇̊𝑛+1 + 𝛽𝑐𝑛+1 and 𝜃𝑛+1 := 𝜃̊𝑛+1 + 𝑐𝑛+1 (3.9)

satisfies for arbitrary 𝜂 ∈ 𝒱𝜅 ∩ 𝐿∞(Ω) with 𝜂|Γ ∈ 𝐿∞(Γ),∫︁
Ω

𝜇𝑛+1𝜂 d𝑥+
∫︁

Γ

𝜃𝑛+1𝜂 dΓ =
∫︁

Ω

∇𝑢𝑛+1 · ∇𝜂 + 𝐹 ′
(︀
𝑢𝑛+1

)︀
𝜂 d𝑥

+
∫︁

Γ

𝜅∇Γ𝑢
𝑛+1 · ∇Γ𝜂 +𝐺′

(︀
𝑢𝑛+1

)︀
𝜂 dΓ.

(3.10)

In the case 𝛽|Ω|+|Γ| = 0, the above constant 𝑐0 is not defined. Hence, we consider fixing an arbitrary 𝜁 ∈ 𝐶∞𝑐 (Ω)
that is not identically zero, and define

𝜂 = 𝜂 + 𝑐1𝜁, 𝑐1 = −
𝛽
∫︀
Ω
𝜂 d𝑥+

∫︀
Γ
𝜂 dΓ

𝛽
∫︀
Ω
𝜁 d𝑥

,

which satisfies 𝜂 ∈ 𝒲𝜅
𝛽,0∩𝐿∞(Ω) with 𝜂|Γ ∈ 𝐿∞(Γ). Then, we define the constant 𝑐𝑛+1 ∈ R that is independent

of 𝜂 as

𝑐𝑛+1 =

∫︀
Ω
𝐹 ′
(︀
𝑢𝑛+1

)︀
𝜁 − 𝜇̊𝑛+1𝜁 +∇𝑢𝑛+1 · ∇𝜁 d𝑥
𝛽
∫︀
Ω
𝜁 d𝑥

so that 𝜇𝑛+1 and 𝜃𝑛+1 as defined in (3.9) satisfy (3.10). By this construction, we find that the triplet(︀
𝑢𝑛+1, 𝜇𝑛+1, 𝜃𝑛+1

)︀
satisfies the equations∫︁

Ω

1
𝜏

(︀
𝑢𝑛+1 − 𝑢𝑛

)︀
𝑤 d𝑥 = −

∫︁
Ω

∇𝜇𝑛+1 · ∇𝑤 d𝑥+
∫︁

Γ

1
𝐿

(︀
𝛽𝜃𝑛+1 − 𝜇𝑛+1

)︀
𝑤 dΓ, (3.11a)∫︁

Γ

1
𝜏

(︀
𝑢𝑛+1 − 𝑢𝑛

)︀
𝑧 dΓ = −

∫︁
Γ

∇Γ𝜃
𝑛+1 · ∇Γ𝑧 dΓ−

∫︁
Γ

1
𝐿

(︀
𝛽𝜃𝑛+1 − 𝜇𝑛+1

)︀
𝛽𝑧 dΓ, (3.11b)∫︁

Ω

𝜇𝑛+1𝜂 d𝑥+
∫︁

Γ

𝜃𝑛+1𝜂 dΓ =
∫︁

Ω

∇𝑢𝑛+1 · ∇𝜂 + 𝐹 ′
(︀
𝑢𝑛+1

)︀
𝜂 d𝑥

+
∫︁

Γ

𝜅∇Γ𝑢
𝑛+1 · ∇Γ𝜂 +𝐺′

(︀
𝑢𝑛+1

)︀
𝜂 dΓ, (3.11c)

for all test functions 𝑤 ∈ 𝐻1(Ω), 𝑧 ∈ 𝐻1(Γ) and 𝜂 ∈ 𝒱𝜅 ∩ 𝐿∞(Ω) with 𝜂|Γ ∈ 𝐿∞(Γ). This system can
be interpreted as an implicit time discretisation of the weak formulation (3.2). In this context, the collection
(𝑢𝑛, 𝜇𝑛, 𝜃𝑛)𝑛=1,...,𝑁 represents a time-discrete approximate solution. For 𝑡 ∈ [0, 𝑇 ] and 𝑛 ∈ {1, 2, . . . , 𝑁}, we
define the piecewise constant extension

(𝑢𝑁 , 𝜇𝑁 , 𝜃𝑁 ) (·, 𝑡) := (𝑢𝑛
𝑁 , 𝜇

𝑛
𝑁 , 𝜃

𝑛
𝑁 ) := (𝑢𝑛, 𝜇𝑛, 𝜃𝑛) , (3.12)

for 𝑡 ∈ ((𝑛− 1)𝜏, 𝑛𝜏 ] and the piecewise linear extension(︀
𝑢̄𝑁 , 𝜇̄𝑁 , 𝜃𝑁

)︀
(·, 𝑡) := 𝛼 (𝑢𝑛

𝑁 , 𝜇
𝑛
𝑁 , 𝜃

𝑛
𝑁 ) + (1− 𝛼)

(︀
𝑢𝑛−1

𝑁 , 𝜇𝑛−1
𝑁 , 𝜃𝑛−1

𝑁

)︀
(3.13)

for any 𝛼 ∈ [0, 1] and 𝑡 = 𝛼𝑛𝜏 + (1− 𝛼)(𝑛− 1)𝜏 .
Step 2: Existence of a minimiser. We apply the direct method in the calculus of variations to show that the
functional 𝐽𝑛 has at least one minimiser in the set 𝒲𝜅

𝛽,𝑚. To this end, we assume that 𝑢𝑛 is already constructed
as described in Step 1. Recalling the definition of the energy functional (1.7) and that the potentials 𝐹 and 𝐺
are bounded from below according to (A3ii), we infer that

𝐽𝑛(𝑢) ≥ −𝐶* where 𝐶* := 𝑏𝐹 |Ω|+ 𝑏𝐺 |Γ| , (3.14)
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for all 𝑢 ∈ 𝒲𝜅
𝛽,𝑚. Consequently, 𝑀 := inf𝒲𝜅

𝛽,𝑚
𝐽𝑛 exists and is finite, and we can find a minimising sequence

(𝑢𝑘)𝑘∈N ⊂ 𝒲𝜅
𝛽,𝑚 such that

lim
𝑘→∞

𝐽𝑛(𝑢𝑘) = 𝑀, and 𝐽𝑛(𝑢𝑘) ≤𝑀 + 1 for all 𝑘 ∈ N.

From the definition of the functional 𝐽𝑛 (see (3.5)) we deduce that

1
2
‖∇𝑢𝑘‖2𝐿2(Ω) +

𝜅

2
‖∇Γ𝑢𝑘‖2𝐿2(Γ) +

∫︁
Ω

𝐹 (𝑢𝑘) d𝑥+
∫︁

Γ

𝐺(𝑢𝑘) dΓ ≤ 𝐶, (3.15)

for all 𝑘 ∈ N. Now the growth estimates (A3ii) for 𝐹 and 𝐺 imply that the sequence (𝑢𝑘) is bounded in 𝒱𝜅.
Hence, according to the Banach–Alaoglu theorem, there exists a function 𝑢̄ ∈ 𝒱𝜅 such that 𝑢𝑘 ⇀ 𝑢̄ in 𝒱𝜅

along a non-relabelled subsequence. Recalling the compact embeddings 𝐻1(Ω) →˓ 𝐿2(Ω) and 𝐻1(Ω) →˓ 𝐿2(Γ),
consequently 𝑢𝑘 → 𝑢̄ in 𝐿2(Ω) and 𝑢𝑘 → 𝑢̄ in 𝐿2(Γ) along a non-relabelled subsequence, so that 𝑢̄ ∈ 𝒲𝜅

𝛽,𝑚.
It remains to show that 𝑢̄ is actually a minimser of the functional 𝐽𝑛. Since 𝐹 and 𝐺 are continuous and
non-negative, we can use Fatou’s lemma to infer that∫︁

Ω

𝐹 (𝑢̄) d𝑥 ≤ lim inf
𝑘→∞

∫︁
Ω

𝐹 (𝑢𝑘) d𝑥, and
∫︁

Γ

𝐺(𝑢̄) dΓ ≤ lim inf
𝑘→∞

∫︁
Γ

𝐺(𝑢𝑘) dΓ. (3.16)

As all other components of the energy are continuous and convex, we conclude that

𝐽𝑛(𝑢̄) ≤ lim inf
𝑘→∞

𝐽𝑛(𝑢𝑘) = 𝑀.

This proves that 𝑢̄ is a minimiser of 𝐽𝑛 on the set 𝒲𝜅
𝛽,𝑚.

Step 3: Uniform estimates. Next, we establish uniform estimates for the piecewise constant extension. We
claim that

‖𝑢𝑁‖𝐿∞(0,𝑇 ;𝐻1(Ω)∩𝐿𝑝(Ω)) + ‖𝑢𝑁‖𝐿∞(0,𝑇 ;𝒳𝜅∩𝐿𝑞(Γ))

+ ‖𝜇𝑁‖𝐿2(0,𝑇 ;𝐻1(Ω)) + ‖𝜃𝑁‖𝐿2(0,𝑇 ;𝐻1(Γ)) ≤ 𝐶.
(3.17)

To prove this assertion, we follow the reasoning in Section 4 of [26] and Section 5 of [32]. As 𝑢𝑛+1 is a
minimiser of the functional 𝐽𝑛 on the set 𝒲𝜅

𝛽,𝑚, we obtain the a priori estimate

1
2𝜏
‖𝑢𝑛+1 − 𝑢𝑛‖2𝐿,𝛽,* + 𝐸

(︀
𝑢𝑛+1

)︀
≤ 𝐸(𝑢𝑛) for all 𝑛 ∈ {0, 1, . . . , 𝑁 − 1}. (3.18)

By induction we conclude that 𝐸(𝑢𝑛) ≤ 𝐸(𝑢0) for all 𝑛 ∈ {0, 1, . . . , 𝑁}. Thanks to the definition of 𝐸 (see
(1.7)), we infer that

1
2
‖∇𝑢𝑛+1‖2𝐿2(Ω) +

𝜅

2
‖∇Γ𝑢

𝑛+1‖2𝐿2(Γ) +
∫︁

Ω

𝐹
(︀
𝑢𝑛+1

)︀
d𝑥+

∫︁
Γ

𝐺
(︀
𝑢𝑛+1

)︀
dΓ ≤ 𝐸(𝑢0) + 𝐶*. (3.19)

From the growth assumptions (A3ii) we deduce the uniform bound

‖𝑢𝑁‖𝐻1(Ω) + ‖𝑢𝑁‖𝐿𝑝(Ω) + ‖𝑢𝑁‖𝒳𝜅 + ‖𝑢𝑁‖𝐿𝑞(Γ) ≤ 𝐶. (3.20)

To derive a uniform bound on 𝜇𝑁 we can argue as in Section 4 of [26] and Section 5 [32]. Proceeding this way,
we use a generalised Poincaré inequality (see [2], p. 242) to obtain the estimate

‖𝜇𝑛+1‖𝐿2(Ω) ≤ 𝐶
(︀
1 + ‖∇𝜇𝑛+1‖𝐿2(Ω)

)︀
(3.21)

for all 𝑛 ∈ {0, 1, . . . , 𝑁 − 1}. To bound ‖∇𝜇𝑛+1‖𝐿2(Ω) we first show that an energy dissipation law holds true
on the discrete level. We recall that, according to (3.12),

(𝑢𝑁 , 𝜇𝑁 , 𝜃𝑁 ) (𝑠) = (𝑢𝑁 , 𝜇𝑁 , 𝜃𝑁 ) (𝑡) = (𝑢𝑛
𝑁 , 𝜇

𝑛
𝑁 , 𝜃

𝑛
𝑁 )
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for all 𝑠 ∈ (𝑡− 𝜏, 𝑡], 𝑛 ∈ {1, . . . , 𝑁 − 1} where 𝑡 = 𝜏𝑛 is fixed. Using the definitions of 𝜇𝑁 and 𝜃𝑁 and recalling
(3.8) as well as the a priori estimate (3.18), a straightforward computation shows that

𝐸 (𝑢𝑁 (𝑡)) +
1
2

∫︁ 𝑡

𝑡−𝜏

‖∇𝜇𝑁 (𝑠)‖2𝐿2(Ω) + ‖∇Γ𝜃𝑁 (𝑠)‖2𝐿2(Γ) +
1
𝐿
‖𝛽𝜃𝑁 (𝑠)− 𝜇𝑁 (𝑠)‖2𝐿2(Γ) d𝑠

= 𝐸 (𝑢𝑁 (𝑡)) +
1

2𝜏2

∫︁ 𝑡

𝑡−𝜏

‖𝑢𝑁 (𝑠)− 𝑢𝑁 (𝑠− 𝜏)‖2𝐿,𝛽,* d𝑠

≤ 𝐸 (𝑢𝑁 (𝑡)) +
1
2𝜏
‖𝑢𝑁 (𝑡)− 𝑢𝑁 (𝑡− 𝜏)‖2𝐿,𝛽,* ≤ 𝐸 (𝑢𝑁 (𝑡− 𝜏)) .

Performing a simple induction we conclude that

𝐸 (𝑢𝑁 (𝑡)) +
1
2

∫︁ 𝑡

0

‖∇𝜇𝑁 (𝑠)‖2𝐿2(Ω) + ‖∇Γ𝜃𝑁 (𝑠)‖2𝐿2(Γ) +
1
𝐿
‖𝛽𝜃𝑁 (𝑠)− 𝜇𝑁 (𝑠)‖2𝐿2(Γ) d𝑠

≤ 𝐸(𝑢0).
(3.22)

In particular, for 𝑡 = 𝑁𝜏 ≡ 𝑇 , we get

‖∇𝜇𝑁‖2𝐿2(0,𝑇 ;𝐿2(Ω)) + ‖∇Γ𝜃𝑁‖2𝐿2(0,𝑇 ;𝐿2(Γ)) ≤ 2𝐸(𝑢0) ≤ 𝐶. (3.23)

In combination with (3.21) we infer that 𝜇𝑁 is uniformly bounded in 𝐿2(0, 𝑇 ;𝐻1(Ω)). It remains to establish
the uniform bound on 𝜃𝑁 . From the growth estimates (A3ii) (particularly, the upper bounds for 𝐹 ′ and 𝐺′) and
(3.20) we obtain that ∫︁

Ω

⃒⃒
𝐹 ′
(︀
𝑢𝑛+1

)︀⃒⃒
d𝑥 ≤ 𝐶 + 𝐶‖𝑢𝑛+1‖𝑝−1

𝐿𝑝(Ω) ≤ 𝐶∫︁
Γ

⃒⃒
𝐺′
(︀
𝑢𝑛+1

)︀⃒⃒
dΓ ≤ 𝐶 + 𝐶‖𝑢𝑛+1‖𝑞−1

𝐿𝑞(Γ) ≤ 𝐶.

for all 𝑛 ∈ {0, . . . , 𝑁}. Now, testing (3.11c) with 𝜂 ≡ 1 and using the above estimates yields⃒⃒⃒⃒∫︁
Γ

𝜃𝑛+1 dΓ
⃒⃒⃒⃒
≤ 𝐶 + 𝐶‖𝜇𝑛+1‖𝐿2(Ω).

Using Poincaré’s inequality on Γ and the estimate (3.21), it follows that

‖𝜃𝑛+1‖𝐿2(Γ) ≤ 𝐶
(︀
1 + ‖∇𝜇𝑛+1‖𝐿2(Ω) + ‖∇Γ𝜃

𝑛+1‖𝐿2(Γ)

)︀
(3.24)

for all 𝑛 ∈ {0, 1, . . . , 𝑁 − 1}. Hence, by (3.23) we conclude that 𝜃𝑁 is uniformly bounded in 𝐿2
(︀
0, 𝑇 ;𝐻1(Γ)

)︀
.

Step 4: Hölder-in-time estimates. We now use interpolation type arguments to show that the piecewise linear
extension is Hölder continuous in time. In particular, we claim that for all 𝑡, 𝑠 ∈ [0, 𝑇 ],

‖𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠)‖𝐿2(Ω) ≤ 𝐶 |𝑡− 𝑠|
1
4 , (3.25a)

‖𝑢𝑁 (𝑡)− 𝑢̄𝑁 (𝑡)‖𝐿2(Ω) ≤ 𝐶𝜏
1
4 , (3.25b)

‖𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠)‖𝐻1(Ω)′ + ‖𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠)‖𝐻1(Γ)′ ≤ 𝐶 |𝑡− 𝑠|
1
2 (3.25c)

‖𝑢𝑁 (𝑡)− 𝑢̄𝑁 (𝑡)‖𝐻1(Ω)′ + ‖𝑢𝑁 (𝑡)− 𝑢̄𝑁 (𝑡)‖𝐻1(Γ)′ ≤ 𝐶𝜏
1
2 , (3.25d)

‖𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠)‖𝐿2(Γ) ≤ 𝐶 |𝑡− 𝑠|
1
4 if 𝜅 > 0, (3.25e)

‖𝑢𝑁 (𝑡)− 𝑢̄𝑁 (𝑡)‖𝐿2(Γ) ≤ 𝐶𝜏
1
4 if 𝜅 > 0 (3.25f)
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as well as

‖𝜕𝑡𝑢̄𝑁‖𝐿2(0,𝑇 ;𝐻1(Ω)′) + ‖𝜕𝑡𝑢̄𝑁‖𝐿2(0,𝑇 ;𝐻1(Γ)′) ≤ 𝐶. (3.26)

To prove this claim, we first infer from (3.11a) and (3.11b) that for any 𝑤 ∈ 𝐻1(Ω), 𝑧 ∈ 𝐻1(Γ) and almost
all 𝑟 ∈ [0, 𝑇 ],

⟨𝜕𝑡𝑢̄𝑁 (𝑟), 𝑤⟩𝐻1(Ω) = −
∫︁

Ω

∇𝜇𝑁 (𝑟) · ∇𝑤 d𝑥+
∫︁

Γ

1
𝐿 (𝛽𝜃𝑁 (𝑟)− 𝜇𝑁 (𝑟))𝑤 dΓ, (3.27a)

⟨𝜕𝑡𝑢̄𝑁 (𝑟), 𝑧⟩𝐻1(Γ) = −
∫︁

Γ

∇Γ𝜃𝑁 (𝑟) · ∇Γ𝑧 dΓ−
∫︁

Γ

1
𝐿 (𝛽𝜃𝑁 (𝑟)− 𝜇𝑁 (𝑟))𝛽𝑧 dΓ. (3.27b)

Let 𝑠, 𝑡 ∈ [0, 𝑇 ] be arbitrary and without loss of generality suppose 𝑠 < 𝑡. Integrating (3.27a) from 𝑠 to 𝑡 and
choosing 𝑤 = 𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠) yields

‖𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠)‖2𝐿2(Ω) ≤ 2‖𝑢̄𝑁‖𝐿∞(0,𝑇 ;𝐻1(Ω))

(︀
‖𝜇𝑁‖𝐿2(0,𝑇 ;𝐻1(Ω)) + 1

𝐿‖𝛽𝜃𝑁 − 𝜇𝑁‖𝐿2(0,𝑇 ;𝐿2(Γ))

)︀
|𝑡− 𝑠| 12 ,

which is (3.25a). Similarly, if 𝜅 > 0, then integrating (3.27b) from 𝑠 to 𝑡, choosing 𝑧 = 𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠) leads to
(3.25e). Moreover, it is clear that (3.26) follows directly from (3.27) and previous uniform estimates on ∇𝜇𝑁 ,
∇Γ𝜃𝑁 and 𝛽𝜃𝑁 − 𝜇𝑁 .

For almost all 𝑟 ∈ [0, 𝑇 ], applying the Cauchy–Schwarz inequality and the continuous embedding 𝐻1(Ω) →˓
𝐿2(Γ) to (3.27a) yields⃒⃒⃒

⟨𝜕𝑡𝑢̄𝑁 (𝑟), 𝑤⟩𝐻1(Ω)

⃒⃒⃒
≤ 𝐶

(︁
1 + 1√

𝐿

)︁(︁
‖∇𝜇𝑁 (𝑟)‖𝐿2(Ω) + 1√

𝐿
‖𝛽𝜃𝑁 (𝑟)− 𝜇𝑁 (𝑟)‖𝐿2(Γ)

)︁
‖𝑤‖𝐻1(Ω). (3.28)

For arbitrary 𝑠 < 𝑡, using (3.22), (3.28) and Hölder’s inequality, we conclude that

‖𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠)‖𝐻1(Ω)′ = sup
‖𝑤‖𝐻1(Ω)=1

⃒⃒⃒
⟨𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠), 𝑤⟩𝐻1(Ω)

⃒⃒⃒
≤ sup
‖𝑤‖𝐻1(Ω)=1

∫︁ 𝑡

𝑠

⃒⃒⃒
⟨𝜕𝑡𝑢̄𝑁 (𝑟), 𝑤⟩𝐻1(Ω)

⃒⃒⃒
d𝑟

≤ 𝐶
(︁

1 + 1√
𝐿

)︁∫︁ 𝑡

𝑠

‖∇𝜇𝑁 (𝑟)‖𝐿2(Ω) + 1√
𝐿
‖𝛽𝜃𝑁 (𝑟)− 𝜇𝑁 (𝑟)‖𝐿2(Γ) d𝑟

≤ 𝐶
(︁

1 + 1√
𝐿

)︁
|𝑡− 𝑠|

1
2

(︂∫︁ 𝑡

0

‖∇𝜇𝑁 (𝑟)‖2𝐿2(Ω) + 1
𝐿‖𝛽𝜃𝑁 (𝑟)− 𝜇𝑁 (𝑟)‖2𝐿2(Γ) d𝑟

)︂ 1
2

≤ 𝐶
(︁

1 + 1√
𝐿

)︁
|𝑡− 𝑠|

1
2 .

In a similar fashion, we can derive the estimate

‖𝑢̄𝑁 (𝑡)− 𝑢̄𝑁 (𝑠)‖𝐻1(Γ)′ ≤ 𝐶
(︁

1 + 1√
𝐿

)︁
|𝑡− 𝑠|

1
2

which proves (3.25c) as 𝐶 may depend on 𝐿. Next, for any 𝑡 ∈ [0, 𝑇 ] we can choose 𝑛 ∈ {1, . . . , 𝑁} and 𝛼 ∈ [0, 1]
such that 𝑡 = 𝛼𝑛𝜏 + (1− 𝛼)(𝑛− 1)𝜏 . Hence, it follows immediately that

‖𝑢̄𝑁 (𝑡)− 𝑢𝑁 (𝑡)‖𝑋 ≤ ‖𝛼𝑢𝑛 + (1− 𝛼)𝑢𝑛−1
𝑁 (𝑡)− 𝑢𝑛

𝑁 (𝑡)‖𝑋

= (1− 𝛼) ‖𝑢𝑛
𝑁 (𝑡)− 𝑢𝑛−1

𝑁 (𝑡)‖𝑋 = (1− 𝛼) ‖𝑢̄𝑁 (𝑛𝜏)− 𝑢̄𝑁 ((𝑛− 1)𝜏)‖𝑋

for 𝑋 = 𝐿2(Ω) or 𝐿2(Γ) or 𝐻1(Ω)′ or 𝐻1(Γ)′. Choosing 𝑡 = 𝑛𝜏 and 𝑠 = (𝑛 − 1)𝜏 in (3.25a), (3.25c), (3.25e)
leads to (3.25b), (3.25d) and (3.25f), respectively.
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Step 5: Convergence assertions and regularity of the limit. We now claim that there exist functions (𝑢, 𝜇, 𝜃) sat-
isfying the regularity condition (3.1) such that the following convergence properties hold along a non-relabelled
subsequence:

𝑢𝑁 → 𝑢 weakly-* in 𝐿∞
(︀
0, 𝑇 ;𝐻1(Ω) ∩ 𝐿𝑝(Ω)

)︀
,

strongly in 𝐿∞
(︀
0, 𝑇 ;𝐿2(Ω)

)︀
, and a.e. in 𝑄𝑇 ,

𝑢𝑁 |Σ𝑇
→ 𝑢|Σ𝑇

weakly-* in 𝐿∞ (0, 𝑇 ;𝒳 𝜅 ∩ 𝐿𝑞(Γ)) ,
strongly in 𝐿∞(0, 𝑇 ;𝒴𝜅), and a.e. in Σ𝑇 ,

𝑢̄𝑁 → 𝑢 weakly in 𝐻1
(︀
0, 𝑇 ;𝐻1(Ω)′

)︀
,

strongly in 𝐶0,𝛾
(︀
[0, 𝑇 ];𝐻1(Ω)′

)︀
for all 𝛾 ∈

(︀
0, 1

2

)︀
,

and strongly in 𝐶0,𝛾
(︀
[0, 𝑇 ];𝐿2(Ω)

)︀
for all 𝛾 ∈

(︀
0, 1

4

)︀
,

𝑢̄𝑁 |Σ𝑇
→ 𝑢|Σ𝑇

weakly in 𝐻1
(︀
0, 𝑇 ;𝐻1(Γ)′

)︀
,

strongly in 𝐶0,𝛾
(︀
[0, 𝑇 ];𝐻1(Γ)′

)︀
for all 𝛾 ∈

(︀
0, 1

2

)︀
,

and strongly in 𝐶0,𝛾
(︀
[0, 𝑇 ];𝐿2(Γ)

)︀
for all 𝛾 ∈

(︀
0, 1

4

)︀
if 𝜅 > 0,

𝜇𝑁 → 𝜇 weakly in 𝐿2
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
, and weakly in 𝐿2

(︁
0, 𝑇 ;𝐻1/2(Γ)

)︁
,

𝜃𝑁 → 𝜃 weakly in 𝐿2
(︀
0, 𝑇 ;𝐻1(Γ)

)︀
.

These convergence assertions can be established using the same methods as in Section 4.5 of [26] and
Section 5 of [32]. Moreover, recalling the compact embedding 𝐻1(Ω) →˓ 𝐻3/4(Ω) and the continuous embedding
𝐻3/4(Ω) →˓ 𝐻1(Ω)′, we infer from the Aubin–Lions lemma [46] that 𝑢 ∈ 𝐶([0, 𝑇 ];𝐻3/4(Ω)). By the continuous
embedding 𝐻3/4(Ω) →˓ 𝐿2(Γ), this additionally yields

𝑢|Σ𝑇
∈ 𝐶

(︀
[0, 𝑇 ];𝐿2(Γ)

)︀
.

Hence, the regularity assertion (3.1) is established.
Step 6: Existence of weak solutions. We finally show that the limit (𝑢, 𝜇, 𝜃) is a weak solution of the system
(1.1). We already know from Step 5 that the limit (𝑢, 𝜇, 𝜃) enjoys the regularity demanded in (3.1). Using
the convergence results from Step 5 we may pass to the limit in (3.27) after multiplying by an arbitrary
𝜁(𝑡) ∈ 𝐶∞𝑐 (0, 𝑇 ) and integrating over (0, 𝑇 ). By a standard density argument, this directly implies that (3.2a)
and (3.2b) are satisfied. Moreover, we deduce that 𝐹 ′(𝑢𝑁 ) → 𝐹 ′(𝑢) a.e. in 𝑄𝑇 and 𝐺′(𝑢𝑁 ) → 𝐺′(𝑢) a.e. on Σ𝑇 .
Recalling the growth estimates on 𝐹 ′ and 𝐺′ and the uniform bounds on 𝑢𝑁 , we can apply Lebesgue’s general
convergence theorem (see [2], p. 60) to obtain∫︁

𝑄𝑇

𝐹 ′(𝑢𝑁 )𝜁(𝑡)𝜂 d𝑥d𝑡→
∫︁

𝑄𝑇

𝐹 ′(𝑢)𝜁(𝑡)𝜂 d𝑥 d𝑡,∫︁
Σ𝑇

𝐺′(𝑢𝑁 )𝜁(𝑡)𝜂 dΓ d𝑡→
∫︁

Σ𝑇

𝐺′(𝑢)𝜁(𝑡)𝜂 dΓ d𝑡.

This allows us obtain (3.2c) from passing to the limit in (3.11c). Hence, the triplet (𝑢, 𝜇, 𝜃) satisfies the weak
formulation (3.2). Proceeding as in Step 2 we get∫︁

Ω

𝐹 (𝑢(𝑡)) d𝑥 ≤ lim inf
𝑁→∞

∫︁
Ω

𝐹 (𝑢𝑁 (𝑡)) d𝑥,∫︁
Γ

𝐺(𝑢(𝑡)) dΓ ≤ lim inf
𝑁→∞

∫︁
Ω

𝐺(𝑢𝑁 (𝑡)) dΓ,

for almost all 𝑡 ∈ [0, 𝑇 ]. As all other contributions of the energy functional 𝐸 are continuous and convex, we
can use the convergence properties from Step 5 to verify the energy inequality (3.3) from (3.22).
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Step 7: Uniqueness. Suppose that (𝑢1, 𝜇1, 𝜃1) and (𝑢2, 𝜇2, 𝜃2) are two weak solutions to the system (1.13)
corresponding to the same initial data. We denote the difference of these solutions by

(𝑢̄, 𝜇̄, 𝜃) := (𝑢1, 𝜇1, 𝜃1)− (𝑢2, 𝜇2, 𝜃2).

We point out that 𝑢̄(𝑡) ∈ 𝒲𝜅
𝛽,0 for all 𝑡 ∈ [0, 𝑇 ]. Let now 𝑡0 ∈ (0, 𝑇 ], 𝑤 ∈ 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
and 𝑧 ∈

𝐿2
(︀
0, 𝑇 ;𝐻1(Γ)

)︀
be arbitrary. In the following we use the notation 𝑄𝑡0 = Ω × (0, 𝑡0), Σ𝑡0 = Γ × (0, 𝑡0). We

set

𝑤̃(·, 𝑡) :=

{︃∫︀ 𝑡0
𝑡
𝑤(·, 𝑠) d𝑠, if 𝑡 ≤ 𝑡0,

0 if 𝑡 > 𝑡0
and 𝑧(·, 𝑡) :=

{︃∫︀ 𝑡0
𝑡
𝑧(·, 𝑠) d𝑠, if 𝑡 ≤ 𝑡0,

0 if 𝑡 > 𝑡0,
(3.29)

and thus, 𝑤̃ ∈ 𝐿2
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
∩𝐻1

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
and 𝑧 ∈ 𝐿2

(︀
0, 𝑇 ;𝐻1(Γ)

)︀
∩𝐻1

(︀
0, 𝑇 ;𝐿2(Γ)

)︀
. Plugging 𝑤̃ into

(3.2a) and 𝑧 into (3.2b), we find that∫︁
𝑄𝑡0

𝑢̄𝑤 d𝑥d𝑡+
∫︁

Σ𝑡0

𝑢̄𝑧 dΓ d𝑡 = −
∫︁

𝑄𝑡0

∇
(︂∫︁ 𝑡

0

𝜇̄d𝑠
)︂
· ∇𝑤 d𝑥 d𝑡 −

∫︁
Σ𝑡0

∇Γ

(︂∫︁ 𝑡

0

𝜃 d𝑠
)︂
· ∇Γ𝑧 dΓ d𝑡

− 1
𝐿

∫︁
Σ𝑡0

(︂
𝛽

∫︁ 𝑡

0

𝜃 d𝑠−
∫︁ 𝑡

0

𝜇̄d𝑠
)︂

(𝛽𝑧 − 𝑤) dΓ d𝑡.

In view of the solution operator 𝒮 from (P3) we obtain the identifications

𝒮Ω(𝑢̄) =
∫︁ 𝑡

0

𝜇̄d𝑠+ 𝛽𝑐, 𝒮Γ(𝑢̄) =
∫︁ 𝑡

0

𝜃 d𝑠+ 𝑐

for some constant 𝑐 ∈ R, and thus,

𝜕𝑡𝒮Ω(𝑢̄) = 𝜇̄, 𝜕𝑡𝒮Γ(𝑢̄) = 𝜃.

We now choose 𝑤 = 𝜇̄ and 𝑧 = 𝜃. Using 𝑢̄(0) = 0 and 𝒮(0) = 0, we find that∫︁
𝑄𝑡0

𝑢̄𝜇̄d𝑥d𝑡+
∫︁

Σ𝑡0

𝑢̄𝜃 dΓ d𝑡 = −1
2
‖𝑢̄(𝑡0)‖2𝐿,𝛽,*. (3.30)

For 𝑀 > 0, we define the projection 𝒫𝑀 : R → [−𝑀,𝑀 ] as

𝒫𝑀 (𝑠) =

{︃
𝑠 if |𝑠| < 𝑀,
𝑠
|𝑠|𝑀 if |𝑠| ≥𝑀.

(3.31)

Now, for any 𝑀 > 0, the test function 𝜂 = 𝜒[0,𝑡0]𝒫𝑀 (𝑢̄) belongs to 𝐿2(0, 𝑇 ;𝒱𝜅) ∩ 𝐿∞(𝑄𝑇 ) and satisfies
𝜂|Σ𝑇

∈ ∩𝐿∞(Σ𝑇 ). Hence, it can be used as a test function in (3.2c). Recalling the monotonicity of 𝐹 ′1 and 𝐺′1,
we infer that∫︁

𝑄𝑡0

𝜇̄𝒫𝑀 (𝑢̄) d𝑥d𝑡+
∫︁

Σ𝑡0

𝜃𝒫𝑀 (𝑢̄) dΓ d𝑡 ≥
∫︁

𝑄𝑡0

∇𝑢̄ · ∇𝒫𝑀 (𝑢̄) + (𝐹 ′2(𝑢1)− 𝐹 ′2(𝑢2))𝒫𝑀 (𝑢̄) d𝑥d𝑡

+
∫︁

Σ𝑡0

𝜅∇Γ𝑢̄ · ∇Γ𝒫𝑀 (𝑢̄) + (𝐺′2(𝑢1)−𝐺′2(𝑢2))𝒫𝑀 (𝑢̄) dΓ d𝑡. (3.32)

Applying the dominated convergence theorem, we can pass to the limit 𝑀 →∞, leading to (3.32) with 𝒫𝑀 (𝑢̄)
replaced by 𝑢̄. Now, in combination with (3.30), we get

1
2
‖𝑢̄(𝑡0)‖2𝐿,𝛽,* + ‖∇𝑢̄‖2𝐿2(𝑄𝑡0 ) + 𝜅‖∇Γ𝑢̄‖2𝐿2(Σ𝑡0 ) ≤ 𝐶Lip

(︁
‖𝑢̄‖2𝐿2(𝑄𝑡0 ) + ‖𝑢̄‖2𝐿2(Σ𝑡0 )

)︁
(3.33)
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where the constant 𝐶Lip depends only on the Lipschitz constants of 𝐹 ′2 and 𝐺′2. Invoking Lemma 2.3 with
𝛼 := (2𝐶Lip)−1 we deduce from (3.33) that

1
2
‖𝑢̄(𝑡0)‖2𝐿,𝛽,* +

1
2
‖∇𝑢̄‖2𝐿2(𝑄𝑡0 ) ≤ 𝐶Lip𝐶𝛼

∫︁ 𝑡0

0

‖𝑢̄(𝑡)‖2𝐿,𝛽,* d𝑡.

Since 𝑡0 was arbitrary this estimate holds for all 𝑡0 ∈ [0, 𝑇 ]. Hence, we can apply Gronwall’s lemma to infer that

‖𝒮(𝑢̄)‖𝐿,𝛽 = ‖𝑢̄‖𝐿,𝛽,* = 0.

Recalling that 𝒮(𝑢̄) is the weak solution of the system (2.2) to the right-hand side 𝑢̄, we finally conclude that
𝑢̄ = 0 a.e. in Ω𝑇 and 𝑢̄|Σ𝑇

= 0 a.e. on Σ𝑇 . In view of (3.2c) for the difference of solutions, we obtain∫︁
Ω

𝜇̄𝜂 d𝑥+
∫︁

Γ

𝜃𝜂 dΓ = 0 (3.34)

for arbitrary 𝜂 ∈ 𝒱𝜅∩𝐿∞(Ω) such that 𝜂|Γ ∈ 𝐿∞(Γ). We first consider 𝜂 ∈ 𝐶∞𝑐 (Ω) and applying the fundamental
lemma of calculus of variations to deduce that 𝜇̄ = 0 a.e. in Ω. Then, the first term of (3.34) vanishes and
consequently we infer that 𝜃 = 0 a.e. on Γ. Hence, we obtain the uniqueness of weak solutions.
Step 8: Higher regularity. By arguing as in Section 4 of [32], one can establish under assumption (A4) the
additional regularity 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻2(Ω)) for any 𝜅 ≥ 0 and also 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻2(Γ)) if 𝜅 > 0. Let us sketch
the arguments for the regularity assertions in (3.4). For 𝜅 > 0, since 𝜇, 𝐹 ′(𝑢) ∈ 𝐿2(0, 𝑇 ;𝐻1(Ω)) and 𝑢|Σ𝑇

∈
𝐿2(0, 𝑇 ;𝐻2(Γ)), elliptic regularity theory gives 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻5/2(Ω)). Together with ∆𝑢 ∈ 𝐿2(𝑄𝑇 ), a variant of
the trace theorem implies 𝜕𝑛𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻1(Γ)). Then, as 𝜃,𝐺′(𝑢) ∈ 𝐿2(0, 𝑇 ;𝐻1(Γ)), by elliptic regularity we
have 𝑢|Σ𝑇

∈ 𝐿2(0, 𝑇 ;𝐻3(Γ)). Employing this more regular boundary trace for 𝑢 with elliptic regularity yields
𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻3(Ω)).

On the other hand, for 𝜅 = 0, we only have 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻2(Ω)) from [32]. However, from (1.13b)2, since
𝜃,𝐺′(𝑢) ∈ 𝐿2(0, 𝑇 ;𝐻1(Γ)), we infer that 𝜕𝑛𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻1(Γ)). Then, by elliptic regularity theory we obtain
𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻5/2(Ω)) and by the trace theorem 𝑢|Σ𝑇

∈ 𝐿2(0, 𝑇 ;𝐻2(Γ)).
Now, as all assertions are established, the proof of Theorem 3.1 is complete. �

3.2. Improved regularity and strong solutions

Theorem 3.2. Let 𝑚 ∈ R be arbitrary. Suppose that (A1)–(A4) hold and that 𝑢0 ∈ 𝒲𝜅
𝛽,𝑚 with (𝑢0, 𝑢0|Γ) ∈ ℋ3

if 𝜅 > 0 or with 𝑢0 ∈ 𝐻3(Ω) if 𝜅 = 0. Let (𝑢, 𝜇, 𝜃) denote the unique weak solution of the system (1.13) to the
initial datum 𝑢0 in the sense of Theorem 3.1. Then, in addition to the regularity properties (3.1) and (3.4), it
holds that {︃

𝑢 ∈ 𝐻1(0, 𝑇 ;𝒱𝜅), 𝜇 ∈ 𝐿∞
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
∩ 𝐿2

(︀
0, 𝑇 ;𝐻2(Ω)

)︀
,

𝜕𝑛𝜇 ∈ 𝐿2
(︀
0, 𝑇 ;𝐿2(Γ)

)︀
, 𝜃 ∈ 𝐿∞

(︀
0, 𝑇 ;𝐻1(Γ)

)︀
∩ 𝐿2

(︀
0, 𝑇 ;𝐻2(Γ)

)︀
.

(3.35)

This means that (𝑢, 𝜇, 𝜃) is a strong solution of the system (1.13).

Proof. To prove the assertion we will argue similar to the approach in Section 4.4 of [11]. Here, we use the letter
𝐶 to denote generic positive constants independent of 𝑁 , 𝑛 and 𝜏 that may change their value from line to line.
Let 𝑁 , 𝜏 and (𝑢𝑛, 𝜇𝑛, 𝜃𝑛), 𝑛 = 0, . . . , 𝑁 be as defined in Step 1 of the proof of Theorem 3.1. For brevity, we
introduce the notation

𝜕𝜏𝑢
𝑛+1 =

𝑢𝑛+1 − 𝑢𝑛

𝜏
, 𝜕𝜏𝜇

𝑛+1 =
𝜇𝑛+1 − 𝜇𝑛

𝜏
, 𝜕𝜏𝜃

𝑛+1 =
𝜃𝑛+1 − 𝜃𝑛

𝜏
(3.36)
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to denote the backward difference quotient in time. Let 𝑛 ∈ {0, 1, . . . , 𝑁 − 1} be arbitrary. Testing (3.11a) with
𝑤 = −𝜕𝜏𝜇

𝑛+1 ∈ 𝐻1(Ω), (3.11b) with 𝑧 = −𝜕𝜏𝜃
𝑛+1 ∈ 𝐻1(Γ) and adding the resulting equations leads to

−
∫︁

Ω

𝜕𝜏𝑢
𝑛+1𝜕𝜏𝜇

𝑛+1 d𝑥−
∫︁

Γ

𝜕𝜏𝑢
𝑛+1𝜕𝜏𝜃

𝑛+1 dΓ

=
1
2𝜏

(︁
‖∇𝜇𝑛+1‖2𝐿2(Ω) − ‖∇𝜇

𝑛‖2𝐿2(Ω) + ‖∇
(︀
𝜇𝑛+1 − 𝜇𝑛

)︀
‖2𝐿2(Ω)

)︁
+

1
2𝜏

(︁
‖∇Γ𝜃

𝑛+1‖2𝐿2(Γ) − ‖∇Γ𝜃
𝑛‖2𝐿2(Γ) + ‖∇Γ(𝜃𝑛+1 − 𝜃𝑛)‖2𝐿2(Γ)

)︁
+

1
2𝐿𝜏

(︁
‖𝛽𝜃𝑛+1 − 𝜇𝑛+1‖2𝐿2(Γ) − ‖𝛽𝜃

𝑛 − 𝜇𝑛‖2𝐿2(Γ)

+ ‖𝛽
(︀
𝜃𝑛+1 − 𝜃𝑛

)︀
−
(︀
𝜇𝑛+1 − 𝜇𝑛

)︀
‖2𝐿2(Γ)

)︁
.

(3.37)

Since (A4) holds, the variational equation (3.11c) now holds for more general test functions 𝜂 ∈ 𝒱𝜅. Taking the
difference of (3.11c) for indices 𝑛 and 𝑛+ 1, and then choosing 𝜂 = 1

𝜏 𝜕𝜏𝑢
𝑛+1 ∈ 𝒲𝜅

𝛽 gives∫︁
Ω

𝜕𝜏𝜇
𝑛+1𝜕𝜏𝑢

𝑛+1 d𝑥+
∫︁

Γ

𝜕𝜏𝜃
𝑛+1𝜕𝜏𝑢

𝑛+1 dΓ

= ‖∇𝜕𝜏𝑢
𝑛+1‖2𝐿2(Ω) + 𝜅‖∇Γ𝜕𝜏𝑢

𝑛+1‖2𝐿2(Γ) +
∫︁

Ω

1
𝜏

(︀
𝐹 ′
(︀
𝑢𝑛+1

)︀
− 𝐹 ′(𝑢𝑛)

)︀
𝜕𝜏𝑢

𝑛+1 d𝑥

+
∫︁

Γ

1
𝜏

(︀
𝐺′
(︀
𝑢𝑛+1

)︀
−𝐺′(𝑢𝑛)

)︀
𝜕𝜏𝑢

𝑛+1 dΓ.

(3.38)

Using the monotonicity of 𝐹 ′1 and 𝐺′1, the Lipschitz continuity of 𝐹 ′2 and 𝐺′2, after summing (3.37) and (3.38)
and neglecting some non-negative terms we arrive at

‖∇𝜇𝑛+1‖2𝐿2(Ω) − ‖∇𝜇
𝑛‖2𝐿2(Ω) + ‖∇Γ𝜃

𝑛+1‖2𝐿2(Γ) − ‖∇Γ𝜃
𝑛‖2𝐿2(Γ)

+
1
𝐿
‖𝛽𝜃𝑛+1 − 𝜇𝑛+1‖2𝐿2(Γ) −

1
𝐿
‖𝛽𝜃𝑛 − 𝜇𝑛‖2𝐿2(Γ)

+ 2𝜏
(︁
‖∇𝜕𝜏𝑢

𝑛+1‖2𝐿2(Ω) + 𝜅‖∇Γ𝜕𝜏𝑢
𝑛+1‖2𝐿2(Γ)

)︁
≤ 𝜏𝐶Lip

(︁
‖𝜕𝜏𝑢

𝑛+1‖2𝐿2(Ω) + ‖𝜕𝜏𝑢
𝑛+1‖2𝐿2(Γ)

)︁
(3.39)

where 𝐶Lip > 0 depends only on the Lipschitz constants of 𝐹 ′2 and 𝐺′2. Since 𝜕𝜏𝑢
𝑛+1 ∈ 𝒲𝜅

𝛽,0, we invoke
Lemma 2.3 (with 𝛼 = 𝐶−1

Lip) to see that

𝐶Lip

(︀
‖𝜕𝜏𝑢

𝑛+1‖2𝐿2(Ω) + ‖𝜕𝜏𝑢
𝑛+1‖2𝐿2(Γ)

)︀
≤ ‖∇𝜕𝜏𝑢

𝑛+1‖2𝐿2(Ω) + 𝐶‖𝜕𝜏𝑢
𝑛+1‖2𝐿,𝛽,*. (3.40)

According to (3.8) and (3.9), the functions 𝜇𝑛+1 and 𝜃𝑛+1 can be expressed as

𝜇𝑛+1 = 𝒮Ω(𝜕𝜏𝑢
𝑛+1) + 𝛽𝑐𝑛+1, 𝜃𝑛+1 = 𝒮Γ(𝜕𝜏𝑢

𝑛+1) + 𝑐𝑛+1.

It thus follows that

‖𝜕𝜏𝑢
𝑛+1‖2𝐿,𝛽,* = ‖𝒮(𝜕𝜏𝑢

𝑛+1)‖2𝐿,𝛽

= ‖∇𝜇𝑛+1‖2𝐿2(Ω) + ‖∇Γ𝜃
𝑛+1‖2𝐿2(Γ) +

1
𝐿
‖𝛽𝜃𝑛+1 − 𝜇𝑛+1‖2𝐿2(Γ).

(3.41)
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Substituting the estimate (3.40) and the identity (3.41) into (3.39), we get

‖∇𝜇𝑛+1‖2𝐿2(Ω) − ‖∇𝜇
𝑛‖2𝐿2(Ω) + ‖∇Γ𝜃

𝑛+1‖2𝐿2(Γ) − ‖∇Γ𝜃
𝑛‖2𝐿2(Γ)

+
1
𝐿
‖𝛽𝜃𝑛+1 − 𝜇𝑛+1‖2𝐿2(Γ) −

1
𝐿
‖𝛽𝜃𝑛 − 𝜇𝑛‖2𝐿2(Γ)

+ 𝜏
(︀
‖∇𝜕𝜏𝑢

𝑛+1‖2𝐿2(Ω) + 𝜅‖∇Γ𝜕𝜏𝑢
𝑛+1‖2𝐿2(Γ)

)︀
≤ 𝐶𝜏

(︂
‖∇𝜇𝑛+1‖2𝐿2(Ω) + ‖∇Γ𝜃

𝑛+1‖2𝐿2(Γ) +
1
𝐿
‖𝛽𝜃𝑛+1 − 𝜇𝑛+1‖2𝐿2(Γ)

)︂
.

(3.42)

Now we sum the inequalities (3.42) from 𝑛 = 0 to an arbitrary index 𝑘 ≤ 𝑁 − 1. With the help of the piecewise
constant extensions (3.12) and piecewise linear extensions (3.13), we find that

‖∇𝜇𝑘+1‖2𝐿2(Ω) + ‖∇Γ𝜃
𝑘+1‖2𝐿2(Γ) +

1
𝐿
‖𝛽𝜃𝑘+1 − 𝜇𝑘+1‖2𝐿2(Γ)

+
∫︁ 𝑘𝜏

0

‖∇𝑢̄′𝑁 (𝑠)‖2𝐿2(Ω) + 𝜅‖∇Γ𝑢̄
′
𝑁 (𝑠)‖2𝐿2(Γ) d𝑠

≤ 𝐶

∫︁ 𝑇

0

‖∇𝜇𝑁 (𝑠)‖2𝐿2(Ω) + ‖∇Γ𝜃𝑁 (𝑠)‖2𝐿2(Γ) +
1
𝐿
‖𝛽𝜃𝑁 (𝑠)− 𝜇𝑁 (𝑠)‖2𝐿2(Γ)d𝑠

+ ‖∇𝜇𝑁 (0)‖2𝐿2(Ω) + ‖∇Γ𝜃𝑁 (0)‖2𝐿2(Γ) +
1
𝐿
‖𝛽𝜃𝑁 (0)− 𝜇𝑁 (0)‖2𝐿2(Γ),

(3.43)

where the prime indicates the derivative with respect to the time variable. We now recall that 𝜇𝑁 (0) = 𝜇0 and
𝜃𝑁 (0) = 𝜃0, which according to (3.11c) satisfy∫︁

Ω

𝜇0𝜂 d𝑥+
∫︁

Γ

𝜃0𝜂 dΓ =
∫︁

Ω

∇𝑢0 · ∇𝜂 + 𝐹 ′(𝑢0)𝜂 d𝑥+
∫︁

Γ

𝜅∇Γ𝑢
0 · ∇Γ𝜂 +𝐺′(𝑢0)𝜂 dΓ (3.44)

for all 𝜂 ∈ 𝒱𝜅. We can first take 𝜂 ∈ 𝐶∞𝑐 (Ω) ⊂ 𝒱𝜅 to deduce that

𝜇0 = −∆𝑢0 + 𝐹 ′(𝑢0) in the sense of distributions in Ω.

By assumption of 𝑢0 ∈ 𝐻3(Ω), it holds that 𝜇0 ∈ 𝐻1(Ω) and the above identity holds a.e. in Ω. Then, returning
to (3.44), we use the above identity to deduce that

𝜃0 = −𝜅∆Γ𝑢
0 +𝐺′(𝑢0) + 𝜕𝑛𝑢

0 in the sense of distributions on Γ.

If 𝜅 > 0, by the assumptions 𝑢0|Γ ∈ 𝐻3(Γ) and (A3), we infer that 𝜃0 ∈ 𝐻1(Γ), and if 𝜅 = 0, then by the
assumption 𝑢0 ∈ 𝐻3(Ω) ⊂ 𝐻

5
2 (Γ), we see that 𝜕𝑛𝑢

0 ∈ 𝐻1(Γ) and thus 𝜃0 ∈ 𝐻1(Γ) as well. Hence, recalling
the uniform estimate (3.22), we infer that the right-hand side of (3.43) can be bounded by a constant 𝐶 > 0
independent of 𝑁 , 𝜅 and 𝜏 . As 𝑘 was arbitrary, we conclude that

‖∇𝜇𝑁 (𝑡)‖2𝐿2(Ω) + ‖∇Γ𝜃𝑁 (𝑡)‖2𝐿2(Γ) +
1
𝐿
‖𝛽𝜃𝑁 (𝑡)− 𝜇𝑁 (𝑡)‖2𝐿2(Γ) ≤ 𝐶, (3.45)∫︁ 𝑇

0

‖∇𝑢̄′𝑁 (𝑠)‖2𝐿2(Ω) + 𝜅‖∇Γ𝑢̄
′
𝑁 (𝑠)‖2𝐿2(Γ) d𝑠 ≤ 𝐶 (3.46)

for any 𝑡 ∈ (0, 𝑇 ]. From the estimates (3.21) and (3.24) we now deduce that

‖𝜇𝑁 (𝑡)‖2𝐿2(Ω) + ‖𝜃𝑁 (𝑡)‖2𝐿2(Γ) ≤ 𝐶 for all 𝑡 ∈ (0, 𝑇 ].
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Moreover, invoking Lemma 2.3, (3.22), (3.41) and (3.46), it holds that∫︁ 𝑇

0

‖𝑢̄′𝑁 (𝑠)‖2𝐿2(Ω) + ‖𝑢̄′𝑁 (𝑠)‖2𝐿2(Γ) d𝑠 ≤
∫︁ 𝑇

0

‖∇𝑢̄′𝑁 (𝑠)‖2𝐿2(Ω) + 𝐶‖𝑢̄′𝑁 (𝑠)‖2𝐿,𝛽,* d𝑠

≤ 𝐶 + 𝐶

∫︁ 𝑇

0

‖∇𝜇𝑁 (𝑠)‖2𝐿2(Ω) + ‖∇Γ𝜃𝑁 (𝑠)‖2𝐿2(Γ)

+
1
𝐿
‖𝛽𝜃𝑁 (𝑠)− 𝜇𝑁 (𝑠)‖2𝐿2(Γ) d𝑠 ≤ 𝐶.

(3.47)

Hence, in addition to (3.17) and (3.26), we infer from (3.45)-(3.47) the following uniform estimates

‖𝜇𝑁‖𝐿∞(0,𝑇 ;𝐻1(Ω)) + ‖𝜃𝑁‖𝐿∞(0,𝑇 ;𝐻1(Γ)) + ‖𝛽𝜃𝑁 − 𝜇𝑁‖𝐿∞(0,𝑇 ;𝐿2(Γ)) ≤ 𝐶,

‖𝑢̄′𝑁‖𝐿2(0,𝑇 ;𝐻1(Ω)) + ‖𝑢̄′𝑁‖𝐿2(0,𝑇 ;𝐿2(Γ)) + 𝜅‖∇Γ𝑢̄
′
𝑁‖𝐿2(0,𝑇 ;𝐿2(Γ)) ≤ 𝐶,

leading to limit functions (𝑢, 𝜇, 𝜃) exhibiting the additional regularity

𝑢 ∈ 𝐻1(0, 𝑇 ;𝒱𝜅), 𝜇 ∈ 𝐿∞(0, 𝑇 ;𝐻1(Ω)), 𝜃 ∈ 𝐿∞(0, 𝑇 ;𝐻1(Γ)).

Returning to (3.2a) and (3.2b), which are the weak formulations of the elliptic problems{︃
∆𝜇 = 𝜕𝑡𝑢 in Ω,
𝜕𝑛𝜇 = 1

𝐿 (𝛽𝜃 − 𝜇) on Γ,
∆Γ𝜃 = 𝜕𝑡𝑢+ 1

𝐿𝛽(𝛽𝜃 − 𝜇) on Γ,

we invoke elliptic regularity theory (see, e.g., [47], Sect. 5, Prop. 7.7 for the system in the bulk and [47], Sect. 5,
Thm. 1.3 for the equation on the boundary) to find that

‖𝜇‖𝐻2(Ω) ≤ 𝐶
(︀
‖∆𝜇‖𝐿2(Ω) + ‖𝜇‖𝐻1(Ω) + ‖𝜕𝑛𝜇‖𝐻1/2(Γ)

)︀
= 𝐶

(︀
‖𝜕𝑡𝑢‖𝐿2(Ω) + ‖𝜇‖𝐻1(Ω) + ‖𝜃‖𝐻1(Γ)

)︀
,

‖𝜃‖𝐻2(Γ) ≤ 𝐶
(︀
‖∆Γ𝜃‖𝐿2(Γ) + ‖𝜃‖𝐻1(Γ)

)︀
≤ 𝐶

(︀
‖𝜕𝑡𝑢‖𝐿2(Γ) + ‖𝜃‖𝐻1(Γ) + ‖𝜇‖𝐻1(Ω)

)︀
.

Hence, we conclude that

𝜇 ∈ 𝐿2(0, 𝑇 ;𝐻2(Ω)), 𝜕𝑛𝜇 ∈ 𝐿2(0, 𝑇 ;𝐿2(Γ)), 𝜃 ∈ 𝐿2(0, 𝑇 ;𝐻2(Γ))

and thus, the proof is complete. �

3.3. Well-posedness results for the LW model and the GMS model

For the reader’s convenience, we now also present the well-posedness results for the LW model (1.11) and the
GMS model (1.8).

Proposition 3.3 (Well-posedness of the LW model). Suppose that (A1)–(A3) hold and let 𝑚 = (𝑚𝑏,𝑚𝑠) ∈ R2

be arbitrary. Then for any

𝑢*0 ∈ 𝒱𝜅
𝑚 := {𝑣 ∈ 𝒱𝜅 : ⟨𝑣⟩Ω = 𝑚𝑏, ⟨𝑣⟩Γ = 𝑚𝑠} (3.48)

satisfying 𝐹 (𝑢*0) ∈ 𝐿1(Ω) and 𝐺(𝑢*0) ∈ 𝐿1(Γ), there exists a unique weak solution (𝑢*, 𝜇*, 𝜃*) to (1.11) in the
following sense:
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(i) The functions (𝑢*, 𝜇*, 𝜃*) have the following regularity⎧⎪⎨⎪⎩
𝑢* ∈ 𝐶([0, 𝑇 ];𝐿2(Ω)) ∩ 𝐿∞

(︀
0, 𝑇 ;𝐻1(Ω) ∩ 𝐿𝑝(Ω)

)︀
∩𝐻1(0, 𝑇 ;𝐻1(Ω)′),

𝑢*|Σ𝑇
∈ 𝐶([0, 𝑇 ];𝐿2(Γ)) ∩ 𝐿∞(0, 𝑇 ;𝒳 𝜅 ∩ 𝐿𝑞(Γ)) ∩𝐻1(0, 𝑇 ;𝐻1(Γ)′),

𝜇* ∈ 𝐿2(0, 𝑇 ;𝐻1(Ω)), 𝜃* ∈ 𝐿2(0, 𝑇 ;𝐻1(Γ))

and it holds that 𝑢*(𝑡) ∈ 𝒱𝜅
𝑚 for all 𝑡 ∈ [0, 𝑇 ].

(ii) The weak formulation

0 = ⟨𝑢*𝑡 , 𝑤⟩𝐻1(Ω) +
∫︁

Ω

∇𝜇* · ∇𝑤 d𝑥, (3.49a)

0 = ⟨𝑢*𝑡 , 𝑧⟩𝐻1(Γ) +
∫︁

Γ

∇Γ𝜃
* · ∇Γ𝑧 dΓ, (3.49b)

0 =
∫︁

Ω

∇𝑢* · ∇𝜂 + 𝐹 ′ (𝑢*) 𝜂 − 𝜇*𝜂 d𝑥+
∫︁

Γ

𝜅∇Γ𝑢
* · ∇Γ𝜂 +𝐺′ (𝑢*) 𝜂 − 𝜃*𝜂 dΓ, (3.49c)

is satisfied almost everywhere in [0, 𝑇 ] for all test functions 𝑤 ∈ 𝐻1(Ω), 𝑧 ∈ 𝐻1(Γ) and 𝜂 ∈ 𝒱𝜅 ∩ 𝐿∞(Ω)
with 𝜂|Γ ∈ 𝐿∞(Γ). Moreover, the initial condition 𝑢*(0) = 𝑢*0 is satisfied a.e. in Ω.

(iii) For 𝐸 as defined in (1.7), the energy inequality

𝐸 (𝑢*(𝑡)) +
1
2

∫︁ 𝑡

0

‖∇𝜇*(𝑠)‖2𝐿2(Ω) + ‖∇Γ𝜃
*(𝑠)‖2𝐿2(Γ) d𝑠 ≤ 𝐸(𝑢*0) (3.50)

is satisfied for all 𝑡 ∈ [0, 𝑇 ].

If we additionally assume that (A4) holds, then the regularity assertions (3.4) also hold.

The above well-posedness assertion was first established in Theorems 3.1 and 3.2 [35]. In the case 𝜅 = 0 the
authors needed a strong assumption on the domain Ω and its boundary Γ. However, it was later shown in [26]
that this assumption can actually be omitted if a slightly weaker notion of weak solutions is used. For a proof
of Proposition 3.3 see Theorem 2.1 of [32], while the regularity assertion (3.4) can be shown with the arguments
in Step 8 of Section 3.1.

Proposition 3.4 (Well-posedness of the GMS model). Suppose that (A1)–(A3) hold with 𝛽 > 0 and let 𝑚 ∈ R
be arbitrary. Then for any 𝑢0,* ∈ 𝒲𝜅

𝛽,𝑚 satisfying 𝐹 (𝑢0,*) ∈ 𝐿1(Ω) and 𝐺(𝑢0,*) ∈ 𝐿1(Γ), there exists a unique
weak solution (𝑢*, 𝜇*, 𝜃*) to the system (1.8) in the following sense

(i) The functions (𝑢*, 𝜇*, 𝜃*) have the following regularity⎧⎪⎨⎪⎩
𝑢* ∈ 𝐶([0, 𝑇 ];𝐿2(Ω)) ∩ 𝐿∞

(︀
0, 𝑇 ;𝐻1(Ω) ∩ 𝐿𝑝(Ω)

)︀
∩𝐻1(0, 𝑇 ;𝒱 ′),

𝑢*|Σ𝑇
∈ 𝐶([0, 𝑇 ];𝐿2(Γ)) ∩ 𝐿∞(0, 𝑇 ;𝒳 𝜅 ∩ 𝐿𝑞(Γ)),

𝜇* ∈ 𝐿2(0, 𝑇 ;𝐻1(Ω)), 𝜃* ∈ 𝐿2(0, 𝑇 ;𝐻1(Γ))

(3.51)

and it holds that 𝛽𝜃* = 𝜇*|Σ𝑇
a.e. on Σ𝑇 . Moreover, 𝑢*(𝑡) ∈ 𝒲𝜅

𝛽,𝑚 for all 𝑡 ∈ [0, 𝑇 ].
(ii) The weak formulation

0 = ⟨𝑢*,𝑡, 𝑤⟩𝒱,𝛽 + 𝛽

∫︁
Ω

∇𝜇* · ∇𝑤 d𝑥+
∫︁

Γ

∇Γ𝜃* · ∇Γ𝑤 dΓ, (3.52a)

0 =
∫︁

Ω

∇𝑢* · ∇𝜂 + 𝐹 ′(𝑢*)𝜂 − 𝜇*𝜂 d𝑥+
∫︁

Γ

𝜅∇Γ𝑢* · ∇Γ𝜂 +𝐺′(𝑢*)𝜂 − 𝜃*𝜂 dΓ (3.52b)

is satisfied almost everywhere in [0, 𝑇 ] for all 𝑤 ∈ 𝒱 and 𝜂 ∈ 𝒱𝜅 ∩𝐿∞(Ω) with 𝜂|Γ ∈ 𝐿∞(Γ). Moreover, the
initial condition 𝑢*(0) = 𝑢0,* is satisfied a.e. in Ω.
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(iii) For 𝐸 as defined in (1.7), the energy inequality

𝐸 (𝑢*(𝑡)) +
1
2

∫︁ 𝑡

0

‖∇𝜇*(𝑠)‖2𝐿2(Ω) + ‖∇Γ𝜃*(𝑠)‖2𝐿2(Γ) d𝑠 ≤ 𝐸(𝑢0,*) (3.53)

is satisfied for all 𝑡 ∈ [0, 𝑇 ].

If we additionally assume that (A4) holds, then the regularity assertions (3.4) also hold.

A proof of the well-posedness assertion can be found in Theorem 3.2 of [27]. We point out that the regularity
results 𝑢* ∈ 𝐶([0, 𝑇 ];𝐿2(Ω)) and 𝑢*|Σ𝑇

∈ 𝐶([0, 𝑇 ];𝐿2(Γ)) are not mentioned in Theorem 3.2 of [27] but follow
straightforwardly from the Aubin–Lions lemma, see Step 5 of Section 3.1.

To establish the convergence rates in Section 4, we will need the following regularity result for solutions of
the GMS model in the case 𝜅 > 0.

Proposition 3.5 (Higher regularity for the GMS model). Suppose that (A1)–(A3) hold with 𝜅, 𝛽 > 0 and let
𝑚 ∈ R be arbitrary. Then, if 𝑢0,* ∈ 𝒲𝜅

𝛽,𝑚 with (𝑢0,*, 𝑢0,*|Γ) ∈ ℋ2 the unique weak solution (𝑢*, 𝜇*, 𝜃*) to the
system (1.8) satisfies the further regularity

𝑢* ∈ 𝐻1(0, 𝑇 ;𝐿2(Ω)), 𝜇* ∈ 𝐿∞(0, 𝑇 ;𝐿2(Ω)) ∩ 𝐿2(0, 𝑇 ;𝐻2(Ω)),
𝑢*|Σ𝑇

∈ 𝐻1(0, 𝑇 ;𝐿2(Γ)), 𝜇*|Σ𝑇
∈ 𝐿∞(0, 𝑇 ;𝐿2(Γ)) ∩ 𝐿2(0, 𝑇 ;𝐻2(Γ)).

This means that (𝑢*, 𝜇*, 𝜃*) is a strong solution of the system (1.8).

The assertions of Proposition 3.5 do not follow immediately from the results in [11]. However, they can be
established with slight modifications in the proof of Theorem 3.2, which follows the line of argument in [11].

4. Asymptotic limits

In this section we investigate the asymptotic limits 𝐿→∞ and 𝐿→ 0 of the system (1.13). We first present
some general estimates for solutions to the system (1.13).

Uniform estimates. Suppose that (A1)–(A3) hold and let 𝑢0 ∈ 𝒲𝜅
𝛽,𝑚 be any initial datum satisfying 𝐹 (𝑢0) ∈

𝐿1(Ω) and 𝐺(𝑢0) ∈ 𝐿1 (Γ). For any 𝐿 > 0, let
(︀
𝑢𝐿, 𝜇𝐿, 𝜃𝐿

)︀
denote the corresponding weak solution to the system

(1.13) in the sense of Theorem 3.1. In the following, we use the letter 𝐶 to denote generic positive constants
independent of 𝐿. From the energy inequality (3.3) we conclude that

‖𝑢𝐿‖𝐿∞(0,𝑇 ;𝐻1(Ω)) + ‖𝑢𝐿‖𝐿∞(0,𝑇 ;𝐿𝑝(Ω)) + ‖𝑢𝐿‖𝐿∞(0,𝑇 ;𝒳𝜅) + ‖𝑢𝐿‖𝐿∞(0,𝑇 ;𝐿𝑞(Γ)) ≤ 𝐶,

‖∇𝜇𝐿‖2𝐿2(𝑄𝑇 ) + ‖∇Γ𝜃
𝐿‖2𝐿2(Σ𝑇 ) + 1

𝐿‖𝛽𝜃
𝐿 − 𝜇𝐿‖2𝐿2(Σ𝑇 ) ≤ 𝐶.

(4.1)

Arguing as in Step 3 of the proof Theorem 3.1, we additionally infer that

‖𝜇𝐿‖𝐿2(𝑄𝑇 ) + ‖𝜃𝐿‖𝐿2(Σ𝑇 ) ≤ 𝐶. (4.2)

Proceeding similarly as in Step 4 of the proof of Theorem 3.1 and exploiting the energy inequality (3.3), we
derive the uniform estimate

‖𝑢𝐿
𝑡 ‖𝐿2(0,𝑇 ;𝐻1(Ω)′) + ‖𝑢𝐿

𝑡 ‖𝐿2(0,𝑇 ;𝐻1(Γ)′) ≤ 𝐶
(︁

1 + 1√
𝐿

)︁
· (4.3)

Let now 𝑤 ∈ 𝒱 be an arbitrary test function, then testing (3.2a) with 𝛽𝑤 and (3.2b) with 𝑤, summing and
integrating the resulting equations yields the bound

‖𝑢𝐿
𝑡 ‖𝐿2(0,𝑇 ;𝒱′) ≤ 𝐶 if 𝛽 > 0, (4.4)
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where 𝒱 ′ is endowed with the norm ‖ · ‖𝒱′,𝛽 as introduced in (P1).
Assume additionally that (A4) holds, we note that the arguments to the regularity assertion (3.4) do not

involve the parameter 𝐿, and so we deduce that

‖(𝑢𝐿, 𝑢𝐿|Σ𝑇
)‖𝐿2(0,𝑇 ;ℋ3) ≤ 𝐶 if 𝜅 > 0,

‖(𝑢𝐿, 𝑢𝐿|Σ𝑇
)‖𝐿2(0,𝑇 ;(𝐻5/2(Ω)×𝐻2(Γ)) ≤ 𝐶 if 𝜅 = 0.

(4.5)

These uniform estimates can now be used to establish our convergence results.

4.1. Convergence to the LW model as 𝐿 → ∞
Theorem 4.1 (Asymptotic limit 𝐿 → ∞). Suppose that (A1)–(A3) hold and let (𝑚𝑏,𝑚𝑠) ∈ R2, 𝛽 ̸= 0 and
𝜅 ≥ 0 be arbitrary. For any initial datum 𝑢*0 ∈ 𝒲𝜅

𝛽,𝑚 with 𝑚 := 𝛽|Ω|𝑚𝑏 + |Γ|𝑚𝑠, ⟨𝑢*0⟩Ω = 𝑚𝑏, ⟨𝑢*0⟩Γ = 𝑚𝑠,
𝐹 (𝑢*0) ∈ 𝐿1(Ω) and 𝐺(𝑢*0) ∈ 𝐿1(Γ), let

(︀
𝑢𝐿, 𝜇𝐿, 𝜃𝐿

)︀
denote the unique weak solution of the system (1.13) in the

sense of Theorem 3.1. Then there exist functions (𝑢*, 𝜇*, 𝜃*) such that

𝑢𝐿 → 𝑢* weakly-* in 𝐿∞
(︀
0, 𝑇 ;𝐻1(Ω) ∩ 𝐿𝑝(Ω)

)︀
,

weakly in 𝐻1
(︀
0, 𝑇 ;𝐻1(Ω)′

)︀
,

and strongly in 𝐶
(︀
[0, 𝑇 ];𝐿2(Ω)

)︀
,

𝑢𝐿|Σ𝑇
→ 𝑢*|Σ𝑇

weakly-* in 𝐿∞ (0, 𝑇 ;𝒳 𝜅 ∩ 𝐿𝑞(Γ)) ,
weakly in 𝐻1

(︀
0, 𝑇 ;𝐻1(Γ)′

)︀
,

and strongly in 𝐶
(︀
[0, 𝑇 ];𝐿2(Γ)

)︀
,

𝜇𝐿 → 𝜇* weakly in 𝐿2
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
,

𝜃𝐿 → 𝜃* weakly in 𝐿2
(︀
0, 𝑇 ;𝐻1(Γ)

)︀
,

1
𝐿

(︀
𝛽𝜃𝐿 − 𝜇𝐿|Σ𝑇

)︀
→ 0 strongly in 𝐿2(Σ𝑇 ),

as 𝐿 → ∞, and the limit (𝑢*, 𝜇*, 𝜃*) is the unique weak solution of the LW model (1.11) to the initial datum
𝑢*0.

If additionally

– (A4) holds, then

(︀
𝑢𝐿, 𝑢𝐿|Σ𝑇

)︀
→ (𝑢*, 𝑢*|Σ𝑇

) weakly in

{︃
𝐿2
(︀
0, 𝑇 ;ℋ3

)︀
if 𝜅 > 0,

𝐿2
(︀
0, 𝑇 ;𝐻5/2(Ω)×𝐻2(Γ)

)︀
if 𝜅 = 0.

– (A4) holds and (𝑢*0, 𝑢
*
0|Γ) ∈ ℋ3 if 𝜅 > 0 or 𝑢*0 ∈ 𝐻3(Ω) if 𝜅 = 0, then there exists a constant 𝐶 > 0

independent of 𝐿 and 𝜅 such that

‖∇
(︀
𝑢𝐿 − 𝑢*

)︀
‖𝐿2(𝑄𝑇 ) +

√
𝜅 ‖∇Γ

(︀
𝑢𝐿 − 𝑢*

)︀
‖𝐿2(Σ𝑇 ) ≤

𝐶√
𝐿
,

sup
𝑡∈(0,𝑇 )

⃦⃦⃦⃦∫︁ 𝑡

0

𝜕𝑛𝜇
𝐿(𝑠) d𝑠

⃦⃦⃦⃦
𝐿2(Γ)

+ ‖𝜕𝑛𝜇
𝐿‖𝐿2(Σ𝑇 ) ≤

𝐶√
𝐿
·

– (A4) holds, 𝜅 > 0 and (𝑢*0, 𝑢
*
0|Γ) ∈ ℋ3, then there exists a constant 𝐶 > 0 independent of 𝐿 such that

‖𝑢𝐿 − 𝑢*‖𝐿∞(0,𝑇 ;𝐿2(Ω)) + ‖𝑢𝐿 − 𝑢*‖𝐿∞(0,𝑇 ;𝐿2(Γ)) ≤
𝐶

𝐿1/4
·

Proof. In this proof we use the letter 𝐶 to denote generic positive constants independent of 𝐿, 𝑁 , 𝑛 and 𝜏 that
may change their value from line to line.
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Step 1: Convergence in the limit 𝐿 → ∞. Let (𝐿𝑘)𝑘∈N ⊂ [1,∞) denote an arbitrary sequence satisfying
𝐿𝑘 → ∞ as 𝑘 → ∞. For any 𝑘 ∈ N, let (𝑢𝑘, 𝜇𝑘, 𝜃𝑘) = (𝑢𝐿𝑘 , 𝜇𝐿𝑘 , 𝜃𝐿𝑘) denote the unique weak solution to the
system (1.13) corresponding to the parameter 𝐿𝑘. Hence, from the uniform bounds (4.1)–(4.3) we infer the
existence of functions (𝑢*, 𝜇*, 𝜃*) such that

𝑢𝑘 → 𝑢* weakly-* in 𝐿∞(0, 𝑇 ;𝐻1(Ω) ∩ 𝐿𝑝(Ω)) (4.6a)
weakly in 𝐻1(0, 𝑇 ;𝐻1(Ω)′), (4.6b)

𝑢𝑘|Σ𝑇
→ 𝑢*|Σ𝑇

weakly-* in 𝐿∞(0, 𝑇 ;𝒳 𝜅 ∩ 𝐿𝑞(Γ)) (4.6c)
weakly in 𝐻1(0, 𝑇 ;𝐻1(Γ)′), (4.6d)

𝜇𝑘 → 𝜇* weakly in 𝐿2(0, 𝑇 ;𝐻1(Ω)), (4.6e)

𝜃𝑘 → 𝜃* weakly in 𝐿2(0, 𝑇 ;𝐻1(Γ)), (4.6f)

as 𝑘 →∞ along a non-relabelled subsequence. By the Aubin–Lions lemma we deduce that

𝑢𝑘 → 𝑢* strongly in 𝐶([0, 𝑇 ];𝐿2(Ω)) (4.6g)

𝑢𝑘|Σ𝑇
→ 𝑢*|Σ𝑇

strongly in 𝐶([0, 𝑇 ];𝐿2(Γ)), (4.6h)

as 𝑘 →∞ after another subsequence extraction. Moreover, from (4.1) it follows that

1
𝐿𝑘
‖𝛽𝜃𝑘 − 𝜇𝑘‖𝐿2(Σ𝑇 ) ≤

𝐶√
𝐿𝑘

→ 0 as 𝑘 →∞. (4.7)

It is clear from the convergence properties in (4.6) that the triplet (𝑢*, 𝜇*, 𝜃*) has the desired regularity as
stated in item (i) of Proposition 3.3. For arbitrary 𝑤 ∈ 𝐻1(Ω), 𝑧 ∈ 𝐻1(Γ) and 𝜂 ∈ 𝒱𝜅 ∩ 𝐿∞ with 𝜂|Γ ∈ 𝐿∞(Γ),
from the weak formulation (3.2) of the system (1.13) written for (𝑢𝑘, 𝜇𝑘, 𝜃𝑘):

⟨𝜕𝑡𝑢
𝑘, 𝑤⟩𝐻1(Ω) = −

∫︁
Ω

∇𝜇𝑘 · ∇𝑤 d𝑥+
1
𝐿𝑘

∫︁
Γ

(︀
𝛽𝜃𝑘 − 𝜇𝑘

)︀
𝑤 dΓ, (4.8a)

⟨𝜕𝑡𝑢
𝑘, 𝑧⟩𝐻1(Γ) = −

∫︁
Γ

∇Γ𝜃
𝑘 · ∇Γ𝑧 dΓ− 1

𝐿𝑘

∫︁
Γ

(︀
𝛽𝜃𝑘 − 𝜇𝑘

)︀
𝛽𝑧 dΓ, (4.8b)∫︁

Ω

𝜇𝑘𝜂 d𝑥+
∫︁

Γ

𝜃𝑘𝜂 dΓ =
∫︁

Ω

∇𝑢𝑘 · ∇𝜂 + 𝐹 ′
(︀
𝑢𝑘
)︀
𝜂 d𝑥

+
∫︁

Γ

𝜅∇Γ𝑢
𝑘 · ∇Γ𝜂 +𝐺′

(︀
𝑢𝑘
)︀
𝜂 dΓ,

(4.8c)

We multiply all equations in (4.8) with arbitrary test functions in 𝐶∞𝑐 ([0, 𝑇 ]) depending only on 𝑡, integrate
with respect to 𝑡 from 0 to 𝑇 , and pass to the limit 𝑘 → ∞ with the help of the convergence results (4.6)
and (4.7). For the terms involving 𝐹 ′(𝑢𝑘) and 𝐺′(𝑢𝑘) the generalised dominated convergence theorem [2], p. 60
can be used. Hence, we infer that (𝑢*, 𝜇*, 𝜃*) satisfies the weak formulation (3.49). Moreover, using weak lower
semicontinuity arguments, we can pass to the limit in the energy inequality (3.3) for

(︀
𝑢𝑘, 𝜇𝑘, 𝜃𝑘

)︀
whilst neglecting

the non-negative boundary integral term involving 𝐿𝑘, leading to the energy inequality (3.50). Lastly, choosing
𝑤 = 1 in (4.8a) and 𝑧 = 1 in (4.8b), multiplying by a 𝐶∞𝑐 ([0, 𝑇 ]) function, integrating over [0, 𝑇 ] and passing to
the limit leads to the property that for all 𝑡 ∈ (0, 𝑇 ],

⟨𝑢*(𝑡)⟩Ω = ⟨𝑢*0⟩Ω = 𝑚𝑏, ⟨𝑢*(𝑡)⟩Γ = ⟨𝑢*0⟩Γ = 𝑚𝑠.

This means 𝑢*(𝑡) ∈ 𝒱𝜅
(𝑚𝑏,𝑚𝑠) for all 𝑡 ∈ [0, 𝑇 ]. This proves that (𝑢*, 𝜇*, 𝜃*) is a weak solution of the LW model

(1.11) in the sense of Proposition 3.3.
If (A4) holds, then (4.5) implies the weak convergence of

(︀
𝑢𝑘, 𝑢𝑘|Σ𝑇

)︀
to (𝑢*, 𝑢*|Σ𝑇

) in 𝐿2(0, 𝑇 ;ℋ3) if 𝜅 > 0
and in 𝐿2(0, 𝑇 ;𝐻5/2(Ω) ×𝐻2(Γ)) if 𝜅 = 0. Suppose further that the initial condition satisfies (𝑢*0, 𝑢

*
0|Γ) ∈ ℋ3
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if 𝜅 > 0 or 𝑢*0 ∈ 𝐻3(Ω) if 𝜅 = 0, then by Theorem 3.2, the solution
(︀
𝑢𝑘, 𝜇𝑘, 𝜃𝑘

)︀
is a strong solution to (1.13),

and thus we have the relation

𝜕n𝜇
𝑘 =

1
𝐿𝑘

(︀
𝛽𝜃𝑘 − 𝜇𝑘

)︀
holding a.e. on Σ𝑇 ,

and (4.7) implies the estimate

‖𝜕n𝜇𝑘‖𝐿2(Σ𝑇 ) ≤
𝐶√
𝐿𝑘

·

By uniqueness of solutions to the LW model, which is independent of the choice of the extracted subsequence,
we conclude by standard arguments that the above convergence results hold true for the whole sequence.
Moreover, as the sequence (𝐿𝑘)𝑘∈N was arbitrary, the convergence assertions are established for 𝐿→∞.
Step 2: Convergence rates. For 𝐿 ∈ [1,∞), let

(︀
𝑢𝐿, 𝜇𝐿, 𝜃𝐿

)︀
denote the unique weak solution to (1.13) corre-

sponding to initial data 𝑢*0. Recall that 𝐿𝜕n𝜇𝐿 = 𝛽𝜃𝐿 − 𝜇𝐿 holds a.e. on Σ𝑇 , we define(︁
𝑢̂, 𝜇̂, 𝜃

)︁
:=
(︀
𝑢𝐿 − 𝑢*, 𝜇𝐿 − 𝜇*, 𝜃𝐿 − 𝜃*

)︀
.

Then, it follows from the weak formulations (3.2) and (3.49) that

⟨𝑢̂𝑡, 𝑤⟩𝐻1(Ω) = −
∫︁

Ω

∇𝜇̂ · ∇𝑤 d𝑥+
∫︁

Γ

𝜕𝑛𝜇
𝐿𝑤 dΓ, (4.9a)

⟨𝑢̂𝑡, 𝑧⟩𝐻1(Γ) = −
∫︁

Γ

∇Γ𝜃 · ∇Γ𝑧 dΓ−
∫︁

Γ

𝜕𝑛𝜇
𝐿𝛽𝑧 dΓ, (4.9b)∫︁

Ω

𝜇̂𝜂 d𝑥+
∫︁

Γ

𝜃𝜂 dΓ =
∫︁

Ω

∇𝑢̂ · ∇𝜂 +
(︀
𝐹 ′
(︀
𝑢𝐿
)︀
− 𝐹 ′ (𝑢*)

)︀
𝜂 d𝑥

+
∫︁

Γ

𝜅∇Γ𝑢̂ · ∇Γ𝜂 +
(︀
𝐺′
(︀
𝑢𝐿
)︀
−𝐺′ (𝑢*)

)︀
𝜂 dΓ,

(4.9c)

for all test functions 𝑤 ∈ 𝐻1(Ω), 𝑧 ∈ 𝐻1(Γ) and 𝜂 ∈ 𝒱𝜅 ∩ 𝐿∞ with 𝜂|Γ ∈ 𝐿∞(Γ). Let now 𝑡0 ∈ (0, 𝑇 ],
𝑤 ∈ 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
and 𝑧 ∈ 𝐿2

(︀
0, 𝑇 ;𝐻1(Γ)

)︀
be arbitrary. In the following we use once more the notation

𝑄𝑡0 = Ω× (0, 𝑡0), Σ𝑡0 = Γ× (0, 𝑡0). Proceeding as in Step 7 of the proof of Theorem 3.1, we find that∫︁
𝑄𝑡0

𝑢̂𝑤 d𝑥d𝑡+
∫︁

Σ𝑡0

𝑢̂𝑧 dΓ d𝑡 = −
∫︁

𝑄𝑡0

∇
(︂∫︁ 𝑡

0

𝜇̂d𝑠
)︂
· ∇𝑤 d𝑥 d𝑡 −

∫︁
Σ𝑡0

∇Γ

(︂∫︁ 𝑡

0

𝜃 d𝑠
)︂
· ∇Γ𝑧 dΓ d𝑡

− 1
𝐿

∫︁
Σ𝑡0

(︂∫︁ 𝑡

0

𝛽𝜃𝐿 − 𝜇𝐿 d𝑠
)︂

(𝛽𝑧 − 𝑤) dΓ d𝑡.
(4.10)

In the following, we use the notation

(1 ⋆ 𝑓)(𝑡) =
∫︁ 𝑡

0

𝑓(𝑠) d𝑠. (4.11)

Here, 𝑓 may be scalar or vector-valued. In particular, this implies the relations

d
d𝑡

1
2

∫︁
Ω

|(1 ⋆ 𝑓)(𝑡)|2 d𝑥 =
∫︁

Ω

(1 ⋆ 𝑓) (𝑡) · 𝑓(𝑡) d𝑥,

d
d𝑡

1
2

∫︁
Γ

|(1 ⋆ 𝑓)(𝑡)|2 dΓ =
∫︁

Γ

(1 ⋆ 𝑓) (𝑡) · 𝑓(𝑡) dΓ.

(4.12)
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Now, plugging 𝑤 = 𝜇̂ and 𝑧 = 𝜃 into (4.10) and using the relations (4.12) as well as the decomposition∫︁
Γ

(︀
1 ⋆ 𝜕𝑛𝜇

𝐿
)︀

(𝑡)
(︁
𝛽𝜃(𝑡)− 𝜇̂(𝑡)

)︁
dΓ =

∫︁
Γ

(︀
1 ⋆ 𝜕𝑛𝜇

𝐿
)︀

(𝑡)
(︀
𝐿𝜕𝑛𝜇

𝐿(𝑡)− (𝛽𝜃* − 𝜇*) (𝑡)
)︀

dΓ,

for almost all 𝑡 ∈ (0, 𝑇 ), a straightforward computation yields

1
2

(︁
‖∇(1 ⋆ 𝜇̂)(𝑡0)‖2𝐿2(Ω) + ‖∇Γ

(︁
1 ⋆ 𝜃

)︁
(𝑡0)‖2𝐿2(Γ) + 𝐿‖

(︀
1 ⋆ 𝜕n𝜇𝐿

)︀
(𝑡0)‖2𝐿2(Γ)

)︁
= −

∫︁
𝑄𝑡0

𝑢̂𝜇̂d𝑥 d𝑡−
∫︁

Σ𝑡0

𝑢̂𝜃 d𝑥d𝑡+
∫︁

Σ𝑡0

(︀
1 ⋆ 𝜕n𝜇𝐿

)︀
(𝛽𝜃* − 𝜇*) dΓ d𝑡.

(4.13)

Furthermore, proceeding as in Step 7 of the proof of Theorem 3.1 we obtain

‖∇𝑢̂‖2
𝐿2(𝑄𝑡0) + 𝜅‖∇Γ𝑢̂‖2𝐿2(Σ𝑡0) ≤

∫︁
𝑄𝑡0

𝑢̂𝜇̂d𝑥 d𝑡+
∫︁

Σ𝑡0

𝑢̂𝜃 d𝑥 d𝑡+ 𝐶Lip

(︁
‖𝑢̂‖2

𝐿2(𝑄𝑡0) + ‖𝑢̂‖2
𝐿2(Σ𝑡0)

)︁
(4.14)

where the constant 𝐶Lip > 0 depends only on the Lipschitz constants of 𝐹 ′2 and 𝐺′2. Adding (4.13) and (4.14)
and applying Young’s inequality now gives

1
2
‖∇ (1 ⋆ 𝜇̂) (𝑡0)‖2𝐿2(Ω) +

1
2
‖∇Γ

(︁
1 ⋆ 𝜃

)︁
(𝑡0)‖2𝐿2(Γ) +

𝐿

2
‖
(︀
1 ⋆ 𝜕n𝜇𝐿

)︀
(𝑡0)‖2𝐿2(Γ)

+
∫︁ 𝑡0

0

‖∇𝑢̂‖2𝐿2(Ω) + 𝜅‖∇Γ𝑢̂‖2𝐿2(Γ) d𝑡

≤
∫︁ 𝑡0

0

𝐿

2
‖
(︀
1 ⋆ 𝜕𝑛𝜇

𝐿
)︀

(𝑡)‖2𝐿2(Γ) +
1

2𝐿
‖𝛽𝜃* − 𝜇*‖2𝐿2(Γ) d𝑡

+
∫︁ 𝑡0

0

𝐶Lip

(︁
‖𝑢̂‖2𝐿2(Ω) + ‖𝑢̂‖2𝐿2(Γ)

)︁
d𝑡.

(4.15)

By the trace theorem as well as the chain of compact embeddings 𝐻1(Ω) →˓ 𝐻3/4(Ω) →˓ 𝐻−1(Ω) (where 𝐻−1(Ω)
denotes the dual space to 𝐻1

0 (Ω)), we obtain the estimate (cf. [27], (3.67))

𝐶Lip

(︁
‖𝑢̂‖2𝐿2(Ω) + ‖𝑢̂‖2𝐿2(Γ)

)︁
≤ 𝐶‖𝑢̂‖2𝐻3/4(Ω) ≤

1
2
‖∇𝑢̂‖2𝐿2(Ω) + 𝐶‖𝑢̂‖2𝐻−1(Ω). (4.16)

To control the 𝐻−1-norm of 𝑢̂, we introduce the function 𝒟(𝑢̂) ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) as the solution to Poisson’s

equation with homogeneous Dirichlet boundary condition and source term 𝑢̂, i.e.,{︃
−∆𝒟(𝑢̂) = 𝑢̂ in Ω,
𝒟(𝑢̂) = 0 on Γ,

for a.e. 𝑡 ∈ (0, 𝑇 ). It is well-known that ‖∇𝒟(·)‖𝐿2(Ω) is an equivalent norm to ‖·‖𝐻−1(Ω) on 𝐻−1(Ω). Moreover,
after integrating (4.9a) in time and testing with 𝒟(𝑢̂(𝑡)), we deduce that

‖𝑢̂(𝑡)‖2𝐻−1(Ω) ≤ ‖∇𝒟(𝑢̂(𝑡))‖2𝐿2(Ω) =
∫︁

Ω

𝑢̂(𝑡)𝒟(𝑢̂(𝑡)) d𝑥

≤ 𝐶‖∇(1 ⋆ 𝜇̂)(𝑡)‖𝐿2(Ω)‖∇𝒟(𝑢̂(𝑡))‖𝐿2(Ω)

≤ 𝐶‖∇(1 ⋆ 𝜇̂)(𝑡)‖𝐿2(Ω)‖𝑢̂(𝑡)‖𝐻−1(Ω)

for a.e. 𝑡 ∈ (0, 𝑇 ). Consequently, for a.e. 𝑡 ∈ (0, 𝑇 ),

‖𝑢̂(𝑡)‖𝐻−1(Ω) ≤ 𝐶‖∇(1 ⋆ 𝜇̂)(𝑡)‖𝐿2(Ω). (4.17)
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Substituting this estimate into (4.16) and plugging the resulting estimate into (4.15), we obtain

1
2
‖∇ (1 ⋆ 𝜇̂) (𝑡0)‖2𝐿2(Ω) +

1
2
‖∇Γ

(︁
1 ⋆ 𝜃

)︁
(𝑡0)‖2𝐿2(Γ) +

𝐿

2
‖
(︀
1 ⋆ 𝜕n𝜇𝐿

)︀
(𝑡0)‖2𝐿2(Γ)

+
∫︁ 𝑡0

0

1
2
‖∇𝑢̂‖2𝐿2(Ω) + 𝜅‖∇Γ𝑢̂‖2𝐿2(Γ) d𝑡

≤
∫︁ 𝑡0

0

𝐿

2
‖
(︀
1 ⋆ 𝜕𝑛𝜇

𝐿
)︀

(𝑡)‖2𝐿2(Γ) +
1

2𝐿
‖𝛽𝜃* − 𝜇*‖2𝐿2(Γ) + 𝐶‖∇ (1 ⋆ 𝜇̂) (𝑡)‖2𝐿2(Ω) d𝑡

(4.18)

Now, since 𝑡0 was arbitrary, a Gronwall argument implies the existence of a constant 𝐶 independent of 𝐿 and
𝜅 such that

sup
𝑡∈(0,𝑇 )

(︁
‖∇ (1 ⋆ 𝜇̂) (𝑡)‖2𝐿2(Ω) + ‖∇Γ

(︁
1 ⋆ 𝜃

)︁
(𝑡)‖2𝐿2(Γ) + 𝐿‖

(︀
1 ⋆ 𝜕𝑛𝜇

𝐿
)︀

(𝑡)‖2𝐿2(Γ)

)︁
+ ‖∇𝑢̂‖2𝐿2(𝑄𝑇 ) + 𝜅‖∇Γ𝑢̂‖2𝐿2(Σ𝑇 )

≤ 𝐶

𝐿
‖𝛽𝜃* − 𝜇*‖2𝐿2(Σ𝑇 ) ≤

𝐶

𝐿
·

From this we obtain the convergence rates

‖∇𝑢̂‖𝐿2(𝑄𝑇 ) +
√
𝜅‖∇Γ𝑢̂‖𝐿2(Σ𝑇 ) ≤

𝐶√
𝐿
, sup

𝑡∈(0,𝑇 )

⃦⃦⃦⃦∫︁ 𝑡

0

𝜕𝑛𝜇
𝐿(𝑠) d𝑠

⃦⃦⃦⃦
𝐿2(Γ)

≤ 𝐶

𝐿
, (4.19)

for a positive constant 𝐶 independent of 𝜅 and 𝐿. Next, assume 𝜅 > 0 and testing (4.9b) with 𝑧 = 𝑢̂ yields after
integration for a.e. 𝑡 ∈ (0, 𝑇 ),

‖𝑢̂(𝑡)‖2𝐿2(Γ) ≤ 2
∫︁ 𝑡

0

‖∇Γ𝜃‖𝐿2(Γ)‖∇Γ𝑢̂‖𝐿2(Γ) + |𝛽|‖𝜕𝑛𝜇
𝐿‖𝐿2(Γ)‖𝑢̂‖𝐿2(Γ) d𝑠

≤ 𝐶‖∇Γ

(︀
𝜃𝐿 − 𝜃*

)︀
‖𝐿2(Σ𝑇 )‖∇Γ𝑢̂‖𝐿2(Σ𝑇 ) + 𝐶‖𝜕𝑛𝜇

𝐿‖2𝐿2(Σ𝑇 ) +
∫︁ 𝑡

0

‖𝑢̂‖2𝐿2(Γ) d𝑠

≤ 𝐶√
𝐿

+
∫︁ 𝑡

0

‖𝑢̂‖2𝐿2(Γ) d𝑠

on account of the uniform bound (4.1) and the estimate (4.19). By Gronwall’s inequality we then infer that

‖𝑢̂‖𝐿∞(0,𝑇 ;𝐿2(Γ)) ≤
𝐶

𝐿1/4
·

Then, testing (4.9a) with 𝑤 = 𝑢̂ yields after integration for a.e. 𝑡 ∈ (0, 𝑇 ),

‖𝑢̂(𝑡)‖2𝐿2(Ω) ≤ 𝐶‖∇
(︀
𝜇𝐿 − 𝜇*

)︀
‖𝐿2(𝑄𝑇 )‖∇𝑢̂‖𝐿2(𝑄𝑇 ) + ‖𝜕𝑛𝜇

𝐿‖𝐿2(Σ𝑇 )‖𝑢̂‖𝐿2(Σ𝑇 ) ≤
𝐶√
𝐿
,

and thus, the proof of Theorem 4.1 is complete. �

4.2. Convergence to the GMS model as 𝐿 → 0

Theorem 4.2 (Asymptotic limit 𝐿 → 0). Suppose that (A1)–(A3) hold and let 𝑚 ∈ R, 𝜅 ≥ 0 and 𝛽 > 0 be
arbitrary. For any initial datum 𝑢0,* ∈ 𝒲𝜅

𝛽,𝑚 with 𝐹 (𝑢0,*) ∈ 𝐿1(Ω) and 𝐺(𝑢0,*) ∈ 𝐿1(Γ), let
(︀
𝑢𝐿, 𝜇𝐿, 𝜃𝐿

)︀
denote
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the unique weak solution of the system (1.13) in the sense of Theorem 3.1. Then there exist functions (𝑢*, 𝜇*, 𝜃*)
such that

𝑢𝐿 → 𝑢* weakly in 𝐻1(0, 𝑇 ;𝒱 ′),
𝑢𝐿 → 𝑢* weakly-* in 𝐿∞

(︀
0, 𝑇 ;𝐻1(Ω) ∩ 𝐿𝑝(Ω)

)︀
,

and strongly in 𝐶
(︀
[0, 𝑇 ];𝐿2(Ω)

)︀
,

𝑢𝐿|Σ𝑇
→ 𝑢*|Σ𝑇

weakly-* in 𝐿∞ (0, 𝑇 ;𝒳 𝜅 ∩ 𝐿𝑞(Γ)) ,
and strongly in 𝐶

(︀
[0, 𝑇 ];𝐿2(Γ)

)︀
,

𝜇𝐿 → 𝜇* weakly in 𝐿2
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
,

𝜃𝐿 → 𝜃* weakly in 𝐿2
(︀
0, 𝑇 ;𝐻1(Γ)

)︀
,

𝛽𝜃𝐿 − 𝜇𝐿|Σ𝑇
→ 0 strongly in 𝐿2 (Σ𝑇 )

as 𝐿→ 0, with

‖𝛽𝜃𝐿 − 𝜇𝐿‖𝐿2(Σ𝑇 ) ≤ 𝐶
√
𝐿,

and the limit (𝑢*, 𝜇*, 𝜃*) is the unique weak solution of the GMS model (1.8) to the initial datum 𝑢0,* with
𝜇*|Γ = 𝛽𝜃* a.e. on Σ𝑇 .

If additionally
– (A4) holds, then

(︀
𝑢𝐿, 𝑢𝐿|Σ𝑇

)︀
→ (𝑢*, 𝑢*|Σ𝑇

) weakly in

{︃
𝐿2(0, 𝑇 ;ℋ3) if 𝜅 > 0,
𝐿2(0, 𝑇 ;𝐻5/2(Ω)×𝐻2(Γ)) if 𝜅 = 0.

– (A4) holds and (𝑢0,*, 𝑢0,*|Γ) ∈ ℋ3 if 𝜅 > 0 or 𝑢0,* ∈ 𝐻3(Ω) if 𝜅 = 0, then there exists a constant 𝐶 > 0
independent of 𝐿 and 𝜅 such that

‖∇(𝑢𝐿 − 𝑢*)‖𝐿2(𝑄𝑇 ) +
√
𝜅 ‖∇Γ(𝑢𝐿 − 𝑢*)‖𝐿2(Σ𝑇 ) ≤ 𝐶

√
𝐿,

sup
𝑡∈(0,𝑇 )

⃦⃦⃦⃦∫︁ 𝑡

0

(︀
𝛽𝜃𝐿 − 𝜇𝐿

)︀
(𝑠) d𝑠

⃦⃦⃦⃦
𝐿2(Γ)

≤ 𝐶𝐿,

– (A4) holds, 𝜅 > 0 and (𝑢0,*, 𝑢0,*|Γ) ∈ ℋ3, then there exists a constant 𝐶 > 0 independent of 𝐿 such that

‖𝑢𝐿 − 𝑢*‖𝐿∞(0,𝑇 ;𝐿2(Ω)) + ‖𝑢𝐿 − 𝑢*‖𝐿∞(0,𝑇 ;𝐿2(Γ)) ≤ 𝐶𝐿1/4.

Proof. In this proof we use the letter 𝐶 to denote generic positive constants independent of 𝐿, 𝑁 , 𝑛 and 𝜏 that
may change their value from line to line.
Step 1: Convergence in the limit 𝐿→ 0. Let (𝐿𝑘)𝑘∈N ⊂ (0, 1] denote an arbitrary sequence satisfying 𝐿𝑘 → 0
as 𝑘 → ∞. For any 𝑘 ∈ N, let (𝑢𝑘, 𝜇𝑘, 𝜃𝑘) =

(︀
𝑢𝐿𝑘 , 𝜇𝐿𝑘 , 𝜃𝐿𝑘

)︀
denote the unique weak solution to the system

(1.13) corresponding to the parameter 𝐿𝑘. Then, in the limit 𝑘 →∞, we infer from (4.1) to (4.4) the existence
of limit functions (𝑢*, 𝜇*, 𝜃*) such that

𝑢𝑘 → 𝑢* weakly in 𝐻1(0, 𝑇 ;𝒱 ′), (4.20a)
𝑢𝑘 → 𝑢* weakly-* in 𝐿∞

(︀
0, 𝑇 ;𝐻1(Ω) ∩ 𝐿𝑝(Ω)

)︀
, (4.20b)

𝑢𝑘|Σ𝑇
→ 𝑢*|Σ𝑇

weakly-* in 𝐿∞ (0, 𝑇 ;𝒳 𝜅 ∩ 𝐿𝑞(Γ)) , (4.20c)
𝜇𝑘 → 𝜇* weakly in 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
, (4.20d)

𝜃𝑘 → 𝜃* weakly in 𝐿2
(︀
0, 𝑇 ;𝐻1(Γ)

)︀
, (4.20e)

𝛽𝜃𝑘 − 𝜇𝑘|Σ𝑇
→ 0 strongly in 𝐿2 (Σ𝑇 ) . (4.20f)
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along a non-relabelled subsequence. In particular, (4.20f) implies that 𝜇*|Σ𝑇
= 𝛽𝜃*. Using the Aubin–Lions

lemma, we conclude that

𝑢𝑘 → 𝑢* strongly in 𝐶([0, 𝑇 ];𝐿2(Ω)), (4.20g)
𝑢𝑘|Σ𝑇

→ 𝑢*|Σ𝑇
strongly in 𝐶([0, 𝑇 ];𝐿2(Γ)). (4.20h)

It is clear from the convergence properties in (4.20) that the triplet (𝑢*, 𝜇*, 𝜃*) has the desired regularity as
stated in item (i) of Proposition 3.4. For arbitrary 𝑤 ∈ 𝒱 and 𝜂 ∈ 𝒱𝜅 ∩ 𝐿∞ with 𝜂|Γ ∈ 𝐿∞(Γ), testing (3.2a)
with 𝛽𝑤, (3.2b) with 𝑤 and (3.2c) with 𝜂 gives

⟨𝜕𝑡𝑢𝑘, 𝑤⟩𝒱,𝛽 = −𝛽
∫︁

Ω

∇𝜇𝑘 · ∇𝑤 d𝑥−
∫︁

Γ

∇Γ𝜃𝑘 · ∇Γ𝑤 dΓ,∫︁
Ω

𝜇𝑘𝜂 d𝑥+
∫︁

Γ

𝜃𝑘𝜂 dΓ =
∫︁

Ω

∇𝑢𝑘 · ∇𝜂 + 𝐹 ′(𝑢𝑘)𝜂 d𝑥+
∫︁

Γ

𝜅∇Γ𝑢𝑘 · ∇Γ𝜂 +𝐺′(𝑢𝑘)𝜂 dΓ.

After multiplying the above by arbitrary test functions in 𝐶∞𝑐 ([0, 𝑇 ]) and integrating with respect to 𝑡 from 0
to 𝑇 , we can apply the convergence properties (4.20) to pass to the limit in the resulting equations, leading
to the assertion that (𝑢*, 𝜇*, 𝜃*) satisfies (3.52). Again by weak lower semicontinuity arguments, passing to the
limit in the energy inequality (3.3) leads to (3.53), and so (𝑢*, 𝜇*, 𝜃*) is the unique weak solution of the GMS
model (1.8) in the sense of Proposition 3.4.

If additionally (A4) holds, then we obtain as before the weak convergence of (𝑢𝑘, 𝑢𝑘|Σ𝑇
) to (𝑢*, 𝑢*|Σ𝑇

) in
𝐿2(0, 𝑇 ;ℋ3) if 𝜅 > 0 and in 𝐿2(0, 𝑇 ;𝐻5/2(Ω)×𝐻2(Γ)) if 𝜅 = 0.

By uniqueness of solutions to the GMS model, which is independent of the choice of the extracted subsequence,
we conclude by standard arguments that the above convergence results hold true for the whole sequence.
Moreover, as the sequence (𝐿𝑘)𝑘∈N was arbitrary, the convergence assertions for 𝐿→ 0 are established.
Step 2: Convergence rates. For 𝐿 ∈ (0, 1], let

(︀
𝑢𝐿, 𝜇𝐿, 𝜃𝐿

)︀
denote the unique solution to (1.13) corresponding

to the initial data 𝑢0,* in the sense of Theorem 3.1. We now use the notation(︁
𝑢̂, 𝜇̂, 𝜃

)︁
:=
(︀
𝑢𝐿 − 𝑢*, 𝜇

𝐿 − 𝜇*, 𝜃
𝐿 − 𝜃*

)︀
,

Recalling that 𝛽𝜃* − 𝜇* = 0 a.e. on Σ𝑇 , the convergence rate

‖𝛽𝜃𝐿 − 𝜇𝐿‖𝐿2(Σ𝑇 ) = ‖𝛽𝜃 − 𝜇̂‖𝐿2(Σ𝑇 ) ≤ 𝐶
√
𝐿

follows directly from (4.1), with a constant 𝐶 independent of 𝐿 and 𝜅. Under (A4) and the assumption
(𝑢0,*, 𝑢0,*|Γ) ∈ ℋ3 if 𝜅 > 0 or 𝑢0,* ∈ 𝐻3(Ω) if 𝜅 = 0, the triplet

(︀
𝑢𝐿, 𝜇𝐿, 𝜃𝐿

)︀
is a strong solution to (1.13)

in the sense of Theorem 3.2. In light of Proposition 3.5 for the limit solutions (𝑢*, 𝜇*, 𝜃*), we see that

0 = ⟨𝑢̂𝑡, 𝑤⟩𝐻1(Ω) +
∫︁

Ω

∇𝜇̂ · ∇𝑤 d𝑥−
∫︁

Γ

𝜕𝑛𝜇̂ 𝑤 dΓ, (4.21a)

0 = ⟨𝑢̂𝑡, 𝑧⟩𝐻1(Γ) +
∫︁

Γ

∇Γ𝜃 · ∇Γ𝑧 + 𝜕𝑛𝜇̂ 𝛽𝑧 dΓ, (4.21b)

0 =
∫︁

Ω

∇𝑢̂ · ∇𝜂 +
(︀
𝐹 ′
(︀
𝑢𝐿
)︀
− 𝐹 ′(𝑢*)− 𝜇̂

)︀
𝜂 d𝑥

+
∫︁

Γ

𝜅∇Γ𝑢̂ · ∇Γ𝜂 +
(︁
𝐺′
(︀
𝑢𝐿
)︀
−𝐺′(𝑢*)− 𝜃

)︁
𝜂 dΓ,

(4.21c)

for almost all 𝑡 ∈ (0, 𝑇 ) and for all 𝑤 ∈ 𝐻1(Ω), 𝑧 ∈ 𝐻1(Γ) and 𝜂 ∈ 𝒱𝜅 ∩ 𝐿∞(Ω) with 𝜂|Γ ∈ 𝐿∞(Γ). The only
difference to (4.9) is that here 𝜕𝑛𝜇

𝐿 is replaced by 𝜕𝑛𝜇̂. Let now 𝑡0 ∈ (0, 𝑇 ] be arbitrary. Once more, we write
𝑄𝑡0 = Ω× (0, 𝑡0) and Σ𝑡0 = Γ× (0, 𝑡0) and we use the notation introduced in (4.11). Recalling that

𝜕𝑛𝜇̂ = 𝜕𝑛𝜇
𝐿 − 𝜕𝑛𝜇* = 1

𝐿

(︀
𝛽𝜃𝐿 − 𝜇𝐿

)︀
− 𝜕𝑛𝜇* = 1

𝐿

(︁
𝛽𝜃 − 𝜇̂

)︁
− 𝜕𝑛𝜇* a.e. on Σ𝑇 , (4.22)
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and thus, ∫︁
Γ

(1 ⋆ 𝜕𝑛𝜇̂) (𝑡)
(︁
𝛽𝜃 − 𝜇̂

)︁
(𝑡) dΓ =

∫︁
Γ

(︁
1 ⋆
[︁

1
𝐿

(︁
𝛽𝜃 − 𝜇̂

)︁
− 𝜕𝑛𝜇*

]︁)︁
(𝑡)
(︁
𝛽𝜃 − 𝜇̂

)︁
(𝑡) dΓ (4.23)

for almost all 𝑡 ∈ (0, 𝑇 ). Invoking also the relation (4.12) we can proceed as in the derivation of (4.18) to
conclude that

1
2
‖∇ (1 ⋆ 𝜇̂) (𝑡0)‖2𝐿2(Ω) +

1
2
‖∇Γ

(︁
1 ⋆ 𝜃

)︁
(𝑡0)‖2𝐿2(Γ) +

1
2𝐿
‖
(︁

1 ⋆
[︁
𝛽𝜃 − 𝜇̂

]︁)︁
(𝑡0)‖2𝐿2(Γ)

+
∫︁ 𝑡0

0

‖∇𝑢̂‖2𝐿2(Ω) + 𝜅‖∇Γ𝑢̂‖2𝐿2(Γ) d𝑡

≤ 𝐶

∫︁ 𝑡0

0

‖∇ (1 ⋆ 𝜇̂) (𝑡)‖2𝐿2(Ω) d𝑡+
∫︁ 𝑡0

0

∫︁
Γ

(1 ⋆ 𝜕n𝜇*) (𝑡)
(︁
𝛽𝜃(𝑡)− 𝜇̂(𝑡)

)︁
dΓ d𝑡.

(4.24)

By Fubini’s theorem, the Cauchy–Schwarz inequality and Young’s inequality, we see that∫︁ 𝑡0

0

∫︁
Γ

(1 ⋆ 𝜕𝑛𝜇*) (𝑡)
(︁
𝛽𝜃(𝑡)− 𝜇̂(𝑡)

)︁
dΓ d𝑡 =

∫︁
Γ

∫︁ 𝑡0

0

∫︁ 𝑡0

𝑠

𝜕𝑛𝜇*(𝑠)
(︁
𝛽𝜃(𝑡)− 𝜇̂(𝑡)

)︁
d𝑡d𝑠dΓ

=
∫︁ 𝑡0

0

∫︁
Γ

𝜕𝑛𝜇*(𝑠)
[︁(︁

1 ⋆
(︁
𝛽𝜃 − 𝜇̂

)︁)︁
(𝑡0)−

(︁
1 ⋆
(︁
𝛽𝜃 − 𝜇̂

)︁)︁
(𝑠)
]︁

dΓ d𝑠

≤
∫︁ 𝑡0

0

‖𝜕𝑛𝜇*(𝑠)‖𝐿2(Γ)

[︁
‖1 ⋆

(︁
𝛽𝜃 − 𝜇̂

)︁
(𝑡0)‖𝐿2(Γ) + ‖1 ⋆

(︁
𝛽𝜃 − 𝜇̂

)︁
(𝑠)‖𝐿2(Γ)

]︁
d𝑠

≤
∫︁ 𝑡0

0

𝐶𝐿‖𝜕𝑛𝜇*(𝑠)‖2𝐿2(Γ) +
1

4𝐿
‖1 ⋆

(︁
𝛽𝜃 − 𝜇̂

)︁
(𝑠)‖2𝐿2(Γ) d𝑠 +

1
4𝐿
‖1 ⋆

(︁
𝛽𝜃 − 𝜇̂

)︁
(𝑡0)‖2𝐿2(Γ).

Plugging this estimate into (4.24) we arrive at

1
2
‖∇ (1 ⋆ 𝜇̂) (𝑡0)‖2𝐿2(Ω) +

1
2
‖∇Γ

(︁
1 ⋆ 𝜃

)︁
(𝑡0)‖2𝐿2(Γ) +

1
4𝐿
‖
(︁

1 ⋆
[︁
𝛽𝜃 − 𝜇̂

]︁)︁
(𝑡0)‖2𝐿2(Γ)

+
∫︁ 𝑡0

0

‖∇𝑢̂(𝑡)‖2𝐿2(Ω) + 𝜅‖∇Γ𝑢̂(𝑡)‖2𝐿2(Γ) d𝑡

≤ 𝐶𝐿‖𝜕𝑛𝜇*‖2𝐿2(Σ𝑇 ) + 𝐶

∫︁ 𝑡0

0

(︂
‖∇(1 ⋆ 𝜇̂)(𝑡)‖2𝐿2(Ω) +

1
4𝐿
‖
(︁

1 ⋆
[︁
𝛽𝜃 − 𝜇̂

]︁)︁
(𝑡)‖2𝐿2(Γ)

)︂
d𝑡.

Invoking the integral form of Gronwall’s inequality, we deduce the existence of a constant 𝐶 independent of 𝐿
and 𝜅 such that

sup
𝑡∈(0,𝑇 )

(︁
‖∇(1 ⋆ 𝜇̂)(𝑡)‖2𝐿2(Ω) + ‖∇Γ(1 ⋆ 𝜃)(𝑡)‖2𝐿2(Γ) +

1
𝐿
‖(1 ⋆ [𝛽𝜃 − 𝜇̂])(𝑡)‖2𝐿2(Γ)

)︁
+ ‖∇𝑢̂‖2𝐿2(𝑄𝑇 ) + 𝜅‖∇Γ𝑢̂‖2𝐿2(Σ𝑇 )

≤ 𝐶𝐿

which implies the convergence rates

‖∇𝑢̂‖𝐿2(𝑄𝑇 ) +
√
𝜅 ‖∇Γ𝑢̂‖𝐿2(Σ𝑇 ) ≤ 𝐶

√
𝐿, sup

𝑡∈(0,𝑇 )

⃦⃦⃦⃦∫︁ 𝑡

0

(𝛽𝜃 − 𝜇̂)(𝑠) d𝑠
⃦⃦⃦⃦

𝐿2(Γ)

≤ 𝐶𝐿. (4.25)

Now, assuming 𝜅 > 0 and choose 𝑤 = 𝛽𝑢̂ in (4.21a) and 𝑧 = 𝑢̂ in (4.21b), so that upon summing and integrating
in time over (0, 𝑡), we obtain

𝛽‖𝑢̂(𝑡)‖2𝐿2(Ω) + ‖𝑢̂(𝑡)‖2𝐿2(Γ) ≤ 𝛽‖∇𝜇̂‖𝐿2(𝑄𝑇 )‖∇𝑢̂‖𝐿2(𝑄𝑇 ) + ‖∇Γ𝜃‖𝐿2(Σ𝑇 )‖∇Γ𝑢̂‖𝐿2(Σ𝑇 )

≤ 𝐶
√
𝐿
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after invoking (4.25) and the uniform boundedness of ∇𝜇𝐿 and ∇Γ𝜃
𝐿 due to (4.1). As 𝛽 > 0, this leads to the

convergence rate

‖𝑢̂‖𝐿∞(0,𝑇 ;𝐿2(Ω)) + ‖𝑢̂‖𝐿∞(0,𝑇 ;𝐿2(Γ)) ≤ 𝐶𝐿1/4,

and thus, the proof of Theorem 4.2 is complete. �

5. Numerical analysis

In this section, we assume that 𝛽, 𝜅 > 0. We derive an unconditionally stable, fully discrete finite element
scheme which allows us to investigate the model (1.13) as well as the limit models (1.8) and (1.11) numerically.
We establish the existence of discrete solutions to this scheme and prove convergence for arbitrary 𝐿 ∈ [0,∞]
in the limit of vanishing spatial and temporal discretisation parameters. For simplicity, we also set 𝑚Ω = 𝑚Γ =
𝜀 = 𝛿 = 1 in the subsequent approach, although different values are used for the simulations in Section 6.

As the model (1.13) interpolates between the GMS model and the LW model, it naturally inherits the
peculiarities of both. Therefore, a discrete scheme that can be applied to the complete family of models needs to
cope with the intricacies of both approaches. In particular, the scheme has to include both chemical potentials
𝜇 and 𝜃, while ensuring 𝛽𝜃 = 𝜇|Σ𝑇

for 𝐿↘ 0 and 𝜕n𝜇 = 0 for 𝐿↗∞. Furthermore, extending the ideas from
[38] to derive explicit, 𝑢-dependent expressions for the chemical potentials is deemed to be necessary to prevent
the discrete scheme from becoming ill-conditioned for small time increments (see [38], Sect. 5).

5.1. Technical preliminaries

Concerning the discretisation in time, we consider

(T) the time interval 𝐼 := [0, 𝑇 ) that is subdivided into intervals 𝐼𝑛 := [𝑡𝑛, 𝑡𝑛+1) with 𝑡0 = 0 and 𝑡𝑛+1 = 𝑡𝑛 + 𝜏𝑛
for time increments 𝜏𝑛 > 0 and 𝑛 = 0, . . . , 𝑁 − 1 with 𝑡𝑁 = 𝑇 . For simplicity, we take 𝜏𝑛 ≡ 𝜏 = 𝑇

𝑁 for
𝑛 = 0, . . . , 𝑁 − 1.

Throughout this section we assume the spatial domain Ω ⊂ R𝑑, 𝑑 ∈ {2, 3} to be bounded, convex, and
polygonal (if 𝑑 = 2) or polyhedral (if 𝑑 = 3) to avoid additional technicalities. When considering a smoother
domain, one has to approximate Ω and Γ by an ℎ-dependent family of polygonal domains {Ωℎ}ℎ with boundaries
{Γℎ}ℎ (cf. [15, 16, 18]). This approach of course introduces an additional geometric error which also has to be
considered. For the application of this technique to the GMS model, we refer the reader to [30], where an error
estimate for a semi-discrete finite element scheme for (1.8) was derived.

We introduce partitions 𝒯ℎ of Ω and 𝒯 Γ
ℎ of Γ = 𝜕Ω depending on a spatial discretisation parameter ℎ > 0

satisfying the following assumptions:

(S1) Let {𝒯ℎ}ℎ>0 a quasiuniform family (in the sense of [5]) of partitions of Ω into disjoint, open, non-obtuse
simplices 𝐾, so that

Ω ≡
⋃︁

𝐾∈𝒯ℎ

𝐾 with max
𝐾∈𝒯ℎ

diam (𝐾) ≤ ℎ.

(S2) Let
{︀
𝒯 Γ

ℎ

}︀
ℎ>0

a quasiuniform family of partitions of Γ into disjoint, open, non-obtuse simplices 𝐾Γ, so that

∀𝐾Γ ∈ 𝒯 Γ
ℎ ∃!𝐾 ∈ 𝒯ℎ such that 𝐾Γ = 𝐾 ∩ Γ,

and

Γ ≡
⋃︁

𝐾Γ∈𝒯 Γ
ℎ

𝐾Γ with max
𝐾Γ∈𝒯 Γ

ℎ

diam
(︀
𝐾Γ
)︀
≤ ℎ.
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The above assumption implies that 𝒯 Γ
ℎ is compatible to 𝒯ℎ in the sense that all elements in 𝒯 Γ

ℎ are edges (if
𝑑 = 2) or faces (if 𝑑 = 3) of elements in 𝒯ℎ. For the approximation of the phase-field 𝑢 and the chemical potential
𝜇 we use continuous, piecewise linear finite element functions on 𝒯ℎ. This space, denoted by 𝑈Ω

ℎ , is spanned by
basis functions {𝜒ℎ,𝑘}𝑘 = 1, . . . , dim 𝑈Ω

ℎ
that also form a dual basis to the vertices {𝑥𝑘}𝑘 = 1, . . . , dim 𝑈Ω

ℎ
of 𝒯ℎ, i.e.,

𝜒ℎ,𝑘(𝑥𝑘) = 𝛿𝑘,𝑙 for 𝑘, 𝑙 = 1, . . . ,dim𝑈Ω
ℎ .

Analogously, we denote the space of continuous, piecewise linear finite element functions on 𝒯 Γ
ℎ by 𝑈Γ

ℎ , which is

spanned by basis functions
{︁
𝜒Γ

ℎ,𝑘

}︁
𝑘 = 1, . . . , dim 𝑈Γ

ℎ
that also form a dual basis to the vertices

{︀
𝑥Γ

𝑘

}︀
𝑘 = 1, . . . , dim 𝑈Γ

ℎ

of 𝒯 Γ
ℎ , i.e., 𝜒Γ

ℎ,𝑘

(︀
𝑥Γ

𝑘

)︀
= 𝛿𝑘,𝑙 for 𝑘, 𝑙 = 1, . . . ,dim𝑈Γ

ℎ . Due to the compatibility condition for 𝒯ℎ and 𝒯 Γ
ℎ , we have

𝑈Γ
ℎ = span

{︀
𝜁ℎ|Γ : 𝜁ℎ ∈ 𝑈Ω

ℎ

}︀
. (5.1)

Without loss of generality, we assume that the first dim𝑈Γ
ℎ vertices of 𝒯ℎ are located on Γ, i.e.,{︀

𝑥Γ
𝑘

}︀
𝑘 = 1, . . . , dim 𝑈Γ

ℎ
= {𝑥𝑘}𝑘 = 1, . . . , dim 𝑈Γ

ℎ
. As all functions in 𝑈Ω

ℎ are continuous in Ω, we will often suppress
the trace operator ·|Γ to simplify the notation. We define the nodal interpolation operators ℐℎ : 𝐶0

(︀
Ω
)︀
→ 𝑈Ω

ℎ

and ℐΓ
ℎ : 𝐶0(Γ) → 𝑈Γ

ℎ by

ℐℎ{𝑎} :=
dim 𝑈Ω

ℎ∑︁
𝑘=1

𝑎(𝑥𝑘)𝜒ℎ,𝑘, and ℐΓ
ℎ {𝑎} :=

dim 𝑈Γ
ℎ∑︁

𝑘=1

𝑎(𝑥𝑘)𝜒Γ
ℎ,𝑘. (5.2)

It is well-known that on the finite element spaces 𝑈Ω
ℎ and 𝑈Γ

ℎ the discrete 𝐿2-norms given by
(︀∫︀

Ω
ℐℎ

{︀
| · |2

}︀
d𝑥
)︀1/2

and
(︀∫︀

Γ
ℐΓ

ℎ

{︀
| · |2

}︀
dΓ
)︀1/2 are equivalent to ‖ · ‖𝐿2(Ω) and ‖ · ‖𝐿2(Γ), respectively. Furthermore, the following

estimates (that can be found in [38], Lem. 2.1) hold true:

Lemma 5.1. Let 𝒯ℎ and 𝒯 Γ
ℎ satisfy (S1) and (S2). Furthermore, let 𝑝 ∈ [1,∞), 1 ≤ 𝑞 ≤ ∞, and 𝑞* = 𝑞

𝑞−1 for
𝑞 <∞ or 𝑞* = 1 for 𝑞 = ∞. Then,

‖(𝐼 − ℐℎ){𝑓ℎ𝑔ℎ}‖𝐿𝑝(Ω) ≤ 𝐶ℎ2‖∇𝑓ℎ‖𝐿𝑝𝑞(Ω)‖∇𝑔ℎ‖𝐿𝑝𝑞* (Ω), (5.3)

‖
(︀
𝐼 − ℐΓ

ℎ

)︀{︁
𝑓ℎ𝑔ℎ

}︁
‖𝐿𝑝(Γ) ≤ 𝐶ℎ2‖∇Γ𝑓ℎ‖𝐿𝑝𝑞(Γ)‖∇Γ𝑔ℎ‖𝐿𝑝𝑞* (Γ). (5.4)

holds true for all 𝑓ℎ, 𝑔ℎ ∈ 𝑈Ω
ℎ and 𝑓ℎ, 𝑔ℎ ∈ 𝑈Γ

ℎ .

In the forthcoming analysis, we consider any initial datum (𝑢0, 𝑢0|Γ) ∈ ℋ2, and potentials 𝐹 and 𝐺 satisfying
(A3) with 𝑝 = 𝑞 = 4. In addition we make the following assumption:

(D) The convex parts 𝐹1 and 𝐺1 as well as the concave parts 𝐹2 and 𝐺2 can be further decomposed into a
polynomial part of degree four and an additional part having a globally Lipschitz continuous first derivative.

In particular, we may thus choose the penalised double-well potential

𝑊 (𝑠) := 1
4

(︀
1− 𝑠2

)︀2
+ 1

𝛿′ max {|𝑠| − 1, 0}2 (5.5)

with 0 < 𝛿′ << 1. The assumption (𝑢0, 𝑢0|Γ) ∈ ℋ2 allows us to define the discrete initial condition 𝑢0
ℎ ∈ 𝑈Ω

ℎ via
𝑢0

ℎ := ℐℎ{𝑢0}. An immediate consequence is∫︁
Ω

|∇𝑢0
ℎ|2 d𝑥+

∫︁
Ω

ℐℎ

{︀
𝐹
(︀
𝑢0

ℎ

)︀}︀
d𝑥+

∫︁
Γ

|∇Γ𝑢
0
ℎ|2 dΓ +

∫︁
Γ

ℐΓ
ℎ

{︀
𝐺
(︀
𝑢0

ℎ

)︀}︀
dΓ ≤ 𝐶(𝑢0), (5.6a)

‖𝑢0
ℎ − 𝑢0‖𝐻1(Ω) + ‖𝑢0

ℎ − 𝑢0|Γ‖𝐻1(Γ) → 0 for ℎ↘ 0. (5.6b)

When passing to the limit (ℎ, 𝜏) ↘ (0, 0), we will also need a compatibility condition for ℎ and 𝜏 . In particular,
we will assume that
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(C) ℎ4

𝜏 ↘ 0 when passing to the limit (ℎ, 𝜏) ↘ (0, 0).

Furthermore, we introduce the matrices

(MΩ)𝑖𝑗 :=
∫︁

Ω

ℐℎ{𝜒ℎ𝑗𝜒ℎ𝑖} d𝑥 ∀𝑖, 𝑗 = 1, . . . ,dim𝑈Ω
ℎ , (5.7a)

(MΓ)𝑖𝑗 :=
∫︁

Γ

ℐΓ
ℎ

{︀
𝜒Γ

ℎ𝑗𝜒
Γ
ℎ𝑖

}︀
dΓ ∀𝑖, 𝑗 = 1, . . . ,dim𝑈Γ

ℎ , (5.7b)

(LΩ)𝑖𝑗 :=
∫︁

Ω

∇𝜒ℎ𝑗 · ∇𝜒ℎ𝑖 d𝑥 ∀𝑖, 𝑗 = 1, . . . ,dim𝑈Ω
ℎ , (5.7c)

(LΓ)𝑖𝑗 :=
∫︁

Γ

∇Γ𝜒
Γ
ℎ𝑗 · ∇Γ𝜒

Γ
ℎ𝑖 dΓ ∀𝑖, 𝑗 = 1, . . . ,dim𝑈Γ

ℎ , (5.7d)

and with a slight misuse of notation, we write 𝑓(𝑈𝑛) when we apply a function 𝑓 to all components of 𝑈𝑛. Due
to our consideration that the first dim𝑈Γ

ℎ vertices of 𝒯ℎ are located on Γ, we can define an extension operator
·|Ω,ℎ : Rdim 𝑈Γ

ℎ → Rdim 𝑈Ω
ℎ via

Rdim 𝑈Γ
ℎ ∋ 𝐴 ↦→

(︂
𝐴
0

)︂
∈ Rdim 𝑈Ω

ℎ

and the restriction operator ·|Γ,ℎ : Rdim 𝑈Ω
ℎ → Rdim 𝑈Γ

ℎ , which restricts a vector to its first dim𝑈Γ
ℎ entries. For

matrices, we define analogous restriction operators by splitting a matrix A ∈ Rdim 𝑈Ω
ℎ ×dim 𝑈Ω

ℎ into submatrices

A
⃒⃒
Γ×Γ,ℎ

∈ Rdim 𝑈Γ
ℎ×dim 𝑈Γ

ℎ , A
⃒⃒
Γ×

∘
Ω,ℎ

∈ Rdim 𝑈Γ
ℎ×(dim 𝑈Ω

ℎ −dim 𝑈Γ
ℎ ),

A
⃒⃒
∘
Ω×Γ,ℎ

∈ R(dim 𝑈Ω
ℎ −dim 𝑈Γ

ℎ )×dim 𝑈Γ
ℎ , A

⃒⃒
∘
Ω×

∘
Ω,ℎ

∈ R(dim 𝑈Ω
ℎ −dim 𝑈Γ

ℎ )×(dim 𝑈Ω
ℎ −dim 𝑈Γ

ℎ ),

A
⃒⃒
Γ×Ω,ℎ

∈ Rdim 𝑈Γ
ℎ×dim 𝑈Ω

ℎ , A
⃒⃒
∘
Ω×Ω,ℎ

∈ R(dim 𝑈Ω
ℎ −dim 𝑈Γ

ℎ )×dim 𝑈Ω
ℎ ,

A
⃒⃒
Ω×Γ,ℎ

∈ Rdim 𝑈Ω
ℎ ×dim 𝑈Γ

ℎ , A
⃒⃒
Ω×

∘
Ω,ℎ

∈ Rdim 𝑈Ω
ℎ ×(dim 𝑈Ω

ℎ −dim 𝑈Γ
ℎ ),

(5.8)

such that

A =

(︃
A
⃒⃒
Γ×Γ,ℎ

A
⃒⃒
Γ×

∘
Ω,ℎ

A
⃒⃒
∘
Ω×Γ,ℎ

A
⃒⃒
∘
Ω×

∘
Ω,ℎ

)︃
=

(︃
A
⃒⃒
Γ×Ω,ℎ

A
⃒⃒
∘
Ω×Ω,ℎ

)︃
=
(︁
A
⃒⃒
Ω×Γ,ℎ

A
⃒⃒
Ω×

∘
Ω,ℎ

)︁
. (5.9)

In the above, we employed the notation
∘
Ω to denote the collection of degrees of freedoms corresponding to the

interior nodal points of Ω. We also define an extension operator ·|Ω×Ω,ℎ : Rdim 𝑈Γ
ℎ×dim 𝑈Γ

ℎ → Rdim 𝑈Ω
ℎ ×dim 𝑈Ω

ℎ via

Rdim 𝑈Γ
ℎ×dim 𝑈Γ

ℎ ∋ A ↦→
(︂
A 0
0 0

)︂
∈ Rdim 𝑈Ω

ℎ ×dim 𝑈Ω
ℎ .
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5.2. Derivation of the numerical scheme

For 𝐿 ∈ (0,∞), a finite element discretisation of the model (1.13) reads as∫︁
Ω

ℐℎ

{︀
𝜕−𝜏 𝑢

𝑛
ℎ𝑤ℎ

}︀
+∇𝜇𝑛

ℎ · ∇𝑤ℎ d𝑥− 𝐿−1

∫︁
Γ

ℐΓ
ℎ {(𝛽𝜃𝑛

ℎ − 𝜇𝑛
ℎ)𝑤ℎ} dΓ = 0, (5.10a)∫︁

Γ

ℐΓ
ℎ

{︀
𝜕−𝜏 𝑢

𝑛
ℎ𝑧ℎ

}︀
+∇Γ𝜃

𝑛
ℎ · ∇Γ𝑧ℎ + 𝛽𝐿−1ℐΓ

ℎ {(𝛽𝜃𝑛
ℎ − 𝜇𝑛

ℎ)𝑧ℎ}dΓ = 0, (5.10b)∫︁
Ω

ℐℎ{𝜇𝑛
ℎ𝜂ℎ} d𝑥+

∫︁
Γ

ℐΓ
ℎ {𝜃𝑛

ℎ𝜂ℎ} dΓ =
∫︁

Ω

∇𝑢𝑛
ℎ · ∇𝜂ℎ d𝑥+ 𝜅

∫︁
Γ

∇Γ𝑢
𝑛
ℎ · ∇Γ𝜂ℎ dΓ (5.10c)

+
∫︁

Ω

ℐℎ

{︀(︀
𝐹 ′1(𝑢𝑛

ℎ) + 𝐹 ′2
(︀
𝑢𝑛−1

ℎ

)︀)︀
𝜂ℎ

}︀
d𝑥

+
∫︁

Γ

ℐΓ
ℎ

{︀(︀
𝐺′1(𝑢𝑛

ℎ) +𝐺′2
(︀
𝑢𝑛−1

ℎ

)︀)︀
𝜂ℎ

}︀
dΓ,

holding for all 𝑤ℎ ∈ 𝑈Ω
ℎ , 𝑧ℎ ∈ 𝑈Γ

ℎ , and 𝜂ℎ ∈ 𝑈Ω
ℎ . In the above we have used the backward difference quotient

𝜕−𝜏 𝑎
𝑛 := 𝜏−1

(︀
𝑎𝑛 − 𝑎𝑛−1

)︀
, and so, for given 𝑢𝑛−1

ℎ ∈ 𝑈Ω
ℎ , we search for 𝑢𝑛

ℎ, 𝜇
𝑛
ℎ ∈ 𝑈Ω

ℎ and 𝜃𝑛
ℎ ∈ 𝑈Γ

ℎ satisfying
(5.10). Unlike the scheme used in Section 3, (5.10) is based on a convex-concave decomposition of the nonlinear
functions 𝐹 and 𝐺, as this approach allows for an unconditionally stable discrete scheme (cf. Lem. 5.3).

Using the matrix notation introduced in the previous section, and collecting the nodal values of 𝑢𝑛
ℎ, 𝑢𝑛−1

ℎ ,
𝜇𝑛

ℎ, and 𝜃𝑛
ℎ into the vectors 𝑈𝑛, 𝑈𝑛−1, 𝑃𝑛, and Θ𝑛, we can express (5.10) equivalently as

MΩ𝑈
𝑛 −MΩ𝑈

𝑛−1 + 𝜏LΩ𝑃
𝑛 − 𝜏𝐿−1

[︁
MΓ

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁]︁⃒⃒⃒Ω,ℎ

= 0, (5.11a)

MΓ 𝑈
𝑛
⃒⃒
Γ,ℎ

−MΓ 𝑈
𝑛−1
⃒⃒
Γ,ℎ

+ 𝜏LΓΘ𝑛 + 𝜏𝛽𝐿−1MΓ

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
= 0, (5.11b)

MΩ𝑃
𝑛 + [MΓΘ𝑛]

⃒⃒Ω,ℎ = LΩ𝑈
𝑛 + 𝜅

[︁
LΓ 𝑈

𝑛
⃒⃒
Γ,ℎ

]︁⃒⃒⃒Ω,ℎ

+ MΩ

(︀
𝐹 ′1(𝑈𝑛) + 𝐹 ′2

(︀
𝑈𝑛−1

)︀)︀
+
[︁
MΓ

(︁
𝐺′1

(︁
𝑈𝑛
⃒⃒
Γ,ℎ

)︁
+𝐺′2

(︁
𝑈𝑛−1

⃒⃒
Γ,ℎ

)︁)︁]︁⃒⃒⃒Ω,ℎ

. (5.11c)

Restricting (5.11a) to the boundary and comparing with (5.11b) leads to the compatibility condition

𝐿
𝐿+1

[︀
M−1

Ω LΩ𝑃
𝑛
]︀⃒⃒

Γ,ℎ
− 1

𝐿+1 M−1
Ω

⃒⃒
Γ×Γ,ℎ

MΓ

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
= 𝐿

𝐿+1M
−1
Γ LΓΘ𝑛 + 𝛽 1

𝐿+1

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
.

(5.12)

Upon rearranging and recalling that MΩ is a diagonal matrix, (5.12) can be written as(︁
𝐿

𝐿+1 M−1
Ω

⃒⃒
Γ×Γ,ℎ

LΩ

⃒⃒
Γ×Γ,ℎ

+ 1
𝐿+1 M−1

Ω

⃒⃒
Γ×Γ,ℎ

MΓ + 𝛽 1
𝐿+11

)︁
⏟  ⏞  

=:A

𝑃𝑛
⃒⃒
Γ,ℎ

(5.13)

+
(︂

𝐿
𝐿+1 M−1

Ω

⃒⃒
Γ×Γ,ℎ

LΩ

⃒⃒
Γ×

∘
Ω,ℎ

)︂
⏟  ⏞  

=:B

𝑃𝑛
⃒⃒
∘
Ω,ℎ

=
(︁

𝐿
𝐿+1M

−1
Γ LΓ + 𝛽 1

𝐿+1 M−1
Ω

⃒⃒
Γ×Γ,ℎ

MΓ + 𝛽2 1
𝐿+11

)︁
⏟  ⏞  

=:C

Θ𝑛.

Combining (5.11c) with (5.13), we are able to determine 𝑃𝑛 and Θ𝑛 for given 𝑈𝑛 and 𝑈𝑛−1 by solving the
linear system ⎛⎜⎝MΩ

⃒⃒
Γ×Γ,ℎ

0 MΓ

0 MΩ

⃒⃒
∘
Ω×

∘
Ω,ℎ

0

A B −C

⎞⎟⎠
⎛⎜⎝𝑃

𝑛
⃒⃒
Γ,ℎ

𝑃𝑛
⃒⃒
∘
Ω,ℎ

Θ𝑛

⎞⎟⎠ =

⎛⎜⎝𝑅Γ(𝑈𝑛)
𝑅∘Ω(𝑈𝑛)

0

⎞⎟⎠ (5.14)
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with

𝑅Γ(𝑈𝑛) := LΩ

⃒⃒
Γ×Ω,ℎ

𝑈𝑛 + MΩ

⃒⃒
Γ×Ω,ℎ

(︀
𝐹 ′1(𝑈𝑛) + 𝐹 ′2

(︀
𝑈𝑛−1

)︀)︀
+ 𝜅LΓ 𝑈

𝑛
⃒⃒
Γ,ℎ

+ MΓ

(︁
𝐺′1

(︁
𝑈𝑛
⃒⃒
Γ,ℎ

)︁
+𝐺′2

(︁
𝑈𝑛−1

⃒⃒
Γ,ℎ

)︁)︁
,

𝑅∘Ω(𝑈𝑛) := LΩ

⃒⃒
∘
Ω×Ω,ℎ

𝑈𝑛 + MΩ

⃒⃒
∘
Ω×Ω,ℎ

(︀
𝐹 ′1(𝑈𝑛) + 𝐹 ′2

(︀
𝑈𝑛−1

)︀)︀
,

where we have suppressed the dependence of 𝑅Γ and 𝑅∘Ω on 𝑈𝑛−1, as 𝑈𝑛−1 is known from the last time step.
Solving (5.14) for 𝑃𝑛|Γ,ℎ, 𝑃𝑛|∘Ω, ℎ, and Θ𝑛 gives the equations

Θ𝑛 = −M−1
Γ MΩ

⃒⃒
Γ×Γ,ℎ

𝑃𝑛
⃒⃒
Γ,ℎ

+ M−1
Γ 𝑅Γ(𝑈𝑛), (5.15a)

𝑃𝑛
⃒⃒
∘
Ω,ℎ

= MΩ

⃒⃒−1
∘
Ω×

∘
Ω,ℎ

𝑅∘Ω(𝑈𝑛), (5.15b)

A𝑃𝑛
⃒⃒
Γ,ℎ

= −B𝑃𝑛
⃒⃒
∘
Ω,ℎ

+ CΘ𝑛. (5.15c)

Plugging (5.15a) and (5.15b) into (5.15c) and multiplying by MΩ|Γ×Γ,ℎ, we obtain

N𝑃𝑛
⃒⃒
Γ,ℎ

= −MΩ

⃒⃒
Γ×Γ,ℎ

BMΩ

⃒⃒−1
∘
Ω×

∘
Ω,ℎ

𝑅∘Ω(𝑈𝑛) + MΩ

⃒⃒
Γ×Γ,ℎ

CM−1
Γ 𝑅Γ(𝑈𝑛) (5.16)

with

N := MΩ

⃒⃒
Γ×Γ,ℎ

A + MΩ

⃒⃒
Γ×Γ,ℎ

CM−1
Γ MΩ

⃒⃒
Γ×Γ,ℎ

= 𝐿
𝐿+1

(︁
LΩ

⃒⃒
Γ×Γ,ℎ

+ MΩ

⃒⃒
Γ×Γ,ℎ

M−1
Γ LΓM−1

Γ MΩ

⃒⃒
Γ×Γ,ℎ

)︁
+ 1

𝐿+1

(︁
MΓ + 2𝛽MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽2 MΩ

⃒⃒
Γ×Γ,ℎ

M−1
Γ MΩ

⃒⃒
Γ×Γ,ℎ

)︁
.

(5.17)

By following along similar lines of argument in Lemma 2.4 of [38], the matrix N is symmetric and positive
definite. Therefore, (5.16), (5.15b), and (5.15a) provide explicit, 𝑈𝑛-dependent expressions for 𝑃𝑛 and Θ𝑛.
Multiplying (5.11b) with 𝛽−1 and adding to (5.11a), we obtain using (5.15a) the discrete scheme

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂(︀
𝑈𝑛 − 𝑈𝑛−1

)︀
+ 𝜏LΩ𝑃

𝑛 + 𝜏𝛽−1
[︁
LΓM−1

Γ 𝑅Γ(𝑈𝑛)− LΓM−1
Γ MΩ

⃒⃒
Γ×Γ,ℎ

𝑃𝑛
⃒⃒
Γ,ℎ

]︁⃒⃒⃒Ω,ℎ

= 0

(5.18)

with 𝑃𝑛 given by (5.16) and (5.15b). Since the parameter 𝐿 only appears in the numerical scheme as prefactors
1

𝐿+1 and 𝐿
𝐿+1 , the proposed scheme is also well-defined for 𝐿 = 0 and the formal limit 𝐿 = ∞, whereby in the

latter we set 1
𝐿+1 = 0 and 𝐿

𝐿+1 = 1. In the following, we will analyze (5.18) and show that we indeed recover
discretisations of (1.8) and (1.11) for 𝐿↘ 0 and 𝐿↗∞, respectively.
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As the compatibility condition (5.12) will be a crucial ingredient for the analysis of the proposed scheme, we
will verify that our expressions for 𝑃𝑛 and Θ𝑛 satisfy (5.12). From (5.15a) and (5.15b), we obtain

𝐿
𝐿+1

[︀
M−1

Ω LΩ𝑃
𝑛
]︀⃒⃒

Γ,ℎ
− 𝐿

𝐿+1M
−1
Γ LΓΘ𝑛

− 1
𝐿+1 M−1

Ω

⃒⃒
Γ×Γ,ℎ

MΓ

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
− 𝛽 1

𝐿+1

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
= 𝐿

𝐿+1 M−1
Ω

⃒⃒
Γ×Γ,ℎ

LΩ

⃒⃒
Γ×Γ,ℎ

𝑃𝑛
⃒⃒
Γ,ℎ

+ 𝐿
𝐿+1 M−1

Ω

⃒⃒
Γ×Γ,ℎ

LΩ

⃒⃒
Γ×

∘
Ω,ℎ

MΩ

⃒⃒−1
∘
Ω×

∘
Ω,ℎ

𝑅∘Ω(𝑈𝑛)

+ 𝐿
𝐿+1M

−1
Γ LΓM−1

Γ MΩ

⃒⃒
Γ×Γ,ℎ

𝑃𝑛
⃒⃒
Γ,ℎ

− 𝐿
𝐿+1M

−1
Γ LΓM−1

Γ 𝑅Γ(𝑈𝑛)

+ 1
𝐿+1𝛽 𝑃

𝑛
⃒⃒
Γ,ℎ

− 𝛽 1
𝐿+1 M−1

Ω

⃒⃒
Γ×Γ,ℎ

𝑅Γ(𝑈𝑛) + 1
𝐿+1 M−1

Ω

⃒⃒
Γ×Γ,ℎ

MΓ 𝑃
𝑛
⃒⃒
Γ,ℎ

+ 1
𝐿+1𝛽

2M−1
Γ MΩ

⃒⃒
Γ×Γ,ℎ

𝑃𝑛
⃒⃒
Γ,ℎ

− 1
𝐿+1𝛽

2M−1
Γ 𝑅Γ(𝑈𝑛) + 1

𝐿+1𝛽 𝑃
𝑛
⃒⃒
Γ,ℎ

= M−1
Ω

⃒⃒
Γ×Γ,ℎ

N𝑃𝑛
⃒⃒
Γ,ℎ

− 𝐿
𝐿+1M

−1
Γ LΓM−1

Γ 𝑅Γ(𝑈𝑛)

+ 𝐿
𝐿+1 M−1

Ω

⃒⃒
Γ×Γ,ℎ

LΩ

⃒⃒
Γ×

∘
Ω,ℎ

MΩ

⃒⃒−1
∘
Ω×

∘
Ω,ℎ

𝑅∘Ω(𝑈𝑛)

− 𝛽 1
𝐿+1 M−1

Ω

⃒⃒
Γ×Γ,ℎ

𝑅Γ(𝑈𝑛)− 1
𝐿+1𝛽

2M−1
Γ 𝑅Γ(𝑈𝑛)

= M−1
Ω

⃒⃒
Γ×Γ,ℎ

N𝑃𝑛
⃒⃒
Γ,ℎ

+ BMΩ

⃒⃒−1
∘
Ω×

∘
Ω,ℎ

𝑅∘Ω(𝑈𝑛)−CM−1
Γ 𝑅Γ(𝑈𝑛),

which vanishes due to (5.16).
Although (5.18) is based on the sum of (5.11a) and (5.11b) multiplied by 𝛽−1, solutions to (5.18), if they

exist, satisfy (5.11a) and (5.11b) individually.

Lemma 5.2. For any 𝐿 ≥ 0 such that 1
𝐿+1 ,

𝐿
𝐿+1 ∈ [0, 1], let 𝑈𝑛 be a solution to (5.18) for given 𝑈𝑛−1. Then,

𝑈𝑛 satisfies

MΩ

(︀
𝑈𝑛 − 𝑈𝑛−1

)︀
+ 𝜏LΩ𝑃

𝑛 + 𝛽−1
[︁
MΓ

(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁
+ 𝜏LΓΘ𝑛

]︁⃒⃒⃒Ω,ℎ

= 0, (5.19)

𝛽−1 𝐿
𝐿+1MΓ

(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁
+ 𝜏𝛽−1 𝐿

𝐿+1LΓΘ𝑛 + 𝜏 1
𝐿+1MΓ

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
= 0 (5.20)

with 𝑃𝑛 and Θ𝑛 defined in (5.16), (5.15b), and (5.15a). Furthermore, 𝑈𝑛, 𝑈𝑛−1, 𝑃𝑛, and Θ𝑛 satisfy (5.11c).

Proof. The validity of (5.11c) follows directly from the definitions (5.15b), (5.15a) and the definitions of 𝑅Γ(𝑈𝑛)
and 𝑅∘Ω(𝑈𝑛). Moreover, using (5.15a), a solution of (5.18) clearly satisfies (5.19). Therefore, it remains to show
that it also satisfies (5.20). By (5.19) it holds that

0 = 𝐿
𝐿+1

(︁(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁
+ 𝜏𝛽−1LΓΘ𝑛 + 𝜏 [LΩ𝑃

𝑛]
⃒⃒
Γ,ℎ

)︁
= 𝐿

𝐿+1

(︁(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁)︁
+ 𝜏 𝐿

𝐿+1

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁(︀
M−1

Γ LΓΘ𝑛
)︀

+ 𝜏 𝐿
𝐿+1 [LΩ𝑃

𝑛]
⃒⃒
Γ,ℎ

− 𝜏 𝐿
𝐿+1

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

M−1
Γ LΓΘ𝑛

)︁
.

Using the following identity from the rearrangement of (5.12)

1
𝐿+1𝛽M−1

Ω

⃒⃒
Γ×Γ,ℎ

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
= 𝐿

𝐿+1

[︀
M−1

Ω LΩ𝑃
𝑛
]︀⃒⃒

Γ,ℎ
− 𝐿

𝐿+1M
−1
Γ LΓΘ𝑛,
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we arrive at

0 = 𝐿
𝐿+1

(︁(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁)︁
+ 𝜏 𝐿

𝐿+1

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁(︀
M−1

Γ LΓΘ𝑛
)︀

+ 𝜏 1
𝐿+1𝛽

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
.

Multiplying by
(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁−1

and then by 𝛽−1MΓ yields (5.20). �

Lemma 5.3. Given 𝑈𝑛−1 ∈ Rdim 𝑈Ω
ℎ , let 𝑈𝑛 ∈ Rdim 𝑈Ω

ℎ be a solution to (5.18) with 𝑃𝑛 ∈ Rdim 𝑈Ω
ℎ and Θ𝑛 ∈

Rdim 𝑈Γ
ℎ be defined in (5.16), (5.15b), and (5.15a). Under (T), (S1), (S2) and (A3), the following estimate holds

true:
1
2𝑈

𝑛𝑇 LΩ𝑈
𝑛 + 1

2

(︀
𝑈𝑛 − 𝑈𝑛−1

)︀𝑇
LΩ

(︀
𝑈𝑛 − 𝑈𝑛−1

)︀
+ 1

2𝜅𝑈
𝑛
⃒⃒𝑇
Γ,ℎ

LΓ 𝑈
𝑛
⃒⃒
Γ,ℎ

+ 1
2𝜅
(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁𝑇

LΓ

(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁
+ 1𝑇 MΩ𝐹 (𝑈𝑛) + 1𝑇

ΓMΓ𝐺(𝑈𝑛) + 𝜏𝑃𝑛𝑇 LΩ𝑃
𝑛 + 𝜏Θ𝑛𝑇 LΓΘ𝑛 + ℬ𝐿

≤ 1
2𝑈

𝑛−1𝑇
LΩ𝑈

𝑛−1 + 1
2𝜅𝑈

𝑛−1
⃒⃒𝑇
Γ,ℎ

LΓ 𝑈
𝑛−1
⃒⃒
Γ,ℎ

+ 1𝑇 MΩ𝐹
(︀
𝑈𝑛−1

)︀
+ 1𝑇

ΓMΓ𝐺
(︀
𝑈𝑛−1

)︀
,

(5.21)

with 1 := (1, . . . , 1)𝑇 ∈ Rdim 𝑈Ω
ℎ , 1Γ := 1

⃒⃒
Γ,ℎ

, and

ℬ𝐿 :=

{︃
𝜏𝐿−1

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁𝑇

MΓ

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
if 𝐿 > 0,

0 if 𝐿 = 0.

Furthermore, we have 𝛽Θ𝑛 = 𝑃𝑛
⃒⃒
Γ,ℎ

if 𝐿 = 0.

Proof. Multiplying (5.18) by the transpose of the vector(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂−1

MΩ𝑃
𝑛 +

[︂(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁−1

MΓΘ𝑛

]︂⃒⃒⃒⃒Ω,ℎ

, (5.22)

and using (5.15a) we obtain

0 = 𝑃𝑛𝑇 MΩ

(︀
𝑈𝑛 − 𝑈𝑛−1

)︀
+ Θ𝑛𝑇 MΓ

(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁
+ 𝜏𝑃𝑛𝑇 LΩ

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂−1

MΩ𝑃
𝑛

+ 𝜏Θ𝑛𝑇 MΓ

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁−1

[LΩ𝑃
𝑛]
⃒⃒
Γ,ℎ

+ 𝜏𝛽−1 𝑃𝑛
⃒⃒𝑇
Γ,ℎ

MΩ

⃒⃒
Γ×Γ,ℎ

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁−1

LΓΘ𝑛

+ 𝜏𝛽−1Θ𝑛𝑇 MΓ

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁−1

LΓΘ𝑛

=: 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5 + 𝐼6.

By the convexity of 𝐹1 and concavity of 𝐹2, it is easy to see that for any 𝑎, 𝑏 ∈ R,

𝐹1(𝑎)− 𝐹1(𝑏) ≤ 𝐹 ′1(𝑎)(𝑎− 𝑏), 𝐹2(𝑎)− 𝐹2(𝑏) ≤ 𝐹 ′2(𝑏)(𝑎− 𝑏).
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Then, testing (5.11c) with
(︀
𝑈𝑛 − 𝑈𝑛−1

)︀
leads to

𝐼1 + 𝐼2 ≥ 1
2𝑈

𝑛𝑇 LΩ𝑈
𝑛 + 1

2

(︀
𝑈𝑛 − 𝑈𝑛−1

)︀𝑇
LΩ

(︀
𝑈𝑛 − 𝑈𝑛−1

)︀
− 1

2𝑈
𝑛−1𝑇

LΩ𝑈
𝑛−1

+ 1
2𝜅𝑈

𝑛
⃒⃒𝑇
Γ,ℎ

LΓ 𝑈
𝑛
⃒⃒
Γ,ℎ

+ 1
2𝜅
(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁𝑇

LΓ

(︁
𝑈𝑛
⃒⃒
Γ,ℎ

− 𝑈𝑛−1
⃒⃒
Γ,ℎ

)︁
− 1

2𝜅𝑈
𝑛−1
⃒⃒𝑇
Γ,ℎ

LΓ 𝑈
𝑛−1
⃒⃒
Γ,ℎ

+ 1𝑇 MΩ𝐹 (𝑈𝑛)− 1𝑇 MΩ𝐹
(︀
𝑈𝑛−1

)︀
+ 1𝑇

ΓMΓ𝐺(𝑈𝑛)− 1𝑇
ΓMΓ𝐺

(︀
𝑈𝑛−1

)︀
.

(5.23)

For the terms 𝐼3, . . . , 𝐼6, we use the compatibility condition (5.12). For the case 𝐿 > 0, (5.12) can be written as[︀
M−1

Ω LΩ𝑃
𝑛
]︀⃒⃒

Γ,ℎ
−M−1

Γ LΓΘ𝑛 = 𝛽𝐿−1 M−1
Ω

⃒⃒
Γ×Γ,ℎ

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
. (5.24)

Then, using the symmetry of the matrices MΩ and MΓ, we find that

𝐼5 + 𝐼6 = 𝜏𝛽−1 𝑃𝑛
⃒⃒𝑇
Γ,ℎ

MΓ

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁−1

MΩ

⃒⃒
Γ×Γ,ℎ

[︀
M−1

Ω LΩ𝑃
𝑛
]︀⃒⃒

Γ,ℎ

− 𝜏𝐿−1 𝑃𝑛
⃒⃒𝑇
Γ,ℎ

MΓ

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
+ 𝜏𝛽−1Θ𝑛𝑇 MΓ

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁−1

LΓΘ𝑛.

On the other hand,

𝐼3 + 𝐼4 = 𝜏𝑃𝑛𝑇 LΩ

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂−1

MΩ𝑃
𝑛

+ 𝜏Θ𝑛𝑇 MΩ

⃒⃒
Γ×Γ,ℎ

(︁
MΩ

⃒⃒
Γ×Γ,ℎ

+ 𝛽−1MΓ

)︁−1

LΓΘ𝑛 + 𝛽𝐿−1𝜏Θ𝑛𝑇 MΓ

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
,

and so we infer

𝐼3 + · · ·+ 𝐼6 = 𝜏𝐿−1
(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁𝑇

MΓ

(︁
𝛽Θ𝑛 − 𝑃𝑛

⃒⃒
Γ,ℎ

)︁
+ 𝜏Θ𝑛𝑇 LΓΘ𝑛 + 𝜏𝑃𝑛𝑇 LΩ𝑃

𝑛. (5.25)

Combining with the inequality for 𝐼1 + 𝐼2 we arrive at (5.21) for the case 𝐿 > 0. Meanwhile, for the case 𝐿 = 0,
we directly infer from the compatibility condition (5.12) that 𝛽Θ𝑛 = 𝑃𝑛|Γ,ℎ. Then, we obtain directly

𝐼3 + 𝐼4 = 𝜏𝑃𝑛𝑇 LΩ𝑃
𝑛, 𝐼5 + 𝐼6 = 𝜏Θ𝑛𝑇 LΓΘ𝑛,

which leads to (5.21) for the case 𝐿 = 0. �

Next, we use the a priori estimate established in Lemma 5.3 to prove the existence of discrete solutions.

Lemma 5.4. Given 𝑈𝑛−1 ∈ Rdim 𝑈Ω
ℎ , under (T), (S1), (S2), and (A3), there exists at least one vector 𝑈𝑛 ∈

Rdim 𝑈Ω
ℎ solving (5.18).

Proof. Firstly, we note that 𝑃𝑛 and Θ𝑛 are uniquely determined if 𝑈𝑛 and 𝑈𝑛−1 are given. Hence, for given
𝑈𝑛−1 and an arbitrary vector 𝑈 , we use the notation 𝑃 (𝑈) and Θ(𝑈) to denote the corresponding vectors for
the chemical potentials. In particular, 𝑃 (𝑈𝑛) = 𝑃𝑛 and Θ(𝑈𝑛) = Θ𝑛.

Next, testing (5.18) by 1 shows that

1𝑇

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂(︀
𝑈𝑛 − 𝑈𝑛−1

)︀
= 0,
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and so, without loss of generality we assume that 1𝑇

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑈0 = 0, which in turn implies

1𝑇

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑈𝑛 = 0 ∀𝑛 ≥ 1. (5.26)

A consequence is the following Poincaré-type inequality: There exists a positive constant 𝑐 such that for all
vectors 𝑈 fulfilling (5.26),

𝑈𝑇

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑈 ≤ 𝑐

(︂
𝑈𝑇

(︂
LΩ + 𝛽−1 LΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑈

)︂
. (5.27)

Recalling the definition of the matrices MΩ and LΩ, if we associate the vector 𝑈 to a function 𝑢ℎ ∈ 𝑈Ω
ℎ then

the above inequality (5.27) reads as

‖𝑢ℎ‖2𝐿2(Ω) + 𝛽−1‖𝑢ℎ‖2𝐿2(Γ) ≤ 𝑐
(︁
‖∇𝑢ℎ‖2𝐿2(Ω) + 𝛽−1‖∇Γ𝑢ℎ‖2𝐿2(Γ)

)︁
for functions 𝑢ℎ ∈ 𝑈Ω

ℎ such that 𝛽 |Ω| ⟨𝑢ℎ⟩Ω + |Γ| ⟨𝑢ℎ⟩Γ = 0. We mention the proof of this Poincaré-type
inequality follows from the usual contradiction argument using the condition 𝛽 |Ω| ⟨𝑢⟩Ω + |Γ| ⟨𝑢⟩Γ = 0.

We can establish the existence of discrete solutions as follows. Assuming that (5.18) has no solution in the
closed set

𝐵𝑅 :=
{︂
𝑊 ∈ Rdim 𝑈Ω

ℎ : 1𝑇

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑊 = 0 and 𝑊𝑇 MΩ𝑊 ≤ 𝑅2

}︂
for any 𝑅 > 0, the function

𝒢(𝑈) := 𝑈 − 𝑈𝑛−1 + 𝜏

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂−1

LΩ𝑃 (𝑈) + 𝜏𝛽−1

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂−1

[LΓΘ(𝑈)]
⃒⃒Ω,ℎ

has no roots in 𝐵𝑅, and consequently, the function

ℋ(𝑈) := −𝑅 𝒢(𝑈)√︁
𝒢(𝑈)𝑇 MΩ𝒢(𝑈)

(5.28)

is a continuous mapping from 𝐵𝑅 to 𝜕𝐵𝑅 ⊂ 𝐵𝑅. According to Brouwer’s fixed point theorem, there exists at
least one fixed point 𝑈* of ℋ. In the following, we show that 𝑈* satisfies

0 < 𝑈*𝑇
(︁
MΩ𝑃 (𝑈*) + [MΓΘ(𝑈*)]

⃒⃒Ω,ℎ
)︁
< 0 (5.29)

for 𝑅 sufficiently large. This contradiction shows that our initial assumption on the non-existence of roots of 𝒢
in 𝐵𝑅 is false, implying the existence of solutions to (5.18).

For convenience we denote 𝑉 = MΩ𝑃 (𝑈*) + [MΓΘ(𝑈*)]
⃒⃒Ω,ℎ. To obtain the first inequality in (5.29), we use

(5.15a), (5.15b), Young’s inequality with 0 < 𝛼 ≪ 1, and the convex-concave decomposition of 𝐹 and 𝐺 to
deduce that

𝑈*𝑇𝑉 =𝑈*𝑇 MΩ𝑃 (𝑈*) + 𝑈*
⃒⃒𝑇
Γ,ℎ

MΓΘ(𝑈*)

=𝑈*𝑇 LΩ𝑈
* + 𝜅𝑈*

⃒⃒𝑇
Γ,ℎ

LΓ 𝑈
* ⃒⃒

Γ,ℎ

+ 𝑈*𝑇 MΩ(𝐹 ′1(𝑈*) + 𝐹 ′2(0)) + 𝑈*𝑇 MΩ

(︀
𝐹 ′2
(︀
𝑈𝑛−1

)︀
− 𝐹 ′2(0)

)︀
+ 𝑈*

⃒⃒𝑇
Γ,ℎ

MΓ

(︁
𝐺′1

(︁
𝑈*
⃒⃒
Γ,ℎ

)︁
+𝐺′2(0)

)︁
+ 𝑈*

⃒⃒𝑇
Γ,ℎ

MΓ

(︁
𝐺′2

(︁
𝑈𝑛−1

⃒⃒
Γ,ℎ

)︁
−𝐺′2(0)

)︁
≥min(1, 𝜅𝛽)𝑈*𝑇

(︂
LΩ + 𝛽−1 LΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑈* + 1𝑇 MΩ(𝐹 (𝑈*)− 𝐹 (0))

− 𝛼𝑈*𝑇 MΩ𝑈
* + 1ΓMΓ

(︁
𝐺
(︁
𝑈*
⃒⃒
Γ,ℎ

)︁
−𝐺(0)

)︁
− 𝛼𝑈*

⃒⃒𝑇
Γ,ℎ

MΓ 𝑈
* ⃒⃒

Γ,ℎ
− 𝐶𝛼
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for some constant 𝐶𝛼 > 0 depending only on 𝛼, 𝑈𝑛−1, 𝐹 ′2
(︀
𝑈𝑛−1

)︀
, 𝐹 ′2(0), 𝐺′2

(︀
𝑈𝑛−1

)︀
, and 𝐺′2(0). Since 𝐹 and

𝐺 are bounded from below, after applying the Poincaré-type inequality (5.27), we obtain for some positive
constant 𝑐 independent of 𝑈* that

𝑈*𝑇𝑉 ≥ 𝑐𝑈*𝑇

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑈* − 𝛼𝑈*𝑇 MΩ𝑈

* − 𝛼𝑈*
⃒⃒𝑇
Γ,ℎ

MΓ 𝑈
* ⃒⃒

Γ,ℎ
− 𝐶𝛼.

Choosing 𝛼 sufficiently small, we absorb the second and third term into the first term and infer for positive
constants 𝑐 and 𝐶 independent of 𝑈* that

𝑈*𝑇𝑉 ≥ 𝑐𝑈*𝑇

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑈* − 𝐶 ≥ 𝑐𝑈*𝑇 (MΩ)𝑈* − 𝐶 = 𝑐𝑅2 − 𝐶.

Then, choosing 𝑅 sufficiently large yields the first inequality 𝑈*𝑇𝑉 > 0. To derive the second inequality in
(5.29), we recall the computations from the proof of Lemma 5.3 and (5.27) which provide

𝒢(𝑈*)𝑇
𝑉 ≥ 𝑐𝑈*𝑇

(︂
LΩ + 𝛽−1 LΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑈* − 𝐶 ≥ 𝑐𝑈*𝑇

(︂
MΩ + 𝛽−1 MΓ

⃒⃒Ω×Ω,ℎ
)︂
𝑈* − 𝐶 ≥ 𝑐𝑅2 − 𝐶,

where the right-hand side is positive for 𝑅 sufficiently large. Hence, using (5.28), we see that 𝒢(𝑈*)𝑇
𝑉 > 0 is

equivalent to the second inequality 𝑈*𝑇𝑉 < 0 in (5.29). �

5.3. Uniform bounds

In this section, we collect uniform bounds on the discrete solutions established in the last section. As shown
in Lemma 5.2, given 𝑢𝑛−1

ℎ ∈ 𝑈Ω
ℎ , for any 𝐿 ≥ 0, the proposed scheme is equivalent to finding 𝑢𝑛

ℎ ∈ 𝑈Ω
ℎ satisfying

∫︁
Ω

ℐℎ

{︀
𝜕−𝜏 𝑢

𝑛
ℎ𝑤ℎ

}︀
+∇𝜇𝑛

ℎ · ∇𝑤ℎ d𝑥+ 𝛽−1

∫︁
Γ

ℐΓ
ℎ

{︀
𝜕−𝜏 𝑢

𝑛
ℎ𝑤ℎ

}︀
+∇Γ𝜃

𝑛
ℎ · ∇Γ𝑤ℎ dΓ = 0, (5.30a)

1
𝐿+1

∫︁
Γ

𝐿
(︀
ℐΓ

ℎ

{︀
𝜕−𝜏 𝑢

𝑛
ℎ𝑧ℎ

}︀
+∇Γ𝜃

𝑛
ℎ · ∇Γ𝑧ℎ

)︀
+ 𝛽(𝛽𝜃𝑛

ℎ − 𝜇𝑛
ℎ)𝑧ℎ dΓ = 0, (5.30b)∫︁

Ω

ℐℎ{𝜇𝑛
ℎ𝜂ℎ} d𝑥+

∫︁
Γ

ℐΓ
ℎ {𝜃𝑛

ℎ𝜂ℎ} dΓ =
∫︁

Ω

∇𝑢𝑛
ℎ · ∇𝜂ℎ + ℐℎ

{︀(︀
𝐹 ′1(𝑢𝑛

ℎ) + 𝐹 ′2
(︀
𝑢𝑛−1

ℎ

)︀)︀
𝜂ℎ

}︀
d𝑥

+
∫︁

Γ

𝜅∇Γ𝑢
𝑛
ℎ · ∇Γ𝜂ℎ + ℐΓ

ℎ

{︀(︀
𝐺′1(𝑢𝑛

ℎ) +𝐺′2
(︀
𝑢𝑛−1

ℎ

)︀)︀
𝜂ℎ

}︀
dΓ, (5.30c)

for all 𝑤ℎ, 𝜂ℎ ∈ 𝑈Ω
ℎ and 𝑧ℎ ∈ 𝑈Γ

ℎ , with 𝜇ℎ ∈ 𝑈Ω
ℎ , 𝜃ℎ ∈ 𝑈Γ

ℎ uniquely prescribed by 𝑢𝑛
ℎ, 𝑢

𝑛−1
ℎ ∈ 𝑈Ω

ℎ . It is worth
noting that in the limit 𝐿→∞, (5.30a) and (5.30b) become∫︁

Ω

ℐℎ

{︀
𝜕−𝜏 𝑢

𝑛
ℎ𝑤ℎ

}︀
+∇𝜇𝑛

ℎ · ∇𝑤ℎ = 0 d𝑥,
∫︁

Γ

ℐΓ
ℎ

{︀
𝜕−𝜏 𝑢

𝑛
ℎ𝑧ℎ

}︀
+∇Γ𝜃

𝑛
ℎ · ∇Γ𝑧ℎ dΓ = 0, (5.31)

which together with (5.30c) is a discretisation of (1.11) that was analysed in [38]. On the other hand, for the
case 𝐿 = 0, (5.30b) reduces to

∫︀
Γ
ℐΓ

ℎ {(𝛽𝜃𝑛
ℎ − 𝜇𝑛

ℎ)𝑧ℎ} dΓ = 0, and together with (5.30a) and (5.30c) we obtain a
discretisation of (1.8).
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Lemma 5.5. Given 𝑢𝑛−1
ℎ ∈ 𝑈Ω

ℎ , under (T), (S1), (S2), and (A3), let (𝑢𝑛
ℎ, 𝜇

𝑛
ℎ, 𝜃

𝑛
ℎ) ∈ 𝑈Ω

ℎ ×𝑈Ω
ℎ ×𝑈Γ

ℎ be a solution
to (5.30) for 𝑛 = 1, . . . , 𝑁 . Then, there exists a constant 𝐶 > 0 depending only on 𝑢0 and 𝜅 such that

max
𝑛=0,...,𝑁

‖𝑢𝑛
ℎ‖2𝐻1(Ω) + max

𝑛=0,...,𝑁

∫︁
Ω

ℐℎ{𝐹 (𝑢𝑛
ℎ)} d𝑥+ max

𝑛=0,...,𝑁
‖𝑢𝑛

ℎ‖2𝐻1(Γ)

+ max
1,...,𝑁

∫︁
Γ

ℐΓ
ℎ {𝐺(𝑢𝑛

ℎ)} dΓ +
𝑁∑︁

𝑛=1

‖∇𝑢𝑛
ℎ −∇𝑢𝑛−1

ℎ ‖2𝐿2(Ω) +
𝑁∑︁

𝑛=1

‖∇Γ𝑢
𝑛
ℎ −∇Γ𝑢

𝑛−1
ℎ ‖2𝐿2(Γ)

+ 𝜏

𝑁∑︁
𝑛=1

‖𝜇𝑛
ℎ‖2𝐻1(Ω) + 𝜏

𝑁∑︁
𝑛=1

‖𝜃𝑛
ℎ‖2𝐻1(Γ) ≤ 𝐶. (5.32)

Additionally it holds that

𝜏

𝑁∑︁
𝑛=1

‖𝛽𝜃𝑛
ℎ − 𝜇𝑛

ℎ‖2𝐿2(Γ) ≤ 𝐶𝐿.

Proof. Summing (5.21) over the time steps from 𝑛 = 0 to 𝑛 = 𝑘 ≤ 𝑁 , applying (5.6a) and then take the
maximum over 𝑘 yields

max
𝑛=1,...,𝑁

1
2

∫︁
Ω

|∇𝑢𝑛
ℎ|

2 d𝑥+ max
𝑛=1,...,𝑁

∫︁
Ω

ℐℎ{𝐹 (𝑢𝑛
ℎ)}+ max

𝑛=1,...,𝑁

𝜅
2

∫︁
Γ

|∇Γ𝑢
𝑛
ℎ|

2

+ max
𝑛=1,...,𝑁

∫︁
Γ

ℐΓ
ℎ {𝐺(𝑢𝑛

ℎ)} dΓ +
𝑁∑︁

𝑛=1

1
2

∫︁
Ω

⃒⃒
∇𝑢𝑛

ℎ −∇𝑢𝑛−1
ℎ

⃒⃒2
d𝑥

+
𝑁∑︁

𝑛=1

𝜅
2

∫︁
Γ

⃒⃒
∇Γ𝑢

𝑛
ℎ −∇Γ𝑢

𝑛−1
ℎ

⃒⃒2
dΓ + 𝜏

𝑁∑︁
𝑛=1

∫︁
Ω

|∇𝜇𝑛
ℎ|

2 d𝑥+ 𝜏

𝑁∑︁
𝑛=1

∫︁
Γ

|∇Γ𝜃
𝑛
ℎ |

2 dΓ ≤ 𝐶(𝑢0).

Furthermore, we have

𝜏

𝑁∑︁
𝑛=1

∫︁
Γ

ℐΓ
ℎ

{︁
|𝛽𝜃𝑛

ℎ − 𝜇𝑛
ℎ|

2
}︁

dΓ ≤ 𝐶(𝑢0)𝐿,

where the statement for 𝐿 = 0 is trivial due to Lemma 5.3. By (A3ii), the bounds on ℐℎ{𝐹 (𝑢𝑛
ℎ)} and ℐΓ

ℎ {𝐺(𝑢𝑛
ℎ)}

also provide bounds on ℐℎ

{︀
|𝑢𝑛

ℎ|2
}︀

and ℐΓ
ℎ

{︀
|𝑢𝑛

ℎ|2
}︀

which allows us to deduce the bounds in the 𝐻1-norms. For
the 𝐿2-norms on 𝜇𝑛

ℎ and 𝜃𝑛
ℎ , we can employ similar arguments used above in Step 3 of Section 3.1, see also

Corollary 4.1 of [38]. �

Lemma 5.6. Suppose that (T), (S1), (S2) and (A3) hold. Given 𝑢𝑛−1
ℎ ∈ 𝑈Ω

ℎ , let (𝑢𝑛
ℎ, 𝜇

𝑛
ℎ, 𝜃

𝑛
ℎ) ∈ 𝑈Ω

ℎ × 𝑈Ω
ℎ × 𝑈Γ

ℎ

be a solution to (5.30) for 𝑛 = 1, . . . , 𝑁 . Then, the following estimates hold

𝜏

𝑁−𝑙∑︁
𝑘=0

‖𝑢𝑘+𝑙
ℎ − 𝑢𝑘

ℎ‖2𝐿2(Ω) + 𝜏

𝑁−𝑙∑︁
𝑘=0

‖𝑢𝑘+𝑙
ℎ − 𝑢𝑘

ℎ‖2𝐿2(Γ) ≤ 𝐶𝜏𝑙,

for 𝑙 ∈ {1, . . . , 𝑁} with 𝐶 > 0 independent of 𝑙, 𝐿, ℎ, and 𝜏 .
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Proof. For 0 ≤ 𝑘 ≤ 𝑁 − 𝑙, we test (5.30a) by 𝑤ℎ =
(︀
𝑢𝑘+𝑙

ℎ − 𝑢𝑘
ℎ

)︀
, sum from 𝑛 = 𝑘+ 1 to 𝑘+ 𝑙 and employ (5.32)

which yields ∫︁
Ω

ℐℎ

{︁⃒⃒
𝑢𝑘+𝑙

ℎ − 𝑢𝑘
ℎ

⃒⃒2}︁
d𝑥+ 𝛽−1

∫︁
Γ

ℐΓ
ℎ

{︁⃒⃒
𝑢𝑘+𝑙

ℎ − 𝑢𝑘
ℎ

⃒⃒2}︁
dΓ

≤

⃒⃒⃒⃒
⃒𝜏

𝑘+𝑙∑︁
𝑛=𝑘+1

∫︁
Ω

∇𝜇𝑛
ℎ · ∇

(︀
𝑢𝑘+𝑙

ℎ − 𝑢𝑘
ℎ

)︀
d𝑥

⃒⃒⃒⃒
⃒+ 𝛽−1

⃒⃒⃒⃒
⃒𝜏

𝑘+𝑙∑︁
𝑛=𝑘+1

∫︁
Γ

∇Γ𝜃
𝑛
ℎ · ∇Γ

(︀
𝑢𝑘+𝑙

ℎ − 𝑢𝑘
ℎ

)︀
dΓ

⃒⃒⃒⃒
⃒

≤ 𝜏

𝑘+𝑙∑︁
𝑛=𝑘+1

‖∇𝜇𝑛
ℎ‖𝐿2(Ω)‖∇𝑢𝑘+𝑙

ℎ −∇𝑢𝑘
ℎ‖𝐿2(Ω)

+ 𝛽−1𝜏

𝑘+𝑙∑︁
𝑛=𝑘+1

‖∇Γ𝜃
𝑛
ℎ‖𝐿2(Γ)‖∇Γ𝑢

𝑘+𝑙
ℎ −∇Γ𝑢

𝑘
ℎ‖𝐿2(Γ).

Multiplying by 𝜏 and summing from 𝑘 = 0 to 𝑁 − 𝑙, we infer that with the help of (5.32) that

𝜏

𝑁−𝑙∑︁
𝑘=0

‖𝑢𝑘+𝑙
ℎ − 𝑢𝑘

ℎ‖2𝐿2(Ω) + 𝜏

𝑁−𝑙∑︁
𝑘=0

‖𝑢𝑘+𝑙
ℎ − 𝑢𝑘

ℎ‖2𝐿2(Γ)

≤ 𝐶𝜏2
𝑙∑︁

𝑚=1

(︃
𝑁−𝑙∑︁
𝑘=0

‖∇𝑢𝑘+𝑙
ℎ −∇𝑢𝑘

ℎ‖2𝐿2(Ω)

)︃1/2(︃𝑁−𝑙∑︁
𝑘=0

‖∇𝜇𝑘+𝑚
ℎ ‖2𝐿2(Ω)

)︃1/2

+ 𝐶𝜏2
𝑙∑︁

𝑚=1

(︃
𝑁−𝑙∑︁
𝑘=0

‖∇Γ𝑢
𝑘+𝑙
ℎ −∇Γ𝑢

𝑘
ℎ‖2𝐿2(Γ)

)︃1/2(︃𝑁−𝑙∑︁
𝑘=0

‖∇Γ𝜃
𝑘+𝑚
ℎ ‖2𝐿2(Γ)

)︃1/2

≤ 𝐶𝜏𝑙

(︂
𝜏𝑁 max

𝑛=1,...,𝑁
‖∇𝑢𝑛

ℎ‖2𝐿2(Ω)

)︂1/2
(︃
𝜏

𝑁∑︁
𝑛=1

‖∇𝜇𝑛
ℎ‖𝐿2(Ω)

)︃1/2

+ 𝐶𝜏𝑙

(︂
𝜏𝑁 max

𝑛=1,...,𝑁
‖∇Γ𝑢

𝑛
ℎ‖2𝐿2(Γ)

)︂1/2
(︃
𝜏

𝑁∑︁
𝑛=1

‖∇Γ𝜃
𝑛
ℎ‖𝐿2(Γ)

)︃1/2

≤ 𝐶𝜏𝑙.

Thus, the proof is complete. �

5.4. Passing to the limit

Let 𝐿0 ∈ [0,∞] be arbitrary. To pass to the limit (ℎ, 𝜏, 𝐿) → (0, 0, 𝐿0), we define three interpolation functions
for a collection of time-discrete functions {𝑎𝑛}𝑁

𝑛=0 as follows:

𝑎𝜏 (·, 𝑡) := 𝑡−𝑡𝑛−1

𝜏 𝑎𝑛(·) + 𝑡𝑛−𝑡
𝜏 𝑎𝑛−1(·), 𝑡 ∈

[︀
𝑡𝑛−1, 𝑡𝑛

]︀
, 𝑛 ≥ 1, (5.33a)

𝑎𝜏,+(·, 𝑡) := 𝑎𝑛(·) 𝑎𝜏,−(·, 𝑡) := 𝑎𝑛−1(·), 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛], 𝑛 ≥ 1. (5.33b)
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If a statement is valid for 𝑎𝜏 , 𝑎𝜏,+, and 𝑎𝜏,−, we will use 𝑎𝜏,(±). Using this notation, we are able to write the
uniform bounds established in the last section as

‖𝑢𝜏,(±)
ℎ ‖2𝐿∞(0,𝑇 ;𝐻1(Ω)) + ‖𝑢𝜏,(±)

ℎ ‖2𝐿∞(0,𝑇 ;𝐻1(Γ))

+ 𝜏−1‖∇𝑢𝜏,+
ℎ −∇𝑢𝜏,−

ℎ ‖2𝐿2(0,𝑇 ;𝐿2(Ω)) + 𝜏−1‖∇Γ𝑢
𝜏,+
ℎ −∇Γ𝑢

𝜏,−
ℎ ‖2𝐿2(0,𝑇 ;𝐿2(Γ))

+ ‖𝜇𝜏,+
ℎ ‖2𝐿2(0,𝑇 ;𝐻1(Ω)) + ‖𝜃𝜏,+

ℎ ‖2𝐿2(0,𝑇 ;𝐻1(Γ)) ≤ 𝐶, (5.34a)

‖𝛽𝜃𝜏,+
ℎ − 𝜇𝜏,+

ℎ ‖2𝐿2(0,𝑇 ;𝐿2(Γ)) ≤ 𝐶𝐿, (5.34b)

‖𝑢𝜏,(±)
ℎ (·+ 𝑙𝜏)− 𝑢

𝜏,(±)
ℎ (·)‖2𝐿2(0,𝑇 ;𝐿2(Ω)) ≤ 𝐶𝜏𝑙, (5.34c)

‖𝑢𝜏,(±)
ℎ (·+ 𝑙𝜏)− 𝑢

𝜏,(±)
ℎ (·)‖2𝐿2(0,𝑇 ;𝐿2(Γ)) ≤ 𝐶𝜏𝑙. (5.34d)

Lemma 5.7. Under (T), (S1), (S2), and (A3), there exist functions (𝑢, 𝑢Γ, 𝜇, 𝜃) and a subsequence, denoted
by
{︁
𝑢

𝜏,(±)
ℎ , 𝜇

𝜏,(±)
ℎ , 𝜃

𝜏,(±)
ℎ

}︁
ℎ, 𝜏, 𝐿, satisfying

{︃
𝑢 ∈ 𝐿∞

(︀
0, 𝑇 ;𝐻1(Ω) ∩ 𝐿4(Ω)

)︀
, 𝑢Γ ∈ 𝐿∞

(︀
0, 𝑇 ;𝐻1(Γ) ∩ 𝐿4(Γ)

)︀
,

𝜇 ∈ 𝐿2
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
, 𝜃 ∈ 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀ (5.35)

such that 𝑢|Σ𝑇
= 𝑢Γ a.e. on Σ𝑇 , and as (ℎ, 𝜏, 𝐿) → (0, 0, 𝐿0),

𝑢
𝜏,(±)
ℎ → 𝑢 weakly* in 𝐿∞

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
, (5.36a)

strongly in 𝐿𝑟(0, 𝑇 ;𝐿𝑠(Ω)) with 𝑟 <∞, 𝑠 ∈ [1, 2𝑑
𝑑−2 ), (5.36b)

𝑢
𝜏,(±)
ℎ |Σ𝑇

→ 𝑢Γ weakly* in 𝐿∞
(︀
0, 𝑇 ;𝐻1(Γ)

)︀
, (5.36c)

strongly in 𝐿𝑟(0, 𝑇 ;𝐿𝑠(Γ)) with 𝑟, 𝑠 <∞, (5.36d)

𝜇𝜏,+
ℎ → 𝜇 weakly in 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
, (5.36e)

𝜇𝜏,+
ℎ |Σ𝑇

→ 𝜇|Σ𝑇
weakly in 𝐿2

(︁
0, 𝑇 ;𝐻1/2(Γ)

)︁
, (5.36f)

𝜃𝜏,+
ℎ → 𝜃 weakly in 𝐿2

(︀
0, 𝑇 ;𝐻1(Γ)

)︀
. (5.36g)

If 𝐿0 = 0, we additionally obtain

𝛽𝜃𝜏,+
ℎ − 𝜇𝜏,+

ℎ |Σ𝑇
→ 0 strongly in 𝐿2

(︀
0, 𝑇 ;𝐿2(Γ)

)︀
. (5.37)

Proof. The convergences expressed in (5.36a), (5.36c), (5.36e), and (5.36g) are direct consequences of bounds
established in (5.34a). To obtain the strong convergence in (5.36b) and (5.36d), we have combined (5.34a) with
(5.34c), (5.34d), and apply a compactness result ([46], Sect. 8, Thm. 5).

As 𝜇𝜏,+
ℎ is uniformly bounded in 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
, the trace theorem provides an additional uniform bound

in 𝐿2
(︀
0, 𝑇 ;𝐻1/2(Γ)

)︀
. Consequently, there is a subsequence of {𝜇𝜏,+

ℎ |Σ𝑇
} converging weakly towards some limit

function 𝜈 ∈ 𝐿2
(︀
0, 𝑇 ;𝐻1/2(Γ)

)︀
. The identification of 𝜈 with 𝜇|Σ𝑇

follows from similar arguments as in [38],
while the remaining convergence property stated in (5.37) follows from (5.34b). �
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In (5.30), we now consider test functions 𝑤ℎ, 𝜂ℎ ∈ 𝐿2
(︀
0, 𝑇 ;𝑈Ω

ℎ

)︀
and 𝑧ℎ ∈ 𝐿2

(︀
0, 𝑇 ;𝑈Γ

ℎ

)︀
. Then, summing over

𝑛 = 0, . . . , 𝑁 − 1, we see that the time-interpolation functions satisfy∫︁
𝑄𝑇

ℐℎ{𝜕𝑡𝑢
𝜏
ℎ𝑤ℎ} d𝑥d𝑡+ 𝛽−1

∫︁
Σ𝑇

ℐΓ
ℎ {𝜕𝑡𝑢

𝜏
ℎ𝑤ℎ} dΓ d𝑡 (5.38a)

+
∫︁

𝑄𝑇

∇𝜇𝜏,+
ℎ · ∇𝑤ℎ d𝑥d𝑡+ 𝛽−1

∫︁
Σ𝑇

∇Γ𝜃
𝜏,+
ℎ · ∇Γ𝑤ℎ dΓ d𝑡 = 0,

𝐿
𝐿+1

∫︁
Σ𝑇

ℐΓ
ℎ {𝜕𝑡𝑢

𝜏
ℎ𝑧ℎ}dΓ d𝑡+ 𝐿

𝐿+1

∫︁
Σ𝑇

∇Γ𝜃
𝜏,+
ℎ · ∇Γ𝑧ℎ dΓ d𝑡 (5.38b)

+ 𝛽 1
𝐿+1

∫︁
Σ𝑇

ℐΓ
ℎ

{︀(︀
𝛽𝜃𝜏,+

ℎ − 𝜇𝜏,+
ℎ

)︀
𝑧ℎ

}︀
dΓ d𝑡 = 0,∫︁

𝑄𝑇

ℐℎ

{︀
𝜇𝜏,+

ℎ 𝜂ℎ

}︀
d𝑥d𝑡+

∫︁
Σ𝑇

ℐΓ
ℎ

{︀
𝜃𝜏,+

ℎ 𝜂ℎ

}︀
dΓ d𝑡 (5.38c)

=
∫︁

𝑄𝑇

∇𝑢𝜏,+
ℎ · ∇𝜂ℎ d𝑥 d𝑡+

∫︁
𝑄𝑇

ℐℎ

{︀(︀
𝐹 ′1
(︀
𝑢𝜏,+

ℎ

)︀
+ 𝐹 ′2

(︀
𝑢𝜏,−

ℎ

)︀)︀
𝜂ℎ

}︀
d𝑥 d𝑡

+ 𝜅

∫︁
Σ𝑇

∇Γ𝑢
𝜏,+
ℎ · ∇Γ𝜂ℎ dΓ d𝑡+

∫︁
Σ𝑇

ℐΓ
ℎ

{︀(︀
𝐺′1
(︀
𝑢𝜏,+

ℎ

)︀
+𝐺′2

(︀
𝑢𝜏,−

ℎ

)︀)︀
𝜂ℎ

}︀
dΓ d𝑡.

We aim to pass to the limit (ℎ, 𝜏, 𝐿) → (0, 0, 𝐿0) to deduce the convergence of our numerical solutions.

Theorem 5.8 (Convergence of numerical solutions). Under (T), (S1), (S2), (A3), (D), and (C), the limit
triplet (𝑢, 𝜇, 𝜃) obtained from Lemma 5.7 by passing to the limit (ℎ, 𝜏, 𝐿) → (0, 0, 𝐿0) solves (1.13) in the
following weak sense:

𝛽

∫︁
𝑄𝑇

(𝑢0 − 𝑢)𝜕𝑡𝑤 +∇𝜇 · ∇𝑤 d𝑥 d𝑡+
∫︁

Σ𝑇

(𝑢0 − 𝑢)𝜕𝑡𝑤 +∇Γ𝜃 · ∇Γ𝑤 dΓ d𝑡 = 0, (5.39a)

⎧⎪⎪⎨⎪⎪⎩
∫︁

Σ𝑇

𝐿0(𝑢0 − 𝑢)𝜕𝑡𝑧 + 𝐿0∇Γ𝜃 · ∇Γ𝑧 + 𝛽(𝛽𝜃 − 𝜇)𝑧 dΓ d𝑡 = 0 if 𝐿0 ∈ [0,∞),∫︁
Σ𝑇

(𝑢0 − 𝑢)𝜕𝑡𝑧 +∇Γ𝜃 · ∇Γ𝑧 dΓ d𝑡 = 0 if 𝐿0 = ∞,

(5.39b)

∫︁
𝑄𝑇

𝜇𝜂 d𝑥 d𝑡+
∫︁

Σ𝑇

𝜃𝜂 dΓ d𝑡

=
∫︁

𝑄𝑇

∇𝑢 · ∇𝜂 + 𝐹 ′(𝑢)𝜂 d𝑥d𝑡+
∫︁

Σ𝑇

𝜅∇Γ𝑢 · ∇Γ𝜂 +𝐺′(𝑢)𝜂 dΓ d𝑡
(5.39c)

for all 𝑤 ∈ 𝐻1(0, 𝑇 ;𝒱) satisfying 𝑤(·, 𝑇 ) ≡ 0, 𝑧 ∈ 𝐻1
(︀
0, 𝑇 ;𝐻1(Γ)

)︀
satisfying 𝑧(·, 𝑇 ) ≡ 0, and 𝜂 ∈ 𝐿2(0, 𝑇 ;𝒱).

Proof. For an arbitrary 𝑤 ∈ 𝐶1
(︀
[0, 𝑇 ];𝐶∞

(︀
Ω
)︀)︀

with 𝑤(·, 𝑇 ) ≡ 0, we denote its interpolation as 𝑤ℎ := ℐℎ{𝑤},
which allows us to interchange the interpolation and the trace operator, i.e., (ℐℎ{𝑤})|Σ𝑇

= ℐΓ
ℎ {𝑤|Σ𝑇

}. For the
first term in (5.38a), we obtain∫︁

𝑄𝑇

ℐℎ{𝜕𝑡𝑢
𝜏
ℎ𝑤ℎ}d𝑥 d𝑡 =

∫︁
𝑄𝑇

𝜕𝑡𝑢
𝜏
ℎ𝑤ℎ d𝑥 d𝑡−

∫︁
𝑄𝑇

(𝐼 − ℐℎ){𝜕𝑡𝑢
𝜏
ℎ𝑤ℎ} d𝑥d𝑡 =: 𝐴1 +𝐴2.

Integrating by parts, applying the fact 𝑤ℎ → 𝑤 in 𝐿2(0, 𝑇 ;𝐻1(Ω)) (see [5]) and (5.6b), we obtain

𝐴1 = −
∫︁

𝑄𝑇

𝑢𝜏
ℎ𝜕𝑡𝑤ℎ d𝑥d𝑡−

∫︁
Ω

𝑢0
ℎ𝑤ℎ(·, 0) d𝑥→ −

∫︁
𝑄𝑇

𝑢𝜕𝑡𝑤 d𝑥 d𝑡−
∫︁

Ω

𝑢0𝑤(·, 0) d𝑥

=
∫︁

𝑄𝑇

(𝑢0 − 𝑢)𝜕𝑡𝑤 d𝑥d𝑡.
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Concerning 𝐴2, we employ Lemma 5.1 with assumption (C) to obtain

|𝐴2| ≤ 𝐶 ℎ2
√

𝜏
1√
𝜏
‖∇𝑢𝜏,+

ℎ −∇𝑢𝜏,−
ℎ ‖𝐿2(0,𝑇 ;𝐿2(Ω))‖∇𝑤ℎ‖𝐿2(0,𝑇 ;𝐿2(Ω)) → 0, (5.40)

due to the uniform estimates in (5.34a). Similar arguments provide the convergence of the second term in (5.38a),
and the convergence of the remaining terms in (5.38a) follows from (5.36e), (5.36g), and the strong convergences
ℐℎ{𝑤} → 𝑤 in 𝐿2(0, 𝑇 ;𝐻1(Ω)) and ℐΓ

ℎ {𝑤|Σ𝑇
} → 𝑤|Σ𝑇

in 𝐿2(0, 𝑇 ;𝐻1(Γ)). Hence, we recover (5.39a) in the
limit (ℎ, 𝜏, 𝐿) → (0, 0, 𝐿0).

We refer the reader to Proof of Theorem 4.4 from [38] for the arguments to pass to the limit in (5.38c) to
recover (5.39c), as the equation treated there is identical to (5.38c). Hence, to finish the proof, it remains to pass
to the limit in (5.38b). For arbitrary 𝑧 ∈ 𝐶1([0, 𝑇 ];𝐶∞(Γ)) satisfying 𝑧(·, 𝑇 ) ≡ 0, we consider the interpolation
function 𝑧ℎ := ℐΓ

ℎ {𝑧}. Then, for the case 𝐿0 ∈ (0,∞) the first two terms in (5.38b) can be treated with analogous
arguments used above. Meanwhile for the third term in (5.38b), we see that

1
𝐿+1

∫︁
Σ𝑇

𝛽ℐΓ
ℎ

{︀(︀
𝛽𝜃𝜏,+

ℎ − 𝜇𝜏,+
ℎ |Σ𝑇

)︀
𝑧ℎ

}︀
dΓ d𝑡 (5.41)

= 1
𝐿+1

∫︁
Σ𝑇

𝛽
(︀
𝛽𝜃𝜏,+

ℎ − 𝜇𝜏,+
ℎ |Σ𝑇

)︀
𝑧ℎ dΓ d𝑡− 1

𝐿+1

∫︁
Σ𝑇

𝛽
(︀
𝐼 − ℐΓ

ℎ

)︀{︀(︀
𝛽𝜃𝜏,+

ℎ − 𝜇𝜏,+
ℎ |Σ𝑇

)︀
𝑧ℎ

}︀
dΓ d𝑡.

For the first term on the right-hand side, thanks to (5.36f) and (5.36g) we find that

1
𝐿+1

∫︁
Σ𝑇

𝛽
(︀
𝛽𝜃𝜏,+

ℎ − 𝜇𝜏,+
ℎ |Σ𝑇

)︀
𝑧ℎ dΓ d𝑡→ 1

𝐿0+1

∫︁
Σ𝑇

𝛽(𝛽𝜃 − 𝜇|Σ𝑇
)𝑧 dΓ d𝑡,

while for the second term on the right-hand side, by (5.34b), Lemma 5.1 and a standard inverse estimate
‖∇Γ𝑎ℎ‖𝐿2(Γ) ≤ 𝐶ℎ−1‖𝑎ℎ‖𝐿2(Γ) (see e.g., [5], Thm. 4.5.11), we have

1
𝐿+1

⃒⃒⃒⃒∫︁
Σ𝑇

𝛽
(︀
𝐼 − ℐΓ

ℎ

)︀{︀(︀
𝛽𝜃𝜏,+

ℎ − 𝜇𝜏,+
ℎ |Σ𝑇

)︀
𝑧ℎ

}︀
dΓ d𝑡

⃒⃒⃒⃒
≤ 𝐶 𝐿

𝐿+1ℎ𝐿
−1‖𝛽𝜃𝜏,+

ℎ − 𝜇𝜏,+
ℎ |Σ𝑇

‖𝐿2(0,𝑇 ;𝐿2(Γ))‖∇Γ𝑧ℎ‖𝐿2(0,𝑇 ;𝐿2(Γ)) ≤ 𝐶ℎ→ 0.

Therefore, the second term on the right-hand side of (5.41) vanishes for all 𝐿 ≥ 0 as ℎ ↘ 0. Hence, for the
case 𝐿0 ∈ (0,∞), passing to the limit (ℎ, 𝜏, 𝐿) → (0, 0, 𝐿0) in (5.38b) yields (5.39b). For the case 𝐿0 = 0, the
uniform estimate (5.34) imply the first two terms in (5.38b) converge to zero in the limit, and thus we obtain
from passing to the limit in (5.41) the identity∫︁

Σ𝑇

(𝛽𝜃 − 𝜇|Σ𝑇
)𝑧 dΓ d𝑡 = 0,

which is (5.39b) with 𝐿0 = 0. For the case 𝐿0 = ∞, we multiply (5.38b) with 𝐿+1
𝐿 , leading to∫︁

Σ𝑇

ℐΓ
ℎ {𝜕𝑡𝑢

𝜏
ℎ𝑧ℎ}+∇Γ𝜃

𝜏,+
ℎ · ∇Γ𝑧ℎ dΓ d𝑡+ 𝛽 1

𝐿

∫︁
Σ𝑇

ℐΓ
ℎ

{︀(︀
𝛽𝜃𝜏,+

ℎ − 𝜇𝜏,+
ℎ

)︀
𝑧ℎ

}︀
dΓ d𝑡 = 0,

and passing to the limit (ℎ, 𝜏, 𝐿) → (0, 0,∞) yields (5.39b). Hence, (5.39a) and (5.39b) hold for all 𝑤 ∈
𝐶1
(︀
[0, 𝑇 ];𝐶∞

(︀
Ω
)︀)︀

satisfying 𝑤(·, 𝑇 ) ≡ 0, 𝑧 ∈ 𝐶1([0, 𝑇 ];𝐶∞(Γ)) satisfying 𝑧(0, 𝑇 ) ≡ 0, and the proof is com-
plete after employing the density of 𝐶1

(︀
[0, 𝑇 ];𝐶∞

(︀
Ω
)︀)︀

in 𝐻1(0, 𝑇 ;𝒱) and the density of 𝐶1([0, 𝑇 ];𝐶∞(Γ)) in
𝐻1
(︀
0, 𝑇 ;𝐻1(Γ)

)︀
. �

Corollary 5.9. Suppose that (T), (S1), (S2), (A3), (D) and (C) hold, and let (𝑢, 𝜇, 𝜃) denote the triplet obtained
by Lemma 5.7.
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(a) If 𝐿0 = 0, then (𝑢, 𝜇, 𝜃) is a weak solution of the GMS model (1.8) in the sense of Proposition 3.4.
(b) If 0 < 𝐿0 <∞, then (𝑢, 𝜇, 𝜃) is a weak solution of the reaction rate dependent model (1.13) in the sense of

Theorem 3.1 (with 𝐿 = 𝐿0).
(c) If 𝐿0 = ∞, then (𝑢, 𝜇, 𝜃) is a weak solution of the LW model (1.11) in the sense of Proposition 3.3.

Proof. As the proof is rather straightforward, we merely sketch the most important steps.

The case 𝐿0 = 0. By the definition of a weak derivative, we infer that 𝜕𝑡𝑢 exists and belongs to 𝐿2(0, 𝑇 ;𝒱 ′).
In particular, testing (5.39a) with 𝑤̃ = 𝑤𝜙 where 𝑤 ∈ 𝒱 and 𝜙 ∈ 𝐻1((0, 𝑇 )) are arbitrary, we can use the
fundamental theorem of calculus of variations to conclude that

⟨𝜕𝑡𝑢,𝑤⟩𝒱,𝛽 + 𝛽

∫︁
Ω

∇𝜇 · ∇𝑤 d𝑥+
∫︁

Γ

∇Γ𝜃 · ∇Γ𝑤 dΓ = 0

for all 𝑤 ∈ 𝒱. This verifies (3.52a) whereas (3.52b) follows immediately from (5.39c). Furthermore, we obtain
from (5.39b) that 𝜇|Σ𝑇

= 𝛽𝜃 a.e. on Σ𝑇 . From 𝜕𝑡𝑢 ∈ 𝐿2(0, 𝑇 ;𝒱 ′) and (5.35), we deduce that (3.51) holds where
the conditions 𝑢 ∈ 𝐶([0, 𝑇 ];𝐿2(Ω)) and 𝑢|Γ ∈ 𝐶([0, 𝑇 ];𝐿2(Γ)) can be obtained a posteriori by the Aubin–Lions
lemma. The energy inequality (3.53) can be verified similarly to Step 6 of the proof of Theorem 3.1. This implies
that (𝑢, 𝜇, 𝜃) is indeed a weak solution to the system (1.8).

The case 0 < 𝐿0 < ∞. We proceed similarly as in the case 𝐿0 = 0. Here we use both (5.39a) and (5.39b) to
infer that 𝜕𝑡𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻1(Ω)′) and 𝜕𝑡𝑢|Σ𝑇

∈ 𝐿2(0, 𝑇 ;𝐻1(Γ)′) with

⟨𝜕𝑡𝑢,𝑤⟩𝐻1(Ω) = −
∫︁

Ω

∇𝜇 · ∇𝑤 d𝑥+
∫︁

Γ

1
𝐿0

(𝛽𝜃 − 𝜇)𝑤 dΓ,

⟨𝜕𝑡𝑢, 𝑧⟩𝐻1(Γ) = −
∫︁

Γ

∇Γ𝜃 · ∇Γ𝑧 dΓ−
∫︁

Γ

1
𝐿0

(𝛽𝜃 − 𝜇)𝛽𝑧 dΓ

for all test functions 𝑤 ∈ 𝒱 and 𝑧 ∈ 𝐻1(Γ). By a density argument, the first line remains valid for all 𝑤 ∈ 𝐻1(Ω).
Along with (5.39c), we conclude that the weak formulation (3.2) is satisfied. The regularity condition (3.1) follows
from 𝜕𝑡𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻1(Ω)′), 𝜕𝑡𝑢|Σ𝑇

∈ 𝐿2(0, 𝑇 ;𝐻1(Γ)′), and (5.35). We point out that the Hölder regularities
can be obtained a posteriori by proceeding as in Step 4 of the proof of Theorem 3.1. The energy inequality
(3.3) can be verified by following the line of argument in Step 6 of the proof of Theorem 3.1. This proves that
(𝑢, 𝜇, 𝜃) is a weak solution to the system (1.13).

The case 𝐿0 = ∞. The assertion can be established similarly to the approach in the case 0 < 𝐿0 < ∞.
Therefore, we do not present the details.

Thus, the proof is complete. �

Remark 5.10. The accuracy of discrete scheme discussed in this section can be improved by approximating
the derivative of the polynomial double-well potential by a difference quotient and replacing

∫︀
Ω
∇𝑢𝑛

ℎ · ∇𝜂ℎ d𝑥
and

∫︀
Γ
∇Γ𝑢

𝑛
ℎ · ∇Γ𝜂ℎ dΓ in (5.10c) by

𝛼

∫︁
Ω

∇𝑢𝑛
ℎ · ∇𝜂ℎ d𝑥+ (1− 𝛼)

∫︁
Ω

∇𝑢𝑛−1
ℎ · ∇𝜂ℎ d𝑥

and 𝛼̂

∫︁
Γ

∇Γ𝑢
𝑛
ℎ · ∇Γ𝜂ℎ dΓ + (1− 𝛼̂)

∫︁
Γ

∇Γ𝑢
𝑛−1
ℎ · ∇Γ𝜂ℎ dΓ,

with 𝛼, 𝛼̂ ∈ (0.5, 1]. For more details we refer the reader to [29,37].
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Figure 1. Initial datum.

Table 1. Parameters used for the simulations presented in this section.

𝜀 𝛿 𝜅 𝑚Ω 𝑚Γ 𝛽

0.01 0.02 0.25 1 0.4 4

6. Simulations

In this section, we investigate the convergence of discrete solutions for 𝐿 ↗ ∞ and 𝐿 ↘ 0 numerically. The
discrete scheme proposed in the last section is implemented in the C++ framework EconDrop (cf. [8,28,29,36,37]).
In principle, this framework allows for adaptivity in space and time using the ideas presented in [28], i.e., we
are able to use meshes with a high resolution in the evolving interfacial area and a lower resolution in the
bulk phases where 𝑢 ≈ ±1. Similarly, the time increments can be varied such that they are small, when the
solution changes rapidly and larger when the solution is almost stationary. However, as we are interested in the
dependence on 𝐿 and therefore want to omit any additional effects which might be introduced by adaptivity,
we choose to use a fixed time increment and mesh.

We consider the domain Ω := (0, 1)2 ⊂ R2 and place an elliptical shaped droplet with with barycenter at
(0.1, 0.5), a maximal horizontal elongation of 0.6814, and a maximal vertical elongation of 0.367 (see Fig. 1).
The domain Ω is discretised using a triangulation 𝒯ℎ with ℎ =

√
2 · 2−8, which provides a partition of Γ into

elements of length 2−8. This corresponds to dim𝑈Ω
ℎ = 66049 and dim𝑈Γ

ℎ = 1024. Choosing 𝐹 and 𝐺 of the
form (5.5) with 1

𝛿′ = 250 and the remaining parameters as specified in Table 1, we simulate the behaviour of the
droplet from 𝑡 = 0 to 𝑡 = 𝑇 = 0.05 using a fixed time increment 𝜏 = 6 × 10−7. The discretization parameters
ℎ and 𝜏 used for the presented simulations are chosen very small, as we are interested in the convergence with
respect to the parameter 𝐿 and therefore want to reduce the impact of the spatial and temporal approximations.

The evolution of the droplet is visualised in Figure 2 for different values of 𝐿. The corresponding evolution
of
∫︀
Ω
𝑢d𝑥 and

∫︀
Γ
𝑢dΓ are plotted in Figure 3. In the case 𝐿 = ∞, the integral of 𝑢 is conserved in Ω and on

Γ individually (cf. the red, continuous line in Fig. 3). Therefore, the contact area in this case can not change.
However, the elliptical droplet still tries to attain circular shape with constant mean curvature (cf. Fig. 2a). For
𝐿 <∞, the individual conservation is relaxed (see Fig. 3) to 𝛽

∫︀
Ω
𝑢d𝑥+

∫︀
Γ
𝑢dΓ, which allows the contact area

to grow (
∫︀
Γ
𝑢dΓ is increasing in Fig. 3b), while the droplet’s bulk volume is decreasing (cf. Fig. 3a). The effect

intensifies for decreasing 𝐿 (cf. Figs. 2b–2e), i.e., for larger reaction rates. However, we want to emphasise that
in this scenario our implementation allows for a perfect conservation of 𝛽

∫︀
Ω
𝑢d𝑥+

∫︀
Γ
𝑢dΓ.

According to (1.14), the total free energy 𝐸 = 𝐸bulk+𝐸surf is non-increasing over time. In the two-dimensional
scenario discussed in this section, the boundary Γ is only one-dimensional and the interface given as the zero
level set of 𝑢 cuts Γ always in two points. Therefore the surface free energy 𝐸surf depends mainly on the profile of
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Figure 2. Phase-field at 𝑡 = 0.004, 𝑡 = 0.02, 𝑡 = 0.04, and 𝑡 = 0.05. (a) 𝐿 = ∞. (b) 𝐿 = 10.
(c) 𝐿 = 1. (d) 𝐿 = 0.1. (e) 𝐿 = 0.
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Figure 3. Time evolution of the bulk mass and the surface mass of 𝑢. (a) Evolution of
∫︁

Ω

𝑢d𝑥.

(b) Evolution of
∫︁

Γ

𝑢dΓ.

Figure 4. Evolution of the energy. (a) Evolution of 𝐸bulk(𝑢). (b) Evolution of 𝐸surf(𝑢).
(c) Evolution of 𝐸(𝑢) = 𝐸bulk(𝑢) + 𝐸surf(𝑢).
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Figure 5. Overlay of level sets of 𝑢 for 𝐿 = 0 (red) and 𝐿 = ∞ (blue).

Table 2. Comparison of the phase-field parameters for different 𝐿 with the solution for 𝐿 = 0
(left) and 𝐿 = ∞ (right).

𝑢 𝑢

𝐿 ‖ · ‖𝐿2(0,𝑇 ;𝐿2(Ω)) EOC 𝐿−1 ‖ · ‖𝐿2(0,𝑇 ;𝐿2(Ω)) EOC

0.0001 4.01E-05 – 0.0001 6.12E-05 –

0.0002 8.02E-05 1.00 0.0002 1.22E-04 0.99

0.0003 1.20E-04 1.00 0.0003 1.82E-04 0.99
0.0004 1.60E-04 1.00 0.0004 2.42E-04 0.99

0.0005 2.00E-04 0.99 0.0005 3.01E-04 0.98

0.00075 2.98E-04 0.99 0.00075 4.47E-04 0.97
0.001 3.96E-04 0.99 0.001 5.90E-04 0.97

0.01 3.58E-03 0.96 0.01 4.46E-03 0.88

0.1 2.16E-02 0.78 0.1 2.06E-02 0.66
1 5.66E-02 0.42 1 5.32E-02 0.41

𝑢|Σ𝑇
in the transition regions. However, as the optimal 𝑢-profile in the transition region is given by a hyperbolic

tangent which attains the values ±1 only infinitely far away from the zero level set of the phase-field variable,
the length of the section covered by the droplet might still have a small influence on the surface free energy. As
we start with an interface profile which is close to the stationary one, we expect only little changes in 𝐸surf. The
bulk free energy 𝐸bulk, however, depends mainly on the droplet’s surface area. As the initial surface area is not
minimal, we can expect a significant decrease in 𝐸bulk. The evolution of the energy is plotted in Figure 4 for
several values of 𝐿. As expected, the bulk free energy and the total free energy depicted in Figures 4a and 4c
decrease over time. Comparing the evolution of 𝐸bulk for different values of 𝐿, we notice that after an initial
drop which occurs for all 𝐿, the further evolution of the energy depends significantly on 𝐿. In the case 𝐿 = ∞,
the rate of energy decrease diminishes and 𝐸bulk attains a stationary value, the energy decrease continues for
𝐿 <∞.

As the initial shape of the droplet is elliptical, the right tip of the droplet exhibits high curvature and
therefore vanishes quickly when the droplet optimises its shape, thus causing the initial energy drop. As

∫︀
Γ
𝑢dΓ

is conserved for 𝐿 = ∞, the droplet is not able to decrease its overall surface by increasing the contact area.
Consequently, 𝐸bulk stagnates in this case. On the other hand, for 𝐿 <∞, only 𝛽

∫︀
Ω
𝑢d𝑥+

∫︀
Γ
𝑢dΓ is conserved

and the droplet’s surface area can be further decreased by increasing the contact area which results in a further
decrease of 𝐸bulk. As expected, the rate of energy reduction increases with decreasing 𝐿, while the total energy
decrease is bounded by the energetically optimal droplet shape.

While the bulk free energy is decreasing, the surface free energy 𝐸surf which is depicted in Figure 4b increases.
To explain the initial rapid increase in 𝐸surf, we want to point out that our discrete initial condition does not
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Table 3. Comparison of the phase-field parameters for different 𝐿 with the solution for 𝐿 = 0
(left) and 𝐿 = ∞ (right).

𝑢|Σ𝑇
𝑢|Σ𝑇

𝐿 ‖ · ‖𝐿2(0,𝑇 ;𝐿2(Γ)) EOC 𝐿−1 ‖ · ‖𝐿2(0,𝑇 ;𝐿2(Γ)) EOC

0.0001 6.78E-05 – 0.0001 1.07E-04 –

0.0002 1.35E-04 1.00 0.0002 2.13E-04 0.99
0.0003 2.03E-04 1.00 0.0003 3.18E-04 0.99

0.0004 2.70E-04 1.00 0.0004 4.22E-04 0.99
0.0005 3.37E-04 0.99 0.0005 5.25E-04 0.98

0.00075 5.04E-04 0.99 0.00075 7.79E-04 0.97

0.001 6.70E-04 0.99 0.001 1.03E-03 0.96
0.01 6.05E-03 0.96 0.01 7.41E-03 0.86

0.1 3.71E-02 0.79 0.1 3.12E-02 0.62

1 1.00E-01 0.43 1 8.86E-02 0.45

Table 4. Comparison of the chemical potentials for different 𝐿 with the solution for 𝐿 = 0
(left) and 𝐿 = ∞ (right).

𝜇 𝜇
𝐿 ‖ · ‖𝐿2(0,𝑇 ;𝐿2(Ω)) EOC 𝐿−1 ‖ · ‖𝐿2(0,𝑇 ;𝐿2(Ω)) EOC

0.0001 5.54E-05 – 0.0001 6.05E-05 –
0.0002 1.11E-04 1.00 0.0002 1.20E-04 0.99
0.0003 1.66E-04 1.00 0.0003 1.80E-04 0.99
0.0004 2.21E-04 0.99 0.0004 2.38E-04 0.98
0.0005 2.75E-04 0.99 0.0005 2.96E-04 0.98
0.00075 4.12E-04 0.99 0.00075 4.39E-04 0.97
0.001 5.47E-04 0.99 0.001 5.78E-04 0.96
0.01 4.92E-03 0.95 0.01 4.00E-03 0.84
0.1 2.99E-02 0.78 0.1 1.44E-02 0.56
1 8.41E-02 0.45 1 4.45E-02 0.49

Table 5. Comparison of the chemical potentials for different 𝐿 with the solution for 𝐿 = 0
(left) and 𝐿 = ∞ (right).

𝜃 𝜃
𝐿 ‖ · ‖𝐿2(0,𝑇 ;𝐿2(Γ)) EOC 𝐿−1 ‖ · ‖𝐿2(0,𝑇 ;𝐿2(Γ)) EOC

0.0001 2.72E-05 – 0.0001 1.66E-03 –
0.0002 5.43E-05 0.99 0.0002 3.30E-03 0.99
0.0003 8.13E-05 1.00 0.0003 4.93E-03 0.99
0.0004 1.08E-04 0.99 0.0004 6.54E-03 0.98
0.0005 1.35E-04 0.99 0.0005 8.13E-03 0.98
0.00075 2.02E-04 0.99 0.00075 1.20E-02 0.97
0.001 2.68E-04 0.99 0.001 1.58E-02 0.95
0.01 2.41E-03 0.95 0.01 1.02E-01 0.81
0.1 1.50E-02 0.79 0.1 2.43E-01 0.38
1 5.17E-02 0.54 1 2.98E-01 0.09
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Table 6. Difference between 𝛽𝜃 and 𝜇|Σ𝑇
for different 𝐿.

𝛽𝜃 − 𝜇|Σ𝑇

𝐿 ‖ · ‖𝐿2(0,𝑇 ;𝐿2(Γ)) EOC ‖ · ‖𝐿∞(0,𝑇 ;𝐿∞(Γ))

0 1.19E-08 – 1.17E-05

0.0001 5.93E-05 – 4.22E-02
0.0002 1.19E-04 1.00 8.35E-02
0.0003 1.78E-04 1.00 1.24 E-01
0.0004 2.37E-04 1.00 1.63E-01
0.0005 2.96E-04 1.00 2.02E-01
0.00075 4.44E-04 1.00 2.95E-02
0.001 5.91E-04 1.00 3.84E-01
0.01 5.76E-03 0.99 2.06E-00
0.1 4.98E-02 0.94 3.77E-00
1 2.97E-01 0.78 4.12E-00
10 9.88E-01 0.52 4.16E-00
100 2.08E-00 0.32 4.17E-00

exhibit the optimal 𝑢-profile in the transition region and that the parameters in this scenario are chosen in
a way that the optimal transition profiles in Ω and on Γ differ. Therefore, optimizing the profile in Ω to
reduce 𝐸bulk leads to a slight increase in 𝐸surf. After this initial incline, evolution of 𝐸surf depends on 𝐿, as
the contact angle determines how the 𝑢-profile in Ω influences the profile on Γ. It is also worth mentioning
that the transition profiles are almost identical. Figure 5 shows an overlay of level sets of 𝑢 for 𝐿 = 0 (red)
and 𝐿 = ∞ (blue) at 𝑡 = 𝑇 = 0.05. It is striking that the distances between the depicted level sets for
𝑢 = {±0.9,±0.8,±0.7,±0.6,±0.5,±0.4,±0.3,±0.2,±0.1, 0} are completely identical. However, as 𝐸surf does
not attain the same value for all 𝐿 at 𝑡 = 0.05, the profiles have to differ for |𝑢| > 0.9. This might be a result
of the small size of the wetted section of Γ for 𝐿 = ∞ and 𝐿 = 100 and the resulting interactions between the
transition regions.

In order to deduce an experimental order of convergence (EOC) for the phase-field 𝑢 for 𝐿↘ 0, we compare
discrete solutions 𝑢𝐿𝑖

∈ 𝑈Ω
ℎ for a decreasing sequence {𝐿𝑖} with the discrete solution 𝑢* ∈ 𝑈Ω

ℎ obtained for
𝐿 = 0 and define the corresponding error as

err𝐿𝑖 := ‖𝑢𝐿𝑖 − 𝑢*‖𝐿2(0,𝑇 ;𝐿2(Ω)). (6.1)

Here, the time integral is approximated using the trapezoidal rule with time increment 𝜏 = 1.02 × 10−5. The
experimental order is then defined as

EOC(𝐿𝑖) :=
log
(︁

err𝐿𝑖+1
err𝐿𝑖

)︁
log
(︁

𝐿𝑖+1
𝐿𝑖

)︁ ·

For 𝐿↗∞ and the convergence of 𝑢|Σ𝑇
, 𝜇, and 𝜃, we proceed analogously. The results for the convergence of

𝑢 on 𝑄𝑇 which are collected Table 2 indicate that for 𝐿 ≤ 1× 10−3 the convergence rate is almost 1. A similar
pattern emerges for the EOC of 𝑢|Σ𝑇

which is displayed in Table 3, the EOC of 𝜇 displayed in Table 4, and the
EOC of 𝜃 that can be found in Table 5.

As a last test case, we investigate the behaviour of 𝜃 and 𝜇|Σ𝑇
for 𝐿↘ 0. According to the theoretical results,

‖𝛽𝜃 − 𝜇|Σ𝑇
‖𝐿2(Σ𝑇 ) → 0 with a rate of at least

√
𝐿. As shown in Table 6, the numerical errors we obtain in the

case 𝐿 = 0 for ‖𝛽𝜃−𝜇|Σ𝑇
‖𝐿2(0,𝑇 ;𝐿2(Γ)) are only of order 10−8 and of order 10−5 if we use the 𝐿∞(0, 𝑇 ;𝐿∞(Γ))-

norm. Similar to the results described above, our simulations yield an experimental order of convergence rate
of 1 for small values of 𝐿, but still reach the expected rate of 0.5 for 𝐿 = 10.
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Appendix A.

Proof of Lemma 2.3. We prove the assertion by contradiction. To this end, we assume that the estimate is false.
This means we can find an 𝛼 > 0 such that for any 𝑘 ∈ N there exists a function 𝑢𝑘 ∈ 𝒲𝜅

𝛽,0 with

‖𝑢𝑘‖2𝐿2(Ω) + ‖𝑢𝑘‖2𝐿2(Γ) > 𝛼‖∇𝑢𝑘‖2𝐿2(Ω) + 𝑘‖𝑢𝑘‖2𝐿,𝛽,* (A.1)

Now we define a sequence (𝑢̃𝑘)𝑘∈N ⊂ 𝒱𝜅 by

𝑢̃𝑘 :=
𝑢𝑘(︁

‖𝑢𝑘‖2𝐿2(Ω) + ‖𝑢𝑘‖2𝐿2(Γ)

)︁1/2

for all 𝑘 ∈ N. By this construction, it holds that

‖𝑢̃𝑘‖2𝐿2(Ω) + ‖𝑢̃𝑘‖2𝐿2(Γ) = 1 (A.2)

as well as 𝑢̃𝑘 ∈ 𝒲𝜅
𝛽,0 for all 𝑘 ∈ N. Moreover, it follows from (A.1) that

𝛼‖∇𝑢̃𝑘‖2𝐿2(Ω) + 𝑘 ‖𝑢̃𝑘‖2𝐿,𝛽,* < 1 for all 𝑘 ∈ N. (A.3)

Consequently, the sequence (𝑢̃𝑘) is bounded in 𝐻1(Ω). Hence, according to the Banach–Alaoglu theorem, there
exists 𝑢 ∈ 𝐻1(Ω) such that 𝑢̃𝑘 ⇀ 𝑢 in 𝐻1(Ω) along a non-relabelled subsequence. We now deduce from the
compact embeddings 𝐻1(Ω) →˓ 𝐿2(Ω) and 𝐻1(Ω) →˓ 𝐿2(Γ) that 𝑢̃𝑘 → 𝑢 in 𝐿2(Ω) and 𝑢̃𝑘 → 𝑢 in 𝐿2(Γ) after
another subsequence extraction. In particular, this implies 𝑢 ∈ 𝒲𝜅

𝛽,0 ⊂ (𝒲𝜅
𝛽,0)−1 and ‖𝑢‖2𝐿2(Ω) + ‖𝑢‖2𝐿2(Γ) = 1.

It now follows from (A.3) that

‖𝒮(𝑢̃𝑘)‖2𝐿,𝛽 = ‖𝑢̃𝑘‖2𝐿,𝛽,* <
1
𝑘
≤ 1 for all 𝑘 ∈ N. (A.4)

Hence, the Banach–Alaoglu theorem yields the existence of a function 𝒮* ∈ ℋ𝛽,0 such that 𝒮(𝑢̃𝑘) ⇀ 𝒮* with
respect to the inner product (·, ·)𝐿,𝛽 on ℋ𝛽,0 as 𝑘 → ∞. As 𝒮(𝑢̃𝑘) is the weak solution of the system (2.2) to
the right-hand side 𝑢̃𝑘 we can pass to the limit in the weak formulation (see (2.3)) to conclude that 𝒮* = 𝒮(𝑢).
Since the norm ‖ · ‖𝐿,𝛽 on ℋ𝛽,0 is weakly lower semicontinuous, we can use (A.3) to obtain

‖𝒮(𝑢)‖𝐿,𝛽 ≤ lim inf
𝑘→∞

‖𝒮(𝑢̃𝑘)‖𝐿,𝛽 ≤ lim inf
𝑘→∞

1√
𝑘

= 0 for all 𝑘 ∈ N. (A.5)

This means that

∇𝑆Ω(𝑢) = 0 a.e. in Ω and ∇Γ𝑆Γ(𝑢) = 0, 𝛽𝑆Γ(𝑢)− 𝑆Ω(𝑢) = 0 a.e. on Γ.

Finally, as 𝒮(𝑢) is the weak solution of (2.2) (with 𝜑 = 𝑢), this is enough to conclude that 𝑢 = 0 a.e. in Ω and
also 𝑢|Γ = 0 a.e. on Γ. However, this is a contradiction to ‖𝑢‖𝐿2(Ω) + ‖𝑢‖𝐿2(Γ) = 1. This completes the proof.
�
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