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Abstract—Advances of machine learning algorithms have led
to improvements of seizure detection capabilities in monitoring
systems based on electroencephalography (EEG). Seizure de-
tection hardware requires accurate feature extraction, which is
conventionally done in the digital domain by extracting power in
different EEG frequency bands over a particular time window.
This paper presents an analog counterpart to digital feature
extraction. A received signal strength indicator (RSSI) circuit
is used for extracting EEG power features in the analog domain.
A high-precision RSSI circuit was designed in the sub-threshold
domain with ultra-low power consumption and low sensitivity to
process-voltage-temperature variations with CMOS technology.
Simulation results show that the RSSI circuit consumes 24 nW
power, and has a dynamic range of 53 dB with a linearity error
of + 0.5 dB, sufficient to accurately extract features for seizure
classification. The analysis of 16 hours of patient EEG data
indicates a seizure classification accuracy of 94%, and a non-
seizure classification of 86%.

Keywords—Machine learning, analog computing, EEG-based
seizure detection, support-vector machine, received signal
strength indicator (RSSI), switched capacitor circuit.

I. INTRODUCTION

Epilepsy is a neurological disorder that affects almost
2% of the world’s population [1]. Epilepsy causes recurrent
seizures which, apart from causing significant discomfort and
poor quality of life for patients, can also lead to dangers
of accidents, fall, and even death. An accurate treatment
of epilepsy involves tracking and profiling of seizures to
administer the correct medication. However, current treatment
strategies, which include interviewing patients or keeping them
in the hospital for a long period to capture a seizure episode,
are either inaccurate or impractical [2]. For an accurate char-
acterization of the onset of seizures, not only do we need to
continuously monitor the EEG signals, but we also have to do
it in an unobtrusive fashion such that the day to day activity
of a patient is not affected.

A wearable device that can continuously monitor EEG
outside of a hospital will suit this need. However, wearable
devices can monitor EEG only for a limited duration due
to the relatively high power consumption involved in EEG
acquisition and processing. In recent years, several wearable
devices and integrated circuit design methods have been intro-
duced to acquire and process EEG signals [3]-[6]. Once the
EEG signals have been acquired, the data can be used for the
detection of seizures.
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Fig. 1: Seizure classification overview of a conventional EEG pro-
cessing system using a digital computing based SVM classifier.

Often, the raw EEG data is directly presented to a doctor.
However, recent advances in machine learning have led to
the development of seizure detection capability within EEG
monitoring systems. Seizure onset detection involves the ac-
quisition of EEG signals, and the extraction of features that
show abnormal activity. Once features have been extracted,
they can be fed to a linear support-vector machine (SVM)
classifier to differentiate between seizure and non-seizure
observations [7]-[9]. Fig. 1 shows the conventional system-on-
chip (SoC) architecture for seizure detection. The processing
chain consists of an analog front end (AFE) with relatively
high power, followed by an analog-to-digital converter (ADC)
and digital signal processing (DSP).

DSP requirements often dictate the SoC architecture, which
can involve large memory requirements for data storage and
digital filtering needs, significant computing infrastructure
such as parallel multiplier and adders (for multiply and accu-
mulate (MAC) operations [10]) and high fidelity data acqui-
sition. Such SoCs using feature extraction and classification
capabilities can consume power in the uW range and chip
sizes up to 5mm?2 [9], [11]. There is a need to enable
seizure classification engines that can operate continuously
from harvested energy with power consumption less than 100s
of nW for state-of-the-art internet-of-things (IoT) sensors [12],
[13]. In this paper, we present an ultra-low power (ULP) EEG
classification system using an analog computing based feature
extraction technique. The proposed solution overcomes the
variability issues of analog computing to leverage its potential
to realize an SVM classification engine with low area and
power overhead.

II. ANALOG COMPUTING BASED SEIZURE CLASSIFIER

Analog computing incorporates vast amount of information
processing per transistor to realize a few orders of magni-
tude higher power and area efficiency compared to digital
computing [14]-[16]. Recently, an EEG monitoring device
was reported that achieves a power consumption of 950 nW
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Fig. 2: Proposed seizure classification technique for an EEG system
using analog computing based SVM classifier.

by employing an analog feature extraction technique [17].
We propose an analog feature extraction technique that will
significantly reduce the power consumption and area of an
EEQG classification engine. Fig. 2 shows the architecture of our
proposed EEG system using analog computing based feature
extraction and classification engine.

The accuracy of seizure classification depends on the fea-
tures being fed to the SVM Classifier. Typically, EEG signals
are studied by dividing the EEG power spectra in different
frequency bands (called delta (§), theta (#), alpha («), beta
(), and gamma (-y)). Each spectral band exhibits characteristic
patterns based on the level of consciousness, external stimuli,
and other neural responses. Disorders such as epilepsy can
alter the power spectrum of the EEG frequency bands [18]-
[20]. Conventionally, the energy in different EEG frequency
bands is used as a feature for classification. EEG data from
all channels is sent through a filter bank consisting of 5 to 7
bandpass filters. Energy in each spectral band is calculated for
a given time window, and a feature vector is formed [7], [8].

We propose to extract features, i.e. the power in EEG
spectral bands, using analog based received signal strength
indicator (RSSI) circuit as detailed in Fig. 2 to present to the
classifier. RSSI circuit consists of several cascaded differential
amplifier stages to constitute a cascaded limiting amplifier
structure to realize a logarithmic amplifier [21]. This circuit,
therefore, provides the power level of an incoming signal
in analog. The RSSI circuit can consume a small amount
of power when biased in the sub-threshold domain. Further,
a high accuracy sub-threshold based constant g,, biasing
technique can be leveraged to limit process, voltage, and
temperature (PVT) variations [22].

We establish the viability of the analog RSSI-based feature
extraction by utilizing it to detect the onset of seizures in
patient EEG data. A MATLAB model of the RSSI transfer
function is used to provide a feature vector to a linear SVM
classifier. Analysis of 16 hours of patient EEG data shows
a seizure classification accuracy of 94%, and a non-seizure
classification of 86%. The following sections explain the
design and simulation results of the proposed RSSI amplifier.

III. ANALOG COMPUTING CIRCUITS

The RSSI circuit is composed of a series of cascaded
limiting amplifiers. In this paper, we use a switched capacitor
differential amplifier (diff-amp) as the limiting amplifier for
the RSSI circuit. Six such diff-amps are cascaded to realize
enough gain and linearity for the RSSI. Typically, the ampli-
tude of EEG signal is from a few pV to 100s of pV [23]. The
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Fig. 3: Switched capacitor differential amplifier circuit with its
simulation results.

dynamic range of RSSI circuit should be over 40 dB to meet
the EEG signal variation [11]. Further, the AFE and filters will
provide additional gain to set the minimum input voltage for
RSSI around 0.25mV. We also achieve low linearity error (4
0.5 dB) in RSSI to realize accurate classification results.

A. Switched Capacitor Differential Amplifier

ULP differential amplifiers with nano-amp bias current
cannot use a resistive load due to unrealizable resistor values
needed (100s of MXQ). For this reason, we use a switched
capacitor load to emulate a resistor. A large resistor can be
emulated with a small capacitor. Fig. 3(a) shows the circuit
architecture of our diff-amp circuit that utilizes capacitor C
as the load. This circuit operates in the following manner:
The capacitor is at reset before =0 with it being discharged
to ground. When input voltage AV, is applied, the load
capacitors will start charging. However due to differential input
voltage, each capacitor will charge with different current, and
the output voltage after time =Ty will be given by

c

Equation 1 reveals that the desired resistor can be realized
using the capacitor C and time Tpy with R=Ton/C. Further,
the diff-amps are designed to be PVT invariant. To that end, the
input transistors are operated in the sub-threshold region, and
are biased with a PTAT (proportional to absolute temperature)
current source. This ensures that the transconductance of the
input transistors is constant:

AVp = AV,

_ Iprar
Im v,

With this biasing configuration, the PTV variation of the
diff-amp can be reduced significantly. The only process de-
pendent component that remains in the circuit’s operation is
C. However, the effect of C can also be minimized if the
PTAT current reference is realized using a switched capacitor
bias [22]. Consequently, the diff-amp exhibits a very small
gain variation. We designed our diff-amp to have a gain of
2.57 with a Ton of 20 us with a load cap of 1 pF'.

2

B. Offset Correction

The precision of the amplifier circuit is affected by the offset
arising from device mismatches. Since the output of each dift-
amp stage is fed as input to the next stage in the RSSI circuit,
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Fig. 4: Offset correction waveform and error simulation.
the error introduced by offset grows exponentially with the

number of stages. The error at the RSSI output is

6
AVouT,err = Z kE'(Vos) 3)
i=1
where k = g,,Ton/C is the gain of the amplifier, and Vpg
is the offset of the amplifier. Hence, an offset correction
technique is needed to ensure precision of the RSSI output.
Figure 3 also includes an offset cancellation technique that
is implemented in the differential amplifier stage by adding
phase ¢». If no input signal is applied in phase ¢, then the
voltage on the load capacitors at the end of phase ¢o is

'"LT
AVp = g%(vos) )

In the next phase ¢, normal operation is resumed. The load
voltage of the capacitors with inputs reversed is now given by,

= 970N (Vo) )
which is added to the voltage given by (4), hence cancelling
the offset.

Fig. 4(a) shows the simulated output voltage in phase ¢o
and ¢; when an offset of 10mV is introduced at the input.
At the end of phase ¢;, the difference in the output voltage is
reduced to 250uV, suppressing the input offset by 32dB.

Functionality of the offset cancellation circuit was tested by
running Monte Carlo mismatch simulations with zero input.
Fig 4(b) shows the output voltage at the end of phase ¢;. The
30 error was found to be 351V .

AVp

C. Current Source

We explained in Section III. A that the differential amplifier’s
input transistors are biased to obtain a constant g,,. This
is achieved by biasing them with a PTAT current source,
shown in Fig. 5. A conventional BJT based current source
was modified to replace the poly resistor with a switched
capacitor based resistor (SCR). Since capacitors are less prone
to variations with process and temperature, the PTAT current
obtained is very linear. The SCR resistance is given by,

1
J1Ch
where f; is the reference clock frequency. The PTAT current
is given by,

R= (6)

Iprar = Vrin(K) f1Cy )

r=0.999997
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Fig. 5: PTAT Current Source and its simulation with temperature.
It can be seen that the gain of the diff-amp will be constant

with the above biasing configuration using equations 1 and 2.
We simulated our proposed diff-amp circuit. Fig. 6(a) shows
the variation of the gain with temperature for a range of
—20°C' to 120°C'. The temperature variation of the gain of the
single stage differential amplifier is 2.88%. The temperature
variation of the gain is increased due to non-idealities of
switches ¢1.

The parasitic capacitances of the switch cause the current
through the switches to increase slowly when it is switched on.
This introduces an error in the output voltage. Small switches
are designed to reduce the effect of parasitic capacitances.
Another source of error is charge sharing due to switches ¢
and ¢, switching simultaneously. A small ’dead’ time of 1
s is introduced to reduce error due to charge sharing. Fig
6(b) shows the gain variation with process variability. The 3o
variation is found to be 0.033 for an average gain of 2.57.

IV. RSSI CIRCUIT ARCHITECTURE

The RSSI circuit is composed of six diff-amps cascaded
together as shown in Fig. 7. The first differential amplifier
provides an output after time Ty, after which the second
differential amplifier is enabled. Similarly, amplifier A3 is
enabled after time 27 5, and the output at the end of amplifier
Ag is obtained after 67py. The output of each stage is
collected on the capacitors of the differential amplifiers. These
output capacitors are then connected in parallel at the end of
6Ton to sum the outputs of each stage. The RSSI output
voltage corresponding to the signal strength can be given as,

1 6
Vrssr = 5 E AVo; 8
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(a) simulation of gain with temperature (b) Simulation of gain with
variation process variation

Fig. 6: Process and temperature variation of the diff-amp gain.
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The amplitude of EEG signals can vary greatly between
seizure and non-seizure activity, and from patient to patient.
Thus, the RSSI circuit requires an adequate dynamic range to
process these signals which depends on the gain and number
of stages of the amplifiers cascaded together.

V. SIMULATION RESULTS

Fig. 8(a) shows the RSSI output waveform with varying
levels of input power. The dynamic range achieved is 53
dB, which enables the RSSI circuit to detect an input signal
level of 250 V. Apart from the voltage compression at both
ends, the maximum error observed is £0.5 dB for the linear
range. High linearity is achieved in this architecture because
the outputs at every stage are summed together, regardless of
the input power. This improves the linearity in comparison to
conventional architectures, where the amplifiers that are not
saturated introduce an error [21].

The output error of the complete RSSI circuit was estimated
with the help of Monte Carlo simulations. Fig. 8(b) shows
that the 3o variation after 500 runs is 9mV. The total power
consumption was found to be 24n¥V. The amplifiers are turned
on only for the duration of Ty, thus saving power. Table I
lists the simulated performance metrics in comparison to other
state-of-the art RSSI circuits.

VI. FEATURE EXTRACTION WITH RSSI BLOCKS

The proposed RSSI circuit was used for a seizure detection
application using EEG data [28]. The complete analog front-
end, along with the RSSI circuit was modelled in MATLAB
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Fig. 8: Linearity and mismatch performance of the RSSI circuit.

TABLE I: PERFORMANCE COMPARISON

This work [24] [25] [26] [27] [21]
Process 65 nm 180 nm | 600 nm | 65 nm 350 nm 350 nm
VDD (V) 1 1.8 2 lor3 3 2
Dynamic
Range (dB) 53 70 75 60 80 65
Power 24 nW 20mW | 62mW | 8 mW | 5mA-13mA | 22 mW
Linearity
Error (dB) +0.5 <1 <1 <1 + 0.7 +0.7
Settling 120 20 N/A N/A N/A N/A
Time (ps)

to extract features for the detection of seizure onsets. As
visualized in Fig. 2, the front end consists of a bank of analog
bandpass filters to split the incoming EEG data into four
different frequency bands. The filters provide a gain of 30
dB, and the output signals are provided to the bank of RSSI
amplifiers to obtain the signal strength in each frequency band.

The RSSI circuit was modelled as a moving RMS function
followed by the transfer function of the RSSI. Data from
23 EEG channels, acquired over 16 hours was provided to
the linear SVM classifier. A classification accuracy of 94%
and 86% were obtained for classifying the seizures and non-
seizures respectively.

Table II compares the proposed RSSI based feature extrac-
tion (FE) technique with other reported works. Here, we focus
on the performance of our computing circuit compared to the
computing circuits of other works. The power consumption of
the peripheral circuits such as the AFE and ADC is removed,
and only the computing power consumption is compared.
Since the RSSI circuit consumes a power of 24 nIV/, we can
achieve a lower power of 96 nW per channel while dividing
the EEG signal into four frequency bands for FE. The proposed
approach has a classification accuracy comparable to other
reported works.

TABLE II: FEATURE EXTRACTION PARAMETERS

This

works| 11 | 81 [ 291 | 1300
FE Power
(W Channel) | 009 | 048 100 7 33
% of Seizure 94% | 98.5% | 84.4% | 95.1% 96%
Detected
g‘;l;e Postive 14% | 44/hour | 4.5% | 0.94% | 0.15/hour
# of Channel
K 23 8 8 8 18

* Simulation based results

VII. CONCLUSION

The paper presented an analog alternative to conventional
feature extraction. Analog feature extraction was performed
based on the model of an RSSI circuit to extract signal strength
in the incoming EEG frequency bands. The RSSI circuit was
designed by cascading differential amplifiers with switched
capacitor loads to reduce the effects of PVT variations. A low-
power, high-linearity RSSI circuit consuming 24 nW power
and 53 dB dynamic range was designed and simulated.
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