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1. Introduction

Let p be a prime and let F be a finite field of cardinality ¢ = p™. Suppose X is
a smooth projective geometrically connected curve of genus ¢ defined over F. By the
Weil conjectures, the zeta function of X is a rational function of the form Z(X,T) =
L(X,T)/(1 —=T)(1 —¢T). The L-polynomial L(X,T) is a polynomial of degree 2¢g with
integer coefficients.

The Newton polygon NPx of L(X,T) is the lower convex hull of the points
(i,vp(c;)/m), where ¢; is the coefficient of z* in L(X,T), and v,(c;) is the valuation
of ¢; at p. The Newton polygon NP x is symmetric, with integral breakpoints, beginning
at (0,0) and ending at (2g, g). The Newton polygon is a geometric invariant; it can be
defined more generally using the Dieudonné module of the p-divisible group of Jac(X).
In particular, it does not change under base extension of F. The slopes of the Newton
polygon are the slopes of the constituent line segments. There is a natural partial or-
dering on the set of convex symmetric polygons with initial point (0,0) and the same
ending point; we say that one polygon “lies on or above” another if the first lies geomet-
rically above the second. The Newton polygon either stays the same or goes up under
specialization.

In this paper, we study the Newton polygons of Artin-Schreier Z/pZ-covers: Y — X
that are branched at a finite set B over an algebraically closed field k = Fp. Our goal
is to prove, when X is ordinary, that there exist Artin-Schreier Z/pZ-covers of X, with
branch locus B and having prescribed ramification above B, with “low” Newton polygon.
(Recall that the curve X is ordinary if the number of p-torsion points in Jac(X)(k) is p9.
Equivalently, the slopes of NP x are the multi-set {0,1}9 if and only if X is ordinary.)

In [KM], Kramer-Miller gives a lower bound on the Newton polygon of an Artin-
Schreier Z/pZ-cover m : Y — X in terms of the Newton polygon of X and the
ramification of . More precisely, let B C X (k) be a finite, possibly empty, set of points.
Let r = #B and 7 : Y — X be a Z/pZ-cover with branch locus B. For each Q € B, let
dq be the ramification invariant of m above ), namely the jump in the lower numbering
of the filtration of higher ramification groups above (). Note that dg is a positive prime-
to-p integer. Let D = {dg}gen. In [KM, Corollary 1.2], Kramer-Miller proves that the
Newton polygon of Y lies on or above the Newton polygon whose slopes are the multi-set

NPUodEe (D) .= NP U{0}P-Diotr=1) | {1}-D(g+r-D)

U U{%,...,d"?_l}pl . (1.1)

QeB dq

Here the exponent denotes the multiplicity of the slope.

When X ~ P! and B = {oo}, results of Zhu, Blache, and Férard show that
Kramer-Miller’s lower bound for the Newton polygon is not optimal for many choices of
ramification invariants D = {d}, [Zhu03,BF07]. In particular, when p > 3d the generic
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Newton polygon for the Artin-Schreier cover is known; denote it by (p — 1) GNP(d, p)
(see Notation 3.1 and Theorem 3.2). In many cases, (p — 1) GNP(d, p) lies strictly above
NPL°({d}); see Example 3.3,

We consider a different Newton Polygon NP x (D) whose slopes are the multi-set

NP (D) := NPy U{0}(P=D(otr=1)  {1}(=Dtr=D g | | ] (p — 1) GNP(dq, p)
QeB
(1.2)

It follows from [Rob84, Theorem 7.4] that NPY°%°(D) < NPx (D). When X ~ P!,
B = {0}, D = {d}, and p > 3d, the work of Zhu, Blache and Férard shows NPx (D) =
(p — 1) GNP(d, p) is the optimal lower bound for the Newton polygon of Y.

We use the theory of formal patching to prove the existence of Artin-Schreier Z/pZ-
covers of an arbitrary ordinary curve, with an arbitrary branch locus and ramification
invariants, that have “low” Newton polygon.

Theorem 1.1. Suppose X is a smooth projective connected curve defined over k = F,,.
Let B C X(k) be a finite, possibly empty, set of points. For Q € B, let dg be a positive
prime-to-p integer.

Suppose that X is ordinary and that p > max{3dg}gep. Then there exists a Z/pZ-
cover m: Y — X, with branch locus B and ramification invariants D = {dq}qen, such
that the Newton polygon NPy of Y satisfies

NPY°8°(D) < NPy < NPx (D). (1.3)
Theorem 1.1 follows directly from Theorem 4.1 and [KM, Corollary 1.2].

Remark 1.2.

(1) In the special case that dg | (p — 1) for every Q € B, then NPY°"%°(D) = NPx (D)
and hence NPy equals NPY°%°(D) which is minimal; see Corollary 4.3.

(2) With Kramer-Miller, we talked about whether the lower bound produced by his
proof can be strengthened to NP x (D). In situations where that is true, Theorem 4.1
guarantees the existence of Z/pZ-covers with minimal Newton polygon.

(3) In [AMBBT], we use the techniques of this paper to prove the existence of Z/pZ-

covers with minimal a-number.

Remark 1.3. The result of Kramer-Miller and the other results mentioned above are ac-
tually consequences of theorems about exponential sums. There is a beautiful connection
between Newton polygons of Artin-Schreier Z/pZ-covers of X and Newton polygons of
exponential sums of functions f on X. The theory of exponential sums is well-developed;
one major theme is to show that the Newton polygon “lies on or above” the Hodge poly-
gon. This was proven by Robba [Rob84, Theorem 7.4] for G,, and by Wan [Wan93],
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especially Propositions 2.2 and 2.3, for many higher-dimensional tori. Under a congru-
ence condition on p, Sperber [Spe86G, Theorem 3.11] proved that the Newton polygon
equals the Hodge polygon in many situations; for example, this includes the case when
f is a polynomial of degree d and p = 1 mod d. There are many important papers on
this topic, including [SZ02,Zhu03,Zhu04a,Zhu04b,BF07].

It is not clear if our proof contributes to the story about Newton polygons of exponen-
tial sums associated with functions on curves over a fixed finite field. The issue is that
it is not possible to control the field of definition of the cover when using the technique
of formal patching.

1.1. Acknowledgments

Booher was partially supported by the Marsden Fund Council administered by the
Royal Society of New Zealand. Pries was partially supported by NSF grant DMS-
19-01819. We thank Bryden Cais, Joe Kramer-Miller, and Felipe Voloch for helpful
conversations. We also thank the referee for the quick and helpful report.

2. Initial statements

As before, let p be a prime, F a finite field of cardinality ¢ = p™, and X a smooth
projective geometrically connected curve of genus g defined over F. Without loss of
generality, we suppose that the points in B are defined over F'.

2.1. The p-rank

The p-rank of X is the integer fx such that pX is the number of p-torsion points
in Jac(X)(F). The curve X is ordinary if fx = g. The p-rank equals the multiplicity
of the slope 0 in NPx. More generally, the p-rank of a semi-abelian variety A is f4 =
dimp, (Hom(g,, A)), where A is the base-change of A to k = F and ,, is the kernel of

Frobenius on G,,.

Lemma 2.1. Suppose X is ordinary. Let w : Y — X be a Z/pZ-cover, with branch locus
B and ramification invariants D. Then the p-rank of Y is the multiplicity of the slope 0
in NPR°U¢(D) (and in NPx (D)).

Proof. Let r = #B. By the Deuring-Shafarevich formula [Sub75, Theorem 4.2],

fr =1=p(fx =) +rp-1).

Since X is ordinary, fy =14+p(¢g—1)+r(p—1). S0 fy =g+ (p—1)(¢9 — 1 +r), which
is the multiplicity of the slope 0 in NP§°%°(D) and in NPx (D). O
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2.2. An Artin-Schreier cover of a singular curve

Let X and B and D be as above. In this section, we assume that r > 2 if X ~ P!, We
build an Artin-Schreier cover 7, : Yo — X, of singular curves, depending on the data of
an unramified Z/pZ-cover 7’ : Y’ — X and for each Q € B a Z/pZ-cover mg : Yo — P!
branched only at co where it has ramification invariant dg.

By the Riemann-Hurwitz formula, if Y’ is connected, then its genus is

gy =g+ @—-1)(g-1). (2.1)

Note that we allow Y’ to be disconnected; in fact, this is the only possibility when
fx =0.

Let gg be the genus of Yg; by [Ser79, IV, Prop. 4]), go = (p — 1)(dg — 1)/2.

We build the singular curve X, by attaching a projective line to X at each QQ € B
by identifying the point 0 on P! and the point @ in an ordinary double point. Next, we
build a Z/pZ-cover m, : Yo — X,. Let Y, be the singular curve whose components are
Y’ and Yg for Q € B, formed by identifying the fiber of mg above 0 and the fiber of 7’
above @, in p ordinary double points, in a Galois equivariant way. Let € be the rank of
the dual graph of Y,, which is the minimal number of edges that need to be removed
from the dual graph in order to form a tree.

Lemma 2.2. The dual graph of Y, is a bipartite graph with r vertices on the left side.

(1) If Y' is connected, then there is one vertex on the right side and it is connected to
each of the vertices on the left with p edges. Also e = r(p — 1).

(2) If Y’ is disconnected, then there are p vertices on the right side, each of which is
connected to each vertex on the left with a unique edge. Also e = (r —1)(p — 1).

Proof. The facts about the vertices and edges are immediate from the construction of
Y,. To compute €, we determine the minimal number of edges that need to be removed
from the dual graph in order to form a tree. When Y’ is connected, then we need to
remove p— 1 edges between each vertex on the left and the vertex on the right. When Y’
is disconnected, we pick a distinguished vertex on the left and the right; then we need to
remove all edges between the other r — 1 vertices on the left and the other p — 1 vertices
on the right. O

The next result is immediate from [BLRI0, 9.2.8].

Proposition 2.3. With notation as above:

(1) If Y’ is connected, then Jac(Ys,) is an extension of Jac(Y') & < @ Jac(YQ)> by a
QeB
torus of rank e =r(p — 1).
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(2) If Y’ is disconnected, then Jac(Y,) is an extension of Jac(X)? @ < @ Jac(YQ)> by
QeB
a torus of rank e = (r —1)(p — 1).

In both cases, Jac(Ys) is a semi-abelian variety of dimension

gv. =g+ @-Dlg+r-1D+ Y g0
QeB

2.3. Formal patching

In Section 2.2, we constructed a Z/pZ-cover 7, : Y, — X, of singular curves. In this
section, we consider m, to be defined over k = F.

Proposition 2.4. The Z/pZ-cover 7, : Yo — X, of singular curves has a flat deformation
to a Z/pZ-cover ' : Y" — X defined over k such that Y is smooth and connected, 7"
has branch locus B, and 7" has ramification invariant dg above each @ € B.

Proof. This is immediate from the theory of formal patching, see [HS99]. O

Remark 2.5. For the convenience of the reader who is not familiar with formal patching,
we include some details of the proof.

Let R = k[[t]], which has fraction field K = k((¢)) and residue field k. Let S =
Spec(R), with generic point Sk = Spec(K) and closed point S, = Spec(k). Consider the
S-curve Xg = X Xxg, S and the sections Qg = @ xgs, S. Let Bs = B Xg, S = Ugep@s-
We first define an S-curve Xs whose generic fiber is Xg x5 Sk and whose special fiber
is X,. The curve Xg is called a thickening of X,.

To do this, for each @ € B, we blow-up the point ) € B, on the special fiber Xg,
to a projective line, which we denote by Xg. Without loss of generality, we can assume
that:

(i) the closure of Q intersects X¢ at the point at infinity, denoted by cog, on X¢; and
(ii) the strict transform Xy, of Xg, intersects X at the point 0, denoted by 0Og, on
Let Xg denote this blowup.

Next, we consider the complete local rings of X5 at some points of interest. Let Rq o
(resp. Rg, ) be the complete local ring of Xg at 0¢ (resp. cog). Let £ be a parameter
on X¢ that has a zero of order 1 at Og and has a pole of order 1 at cog. Let x’Q be a
parameter on X, that has a zero of order 1 at @. Without loss of generality, we can
assume that:
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(iil) R0 ~ k([rq,rq,t]]/(zqry — t); and
(iv) RQ,c0 k[[xél,t]}, and this isomorphism identifies the ideal <xg21> with the point
Qs.'

Consider the Z/pZ-cover 7, : Yo — X, from Section 2.2. Its branch locus is {cog |
@ € B} and X, is singular at the points {Og | @ € B}. The important step is to thicken
the cover 7, at these points. To thicken 7, at Og for @ € B, let Ag ¢ be the ring such that
Spec(Ago) = Ind{zo/fZSpec(RQ’o); the natural map g, : Spec(Ag,0) — Spec(Rg,0) is
an étale Z/pZ-cover.

To thicken 7, at cog for @) € B, consider the restriction of mg : Yo — Xg to
Spec(k[[wél]]). The corresponding extension of function fields is given by an equation
of the form yg, — yo = fq for some fg € Frac(k[[xél]]) = k((xél)) By Artin-Schreier
theory, since every element of k[[wél}] is of the form a? — «, without loss of generality,
we can suppose that fo € k[zg]. Furthermore, by Artin-Schreier theory, we can suppose
fo has degree dg. We view fg as a function on Spec(Rg, ) which has a pole only on
the divisor xél = 0. The equation yg —yg — f(zg) then defines a ring Ag - and a
Z/pZ-cover ¥q o : Spec(Ag,00) — Spec(Rg,o0), which is branched only over xél = 0;
the cover 1g . can be viewed as a constant deformation of the restriction of mg near
x0Q-

The data of 7, together with the data of g o and ¥ for @ € B, defines a
thickening problem as in [HS99, page 288]. By [HS99, Theorem 4], there exists a solution
to the thickening problem. This solution is a Z/pZ-cover 7 : Y — X of S-curves, whose
special fiber is 7,. Furthermore, by [HS99, Theorem 5], over the generic fiber, the branch
locus of 7g, is Bs, = Bg xs Sk, and the ramification invariant above the generic
geometric point of Qg is dg.

By Artin’s algebraization theorem, the cover 7 descends to Spec(L) where L is a finite
extension of k[t]. Choose a closed point s” of Spec(L). Then the fiber ©” of 7g over s”
is a cover satisfying the properties in Proposition 2.4.

3. Covers of the affine line

Consider the special case that X ~ P! and B = {oc} and d > 1 is a prime-to-p
integer. In this case, one considers exponential sums associated with a polynomial f in
one variable and having degree d.

For any non-trivial additive character ¢ of F and any natural number ¢, one can
define the exponential sum Sy(f, 1) as follows. Let Fy denote the unique field which is a
degree ¢ extension of F; it has cardinality ¢¢. Let 1, = 1o Trp, /¥, which is a non-trivial
additive character of Fy. We consider the exponential sums Se(f,v) := >_, g, ¥e(f(a))
and the L-polynomial L(f,¢,T) = exp(}_,=, Se(f,1)T*/¢). This L-polynomial has a
Newton polygon, denoted NPy .

Zhu introduced the following explicit Newton polygons [Zhu03, Section 4, page 679].

L Or, more precisely, the closure of Qi in Xg, base changed to Spec(RQ,00)-
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Notation 3.1. For 1 <n <d -1 let

oo i 3 [0 o)

n =1

Let GNP(d, p) be the lower convex hull of (0,0) and (n, pY" )for 1 <n<d-1.

-1

Let (p—1) GNP(d, p) be the lower convex hull of (0,0) and ((p—1)n,Y,) for 1 <n < d-1.

Zhu proved that GNP(d, p) is the Newton polygon for the exponential sum associated
to a generic f provided p is sufficiently large [Zhu03, Theorem 5.1]. This was extended
by Blache and Férard, who proved that GNP(d, p) occurs for all f in an explicitly de-
fined Zariski open subset, when p > 3d [BF07]. We state a corollary of their results for
covers.

Theorem 3.2. [BF07, Theorem 4.1] Suppose F is a finite field of characteristic p with
p > 3d. Then there exists a Z/pZ-cover w:Y — Pl defined over F, which is branched
only above 0o and where it has ramification invariant d, such that the Newton polygon
of Y equals the generic Newton polygon (p — 1) GNP(d, p).

Proof. For f € F[z] of degree d, the Artin-Schreier equation y? —y = f defines a Z/pZ-
cover m : Y — P! branched only at co with ramification invariant d. Without loss of
generality, suppose f is monic with no constant term and the coefficient of %1 is 0.
The Newton polygon of Y is (p—1) NPy, where p—1 is a scaling factor on the Newton
polygon or, equivalently, on the multiplicities of the slopes of the Newton polygon.?
By [BF07, Theorem 4.1], if the coefficients of f are in an (explicitly determined) open
dense subset of AY~2 then NPy, = GNP(d,p). Thus NPy = (p — 1)GNP(d,p). O

The lower bound NPg(fdge({d}) defined in (1.1) does not equal (p — 1) GNP(d,p) in
general. One reason for this is that the Newton polygon of a curve must have integer
breakpoints. However, this is not the only reason; in some cases there are symmetric
Newton polygons starting at (0,0) and ending at (2g, g) with integer breakpoints which
lie strictly between NPg‘fdge({d}) and (p — 1) GNP(d, p) in the natural partial ordering.
We thank Joe Kramer-Miller for the following example.

Example 3.3. Let p = 23 and d = 6. Then NPg‘fdge({d}) is the Newton polygon with
vertices

(0,0), (22,11/3), (44,11), (66,22), (88,110/3), and (110, 55).

Furthermore, (p — 1) GNP(d, p) is the Newton polygon with vertices

2 This is because the zeta function of Y factors as Z(Y,T) = Z(X,T) [I, L(f, %, T), where 1 ranges over
the non-trivial characters Z/pZ — Z,[¢p] .
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(0,0),(22,4), (44,12), (66, 23), (88,37), and (110, 55).
But the Newton polygon with vertices

(0,0),(22,4), (44,11), (66, 22), (88,37), and (110, 55)
is symmetric, has integer breakpoints, and lies between them.

Remark 3.4. This is not an issue when p = 1 (mod d). In that situation, it is known that
NPg(fdge({d}) equals (p — 1) GNP(d, p); see for example [BF07, Remark 4.1].

4. The main result

Recall the definition of NPx (D) from (1.2).

Theorem 4.1. Suppose X is a smooth projective connected curve defined over k = F,.
Let B C X(k) be a finite, possibly empty, set of points. For Q € B, let dg be a positive
prime-to-p integer.

Suppose Lnp (D) is a fized lower bound for the Newton polygon of a Z/pZ-cover w :
Y — X with branch locus B and ramification invariants {dg}gep. If X is ordinary and
p > max{3dg}oen, then there exists a Z/pZ-cover m: Y — X of smooth curves over k,
with branch locus B and ramification invariants D = {dg}gep, such that the Newton
polygon of Y satisfies

Lnp(D) < NPy < NPy (D). (4.1)

Remark 4.2. We need the lower bound on p in order to apply the results of [BF07]; it is
possible that this condition can be removed.

Proof. For each Q € B, if p > 3dg, then by Theorem 3.2 there exists a Z/pZ-cover
ng : Yo — P!, branched only at oo, with ramification invariant dg and Newton polygon
(p — 1) GNP(dq, p).

First suppose g > 0. Since X is ordinary, there is an unramified Z/pZ-cover n’ : Y’ —
X where Y is connected. The genus of Y’ is gy = g+ (p — 1)(g — 1) by (2.1). By the
Deuring-Shafarevich formula, if X is ordinary then Y” is ordinary, so its Newton polygon
has gy slopes of 0 and of 1.

Construct the cover 7, : Yo — X, as in Section 2.2, using the inputs of the covers
7Y — X and mg : Yo — P for Q € B. By Proposition 2.3(1), Jac(Ys) is an extension
of Jac(Y') @ (@QEB JaC(YQ)) by a torus of rank € = r(p — 1). The torus increases the
p-rank of Jac(Ys) by €. So the slopes of the Newton polygon of Y, are

{O}gy/+1-(p—1) U {1}9y/+7-(l)—1) U U (p — 1) GNP(dva)
QeB
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If g = 0, we instead take 7’ : Y/ — X be a disconnected Z/pZ-cover. By Proposi-
tion 2.3(2), Jac(Y5) is an extension of Jac(X)? ® (EBQEB Jac(YQ)> by a torus of rank
e =(r—1)(p—1). In this case, the slopes of the Newton polygon of Y, are

{oypetr=De= y fypat=DE=D | ] (p— 1) GNP(dg, p).
QeB

In either case, the Newton polygon of Y, equals NPx (D). By Proposition 2.4, the
Z/pZ-cover 7, : Y, — X, admits flat deformations to Z/pZ-covers " : Y — X defined
over k such that Y” is smooth and connected, 7’/ has branch locus B, and «” has
ramification invariant dg above each ) € B. The Newton polygon for a generic choice of
deformation can not increase by a result of Grothendieck and Katz, see [Kat79, Theorem
2.3.1]. By hypothesis, Lxp(D) is a lower bound for the Newton polygon of such a cover.
So the Newton polygon of Y lies between Lyp(D) and NPx (D). O

Theorem 1.1 follows immediately from Theorem 4.1, taking Lyp(D) = NP (D)
and using Kramer-Miller’s result [KM, Corollary 1.2].

Corollary 4.3. With the notation and hypotheses of Theorem 1.1, suppose furthermore
that p = 1 (mod dg) for every Q € B. Then there exists a Z/pZ-cover m : Y — X
with branch locus B and ramification invariants D = {dq}oep, such thatY has Newton
polygon NPY°(D) = NPx (D).

In other words, Corollary 4.3 shows that the lower bound NP§Odge (D) is sharp in this
special case.

Proof. By Remark 3.4, NPY°%¢(D) = NPx (D) under this congruence condition on p.
Thus the result follows from Theorem 1.1. O

Remark 4.4. Suppose ¢ > 1 and X is not ordinary. If 7 : Y — X is a Z/pZ-cover,
it is not currently known which Newton polygons can occur for Y, even if the cover is
unramified. As noted in [KM, §1.4], the lower bound NPY°¢(D) is not the correct lower
bound for the Newton polygon of Y as it has too many segments of slope 0 compared
with Lemma 2.1.

Remark 4.5. In the proof of Theorem 4.1, it is also possible to use a disconnected cover
7 Y — X when g > 0. We chose a connected cover since it adds an additional level of
control that could be useful in future applications.
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