2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-7281-9621-3/20/$31.00 ©2020 IEEE | DOI: 10.1109/FOCS46700.2020.00125

2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)

Spectral Independence in High-Dimensional Expanders and Applications to the
Hardcore Model

Nima Anari
Department of Computer Science
Stanford University
Stanford, CA, USA
anari@cs.stanford.edu

Abstract—We say a discrete probability distribution over
subsets of a finite ground set is spectrally independent if an
associated pairwise influence matrix has a bounded largest
eigenvalue for the distribution and all of its conditional dis-
tributions. We prove that if a distribution is spectrally inde-
pendent, then the corresponding high dimensional simplicial
complex is a local spectral expander. Using a line of recent
works on mixing time of high dimensional walks on simplicial
complexes [KM17; DK17; KO18; AL20], this implies that the
corresponding Glauber dynamics mixes rapidly and generates
(approximate) samples from the given distribution.

As an application, we show that natural Glauber dynamics
mixes rapidly (in polynomial time) to generate a random
independent set from the hardcore model up to the uniqueness
threshold. This improves the quasi-polynomial running time
of Weitz’s deterministic correlation decay algorithm [Wei06]
for estimating the hardcore partition function, also answering
a long-standing open problem of mixing time of Glauber
dynamics [LV97; LV99; DG00; Vig01; Eft+16].
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Definition I.2 (Spectral Independence). We say a probability
distribution 1 on subsets of [n] is n-spectrally independent
if Amax(¥,) < . Note that since the maximum eigenvalue
is always at most the maximum absolute row/column sum,
we have p is n-spectrally independent if either

DGl <n  or D WG] <,
j#i j#i
We say p is (no,...,NMn—2)-spectrally independent if
W is no-independent, for all 0 < i < n, {uli infout}
is n-independent, for all i,j, {uli infout, jinfout} is ns-
independent, and so on.

Note that for any ¢, we always have 7, < n — i — 1;
the smaller 7;’s are, the more independent y is. Ideally, we
are interested in distributions where 7g, ..., -2 < O(1)
independent of n. Observe that if p is a product distribution,
then it is (0,...,0)-independent.

Carlo; Glauber dynamics; spectral independence; high-
dimensional expanders; correlation decay Let us explain a more interesting example. Recall that a
probability distribution g is negatively correlated if for all
I. INTRODUCTION i # j, we have Pr[i|j] < Pr[i]. If u is d-homogeneous
Suppose we have a ground set [n] = {1,...,n} of  and all measures obtainable from p by conditioning are
elements. Let 1 : 2" — R, be a probability distribution ~ negatively correlated, then 4 is (1,1,...,1)-spectrally in-
on subsets of [n]. We say p is d-homogeneous, if for every dependent.

S € supp{u}, we have |S| = d. When the choice of p and
[n] are clear from context, we will write Pr[i] = Prg.,[i €

S| and Pr[j] = Prg~,[i ¢ S]. The following definitions are
crucial in our paper.

Definition I.1 ((Signed) Pairwise Influence Matrix). Fix a
distribution p on subsets of a ground set [n]. We define the
pairwise correlation matrix ¥,, € R™*™ by

..y def . . . =
U,.(i, ) = Prlj | i] — Pr[j | ]
fori# j, and U, (i,i) =0 forall i = 1,...,n. We refer to
the entry U ,,(i,7) as the pairwise influence of i on j.

Note this differs from existing definitions of “influence”;
see Section [-D for further discussion. One may also view
V¥, is a matrix of pairwise correlations.
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For a bad example, consider the distribution
which places 1/2 probability to both {1, ceey %} and
{% +1,... ,n}. In this case , Amax(¥,) =n — 1.

Given a probability distribution ¢ we can define a Markov
chain called the Glauber dynamics to generate samples from
w as follows: Given a set S € supp{u}, we choose a
uniformly random element ¢ and we transition to

. . S~A{1
{S AN {'L} with prOb WE‘(}‘;U{Z})

Su{i} ow.,

It turns out that this chain has the right stationary distribu-
tion.
The following is our main technical theorem.

Theorem 1.3 (Main). For any (no,...,Nn—2)-spectrally
independent distribution i : 2"} — R, the natural Glauber
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dynamics (defined above) has spectral gap at least

1 n—2 n;
n g (1 n—1i— 1)

We note that prior works [FM92; AGR16] show that as
long as the distribution w, and all its conditional distribu-
tions, satisfying certain negative correlation properties, then
a very similar Markov chain mixes rapidly. In our setting,
negative correlation is equivalent to all entries of ¥, being
nonpositive. Thus, in a similar spirit to spectral negative
dependence [Ana+19], one may view spectral independence
and Theorem 1.3 as also relaxing these negative correlation
requirements to allow for some positive correlation between
elements, while still providing mixing time guarantees.

In the following sections we will explain an application
of the above theorem in bounding the mixing time of the
Glauber dynamics for sampling independent sets from the
hardcore distribution. The proof of Theorem 1.3 uses recent
connections developed by the authors and collaborators
between analysis of Markov chains and the field of high
dimensional expanders [Ana+19].

A. Connections to High Dimensional Simplicial Complexes

Let us first phrase our main contribution in the language
of high-dimensional expanders. For a ground set U = [n]
of elements, a simplicial complex X is a downward closed
family of subsets of U. Sets in X are also called faces of
X. The dimension of a face in X is its size. For an integer
k, we write X (k) to denote all faces of X of size k. We
say X is pure if all maximal faces have the same size. The
dimension of X is the size of the maximum face in X. For
a pure d-dimensional simplicial complex X, we say X is
d-partite if U can be partitioned into sets Uy, ..., Uy such
that every maximal face o has exactly one element of each
U,.

We will often weight the maximal faces of a pure d-
dimensional simplicial complex X by some function w :
X (d) — Rsg. This induces weights on all faces of X via

wir)= Y w(o) (1)

ceX(d):ioDT

For a face 7 of X, the link of 7 is the simplicial complex
X, ={o~7:0€ X,0 D 7}. We endow the maximal
faces of X, with the weight w,(c) = w(T U o).

The 1-skeleton of link X of 7 is a weighted graph defined
as follows: For every element ¢ € U, such that {i} € X, we
have a vertex. We connect two vertices 4, j if {i,j} € X,
and the weight of the edges is w,({i,j}). We will let P,
denote the simple random walk on the 1-skeleton of X.

We also define a random walk on the maximal faces of
X by a two-step process. If the walk is currently at some
o € X(d), we transition by

1) removing a uniformly random element ¢ € o

2) adding arandom j ¢ o~{i} to o~{i} with probability
proportional to w(o U {j} \ {i})
Note that there is always a nonzero probability staying at ¢
in a given step.
The transition probability matrix P} of this random walk
may be written down as
w(o .
o | e et o=
P)(o,0') = TuloreT)” if lond|=d-1
0, o.w.

where we recall that w(7) = >, ¢y (405, W(0).

Given a distribution p on subsets of [n], define a pure n-
dimensional n-partite simplicial complex X* as follows: Let
the ground set of elements be {1,1,2,2,...,n,7} with n
parts Uy = {1,1}, Uy = {2,2},...,U,, = {n,n}. For every
set S € supp{u} we add a maximal face og which has i
for every i € S and i for every i ¢ S. We assign a weight to
og given by w(og) = u(S). We turn this into a simplicial
complex by taking downward closure of all maximal faces.
Note that in this case, P,Y describes exactly the Glauber
dynamics for sampling .S C [n] with probability proportional
to u(.S).

We are now ready to define the notion of high-dimensional
expansion that we will use, which was first introduced in
[DK17; KM17; KO18; Oppl8].

Definition 1.4 (Local Spectral Expander; [KO18]). Let X be
a pure d-dimensional simplex complex. We say a face T of
X is an a-spectral expander if the second largest eigenvalue
of the simple (non-lazy) random walk on the 1-skeleton of
X, is at most a. We say X is (ap, ..., aq—2)-local spectral
expander if for all 0 < k < d —2, every 7 € X(k) is an
ayg-spectral expander.

We prove the following theorem making connection be-
tween spectral independence of probability distributions and
local spectral expanders.

Theorem L5. For any (no,...,n,—2)-spectrally indepen-
dent distribution p : 2" — R, the pure n-dimensional
n-partite simplicial complex X" is a (12, 15, ... I=2)-
local spectral expander.

We note that there are strong theorems in the literature of
high-dimensional expanders [Opp18] which show that if the
(d — 2)-dimensional faces of a pure d-dimensional complex
X are a-spectral expanders for o < 1/2d, then every face
of X is a 2a-spectral expander. However, such theorems
fail dramatically when the (d — 2)-dimensional faces have
spectral expansion, say, 1/2.

Here, the main new ingredient is to show that as long
as the underlying distribution p is spectrally independent
for ng,...,Mm—2 < O(1), then we get better and better
spectral expansion as we go to lower dimensional faces of
the underlying weighted simplicial complex X*.
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The key usefulness of local spectral expansion lies in the
following local-to-global theorem, which may be used to
bound A2 (P)). A weaker version of this result was already
proved in [KO18].

Theorem 1.6 ([AL20]). Consider a pure d-dimensional
simplicial complex X with weights w. If (X,w) is a
(o, - .., q—2)-local spectral expander, then

<177H 170&;c

Remark 1.7. For instance, if there is a constant « such that
(X,w) is a ( &> 2 )-local spectral expander,

Aa(P§

E:T’Ei§7""2’1
then we would obtain Ao (P)) <1—
what we do for the hardcore model.

W' This is precisely

Proof of Theorem 1.3: By Theorem 1.5, spectral inde-
pendence of 1 implies strong local spectral expansion of X*.
Theorem 1.6 then furnishes the spectral gap of the Glauber
dynamics, which we recall is described by P. |

It now remains to prove Theorem L.5.

B. Application to Sampling from Hardcore Distribution

Our main application of the above machinery is to gen-
erate random samples from the hardcore distribution. Given
a graph G = (V, E), and a parameter A > 0, sample an
independent set I with probability Al /Z()), where

>

ICYV independent

Za(A) = Al

is the normalizing constant, a.k.a., the partition function. Ex-
act computation of Zg(\) is #P-Hard [Val79; Vad95; Gre00]
even when the input graphs have special structure [Vad(02]
and hence, we can only hope for efficient approximation
algorithms.

Studying the hardcore model has been pivotal in helping
us understand the relationship between phase transitions in
statistical physics and phase transitions in efficient approx-
imability. Specifically, has been known since [Kel85] that

there i (s def (A-D21 ¢
ere is a critical threshold \.(A) = Tags R aog for
which the Gibbs distribution is unique on the infinite A-
regular tree if and only if A < A;(A). The case A < A.(A)
exactly corresponds to the regime where the “influence” of
a vertex u on another vertex v decays exponentially fast in
the distance between wu,v. This is known to physicists as
the uniqueness regime for the hardcore model. On the flip
side, A > A.(A) exactly corresponds to the regime where
long-range correlations persist in the model.

In the seminal work of Weitz [Wei06], it was shown that
for any A < A.(A) and fixed constant A, there exists a
deterministic fully polynomial time approximation scheme
(FPTAS) for estimating Z (). Immediately following, a
sequence of results [SS14; Gal+14; GSV15; G§Vl6] begin-
ning with the seminal work of Sly [Sly10] proved a matching
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lower bound for the case A > A.(A). There is no fully
polynomial randomized approximation scheme (FPRAS) for
estimating Z¢ () on graphs of maximum degree < A when
A > A:(A) unless NP = RP. This rigorously established the
first example where the statistical physics phase transition
coincides with a computational complexity phase transition.

Weitz’s algorithm is based on the correlation decay
framework which was later on developed for estimating
partition functions of two state spin systems [LLY12;
LLY13; SST14]. More recently, a new framework was estab-
lished based on Barvinok’s polynomial interpolation method
[Bar16b; Barl6a; PR17; PR19] where Weitz’s result was re-
proved using a different deterministic algorithm which only
uses the knowledge of connected subgraphs of G of diameter
Ocs5(logn) [PR17]. All of these methods suffer from a
quasi-polynomial running time when the input graph has
unbounded max-degree. Specifically, if A = (1 — §)A.(A),
then there is a constant C'(§) such that Weitz’s correlation
decay algorithm returns a (1 £ ¢)-multiplicative approxima-
tion of Z () in time O ((n/e)c(5) 108 A In particular, due
to the exponential dependence in log A, Weitz’s algorithm
does not run in polynomial time for graphs with unbounded
maximum degree. Roughly speaking, the main difficulty is
that in order to estimate the partition function, one needs
to estimate the marginal probabilities of vertices within
O(1/n)-error, and to do that one needs to look at O(logn)-
depth neighborhood of vertices which leads to a quasi-
polynomial number of operations on graphs of max-degree
polynomial in n.

On the other hand, it is conjectured that the natural
Glauber dynamics mixes in polynomial time up to the
uniqueness threshold. But to this date after a long line of
works [LV97; LV99; DGOO0; VigO1] this was only shown
up to ﬁ for general graphs and up to the uniqueness
threshold for special families of graphs [Wei04; Wei06;
Res+13; Eft+16]. We use the result of the previous sections
to prove that for any graph the Glauber dynamics mix in
polynomial time up to the uniqueness threshold.

For sampling from the hardcore model, the Glauber dy-
namics can be described via the following two-step process.
To make a transition from an independent set [ to another,

1) Select a uniformly random vertex v € V.

2) If v € I, remove v from I with probability 1%\, and

keep it otherwise.

3) If v ¢ I and v is not a neighbor of some u € I, add

v to I with probability 1_%\ and leave it otherwise.
It is clear that this process is reversible. It is also clear that
this Markov chain is connected, since there is a path from
every independent set to the empty independent set ). Hence,
these dynamics have a unique stationary distribution 7, and
the distribution of the chain converges to stationarity in total
variation distance as the number of steps goes to infinity.
Finally, by checking the detailed balance condition that the
stationary distribution 7 of the Glauber dynamics is exactly
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the Gibbs distribution p. Our goal is to bound the e-total
variation mixing time of the Glauber dynamics starting from
any state 7, which is given by

t-(€) = min {t € Lo : ||Pt(77 )= 77”1} S €

where P denotes the transition probability matrix describing
the chain. Here, P*(7,-) gives the distribution at time ¢ of
the chain started at .

Theorem L8. There is a function C : [0,1] — Rsq such
that for every graph G = (V,E) with maximum degree
<A every 0 < § <1, and A = (1 — §)A(A), the asso-
ciated hardcore distribution p is (no, ..., Nn—2)-spectrally

A (n—i—l)}for

independent where n; < min {0(5), Ty

every 0 <i<n—2.

Combined with Theorem I.3, we obtain fast mixing for the
Glauber dynamics for sampling independent sets according
to the hardcore distribution whenever A < A.(A) (for the
precise mixing time, see Remark 1.10).

Corollary 1.9. For every § > 0, there exists a fully poly-
nomial randomized approximation scheme for estimating
Za(A) at X = (1—0)A:(A) on any graph G with maximum
degree < A.

Remark 1.10. For 0 < 6 <1, A = (1—-0)A.(A) and a graph
G = (V,E) maximum degree A, the Glauber dynamics
from any starting state 7 has mixing time

1
tr(e <0( 1+)\)-n 1+C<5>-1og(
(@< 0(((1+x):m) e
To be explicit, the constant C'(0) obeys the bound

C(6) < exp(0O(1/9))

Note 1(0) so that

1 1
Za = T307

w020 (0 g (1))

The key advantage of our result is that the running time has
no dependence on A. Furthermore, \.(A) < 4 forall A >3
so we may treat \ as bounded above by a constant. Hence,
only the gap parameter § matters.

C. Related Works

The question of building deterministic approximation al-
gorithms for estimating Z¢(A) on bounded degree graphs
has been settled. The seminal work of Weitz [Wei06] proved
that there is an FPTAS on graphs of maximum degree < A
whenever A < A:(A) using the correlation decay method.
The polynomial interpolation method of [Barl6a] has also
since been demonstrated to give an FPTAS [PR17; PR19]
as well.

For studying the mixing time of the Glauber dynamics
in the uniqueness regime, there has been a long line of
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work starting with [LV97; LV99; DGO00; Vig01]. For general
graphs, the state-of-the-art was given by [VigO1], which
showed the Glauber dynamics mixes in O(nlogn) steps
when \ < ﬁ. A more recent result of [Eft+16] shows
that for any 0 < ¢ < 1, there is a Ag(d) such that for any
A > Ag(d) and A = (1 — §)A:(A), the Glauber dynamics
mixes in O(nlogn) steps for graphs with maximum degree
A and girth > 7. Much more is known for line graphs
[JS89], amenable graphs [Dye+02; Wei04; Wei06], trees
[MSWO03; MSWO04; Wei04], planar graphs [Hay06], graphs
with large girth [HVO05], Z? [VVY13; Res+13; Bla+13;
Bla+19], and G(n, d/n) random graphs (or, more generally,
graphs with bounded connective constant) [MSO08; MS13;
SSY13; Sin+15].

On the hardness side, exact computation of Zg(\) is
known to be #P-Hard [Val79; Vad95; Gre0O], even for
very restricted families of graphs [VadO2]. For hardness of
approximation, [LV97] showed there exists a constant ¢ > 0
such that there is no FPRAS for estimating Z;(1) when
A > ¢/A unless NP = RP. For the case of evaluating Z¢(1),
this was improved in [DFJ02], which showed that there is
no FPRAS for estimating Z(1) on graphs with maximum
degree exceeding 25 unless NP RP. [DFJ02] further
showed that the Glauber dynamics has exponential mixing
time for A > 6. [MWWO7] provided further evidence the
Markov chain techniques are likely to fail for sampling
from the Gibbs distribution when A > A.(A). These results
were dramatically improved in the work of [Slyl10] (and
further refined by follow-up works [SS14; Gal+14; GSV15;
GSVI()]), which showed that unless NP = RP, there is no
FPRAS for estimating Z¢ () on graphs of maximum degree
< A when A > A.(A).

D. Relation to Existing Definitions of Influence

For spin systems, our pairwise influence matrix is reminis-
cent but different from the Dobrushin influence matrix used
in [Hay06; DGJ09] and the works [Dob70; DS85a; DS85b;
DS87]. Specifically, the (i,7)th entry of the Dobrushin
influence matrix considered in these prior works is given by
the maximum absolute difference |Pr[j | i,7] — Pr[j | 7, 7]|
over all partial assignments 7 of the remaining ground ele-
ments excluding ¢, 5. In the case of the hardcore distribution
for an input graph G = (V, E) with fugacity A\ > 0, this
influence matrix is exactly H_%A, where A is the adjacency
matrix of G (see, for instance, [Hay06]). On the other hand,
our pairwise influence matrix ¥, may have nonzero entries
for u,v € V not connected by an edge, since ¥, (u,v)
considers the marginal of v conditioned only on w or u, with
the assignment for other elements left undetermined. Fur-
thermore, our method requires understanding exponentially
many pairwise influence matrices, one for each conditional
distribution, while all variants of the Dobrushin condition
only require analyzing a single Dobrushin influence matrix.
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E. Subsequent Works

Finally, we mention several follow-up works applying and
extending the notion of spectral independence we introduce
this paper. The first is the work by [CLV20], where they
obtained rapid mixing of the Glauber dynamics for all two-
state spin systems in the correlation decay regime. [Che+20);
Fen+20] extended our notion of spectral independence to
multi-state spin systems, and obtained new mixing results for
the Glauber dynamics for sampling g-colorings on triangle-
free graphs.

E. Proof Overview

For a face o of X*, recall P, denotes the transition
probability matrix of the simple random walk on the 1-
skeleton of XY. Our first technical contribution is the
following.

Theorem 1.11. For every distribution p over subsets of a
ground set [n), the eigenvalues of U, are real. Furthermore,
we have the identity \3(Py) = —15 - Amax ().

Given this, we may now prove Theorem L.5.

Proof of Theorem 1.5: Since Theorem 1.11 holds for
any distribution p, it in particular holds for all conditional
distributions of p. Now, observe that conditioning on an
element 7 being “in” corresponds exactly to taking the link
of X* w.urt. ¢. Similarly, conditioning on an element {
being “out” corresponds exactly to taking the link of X*
w.r.t. 7. The result then follows by definition of spectral
independence and local spectral expansion. |

The proof of Theorem I.11 hinges on the observation
that for each element i € [n], no face of X* can contain
both i and 4. In particular, there is no edge connecting
i and 7 in the 1-skeleton of X*, for each i. Thus, there
are n parts, one corresponding to each element of [n],
such that all edges only go between parts. This n-partite
structure of the 1-skeleton of X* induces n — 1 additional
“trivial” eigenvalues, besides the trivial eigenvalue of 1, in
the transition matrix Py. This is, in fact, a generalization of
the fact that the transition matrix of a bipartite graph always
also has eigenvalue —1. We show that ¥, is essentially equal
to Py projected away from these n trivial eigenvalues; see
Claim III.2 and Claim IIL.3 in Section III for more details.

We apply these results to the hardcore distribution over
independent sets of an input graph G = (V,E). Theo-
rem L11 tells us that to bound Ao (Py), it suffices to bound
Amax (¥ ). We show how to bound Apax(¥,) by bounding
> ueviuzgs [¥u(u,v)| for any vertex v € V. In particular,
we have the following two bounds.

Lemma 1.12. Consider the hardcore distribution p on
independent sets of a graph G = (V, E) on n vertices. Then
for every v € V, and every \ > 0, we have the bound

S W)

ueV:iutv

A
< .

14+ A (n=1)
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Proof: Observe that the maximum probability that a

given vertex is placed in a random independent set is at
A

P TN

for every u # v. The claim follows.

|

A
most THx-

that |¥,(u,v)| <

In particular, Pr[v | u],Prjv | @] € {0

A
T+

[ s

Theorem IL.13. There exists a function C' : [0,1] — R
such that for every graph G = (V, E) of maximum degree
< A every vertex v € V, every 0 < § < 1, and \ =
(1 = 9)A(A), we have the following bound,

S [T < C6)

ueViutv
To be explicit, C(0) satisfies C(§) < exp(O(1/9)).

Remark 1.14. We believe C(d) < O(1/4) is possible, which
we show is tight in the full version of the paper. We leave
this as an open problem. We note that in follow-up work,
[CLV20] shows that >, v, ., [Vu(v,u)] < O(1/6). In
other words, they analyze the total pairwise influence of a
vertex, while we analyze the total pairwise influence on a
vertex.

The key here is that we only need to understand the total
sum of correlations between pairs of vertices. This is in
contrast to strong spatial mixing results, where one has to
analyze the correlation of any subset of vertices on another
given vertex.

To prove Theorem 1.13, first, we take advantage of the
self-avoiding walk tree construction introduced in [Wei06]
to reduce to a problem on trees. Then, we give an method
to decouple the influence of a set of vertices S on a vertex
v into the sum of the single-vertex pairwise influences of
each u € S on v. The primary takeaway from these two
steps is that it suffices to control the total pairwise influence
of vertices on the root in any rooted tree of maximum degree
<A.

To control correlations between vertices and the root, we
leverage the well-known tree recursion, which expresses the
marginal of the root in terms of the marginals of its children.
We amortize the total pairwise influence of all vertices at
a fixed distance from the root using the potential method
[LLY12; LLY13; Res+13; SSY13; SST14; Sin+15]; we refer
to [Sril4] for further discussion of the potential method. This
allows us to show a strong kind of correlation decay, where
the total pairwise influence of all vertices at a fixed distance
decays as the distance grows. After sharing a preliminary
draft of this paper, it was pointed out to us by Eric Vigoda
and Zongchen Chen that the notion of correlation decay we
prove is very similar to the notion of aggregate strong spatial
mixing (for trees) studied in [MS13; BCV20].

Now, observe that Theorem [.8 simply follows from
Lemma [.12 and Theorem [.8. As a consequence, all we
are left to do is to prove Theorem I.11 and Theorem 1.13,
which we do in the remainder of the paper.
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G. Structure of the Paper

In Section II, we review necessary background in the the-
ory of Markov chains, and correlation decay. In Section III,
we sketch the proof of Theorem I.11. In Section IV and
Section V, we sketch the proof of Theorem 1.13. We leave
detailed proofs to the full version of the paper [ALO20].

II. PRELIMINARIES

First, let us establish some notational conventions. Un-
less otherwise specified, all logarithms are in base e. All
vectors are assumed to be column vectors. For two vectors
o, € R™, we use (¢, 1)) to denote the standard Euclidean
inner product between ¢ and 1. We use Ry and Rxg to
denote the set of positive and nonnegative real numbers,
respectively, and [n] to denote {1,...,n}.

A. Markov Chains and Random Walks

We consider a Markov chain as a triple (2, P, 7) where
denotes a (finite) state space, P € Rgég denotes a transition
probability matrix and ™ € Rgo denotes a stationary
distribution of the chain (which will be unique for all chains
we consider).

A chain (Q, P,7) is reversible if there is a nonzero
nonnegative function f : @ — R3¢ such that for any pair
of states 7,0 € Q, f(r)P(r,0) = f(0)P(o,7). If this
condition is satisfied, then f is proportional to 7. In this
paper we only work with reversible Markov chains. Note that
being reversible means that the transition matrix P is self-
adjoint w.r.t. the inner product (¢, 1) s = ¢ diag(f)v. For
any reversible Markov chain (2, P, 7), the largest eigenvalue
of Pis 1. We let A\*(P) denote the second largest eigenvalue
of P in absolute value. That is, if —1 < )\, <---< A1 =1
are the eigenvalues of P, then A\*(P) = max {|Az|, |An|}.

Theorem IL1 ([DS91]). For any reversible irreducible
Markov chain (0, P, ), € > 0, and any starting state T € §Q,

w10 < Ty 18 (o)

B. Tree Recurrences for Hardcore Model

Fix a tree T rooted at some vertex r. For a vertex v in
T, let {(v) denote its distance from the root r. We will
sometimes refer to it as the “level” which contains v. For a
level ¢, let L, (¢) = {v € T : £(v) = £}. For a vertex u € T,
we will write T, for the subtree of 1" rooted at wu.

A key tool we will need to analyze the hardcore model
on trees is given by the tree recurrence. To describe the tree
recurrence, we need to consider a change of variables w.r.t.
the marginal probabilities. Fix a tree I" arbitrarily rooted at
some vertex r € T, and an arbitrary boundary condition
p: A — [0,1] for a subset of remaining vertices A. We
write the ratio of conditional probabilities as

p _ Prlrip] _ Prlr|p]
BrPr[F|p) o 1—Prlr | p)
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Here, we think of the function p : A — [0,1] as fixing
the marginal probability of vertices v € A to p(v). In the
special case where p maps all vertices of A to 0 or 1, then p
is really a boundary condition in the traditional sense, as p is
pinning the vertices of A to be in/out. However, later on, we
will need the additional flexibility of pinning the marginal
of v € A to a specific value p(v) € [0,1]

With this notation in hand, we may write the tree recur-
rence for the hardcore model as

def

1
Ryt 1
)

Here, we make a slight abuse of notation by writing p even
when considering a subtree 7T5,; this should be understood as
the restriction of p to this subtree. We drop the superscript
when p is empty; we also drop the subscript 7" when the
tree is clear from context. In the case of a depth-¢ complete
d-ary tree rooted at r with no boundary conditions, all of the
R are the same. In this case, the tree recurrence simplifies
to a univariate recurrence given by
1 d
7i)

C. Correlation Decay and Weitz’s Self-Avoiding Walk Tree

Ry, =F(Ry , :ueLy(l)

2l

uw€eL, (1)

fal®) =

In this subsection, we introduce the necessary notation for
describing the correlation decay property for spin systems.
We begin by rigorously defining correlation decay for a
general distribution p over subsets of a ground set [n].

Definition I1.2 (Spatial Mixing). Fix a metric d : [n]x[n] —
R>q. We say a distribution (v on subsets of [n| exhibits weak
spatial mixing w.rt. d with rate 0 < o < 1 and constant
C > 0 if for every i € [n], every S C [n] with i ¢ S, and
every pair of assignments 1,0 : S — {in,out}, we have

R} = R7| < C a9

We say v exhibits strong spatial mixing if instead we can
replace d(i,S) by d(i, S(1,0)), where S(1,0) C S is the
set of elements on which the assignments 7,0 differ.

In the case of a distribution p on configurations o : V' —
{0,1} on a graph G = (V, E) coming from the hardcore
model with activity A, our ground set will consist of the
vertices V. Hence, we will take the d to be the shortest path
metric in G throughout the paper.

It has been known since the work of Kelly [Kel85] that
for the hardcore model, weak spatial mixing on the infinite
A-regular tree holds exactly when A < % o Ae(A).
Here, A.(A) is known as the critical threshold for the
hardcore model on graphs of maximum degree < A. These
results have been subsequently extended to all antiferromag-
netic two-state spin systems [LLY12; LLY 13; SST14].
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The way the threshold A.(A) is derived is by analyzing
when ‘f’A_l(RA_ﬂ‘ is less than 1. It turns out the gap

between ‘f’A,l(RAq)‘ and 1 governs the rate « in the
definition of spatial mixing. [LLY 13] quantified this in the
following definition.

Definition I1.3 (Up-to-A Uniqueness [LLY 13]). We say the
hardcore model with parameter \ is up-to-A unique with

gap 0 < & < lifforeveryl <d < A, we have ‘fc’l(f?d)‘ <
1 — 6, where Ry denotes the unique fixed point of fg.

It is not hard to show that up-to-A uniqueness with gap
0 < § < 1is equivalent to A < (1 — O(9)) - Ac(A)
(see, for instance, the full version of the paper). Hence,
throughout the paper whenever one encounters the phrase
“up-to-A unique with gap 0 < § < 17, one may safely
assume A < (1 —6(d))A(A).

Surprisingly, Weitz [Wei06] managed to show that for the
hardcore model, weak spatial mixing actually implies strong
spatial mixing with the same rate «, albeit with a worse
constant C'. This was extended in [LLY13; SST14] to all
antiferromagnetic two-state spin systems. The way this was
done was to first reduce spatial mixing on a general graph
to spatial mixing on an associated tree known as the self-
avoiding walk tree [SS05; Wei06], where one can then use
the tree recurrence Eq. (2) to understand spatial mixing.

Theorem II.4 (Theorem 3.1 from [WeiO6]). Fix a graph
G = (V,E) and a vertex r € V. Then there exists a
tree T = Tsaw(G,r) whose vertices may be partitioned
into parts {C(v)}yev, one for each vertex of G, and a
boundary condition tsaw on vertices of T' such that for
any partial assignment o : S — {0,1} of vertices in
S C V, we have Prg[r | o] = Prr[r | 7saw, osaw] and
RZ, . = RPYWISAY. Here, ogaw is the partial assignment
on vertices of T with osaw (u) = o(v) for every u € C(v)
and every v € S.

Remark 115. The tree T = Tsaw(G,r) turns out to
have a couple convenient properties. For instance, we have
dg(r,v) = min{f(u) : v € C(v)}, and that the maximum
degree of T equals the maximum degree of G. We also
note that in general, the number of vertices of 7" may be
exponentially large in the size of G. We refer the reader
to [Wei06] or the full version of the paper [ALO20] for a
complete description of 7T'.

For the second step, in the case of the hardcore model,
[Wei06] showed that weak spatial mixing on the infinite
A-regular tree implies strong spatial mixing on all trees of
maximum degree < A, and hence, on all graphs of maxi-
mum degree < A. To conveniently state the strong spatial
mixing result proved in [Wei06], we make the following
definition.

Definition IL.6. If T is a tree rooted at v € T, we
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define R®M(() = min, RY. , where p is an assignment
of marginc}ls of vertices at ciepth ¢ in T,. Similarly, define
Rp<(0) to be the maximum such conditional probabil-
ity ratio. Finally, define R™™({) = minp,, R} (() and
R™(0) = maxr,, Rp3*({), where the minimum and max-
imum are over all trees T rooted at r of maximum degree
<A

Remark 11.7. Essentially, due to the antiferromagnetic nature
of the hardcore model, the level-¢ boundary condition p
minimizing RY  is the all-1 configuration if ¢ is odd,
and the all-0 cénﬁguration if ¢ is even. Determining the
configuration achieving R™**(¢) can be done a similar way.

Fact I1.8. We have the inequalities
1) 0= Rmin(l) S Rmax(l) — /\,
2) (1+A.>\)A — Rmu.l(z) S Rmax(2) — )\’
3) len(é) S len(é_i_ 1) Cl}’ld Rmax([) 2 RIIL&X(E_F 1)
for any £ > 1.

Theorem IL.9 (Weak Spatial Mixing Implies Strong Spatial
Mixing; [Wei06]). Assume A = (1 — §)A(A) for some 0 <
0 < 1. Then there exist constants C > 0 and 0 < a < 1
such that for every tree T of maximum degree < A rooted
at some v € T, and every level ¢, we have the bound
[REF(0) = REZ (O] < C-af

Later on in the paper, we will need more precise control
over C, . However, the above result is sufficient for the
present discussion

III. THE EIGENVALUES OF THE PAIRWISE INFLUENCE
MATRIX

Our goal in this section is to prove Theorem L.11. In
fact, we completely characterize the spectrum of F, in
terms of the spectrum of ¥,, which immediately implies
Theorem I.11.

Theorem IIL.1. The spectrum of Py (as a multiset) is
precisely the union of the spectrum of ﬁ\IJ u (as a multiset),
n—1 copies of ———, and an eigenvalue of 1 (corresponding
to the top eigenvalue of Py).

n—1’

Note that this also immediately implies ¥, has real
eigenvalues, since P has real eigenvalues. The rest of the
section is devoted to proving Theorem III.1.

The main idea behind the proof is to relate the spectra
of Py and of —L-¥,, to an intermediate matrix Mj. This
matrix My will be built from Fj by leveraging knowledge
of the “trivial” eigenvalues and eigenvectors induced purely
by the n-partite structure of X*. Towards this, let us first
express the entries of Py in a nice form. Observe that using
Eq. (1), we have that for 7, j € [n],

w({i, j})

Py(id) = 2l ) = el |- £
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Similarly, we have the following for all 4, j € [n].
1 —
Prlj|i] -1 # g
— Prlj [ 1[ # 7]
- . 1 LT . .
Py(i,j) = EPF[J 4] - 1[i # j]

Po(i,J) = —— Prlj |1 10i # 5]

Ph@»f)::

Now, we compute the stationary distribution of Fj. Define
T € R?" entrywise by 7(i) = L Pr[i] and 7(i) = & Pr[i].
It is easy to see that Py is reversible w.r.t. 7. Hence, 7 is
indeed stationary w.r.t. Py. For each element i € [n], define
the vectors 1%, 7' € R?" by 1° = ¢;+¢; and 7 = 7 (i) -e; +
(i) - e;. In particular, for each i € [n], 1%, 7 are vectors
which are supported on the two entries corresponding to the
two different possible assignments of . We now define our

intermediate matrix as

My = Py —

n

1

n
n .
1 T 18 (7t T
- T +7n—1;:1 (m*)

We prove the following two claims.

Claim IIL.2 (Relating Py and Mjp). The matrix Py has
eigenvalue 1 with multiplicity (at least) 1, and eigenvalue
—ﬁ with multiplicity (at least) n — 1. These are the
“trivial” eigenvalues of Py. Furthermore, the spectrum of
My (as a multiset) is precisely the spectrum of Py with all
trivial eigenvalues replaced by n copies of 0.

Claim IIL.3 (Relating M, and ﬁlllﬂ). The spectrum of
My (as a multiset) is precisely the union of the spectrum of
ﬁ\llu (as a multiset) with n additional copies of 0.

Theorem III.1 then follows as an immediate conse-
quence of these two claims. We now intuitively sketch why
Claim 1.2 and Claim III.3, leaving the technical details for
the full version of the paper [ALO20].

The main idea behind Claim II1.2 is that the vectors 1°
form an orthogonal basis for the span of the right eigen-
vectors of P corresponding to the eigenvalues 1 and —ﬁ
(while the 7% form an orthogonal basis of the corresponding
left eigenvectors). The essence of the proof lies in the fact
that these “trivial” eigenvectors derive purely from the fact
that in the weighted graph with vertex set {i,i : i € [n]}
corresponding to Fp, there are is no edge between the
vertices i and i, for all i € [n]. This is a generalization of the
fact that the random walk matrix of any weighted bipartite
graph always has eigenvalue —1, purely due to bipartiteness.
This was actually already observed in [Opp18]. One should
view My is being defined in a way to “zero out” those
eigenvalues. For Claim IIL3, the intuition is that ¥, may
be obtained from Mj via orthogonal projection.

Remark 1I1.4. These observations generalize in a straight-
forward fashion to all partite complexes in the sense that
for any d-dimensional d-partite weighted complex (X, w)
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1V
1

d—1°

with parts Uy, ...,U,, the indicator vectors 1Y, ...
are eigenvectors of Py — -9—-17" with eigenvalue —
This was also observed in [Oppl8].

)

d—1

IV. INFLUENCE DECOUPLING IN WEITZ’S
SELF-AVOIDING WALK TREE

In this section, we take a step towards proving Theo-
rem I.13. Specifically, we focus on bounding

S 100

ueV:iu#tv

where from now on, we take p to be the distribution
corresponding to the hardcore distribution on input graph
G = (V,E) with parameter A > 0. Here, the relevant
uniqueness threshold is given by A\.(A) = %.

Before we proceed to bound this quantity for general
graphs, we note that one can easily deduce an O(1) upper
bound for amenable graphs (i.e. graphs such that the balls
around any vertex grows subexponentially fast in the radius)
in a black-box fashion directly using strong spatial mixing
Definition II.2, thus recovering some of the previously
known connections between spatial mixing properties of the
hardcore distribution, and temporal mixing of the Glauber
dynamics [Dye+02; Wei0O4]. This class of graphs notably
includes lattices such as Z¢, but exclude most graphs such
as expanders. Thus, nstead of applying strong spatial mixing
as a black-box, we revisit its proof, modifying it as needed.

The high-level strategy is to convert this problem on
general graphs to bounding a similar quantity for trees. We
do this by leveraging the self-avoiding walk tree construction
of [Wei06]. However, since a vertex u € G may have
many copies in the corresponding self-avoiding walk tree
T = Tsaw (G, 1), we need to “decouple” these copies so as
to obtain single-vertex influences again.

Definition IV.1 (R-Pseudoinfluence). Recall that for a fixed
tree T rooted at v with boundary condition p : A — [0, 1]
(where A is a subset of vertices not containing r), we write

p _ _Prlrlp] ;
T = T—purp]- FOr @ vertex v € T with v # 1, we define

the R-pseudoinfluence of v on the root r by the quantity

0 1
Ry, = max R where  Rp% = |Rp " — Ry "
and the maximum is taken over all partial assignments p :
L.(£(v)) ~{v} = [0, 1] of marginal values. Again, we drop
the subscript T when the tree is clear from context.

Remark IV.2. It was pointed out to us by Zongchen Chen
and Eric Vigoda that our notion of R-pseudoinfluence is very
related to the notion of “aggregate strong spatial mixing”
used in [MS13] to analyze the Glauber dynamics, and in
[BCV20] to analyze the Swendsen-Wang dynamics, both
for the ferromagnetic Ising model. In fact, it turns out our
result also directly implies aggregate strong spatial mixing
for arbitrary trees in the uniqueness regime A < A.(A).
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Our first step is to do the decoupling using the R-
pseudoinfluence. The second step is to bound the total R-
pseudoinfluence of vertices in a tree on the root. These steps
are captured in the following two results. We emphasize
Lemma IV.3 is generic, and holds for any two-spin system.

Lemma IV.3 (Decoupling). Consider the hardcore distribu-
tion p on a graph G = (V, E) with parameter A > 0. Fix a
vertex v € G and let T = Tsaw (G, ). Then the following
inequality holds:

Z ‘\IIIL(U7T)| §2 Z Rg
veGvFET veT w#r

In particular, to bound 3, ., ., [¥,(v,7)], it suffices to
bound Y ., 2 Ry for every tree T of maximum degree
< A rooted at r. This motivates the next result.

Proposition IV.4 (R-Pseudoinfluence Bound). Assume X is
up-to-A unique with gap 0 < § < 1. Then for every tree T
of maximum degree < A rooted at r, we have the bound

Y. Ry <exp(O(1/6)
veT w#r
Theorem I.13 follows immediately as a consequence. We
leave the proof of Lemma IV.3 to the full version of the
paper [ALO20]. The proof of Proposition 1V.4 is sketched
in the following section.

A. R-Pseudoinfluence Decay

Our goal is now to prove Proposition IV.4. To do this, we
write

[e.e]

S oR=Y Y ®

veT w#r L=1v€EL,(¢)

Thus, it suffices to bound ) L.y Ry for each level L.
We show that this quantity in fact decays exponentially
fast as ¢ increases when A\ < A.(A). Specifically, to prove
Proposition 1V.4, we use the following two lemmas, which
precisely quantify the decay rate.

Proposition IV.5 (Decay Rate Bound). Assume \ is up-to-A
unique with gap 0 < § < 1. Then there exists £y = ©(1/9)
such that for every tree T of maximum degree < A rooted
at v and any £ >y, we have the bound

Ry /¢
ZUELT(K) SO(l)m/ Lo
maxyer, (£—£o) {ZveLu(Zo) RZ}

We prove Proposition IV.5 in the next section. Roughly
speaking, the reason for the assumption ¢ > ¢y above is that
we can exploit spatial mixing to argue that the marginals of
the root is independent of the boundary condition at level /,
for a large enough ¢j; see Section V for more details. For
{ < £y we use the following lemma, whose proof we leave
to the full version of the paper [ALO20].

Lemma IV.6 (Trivial “Decay” Rate). Assume A\ up-to-A
unique with gap 0 < § < 1. Then for any tree T of maximum
degree < A rooted at v and any £ > 0, we have

2ver, o) Rr
max,cr, (1) {ZveLu(Z—l) RZ}

Furthermore, for the first level, we have the inequality

Y. RI<0()

vEL,(1)

<0(1)

These two results together immediately imply Proposi-
tion IV.4.

V. BOUNDING THE R-PSEUDOINFLUENCE DECAY: THE
POTENTIAL METHOD

Our goal in this section is to prove Proposition IV.5.
We use the potential method (otherwise known as the
message decay argument), which has been successfully used
in [LLY12; LLY13; Res+13; SST14; Sin+15] to establish
strong spatial mixing all the way up to the uniqueness
threshold. We use the following potential function ¢, first
introduced in [LLY13].

o(R) ¥ 2log(VR+ VR + 1)

def 7ipy — 1
PR ) = s

We note that since ® is continuous, positive, and decreasing,
we have ¢ is continuously differentiable, strictly monotone
increasing and concave. One additional feature of this poten-
tial function is that it has no dependence on A or A. While
it may be comforting to have an explicit expression for ¢,
all of our proofs rely at most on the explicit expression for
®, rather than ¢. For the derivation and further discussion
of this potential function, we refer the reader to [LLY13].

Definition V.1 (p-Pseudoinfluence). For a boundary con-
dition p : A — [0,1], where A is a subset of vertices not
containing r, let KP = @(RP). Again, we define

0 1
= [ ) = (R )

Define the p-pseudoinfluence of a vertex v on r as

def 0 1
v,p X v,p v,p
Kor g R

v def
v def

max 2P
p: Ly (€(v))~{v}—[0,1]

Finally, we define

i def " i
KI’IIII’I £ — Kp — RIIllIl E
() por, i (R (0))
def
Kmax g — Kp — RI]laX [
2 o 0 1 e(R(0))

To control Zve L..(0) Ry, it turns out it suffices to control
the decay of ZveLr(@ KC? as ¢ increases.

Proposition V.2 (p-Pseudoinfluence Decay Rate Bound).
Assume X\ is up-to-A unique with gap 0 < § < 1 (see
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Definition 11.3). For £ > 2, assume that there exists 1 < 1/2
such that for all w € L,.(1), we have the inequality
|RWn (¢ — 1) — RX(¢ — 1)| < n. Then,

2 ver, (v K7
maxyer, (1) {ZUGLu(eq) ’CZ}

Unfortunately, due to the additional error factor of
(1+2n)>"", we must control 7 = 5(¢). To do this, we
leverage a “precise” version of the strong spatial mixing
result proved in [Wei06], where the constant is explicit.

Definition V.3. Define n* = 1;?7:‘((;)) . |Rmin(2) - Rmax(2)|-

Note by Fact I1.8 and the fact that A < O(1/A), we have

A A
(1+ )2

<(1+2p)>TVI=s.

n* <

: ’)\ - <0(1/A). (3

X
(1+0)4
Proposition V.4 (Strong Spatial Mixing [Wei06]). Assume

that X is up-to-A unique with gap 0 < § < 1. Then for all
trees T rooted at r of maximum degree < A, we have

max ()| < VT=0

A proof of this specific bound is provided in the full
version of the paper. With these results in hand, we may
deduce Proposition IV.5.

‘ Rmm (6)

A. Proof Sketch of Proposition IV.5

In order to apply Proposition V.2 and Proposition V.4, we
must relate R? to K. This is done in the following lemma.

Lemma V.5 (Relating R-Pseudoinfluence to
p-Pseudoinfluence). Let T' be a tree rooted at r. For
any ¢ > 1 and any vertex v € L,({), we have the bound

BR™(0)) - RY < KY < B(R™™(0)) - RY.

The main idea in the proof of Proposition IV.5 is then to
first map the R-pseudoinfluence to the ¢-pseudoinfluence
(with a loss of 1/®(R™**(¢)) using Lemma V.5, apply
the ¢-pseudoinfluence decay Proposition V.2, and then map
back to the R-pseudoinfluence (with a loss of ®(R™in(/)))
using Lemma V.5 again. The details are left to the full
version of the paper [ALO20].

At this point, all that is left is to prove Proposition V.2
and Proposition V.4. We prove Proposition V.2 and Propo-
sition V.4 in the following subsections.

B. The p-Pseudoinfluence Decay: Proof Sketch of Proposi-
tion V.2

Our goal in this subsection is to prove Proposition V.2.
While initially this appears to be a more daunting task, it is
made feasible by the fact that the tree recurrence F' for R
induces a corresponding tree recurrence for K given by

KZ=(poFop ) KJ:u€ L.(1)).

Using this tree recurrence for K7, we prove Lemma V.6
and Lemma V.8. Chained together with Lemma V.7, which
lies at the heart of the results in [LLY 13], we immediately
obtain Proposition V.2.

Throughout, we will let K = (K, : u € L.(1)),
K™&X(f) = (KM%({ — 1) : u € L.(1)) and K™n({) =
(K™n(¢ —1) : u € Ly(1)) denote vectors with |L,(1)]
many entries.

Lemma V.6 (True Decay). For every A, and every tree T'
rooted at v, we have the inequality

Dver, o Kr
max,er, (1) {ZUeL“(z—l) ’CZ}
< 0K, (o Fop™)(K)|.

Z Kmi“(é)inlgi(KmaX(Z)
w€L,(1) ==
Lemma V.7 (Ideal Decay; [LLY13] Lemmas 12, 13, 14).
Assume X is up-to-/\ unique with gap 0 < 6 < 1. Let T be
any tree of maximum degree < A rooted at r. Then we have
the bound

max ||[V(poFoep~ D) (K)||1§\/1—5

0<K<oo
Lemma V.8 (Relating True Decay to Ideal Decay). Assume
’Rmax(ﬂ — 1) — R¥(¢ — 1)| <1 for all u € L,(1), where
n < 5. Then for every )\, and every tree T with maximum
degree < A rooted at r, we have the inequality

0 Fop H)(K
D B |09 0 F oo™ (K)]

u€eL, (1)

< 1+ 202 | V(p o F o H (K™ (1)),

VI. CONCLUSION AND OPEN PROBLEMS

In this work we have shown that for the hardcore
distribution on independent sets of a graph of maximum
degree < A with parameter A = (1 — 0)A.(A), there is
a constant C'(0) such that the Glauber dynamics mixes in
O(n€©) steps. While this running time does not have an
exponential dependence on log A as in the correlation decay
algorithm of [Wei06], its dependence on ¢ is significantly
worse. Specifically, we have that C(§) < exp (O(1/9)),
while the correlation decay algorithm of [Wei06] exhibits
a dependence of C'(§) < O(1/9).

In a follow-up work by [CLV20], they showed how one
can bound the total pairwise influence of the root of a tree
on all other vertices. This is in contrast to our analysis,
which focuses on the total pairwise influence of all other
vertices on the root. They achieve an upper bound of O(1/4),
giving O(1/6)-spectral independence and n°(/%) mixing.
They also generalize to all antiferromagnetic two-state spin
systems. We leave it as an open problem to bound the total
pairwise influence on the root by O(1/4), and to generalize
this to other two-state spin systems.
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We show in the full version of the paper that in general,
one cannot bound Apax (¥ u) asymptotically better than
O(1/6), even for the special case of trees. We do this
by showing for the infinite A-regular tree that the total
pairwise influence on a vertex is ©(1/4). This shows that in
general the best bound on the mixing time of the Glauber
dynamics one can hope to achieve by bounding the spectral
independence and applying the local-to-global theorem of
[AL20] is n©(1/9)_ However, prior results [Vig01; Eft+16]
for this problem appear to suggest that O (C'(§)nlogn)
should be possible, which illustrates a key limitation of the
current local-to-global results.
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