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Abstract—We say a discrete probability distribution over
subsets of a finite ground set is spectrally independent if an
associated pairwise influence matrix has a bounded largest
eigenvalue for the distribution and all of its conditional dis-
tributions. We prove that if a distribution is spectrally inde-
pendent, then the corresponding high dimensional simplicial
complex is a local spectral expander. Using a line of recent
works on mixing time of high dimensional walks on simplicial
complexes [KM17; DK17; KO18; AL20], this implies that the
corresponding Glauber dynamics mixes rapidly and generates
(approximate) samples from the given distribution.

As an application, we show that natural Glauber dynamics
mixes rapidly (in polynomial time) to generate a random
independent set from the hardcore model up to the uniqueness
threshold. This improves the quasi-polynomial running time
of Weitz’s deterministic correlation decay algorithm [Wei06]
for estimating the hardcore partition function, also answering
a long-standing open problem of mixing time of Glauber
dynamics [LV97; LV99; DG00; Vig01; Eft+16].

Keywords-approximate counting; Markov chain Monte
Carlo; Glauber dynamics; spectral independence; high-
dimensional expanders; correlation decay

I. INTRODUCTION

Suppose we have a ground set [n] = {1, . . . , n} of

elements. Let μ : 2[n] → R+ be a probability distribution

on subsets of [n]. We say μ is d-homogeneous, if for every

S ∈ supp{μ}, we have |S| = d. When the choice of μ and

[n] are clear from context, we will write Pr[i] = PrS∼μ[i ∈
S] and Pr[j] = PrS∼μ[i /∈ S]. The following definitions are

crucial in our paper.

Definition I.1 ((Signed) Pairwise Influence Matrix). Fix a
distribution μ on subsets of a ground set [n]. We define the
pairwise correlation matrix Ψμ ∈ R

n×n by

Ψμ(i, j)
def
= Pr[j | i]− Pr[j | i]

for i �= j, and Ψμ(i, i) = 0 for all i = 1, . . . , n. We refer to
the entry Ψμ(i, j) as the pairwise influence of i on j.

Note this differs from existing definitions of “influence”;

see Section I-D for further discussion. One may also view

Ψμ is a matrix of pairwise correlations.

Definition I.2 (Spectral Independence). We say a probability
distribution μ on subsets of [n] is η-spectrally independent

if λmax(Ψμ) ≤ η. Note that since the maximum eigenvalue
is always at most the maximum absolute row/column sum,
we have μ is η-spectrally independent if either∑

j �=i

|Ψμ(i, j)| ≤ η or
∑
j �=i

|Ψμ(j, i)| ≤ η,

We say μ is (η0, . . . , ηn−2)-spectrally independent if
μ is η0-independent, for all 0 ≤ i < n, {μ|i in/out}
is η1-independent, for all i, j, {μ|i in/out, jin/out} is η2-
independent, and so on.

Note that for any i, we always have ηi ≤ n − i − 1;

the smaller ηi’s are, the more independent μ is. Ideally, we

are interested in distributions where η0, . . . , ηn−2 ≤ O(1)
independent of n. Observe that if μ is a product distribution,

then it is (0, . . . , 0)-independent.

Let us explain a more interesting example. Recall that a

probability distribution μ is negatively correlated if for all

i �= j, we have Pr[i|j] ≤ Pr[i]. If μ is d-homogeneous

and all measures obtainable from μ by conditioning are

negatively correlated, then μ is (1, 1, . . . , 1)-spectrally in-

dependent.

For a bad example, consider the distribution μ
which places 1/2 probability to both

{
1, . . . , n

2

}
and{

n
2 + 1, . . . , n

}
. In this case , λmax(Ψμ) = n− 1.

Given a probability distribution μ we can define a Markov

chain called the Glauber dynamics to generate samples from

μ as follows: Given a set S ∈ supp{μ}, we choose a

uniformly random element i and we transition to{
S � {i} with prob

μ(S�{i})
μ(S�{i})+μ(S∪{i})

S ∪ {i} o.w.,

It turns out that this chain has the right stationary distribu-

tion.

The following is our main technical theorem.

Theorem I.3 (Main). For any (η0, . . . , ηn−2)-spectrally
independent distribution μ : 2[n] → R+, the natural Glauber
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dynamics (defined above) has spectral gap at least

1

n

n−2∏
i=0

(
1− ηi

n− i− 1

)

We note that prior works [FM92; AGR16] show that as

long as the distribution μ, and all its conditional distribu-

tions, satisfying certain negative correlation properties, then

a very similar Markov chain mixes rapidly. In our setting,

negative correlation is equivalent to all entries of Ψμ being

nonpositive. Thus, in a similar spirit to spectral negative

dependence [Ana+19], one may view spectral independence

and Theorem I.3 as also relaxing these negative correlation

requirements to allow for some positive correlation between

elements, while still providing mixing time guarantees.

In the following sections we will explain an application

of the above theorem in bounding the mixing time of the

Glauber dynamics for sampling independent sets from the

hardcore distribution. The proof of Theorem I.3 uses recent

connections developed by the authors and collaborators

between analysis of Markov chains and the field of high

dimensional expanders [Ana+19].

A. Connections to High Dimensional Simplicial Complexes

Let us first phrase our main contribution in the language

of high-dimensional expanders. For a ground set U = [n]
of elements, a simplicial complex X is a downward closed

family of subsets of U . Sets in X are also called faces of

X . The dimension of a face in X is its size. For an integer

k, we write X(k) to denote all faces of X of size k. We

say X is pure if all maximal faces have the same size. The

dimension of X is the size of the maximum face in X . For

a pure d-dimensional simplicial complex X , we say X is

d-partite if U can be partitioned into sets U1, . . . , Ud such

that every maximal face σ has exactly one element of each

Ui.

We will often weight the maximal faces of a pure d-

dimensional simplicial complex X by some function w :
X(d) → R>0. This induces weights on all faces of X via

w(τ) =
∑

σ∈X(d):σ⊃τ

w(σ) (1)

For a face τ of X , the link of τ is the simplicial complex

Xτ = {σ � τ : σ ∈ X,σ ⊃ τ}. We endow the maximal

faces of Xτ with the weight wτ (σ) = w(τ ∪ σ).
The 1-skeleton of link Xτ of τ is a weighted graph defined

as follows: For every element i ∈ U , such that {i} ∈ Xτ we

have a vertex. We connect two vertices i, j if {i, j} ∈ Xτ

and the weight of the edges is wτ ({i, j}). We will let Pτ

denote the simple random walk on the 1-skeleton of Xτ .

We also define a random walk on the maximal faces of

X by a two-step process. If the walk is currently at some

σ ∈ X(d), we transition by

1) removing a uniformly random element i ∈ σ

2) adding a random j /∈ σ�{i} to σ�{i} with probability

proportional to w(σ ∪ {j}� {i})
Note that there is always a nonzero probability staying at σ
in a given step.

The transition probability matrix P∨
d of this random walk

may be written down as

P∨
d (σ, σ′) =

⎧⎪⎨
⎪⎩
∑

τ⊂σ:|τ |=d−1
w(σ)
d·w(τ) , if σ = σ′

w(σ′)
d·w(σ∩σ′) , if |σ ∩ σ′| = d− 1

0, o.w.

where we recall that w(τ) =
∑

σ∈X(d):σ⊃τ w(σ).
Given a distribution μ on subsets of [n], define a pure n-

dimensional n-partite simplicial complex Xμ as follows: Let

the ground set of elements be {1, 1, 2, 2, . . . , n, n} with n
parts U1 = {1, 1}, U2 = {2, 2}, . . . , Un = {n, n}. For every

set S ∈ supp{μ} we add a maximal face σS which has i
for every i ∈ S and i for every i /∈ S. We assign a weight to

σS given by w(σS) = μ(S). We turn this into a simplicial

complex by taking downward closure of all maximal faces.

Note that in this case, P∨
n describes exactly the Glauber

dynamics for sampling S ⊂ [n] with probability proportional

to μ(S).
We are now ready to define the notion of high-dimensional

expansion that we will use, which was first introduced in

[DK17; KM17; KO18; Opp18].

Definition I.4 (Local Spectral Expander; [KO18]). Let X be
a pure d-dimensional simplex complex. We say a face τ of
X is an α-spectral expander if the second largest eigenvalue
of the simple (non-lazy) random walk on the 1-skeleton of
Xτ is at most α. We say X is (α0, . . . , αd−2)-local spectral
expander if for all 0 ≤ k ≤ d − 2, every τ ∈ X(k) is an
αk-spectral expander.

We prove the following theorem making connection be-

tween spectral independence of probability distributions and

local spectral expanders.

Theorem I.5. For any (η0, . . . , ηn−2)-spectrally indepen-
dent distribution μ : 2[n] → R+, the pure n-dimensional
n-partite simplicial complex Xμ is a ( η0

n−1 ,
η1

n−2 , . . . ,
ηn−2

1 )-
local spectral expander.

We note that there are strong theorems in the literature of

high-dimensional expanders [Opp18] which show that if the

(d− 2)-dimensional faces of a pure d-dimensional complex

X are α-spectral expanders for α ≤ 1/2d, then every face

of X is a 2α-spectral expander. However, such theorems

fail dramatically when the (d − 2)-dimensional faces have

spectral expansion, say, 1/2.

Here, the main new ingredient is to show that as long

as the underlying distribution μ is spectrally independent

for η0, . . . , ηn−2 ≤ O(1), then we get better and better

spectral expansion as we go to lower dimensional faces of

the underlying weighted simplicial complex Xμ.
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The key usefulness of local spectral expansion lies in the

following local-to-global theorem, which may be used to

bound λ2(P
∨
d ). A weaker version of this result was already

proved in [KO18].

Theorem I.6 ([AL20]). Consider a pure d-dimensional
simplicial complex X with weights w. If (X,w) is a
(α0, . . . , αd−2)-local spectral expander, then

λ2(P
∨
d ) ≤ 1− 1

d

d−2∏
k=0

(1− αk)

Remark I.7. For instance, if there is a constant α such that

(X,w) is a
(

α
d−1 ,

α
d−2 , . . . ,

α
2 ,

α
1

)
-local spectral expander,

then we would obtain λ2(P
∨
d ) ≤ 1− 1

d1+α . This is precisely

what we do for the hardcore model.

Proof of Theorem I.3: By Theorem I.5, spectral inde-

pendence of μ implies strong local spectral expansion of Xμ.

Theorem I.6 then furnishes the spectral gap of the Glauber

dynamics, which we recall is described by P∨
n .

It now remains to prove Theorem I.5.

B. Application to Sampling from Hardcore Distribution

Our main application of the above machinery is to gen-

erate random samples from the hardcore distribution. Given

a graph G = (V,E), and a parameter λ > 0, sample an

independent set I with probability λ|I|/ZG(λ), where

ZG(λ) =
∑

I⊂V independent

λ|I|

is the normalizing constant, a.k.a., the partition function. Ex-

act computation of ZG(λ) is #P-Hard [Val79; Vad95; Gre00]

even when the input graphs have special structure [Vad02]

and hence, we can only hope for efficient approximation

algorithms.

Studying the hardcore model has been pivotal in helping

us understand the relationship between phase transitions in

statistical physics and phase transitions in efficient approx-

imability. Specifically, has been known since [Kel85] that

there is a critical threshold λc(Δ)
def
= (Δ−1)Δ−1

(Δ−2)Δ ≈ e
Δ−2 for

which the Gibbs distribution is unique on the infinite Δ-

regular tree if and only if λ < λc(Δ). The case λ < λc(Δ)
exactly corresponds to the regime where the “influence” of

a vertex u on another vertex v decays exponentially fast in

the distance between u, v. This is known to physicists as

the uniqueness regime for the hardcore model. On the flip

side, λ > λc(Δ) exactly corresponds to the regime where

long-range correlations persist in the model.

In the seminal work of Weitz [Wei06], it was shown that

for any λ < λc(Δ) and fixed constant Δ, there exists a

deterministic fully polynomial time approximation scheme

(FPTAS) for estimating ZG(λ). Immediately following, a

sequence of results [SS14; Gal+14; GŠV15; GŠV16] begin-

ning with the seminal work of Sly [Sly10] proved a matching

lower bound for the case λ > λc(Δ). There is no fully

polynomial randomized approximation scheme (FPRAS) for

estimating ZG(λ) on graphs of maximum degree ≤ Δ when

λ > λc(Δ) unless NP = RP. This rigorously established the

first example where the statistical physics phase transition

coincides with a computational complexity phase transition.
Weitz’s algorithm is based on the correlation decay

framework which was later on developed for estimating

partition functions of two state spin systems [LLY12;

LLY13; SST14]. More recently, a new framework was estab-

lished based on Barvinok’s polynomial interpolation method

[Bar16b; Bar16a; PR17; PR19] where Weitz’s result was re-

proved using a different deterministic algorithm which only

uses the knowledge of connected subgraphs of G of diameter

Oε,δ(log n) [PR17]. All of these methods suffer from a

quasi-polynomial running time when the input graph has

unbounded max-degree. Specifically, if λ = (1 − δ)λc(Δ),
then there is a constant C(δ) such that Weitz’s correlation

decay algorithm returns a (1± ε)-multiplicative approxima-

tion of ZG(λ) in time O
(
(n/ε)C(δ) logΔ

)
. In particular, due

to the exponential dependence in logΔ, Weitz’s algorithm

does not run in polynomial time for graphs with unbounded

maximum degree. Roughly speaking, the main difficulty is

that in order to estimate the partition function, one needs

to estimate the marginal probabilities of vertices within

O(1/n)-error, and to do that one needs to look at O(log n)-
depth neighborhood of vertices which leads to a quasi-

polynomial number of operations on graphs of max-degree

polynomial in n.
On the other hand, it is conjectured that the natural

Glauber dynamics mixes in polynomial time up to the

uniqueness threshold. But to this date after a long line of

works [LV97; LV99; DG00; Vig01] this was only shown

up to 2
Δ−2 for general graphs and up to the uniqueness

threshold for special families of graphs [Wei04; Wei06;

Res+13; Eft+16]. We use the result of the previous sections

to prove that for any graph the Glauber dynamics mix in

polynomial time up to the uniqueness threshold.
For sampling from the hardcore model, the Glauber dy-

namics can be described via the following two-step process.

To make a transition from an independent set I to another,

1) Select a uniformly random vertex v ∈ V .

2) If v ∈ I , remove v from I with probability 1
1+λ , and

keep it otherwise.

3) If v /∈ I and v is not a neighbor of some u ∈ I , add

v to I with probability λ
1+λ , and leave it otherwise.

It is clear that this process is reversible. It is also clear that

this Markov chain is connected, since there is a path from

every independent set to the empty independent set ∅. Hence,

these dynamics have a unique stationary distribution π, and

the distribution of the chain converges to stationarity in total

variation distance as the number of steps goes to infinity.

Finally, by checking the detailed balance condition that the

stationary distribution π of the Glauber dynamics is exactly
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the Gibbs distribution μ. Our goal is to bound the ε-total

variation mixing time of the Glauber dynamics starting from

any state τ , which is given by

tτ (ε) = min
{
t ∈ Z≥0 :

∥∥P t(τ, ·)− π
∥∥
1

} ≤ ε

where P denotes the transition probability matrix describing

the chain. Here, P t(τ, ·) gives the distribution at time t of

the chain started at τ .

Theorem I.8. There is a function C : [0, 1] → R>0 such
that for every graph G = (V,E) with maximum degree
≤ Δ, every 0 < δ < 1, and λ = (1 − δ)λc(Δ), the asso-
ciated hardcore distribution μ is (η0, . . . , ηn−2)-spectrally
independent where ηi ≤ min

{
C(δ), λ

1+λ (n− i− 1)
}

for
every 0 ≤ i ≤ n− 2.

Combined with Theorem I.3, we obtain fast mixing for the

Glauber dynamics for sampling independent sets according

to the hardcore distribution whenever λ < λc(Δ) (for the

precise mixing time, see Remark I.10).

Corollary I.9. For every δ > 0, there exists a fully poly-
nomial randomized approximation scheme for estimating
ZG(λ) at λ = (1−δ)λc(Δ) on any graph G with maximum
degree ≤ Δ.

Remark I.10. For 0 < δ < 1, λ = (1−δ)λc(Δ) and a graph

G = (V,E) maximum degree Δ, the Glauber dynamics

from any starting state τ has mixing time

tτ (ε) ≤ O

(
((1 + λ) · n)1+C(δ) · log

(
1

ε · μ(τ)
))

To be explicit, the constant C(δ) obeys the bound

C(δ) ≤ exp(O(1/δ))

Note μ(∅) = 1
ZG(λ) ≥ 1

(1+λ)n so that

t∅(ε) ≤ O

(
n2+C(δ) · log

(
1

ε

))

The key advantage of our result is that the running time has

no dependence on Δ. Furthermore, λc(Δ) ≤ 4 for all Δ ≥ 3
so we may treat λ as bounded above by a constant. Hence,

only the gap parameter δ matters.

C. Related Works

The question of building deterministic approximation al-

gorithms for estimating ZG(λ) on bounded degree graphs

has been settled. The seminal work of Weitz [Wei06] proved

that there is an FPTAS on graphs of maximum degree ≤ Δ
whenever λ < λc(Δ) using the correlation decay method.

The polynomial interpolation method of [Bar16a] has also

since been demonstrated to give an FPTAS [PR17; PR19]

as well.

For studying the mixing time of the Glauber dynamics

in the uniqueness regime, there has been a long line of

work starting with [LV97; LV99; DG00; Vig01]. For general

graphs, the state-of-the-art was given by [Vig01], which

showed the Glauber dynamics mixes in O(n log n) steps

when λ < 2
Δ−2 . A more recent result of [Eft+16] shows

that for any 0 < δ < 1, there is a Δ0(δ) such that for any

Δ ≥ Δ0(δ) and λ = (1 − δ)λc(Δ), the Glauber dynamics

mixes in O(n log n) steps for graphs with maximum degree

Δ and girth ≥ 7. Much more is known for line graphs

[JS89], amenable graphs [Dye+02; Wei04; Wei06], trees

[MSW03; MSW04; Wei04], planar graphs [Hay06], graphs

with large girth [HV05], Z
2 [VVY13; Res+13; Bla+13;

Bla+19], and G(n, d/n) random graphs (or, more generally,

graphs with bounded connective constant) [MS08; MS13;

SSY13; Sin+15].

On the hardness side, exact computation of ZG(λ) is

known to be #P-Hard [Val79; Vad95; Gre00], even for

very restricted families of graphs [Vad02]. For hardness of

approximation, [LV97] showed there exists a constant c > 0
such that there is no FPRAS for estimating ZG(1) when

λ > c/Δ unless NP = RP. For the case of evaluating ZG(1),
this was improved in [DFJ02], which showed that there is

no FPRAS for estimating ZG(1) on graphs with maximum

degree exceeding 25 unless NP = RP. [DFJ02] further

showed that the Glauber dynamics has exponential mixing

time for Δ ≥ 6. [MWW07] provided further evidence the

Markov chain techniques are likely to fail for sampling

from the Gibbs distribution when λ > λc(Δ). These results

were dramatically improved in the work of [Sly10] (and

further refined by follow-up works [SS14; Gal+14; GŠV15;

GŠV16]), which showed that unless NP = RP, there is no

FPRAS for estimating ZG(λ) on graphs of maximum degree

≤ Δ when λ > λc(Δ).

D. Relation to Existing Definitions of Influence

For spin systems, our pairwise influence matrix is reminis-

cent but different from the Dobrushin influence matrix used

in [Hay06; DGJ09] and the works [Dob70; DS85a; DS85b;

DS87]. Specifically, the (i, j)th entry of the Dobrushin

influence matrix considered in these prior works is given by

the maximum absolute difference
∣∣Pr[j | i, τ ]− Pr[j | i, τ ]∣∣

over all partial assignments τ of the remaining ground ele-

ments excluding i, j. In the case of the hardcore distribution

for an input graph G = (V,E) with fugacity λ > 0, this

influence matrix is exactly λ
1+λA, where A is the adjacency

matrix of G (see, for instance, [Hay06]). On the other hand,

our pairwise influence matrix Ψμ may have nonzero entries

for u, v ∈ V not connected by an edge, since Ψμ(u, v)
considers the marginal of v conditioned only on u or u, with

the assignment for other elements left undetermined. Fur-

thermore, our method requires understanding exponentially

many pairwise influence matrices, one for each conditional

distribution, while all variants of the Dobrushin condition

only require analyzing a single Dobrushin influence matrix.
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E. Subsequent Works

Finally, we mention several follow-up works applying and

extending the notion of spectral independence we introduce

this paper. The first is the work by [CLV20], where they

obtained rapid mixing of the Glauber dynamics for all two-

state spin systems in the correlation decay regime. [Che+20;

Fen+20] extended our notion of spectral independence to

multi-state spin systems, and obtained new mixing results for

the Glauber dynamics for sampling q-colorings on triangle-

free graphs.

F. Proof Overview

For a face σ of Xμ, recall Pσ denotes the transition

probability matrix of the simple random walk on the 1-

skeleton of Xμ
σ . Our first technical contribution is the

following.

Theorem I.11. For every distribution μ over subsets of a
ground set [n], the eigenvalues of Ψμ are real. Furthermore,
we have the identity λ2(P∅) = 1

n−1 · λmax(Ψμ).

Given this, we may now prove Theorem I.5.

Proof of Theorem I.5: Since Theorem I.11 holds for

any distribution μ, it in particular holds for all conditional

distributions of μ. Now, observe that conditioning on an

element i being “in” corresponds exactly to taking the link

of Xμ w.r.t. i. Similarly, conditioning on an element i
being “out” corresponds exactly to taking the link of Xμ

w.r.t. i. The result then follows by definition of spectral

independence and local spectral expansion.

The proof of Theorem I.11 hinges on the observation

that for each element i ∈ [n], no face of Xμ can contain

both i and i. In particular, there is no edge connecting

i and i in the 1-skeleton of Xμ, for each i. Thus, there

are n parts, one corresponding to each element of [n],
such that all edges only go between parts. This n-partite
structure of the 1-skeleton of Xμ induces n − 1 additional

“trivial” eigenvalues, besides the trivial eigenvalue of 1, in

the transition matrix P∅. This is, in fact, a generalization of

the fact that the transition matrix of a bipartite graph always

also has eigenvalue −1. We show that Ψμ is essentially equal

to P∅ projected away from these n trivial eigenvalues; see

Claim III.2 and Claim III.3 in Section III for more details.

We apply these results to the hardcore distribution over

independent sets of an input graph G = (V,E). Theo-

rem I.11 tells us that to bound λ2(P∅), it suffices to bound

λmax(Ψμ). We show how to bound λmax(Ψμ) by bounding∑
u∈V :u�=v |Ψμ(u, v)| for any vertex v ∈ V . In particular,

we have the following two bounds.

Lemma I.12. Consider the hardcore distribution μ on
independent sets of a graph G = (V,E) on n vertices. Then
for every v ∈ V , and every λ > 0, we have the bound∑

u∈V :u�=v

|Ψμ(u, v)| ≤ λ

1 + λ
· (n− 1)

Proof: Observe that the maximum probability that a

given vertex is placed in a random independent set is at

most λ
1+λ . In particular, Pr[v | u],Pr[v | u] ∈

[
0, λ

1+λ

]
so

that |Ψμ(u, v)| ≤ λ
1+λ for every u �= v. The claim follows.

Theorem I.13. There exists a function C : [0, 1] → R>0

such that for every graph G = (V,E) of maximum degree
≤ Δ, every vertex v ∈ V , every 0 < δ < 1, and λ =
(1− δ)λc(Δ), we have the following bound,∑

u∈V :u�=v

|Ψμ(u, v)| ≤ C(δ)

To be explicit, C(δ) satisfies C(δ) ≤ exp(O(1/δ)).

Remark I.14. We believe C(δ) ≤ O(1/δ) is possible, which

we show is tight in the full version of the paper. We leave

this as an open problem. We note that in follow-up work,

[CLV20] shows that
∑

u∈V :u�=v |Ψμ(v, u)| ≤ O(1/δ). In

other words, they analyze the total pairwise influence of a

vertex, while we analyze the total pairwise influence on a

vertex.

The key here is that we only need to understand the total

sum of correlations between pairs of vertices. This is in

contrast to strong spatial mixing results, where one has to

analyze the correlation of any subset of vertices on another

given vertex.

To prove Theorem I.13, first, we take advantage of the

self-avoiding walk tree construction introduced in [Wei06]

to reduce to a problem on trees. Then, we give an method

to decouple the influence of a set of vertices S on a vertex

v into the sum of the single-vertex pairwise influences of

each u ∈ S on v. The primary takeaway from these two

steps is that it suffices to control the total pairwise influence

of vertices on the root in any rooted tree of maximum degree

≤ Δ.

To control correlations between vertices and the root, we

leverage the well-known tree recursion, which expresses the

marginal of the root in terms of the marginals of its children.

We amortize the total pairwise influence of all vertices at

a fixed distance from the root using the potential method

[LLY12; LLY13; Res+13; SSY13; SST14; Sin+15]; we refer

to [Sri14] for further discussion of the potential method. This

allows us to show a strong kind of correlation decay, where

the total pairwise influence of all vertices at a fixed distance

decays as the distance grows. After sharing a preliminary

draft of this paper, it was pointed out to us by Eric Vigoda

and Zongchen Chen that the notion of correlation decay we

prove is very similar to the notion of aggregate strong spatial
mixing (for trees) studied in [MS13; BCV20].

Now, observe that Theorem I.8 simply follows from

Lemma I.12 and Theorem I.8. As a consequence, all we

are left to do is to prove Theorem I.11 and Theorem I.13,

which we do in the remainder of the paper.
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G. Structure of the Paper

In Section II, we review necessary background in the the-

ory of Markov chains, and correlation decay. In Section III,

we sketch the proof of Theorem I.11. In Section IV and

Section V, we sketch the proof of Theorem I.13. We leave

detailed proofs to the full version of the paper [ALO20].

II. PRELIMINARIES

First, let us establish some notational conventions. Un-

less otherwise specified, all logarithms are in base e. All

vectors are assumed to be column vectors. For two vectors

φ, ψ ∈ R
n, we use 〈φ, ψ〉 to denote the standard Euclidean

inner product between φ and ψ. We use R>0 and R�0 to

denote the set of positive and nonnegative real numbers,

respectively, and [n] to denote {1, . . . , n}.

A. Markov Chains and Random Walks

We consider a Markov chain as a triple (Ω, P, π) where Ω
denotes a (finite) state space, P ∈ R

Ω×Ω
�0 denotes a transition

probability matrix and π ∈ R
Ω
�0 denotes a stationary

distribution of the chain (which will be unique for all chains

we consider).

A chain (Ω, P, π) is reversible if there is a nonzero

nonnegative function f : Ω → R�0 such that for any pair

of states τ, σ ∈ Ω, f(τ)P (τ, σ) = f(σ)P (σ, τ). If this

condition is satisfied, then f is proportional to π. In this

paper we only work with reversible Markov chains. Note that

being reversible means that the transition matrix P is self-

adjoint w.r.t. the inner product 〈φ, ψ〉f = φ
 diag(f)ψ. For

any reversible Markov chain (Ω, P, π), the largest eigenvalue

of P is 1. We let λ∗(P ) denote the second largest eigenvalue

of P in absolute value. That is, if −1 ≤ λn ≤ · · · ≤ λ1 = 1
are the eigenvalues of P , then λ∗(P ) = max {|λ2| , |λn|}.

Theorem II.1 ([DS91]). For any reversible irreducible
Markov chain (Ω, P, π), ε > 0, and any starting state τ ∈ Ω,

tτ (ε) ≤ 1

1− λ∗(P )
· log

(
1

ε · π(τ)
)
.

B. Tree Recurrences for Hardcore Model

Fix a tree T rooted at some vertex r. For a vertex v in

T , let �(v) denote its distance from the root r. We will

sometimes refer to it as the “level” which contains v. For a

level �, let Lr(�) = {v ∈ T : �(v) = �}. For a vertex u ∈ T ,

we will write Tu for the subtree of T rooted at u.

A key tool we will need to analyze the hardcore model

on trees is given by the tree recurrence. To describe the tree

recurrence, we need to consider a change of variables w.r.t.

the marginal probabilities. Fix a tree T arbitrarily rooted at

some vertex r ∈ T , and an arbitrary boundary condition

p : A → [0, 1] for a subset of remaining vertices A. We

write the ratio of conditional probabilities as

Rp
T,r =

Pr[r | p]
Pr[r | p] =

Pr[r | p]
1− Pr[r | p]

Here, we think of the function p : A → [0, 1] as fixing

the marginal probability of vertices v ∈ A to p(v). In the

special case where p maps all vertices of A to 0 or 1, then p
is really a boundary condition in the traditional sense, as p is

pinning the vertices of A to be in/out. However, later on, we

will need the additional flexibility of pinning the marginal

of v ∈ A to a specific value p(v) ∈ [0, 1]
With this notation in hand, we may write the tree recur-

rence for the hardcore model as

Rp
T,r = F (Rp

Tu,u
: u ∈ Lr(1))

def
= λ

∏
u∈Lr(1)

1

Rp
Tu,u

+ 1

(2)

Here, we make a slight abuse of notation by writing p even

when considering a subtree Tu; this should be understood as

the restriction of p to this subtree. We drop the superscript

when p is empty; we also drop the subscript T when the

tree is clear from context. In the case of a depth-� complete

d-ary tree rooted at r with no boundary conditions, all of the

Rσ
u are the same. In this case, the tree recurrence simplifies

to a univariate recurrence given by

fd(R) = λ

(
1

R+ 1

)d

C. Correlation Decay and Weitz’s Self-Avoiding Walk Tree

In this subsection, we introduce the necessary notation for

describing the correlation decay property for spin systems.

We begin by rigorously defining correlation decay for a

general distribution μ over subsets of a ground set [n].

Definition II.2 (Spatial Mixing). Fix a metric d : [n]×[n] →
R≥0. We say a distribution μ on subsets of [n] exhibits weak
spatial mixing w.r.t. d with rate 0 < α < 1 and constant
C > 0 if for every i ∈ [n], every S ⊂ [n] with i /∈ S, and
every pair of assignments τ, σ : S → {in, out}, we have

|Rτ
i −Rσ

i | ≤ C · αd(i,S)

We say μ exhibits strong spatial mixing if instead we can
replace d(i, S) by d(i, S(τ, σ)), where S(τ, σ) ⊂ S is the
set of elements on which the assignments τ, σ differ.

In the case of a distribution μ on configurations σ : V →
{0, 1} on a graph G = (V,E) coming from the hardcore

model with activity λ, our ground set will consist of the

vertices V . Hence, we will take the d to be the shortest path

metric in G throughout the paper.

It has been known since the work of Kelly [Kel85] that

for the hardcore model, weak spatial mixing on the infinite

Δ-regular tree holds exactly when λ < (Δ−1)Δ−1

(Δ−2)Δ
def
= λc(Δ).

Here, λc(Δ) is known as the critical threshold for the

hardcore model on graphs of maximum degree ≤ Δ. These

results have been subsequently extended to all antiferromag-

netic two-state spin systems [LLY12; LLY13; SST14].
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The way the threshold λc(Δ) is derived is by analyzing

when
∣∣∣f ′

Δ−1(R̂Δ−1)
∣∣∣ is less than 1. It turns out the gap

between
∣∣∣f ′

Δ−1(R̂Δ−1)
∣∣∣ and 1 governs the rate α in the

definition of spatial mixing. [LLY13] quantified this in the

following definition.

Definition II.3 (Up-to-Δ Uniqueness [LLY13]). We say the
hardcore model with parameter λ is up-to-Δ unique with
gap 0 < δ < 1 if for every 1 ≤ d < Δ, we have

∣∣∣f ′
d(R̂d)

∣∣∣ ≤
1− δ, where R̂d denotes the unique fixed point of fd.

It is not hard to show that up-to-Δ uniqueness with gap

0 < δ < 1 is equivalent to λ ≤ (1 − Θ(δ)) · λc(Δ)
(see, for instance, the full version of the paper). Hence,

throughout the paper whenever one encounters the phrase

“up-to-Δ unique with gap 0 < δ < 1”, one may safely

assume λ ≤ (1−Θ(δ))λc(Δ).
Surprisingly, Weitz [Wei06] managed to show that for the

hardcore model, weak spatial mixing actually implies strong

spatial mixing with the same rate α, albeit with a worse

constant C. This was extended in [LLY13; SST14] to all

antiferromagnetic two-state spin systems. The way this was

done was to first reduce spatial mixing on a general graph

to spatial mixing on an associated tree known as the self-

avoiding walk tree [SS05; Wei06], where one can then use

the tree recurrence Eq. (2) to understand spatial mixing.

Theorem II.4 (Theorem 3.1 from [Wei06]). Fix a graph
G = (V,E) and a vertex r ∈ V . Then there exists a
tree T = TSAW(G, r) whose vertices may be partitioned
into parts {C(v)}v∈V , one for each vertex of G, and a
boundary condition τSAW on vertices of T such that for
any partial assignment σ : S → {0, 1} of vertices in
S ⊂ V , we have PrG[r | σ] = PrT [r | τSAW, σSAW] and
Rσ

G,r = RτSAW,σSAW

T,r . Here, σSAW is the partial assignment
on vertices of T with σSAW(u) = σ(v) for every u ∈ C(v)
and every v ∈ S.

Remark II.5. The tree T = TSAW(G, r) turns out to

have a couple convenient properties. For instance, we have

dG(r, v) = min{�(u) : u ∈ C(v)}, and that the maximum

degree of T equals the maximum degree of G. We also

note that in general, the number of vertices of T may be

exponentially large in the size of G. We refer the reader

to [Wei06] or the full version of the paper [ALO20] for a

complete description of T .

For the second step, in the case of the hardcore model,

[Wei06] showed that weak spatial mixing on the infinite

Δ-regular tree implies strong spatial mixing on all trees of

maximum degree ≤ Δ, and hence, on all graphs of maxi-

mum degree ≤ Δ. To conveniently state the strong spatial

mixing result proved in [Wei06], we make the following

definition.

Definition II.6. If T is a tree rooted at r ∈ T , we

define Rmin
T,r (�) = minp R

p
T,r, where p is an assignment

of marginals of vertices at depth � in Tu. Similarly, define
Rmax

T,r (�) to be the maximum such conditional probabil-
ity ratio. Finally, define Rmin(�) = minT,r R

min
T,r (�) and

Rmax(�) = maxT,r R
max
T,r (�), where the minimum and max-

imum are over all trees T rooted at r of maximum degree
≤ Δ.

Remark II.7. Essentially, due to the antiferromagnetic nature

of the hardcore model, the level-� boundary condition p
minimizing Rp

T,r is the all-1 configuration if � is odd,

and the all-0 configuration if � is even. Determining the

configuration achieving Rmax
r (�) can be done a similar way.

Fact II.8. We have the inequalities
1) 0 = Rmin(1) ≤ Rmax(1) = λ,
2) λ

(1+λ)Δ = Rmin(2) ≤ Rmax(2) = λ,
3) Rmin(�) ≤ Rmin(�+ 1) and Rmax(�) ≥ Rmax(�+ 1)

for any � ≥ 1.

Theorem II.9 (Weak Spatial Mixing Implies Strong Spatial

Mixing; [Wei06]). Assume λ = (1− δ)λc(Δ) for some 0 <
δ < 1. Then there exist constants C > 0 and 0 < α < 1
such that for every tree T of maximum degree ≤ Δ rooted
at some r ∈ T , and every level �, we have the bound

|Rmin
T,r (�)−Rmax

T,r (�)| ≤ C · α	

Later on in the paper, we will need more precise control

over C,α. However, the above result is sufficient for the

present discussion

III. THE EIGENVALUES OF THE PAIRWISE INFLUENCE

MATRIX

Our goal in this section is to prove Theorem I.11. In

fact, we completely characterize the spectrum of P∅ in

terms of the spectrum of Ψμ, which immediately implies

Theorem I.11.

Theorem III.1. The spectrum of P∅ (as a multiset) is
precisely the union of the spectrum of 1

n−1Ψμ (as a multiset),
n−1 copies of − 1

n−1 , and an eigenvalue of 1 (corresponding
to the top eigenvalue of P∅).

Note that this also immediately implies Ψμ has real

eigenvalues, since P∅ has real eigenvalues. The rest of the

section is devoted to proving Theorem III.1.

The main idea behind the proof is to relate the spectra

of P∅ and of 1
n−1Ψμ to an intermediate matrix M∅. This

matrix M∅ will be built from P∅ by leveraging knowledge

of the “trivial” eigenvalues and eigenvectors induced purely

by the n-partite structure of Xμ. Towards this, let us first

express the entries of P∅ in a nice form. Observe that using

Eq. (1), we have that for i, j ∈ [n],

P∅(i, j) =
w({i, j})
w({i}) · 1[i �= j] =

1

n− 1
Pr[j | i] · 1[i �= j]
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Similarly, we have the following for all i, j ∈ [n].

P∅(i, j) =
1

n− 1
Pr[j | i] · 1[i �= j]

P∅(i, j) =
1

n− 1
Pr[j | i] · 1[i �= j]

P∅(i, j) =
1

n− 1
Pr[j | i] · 1[i �= j]

Now, we compute the stationary distribution of P∅. Define

π ∈ R
2n entrywise by π(i) = 1

n Pr[i] and π(i) = 1
n Pr[i].

It is easy to see that P∅ is reversible w.r.t. π. Hence, π is

indeed stationary w.r.t. P∅. For each element i ∈ [n], define

the vectors 1i, πi ∈ R
2n by 1i = ei+ei and πi = π(i) ·ei+

π(i) · ei. In particular, for each i ∈ [n], 1i, πi are vectors

which are supported on the two entries corresponding to the

two different possible assignments of i. We now define our

intermediate matrix as

M∅ = P∅ − n

n− 1
1π
 +

n

n− 1

n∑
i=1

1i(πi)


We prove the following two claims.

Claim III.2 (Relating P∅ and M∅). The matrix P∅ has
eigenvalue 1 with multiplicity (at least) 1, and eigenvalue
− 1

n−1 with multiplicity (at least) n − 1. These are the
“trivial” eigenvalues of P∅. Furthermore, the spectrum of
M∅ (as a multiset) is precisely the spectrum of P∅ with all
trivial eigenvalues replaced by n copies of 0.

Claim III.3 (Relating M∅ and 1
n−1Ψμ). The spectrum of

M∅ (as a multiset) is precisely the union of the spectrum of
1

n−1Ψμ (as a multiset) with n additional copies of 0.

Theorem III.1 then follows as an immediate conse-

quence of these two claims. We now intuitively sketch why

Claim III.2 and Claim III.3, leaving the technical details for

the full version of the paper [ALO20].

The main idea behind Claim III.2 is that the vectors 1i

form an orthogonal basis for the span of the right eigen-

vectors of P∅ corresponding to the eigenvalues 1 and − 1
n−1

(while the πi form an orthogonal basis of the corresponding

left eigenvectors). The essence of the proof lies in the fact

that these “trivial” eigenvectors derive purely from the fact

that in the weighted graph with vertex set {i, i : i ∈ [n]}
corresponding to P∅, there are is no edge between the

vertices i and i, for all i ∈ [n]. This is a generalization of the

fact that the random walk matrix of any weighted bipartite

graph always has eigenvalue −1, purely due to bipartiteness.

This was actually already observed in [Opp18]. One should

view M∅ is being defined in a way to “zero out” those

eigenvalues. For Claim III.3, the intuition is that Ψμ may

be obtained from M∅ via orthogonal projection.

Remark III.4. These observations generalize in a straight-

forward fashion to all partite complexes in the sense that

for any d-dimensional d-partite weighted complex (X,w)

with parts U1, . . . , Ud, the indicator vectors 1U1 , . . . ,1Ud

are eigenvectors of P∅ − d
d−11π


 with eigenvalue − 1
d−1 .

This was also observed in [Opp18].

IV. INFLUENCE DECOUPLING IN WEITZ’S

SELF-AVOIDING WALK TREE

In this section, we take a step towards proving Theo-

rem I.13. Specifically, we focus on bounding∑
u∈V :u�=v

|Ψμ(u, v)|

where from now on, we take μ to be the distribution

corresponding to the hardcore distribution on input graph

G = (V,E) with parameter λ > 0. Here, the relevant

uniqueness threshold is given by λc(Δ) = (Δ−1)Δ−1

(Δ−2)Δ .

Before we proceed to bound this quantity for general

graphs, we note that one can easily deduce an O(1) upper

bound for amenable graphs (i.e. graphs such that the balls

around any vertex grows subexponentially fast in the radius)

in a black-box fashion directly using strong spatial mixing

Definition II.2, thus recovering some of the previously

known connections between spatial mixing properties of the

hardcore distribution, and temporal mixing of the Glauber

dynamics [Dye+02; Wei04]. This class of graphs notably

includes lattices such as Z
d, but exclude most graphs such

as expanders. Thus, nstead of applying strong spatial mixing

as a black-box, we revisit its proof, modifying it as needed.

The high-level strategy is to convert this problem on

general graphs to bounding a similar quantity for trees. We

do this by leveraging the self-avoiding walk tree construction

of [Wei06]. However, since a vertex u ∈ G may have

many copies in the corresponding self-avoiding walk tree

T = TSAW(G, r), we need to “decouple” these copies so as

to obtain single-vertex influences again.

Definition IV.1 (R-Pseudoinfluence). Recall that for a fixed
tree T rooted at r with boundary condition p : A → [0, 1]
(where A is a subset of vertices not containing r), we write
Rp

T,r = Pr[r|p]
1−Pr[r|p] . For a vertex v ∈ T with v �= r, we define

the R-pseudoinfluence of v on the root r by the quantity

Rv
T,r = max

p
Rv,p

T,r where Rv,p
T,r =

∣∣∣Rv0,p
T,r −Rv1,p

T,r

∣∣∣
and the maximum is taken over all partial assignments p :
Lr(�(v))�{v} → [0, 1] of marginal values. Again, we drop
the subscript T when the tree is clear from context.

Remark IV.2. It was pointed out to us by Zongchen Chen

and Eric Vigoda that our notion of R-pseudoinfluence is very

related to the notion of “aggregate strong spatial mixing”

used in [MS13] to analyze the Glauber dynamics, and in

[BCV20] to analyze the Swendsen-Wang dynamics, both

for the ferromagnetic Ising model. In fact, it turns out our

result also directly implies aggregate strong spatial mixing

for arbitrary trees in the uniqueness regime λ < λc(Δ).
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Our first step is to do the decoupling using the R-

pseudoinfluence. The second step is to bound the total R-

pseudoinfluence of vertices in a tree on the root. These steps

are captured in the following two results. We emphasize

Lemma IV.3 is generic, and holds for any two-spin system.

Lemma IV.3 (Decoupling). Consider the hardcore distribu-
tion μ on a graph G = (V,E) with parameter λ > 0. Fix a
vertex r ∈ G and let T = TSAW(G, r). Then the following
inequality holds:∑

v∈G:v �=r

|Ψμ(v, r)| ≤ 2
∑

v∈T :v �=r

Rv
r

In particular, to bound
∑

v∈G:v �=r |Ψμ(v, r)|, it suffices to

bound
∑

v∈T :v �=r Rv
r for every tree T of maximum degree

≤ Δ rooted at r. This motivates the next result.

Proposition IV.4 (R-Pseudoinfluence Bound). Assume λ is
up-to-Δ unique with gap 0 < δ < 1. Then for every tree T
of maximum degree ≤ Δ rooted at r, we have the bound∑

v∈T :v �=r

Rv
r ≤ exp(O(1/δ))

Theorem I.13 follows immediately as a consequence. We

leave the proof of Lemma IV.3 to the full version of the

paper [ALO20]. The proof of Proposition IV.4 is sketched

in the following section.

A. R-Pseudoinfluence Decay

Our goal is now to prove Proposition IV.4. To do this, we

write ∑
v∈T :v �=r

Rv
r =

∞∑
	=1

∑
v∈Lr(	)

Rv
r

Thus, it suffices to bound
∑

v∈Lr(	)
Rv

r for each level �.
We show that this quantity in fact decays exponentially

fast as � increases when λ < λc(Δ). Specifically, to prove

Proposition IV.4, we use the following two lemmas, which

precisely quantify the decay rate.

Proposition IV.5 (Decay Rate Bound). Assume λ is up-to-Δ
unique with gap 0 < δ < 1. Then there exists �0 = Θ(1/δ)
such that for every tree T of maximum degree ≤ Δ rooted
at r and any � > �0, we have the bound∑

v∈Lr(	)
Rv

r

maxu∈Lr(	−	0)

{∑
v∈Lu(	0)

Rv
u

} ≤ O(1) · √1− δ
	−	0

We prove Proposition IV.5 in the next section. Roughly

speaking, the reason for the assumption � > �0 above is that

we can exploit spatial mixing to argue that the marginals of

the root is independent of the boundary condition at level �,
for a large enough �0; see Section V for more details. For

� < �0 we use the following lemma, whose proof we leave

to the full version of the paper [ALO20].

Lemma IV.6 (Trivial “Decay” Rate). Assume λ up-to-Δ
unique with gap 0 < δ < 1. Then for any tree T of maximum
degree ≤ Δ rooted at r and any � > 0, we have∑

v∈Lr(	)
Rv

r

maxu∈Lr(1)

{∑
v∈Lu(	−1) Rv

u

} ≤ O(1)

Furthermore, for the first level, we have the inequality∑
v∈Lr(1)

Rv
r ≤ O(1)

These two results together immediately imply Proposi-

tion IV.4.

V. BOUNDING THE R-PSEUDOINFLUENCE DECAY: THE

POTENTIAL METHOD

Our goal in this section is to prove Proposition IV.5.

We use the potential method (otherwise known as the

message decay argument), which has been successfully used

in [LLY12; LLY13; Res+13; SST14; Sin+15] to establish

strong spatial mixing all the way up to the uniqueness

threshold. We use the following potential function ϕ, first

introduced in [LLY13].

ϕ(R)
def
= 2 log(

√
R+

√
R+ 1)

Φ(R)
def
= ϕ′(R) =

1√
R(R+ 1)

We note that since Φ is continuous, positive, and decreasing,

we have ϕ is continuously differentiable, strictly monotone

increasing and concave. One additional feature of this poten-

tial function is that it has no dependence on λ or Δ. While

it may be comforting to have an explicit expression for ϕ,

all of our proofs rely at most on the explicit expression for

Φ, rather than ϕ. For the derivation and further discussion

of this potential function, we refer the reader to [LLY13].

Definition V.1 (ϕ-Pseudoinfluence). For a boundary con-
dition p : A → [0, 1], where A is a subset of vertices not
containing r, let Kp

r = ϕ(Rp
r). Again, we define

Kv,p
r

def
=

∣∣∣Kv0,p
r −Kv1,p

r

∣∣∣ = ∣∣∣ϕ(Rv0,p
r )− ϕ(Rv1,p

r )
∣∣∣

Define the ϕ-pseudoinfluence of a vertex v on r as

Kv
r

def
= max

p:Lr(	(v))�{v}→[0,1]
Kv,p

r

Finally, we define

Kmin
r (�)

def
= min

p:Lr(	)→[0,1]
Kp

r = ϕ(Rmin
r (�))

Kmax
r (�)

def
= max

p:Lr(	)→[0,1]
Kp

r = ϕ(Rmax
r (�))

To control
∑

v∈Lr(	)
Rv

r , it turns out it suffices to control

the decay of
∑

v∈Lr(	)
Kv

r as � increases.

Proposition V.2 (ϕ-Pseudoinfluence Decay Rate Bound).
Assume λ is up-to-Δ unique with gap 0 < δ < 1 (see
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Definition II.3). For � ≥ 2, assume that there exists η ≤ 1/2
such that for all u ∈ Lr(1), we have the inequality∣∣Rmin

u (�− 1)−Rmax
u (�− 1)

∣∣ ≤ η. Then,∑
v∈Lr(	)

Kv
r

maxu∈Lr(1)

{∑
v∈Lu(	−1) Kv

u

} ≤ (1 + 2η)
Δ+1

√
1− δ.

Unfortunately, due to the additional error factor of

(1 + 2η)
Δ+1

, we must control η = η(�). To do this, we

leverage a “precise” version of the strong spatial mixing

result proved in [Wei06], where the constant is explicit.

Definition V.3. Define η∗ = Rmax(2)
Rmin(2) ·

∣∣Rmin(2)−Rmax(2)
∣∣.

Note by Fact II.8 and the fact that λ ≤ O(1/Δ), we have

η∗ ≤ λ
λ

(1+λ)Δ

·
∣∣∣∣λ− λ

(1 + λ)Δ

∣∣∣∣ ≤ O(1/Δ). (3)

Proposition V.4 (Strong Spatial Mixing [Wei06]). Assume
that λ is up-to-Δ unique with gap 0 < δ < 1. Then for all
trees T rooted at r of maximum degree ≤ Δ, we have∣∣Rmin

T,r (�)−Rmax
T,r (�)

∣∣ ≤ √
1− δ

	−2 · η∗

A proof of this specific bound is provided in the full

version of the paper. With these results in hand, we may

deduce Proposition IV.5.

A. Proof Sketch of Proposition IV.5

In order to apply Proposition V.2 and Proposition V.4, we

must relate Rv
r to Kv

r . This is done in the following lemma.

Lemma V.5 (Relating R-Pseudoinfluence to

ϕ-Pseudoinfluence). Let T be a tree rooted at r. For
any � ≥ 1 and any vertex v ∈ Lr(�), we have the bound

Φ(Rmax(�)) · Rv
r ≤ Kv

r ≤ Φ(Rmin(�)) · Rv
r .

The main idea in the proof of Proposition IV.5 is then to

first map the R-pseudoinfluence to the ϕ-pseudoinfluence

(with a loss of 1/Φ(Rmax(�)) using Lemma V.5, apply

the ϕ-pseudoinfluence decay Proposition V.2, and then map

back to the R-pseudoinfluence (with a loss of Φ(Rmin(�)))
using Lemma V.5 again. The details are left to the full

version of the paper [ALO20].

At this point, all that is left is to prove Proposition V.2

and Proposition V.4. We prove Proposition V.2 and Propo-

sition V.4 in the following subsections.

B. The ϕ-Pseudoinfluence Decay: Proof Sketch of Proposi-
tion V.2

Our goal in this subsection is to prove Proposition V.2.

While initially this appears to be a more daunting task, it is

made feasible by the fact that the tree recurrence F for R
induces a corresponding tree recurrence for K given by

Kσ
r = (ϕ ◦ F ◦ ϕ−1)(Kσ

u : u ∈ Lr(1)).

Using this tree recurrence for Kσ
r , we prove Lemma V.6

and Lemma V.8. Chained together with Lemma V.7, which

lies at the heart of the results in [LLY13], we immediately

obtain Proposition V.2.

Throughout, we will let K = (Ku : u ∈ Lr(1)),
Kmax(�) = (Kmax

u (� − 1) : u ∈ Lr(1)) and Kmin(�) =
(Kmin

u (� − 1) : u ∈ Lr(1)) denote vectors with |Lr(1)|
many entries.

Lemma V.6 (True Decay). For every λ, and every tree T
rooted at r, we have the inequality∑

v∈Lr(	)
Kv

r

maxu∈Lr(1)

{∑
v∈Lu(	−1) Kv

u

}
≤

∑
u∈Lr(1)

max
Kmin(	)≤K≤Kmax(	)

∣∣∂Ku
(ϕ ◦ F ◦ ϕ−1)(K)

∣∣ .
Lemma V.7 (Ideal Decay; [LLY13] Lemmas 12, 13, 14).
Assume λ is up-to-Δ unique with gap 0 < δ < 1. Let T be
any tree of maximum degree ≤ Δ rooted at r. Then we have
the bound

max
0≤K≤∞

∥∥∇(ϕ ◦ F ◦ ϕ−1)(K)
∥∥
1
≤ √

1− δ

Lemma V.8 (Relating True Decay to Ideal Decay). Assume∣∣Rmax
u (�− 1)−Rmin

u (�− 1)
∣∣ ≤ η for all u ∈ Lr(1), where

η ≤ 1
2 . Then for every λ, and every tree T with maximum

degree ≤ Δ rooted at r, we have the inequality∑
u∈Lr(1)

max
Kmin(	)≤K≤Kmax(	)

∣∣∂Ku
(ϕ ◦ F ◦ ϕ−1)(K)

∣∣
≤ (1 + 2η)

Δ+1 ∥∥∇(ϕ ◦ F ◦ ϕ−1)(Kmax(�))
∥∥
1

VI. CONCLUSION AND OPEN PROBLEMS

In this work we have shown that for the hardcore

distribution on independent sets of a graph of maximum

degree ≤ Δ with parameter λ = (1 − δ)λc(Δ), there is

a constant C(δ) such that the Glauber dynamics mixes in

O(nC(δ)) steps. While this running time does not have an

exponential dependence on logΔ as in the correlation decay

algorithm of [Wei06], its dependence on δ is significantly

worse. Specifically, we have that C(δ) ≤ exp (O(1/δ)),
while the correlation decay algorithm of [Wei06] exhibits

a dependence of C(δ) ≤ O(1/δ).
In a follow-up work by [CLV20], they showed how one

can bound the total pairwise influence of the root of a tree

on all other vertices. This is in contrast to our analysis,

which focuses on the total pairwise influence of all other

vertices on the root. They achieve an upper bound of O(1/δ),
giving O(1/δ)-spectral independence and nO(1/δ) mixing.

They also generalize to all antiferromagnetic two-state spin

systems. We leave it as an open problem to bound the total

pairwise influence on the root by O(1/δ), and to generalize

this to other two-state spin systems.
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We show in the full version of the paper that in general,

one cannot bound λmax(Ψμ) asymptotically better than

O(1/δ), even for the special case of trees. We do this

by showing for the infinite Δ-regular tree that the total

pairwise influence on a vertex is Θ(1/δ). This shows that in

general the best bound on the mixing time of the Glauber

dynamics one can hope to achieve by bounding the spectral

independence and applying the local-to-global theorem of

[AL20] is nO(1/δ). However, prior results [Vig01; Eft+16]

for this problem appear to suggest that O (C(δ)n log n)
should be possible, which illustrates a key limitation of the

current local-to-global results.
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Yitong Yin. “Spatial Mixing and the Connective Constant:
Optimal Bounds”. In: Proceedings of the Twenty-sixth Annual
ACM-SIAM Symposium on Discrete Algorithms. SODA ’15.
San Diego, California: Society for Industrial and Applied
Mathematics, 2015, pp. 1549–1563.

[Sly10] Allan Sly. “Computational Transition at the Uniqueness
Threshold”. In: Proceedings of the 51st Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS). 2010,
pp. 287–296.

[Sri14] Piyush Srivastava. “Counting and Correlation Decay in Spin
Systems”. PhD thesis. EECS Department, University of Cal-
ifornia, Berkeley, Aug. 2014.

[SS05] Alexander D. Scott and Alan D. Sokal. “The Repulsive
Lattice Gas, the Independent-Set Polynomial, and the Lovász
Local Lemma”. In: Journal of Statistical Physics 118.5
(2005), pp. 1151–1261.

[SS14] Allan Sly and Nike Sun. “The Computational Hardness of
Counting in Two-Spin Models on d-Regular Graphs”. In: The
Annals of Probability 42.6 (2014), pp. 2383–2416.

[SST14] Alistair Sinclair, Piyush Srivastava, and Marc Thurley. “Ap-
proximation Algorithms for Two-State Anti-Ferromagnetic
Spin Systems on Bounded Degree Graphs”. In: Journal of
Statistical Physics 155.4 (2014), pp. 666–686.

[SSY13] Alistair Sinclair, Piyush Srivastava, and Yitong Yin. “Spa-
tial Mixing and Approximation Algorithms for Graphs with
Bounded Connective Constant”. In: Proceedings of the 2013
IEEE 54th Annual Symposium on Foundations of Computer
Science. FOCS ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 300–309. ISBN: 978-0-7695-5135-7.

[Vad02] Salil P. Vadhan. “The Complexity of Counting in Sparse,
Regular, and Planar Graphs”. In: SIAM J. Comput. 31.2 (Feb.
2002), pp. 398–427. ISSN: 0097-5397.

[Vad95] Salil P. Vadhan. The Complexity of Counting.
Undergraduate thesis, Harvard University. Available
from https://people.seas.harvard.edu/ salil/research/ugthesis-
abs.html. 1995.

[Val79] Leslie G. Valiant. “The Complexity of Enumeration and Re-
liability Problems”. In: SIAM J. Comput. 8 (1979), pp. 410–
421.

[Vig01] Eric Vigoda. “A Note on the Glauber Dynamics for Sampling
Independent Sets”. In: Electr. J. Comb. 8 (2001).

[VVY13] Juan C. Vera, Eric Vigoda, and Linji Yang. “Improved Bounds
on the Phase Transition for the Hard-Core Model in 2-
Dimensions”. In: Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques. Ed. by
Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen,
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