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Abstract

The recently developed localized orbital scaling correction (LOSC) method shows

the ability to systematically and size-consistently reduce the delocalization error exist-

ing in conventional density functional approximations (DFAs). However, the application

of LOSC to DFAs was mainly through a post self-consistent field (SCF) manner, and

few results from applying LOSC to DFAs with a SCF manner have been reported. The

reason is that the originally proposed SCF approach for SCF-LOSC calculation uses

an approximate Hamiltonian and encounters convergence problems easily in practice.

In this work, we develop a new SCF approach with a correct Hamiltonian and achieve

reliable SCF-LOSC calculations. We demonstrate the capability of the new SCF ap-

proach for SCF-LOSC to correctly describe the electron densities, total energies and

energy level alignment for the molecular dissociation process, while conventional DFAs

or LOSC-DFAs with post-SCF calculations show large errors. This work demonstrates

that the new SCF approach for SCF-LOSC would be a promising method to study

problems for correct electron densities and energy level alignment in large systems.
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Density functional theory (DFT)1–3 has been widely used to calculate and predict the

electronic structure of molecular systems in practice. The performance of DFT depends on

the quality of applied density functional approximation (DFA) to the exchange-correlation

energy Exc. Although the conventional DFAs, such as local density approximation (LDA), 4,5

general gradient approximations (GGAs)6–8 and hybrid GGAs,9–11 are commonly used in

practice, they all have the delocalization error 12–15 and fail to describe some critical problems.

The delocalization error in conventional DFAs 12,16 manifests a size-dependent manner as

follows. (1) For systems with small numbers of atoms and a small physical extent, commonly

used DFAs have good accuracy for describing the total energies of systems with integer

number of electrons, but the delocalization error exhibits as the convex deviation from the

Perdew-Parr-Levy-Balduz (PPLB) linearity condition for systems with fractional numbers

of electrons.17–19 (2) For systems with large numbers of atoms, commonly used DFAs have

small errors for systems with fractional numbers of electrons and obey the fractional charge

linearity condition at the bulk limit, but the delocalization error manifests as the large

errors in total energies for systems with integer number of electrons. (3) For systems with

a finite number of atoms but with a large physical extent (as near a dissociation limit),

the delocalization error leads to errors for total energies of systems with integer electron

numbers and produces the convex deviation from the PPLB condition for systems with

fractional numbers of electrons. The cases of ionization energies for noniterating Helium

clusters clearly demonstrate these three scenarios.16 (For Weitao, we only discuss the impact

of delocalization error to total energy in this paragraph.)

(For Weitao, starting from paragraph, we discuss about the outcomes from the error in

total energies to connect with the previous paragraph.) Such delocalization error in con-

ventional DFAs, showing as either the convex deviation to PPLB condition (aforementioned

point 1 and 3) or large errors for total energies of systems with integer number of electrons

(aforementioned point 2), leads to major error for the energy derivatives with respect to the

electron number, i.e. the chemical potentials. 13,20 Thus, this error leads the conventional
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DFAs to underestimate of the exact ionization potentials (IPs) from the HOMO (highest

occupied molecular orbital) energies and the overestimation of electron affinities (EAs) from

the LUMO (lowest unoccupied molecule orbital) energies. In addition to the chemical poten-

tial, delocalization error would produce too delocalized electron density, as the error falsely

lowers the total energy of the system.12,14,15 Examples reflecting this issue are the wrong

dissociation limits of molecules21–25 and the underestimation of reaction barriers15 from con-

ventional DFAs. For charge transfer complexes, delocalization error leads to overestimate of

charge transfer and the binding energies.14 In material interfaces and defects, delocalization

error can lead to incorrect charge transfer across the interfaces, and significant error in en-

ergy level alignment.26–29 Interfaces and energy level alignment play important roles in many

technological applications: they strongly influence the charge extraction and transport in so-

lar cell devices,30 and catalysis in semiconductors.31 Thus it remains an important challenge

to describe the correct energy level alignment for interfaces with DFAs.

To reduce the delocalization error, there has been much effort devoted to develop im-

proved functional approximations. These include the development of long-range corrected

functionals32–43 and double hybrid functionals.44–48 These methods have been shown to re-

duce delocalization error. But challenges still remain for a systematic correction across

system types, sizes and scales.

Recently, our group developed the localized orbital scaling correction (LOSC) method,

which imposes the PPLB condition by utilizing orbitalets (a set of molecular orbitals lo-

calized on both physical and energy space) to the associated parent DFAs to reduce the

delocalization error.16,49 Benefiting from the novel features of orbitalets that dynamically

switch between the canonical orbitals (COs) and localized orbitals (LOs), correction from

LOSC can be flexibly and automatically applied on the global or local region of the system.

Thus, LOSC shows the ability to reduce the delocalization error in a systematic and size-

consistent way. LOSC has been shown to improve greatly the prediction of quasiparticle

energies – ionization energies, electron affinities, and also ionized excited state energies for
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atoms, small molecules and very large systems, all from the eigenvalues of the generalized

Kohn-Sham Hamiltonian.16,49,50 The LOSC prediction accuracy is similar or better than the

many-electron Green’s function method of GW.50

In the original LOSC paper,16 two approaches for applying LOSC to the parent DFAs

have been discussed. One way is in the post self-consistent field approach (post-LOSC),

in which the converged electron density from the parent DFA (ρDFA
s ) is directly used to

evaluate the energy correction ∆ELOSC from LOSC. The other way is the self-consistent

field approach (SCF-LOSC), in which the LOSC effective Hamiltonian ∆hLOSC = δ∆ELOSC

δρs

is introduced to the DFA Hamiltonian hDFA
s . After solving the KS-equations with updated

Hamiltonian hs = hDFA
s + ∆hLOSC self-consistently, the converged electron density from

LOSC-DFA (ρLOSC−DFA
s ) is obtained and the correction ∆ELOSC is therefore evaluated based

on ρLOSC−DFA
s . In practice, the originally proposed SCF approach 16 for the SCF-LOSC cal-

culation tends to encounter convergence problems easily, especially for the calculations of

large molecules, because only an approximate form of the LOSC effective Hamiltonian has

been developed and used. Therefore, only the performance of post-LOSC has been well

investigated. Although the post-LOSC has been demonstrated to show much improvement

in the description of band gaps, total energies and photoemission spectra, 16,49,50 the devel-

opment of reliable SCF-LOSC approach is still necessary because of the following. First, in

addition to energetic properties (total energies and orbital energies), the electron density of

a molecular system is also an important property, since it closely relates to the molecule’s

geometry, chemical bonding and reaction reactivities. The conventional DFAs, suffering from

the delocalization error, produce much delocalized electron density and underestimate total

energy in many cases.21–25,51 Applying post-LOSC in these cases is not sufficient because it

only improves the energies for the parent DFA but leaves the significant error in electron den-

sity unchanged. Second, post-LOSC, being an reasonable approximation to the SCF-LOSC,

is only valid at the condition that ρDFA
s is close to ρLOSC−DFA

s . When ρDFA
s differs much

from ρLOSC−DFA as the delocalization error from the parent DFA becomes significant, the
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post-LOSC may not provide reliable results due to the lack of self-consistency, and applying

SCF-LOSC calculation becomes necessary.

In this work, we present a new and robust SCF approach to achieve reliable SCF-LOSC

calculations. We start with reviewing the methodology of LOSC. LOSC is designed to impose

the PPLB linearity condition locally to conventional DFAs by using orbitalets (LOs, {φi}).

The orbitalets are molecular orbitals localized in both the physical and energy space and

can be obtained through the LOSC localization procedure. Taking the localization in the

developed version of LOSC (LOSC2)49 as an example, the LOSC localization cost functional

F takes the following form,

F (ρs, {ψi},U) = (1− γ)
∑
p

(
〈r2〉p − 〈r〉2p

)
+ γC

∑
p

(
〈h[ρs]

2]〉p − 〈h[ρs]〉2p
)
, (1)

where

〈X〉p = 〈φp|X|φp〉, X = r, r2, h, h2, (2)

and φp =
∑
i

Upiψi, (3)

U is the unitary transformation matrix, h is the one-electron Hamiltonian of the associated

DFA evaluated at the electron density ρs at each SCF cycle, and {ψi} are the corresponding

COs. Through the LOSC localization, the obtained LOs are unitarily transformed from both

occupied and virtual COs. Based on these LOs, the energy correction from LOSC (∆ELOSC)

is constructed to restore the linearity condition. ∆ELOSC is expressed as

∆ELOSC =
∑
ij

1

2
κijλij(δij − λij), (4)

in which κ is the LOSC curvature matrix and λ is the local occupation matrix. The LOSC

curvature and local occupation matrices are directly generalized from the global scaling

correction (GSC) method.52 In contrast to GSC that constructs the curvature from COs
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and uses canonical occupation numbers to provide corrections globally, LOSC evaluates the

curvature based on LOs and uses local occupation numbers {λij} to impose the PPLB

linearity condition locally. The LOSC curvature matrix has different expressions in different

versions of LOSC. We call the original version of LOSC as LOSC1 16 and the later version as

LOSC249 in the following text. No matter in which version of LOSC, the LOSC curvature

matrix is completely and explicitly determined by LOs. For example, the curvature matrix

from LOSC1 is defined as

κij =

∫
ρi(r)ρj(r

′)

|r− r′|
drdr′ − 2τCx

3

∫
[ρi(r)]

2
3 [ρj(r)]

2
3dr, (5)

in which ρi(r) is the local orbital’s density and defined as ρi(r) = |φi(r)|2 . The local

occupation matrix λ is determined by LOs and the KS density operator ρs, and it is expressed

as

λij = 〈φi|ρs|φj〉. (6)

Figure 1: The original SCF procedure with the approximate LOSC effective Hamiltonian.

With the defined LOs, LOSC curvatures and local occupation numbers, the original SCF

procedure for SCF-LOSC16 was proposed and the working flow is shown in Figure 1. As

shown in Figure 1, one should notice that both LOs and electron density are updated in

every SCF cycle. The dependence of LOs on the electron density (as defined in Eq. 1) in

each SCF cycle introduces complexities for deriving the exact LOSC effective Hamiltonian.

Specifically, according to the original SCF procedure and Eqs. 4 - 6, the exact LOSC effective
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Hamiltonian ∆hLOSC for the original SCF approach is given by

∆hLOSC =
δ∆E[{φi}, ρs]

δρs
=
δ∆E

δρs

∣∣∣
{φi}

+
∑
i

δ∆E

δφi

∣∣∣
ρs

δφi
δρs

+
∑
i

δ∆E

δφ∗i

∣∣∣
ρs

δφ∗i
δρs

. (7)

The first term (denoted as ∆h1) on the r.h.s. of Eq. 7 is the explicit contribution with the

LOs fixed, and the last two terms (denoted as ∆h2) are the implicit contribution from the

relaxation of LOs because of the dependence on electron density. Due to the difficulty of

evaluating ∆h2, the ∆h2 term was ignored in practical calculations. As shown in Figure 1,

the LOSC effective Hamiltonian is approximated with only the ∆h1 term,

∆hLOSC ≈ ∆h1 =
∑
i

κii(
1

2
− λii)|φi〉〈φi| −

∑
i 6=j

κijλij|φi〉〈φj|. (8)

However, such approximate LOSC effective Hamiltonian is not robust in practice, because

we find it easily leads to SCF convergence difficulty. To solve the convergence problem,

one straightforward solution is to derive the ∆h2 term to use the exact LOSC effective

Hamiltonian. However, this would be complicated and difficult to achieve.

In this paper, we develop an alternative solution to the problem. The idea is to define

a new SCF procedure with the removal of LOs’ dependence on the electron density in each

SCF cycle. The key step is to redefine the LOSC localization procedure, in another word, the

localization cost functional. Instead of defining the LOSC localization cost functional that

is dependent on the electron density and COs in each SCF cycle as shown in Eqs. 1 - 3, we

can just use the electron density ρDFA
s and the corresponding COs {ψDFA

i } from a converged

DFA calculation in the cost functional. Therefore, we obtain a set of predetermined LOs

{φ0
i } in advance of the SCF-LOSC calculation and keep the same set of LOs {φ0

i } during the

SCF procedure. Applying this strategy to LOSC2 as an example, the modified localization
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cost functional is expressed as

F (ρDFA
s , {ψDFA

i },U) = (1− γ)
∑
p

(
〈r2〉p − 〈r〉2p

)
+ γC

∑
p

(
〈h[ρDFA

s ]2]〉p − 〈h[ρDFA
s ]〉2p

)
,

(9)

where

〈X〉p = 〈φ0
p|X|φ0

p〉, X = r, r2, h, h2, (10)

and φ0
p =

∑
i

Upiψ
DFA
i , (11)

h is now evaluated at the ρDFA
s and LOs are unitarily transformed from the converged {ψDFA

i }.

Clearly, the LOs in this new SCF approach do not depend on the electron density of each

SCF cycle. This treatment of LOs in the new approach makes the ∆h2 term in Eq. 7 vanish

and gives the exact LOSC Hamiltonian only with the ∆h1 term immediately; that is,

∆hLOSC =
δ∆E[{φ0

i }, ρs]
δρs

=
∑
i

κii(
1

2
− λii)|φ0

i 〉〈φ0
i | −

∑
i 6=j

κijλij|φ0
i 〉〈φ0

j |. (12)

The LOSC curvature is determined by the set of {φ0
i }, and it only needs to be evaluated

once. The local occupation matrix is evaluated based on {φ0
i } and electron density during

the SCF procedure; that is, λij = 〈φ0
i |ρs|φ0

j〉.

The working flow of the new SCF procedure for SCF-LOSC calculation is demonstrated

in Figure 2. It involves the following steps: (1) carry out the SCF convergence from the

parent DFA to get the converged electron density ρDFA
s and COs {ψDFA

i }; (2) apply the

LOSC localization procedure to generate {φ0
i } based on ρDFA

s and {ψDFA
i }; (3) construct and

store the curvature matrix evaluated from {φ0
i }; (4) use the ρDFA

s as the initial guess to start

the SCF-LOSC calculation associated with parent DFA; (5) use the density ρs from current

SCF cycle to construct the DFA Hamiltonian hDFA
s ; (6) evaluate local occupation matrix

based on ρs and {φ0
i }, and construct the exact LOSC effective Hamiltonian ∆hLOSC via Eq.
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Figure 2: The new SCF procedure with the exact LOSC Hamiltonian.

12; (7) apply ∆hLOSC to hDFA
s and update COs and ρs; (8) check the convergence and go

back to step (5) if it is not converged.

In the new SCF-LOSC approach, since the LOSC curvature matrix only needs to be eval-

uated once and updating the local occupation, λij = 〈φ0
i |ρs|φ0

j〉, is simple, the computational

cost for the new SCF-LOSC approach is only about two times that of the conventional DFA

SCF calculation. Specifically, one is the generation of LOs from a one-time conventional

DFA SCF calculation, and the other is the SCF-LOSC calculation with the corrected KS

Hamiltonian, with fixed LOs and LOSC curvature matrix.

Comparing the new SCF approach with the original one, the solution from the new SCF

approach may be different from the original SCF-LOSC solution. This is because, at the SCF

solution point, the LOs used to evaluate the total energy in the new SCF-LOSC approach

are always obtained from ρDFA
s , rather than ρLOSC−DFA

s . The significance of this difference

needs to be verified with numerical results. If the relaxation of LOs, like in the original

SCF-LOSC, turns to be necessary, we can apply an additional layer of SCF cycle on top

of the new SCF-LOSC procedure in order to update the LOs. This two-layer SCF method

is noted as macro-SCF-LOSC. Detailed procedure for the macro-SCF-LOSC is described in

the supporting information. Ideally, because the macro-SCF-LOSC optimizes both electron

density and LOs, the macro-SCF-LOSC should yield the same results as the original SCF-
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LOSC approach. From the numerical results shown in the following main text, we find that

the macro-SCF-LOSC is not necessary in practice, because the new SCF approach without

the macro iteration is already able to provide reliable and excellent results.
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Figure 3: Comparison of SCF performance between (a) SCF-LOSC2 and (b) the original
SCF-LOSC2 with approximate Hamiltonian (Approx-SCF-LOSC2) for polyacetylene (n =
9). En is the total energy at n-th iteration step and ∆En = En − En−1. BLYP is used as
the parent functional. 6-31g* is used as the basis set. aug-cc-pVTZ-RIFIT is used as the
density fitting basis in LOSC2 curvature matrix construction.

Now, we check the performance of the new SCF approach for SCF-LOSC calculations.

In the following text, the results from SCF-LOSC refer to the new SCF approach, if not

specified otherwise. We first study the SCF convergence by testing a long organic molecule,

the polyacetylene with 9 units of monomer ([C2H2]9). As shown in Figure 3, the original

SCF approach with the approximate LOSC effective Hamiltonian shows oscillation for total

energy along the iterative steps, and it can not reach to the convergence after about 20 steps.

The new SCF procedure with the exact LOSC effective Hamiltonian converges smoothly and

quickly.

Next, we study the effect of initial guess in the new SCF approach. Note that in step (4)

of the new SCF procedure, we use ρDFA
s as the SCF initial guess. This is necessary because

the geometric orientation of LOs are fixed in the SCF process. Using ρDFA
s as the initial

guess ensures the orientation of the LOs agree with the one of initial density and initial COs

at the beginning. If the used initial electron density has a different orientation than that of
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the LOs, it will artificially produce fractional local occupation numbers at the initial step,

which may lead the SCF calculation converge to unphysical states with wrong energies. To

support the discussion, Table 1 shows results for the test on F atom, with a partially filled

p shell. For such small system, the LOs from LOSC localization are just the converged COs

from the parent DFA. In other words, the localization is not operative and orbitaltes are just

the COs for small systems. As shown in Table 1, if we use the non-rotated ρDFA
s as the initial

guess, the local occupation numbers will be exact integer (either 1 or 0), and LOSC (both

LOSC1 and LOSC2) gives zero correction to the total energy of the parent DFA. However,

if we use the rotated ρDFA
s as the initial guess, which has a set of rotated p orbitals, the

fractional local occupation numbers will be generated artificially and LOSC gives non-zero

correction to the total energy of the parent DFA. In the case of LOSC1, we can see such

artificial correction is even negative and leads to a unphysical state with energy even lower

than DFA. In the case of LOSC2, the artificial energy correction is much smaller. This is

because LOSC2 preserves the symmetry better than LOSC1, 49 making these artificial energy

corrections from each fractional local occupation number almost canceled with each other.

As a whole, to avoid issues introduced by the orientation of the initial guess, we use the ρDFA
s

as the initial guess for the new SCF approach. Note, the choices of LO orientation will not

be an issue at all, if the macro-SCF-LOSC is used, because the LO will be generated from

ρLOSC−DFA
s in the macro iterations.53

With the smooth convergence from the new SCF procedure, we investigate the new SCF-

LOSC with the same test sets used in the development of LOSC to test the performance

for the atomization energies, reaction barriers, first ionization potentials (IPs) and electron

affinities (EAs). Detailed results are documented in the supporting information. In general,

the new SCF-LOSC can be conducted easily in these test sets. For the test sets related

to atomization energies and reaction barriers, both SCF-LOSC and post-LOSC currently

preserve the performance as DFAs. For example, the mean absolute error (MAE) of G2-

1 test set for atomization energies is 4.94 kcal/mol for BLYP, and 4.93 kcal/mol for both
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Table 1: Testing on F atom for the effect of the orientation of initial guess to
the new SCF-LOSC approach. BLYP is used as the parent functional. The
converged densities from BLYP (rotated/non-rotated) are used as the initial
guess. cc-pVTZ is used the basis set. aug-cc-pVTZ-RIFIT is used as the density
fitting basis set in LOSC curvature matrix construction. Grid type is (99, 590).

Method E3 ∆E4 E_corr(initial)5 E_corr(SCF)6

BLYP -99.7522856431

SCF-LOSC1: non-rotated1 -99.7522856430 6.31E-11 1.10E-14 1.30E-14
SCF-LOSC1: rotated2 -99.7794002845 -2.71E-02 -2.68E-02 -2.71E-02

SCF-LOSC2: non-rotated1 -99.7522856430 6.31E-11 1.00E-14 8.00E-15
SCF-LOSC2: rotated2 -99.7522340746 5.16E-05 5.27E-05 5.05E-05

1The orientation of initial electron density matches the one of LOs. 2The orientation of
initial electron density does not match the one of LOs. 3Total energy. 4Total energy

difference between the SCF-LOSC and BLYP. 5LOSC energy correction at the first SCF
cycle. 6LOSC energy correction at the last SCF cycle.

post-LOSC2-BLYP and SCF-LOSC2-BLYP. The MAE of HTBH38 test case for the reaction

barriers is 7.67 kcal/mol for BLYP, 7.49 kcal/mol for post-LOSC2-BLYP, and 7.54 kcal/mol

for SCF-LOSC2-BLYP. Such performance is expected because most of cases in these tests are

with small molecular sizes and large orbital energy gaps between HOMO and LUMO, which

makes orbitalets equal to the COs of the parent DFA and the local occupation matrix being

diagonal with integer numbers (1 for occupied space and 0 for virtual space). According to

energy correction from LOSC shown in Eq. 4, these integer local occupation numbers give

zero correction to the total energies. Re-tuning the parameters in the LOSC localization

cost function to obtain more balanced localization between the physical space and energy

space should provide better performance.49 However, this task is beyond the scope of current

work and will be studied in the future. For the test sets related to IPs and EAs, new SCF-

LOSC produces much improvement compared to the parent DFA, and its performance is

very similar to the one from post-LOSC for the tested cases. For example, the MAE of

IP test set shown in the supporting information is 4.50 eV for BLYP, and 0.62 eV for both

post-LOSC2-BLYP and SCF-LOSC2-BLYP.

In the following, we mainly focus on presenting the results that can be significantly
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different, all related to electron density and energy levels (quasiparticle energies) associated

with the molecular binding/dissociation processes. We first investigate the dissociation of

three diatomic molecules (LiF, LiH and HF). B3LYP 6,7,54 is applied as the parent functional,

because the SCF convergence from B3LYP can be easily reached at long bond distance for

these molecules. Similar GGA calculations would show even larger delocalization error with

charge density, but was not obtained because of the SCF failure for large bond lengths.

Results from multireference configuration interaction method with the Davidson correction

(MRCI+Q)55–57 are used as the reference and compared to the results from B3LYP, post-

LOSC-B3LYP and SCF-LOSC-B3LYP. To study the description of electron density, we look

at the Mulliken charges from Mulliken population analysis 58 and the relative total energy of

the molecule to its dissociation limit along the dissociation process.
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Figure 4: Dissociation of LiF molecule: (a) the Mulliken charge of Li atom; (b) the relative
total energy of LiF with respect to Li and F atoms, ∆E = ELiF − (ELi + EF). LOSC2
calculations are associated with B3LYP.

Among the three diatomic molecules, B3LYP shows obvious delocalization error for LiF

and LiH molecules, making them good cases to test the performance of the new SCF-LOSC

approach. Thus, we highlight the results for LiF and LiH molecules in the main text. Results

for HF molecule are documented in the supporting information. The results for LiF are shown

in Figure 4. Because IPLi > EAF, the LiF molecule must dissociate into neutral Li and F

atom (as with all neutral diatomic molecules). Clearly, according to Figure 4, we see B3LYP
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shows significant delocalization error in electron density, which is reflected by the positive

Mulliken charge of Li atom and underestimated dissociation energy at the dissociation limit.

Based on the delocalized electron density from B3LYP, post-LOSC-B3LYP corrects the total

energy too much and yields higher dissociation limit. In contrast to the post-LOSC-B3LYP,

the SCF-LOSC-B3LYP corrects the electron density. As shown in Figure 4, the Mulliken

charges from SCF-LOSC-B3LYP match well with the MRCI+Q reference. In addition, the

relative total energies from SCF-LOSC-B3LYP almost overlap with the reference and shows

the correct dissociation limit.
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Figure 5: Dissociation of LiH molecule: (a) the Mulliken charge of Li atom; (b) the relative
total energy of LiH with respect to Li and H atoms, ∆E = ELiH − (ELi + EH). LOSC2
calculations are associated with B3LYP.

Next, we look at the LiH molecule as shown in Figure 5. Because IPLi > EAH, the LiH

molecule must dissociate into neutral Li and H atom. According to Figure 5, we notice

that although B3LYP gives correct Mulliken charge (zero charge) of Li atom at the disso-

ciation limit, it shows delocalization error at the bond length around 8-10 bohr, in which

the MRCI+Q gives almost zero Mulliken charge while B3LYP gives positive charge. Such

delocalized electron density (around 8-10 bohr) leads the relative total energy from B3LYP

lower than the MRCI+Q reference. In addition, the error in electron density from B3LYP in

the range of 8-10 bohr leads the post-LOSC-B3LYP to yield too high relative total energy,

showing as the small bump in the dissociation energy curve in Figure 5. From the results of
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SCF-LOSC-B3LYP, we observe that the electron density is corrected, showing as the Mul-

liken charge of Li in the range of 8-10 bohr is corrected down to zero. With the corrected

electron density from SCF-LOSC-B3LYP, the relative total energy from SCF-LOSC-B3LYP

matches much better with the MRCI+Q reference than B3LYP and post-LOSC-B3LYP.
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Figure 6: Dissociation of donor-acceptor (D-A) complex (donor: 1,4-benzenediamine, accep-
tor: tetracyanoethylene (TCNE)) from different methods: (a) the Mulliken charge of the
donor molecule; (b) the relative total energy of D-A complex with respect to neutral donor
and acceptor molecules, ∆E = EDA − (ED + EA). LOSC2 calculations are associated with
BLYP. The D3 version of Grimme’s dispersion with Becke-Johnson damping (D3BJ) 59 from
BLYP functional is added to all the DFT energy results.

We also study a donor-acceptor (D-A) organic complex system to demonstrate the per-

formance of new SCF-LOSC for more complicated and larger systems. The donor molecule

is 1,4-benzenediamine and the acceptor molecule is tetracyanoethylene (TCNE). Because

IPD > EAA, the D-A complex will dissociate into two neutral subsystems. Figure 6 shows

the Mulliken charge results and the dissociation energy from DFT and MP2 60 calculations.

BLYP is used as the parent function for DFT. Clearly, we see that the parent functional

BLYP shows delocalization error at the dissociation limit. The donor molecule has spuri-

ously positive charge, which means there is partial charge transferring from the donor to the

acceptor molecule and the electron density is delocalized incorrectly. Due to the delocal-

ized electron density from BLYP, the dissociation energy from BLYP and post-LOSC-BLYP

shows similar error. With the correction to the electron density, we see that applying the
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new SCF-LOSC gives the right Mulliken charges and total energies along the dissociation

coordinates and including dissociation limit.
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Figure 7: HOMO and LUMO energy level alignment of donor-acceptor (D-A) complex
(donor: 1,4-benzenediamine, acceptor: tetracyanoethylene (TCNE)) from different meth-
ods: (a) the first IP (−εHOMO) of D-A complex along the separation distance from 2 to 10
Å. At the right end of the figure, the first IP of the isolated donor molecule is plotted to
be compared with the first IP from D-A complex calculations. The experimental IP of the
isolated donor molecule is 7.34 eV61 and marked with an arrow. (b) the first EA (−εLUMO)
of D-A complex along the separation distance from 2 to 10 Å. At the right end of the figure,
the first EA of the isolated acceptor molecule is plotted to be compared with the first EA
from D-A complex calculations. The experimental EA of the isolated acceptor molecule is
3.16 eV62 and marked with an arrow. LOSC2 and GW calculations are based on BLYP.

In addition to the Mulliken charge analysis and dissociation energy of this D-A complex

system, we examine its energy level alignment (the first IP and EA) along the binding

distance. Figure 7 shows the trend of first IP and EA with respect to the change of separation

distance. The experimental IP of the donor and EA of the acceptor molecule are plotted as

the reference values for the dissociation limit. Along the binding distance, the D-A complex

system is calculated with DFT and GW methods (G0W0 and eigenvalue self-consistent GW

(evGW)). For the DFT calculations, the negative orbital energy of HOMO and the negative

orbital energy of LUMO are used to evaluate the first IP and EA respectively. 63 For GW

calculations, the obtained quasiparticle energies are used to evaluate the first IP and EA

accordingly. According to Figure 7, we see BLYP shows significant underestimation of IP
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and overestimation of EA because of the delocalization error. The results from GW method,

which is based on BLYP functional, are also affected by the error in the electron density from

BLYP. Especially in the case of EA, the results from GW shows obvious underestimation. At

large distances, even at the level of evGW, the error in the EA energy level is underestimated

by about 1.5 eV, which is significant. Since SCF-LOSC-BLYP corrects the electron density,

the results from SCF-LOSC-BLYP are close to the reference value at the dissociation limit,

especially for the first IP. The results from post-LOSC-BLYP, shows much improvement

compared to the BLYP, however, they are not as good as SCF-LOSC-BLYP results.

The description of interface charge distribution and energy level alignment in this charge

transfer system demonstrates the major improvement from the SCF-LOSC and clearly high-

lights the importance of getting correct density distributions through self consistent cal-

culations, for the correct energy level alignment in DFT as well as in Green’s function

calculations.

In summary, the new SCF-LOSC calculation overcomes the convergence issue and is very

effective in practice. More importantly, we observe that the new SCF-LOSC approach is

able to produce the correct electron densities, total energies and energy level alignment. The

performance from SCF-LOSC is more reliable than the post-LOSC, especially for the cases

in which the converged density from the parent DFA shows significant delocalization error.

With the good performance and reliability, we believe the new SCF-LOSC method would be

promising for studying problems related to electron densities, and quasiparticle energy level

alignment in large molecules and interface systems.
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