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1. Introduction

Let p be a prime and let F be a finite field of cardinality q = pm. Suppose X is 

a smooth projective geometrically connected curve of genus g defined over F. By the 

Weil conjectures, the zeta function of X is a rational function of the form Z(X, T ) =

L(X, T )/(1 − T )(1 − qT ). The L-polynomial L(X, T ) is a polynomial of degree 2g with 

integer coefficients.

The Newton polygon NPX of L(X, T ) is the lower convex hull of the points 

(i, vp(ci)/m), where ci is the coefficient of xi in L(X, T ), and vp(ci) is the valuation 

of ci at p. The Newton polygon NPX is symmetric, with integral breakpoints, beginning 

at (0, 0) and ending at (2g, g). The Newton polygon is a geometric invariant; it can be 

defined more generally using the Dieudonné module of the p-divisible group of Jac(X). 

In particular, it does not change under base extension of F. The slopes of the Newton 

polygon are the slopes of the constituent line segments. There is a natural partial or-

dering on the set of convex symmetric polygons with initial point (0, 0) and the same 

ending point; we say that one polygon “lies on or above” another if the first lies geomet-

rically above the second. The Newton polygon either stays the same or goes up under 

specialization.

In this paper, we study the Newton polygons of Artin-Schreier Z/pZ-covers π : Y → X

that are branched at a finite set B over an algebraically closed field k = F̄p. Our goal 

is to prove, when X is ordinary, that there exist Artin-Schreier Z/pZ-covers of X, with 

branch locus B and having prescribed ramification above B, with “low” Newton polygon. 

(Recall that the curve X is ordinary if the number of p-torsion points in Jac(X)(k) is pg. 

Equivalently, the slopes of NPX are the multi-set {0, 1}g if and only if X is ordinary.)

In [KM], Kramer-Miller gives a lower bound on the Newton polygon of an Artin-

Schreier Z/pZ-cover π : Y → X in terms of the Newton polygon of X and the 

ramification of π. More precisely, let B ⊂ X(k) be a finite, possibly empty, set of points. 

Let r = #B and π : Y → X be a Z/pZ-cover with branch locus B. For each Q ∈ B, let 

dQ be the ramification invariant of π above Q, namely the jump in the lower numbering 

of the filtration of higher ramification groups above Q. Note that dQ is a positive prime-

to-p integer. Let D = {dQ}Q∈B . In [KM, Corollary 1.2], Kramer-Miller proves that the 

Newton polygon of Y lies on or above the Newton polygon whose slopes are the multi-set

NPHodge
X (D) := NPX ∪{0}(p−1)(g+r−1) ∪ {1}(p−1)(g+r−1)

∪





⋃

Q∈B

{

1

dQ
, . . . ,

dQ − 1

dQ

}p−1


 . (1.1)

Here the exponent denotes the multiplicity of the slope.

When X ≃ P
1 and B = {∞}, results of Zhu, Blache, and Férard show that 

Kramer-Miller’s lower bound for the Newton polygon is not optimal for many choices of 

ramification invariants D = {d}, [Zhu03,BF07]. In particular, when p ≥ 3d the generic 
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Newton polygon for the Artin-Schreier cover is known; denote it by (p − 1) GNP(d, p)

(see Notation 3.1 and Theorem 3.2). In many cases, (p − 1) GNP(d, p) lies strictly above 

NPHodge
P1 ({d}); see Example 3.3.

We consider a different Newton Polygon NPX(D) whose slopes are the multi-set

NPX(D) := NPX ∪{0}(p−1)(g+r−1) ∪ {1}(p−1)(g+r−1) ∪





⋃

Q∈B

(p − 1) GNP(dQ, p)



 .

(1.2)

It follows from [Rob84, Theorem 7.4] that NPHodge
X (D) ≤ NPX(D). When X ≃ P

1, 

B = {∞}, D = {d}, and p ≥ 3d, the work of Zhu, Blache and Férard shows NPX(D) =

(p − 1) GNP(d, p) is the optimal lower bound for the Newton polygon of Y .

We use the theory of formal patching to prove the existence of Artin-Schreier Z/pZ-

covers of an arbitrary ordinary curve, with an arbitrary branch locus and ramification 

invariants, that have “low” Newton polygon.

Theorem 1.1. Suppose X is a smooth projective connected curve defined over k = F̄p. 

Let B ⊂ X(k) be a finite, possibly empty, set of points. For Q ∈ B, let dQ be a positive 

prime-to-p integer.

Suppose that X is ordinary and that p ≥ max{3dQ}Q∈B. Then there exists a Z/pZ-

cover π : Y → X, with branch locus B and ramification invariants D = {dQ}Q∈B, such 

that the Newton polygon NPY of Y satisfies

NPHodge
X (D) ≤ NPY ≤ NPX(D). (1.3)

Theorem 1.1 follows directly from Theorem 4.1 and [KM, Corollary 1.2].

Remark 1.2.

(1) In the special case that dQ | (p − 1) for every Q ∈ B, then NPHodge
X (D) = NPX(D)

and hence NPY equals NPHodge
X (D) which is minimal; see Corollary 4.3.

(2) With Kramer-Miller, we talked about whether the lower bound produced by his 

proof can be strengthened to NPX(D). In situations where that is true, Theorem 4.1

guarantees the existence of Z/pZ-covers with minimal Newton polygon.

(3) In [AMBB+], we use the techniques of this paper to prove the existence of Z/pZ-

covers with minimal a-number.

Remark 1.3. The result of Kramer-Miller and the other results mentioned above are ac-

tually consequences of theorems about exponential sums. There is a beautiful connection 

between Newton polygons of Artin-Schreier Z/pZ-covers of X and Newton polygons of 

exponential sums of functions f on X. The theory of exponential sums is well-developed; 

one major theme is to show that the Newton polygon “lies on or above” the Hodge poly-

gon. This was proven by Robba [Rob84, Theorem 7.4] for Gm and by Wan [Wan93], 
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especially Propositions 2.2 and 2.3, for many higher-dimensional tori. Under a congru-

ence condition on p, Sperber [Spe86, Theorem 3.11] proved that the Newton polygon 

equals the Hodge polygon in many situations; for example, this includes the case when 

f is a polynomial of degree d and p ≡ 1 mod d. There are many important papers on 

this topic, including [SZ02,Zhu03,Zhu04a,Zhu04b,BF07].

It is not clear if our proof contributes to the story about Newton polygons of exponen-

tial sums associated with functions on curves over a fixed finite field. The issue is that 

it is not possible to control the field of definition of the cover when using the technique 

of formal patching.

1.1. Acknowledgments

Booher was partially supported by the Marsden Fund Council administered by the 

Royal Society of New Zealand. Pries was partially supported by NSF grant DMS-

19-01819. We thank Bryden Cais, Joe Kramer-Miller, and Felipe Voloch for helpful 

conversations. We also thank the referee for the quick and helpful report.

2. Initial statements

As before, let p be a prime, F a finite field of cardinality q = pm, and X a smooth 

projective geometrically connected curve of genus g defined over F. Without loss of 

generality, we suppose that the points in B are defined over F.

2.1. The p-rank

The p-rank of X is the integer fX such that pfX is the number of p-torsion points 

in Jac(X)(F̄). The curve X is ordinary if fX = g. The p-rank equals the multiplicity 

of the slope 0 in NPX . More generally, the p-rank of a semi-abelian variety A is fA =

dimFp
(Hom(µp, Ā)), where Ā is the base-change of A to k = F̄ and µp is the kernel of 

Frobenius on Gm.

Lemma 2.1. Suppose X is ordinary. Let π : Y → X be a Z/pZ-cover, with branch locus 

B and ramification invariants D. Then the p-rank of Y is the multiplicity of the slope 0

in NPHodge
X (D) (and in NPX(D)).

Proof. Let r = #B. By the Deuring-Shafarevich formula [Sub75, Theorem 4.2],

fY − 1 = p(fX − 1) + r(p − 1).

Since X is ordinary, fY = 1 + p(g − 1) + r(p − 1). So fY = g + (p − 1)(g − 1 + r), which 

is the multiplicity of the slope 0 in NPHodge
X (D) and in NPX(D). !
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2.2. An Artin-Schreier cover of a singular curve

Let X and B and D be as above. In this section, we assume that r ≥ 2 if X ≃ P
1. We 

build an Artin-Schreier cover π◦ : Y◦ → X◦ of singular curves, depending on the data of 

an unramified Z/pZ-cover π′ : Y ′ → X and for each Q ∈ B a Z/pZ-cover πQ : YQ → P
1

branched only at ∞ where it has ramification invariant dQ.

By the Riemann-Hurwitz formula, if Y ′ is connected, then its genus is

gY ′ = g + (p − 1)(g − 1). (2.1)

Note that we allow Y ′ to be disconnected; in fact, this is the only possibility when 

fX = 0.

Let gQ be the genus of YQ; by [Ser79, IV, Prop. 4]), gQ = (p − 1)(dQ − 1)/2.

We build the singular curve X◦ by attaching a projective line to X at each Q ∈ B

by identifying the point 0 on P1 and the point Q in an ordinary double point. Next, we 

build a Z/pZ-cover π◦ : Y◦ → X◦. Let Y◦ be the singular curve whose components are 

Y ′ and YQ for Q ∈ B, formed by identifying the fiber of πQ above 0 and the fiber of π′

above Q, in p ordinary double points, in a Galois equivariant way. Let ǫ be the rank of 

the dual graph of Y◦, which is the minimal number of edges that need to be removed 

from the dual graph in order to form a tree.

Lemma 2.2. The dual graph of Y◦ is a bipartite graph with r vertices on the left side.

(1) If Y ′ is connected, then there is one vertex on the right side and it is connected to 

each of the vertices on the left with p edges. Also ǫ = r(p − 1).

(2) If Y ′ is disconnected, then there are p vertices on the right side, each of which is 

connected to each vertex on the left with a unique edge. Also ǫ = (r − 1)(p − 1).

Proof. The facts about the vertices and edges are immediate from the construction of 

Y◦. To compute ǫ, we determine the minimal number of edges that need to be removed 

from the dual graph in order to form a tree. When Y ′ is connected, then we need to 

remove p −1 edges between each vertex on the left and the vertex on the right. When Y ′

is disconnected, we pick a distinguished vertex on the left and the right; then we need to 

remove all edges between the other r − 1 vertices on the left and the other p − 1 vertices 

on the right. !

The next result is immediate from [BLR90, 9.2.8].

Proposition 2.3. With notation as above:

(1) If Y ′ is connected, then Jac(Y◦) is an extension of Jac(Y ′) ⊕

(

⊕

Q∈B

Jac(YQ)

)

by a 

torus of rank ǫ = r(p − 1).
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(2) If Y ′ is disconnected, then Jac(Y◦) is an extension of Jac(X)p ⊕

(

⊕

Q∈B

Jac(YQ)

)

by 

a torus of rank ǫ = (r − 1)(p − 1).

In both cases, Jac(Y◦) is a semi-abelian variety of dimension

gY◦
= g + (p − 1)(g + r − 1) +

∑

Q∈B

gQ.

2.3. Formal patching

In Section 2.2, we constructed a Z/pZ-cover π◦ : Y◦ → X◦ of singular curves. In this 

section, we consider π◦ to be defined over k = F̄.

Proposition 2.4. The Z/pZ-cover π◦ : Y◦ → X◦ of singular curves has a flat deformation 

to a Z/pZ-cover π′′ : Y ′′ → X defined over k such that Y ′′ is smooth and connected, π′′

has branch locus B, and π′′ has ramification invariant dQ above each Q ∈ B.

Proof. This is immediate from the theory of formal patching, see [HS99]. !

Remark 2.5. For the convenience of the reader who is not familiar with formal patching, 

we include some details of the proof.

Let R = k[[t]], which has fraction field K = k((t)) and residue field k. Let S =

Spec(R), with generic point SK = Spec(K) and closed point S◦ = Spec(k). Consider the 

S-curve XS = X ×S◦
S and the sections QS = Q ×S◦

S. Let BS = B ×S◦
S = ∪Q∈BQS . 

We first define an S-curve XS whose generic fiber is XS ×S SK and whose special fiber 

is X◦. The curve XS is called a thickening of X◦.

To do this, for each Q ∈ B, we blow-up the point Q ∈ B◦ on the special fiber XS◦

to a projective line, which we denote by XQ. Without loss of generality, we can assume 

that:

(i) the closure of QK intersects XQ at the point at infinity, denoted by ∞Q, on XQ; and

(ii) the strict transform Xstr of XS◦
intersects XQ at the point 0, denoted by 0Q, on 

XQ.

Let XS denote this blowup.

Next, we consider the complete local rings of XS at some points of interest. Let RQ,0

(resp. RQ,∞) be the complete local ring of XS at 0Q (resp. ∞Q). Let xQ be a parameter 

on XQ that has a zero of order 1 at 0Q and has a pole of order 1 at ∞Q. Let x′

Q be a 

parameter on Xstr that has a zero of order 1 at Q. Without loss of generality, we can 

assume that:
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(iii) RQ,0 ≃ k[[xQ, x′

Q, t]]/〈xQx′

Q − t〉; and

(iv) RQ,∞ ≃ k[[x−1
Q , t]], and this isomorphism identifies the ideal 〈x−1

Q 〉 with the point 

QS .1

Consider the Z/pZ-cover π◦ : Y◦ → X◦ from Section 2.2. Its branch locus is {∞Q |

Q ∈ B} and X◦ is singular at the points {0Q | Q ∈ B}. The important step is to thicken 

the cover π◦ at these points. To thicken π◦ at 0Q for Q ∈ B, let AQ,0 be the ring such that 

Spec(AQ,0) = Ind
Z/pZ

{0} Spec(RQ,0); the natural map ψQ,0 : Spec(AQ,0) → Spec(RQ,0) is 

an étale Z/pZ-cover.

To thicken π◦ at ∞Q for Q ∈ B, consider the restriction of πQ : YQ → XQ to 

Spec(k[[x−1
Q ]]). The corresponding extension of function fields is given by an equation 

of the form yp
Q − yQ = fQ for some fQ ∈ Frac(k[[x−1

Q ]]) = k((x−1
Q )). By Artin-Schreier 

theory, since every element of k[[x−1
Q ]] is of the form αp − α, without loss of generality, 

we can suppose that fQ ∈ k[xQ]. Furthermore, by Artin-Schreier theory, we can suppose 

fQ has degree dQ. We view fQ as a function on Spec(RQ,∞) which has a pole only on 

the divisor x−1
Q = 0. The equation yp

Q − yQ − f(xQ) then defines a ring AQ,∞ and a 

Z/pZ-cover ψQ,∞ : Spec(AQ,∞) → Spec(RQ,∞), which is branched only over x−1
Q = 0; 

the cover ψQ,∞ can be viewed as a constant deformation of the restriction of πQ near 

∞Q.

The data of π◦, together with the data of ψQ,0 and ψQ,∞ for Q ∈ B, defines a 

thickening problem as in [HS99, page 288]. By [HS99, Theorem 4], there exists a solution 

to the thickening problem. This solution is a Z/pZ-cover π̃ : Y → X of S-curves, whose 

special fiber is π◦. Furthermore, by [HS99, Theorem 5], over the generic fiber, the branch 

locus of π̃SK
is BSK

= BS ×S SK , and the ramification invariant above the generic 

geometric point of QS is dQ.

By Artin’s algebraization theorem, the cover π̃ descends to Spec(L) where L is a finite 

extension of k[t]. Choose a closed point s′′ of Spec(L). Then the fiber π′′ of π̃S over s′′

is a cover satisfying the properties in Proposition 2.4.

3. Covers of the affine line

Consider the special case that X ≃ P
1 and B = {∞} and d ≥ 1 is a prime-to-p

integer. In this case, one considers exponential sums associated with a polynomial f in 

one variable and having degree d.

For any non-trivial additive character ψ of F and any natural number ℓ, one can 

define the exponential sum Sℓ(f, ψ) as follows. Let Fℓ denote the unique field which is a 

degree ℓ extension of F; it has cardinality qℓ. Let ψℓ = ψ ◦ TrFℓ/F, which is a non-trivial 

additive character of Fℓ. We consider the exponential sums Sℓ(f, ψ) :=
∑

a∈Fℓ
ψℓ(f(a))

and the L-polynomial L(f, ψ, T ) := exp(
∑

∞

ℓ=1 Sℓ(f, ψ)T ℓ/ℓ). This L-polynomial has a 

Newton polygon, denoted NPf,ψ.

Zhu introduced the following explicit Newton polygons [Zhu03, Section 4, page 679].

1 Or, more precisely, the closure of QK in XS , base changed to Spec(RQ,∞).
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Notation 3.1. For 1 ≤ n ≤ d − 1 let

Yn := min
σ∈Sn

n
∑

k=1

⌈

pk − σ(k)

d

⌉

. (3.1)

Let GNP(d, p) be the lower convex hull of (0, 0) and (n, Yn

p−1 ) for 1 ≤ n ≤ d − 1.

Let (p −1) GNP(d, p) be the lower convex hull of (0, 0) and ((p −1)n, Yn) for 1 ≤ n ≤ d −1.

Zhu proved that GNP(d, p) is the Newton polygon for the exponential sum associated 

to a generic f provided p is sufficiently large [Zhu03, Theorem 5.1]. This was extended 

by Blache and Férard, who proved that GNP(d, p) occurs for all f in an explicitly de-

fined Zariski open subset, when p ≥ 3d [BF07]. We state a corollary of their results for 

covers.

Theorem 3.2. [BF07, Theorem 4.1] Suppose F is a finite field of characteristic p with 

p ≥ 3d. Then there exists a Z/pZ-cover π : Y → P
1 defined over F, which is branched 

only above ∞ and where it has ramification invariant d, such that the Newton polygon 

of Y equals the generic Newton polygon (p − 1) GNP(d, p).

Proof. For f ∈ F[x] of degree d, the Artin-Schreier equation yp − y = f defines a Z/pZ-

cover π : Y → P
1 branched only at ∞ with ramification invariant d. Without loss of 

generality, suppose f is monic with no constant term and the coefficient of xd−1 is 0.

The Newton polygon of Y is (p −1) NPf,ψ, where p −1 is a scaling factor on the Newton 

polygon or, equivalently, on the multiplicities of the slopes of the Newton polygon.2

By [BF07, Theorem 4.1], if the coefficients of f are in an (explicitly determined) open 

dense subset of Ad−2, then NPf,ψ = GNP(d, p). Thus NPY = (p − 1)GNP(d, p). !

The lower bound NPHodge
P1 ({d}) defined in (1.1) does not equal (p − 1) GNP(d, p) in 

general. One reason for this is that the Newton polygon of a curve must have integer 

breakpoints. However, this is not the only reason; in some cases there are symmetric 

Newton polygons starting at (0, 0) and ending at (2g, g) with integer breakpoints which 

lie strictly between NPHodge
P1 ({d}) and (p − 1) GNP(d, p) in the natural partial ordering. 

We thank Joe Kramer-Miller for the following example.

Example 3.3. Let p = 23 and d = 6. Then NPHodge
P1 ({d}) is the Newton polygon with 

vertices

(0, 0), (22, 11/3), (44, 11), (66, 22), (88, 110/3), and (110, 55).

Furthermore, (p − 1) GNP(d, p) is the Newton polygon with vertices

2 This is because the zeta function of Y factors as Z(Y, T ) = Z(X, T ) 
∏

ψ
L(f, ψ, T ), where ψ ranges over 

the non-trivial characters Z/pZ → Zp[ζp]×.
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(0, 0), (22, 4), (44, 12), (66, 23), (88, 37), and (110, 55).

But the Newton polygon with vertices

(0, 0), (22, 4), (44, 11), (66, 22), (88, 37), and (110, 55)

is symmetric, has integer breakpoints, and lies between them.

Remark 3.4. This is not an issue when p ≡ 1 (mod d). In that situation, it is known that 

NPHodge
P1 ({d}) equals (p − 1) GNP(d, p); see for example [BF07, Remark 4.1].

4. The main result

Recall the definition of NPX(D) from (1.2).

Theorem 4.1. Suppose X is a smooth projective connected curve defined over k = F̄p. 

Let B ⊂ X(k) be a finite, possibly empty, set of points. For Q ∈ B, let dQ be a positive 

prime-to-p integer.

Suppose LNP(D) is a fixed lower bound for the Newton polygon of a Z/pZ-cover π :

Y → X with branch locus B and ramification invariants {dQ}Q∈B. If X is ordinary and 

p ≥ max{3dQ}Q∈B, then there exists a Z/pZ-cover π : Y → X of smooth curves over k, 

with branch locus B and ramification invariants D = {dQ}Q∈B, such that the Newton 

polygon of Y satisfies

LNP(D) ≤ NPY ≤ NPX(D). (4.1)

Remark 4.2. We need the lower bound on p in order to apply the results of [BF07]; it is 

possible that this condition can be removed.

Proof. For each Q ∈ B, if p ≥ 3dQ, then by Theorem 3.2 there exists a Z/pZ-cover 

πQ : YQ → P
1, branched only at ∞, with ramification invariant dQ and Newton polygon 

(p − 1) GNP(dQ, p).

First suppose g > 0. Since X is ordinary, there is an unramified Z/pZ-cover π′ : Y ′ →

X where Y ′ is connected. The genus of Y ′ is gY ′ = g + (p − 1)(g − 1) by (2.1). By the 

Deuring-Shafarevich formula, if X is ordinary then Y ′ is ordinary, so its Newton polygon 

has gY ′ slopes of 0 and of 1.

Construct the cover π◦ : Y◦ → X◦ as in Section 2.2, using the inputs of the covers 

π′ : Y ′ → X and πQ : YQ → P
1 for Q ∈ B. By Proposition 2.3(1), Jac(Y◦) is an extension 

of Jac(Y ′) ⊕
(

⊕

Q∈B Jac(YQ)
)

by a torus of rank ǫ = r(p − 1). The torus increases the 

p-rank of Jac(Y◦) by ǫ. So the slopes of the Newton polygon of Y◦ are

{0}gY ′ +r(p−1) ∪ {1}gY ′ +r(p−1) ∪
⋃

Q∈B

(p − 1) GNP(dQ, p).
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If g = 0, we instead take π′ : Y ′ → X be a disconnected Z/pZ-cover. By Proposi-

tion 2.3(2), Jac(Y◦) is an extension of Jac(X)p ⊕
(

⊕

Q∈B Jac(YQ)
)

by a torus of rank 

ǫ = (r − 1)(p − 1). In this case, the slopes of the Newton polygon of Y◦ are

{0}pg+(r−1)(p−1) ∪ {1}pg+(r−1)(p−1) ∪
⋃

Q∈B

(p − 1) GNP(dQ, p).

In either case, the Newton polygon of Y◦ equals NPX(D). By Proposition 2.4, the 

Z/pZ-cover π◦ : Y◦ → X◦ admits flat deformations to Z/pZ-covers π′′ : Y ′′ → X defined 

over k such that Y ′′ is smooth and connected, π′′ has branch locus B, and π′′ has 

ramification invariant dQ above each Q ∈ B. The Newton polygon for a generic choice of 

deformation can not increase by a result of Grothendieck and Katz, see [Kat79, Theorem 

2.3.1]. By hypothesis, LNP(D) is a lower bound for the Newton polygon of such a cover. 

So the Newton polygon of Y ′′ lies between LNP(D) and NPX(D). !

Theorem 1.1 follows immediately from Theorem 4.1, taking LNP(D) = NPHodge
X (D)

and using Kramer-Miller’s result [KM, Corollary 1.2].

Corollary 4.3. With the notation and hypotheses of Theorem 1.1, suppose furthermore 

that p ≡ 1 (mod dQ) for every Q ∈ B. Then there exists a Z/pZ-cover π : Y → X

with branch locus B and ramification invariants D = {dQ}Q∈B, such that Y has Newton 

polygon NPHodge
X (D) = NPX(D).

In other words, Corollary 4.3 shows that the lower bound NPHodge
X (D) is sharp in this 

special case.

Proof. By Remark 3.4, NPHodge
X (D) = NPX(D) under this congruence condition on p. 

Thus the result follows from Theorem 1.1. !

Remark 4.4. Suppose g > 1 and X is not ordinary. If π : Y → X is a Z/pZ-cover, 

it is not currently known which Newton polygons can occur for Y , even if the cover is 

unramified. As noted in [KM, §1.4], the lower bound NPHodge
X (D) is not the correct lower 

bound for the Newton polygon of Y as it has too many segments of slope 0 compared 

with Lemma 2.1.

Remark 4.5. In the proof of Theorem 4.1, it is also possible to use a disconnected cover 

π′ : Y ′ → X when g > 0. We chose a connected cover since it adds an additional level of 

control that could be useful in future applications.
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