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Abstract
This article presents a new variational data assimilation (VDA) approach for
the formal treatment of bias in both model outputs and observations. This
approach relies on theWassersteinmetric, stemming from the theory of optimal
mass transport, to penalize the distance between the probability histograms of
the analysis state and an a priori reference dataset, which is likely to be more
uncertain but less biased than both model and observations. Unlike previous
bias-awareVDAapproaches, the newWassersteinmetricVDA (WM-VDA) treats
systematic biases of unknown magnitude and sign dynamically in both model
and observations, through assimilation of the reference data in the probability
domain, and can recover the probability histogram of the analysis state fully. The
performance of WM-VDA is compared with the classic three-dimensional VDA
(3D-Var) scheme for first-order linear dynamics and the chaotic Lorenz attractor.
Under positive systematic biases in both model and observations, we consis-
tently demonstrate a significant reduction in the forecast bias and unbiased
root-mean-squared error.
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1 INTRODUCTION

The predictive accuracy of the Earth SystemModel (ESM)
relies on a series of differential equations that are often
sensitive to their initial conditions. Even a small error
in estimates of their initial conditions can lead to large
forecast uncertainties. In short- to medium-range forecast
systems, an open-loop run of coupled land and weather
models often diverges from the true states and shows
low forecast skill as the error keeps accumulating over
time (Charney, 1951; Kalnay et al., 2007). To extend the
forecast lead time, the science of data assimilation (DA)
attempts to use the information content of the observations
for improved estimates of ESM initial conditions, thus

reducing their forecast uncertainties (Leith, 1993; Kalnay,
2003). DAmethods often involve iterative cycles, in which
the observations are integrated optimally with the previous
time forecasts (background states) to obtain an a posteri-
ori estimate of the initial conditions (analysis state) with
reduced uncertainty in a Bayesian setting (Rabier, 2005;
Asch et al., 2016). In the literature, twomajor categories of
DA methodologies exist, namely filtering and variational
methods (Law and Stuart, 2012). Advanced approaches,
such as hybrid DA schemes, which aim to combine and
take advantage of the unique benefits of the twoDA classes
(Wang et al., 2008; Lorenc et al., 2015), are also being
developed.
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Althoughboth classicDAapproaches have beenwidely
used in land and weather forecast systems, they are often
based on a strict underlying assumption that the error is
drawn from a zero-mean Gaussian distribution, which is
not always realistic. Bias exists in land–atmosphere mod-
els, due mainly to underrepresentation of the governing
laws of physics and erroneous boundary conditions.Obser-
vation bias also exists, due largely to systematic errors in
sensing systems and retrieval algorithms represented by
the observation operator in DA systems (Dee, 2003; 2005).
From a mathematical point of view, bias is simply the
expected value of the error that can be removed if the
ground truth of the process is known, which is often not
feasible in reality. The problem is often exacerbated, due to
difficulty in attribution of the bias to eithermodel or obser-
vations and/or both. At the same time, point-scale obser-
vations, such as those from in situ gauges and radiosondes,
are often considered to be closer to the ground truth; how-
ever, their assimilation into gridded model outputs is not
straightforward, due to the existing scale gaps.

Bias correction strategies in DA systems fall mainly
under two general categories: (a) dynamic bias-aware, and
(b) rescaling bias correction schemes. Apart from these
two general categories, machine-learning techniques have
also been developed to learn relationships between obser-
vations and ancillary variables for bias correction (Jin et al.,
2019). Dynamic bias-aware schemes make prior assump-
tions about the nature of the bias and attribute it to
either model or observations, which may not be realistic,
as both models and observations suffer from systematic
errors. Early attempts to treat model biases dynamically
are based on a two-step bias estimation and correction
approach, which is applied prior to the analysis step (Dee
andDa Silva, 1998; Radakovich et al., 2001; Chepurin et al.,
2005). Variants of a bias-aware Kalman filter for coloured
noise (Drécourt et al., 2006) and a weak constrained
four-dimensional VDA (4D-Var: Zupanski, 1997) have also
been proposed to account for nonzero mean model errors.
At the same time, another class of dynamic observational
bias correction techniques exists that relies on variants
of the variational bias-correction (VarBC) method, which
makes an a priori estimate of bias and updates it dynam-
ically using innovation information (Auligné et al., 2007;
Dee andUppala, 2009; Zhu et al., 2014). Apart fromVarBC,
more recently a new approach has been proposed to treat
observation biases by iterative updates of the observation
operator (Hamilton et al., 2019). A body of research also
has been devoted to treating model and observation biases
simultaneously using a multistage hybrid filtering tech-
nique (Pauwels et al., 2013). However, the above schemes
still lack the ability to leverage climatologically unbiased
information from reference observations (e.g., in situ data)
and have not yet been tested for effective bias correction in

chaotic systems.More importantly, the developed schemes
focus largely on retrieving an unbiased expected value of
the forecast and remain limited to characterization of the
second-order forecast uncertainty.

The rescaling techniques do not make any explicit
assumptions about the relative accuracy of the model and
observation system (Reichle and Koster, 2004; Crow et al.,
2005; Reichle et al., 2007; 2010; Kumar et al., 2009; Liu
et al., 2018). This family of methods often involves map-
ping the observations on to the model space by match-
ing their cumulative distribution function (CDF). While
the CDF-matching technique is comparatively easier in
implementation than the dynamic approach and pre-
vents any numerical instabilities in model simulations, it
assumes implicitly that model forecasts are unbiased and
partly ignores the information content of observations. For
example, if our observations are less biased than themodel
outputs, this approach basically fails to remove the bias
effectively. Furthermore, it is a static scheme andno formal
way exists to extend the CDF-matching scheme to account
dynamically for changes in the bias (Kumar et al., 2012)
and its seasonality (De Lannoy et al., 2016).

Conceptually, CDF-matching techniques move proba-
bility masses from one distribution to another. To trans-
form static CDF matching to a dynamic scheme, there
are two key questions that we aim to answer: Can we
quantify the movement of probability masses as a cost
through a convex metric? How can this cost be employed
to assimilate relatively unbiased in situ data for dynamic
bias correction in the VDA framework?

The Wasserstein metric (WM: Villani, 2008; Santam-
brogio, 2015), also known as the Earth Mover's distance
(Rubner et al., 2000), stems from the theory of optimal
mass transport (OMT: Monge, 1781; Kantorovich, 1942;
Villani, 2003), which provides concrete ground on which
to compare probability measures (Brenier, 1991; Gangbo
and McCann, 1996; Benamou et al., 2015; Chen et al.,
2017; 2018a; 2018b). Specifically, this distance metric can
quantify the dissimilarity between two probability his-
tograms in terms of the amount of “work” done during
displacement of probability masses between them. Thus,
we hypothesize that inclusion of such a metric in the VDA
cost function can reduce analysis biases. The rationale is
that the work done during displacement of the probability
masses is a function of not only the shape of the prob-
ability histograms but also the difference between their
central positions, as described in section 2.3. The use of
the Wasserstein metric in DA has been explored previ-
ously (Ning et al., 2014; Feyeux et al., 2018). Ning et al.
(2014) introduced the concept ofOMT in the classical VDA
framework and demonstrated that the bias in the back-
ground state results in an unrealistic bimodal distribution
of the analysis state. However, the study was conducted
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on linear systems only for model bias correction, without
accounting for any form of observation biases. Feyeux et al.
(2018) proposed to replace the quadratic costs in the classic
VDA fully by the Wasserstein metric. Even though the lat-
ter approach extends the classic VDA beyond a minimum
mean-squared error approximation, it does not provide
any roadmap for bias correction, which is the central focus
of this article.

This article presents a new VDA approach through
regularizing the classic VDA problem with the cost asso-
ciated with the Wasserstein metric, hereafter referred to
as the Wasserstein metric VDA (WM-VDA). Unlike previ-
ous VDA techniques, WM-VDA treats unknown biases of
different magnitudes and signs in both the model dynam-
ics and observations. To that end, WM-VDA needs to be
informed by an a priori reference distribution or histogram
(e.g., from in situ data) that encodes the space–time vari-
ability of the state variables of interest in the probabil-
ity domain. This a priori histogram must be less biased,
but could exhibit larger higher-order uncertainties than
the observations and model forecasts. More importantly,
unlike classic DA methods, WM-VDA allows full recov-
ery of the probability histogram of the analysis state in the
probability domain, which can lead to forecast uncertainty
quantification beyond second-order statistics. The idea is
tested on a first-order linear dynamical system as a test bed
and the chaotic Lorenz-63 (Lorenz, 1963) attractor, which
represents the nonlinear dynamics of a convective circu-
lation in a shallow fluid layer. The results demonstrate
that the approach presented is capable of preserving the
geometric shape of the distribution of the analysis state
when both the background state and the observations are
systematically biased and extending the forecast skills by
controlling the propagation of bias in the phase space of a
highly chaotic system.

The article is organized as follows. Section 2 discusses
the concept of classic VDA, focusing on 3D-Var. In this
section, a summary of the theory of OMT and the Wasser-
stein metric is also provided. The mathematical formula-
tion of the proposed WM-VDA is explained in section 3.
Section 4 implementsWM-VDA on a first-order linear sys-
tem and the nonlinear Lorenz-63 dynamic system. The
results are interpreted and compared with the 3D-Var and
CDF-matching techniques. A summary and concluding
remarks are presented in section 5.

2 METHODOLOGY

2.1 Notation

Throughout, small and capital boldface letters are reserved
for representation of m-element column vectors x ∈ ℝm

and m-by-n matrices X ∈ ℝm×n, 𝟙m is an m-element vec-
tor of ones, and Im denotes an m ×m identity matrix.
A 1-D state variable of interest x ∈ ℝ is represented by
a probability vector px = (px1 ,… , pxk )

T supported on k
points x1, … , xk, such that x =

∑
kpxk𝛿xk , where 𝛿xk is

the Dirac function at xk and (⋅)T denotes the transpo-
sition operator. For the state x ∈ ℝm, this linear expec-
tation operator is represented as x = Xpx, where the
support point and associated probability of occurrences
are properly concatenated in X ∈ ℝm×km and px ∈ Rkm ,
respectively. x ∼  (𝝁, 𝚺) denotes that x is drawn from
a Gaussian distribution with mean 𝝁 and covariance Σ,
and the square of the weighted 𝓁2-norm of x is repre-
sented as ‖x‖2B−1 = xTB−1x, where B is a positive-definite
matrix.

2.2 Classic 3D-Var

In three-dimensional VDA (3D-Var: Lorenc, 1986), the
analysis state is a weighted average of the background
state and observations, with the weights defined by their
respective error covariance matrices. Specifically, let us
assume that the m-element state variable at time step t =
i + 1 is denoted by xi+1 ∈ ℝm with the following stochastic
dynamics:

xi+1 = (xi) + 𝝎i, (1)

where  ∶ ℝm → ℝm is the nonlinear model operator
evolving the state from xi to xi+1 and𝝎i ∼  (0,B) ∈ ℝm is
the model error, and the expected background state at the
(i + 1)th time step is xb = (xi).

Additionally, the n-element observation vector avail-
able at discrete time step i is denoted by yi ∈ ℝn and is
related to the true state as follows:

yi = (xi) + vi, (2)

where ∶ ℝm → ℝn is a nonlinear operator mapping the
state space to the observation space and vi ∼  (0,R) ∈ ℝn

is the observation error.
In a 3D-Var setting, the cost function is comprised of

two weighted Euclidean distances of the unknown true
state from the background state xb and the observation y,
such that

3D(x0) = ‖x0 − xb‖2B−1 + ‖y −(x0)‖2R−1 . (3)

Assuming that the nonlinear observation operator can
be approximated well linearly, such that(xi) ≈ H xi, the
estimation of the analysis state xa ∈ ℝm at any time step
amounts to minimizing the quadratic cost function as
follows:
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xa = argmin
x0

3D(x0)

= argmin
x0

{‖x0 − xb‖2B−1 + ‖y −H x0‖2R−1}. (4)

Since the minimization problem presented in
Equation 4 is convex, the local minimum is the global
minimum. Thus, by setting the first-order derivative to
zero, the analysis state xa is obtained as

xa = (HTR−1H + B−1)−1(HTR−1y + B−1xb), (5)

where the analysis-error covariancePa is the inverse of the
Hessian of Equation 3 (Daley, 1993):

Pa = (HTR−1H + B−1)−1. (6)

Clearly, the above representations are only valid for a
linear observation operator and should be considered as
approximate for the nonlinear case. It is also worth men-
tioning that, under the assumption of zero-meanGaussian
errors and linear observation operator, the analysis state
obtained, as derived in Equation 5, can be interpreted as
the minimum variance unbiased estimator or the maxi-
mum a posteriori estimator. It is also worth noting that
in this setting the results of 3D-Var are equivalent to the
update equations used in a standard Kalman filter; how-
ever, they become suboptimal for non-Gaussian errors
and/or a nonlinear observation operator (Courtier et al.,
1994).

2.3 Optimal mass transport

The application of the theory of optimal mass transport
(OMT) pioneered by GaspardMonge (Monge, 1781) seems
to be a natural extension of the CDF-matching tech-
niques for dynamic bias correction in VDA. The theory
was first conceptualized to minimize the total amount
of work in transportation of materials between two loca-
tions. Recent advances of the theory have provided fertile
ground for comparison of probability measures (Brenier,
1991; Villani, 2003) and have been studied extensively and
applied widely in the fields of signal processing (Kolouri
et al., 2017; Motamed and Appelo, 2019), image retrieval
(Rubner et al., 2000; Li et al., 2013), and analyzingmisfit in
seismic signals (Engquist and Froese, 2013).

Let px = (px1 ,… , pxk )
T ∈ ℝk and pz = (pz1 ,… , pzl)

T ∈
ℝl represent the probability vectors associated with a
source and a target histogram supported on vectors
x1, … , xk and z1, … , zl, respectively. In theMonge formu-
lation, the problem involves seeking a surjective optimal
transport map T ∶ {x1,… , xk} → {z1,… , zl} that moves
probability mass from each discrete point xi on the source

probability histogram to a “single” point zj on the target
probability histogram, where i = 1 … , k and j = 1 … , l,
such that the total cost of transportation is minimized:

minimize
T(⋅)

∑
i
c (xi,T(xi))

subject to pzj =
∑

i∶T(xi)=zj

pxi , (7)

where c (xi,T(xi)) is the transportation cost between points
xi and T(xi) and the constraint warrants the mass conser-
vation principle. Essentially, theMonge formulation of the
OMT problem is nonconvex and becomes a combinato-
rial Non-deterministic Polynomial time hard problem, for
which the transportmapT(⋅) does not exist—when the tar-
get probability histogramhasmore support points than the
source histogram (i.e., l > k: Peyré et al., 2019).

Kantorovich (1942) proposed a convex relaxation of
theMonge OMT problem through probabilistic considera-
tion of transport, in which mass at any source point xi can
be split and transported across several target points zj. A
schematic of the difference between the Monge and Kan-
torovich formulations of the OMT is shown in Figure 1.
Let us assume thatU ∈ ℝk×l represents the so-called trans-
portation plan matrix, where the element uij describes
the probability mass being transferred from point xi to
point zj. Here, C ∈ ℝk×l represents the transportation or
the ground-cost matrix, where the element cij = |xi − zj|p
is the cost of transporting probability masses from xi to zj
and p is a positive exponent. Assuming such a ground cost
turns the Kantorovich formulation to the p-Wasserstein
(p) distance or metric, which seeks to minimize the total
amount of work done in transporting probability masses
from px to pz as follows:

p(px,pz) ∶= (minimize
uij

∑
i,j
cijuij)1∕p

= (minimize
U

tr(CTU))1∕p

subject to uij ≥ 0,
U𝟙l = px,
UT𝟙k = pz. (8)

The first constraint ensures that the transported prob-
ability masses are nonnegative and the second and third
constraints warrant that the transportation follows conser-
vation of mass. Thus, the Wasserstein metric between two
probability histograms is the minimum cost required to
match them through a transportation plan matrix. Unlike
the Euclidean distance that penalizes the second-order
statistics of error, the Wasserstein metric penalizes the
misfit between the shape of the histograms and increases
monotonically with the shift between central positions of
the histograms (Ning et al., 2014), enabling it to penalize
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F IGURE 1 (a) The
optimal mass transport problem
between source px and two target
probability histograms pz and pẑ
that are apart from each other
only by a first-order shift. (b) An
example of the Monge
formulation of the transportation
problem, where each source
probability mass is assigned to
only a single target location. (c)
The Kantorovich formulation of
the problem, allowing mass
splitting across several target
locations. Here, the Euclidean
distance (d2) between the source
and target probability histograms
remains insensitive to the shift in
position, while the 2-Wasserstein
distance (2) increases
monotonically as the shift
between the central positions of
the probability histograms
increases [Colour figure can be
viewed at
wileyonlinelibrary.com]

the bias naturally. More specifically, for p = 2, it can be
shown that 2

2 (px,pz) = 2
2 (p̃x, p̃z) + ‖‖𝝁x − 𝝁z

‖‖22, where
p̃x and p̃z are the centred zero-mean probability masses
and 𝝁x and 𝝁z are the mean values.

3 REGULARIZATION OF VDA
THROUGH THE WASSERSTEIN
METRIC

Regularization techniques have been used to reduce the
uncertainty of the analysis state (Wahba and Wendel-
berger, 1980; Lorenc, 1986) with isolated singularities
(Ebtehaj et al., 2014), focusing on precipitation convec-
tive cells (Ebtehaj and Foufoula-Georgiou, 2013), sharp
transitions in weather fronts (Freitag et al., 2010), and
sea-ice thickness (Asadi et al., 2019). This article pro-
poses to add the cost of the square of the 2-Wasserstein
distance as a regularization term to the classic VDA
scheme, referred to as WM-VDA. Consideration of the
2-Wasserstein distance also ensures we keep the DA
problem convex. This approach not only penalizes the
background and observation error in a least-squares sense,
but also takes into consideration the mismatch between
the probability distributions of the analysis state and a
“relatively unbiased” a priori reference probability his-
togram. For example, this histogram can be obtained

from soil moisture gauge measurements, sea-ice buoy
data, or atmospheric radiosondes. Such in situ measure-
ments are often relatively less biased than both remotely
sensed satellite retrievals and the background state, but
can exhibit larger higher-order uncertainties, over a suf-
ficiently large window of time or space (Villarini et al.,
2008).

Specifically, let us assume that px = (px1 ,… , pxkm )
T ∈

ℝkm and pxr = (pxr1 ,… , pxrkm )
T ∈ ℝkm represent the ver-

tically concatenated probability vectors of the analy-
sis state and the a priori reference data supported on
the “known” matrix X = [x1| … |xkm] ∈ ℝm×km , where
k represents the number of domain discretizations of
the state variable in each dimension and xi ∈ ℝm rep-
resents the m-dimensional vertically concatenated vec-
tor of the support points for their associated prob-
ability vectors. The WM-VDA cost function is then
defined as

WM-VDA(x,px) = ‖x − xb‖2B−1 + ‖y −Hx‖2R−1

+ 𝜆 W2
(
px, pxr

)
, (9)

wherew2(px, pxr) represents the transportation cost asso-
ciated with the square of the 2-Wasserstein distance
between the two probability histograms and 𝜆 is a nonneg-
ative regularization parameter, which balances a trade-off
between the Euclidean and the Wasserstein cost. There is

http://wileyonlinelibrary.com
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no closed-form solution to determine this hyperparameter;
therefore, it should be estimated empirically through
cross-validation experiments.

The analysis state x at the initial time is an expected
value that can be represented as x = Xpx. Thus,
Equation 9 can be expanded as follows:

WM-VDA(px) = ‖X px − xb‖2B−1 + ‖y −H X px‖2R−1

+ 𝜆 W2
(
px, pxr

)
. (10)

From the second mass constraint in Equation 8, we
have px = U𝟙km and, setting W2

(
px, pxr

)
= tr(CTU), the

above cost function can be expressed in terms of the trans-
portation cost matrixU:

WM-VDA(U) = ‖X U𝟙km − xb‖2B−1 + ‖y −H X U𝟙km‖2R−1

+ 𝜆 tr(CTU). (11)

Let us assume that c̃ ∈ ℝk2m and ũ ∈ ℝk2m denote lexi-
cographic representations of C ∈ ℝkm×km and U ∈ ℝkm×km ,
respectively, which leads to tr(CTU) = c̃Tũ. Thus, the
problem in Equation 11 can be recast as a standard
quadratic programming problem. To that end, we also
need to vectorize the matrix of the transportation plan
in px = U𝟙km and pxr = UT𝟙km such that px = 𝛀ũ and
pxr = 𝚲ũ. Here, 𝛀 = [Ikm | Ikm | … |Ikm] ∈ ℝkm×k2m is the
horizontal concatenation of the km identity matrices and
𝚲 = [e1| … |e1| … |ekm | … |ekm] ∈ ℝkm×k2m is the hori-
zontal concatenation of km-dimensional canonical basis,
for example, e1 = (1, … , 0)T and ekm = (0,… , 1)T.

Consequently, Equation 11 can be rearranged
as the following standard quadratic programming
problem:

WM-VDA(ũ) =
1
2
ũT(2𝛀TXT(B−1 +HTR−1H)X𝛀)ũ

+ (𝜆 c̃T − 2(xTbB
−1 + yTR−1H)X𝛀)ũ. (12)

Thus, WM-VDA amounts to obtaining the “analysis
transportation plan” ũa:

ũa = argmin
ũ

WM-VDA(ũ),

subject to ũi ≥ 0,
𝚲ũ = pxr , (13)

which can be solved efficiently through interior-point opti-
mization techniques (Altman and Gondzio, 1999). Finally,
the analysis state can be obtained as xa = X𝛀ũa. It will
be noted that, since the analysis state obtained does not
satisfy the constraint of the Wasserstein metric exactly,
WM-VDA is a weak-constraint DA formulation based on
the terminology introduced by Daley (1993).

4 NUMERICAL EXPERIMENTS
AND RESULTS

In DA experimentation, we run the forward model under
controlledmodel and observation errors, which enables us
to characterize the effectiveness of the proposed method-
ology in comparison with the classic 3D-Var approach. To
examine the performance of WM-VDA initially, we focus
on two dynamic systems with different levels of sensitiv-
ity to their initial conditions, including a first-order lin-
ear system and the chaotic Lorenz-63 system. First-order
dynamical systems have been the cornerstone in develop-
ing theKalman filter (Kalman, 1960) and have beenwidely
used as a test bed to examine the performance of new fil-
tering techniques (Hazan et al., 2017; 2018). On the other
hand, Lorenz-63 has been the subject of numerous experi-
ments to test the performance of newDA techniques under
chaotic dynamics (Anderson and Anderson, 1999; Miller
et al., 1994; Harlim and Hunt, 2007; Van Leeuwen, 2010;
Reich, 2012; Goodliff et al., 2015).

4.1 First-order linear dynamics

4.1.1 State-space characterization

A first-order discrete time representation of a linear
dynamic system in state space is presented as follows:

xi+1 = M xi +wi,

yi = H xi + vi, (14)

where M ∈ ℝm×m is the (time-invariant) state transition
matrix. It is important to note that the system remains sta-
tionary if and only if maxi {|𝛾i|} < 1, where {𝛾i}mi=1 denote
the eigenvalues of M. To examine the effectiveness of
the proposed WM-VDA approach in treating systematic
biases, we introduce a shift in the system dynamics by
assuming that themodel and observation errors are drawn
from nonzero mean Gaussian distributions.

4.1.2 Assimilation set-up and results

Here, we confine our considerations to a 1-D simulation of
a linear state space. The initial parameter values were cho-
sen as x0 = 10 andM = 0.97. The expected value (ground
truth) of the true state trajectory is generated by solving
the model dynamics in Equation 14 with a time step of
Δt = 0.01 [t] over a period of T = 3 [t], in the absence of
any model error. For each simulation time step, the model
error is drawn from𝝎i ∼  (0.5, 1.5). The observations are
obtained by corrupting the truth at assimilation interval
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F IGURE 2 Time
evolution of the uncertainty
range (shaded region) for
3D-Var and WM-VDA,
representing (a) the 2.5th and
97.5th percentiles of 50
ensemble members of the
analysis state xa and the 95%
confidence bound for its (b)
bias and (c) ubrmse. The true
state (xtr) and observations
(Obs.) for an independent
simulation are shown in the
left panel as well [Colour
figure can be viewed at
wileyonlinelibrary.com]

Ta = 3Δt using vi ∼  (0.25, 0.75). To represent the rel-
atively unbiased but highly uncertain a priori reference
probability histogram pxr , 500 samples are drawn at each
assimilation interval from a Gaussian distribution, where
its mean is located at the ground truth and its variance is
set to 𝝈2xr = 3𝜎2b, where 𝜎2b = 1.5 is the background-error
covariance. To solve WM-VDA, the regularization param-
eter is set to 𝜆 = 5. As will be explained later, this value
minimizes the analysis mean-squared error (MSE) empir-
ically. In order to have a robust conclusion about compari-
son of the proposedWM-VDA schemewith classic 3D-Var,
the DA experimentation is repeated for 50 independent
ensemble simulations.

For all 50 ensembles, the ground truth of the model
trajectory, the 2.5th, and the 97.5th percentiles of the
ensemble members and their associated quality metrics,
including the bias and unbiased root-mean-squared error
(ubrmse), are shown in Figure 2. As is evident, not only the
uncertainty range of the ensemble members (Figure 2a)
but also the quality metrics (Figure 2b,c) improved notice-
ably for the WM-VDA scheme compared with 3D-Var. In
particular, on average, WM-VDA leads to the reduction
of bias (ubrmse) from 1.4 to 0.7 (1.6 to 1.3), which is
equivalent to 50% (19%) reduction compared with 3D-Var.

The sensitivity of the quality metrics is also
tested for different ranges of assimilation intervals
Ta = {2Δt, 5Δt, 10Δt, 20Δt} for both DA schemes
(Figure 3a,b). It is found thatWM-VDA improves the error
quality metrics compared with 3D-Var across the range
of assimilation intervals chosen. In particular, for small
assimilation intervals of 2Δt, WM-VDA reduces the bias
(ubrmse) from 1 to 0.5 (1.25 to 1), which is equivalent to
50% (20%) reduction compared with classic 3D-Var. As
expected, the ubrmse is reduced less significantly than
the bias, as the variance of the assimilated reference

probability histogram was markedly larger than both
observations and background state. As shown, when
the assimilation interval grows, the bias and ubrmse in
both schemes increase monotonically, however at differ-
ent rates. In fact, the bias grows faster in 3D-Var than
WM-VDA, while the already small gap between the
ubrmse values from the two methods shrinks slightly as
the assimilation interval grows. Thus, the analysis state
bias in WM-VDA seems to be more robust to increased
assimilation intervals than 3D-Var. This feature needs
further investigation, as it could be highly desirable for
land-surface DA, since the satellite overpasses are often
available at much longer time intervals than the forecast
time steps.

As previously noted, the regularization parameter 𝜆

plays a significant role in theWM-VDA algorithm bymak-
ing a trade-off between the weighted Euclidean cost and
the transportation cost. Recall that larger values of 𝜆 push
or overfit the analysis state towards the a priori reference
probability histogram by neglecting the information con-
tent of the background state and observations, and thus
reduce bias at the expense of an increased spread in uncer-
tainty of the analysis state. On the other hand, smaller
values diminish the role of the transportation cost and ren-
der it ineffective for bias correction. As previously noted,
there is no closed-form solution for optimal approximation
of this parameter. Here, we focus on determining optimal
values for 𝜆 through cross-validation and trial and error
analysis.

Figure 4a demonstrates the evolution of the analysis
probability histogram as a function of the regularization
parameter 𝜆 = {0.1, 5, 50, 1, 000} at the first assimilation
cycle, for the experimental setting shown in Figure 2. It
can be seen that for small values of 𝜆 ≤ 5, due to the
existing biases, the analysis probability histogram acquires
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F I GURE 3 Variation of (a) bias and (b) ubrmse for 3D-Var and WM-VDA as a function of assimilation interval [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 4 (a) Transition of the analysis state probability histogram at the first assimilation cycle and (b) variation of bias, ubrmse,
and mean squared error (MSE) of the analysis error as a function of 𝜆, averaged over 50 independent ensemble simulations [Colour figure
can be viewed at wileyonlinelibrary.com]

a bimodal distribution as the results approach those of the
3D-Var scheme. However, as the value of 𝜆 is increased,
the bimodality begins to fade and a more proper geome-
try of the analysis probability histogram is recovered. At
larger values of 𝜆 = 1,000, the analysis probability his-
togrammatches perfectly with the a priori reference prob-
ability histogram, as the transportation cost dominates the
quadratic cost of 3D-Var.

Figure 4b shows the variation of the quality metrics
as a function of 𝜆 averaged over 50 independent ensem-
ble simulations. It can be seen that the bias decreases and
ubrmse increases for larger values of 𝜆, yielding a trade-off
point where the MSE is minimal. As shown, this mini-
mum MSE is achieved in the range 𝜆 = 5–10, based on
the model parameters and error terms chosen. Clearly, for

every problem at hand, this analysis needs to be performed
offline prior to implementation of the WM-VDA scheme.

4.2 Lorenz-63

4.2.1 State-space characterization

The Lorenz system (Lorenz-63: Lorenz, 1963) is a chaotic
ordinary differential equation obtained as a Fourier trun-
cation of the Rayleigh–Bénard convective flow of fluids, in
which the three coordinates x, y, and z represent the rate
of convective overturn, horizontal, and vertical tempera-
ture variations, respectively. The system is represented as
follows:
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dx
dt

= −𝜎(x − y),

dy
dt

= 𝜌x − y − xz,

dz
dt

= xy − 𝛽z, (15)

where 𝜎, 𝜌, and 𝛽 are the Prandtl number, normal-
ized Rayleigh number, and dimensionless wave num-
ber, respectively. The standard parameter values are 𝜎 =
10, 𝜌 = 28, and 𝛽 = 8∕3, for which the system exhibits
a strong chaotic behaviour with a maximum Lyapunov
exponent value of 0.9. For this selection of parame-
ters, there exist three equilibrium points: the origin,
which represents the conductive state of no motion, and
two attractors located at (

√
𝛽(𝜌 − 1),

√
𝛽(𝜌 − 1), 𝜌 − 1) and

(−
√
𝛽(𝜌 − 1),−

√
𝛽(𝜌 − 1), 𝜌 − 1), representing patterns of

convective rolls with different directions of rotation.

4.2.2 Assimilation setup and results

In this subsection, we present the results from two dif-
ferent DA settings for the Lorenz system, which differ in
terms of characterization of the a priori reference prob-
ability histogram pxr . In setup I, it is assumed that pxr
is available at each assimilation interval, while in setup
II it is available over a window of time. The reason for
examination of the second experimental setup is that, in
practice, adequate samples with which to construct the
reference histogram may not be available at each assim-
ilation cycle. However, a histogram of historical in situ
observations is often available over a window of time or
space that can be leveraged to reduce the bias in DA
systems. An example is the availability of monthly or
seasonal probability histograms of gauge measurements
of surface soil temperature, moisture, or radiosonde data
of atmospheric states. Tominimize the computational cost
of the interior-point optimization algorithm, we solved the
problem of determining the analysis state in each dimen-
sion separately by setting m = 1 and utilizing marginal
probability histograms along each dimension.

In both experiments, to obtain the ground truth of
the model trajectory, the Lorenz system is initialized at
(x, y, z) = (3,−3, 12) and is integrated using a fourth-order
Runge–Kutta (RK4: Runge, 1895; Kutta, 1901) approxima-
tion with a time step of Δt = 0.01 [t] over a time period
of T = 0–50 [t], at the end of which the system attains
second-order stationarity. The observations are obtained
every at 10Δt by corrupting the truth over a simula-
tion period of T = 0–20 [t] using a Gaussian error vi ∼
 (𝜷y𝟙3, 𝜎2y I3), where 𝜷y = 0.15 and 𝜎2y = 2. The model
is propagated up to T = 20 [t] by adding Gaussian noise
𝝎i ∼  (𝜷m𝟙3, 𝜎2b I3) to the model state at everyΔt, where

𝜷m = 0.25 and 𝜎2b =
√
5. For setup I, at the assimilation

interval of Ta = 10Δt, 500 samples are drawn from a Gaus-
sian distribution with mean equal to the ground truth
and covariance

√
3 𝜎2bI3 to construct the unbiased a priori

reference probability histogram pxr . To solveWM-VDA, the
regularization parameter is set to 𝜆 = 3 for each dimension
by trial and error. However, in setup II, pxr is constructed
by adding a zero-mean Gaussian noise with covariance√
3 𝜎2bI3 to the ground truth over a period T = 0–50 [t].

In this case, pxr has a larger spread than in setup I and
provides an unbiased representation of the process over
the entire simulation period. In setup II, the regularization
parameter is set to 𝜆 = (0.02, 0.08, 0.07) for the three coor-
dinates. Throughout, in order to draw a robust conclusion
about comparison of the proposed WM-VDA scheme with
3D-Var, DA experiments are repeated for 50 independent
ensemble simulations for both experimental settings.

Figure 5 depicts the trajectory of the ground truth
and range, showing the 2.5th and 97.5th percentiles of
the ensemble members from the 3D-Var and WM-VDA
schemes for the first experiment. It is seen that, for all
three state variables, the range for WM-VDA is narrower
than that for 3D-Var. On average, bias and ubrmse are
reduced by 40–50% and 30–40%, respectively. Clearly, the
uncertainty of the quality metrics can also be quantified at
each time step for all ensemble members. Under chaotic
dynamics, a narrower range for the error statistics signi-
fies more stable solutions to a biased perturbation of the
initial conditions. The time evolution of the uncertainty
range, between 2.5th and 97.5th percentiles, of the bias and
ubrmse is colour-coded in the phase space of the Lorenz
system in Figure 6. As is evident, the uncertainty around
the computed error statistics gradually shrinks as the DA
progresses and passes the duration of the spin-up time. It
is seen that the width of the uncertainty in the quality met-
rics is noticeably narrower in WM-VDA than in 3D-Var.
In particular, the range reduces by 47.5 and 62.1% for the
bias and ubrmse, respectively, demonstrating the advan-
tage of bias-aware WM-VDA over 3D-Var. Table 1 lists the
expected values of the bias and ubrmse at the end of both
experiments.

To quantify the effects of assimilation intervals on
the quality of the DA schemes, experimental setup I
was performed for a range of assimilation intervals
Ta ={2Δt, 5Δt, 10Δt, 20Δt}. The expected values of the
quality metrics obtained are shown in Figure 7. As
expected, for both schemes, bias and ubrmse increase as
the assimilation interval grows and, as shown, WM-VDA
outperforms 3D-Var. The gap between the two approaches,
in terms of the bias, remains relatively steady, even though
we see that, over the third dimension, it begins to shrink
as the assimilation interval increases. However, it appears
that, as the assimilation interval grows, the gap between
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F I GURE 5 Time evolution of the true state (solid lines) of the Lorenz-63 analysis states, observations (Obs.) for one ensemble member
and 2.5th and 97.5th percentiles (shaded areas) of the ensemble members for (a, c, e) 3D-Var and (b, d, f) WM-VDA. The results are obtained
for 50 independent ensemble members based on experimental setup I [Colour figure can be viewed at wileyonlinelibrary.com]

the ubrmse keeps increasing. This might have stemmed
from a very high value of the Lyapunov exponent (0.9) for
Lorenz-63. At such a high value, an infinitesimally close
trajectories of the state can also deviate significantly as
time progresses. Therefore, for longer assimilation inter-
vals, an analysis state produced by WM-VDA evolves with
much less deviation from the true state before the next
assimilation cycle and thus exhibits reduced ubrmse com-
pared with 3D-Var.

As listed in Table 1, in the second experimental set-
ting, bias in WM-VDA is lower than in 3D-Var by 15–50%,
whereas there is marginal improvement in ubrmse. The
reason is that the relatively unbiased a priori probabil-
ity histogram is selected over a window of time, with
a larger uncertainty (𝜎2xr = 65–82) along three dimen-
sions than the first experiment (𝜎2xr =

√
15). Thus, its

assimilation can only reduce the bias and is unable to
decrease the ubrmse substantially. However, the results
are promising, in the sense that, even if the spread

of the a priori reference probability histogram is much
larger than that of the observations and background
probability histogram, WM-VDA can reduce the bias in
the analysis effectively without hampering the variance.
This observation partially verifies the hypothesis that
WM-VDA provides a new means of effective assimilation
of highly uncertain but relatively unbiased probability his-
tograms, obtained from the in situ data in a climatological
sense.

We also compared the results of setup-II of the
WM-VDA scheme with the CDF-matching technique
implemented on the Lorenz-63 system with identical
assumptions about error structures to those discussed
earlier in this section. The CDF-matching scheme is
developed without consideration of any a priori refer-
ence information; therefore, in its current form, it is
limited to bias correction in either model or observa-
tion only. For a fair comparison between the methods,
with provision of a priori information, we deployed the
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F IGURE 6 Time evolution of the 95% confidence bound of (a,b) bias and (c,d) ubrmse in the phase space of the Lorenz system for
3D-Var and WM-VDA. The uncertainty range is obtained from 50 independent ensemble members for the first experimental setup [Colour
figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Expected values of the bias and ubrmse in 3D-Var andWM-VDA for experimental setups I and II. Values shown
inside the parentheses are percentage reductions of the error metrics due to implementation ofWM-VDA compared with 3D-Var

Bias ubrmse

Methods x y z x y z

3D-Var 2.65 2.17 2.22 3.92 5.71 5.36

Setup I: WM-VDA 1.31 (50.6) 1.28 (41.0) 1.34 (39.6) 2.83 (27.8) 3.39 (40.6) 3.29 (38.6)

Setup II: WM-VDA 2.22 (16.2) 1.67 (23.0) 1.20 (45.9) 3.88 (1.0) 5.42 (5.1) 5.19 (3.2)

CDF-matching technique by mapping both observations
and model state on to the a priori reference dataset
using their respective cumulative histograms. To proceed
with CDF matching, a cumulative histogram of the ref-
erence dataset is constructed by integrating the model in
time from an initial state of (x, y, z) = (3,−3, 12) with
a time step of Δt = 0.01 [t] over a period T = 0–50 [t]
and adding zero-mean Gaussian noise with covariance√
3 𝜎2bI3, where 𝜎

2
b =

√
5. The observation cumulative his-

togram is constructed using observations at an interval of
10Δt over T = 0–50 [t] obtained by corrupting the truth

with Gaussian error vi ∼  (𝜷y𝟙3, 𝜎2y I3), where 𝜷y = 0.15
and 𝜎2y = 2. The model cumulative histogram is computed
by propagating the model (Equation 15) over T = 0–50
[t] by adding a Gaussian noise 𝝎i ∼  (𝜷m𝟙3, 𝜎2b I3) to
the model state every Δt, where 𝜷m = 0.25 and 𝜎2b =

√
5.

At the end of T = 50 [t], the model state perturbed with
zero-mean Gaussian noise of covariance

√
3 𝜎2bI3 is con-

sidered as the initial condition and DA experimentation
for the CDF-matching technique is then applied to the
next 2000 time steps. At every assimilation time, the obser-
vation and model were first mapped on to the reference
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F I GURE 7 Changes of (a) bias and (b) ubrmse as a function of assimilation interval for 3D-Var and WM-VDA in experimental setup I,
where (x, y, z) represents the three dimensions of the Lorenz system [Colour figure can be viewed at wileyonlinelibrary.com]

dataset using piecewise linear CDF matching to remove
bias, and then the 3D-Var method was utilized to obtain
the analysis state using the bias-removed model state and
observation. We note that, in comparison with WM-VDA,
CDF matching is equipped with more information fed
in the form of model and observation cumulative mass
functions.

It is seen that, over 50 independent ensemble simu-
lations, averaged over all three dimensions, CDF match-
ing reduces the bias by 26% compared with 28% for
WM-VDA, whereas ubrmse increases by 8.6% compared
with an overall decrease in ubrmse of 3.3% for WM-VDA.
The difference exists primarily due to the way CDF
matching maps the biased source of information com-
pletely on to the relatively unbiased one. Here, since the
reference dataset has a higher uncertainty in terms of
variance, CDF matching improves bias compared with
3D-Var at the expense of an increase in ubrmse. There-
fore, if the a priori information has uncertainty, as can
be expected in a real condition, WM-VDA can be more
effective than a statistical CDF-matching technique in bias
correction and also provides fertile ground to conduct
DA experiments in the probability domain with reduced
uncertainty.

5 SUMMARY AND CONCLUDING
REMARKS

In this study, we discussed the concept ofWassersteinmet-
ric (WM) regularization of variational data assimilation
(VDA) techniques, referred to as WM-VDA. In particu-
lar, the classic VDA problem is equipped with a trans-
portation cost that penalizes the mismatch between the
probability histograms of the analysis state and relatively

unbiased a priori reference data, which can be obtained
from in situ observations over a spatial or temporal win-
dow. The WM-VDA approach presented does not need
any a priori knowledge of the sign of the bias or infor-
mation about its origin from either model and/or obser-
vations, and retrieves it automatically from the a priori
reference data. We examined the application of WM-VDA
for bias removal in simple first-order linear dynamics and
the chaotic Lorenz-63 system (Lorenz, 1963). The results
demonstrated thatWM-VDA can reduce and control prop-
agation of bias under chaotic dynamics. Due to the intrin-
sic property of the Wasserstein metric to allow natural
morphing between probability histograms (Kolouri et al.,
2017), a proper value of the regularization parameter alle-
viates any unrealistic bimodality in the shape of the anal-
ysis histogram due to potential biases. Initial comparisons
with classic CDF matching also demonstrated improved
performance, although future research is needed for a
comprehensive comparison with other existing methods
to characterize the advantages and disadvantages of the
proposed approach fully.

As is well understood, in the absence of bias, classic
VDA leads to the lowest possible analysis mean-squared
error and meets the known Cramér–Rao lower bound
(CRLB: Rao et al., 1973; Cramér, 1999). However, in
the presence of systematic biases, such a lower bound
cannot be met. Even though we demonstrated empiri-
cally that, under biased assimilation scenarios, WM-VDA
shows improved performance compared with 3D-VAR,
future theoretical studies are needed to characterize a
closed-form expression for such improvement. We note
that, since WM-VDA does not need to attribute the bias
specifically proportional to either model or observations,
it cannot identify the origin of bias. If such information is
needed, future research might be devoted to relating the
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amount of probability mass transported to the bias of the
background state and observations.

One of the main challenges of WM-VDA is its high
computational complexity. The interior-point optimiza-
tion algorithm has computational complexity(k3 log k),
where k is the number of elements in the support set.
This hampers applications of WM-VDA to large-scale geo-
physical DA problems. Recent advances in tomographic
approximation of the Wasserstein distance (Kolouri et al.,
2018) through slicing the metric via a finite number of 1-D
Radon projections can reduce its computational cost sig-
nificantly for high-dimensional problems and could be a
possible direction for future research in geophysical data
assimilation. Moreover, characterization of the regulariza-
tion parameter through cross-validation could be compu-
tationally intensive, especially for large-scale Earth system
models, and new research efforts are required to address
this challenge.

As demonstrated empirically, the WM-VDA scheme
shows robustness to increased assimilation intervals,
which can provide new ways for improving bias-aware
satellite VDA systems. Of particular interest are satel-
lite soil moisture and precipitation DA (Lin et al., 2015;
2017a), as land and weather models are often biased
(Reichle et al., 2004; Lin et al., 2017b). To that end, future
research is required to understand how WM-VDA can
be integrated into land–weather models for assimilation
of in situ data in the probability domain. A promising
area is to incorporate the Wasserstein metric for bias cor-
rection in ensemble-based iterative methods and hybrid
variational-ensemble DA techniques. In particular, the
theory of optimal mass transport seems to provide con-
crete ground for solving the problem of filter degeneracy
in particle filters (Snyder et al., 2008; Van Leeuwen, 2010;
Reich and Cotter, 2015; Van Leeuwen et al., 2019), where
the observations and background state do not have over-
lapping supports and thus the weights cannot be updated
trivially using the likelihood function.
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