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Abstract

In this paper, we use the Energetic Variational Approach to derive a non-isothermal electrokinetic model.
The charge transport is described through the Poisson—Nernst—Planck equations with variable tempera-
ture, and the heat flux satisfies the Fourier’s law. This Poisson—Nernst—Planck—Fourier model satisfies both
the first law and second law of thermodynamics as well as the Onsager’s reciprocal relations, thus it is
thermodynamic-consistent. Finally, we prove the global well-posedness for this model under the smallness
assumption of the initial data by the energy method.
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1. Introduction

The classical Poisson—Nernst—Planck (PNP) theory as well as its various modifications
[50,16,8,36,23,19,57,60,56,7,38,53] have been widely studied in describing the dynamics of mo-
bile charges in electrolytes, with real applications such as the energy devices [52,35,55,33,48,25]
and the biological ion channels [6,17,51,41,15,37,28]. The PNP theory assumes the physical sys-
tem to be isothermal and described using a constant temperature, which might work well for those
systems with negligible temperature variations. However, the electric current is usually accom-
panied with the Joule heating effect, resulting in considerable temperature changes. Moreover,
the thermoelectric effects indicate there exists direct conversion between the temperature gradi-
ent and the voltage gradient. The coupling between the temperature evolution and the electric
currents is very important in understanding the dynamic properties of the electrolyte systems and
has attracted extensive interests in recent years [31,59,3,9,13,18,29,49,26,42].

In literature, there are many works on the analytical properties of the classical PNP equations
and its modifications, such as the well-posedness [43,45,11,32,20], long time behavior [44,2,4,
22], singular perturbation [51,40,27,1] and the references therein. Many efforts have been also
devoted to the non-isothermal models, for instance, [14] derived a priori estimates and the weak
stability of the compressible Navier—Stokes—Fourier system; [5] obtained the existence and long-
time behavior of the incompressible Navier—Stokes—Fourier system; [12] proved the existence of
a two-phase diffuse interface model of incompressible fluids; [10] analyzed the global-in-time
well-posedness of the non-isothermal liquid crystal system.

In this paper, we present some preliminary analytical results on a non-isothermal Poisson—
Nernst-Planck—Fourier (PNPF) system, which is derived from the Energetic Variational Ap-
proach (EnVarA) [24,58,39]. Compared with most of the non-isothermal models in history, our
model is thermodynamic consistent in the sense of satisfying basic thermodynamic laws as well
as the Onsager reciprocal relations [46,47]. For the convenience of the readers, we provided
detailed derivations of the system, as well as the analytical proof.

While this work was in progress, we realized that there had been an independent work [30],
where they provided the small data existence/stability results for general systems with more
general setting, with arbitrary number species and also solvent equations. We want to point out
that the methods there are different from what we presented in this paper.

The rest of the paper is organized as follows. In section 2, we present the model deriva-
tion and discussion. In section 3, we describe the result of global existence of the Poisson—
Nernst—Planck—Fourier system. In section 4, we give the proof details of the well-posedness
result by the energy method.

2. Model derivation

The Energetic Variational Approach (EnVarA) is a systematic procedure to derive the consis-
tent constitutive relations and thus the dynamic equations. It has three steps: (1) Least Action
Principle: with given form of the total energy as a functional of the flow-map, the conservative
force minimizes the total action; (2) Maximum Dissipation Principle: with given form of the en-
tropy production, the dissipative force maximizes the energy dissipation; (3) Onsager Principle:
the conservative force should be balanced with the dissipative force.

The original EnVarA is for general classical mechanics [54,46,47], and has shown to be suc-
cessful in general complex fluids in the isothermal case. When the temperature is a variable,
it turns out the EnVarA is consistent with the basic thermodynamic laws [39]. Here we derive
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all the constitutive relations through the EnVarA, demonstrating the variational structure of the
Poisson—Nernst—Planck—Fourier system.

Compared with the EnVarA in the isothermal case, whose properties are determined by the
fluid flow-map, we also need to take into account the energy flow-map in the non-isothermal
case. In another word, there are two types of kinematic relations:

+ V. (pv?P)=0,
Mass conservation: pr (pv?) (1)
n;+V-(mv'") =0,

. e,”—i—V-(epvp):—V-(PPvp)—pvl’-V¢—V~q1’+qP",
Energy conservation: (2)
ef +V .- (") ==V -(P"V")+nv"-V¢ —V.-q" +q"P.

For simplicity, we only consider the electrolytes in whole space R? with two ionic species of
valences z = £1. The positive ion density distribution is denoted as p and the negative ion
density is n. v and v" are their velocities separately. The energy conservation comes from the
First Law of Thermodynamics. e” = c? p6 and ¢ = ¢"n6 represents the internal energy density
of the positive/negative charges, without the electrostatic potential energy. 6 is the temperature.
c? and ¢ are the specific heat capacitance of the ions. It should be noted that, the internal
energy transports along with the material, so that e” transports with the velocity v” while "
transports with the velocity v"*. P? = pf and P" = n6 are the thermo-pressure of ions, PPv?
and P"v" describe the rate of work from pressure. g” and g" represents the heat fluxes within the
corresponding ionic species, g”"* = —g"P represents the heat exchange between the two species.
¢ is the electrical potential satisfying the free-space Poisson’s equation,

Ap=n—p, lim ¢=0.

|x]—o00

Here we used a single variable 6 as the temperature distribution for both the anions and cations.
It is sufficient to consider the total energy conservation without distinguishing ¢”, ¢" and ¢"?.
Adding together the two energy conservation equations in (2), we obtain,

e, =—V - (c?’pov? — "nbv") — V- (PPv? + P"") 3
1
=V (ppvp —név,) — EV (¢ Vo —dpVe) =V -q
£-v.je @)

Here e = (¢’ p + "'n)6 + ¥¢ is the total energy density, including the electrostatic energy.

q =q? + q" is the total heat flux. The first term on the right hand side of (3) is the transport of
the internal energy e” and e". The second term represents the work from thermo-pressure. The
third term can be viewed as the transport of the electrostatic energy. It should be noted that, the
transport of the electrostatic energy is different from the transport of e” and e". This is due to
the long-range Coulomb pairwise interaction, which also introduces the fourth term, understood
as the exchange of electrostatic energy between particles at different locations.

To apply the EnVarA, besides the kinematic relations provided by the conservation laws, we
also need the energy equality from the Second Law of Thermodynamics,
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d
dt - ®)

where S is the entropy and A is the rate of the entropy production. Under the PNP framework,
the form of the entropy is treated at the mean-field level,

St)=— f p(x,H[log p(x,t) —cPlogh(x, 1)]
R3
+n(x,)[logn(x,t) —c"logf(x, t)]dx

é/[n"’(x,t)+77"()c,t)]dx=/;7(x,t)dx. (6)

L

Here 7 is the total entropic density, n” = —p(log p — c”log#) and 1"
represent the entropic densities of individual species.

—n(logn — " log6)

Least action principle. The particle flow-maps describe the mapping from the Lagrangian
coordinate to the Eulerian coordinate of the two ionic species, which is usually given by,
x,p(X, t) =vP(x?,t) and x/' (X, t) = v"(x", 1), with X being the Lagrangian coordinates and
xP, x" being the Eulerian coordinates. However, this approach cannot describe the heat flux,
since there is no “heat (temperature) velocity” analogous to the mechanical velocities. In fact,
the internal energy transports along with the flow-map, while at the same time performing work
and absorbing heat as described in (3), which means the kinematics of temperature is much more
complicated when coupled with material flow-maps.

It should be noted that, these flow-maps can also be characterized through the accumulated
fluxes in Eulerian coordinates alone without pulling back to the Lagrangian coordinates:

JPe, ) = jP(x, ) £ puP(x,0),  Jl(x, 1) = j"(x, 1) Env"(x,1).
Similarly, the energy flow-map is considered through
Ji(x, ) = j(x,0).

The total action is defined based on the left hand side of the energy equality (5),

A[Jp(x,t),J”(x,t),Je(x,t)]=—/S(t)dt.
0

It is a functional of two particle flow-maps J? and J" as well as the energy flow-map J¢.

T

Remark 1. The action is usually defined as A = / F (t)dt in the isothermal cases, because the
0

energy law is %F = —ApF, with F being the Helmholtz free energy and Ar being the energy

dissipation. In the non-isothermal case, the definition of action should be modified accordingly.
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The conservative forces can be computed through the variation of the action with respect to
the flow-maps (see Appendix 5.1 for detailed calculation), which is the Least Action Principle,

Fon, ) =§%%5
i, n = % o
con(X, 1) = %ﬁz) = V%.

Maximum dissipation principle. The form of the entropy production rate is chosen to be in the
quadratic form, the same as in the classical PNP model,

P2 P IVF Af~
/[DPpQ+D"n0+k 0 o . ®)

R3 R3

Here D? and D" are the mobilities of the ions, related with their diffusion coefficients. k is the
heat conduction rate. A is the density of entropy production rate. Then the dissipative forces can
be computed from the variation of the entropy production rate with respect to the fluxes (see
Appendix 5.2 for detailed calculation), which is the Maximum Dissipation Principle,

P _1_éa
fdis(x’l) - 28j1’(x,t)
_J (et Dote
~ DPpo ko2
+V/ q(y,t) <¢(y,t)(y—X) B Vy¢>(y,t)>d ’
2k02(y, 1) \ 4m|x —y|? 4 |x — y|
RS
' o) 1 8A o
fas™ D =356 ©)
" @t ho—¢
= Do ko2 4
v/ q(y.1) (qﬁ(y,t)(y—X) Vy¢(y,t)>d
_ _ v,
2k0%(y, 1) \ 4m|x —y|? 4 |x — y|
]R3
e (x.1) _1 SA _ 49
Jas o0 =555 T ke

Here 1/2 corresponds to the quadratic form of A, meaning it is a linear response theory.
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Onsager’s principle.  Using the conservative and dissipative forces, (5) can be rewritten into the
form

/ (Fous = F2 )+ (Fore — ) - jpldx = / o — fon) - Jedx.  (10)
R3 R3

The left hand side is about the mechanics (deformation) of the fluid system, while the right
hand side is about the energy (heat). It would be nature to conclude the balance between the
conservative and dissipative forces, which is known as the Onsager’s Principle.

The force balance between f%, and f7, gives the Fourier’s law,

q=—kVe.

The force balances on the ion flow-maps reveal the Darcy’s law,

pv? = jP=—-DP[V(pd)+ pVel,
nv" = j* = —-D"[V(nb) —nVe).

Remark 2. In this derivation, we ignored the contribution from the solute, which can be taken
into account by introducing the solute heat capacitance and relative drag between solvent and
solute molecules [21,56,39]. On the other hand, the same approach can be generalized to the
system with multiple ion species.

The Poisson—Nernst—Planck—Fourier system. Combining the above constitutive relations with
the kinematic equations, we conclude with a Poisson—Nernst—Planck—Fourier system:

pi+ V- (pvP)=0, pv”=-DP[V(p0)+ pVe],

n,+V-@v") =0, m"=-D"[V#no)—nVe],

—Ap=p—n, (11)
(P p+"n)b; + (P pv? + 'nv™)VO

plvP)?  nv")?
Dp + D"

=V .kVO+ — pOV -vP —nov .- v".

It is straightforward to verify (11) satisfies the conservation of mass: (1), and the First Law of
Thermodynamics (conservation of energy): (4) (see Appendix 5.3 for detailed calculation). To
verify the PNPF system satisfies the Second Law of Thermodynamics: (5), we investigate the
local entropic density:

pcP +nc"
0
=(logp —c”logh + 1)V - (pv?) + (logn — " logh + 1)V - (nv™)

d
5= —(logp —cPlogb + 1)p; — (logn — " log6 + )n; +

t
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pcP + nc"
0

:—V-[npvp+n"v"]—V~%+Z.

t

Here the first term is the transport of the entropy along with the particle velocities. The second
term is the heat flux. The last term is the entropy production rate. This is the differential form of
(5), which is equivalent to the Clausius—Duhem inequality.

Remark 3. It should be noted that, the Clausius—Duhem inequality could take different forms.
If we choose another form, e.g., n; + V - % =A > (), there will be another set of closed PDE
system, which differs from the force balance given by Onsager’s principle, but satisfies the same
energy law in (5). This is because the solution to (10) might not be unique.

To justify the validity of the PNPF model, we show that (11) also satisfies the Onsager’s
reciprocal relation. Rewrite the particle and energy fluxes into the form of

. Hp Hn 1
P=—L, VL L V-2 +L, V-,
J pp 0 pn 9 + po 0
. M 2 1
J”=—anv7”—Lnnv7"+Lnev5,

. Mp Hn 1
¢=—Lyp,V— — LgpV— + LyyV —.
J op 9 On ) + Lgo 9

Here p1, =0 (log p —cPlog6) + ¢ and u, =0 (logn — c" logf) — ¢ are the chemical potentials
of the two ion species. L;; are the coefficients describing the ratio between flows and “forces”.

Onsager’s reciprocal relation requires these coefficients to be symmetric, namely, L;; = Lj;. In
the constitutive relations of (11), we can see,

Lpo = Lop = D?pO[(c? + 1)0 + ¢],
Lno = Lon = D"no[(c" + 1)0 — ¢].
3. Well-posedness result
In this section, we deal with the global well-posedness of the PNPF system (1 1) with the initial

data sufficiently close to constant equilibrium states. For simplicity, we assume ¢” =c¢" =c¢ > 1
and D? = D" = € =k = 1. Then the system (11) can be written as

n,=V-(V(nb) —nVe), (12)
pe=V-(V(pb)+ pVe), (13)
Ap=n—p, |1|im ¢ =0, (14)

cl(n+ p)by — (V(nb) —nVe + V(pd) + pVe) - VO]
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1 1
=6V - ( ~(V(n0) —nVe) ) + poV - ;(V(p@) + pVo) (15)

1 1
+ A0+ = [V(n6) - nvél> + > IV(pb) + pVo|*,

for x € R?, 1 > 0. By (14), ¢ can be expressed in terms of n and p as

¢(x,,)=_4i/n(y,t)—P(y,t)dy' (16)
4 lx — yl
]R3

We look for solutions (n, p, ¢, 8) of system (12)—(15) with initial data

(n, p,0)(x,0) = (no, po, o) (x), a7

where ng, po and 6y are close to constant states. As for the initial data for ¢, it can be determined
by (16) and (17)

no(y) — po(y)

dy.
lx — yl

1
$(x.0) = do(x) = —4—/
T
]RS
Without loss of generality, we assume that ng, pg and 6y are close to 1, and state our result as
follows.

Theorem 1. Suppose that

no—1,po—1,00— 1€ H*R?), V¢oe L*(RY).

There is a positive constant 8o such that if

[(no — 1, po — 1,60 — Dl g2 + [IVoll 12 < o, (18)
then the system (12)—(15) with (17) has a unique global solution.

Remark 4. If ¢ = 1, the temperature equation can be further simplified. However, the specific
heat capacitance ¢ = 3/2 for monoatomic ideal gas, ¢ = 5/2 for diatomic rigid molecule, and
¢ = 3 for multi-atomic rigid molecule. In general, this constant is always greater than 1.

In the following, we will use C to denote the generic constant that may vary from line to
line. We use the notation for the norms || - [[Lr = || - [ L»r3) and || - | g = || - | gr(w3)- And (-, -)
denotes the inner product in L*(R3). 9; = Oy, and 0;j = dy, 0y, for i, j € {1,2,3}.
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4. Proof of Theorem 1

Now we are going to prove Theorem 1. In the framework of the energy method, the global
existence can be obtained by the local well-posedness and global in time a priori estimates.
Notice that the system (11) is strictly parabolic provided that n, p and 0 are positive away from
zero. Therefore, under the assumption (18), the existence and uniqueness of local strong solutions
of the system (11) can be proved in a standard way using the Galerkin method and the fixed-point
argument. Therefore the proof is omitted and referred to, for example, Chapter VII of [34].

Before we prove the a priori estimates, we first reformulate the equation as follows. Denoting
u=n+ pandv=n— p, (12)-(17) can be rewritten as

ur =0Au~+2V0 - Vu +uAd — Vv - Vo — v, (19)

vy =0Av+2V6O-Vv+vA8 —Vu-Vo —uv, (20)
1 62 )

=04+ ) A0+ —Au+(c+1)|V| Q1)
u u

0 0 v gv? )
+(+3)=Vu-V0 -2 -Vv-V$ —(c+2)-V0- -V — — +|Vo|>.
u u u u

Here, in (19)—(21), ¢ satisfies (16), which can be rewritten in terms of v as

¢<x,r>=—4i 2O 4
7 J |x =yl

R3

Letting t = u — 2 and 6 =6 — 1, we further reformulate (19)—(21) as

iy = A +2A0 +0AG+iiAO +2V0 - Vit — Vv - Ve — v, (22)
v =Av—2v+0Av+ VAl +2V0 - Vv —Vii- V¢ — iiv, (23)
B = A+ LG +OAG i A~+2§2+4§_ﬂ (24)
C = — — u _—_— _—

T2 2 22+ i) 22 +10)

_ 146 .
F e+ DIVER +(c+3) v v
24+nu

146
2+u

(1 +6)v?
2+

-2

Vo Ve —(c+2) ——V6-Vp— + Vel
2+u

If we a priorily assume that

[(n—=1,p=1,0 = Dlig2 + Vel L2 =< do,

then equivalently we have

1@, v, 0)ll g2 + 1Vl 2 <8 (25)



7296 C.-Y. Hsieh et al. / J. Differential Equations 269 (2020) 7287-7310

for some 0 < § ~ §p. Moreover, by the Sobolev embedding, (25) implies that
G, v, 0)] L < C8.

In order to prove Theorem 1, it suffices to show the following a priori estimate.

Proposition 1. Assuming (25) for § sufficiently small, we have

d . ~
(16 VI + 26180 + 19612 )

+ CLlIV G, v, 013, + Callvl3, + C3lI VI3, <0.

| =

With the aid of Proposition 1, we conclude that

1GE, )13, + 2¢l1011%,2 + IVII72 < llGGio. vo) 132 + 2¢l160ll7,2 + Vol 2
<cs?

for any ¢ > 0, where 19 = ng + po — 2, vo = no — po, and 50 =6 — 1. Theorem 1 then follows
as we noted in the beginning of this section.

In the remaining of this section, we will prove Proposition 1. The proof can be separated into
several lemmas. First, we prove the L? estimate as follows.

Lemma 1. Assuming (25) for § sufficiently small, we have

1d

52 (16 VI +2e117:) + CIV . v. 61 + Clvl: = CoIVOI.

Proof. Multiplying the equations (22), (23) and (24) by i, v and 26, respectively, integrating
over R3, doing integration by parts, and then summing the resulting equalities, we obtain

1d /. 8 3 3
EE(”(u’v)”iz+2C”9”2L2)+||V(u,v)||iz+3|IV9||2L2+2||v||2LZ
=2(AB, i) + (AQL, 6) + (G AT+ dAb, i) + (B Av+vAb, v) (26)
- i - 20%440—a  _
+(20A6 — MNAG-{-#AQQ
2+u 2+u

+<2V§-Vﬁ—Vv-V¢—v2,ﬂ>+<2V§-Vv—Vﬁ-V¢—12v,v>

- 1+6_ . _~ ~
+2{(c+DIVO"+(c+3) ~Vu-Vo,0
2+4+u

146 v (1 +0)v? 5
220y v ) Vi v+ DV ve.d).
< sy Vet = ¢+ Vel
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We can estimate the right-hand side of the last identity term by term as follows. First, by doing

integration by parts and Young’s inequality, it holds
2AD. ) + (Aﬁ,é)‘ _3 ‘(Vﬁ, ve”)’

9 5 1l _~,
< IVl + 5 IV8l.

27)

Again doing integration by parts, and using Holder’s inequality and Young’s inequality, we have

(OAG+aAd, @)| <3|(VE - Vii, i) + [{|Vil*, 6)|
<3IVOIl 211Vl 2Nl oo + [ ViEl 221161 oo
< C8|IV @, )3,

Similarly, we have
[0 AV +vAG, v)| < C8|V (v, D)7,

and

- 0~ 20%446—0 . -
200 — AO + — Au, 6
24u 24u

Next, integration by parts yields

(vU Ve + 12, u> F (Vii - Vé + iiv, v) = (iiv, Ad) + 2(&, v2>

=3<ﬁ,v2>.

Thus,

’<2V§~Vﬁ —Vv~V¢—v2,ﬁ>+<2V§~Vv - va-w—ﬁu,v))

gszé-va,ﬁ)

+2|(vé - vo,o)| +3](z. v?)|

<2|VOll 21 Vidll 2 il L + 20 V01 21 Voll g2 0l + 3lull e o]l

< CO|IV . v.0) (17, + C|v]l3,.

For § sufficiently small such that |||z~ < 1, we obtain

~ 146 -
<(c+1)|v9|2+(c+3)i~va-v9,9>
2+u

< CIIVO12,1IV8] oo + CIIVitll 2 IVE] 21161 o
< C8||V @@, 03,

< C8||IV.0)3,.

(28)

(29)

(30)

€2y

(32)
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Finally, for the last term, we have

2+1u

< CIIVVll 2Vl 2101 o + Cllvll Lo VO 21Vl 1210 oo
+Clvl2 101l + CIVI2, 1161

< C8IV(, D)2, + C8lvlI2, + C8[Ve|2,

Combining (26)—(33), the proof is completed since § is sufficiently small. O
Next, we prove the higher order estimate.

Lemma 2. Assuming (25) for 8 sufficiently small, we have

1d
2dr

= Cs (IV@ DI + 1013 +1V912:)

1+6 v~ (1+0)v?
<zmw.v¢+(c+2)mve.v¢+7 Vo2, >

(IV G, )12 + 261813, ) + CIVAG@, v, D)1, + ClI VoI,

(33)

Proof. By applying 9; to the equations (22), (23) and (24) for i = 1, 2, 3, multiplying the result-
ing equations by 9;ii, 9;v and 29;6, respectively, integrating over R3 doing integration by parts,

and then summing the resulting equalities, we obtain

1d -

5= (1@ 01 +2c13,017 )

+ IV @i, )17, + 31V @) 172 + 21017,

= 2(8;(AD), ;i) + (3 (Ail), 8;0)

+ (0; O AT+ aAAD), 3;i1) + (3; (O Av +vAB), d;v)

i~ 200440—a L\ -

+(9;|20A6 — —AO + —— A |, 96

2+u 2+u

+ a, 2ve Vi — Vv - V¢—v2),8iﬂ)

+< (2v9 Vv — Vi - V¢—L7v),8,-v)
-5 1+6__ _~ ~
2(oi [+ 1) IVIP+(c+3) ——Vi-Vé |, 80
2+u

1406
—2({0;(2 ——=Vv-V
(o zowe

Fc+2) —ve Ve + a+6p |v¢|2>, a,~é>.
2410

(34)
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We now estimate the right-hand side of (34) as follows. First, doing integration by parts and
using Young’s inequality yield

200,(80), 3} + (0,0, 6)| =3 (Y Oui), V (@:6))
9 - 11 ~
= SIV@DIZ + TIVODIL. 69

Next, by doing integration by parts, and using Holder’s inequality, Sobolev inequality and
Young’s inequality, we have

‘(8,~(9~Aﬁ+ﬁA§),8,ﬂ)‘

< ‘(3,-5&2, a,-ﬁ)) n ’(éA(a,»a), 3;)

+|@and, )| + | @a@d), o)

<|@éai,am|+|(1v@DP.6)| + (V8- Vi), o)

+ ’(aiﬁAé, am’ + ’(W -V (3:6), aim‘ + ‘(V(aia) -V (%;0), i)

<20\ V2l 21V01 al Vil o + 116]] Lo< V71 2
+20V201 21Vl o + Nl oo V2] 21 V20 2
< Cllitll g2 IVO i Vil o + 101 Lo I V213
+ ClON 2 IViEll 3, + il o V2] 21920 2
< CS[IV (i, )31 (36)

Similarly,

|0 @80 +vA6), 90} = CSIV @, DI, (37)

and, for § sufficiently small such that ||i| L~ < 1,

i + ulj,o; V u, o
! 2410 2410 ! !
Notice that the Hardy-Littlewood-Sobolev inequality gin:S
”; ¢||16§C”;k 1””12 (39)

for each k € N. Together with Holder’s inequality, Sobolev inequality and Young’s inequality, it
is easy to deduce that

)(ai (2vé Vi — VvV — v2> , a,-a))

52‘<V(aié)-w,a,-ﬁ)

+2‘<V§~V(8i12),8,-12>‘
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+ UV (3v) - Vo, i) + (Vv - V@), dii)| + 2| (vd;v, 8;1)]
<20V20 201Vl 24 4+ 20 V2l 2 VO L4 Vil 1

+ V20l 21Vl 3 11Vl s + Vil 2Vl 3 1 V2l 6

+ 200l I Vol 2 | Vil 2
< Cll01 g2 IViEll%,) + Cllill g2 VO g | Vil 1

+ Clvll g2Vl gillvl g2 + Cllill g2 [ Vol g1 Vo]l 2

+ 200l IVl 2| Vil 2

= €8 (IV G, v, 0) 1%, + v, ). (40)

Similarly, we have

(3 (290 - vo—vi Vo —av), )| < €5 (IV@ 0.0 + I01%:), @)
<9 1+9~ . ~ ~ N
i llc+D|IVO“+(c+3)——=Vu-Vo],0;60 §C8||V(u,9)||H,, 42)
2410
and
146 14+6)v ~
3 A+ IVe|* | . 36
2+u 2+u

=8 (IGi, v, 0) 1% + vl + ||V¢>||iz) . 43)

Combining (34)—(38) and (40)—(43), and summing over i = 1, 2, 3, we conclude

1d
S (||V(u V)I2 4261V, ) + CIVAGE, v, D)3 + ClI Vo),
= € (IV G, v. D)3 + I3 + IV812) (44)

for § sufficiently small.

Next, applying 9;; to the equations (22), (23) and (24) for i, j = 1, 2, 3, multiplying the re-
sulting equations by 9;;i, 0;jv and 20; jé , respectively, integrating over R3, doing integration by
parts, and then summing the resulting equalities, we obtain

Q.|Q~

- (1@ 013 + 213,01 )

+ IV @i, 3 v)175 + 31V (@07 + 201817,
= 2(3;;(AB), &;;it) + (8 (AdL), 3;;6) (45)
+(8;; O Adi + TAD), 8;ii) + (3; (D Av + vAF), 3;;v)

| =
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i

i~ 20%+40—i -
20A6 — —~ A0 + o Au |, 0;;0
24u 24u

+(0; (290 - Vi = Vv Vo 17, 3i)

+<a,, (2v9 Vv — Vii - v¢—ﬁv),aijv)
. 1+6_ . -~ s
| 2+u :

146
292 —vv.-V
<”( 24a " ¢

(1+6)v? -
H—ﬁ—wmz 870 ).

We estimate the right-hand side of (45) term by term in a way similar to the estimate for (34). By
integration by parts and Young’s inequality,

2001 (A0), By) + (04 (AR, 80| =3 [(V 9yy), Y (0,;0))|

9 11 -
< IV + - IV@;I5.  (6)

Then, by integration by parts, Holder’s inequality, Sobolev inequality and Young’s inequality, we

have

|0 @ +nd), )|

< ‘(&jéAﬁ,

+

7 aijﬁ)‘ + ‘(ajéA(aiﬁ), 0;jut)

a,,-m‘ + ‘(8j0~A(8iﬁ), ;i)

+ (@0 @), 8)

(OA (@00, 3 i)

n ‘(3,-,-:2Aé, i)

+ (078016, 3

(8:iA(3,0), a,;,ﬁ)‘ +

(A @;0), )|

n ‘(8,»5A(aja), a,»,-m‘
(V6 V@), 00) | + [V @1 6)|

(8;ii A0, B;i)

+ ‘<ajﬁA(a,~é), 0,71}

+ ‘(8,»@(3,5), i)

(Vi - V(5;;0), aijm’ + )(V(a,-jé) SV (@yji0), ﬁ)‘

<2/V20 2 V2l 4 + 3IVO L4 V7| o | Vi 2
+ 31 Vit a V2l LI V0 ] 2
F 1O Lo IV 5 + Nall e V0 21 Vi 2
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< ClON g2 IV 13, + ClON 2 IVl g Vi 2
+ Cllitl g2 | V2l g1 V36 2
F 10N Lo IV3l7 2 + il Lo V20 21 V3] 2
< C8||IV2(i, 0) |l 1. (47)

Similarly, it holds
‘(Bi(éAv-l—vAé),aijv)’ < CSIIV2(, Bl 1, (48)

and

< C8|IV3(@@, 0)ll - (49)

u 2+u

< i - 202440 —1i -
<al-j (29A6 - 21 _AG+ #A&) ,a,-,-9>

For those terms involving ¢, we will make use of Holder’s inequality, Sobolev inequality,
Young’s inequality and the Hardy-Littlewood-Sobolev inequality (39). It follows that

(9 (26 - Vit = Vv Vg —v?) i)

52’<V(a,-jé).va,a,-,-ﬁ>

+2|(v@d) v, a,a)

42 ‘(V(ajé) V(). aij:;>

+2)<v§-V(a,~jﬁ),a,»jﬁ>

+ |(V(3;v) - V@, 3;jit)| + |(V(B;v) - V(3;), 3;id)|
+|(V(3jv) - V(@i9), 3;jit)| + |(Vv - V(3;;9), 3;jii)
+2|(vdyjv, 0;ja)| + 2 |(3iv0;v, 3;ji)|

<2|\Vi]| 14| V2itll 41 V20l 2 + 41 V20| 2] V2]l 4
+20V0 V2l L IVl 2 4 1Vl Lo V2l 31V ]l 2
+ 21Vl 21Vl 16 1 V2l 13 + IVl 3 V2B 61 V2 2
+ 2[ vl e V20l 2 V%l 2 + 2[ V12, 1V 2

< Cllitll g2 IVl g V301 L2 + ClEN 2 I V213,
+ ClON 2 IVl g1 1V 2 4 Clol 2 V23] g VP02
+ CIIV20ll 21Vl 2 | V2l g1+ ClIVO g1 VP02 V2] 2
+ 200l Lo I V20ll 2V 2 + CI VI3, V2] 2

= €5 (IV23,0 + 1Vl + 192012, ). (50)

Similarly, we have
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‘(a,»j (2vé Vv — Vi -V — ﬁv) , a,-,-v>)

<C8 (||v2ﬁ||i,l + IVl + ||v3é||iz), 1)

3| ( +1)|vé|2+(c+3)l+éva Vo, 96
N AV Y
1] 2—|—ﬁ ij

< s (IValld, + V2012, (52)

and

146 v~ (1+6)v? -
32 ——=vVv.V 2)——VO0-Vop+-—"2—1,09;;0
<”( 24a " ¢+t )2+ﬁ o+ 2+ "

= €5 (Il + o), + 12612, ). (53)

For the remaining term, we further do integration by parts once and use an interpolation inequal-
ity to deduce that

(2 (1v0F) .2,
<2 )<v¢ V(@39). a,-,é)) +2 ‘(V(aiqﬁ) -V (@;9), a,-,-§>‘
<4 )<v¢ V@), aijé“)} +2 ‘<v¢ V@9, aial-jéﬂ
<4Vl IVl V201 15 + 21Vl L3 VBl 161 V8l 2

~ 1/2 1/2 ~
<41Vl 21Vl o101l 15 + 21Vl IV 1Vl s V301l 2

~ 1/2 1/2 ~
< IVl V20l 21Vl 1 + CUV NS vl IVl 2 1V36]) 2

= C (1013 + 19201, +1V912) (54)
Combining (45)—(54) and summing over all i, j = 1, 2, 3, we obtain

1d
2dt
<C8 (||v2<a, D72+ IV I, + vll7, + ||V¢||iz) : (55)

(IV2@ 012, +2¢1V2612,) + CIV3 @, v, )12, + CIV0 )2,

Therefore, Lemma 2 follows (44) and (55). O
Finally, we give the estimate on ||V | ;2.

Lemma 3. Assuming (25) for 8 sufficiently small, we have

1d -
577 IV8II2 +1Ivl72 + CIVSIIL, < C8IV @, O)IlZ-
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Proof. Multiplying (23) by —¢, integrating over R>, and doing integration by parts, we obtain

EE" ?l;2
=—(Av—2v,¢) — (FAV+ VA +2V0 - Vv, ¢p) + (Vii - Vo + iiv, $). (56)

By using the Poisson equation for ¢,

(Av—2v,¢) = (A(A$) — 2A¢, §)
=1A¢l17, +21Vl7, = llvll. + 21 Vel7.. (57)

Next,
(G Av+ vAG +2V0 - Vo, ¢>>‘ - )(A(éu), ¢>‘
< )(vé Ve, v)‘ + ‘(Vv : v¢,é>(
<l VOl 2Vl 2 + 110] IVl 2Vl 2

= (IV. 012+ IV4.2) (58)

Again, by using the Poisson equation for ¢, integration by parts yields
(Vi - V¢ +iiv, ¢) = (Vi - Vo + i A, ) = —(IV9*, i),
which gives
(Vi -V + v, ¢)] < il VI3, < CSI V]2, (59)
Putting (57)—(59) into (56), the proof of Lemma 3 is completed. O

Proposition 1 is proved by combining Lemmas 1-3. As a consequence, we complete the proof
of Theorem 1.

5. Appendix

In this section, we present some detailed calculation about the variational principle used in
the model derivation.

5.1. Least action principle

To obtain the conservative forces in (7), integrating with respect to 7, on both sides of (1) and
(4), we have the relation between the state variables (p, n, ¢) and the flow-maps (J7, J"*, J¢),
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p(x’t):p(xﬂo)_v"]p('xat)v
n(x,t)=n(x,0)—V-J"x,1),

e(x,t)=e(x,0) —V-Jx,1).

By definition, 6 = dy. So, their variations sat-

e—(P—n)¢/2’¢(x7t)=/17(y,l)—n(y,t)

cpp+cpn 4m|x — y|
]R}
isfy,

Sp(x,1)=—V-8JP,
Sn(x,t)=—-V-8J",

Se(x,t)=—V-8J¢,

) ,1)—34 1
M(x’t):/ p(y4ﬂ)|x_l;(|y )dy

3

R3

de—(Bp —8n)p/2 — (p —n)ép/2 Ocp8p+c”5n
cPp+c'n clp+ctn

80(x, 1) =

Unless marked as a function of (y, t), these variables are functions of (x, ). Plugging into (6),
the variation of entropy is,

Cpp +cun

55:—/|:[logp—cplog0+1]8p+[logn—c"log6+1]6n— 86’:|dx,
R3

0] /p(y,t)—n(y,t)
= V[l —cPlogh + — 7 P dy]-8JP(x, ¢t
/ [log p —c*log +29+ 870 — ] vl (x,1)
R3 R3

p(y,t) —n(y, )

1
dy]-8J"(x,t) —V—-8J° | dx.
8O (y)lx — yl 0

|
VIl —c"logh — — —
+V(logn — c" log T
]R3
So, the variation of the total action,

SA[JP, J", J¢]

T
¢ /p(y,t)—n(y,t)
= V1]l —cPlogh + = — " Ldy |- 8JP(x,¢t
[ [ {7 |oer oot 5 SO —y] ] 0T
0 R3 R?
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p(y,t) —n(y, 1)

+V |logn —c"lo 9———[
s £ 8O (y)lx — yl

S8J"(x, 1)

1
_V§ S8J(x, t)] dxdt.

This leads to the conservative forces in (7). Although we used the specific form of the pairwise
Coulomb potential, the same approach can also be applied to other pairwise interactions.

Remark 5. Alternatively we can define Q; = ¢ instead of J£ = j¢ to describe the energy flow-
map. However, this would result in tedious computation in the Least Action Principle. The
difference between these two approaches, using Q or J¢, is in fact a substitution of variables.

5.2. Maximum dissipation principle

To obtain the dissipative forces in (9), using the definition of (4), we have,

g, )= j (e, 1) = [(c” + DO+ ¢1j7 (x, 1) + [(c" + 1O — $1j"(x, 1)
HP(x, )V (x,1) — ¢ (x, ) VP (x,1)]/2,
=jG. ) = [(c” + DO+ ¢1j7 (x, 1) + [(c" + DO — ¢1j" (x., 1)

1 , — Vi , . n
_5/‘ <¢>(x Dx—y)  Viplx t))vy.[]P(y,,)_] (v, H1dy.

dmlx —yP Am|x -yl

So, the variation of the entropy production in (8) as a functional of the fluxes,

2P 8P 2jn-8i"  2g-8
8A=f[] A e A | q}dx,

DPp6 D"no k62
RS
2jP 2q
= —[(c? + 1o i
[ (5 -t + 10+ 015
R3

40,0 ($0,D0 =) Vyd(0) o
Wfkez(y,r)( arlx — yP? 4n|x—y|>dy g

2J 16 —
+(Dnn — [+ 1) ¢]k92

_V/ q.0) (0. HG=X) Vy¢0.0)
k02 (y, ) \ 4mlx —y]®  dmlx —y]
R3
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5.3. Energy conservation in PNPF model

To verify that (11) satisfies the First Law of Thermodynamics,

9 _
E I:(Cpp+Cn}’l)9 + (p 2”)¢:|
= (P pr + )0 + (P p + "n)b; + (P —2nt)¢ n (p —2’1)@’
PAd diAP

=—[c?V - (pvP)+ "V - (mv")]0 + (P p + "n)o; —

2 2 7
plvP?  nju"?
Dpr Dn

=—V - (c?pov? +"nbV")+V -kVO + — pOV - vP —nov - v"

1
—pAP; — EV (Vo —dVey),
==V . (c?pov? + "nov") — V- (pOvP +nbv") — V- (popv? — nev™)

1
—EV'(¢1V¢—¢V¢1) -V-gq.

So the total energy E(t) = f e(x, t)dx is conserved:
R3

4 E)=0
dt o

6. Concluding remarks

In this paper, we extend the classical variational principles to describe both the charge trans-
port and temperature evolution, and obtain a Poisson—Nernst—Planck—Fourier system. This ap-
proach guarantees the thermodynamic consistency of the model, and can be applied to a variety
of non-isothermal complex fluid systems. We then use the energy method to prove the global
well-posedness of the PNPF system, under the assumption of the initial data to be sufficiently
close to the equilibrium state.

Future work will include the different form of Clausius—Duhem inequalities, which could
result in different set of constitutive relations. On the other hand, the global well-posedness with
arbitrary initial condition is challenging, because the PNPF system is not strictly parabolic and
there is no direct maximum principle can be applied to obtain the lower bound for temperature,
which requires further analysis.
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