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ABSTRACT

The Hamiltonian formulations for the perturbed Vlasov–Maxwell equations and the perturbed ideal magnetohydrodynamics (MHD)
equations are expressed in terms of the perturbation derivative @F=@� � ½F ;S� of an arbitrary functional F½w� of the Vlasov–Maxwell fields
w ¼ ðf ;E;BÞ or the ideal MHD fields w ¼ ðq;u; s;BÞ, which are assumed to depend continuously on the (dimensionless) perturbation
parameter �. Here, ½ ; � denotes the functional Poisson bracket for each set of plasma equations and the perturbation action functional S is
said to generate dynamically accessible perturbations of the plasma fields. The new Hamiltonian perturbation formulation introduces a
framework for functional perturbation methods in plasma physics and highlights the crucial roles played by polarization and magnetization
in Vlasov–Maxwell and ideal MHD perturbation theories. One application considered in this paper is a formulation of plasma stability that
guarantees dynamical accessibility and leads to a natural generalization to higher-order perturbation theory.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0028471

I. INTRODUCTION

The use of Hamiltonian perturbation methods in plasma
physics1,2 has played a crucial role in our ability to understand the
complex dynamics of collisionless magnetized plasmas. In particular,
Lie-transform perturbation methods3,4 have provided powerful path-
ways toward the dynamical reduction of the particle phase-space
dynamics (e.g., the successive guiding-center5 and gyrocenter6 reduc-
tions of charged-particle dynamics in strongly magnetized plasmas),
which are carried out as near-identity transformations that depend
continuously on a small dimensionless ordering parameter �.7–10 In
general, applications of perturbation methods involve asymptotic
expansions in powers of �, which are truncated at a predetermined
maximum order. For example, the perturbation analyses of three-wave
and four-wave interactions require truncations at third and fourth
orders, respectively (for example, see the work of Boyd and Turner11

or the more recent work of Viscondi et al.12).
Since the 1980s, the Hamiltonian structures of the ideal magneto-

hydrodynamics (MHD) equations13 and the Vlasov–Maxwell equa-
tions14–17 have been known. Here, the field evolution equations
@tw

a ¼ ½wa; H� are expressed in the Hamiltonian form in terms the
Hamiltonian (energy) functionalH and the functional Poisson bracket
½ ; �, which satisfies the standard bracket properties. Hence, the

evolution of an arbitrary functional F½w� of the plasma dynamical
fields wðx; tÞ is expressed as

@F
@t

w½ � ¼ F ;H½ � �
ð
dF
dwa

@wa

@t
dx; (1)

where summation over repeated indices is implied throughout the
paper and the integration domain may depend on the field-
component wa.

The purpose of the present paper is to introduce a Hamiltonian
formulation of the perturbative evolution of the plasma dynamical fields
wðx; t; �Þ parameterized by a continuous perturbation parameter �

@F
@�

w½ � ¼ F ; S½ � �
ð
dF
dwa

@wa

@�
dx; (2)

where the perturbation action functional S generates the plasma per-
turbations. This formulation was used by Hameiri18 to investigate ideal
MHD plasma stability (see Sec. VI). In the present paper, it will be
extended to include the Vlasov–Maxwell equations, and the connec-
tions between these two sets of dissipationless plasma equations will
be explored.

Note that a common functional bracket ½ ; � is used in both
Hamiltonian evolutions (1) and (2) so that @wa=@t � J ab dH=dwb
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and @wa=@� � J ab dS=dwb are expressed in terms of the same anti-
symmetric Poisson-matrix differential operator J ab½w�. In addition,
Casimir functionals C are naturally preserved under both dynamical
and perturbative evolutions

@C=@t ¼ C; H½ � ¼ 0

@C=@� ¼ C; S½ � ¼ 0

�
; (3)

because Casimir functionals satisfy the bracket identity ½C;G� � 0 for
any functional G.

The standard linear perturbation theory is recovered from the
functional perturbation equation (2), with the definition of the
Eulerian variation dwa � ð@wa=@�Þ�¼0. The linear and nonlinear sta-
bility of kinetic (Vlasov) and fluid (magnetohydrodynamic) dissipa-
tionless plasma equilibria, on the other hand, are investigated through
the second variation d2F � 1

2 ð@2F=@�2Þ�¼0 of the free-energy func-
tional F , where only dynamically accessible perturbations (2) that
preserve the Hamiltonian structure of the underlying plasma dynam-
ics18–24 are considered (see the review papers by Morrison25,26 and
references therein, as well as the mini-conference summary27).

The remainder of this paper is organized as follows: In Secs. II
and III, we review the Hamiltonian formulation of the
Vlasov–Maxwell equations and the multiple-time formulation of per-
turbed Hamiltonian dynamics,7,8 respectively. In Sec. IV, we use the
Vlasov–Maxwell bracket structure introduced in Sec. II to formulate
the Hamiltonian Vlasov–Maxwell perturbation theory based on Eq.
(2). In this perturbation theory, the polarization and magnetization are
naturally expressed in terms of Vlasov moments of the perturbed par-
ticle displacement dx=d�. In Sec. V, as a second example of dissipa-
tionless plasma equations, we consider the Hamiltonian ideal MHD
perturbation theory, where the ideal MHD bracket structure is now
used in Eq. (2). Here, the interpretation of some of the perturbation
functional derivatives dS=dwa is presented through the generalized
Clebsch representation of the fluid velocity u. Next, we present a
discussion of dynamical accessibility and plasma stability in Sec. VI
through the second-order perturbative derivative of the energy
(Hamiltonian) functional for the Vlasov–Maxwell and ideal MHD
equations.

Finally, we warn the reader about the notation used in the paper,
where functions on particle phase space are denoted with sans-serif
fonts while functionals of the Vlasov–Maxwell fields ðf;E;BÞ are
denoted with script fonts. For example, H denotes the single-particle
Hamiltonian and H denotes the Hamiltonian functional, while S

denotes the perturbation action (which perturbs orbits in particle
phase space) and S denotes the perturbation action functional.

II. HAMILTONIAN FORMULATION OF THE
VLASOV–MAXWELL EQUATIONS

We begin with a brief review of the Hamiltonian formulation of
the Vlasov–Maxwell equations, which presents a unifying principle for
the self-consistent plasma interactions between charged particles and
electromagnetic fields.

First, the Hamiltonian dynamical evolution of the Vlasov distri-
bution (along phase-space orbits for each particle species with mass m
and charge e) is governed by the Vlasov equation df=dt ¼ 0, which is
expressed as

@f

@t
¼ � f; Hf g þ e

c
@A
@t

� @f

@p

� � f; Kf g � eE � @f

@p
; (4)

where H ¼ eUþ K is the sum of the electrostatic potential energy eU
and the kinetic energy K ¼ jpj2=2m (only non-relativistic results are
shown in this paper) and the single-particle Poisson bracket is

f; gf g ¼ rf � @g
@p

� @f

@p
� rgþ e

c
B � @f

@p
� @g

@p
: (5)

The first two Maxwell equations (with particle sources) are

r � E ¼ 4p . � 4p
ð
p
e f; (6)

r� B� 1
c
@E
@t

¼ 4p
c

J � 4p
c

ð
p
e f v; (7)

where v ¼ @K=@p denotes the particle’s velocity and summation over
particle species is included in the momentum-integral notationÐ
p �

PÐ
d3p. The remaining (source-free) Maxwell equations

@B=@t ¼ �cr� E; (8)

r � B ¼ 0 (9)

are Faraday’s law and the divergenceless condition for the magnetic
field, respectively.

The Vlasov–Maxwell evolution equations (4), (7), and (8) are
expressed in Hamiltonian form (1) using the Vlasov–Maxwell
bracket14–17

F ; G½ � ¼
ð
z
f

dF
df

;
dG
df

� �

þ4p
ð
x

dF
dE

� cr� dG
dB

þ
ð
p
e
dG
df

@f

@p

 !

�4p
ð
x

dG
dE

� cr� dF
dB

þ
ð
p
e
dF
df

@f

@p

 !
(10)

between two arbitrary functionals F and G of the Vlasov–Maxwell
fields ðf;E;BÞ, and the Hamiltonian functional is

H f;E;B½ � �
ð
z
K fþ

ð
x

1
8p

jEj2 þ jBj2
� �

; (11)

which also corresponds to the energy invariant for the Vlasov–Maxwell
equations. Here, we use the concise notation

Ð
x ¼

Ð
d3x for a spatial

integration over the field point x and the notation
Ð
z ¼

PÐ
d3x d3p

for a particle phase-space integration (including a summation over par-
ticle species). Using Eqs. (10) and (11), we thus obtain the Hamiltonian
evolution functional equation (1),

@F
@t

¼�
ð
z

dF
df

f; Kf gþ eE � @f
@p

� �
þ
ð
x

dF
dE

� cr�B�4p
ð
p
e fv

 !

�
ð
x

dF
dB

� cr�Eð Þ �
ð
z

dF
df

@f

@t
þ
ð
x

dF
dE

� @E
@t

þdF
dB

� @B
@t

� �
;

(12)
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where we used the Vlasov–Maxwell equations (4), (7), and (8). We
note that the Vlasov–Maxwell bracket (10) satisfies the standard prop-
erties for a Poisson bracket, including the Jacobi identity (see Ref. 15
for details on a general proof and Refs. 28 and 29 for an explicit proof).
In particular, the Jacobi property of the Vlasov–Maxwell bracket (10)
holds only if Eq. (9) is satisfied, which is a condition that is inherited
from the Jacobi property of the single-particle Poisson bracket (5),
which appears in Eq. (10).

III. MULTIPLE-TIME HAMILTONIAN DYNAMICS

It was previously shown (using canonical coordinates7,8) that per-
turbed single-particle Hamiltonian dynamics of a charged particle (of
mass m and charge e) can be represented geometrically in terms of
two Hamiltonian formulations. First, the Hamiltonian H acts as the
generating function for infinitesimal phase-space transformations
(parameterized by time t) and described by the noncanonical
Hamilton equations

dza

dt
� za; Hf g � e

c
@A
@t

� x; zaf g

¼ fza; Kg þ eE � fx; zag: (13)

In addition, the electromagnetic potentials ðU;AÞ are used to define
the electromagnetic fields E ¼ �rU� c�1@A=@t and B ¼ r� A.

Second, the action function S generates infinitesimal phase-
space transformations (parameterized by the perturbation order-
ing parameter �), which are described by the noncanonical pertur-
bation Hamilton equations

dza

d�
� za; Sf g � e

c
@A
@�

� x; zaf g: (14)

Here, the same single-particle Poisson bracket (5) is used in both
Hamilton evolution equations (13) and (14). In addition, both
Hamiltonian functions H and S depend on the noncanonical phase-
space coordinates z ¼ ðx; pÞ, the time t, and depend continuously on
the perturbation parameter � (with �¼ 0 representing an arbitrary
time-dependent reference state). The electromagnetic potentials
ðU;AÞ, on the other hand, depend on the space-time position ðx; tÞ as
well as the perturbation parameter �.

Each Hamilton equation (13) and (14) is derived by variational
principle in Appendix A, and we note that each equation also satisfies
its own Liouville theorem, @ðdza=dtÞ=@za � 0 � @ðdza=d�Þ=@za.

From a conceptual point of view, we assume that the order of
temporal and perturbative evolutions is immaterial,7,8 i.e., evolving the
reference state first (t> 0 at �¼ 0) and then perturbing it at a later
time to a final perturbed state (with � > 0) should be equivalent to
perturbing the reference state first (� > 0 at t¼ 0) and then evolving it
to a final perturbed state (with t> 0). This assumption implies that the
two noncanonical Hamiltonian dynamical ðd=dtÞ and perturbative
ðd=d�Þ evolution operators,

d
dt

� @

@t
þ ;Hf g � e

c
@A
@t

� x;f g; (15)

d
d�

� @

@�
þ ;Sf g � e

c
@A
@�

� x;f g; (16)

commute (see Appendix B for a derivation)

0 ¼ d
dt

df
d�

� �
� d
d�

df
dt

� �

¼ f ;
dS
dt

� dH
d�

� S;Hf g
� �� �

; (17)

where the function f ðz; t; �Þ is arbitrary. Since this relation must hold for
any function f, we obtain a constraint between the HamiltoniansS andH

dS
dt

¼ dH
d�

þ S;Hf g � e
@U
@�

� e
c
@A
@�

� v; (18)

where v ¼ @K=@p ¼ p=m denotes the particle’s velocity. The con-
straint equation (18), which is also derived in Appendix A, is a stan-
dard equation in Hamiltonian Lie-transform perturbation theory3,4,30

and is a generalized form of the Hamilton–Jacobi equation that figures
prominently in the perturbation analysis of the Vlasov equation.31–34

We note that the scalar field S in Eq. (14) generates canonical
transformations of particle phase-space orbits, which, in turn, induce
transformations on the Vlasov–Maxwell fields ðf;E;BÞ. In addition,
we note that in order for Eqs. (14) and (18) to be gauge-invariant, the
function S is required to transform as

S ! S� e
c
@v
@�

; (19)

where the gauge field vðx; t; �Þ generates the gauge transformation
ðU;AÞ ! ðU� c�1@v=@t; AþrvÞ.
IV. HAMILTONIAN VLASOV–MAXWELL PERTURBATION
THEORY

We now turn our attention to perturbations of the Vlasov–
Maxwell equations (4)–(9). For this purpose, we introduce a second
Hamiltonian formulation (2) of the Vlasov–Maxwell equations, where
the perturbation action functional S½f;E;B� generates the infinitesimal
Vlasov–Maxwell perturbations of an arbitrary Vlasov–Maxwell func-
tional F in terms of the perturbation parameter �.

A. Perturbed Vlasov equation

The Hamiltonian perturbative evolution of the Vlasov distribu-
tion is governed by the perturbative Vlasov equation df=d� ¼ 0, which
is expressed as

@f

@�
¼ f; S½ � ¼ � f;

dS
df

� �
� 4p e

dS
dE

� @f

@p
; (20)

where ðdS=df; dS=@EÞ generate infinitesimal canonical transforma-
tions on particle phase space

dza

d�
� za;

dS
df

� �
þ 4p e

dS
dE

� @z
a

@p
: (21)

By comparing Eq. (21) with Eq. (14), we readily find the functional-
derivative identities

dS
df

;
dS
dE

� �
� S;

�1
4pc

@A
@�

� �
; (22)

where we have omitted an arbitrary gauge function. Here, we note that
the functional derivative dS=dB is still unknown at this stage and,
according to Eqs. (35) and (36) derived below, it is involved in the
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invariance property associated with the definitions (37) of the polariza-
tion and magnetization for the Vlasov–Maxwell equations.

B. Perturbed charge and current densities

The concept of dynamical accessibility of Vlasov perturbations
(20) is associated with the fact that the phase-space integral of @f=@�
vanishes at all orders of perturbation theory. Here, dynamical accessi-
bility is extended to include the electromagnetic fields ðE;BÞ, whose
Hamiltonian perturbative evolutions are expressed as

@E
@�

¼ E; S½ � ¼ 4pcr� dS
dB

� �
� 4pP�; (23)

@B
@�

¼ B; S½ � ¼ r � @A
@�

� �
; (24)

where we have used the functional identities (22) and we introduced
the definition for the perturbation polarization

P� �
ð
p
e f

dx
d�

¼
ð
p
e f

@S

@p
; (25)

which is generated by the perturbation displacement dx=d�. We note
that the perturbation electromagnetic fields (23) and (24) satisfy the
perturbed Maxwell equations,

0 ¼ r � @E
@�

þ 4pP�

� �
; (26)

0 ¼ r � @B
@�

; (27)

where Eq. (26) follows from a perturbation of Gauss’s law (6),

r � @E
@�

� �
¼ 4p

@.
@�

¼ 4p .; S½ � ¼ �4pr � P�; (28)

while Eq. (27) guarantees that magnetic perturbations @B=@�
remain divergenceless. In obtaining Eq. (28), we used the
perturbation-derivative of the particle charge-density functional
.ðrÞ ¼

Ð
ze d

3 ðx � rÞf according to Eq. (2).
Next, we take the perturbation-derivative of Maxwell’s equation

(7)

r� @B
@�

� �
� 1

c
@

@t
@E
@�

� �
¼ 4p

c
@J
@�

; (29)

where the perturbation-derivative of the particle current-density func-
tional JðrÞ ¼

Ð
zev d

3ðx � rÞf is expressed according to Eq. (2) as

@J
@�

¼ J; S½ � ¼
ð
p
e f

d2x
d�dt

�r �
ð
p
e f

dx
d�

dx
dt

 !
; (30)

with v � dx=dt. Next, we use the perturbation polarization (25) to
find the perturbation polarization current

@P�

@t
¼ P�; H½ � ¼

ð
p
e f

d2x
dtd�

�r �
ð
p
e f

dx
dt

dx
d�

 !
:

When this expression is inserted into Eq. (30), and using the symmetry
dðdx=d�Þ=dt ¼ dðdx=dtÞ=d�, which follows from the commutation

of the Hamiltonian dynamical and perturbative flows based on Eq.
(17), we obtain the final expression for the perturbation-derivative of
the particle current density

@J
@�

¼ @P�

@t
þr �

ð
p
e f

dx
dt

dx
d�

� dx
d�

dx
dt

� �" #

� @P�

@t
þ cr�M�; (31)

which is defined as the sum of the perturbed polarization and magne-
tization current densities. Here, the perturbation magnetization cur-
rent is expressed in terms of the perturbation magnetization

M� �
ð
p

e
c
f

dx
d�

� dx
dt

� �
¼
ð
p

e
c
f

@S

@p
� @H

@p

� �
; (32)

and Eq. (29) becomes

r� @B
@�

� �
� 1

c
@

@t
@E
@�

� �
¼ 4p

c
@P�

@t
þ 4pr�M�; (33)

which may also be expressed as

0 ¼ r� @B
@�

� 4pM�

� �
� 1

c
@

@t
@E
@�

þ 4pP�

� �

� r� @H

@�

� �
� 1

c
@

@t
@D

@�

� �
; (34)

where the macroscopic fields @D=@� and @H=@� are defined below.
The perturbative expressions for the polarization (25) and the

magnetization (32) were first derived recently in Ref. 8 (see Sec. VI)
from a variational perturbation analysis of the Vlasov–Maxwell equa-
tions. These expressions are also expressed in terms of partial deriva-
tives (A7) of the Lagrangian scalar field (A4) with respect to the
electromagnetic fields E and B, respectively.

We note that if we write x ¼ x0 þ � n1 þ � � �, where n1 denotes
the lowest-order particle displacement, the lowest-order contributions
to the polarization (25) and the magnetization (32) are

P�;M�ð Þ ’
ð
p
e f n1; n1 �

1
c
dx0
dt

þ � n1 �
1
c
dn1
dt

� �
;

where we retained the high-order intrinsic magnetic-dipole contribu-
tion ðe � n1 � c�1dn1=dtÞ to the magnetization, in addition to the
moving electric-dipole contribution ðe n1 � c�1dx0=dtÞ. Similar
expressions were obtained by direct Lie-transform derivation for the
general perturbed Vlasov–Maxwell equations,9 the reduced
oscillation-center Vlasov–Maxwell equations,10 and the gyrocenter
Vlasov–Maxwell equations.35

C. Perturbed Maxwell equations

The polarization equation (23) can also be used as a definition
for the perturbation derivative of the displacement vector fieldD

P� ¼ � 1
4p

@E
@�

þ cr� dS
dB

� �
� � 1

4p
@

@�
E�Dð Þ: (35)

If we substitute Eq. (23) into Eq. (33), we obtain the magnetization
equation
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M� ¼
1
4p

@B
@�

� @

@t
dS
dB

� �
� 1

4p
@

@�
ðB�HÞ; (36)

which defines the perturbation derivative of the vector field H. Here,
the definitions of the macroscopic fields ðD;HÞ in terms of the func-
tional derivative dS=dB guarantee that r � ð@D=@�Þ � 0 and that
Eq. (34) is satisfied identically.

We note that Eqs. (35) and (36) involve the standard invariance
property of the polarization and magnetization,36,37 where the
transformation,

P0 ¼ P� cr� K;

M0 ¼ Mþ @K=@t;

�
(37)

yields identical polarization charge densities and polarization and
magnetization current densities,

r � P0 ¼ r � P;

@P0=@t þ cr�M0 ¼ @P=@t þ cr�M;

�
(38)

where K is an arbitrary vector field. Hence, the specific expression for
the functional derivative dS=dB has no impact on the polarization
charge density or the polarization–magnetization current density.

D. Vlasov–Maxwell perturbation theory

Now that we have established the perturbative evolution of the
Vlasov–Maxwell equations, we can now explore, first, the linearized
Vlasov–Maxwell equations and, second, the fully perturbed equations.

1. Linearized Vlasov–Maxwell equations

As an application of the perturbative evolution of the
Vlasov–Maxwell equations, we consider the simple example of the lin-
earized Vlasov–Maxwell equations obtained in the absence of back-
ground electric and magnetic fields.38 Here, using the Fourier space-
time decomposition of the first-order fields,

ðf1;E1;B1Þ ¼ Re ~f1; ~E1; ~B1

� �
eiðk�x�xtÞ

� 	
;

the linearized Vlasov–Maxwell equations are derived from Eqs.
(4)–(7) and expressed as

�ix0~f1 ¼ �e ~E1 þ
v
c
� ~B1

� �
� @f0
@p

; (39)

ik � ~E1 ¼ 4p
ð
p
e~f1 � 4p ~.1; (40)

ik � ~B1 þ i
x
c
~E1 ¼

4p
c

ð
p
ev~f1 � 4p

c
~J1; (41)

where the time-independent and uniform background Vlasov distri-
bution f0 is chosen to be consistent with vanishing fields ðE0;B0Þ
¼ ð0; 0Þ, while the Doppler-shifted frequency is x0 � x� k � v.

First, we turn our attention to the first-order equation @S1=@t
þv � rS1 ¼ e ðU1 � A1 � v=cÞ derived from Eq. (18), which is
Fourier-decomposed as

~S1 ¼
i e
x0

~U1 �
v
c
� ~A1

� �
: (42)

From this expression, we calculate the first-order perturbed displace-
ment from Eq. (14)

~n1 � @ ~S1

@p
¼ � e

mx02
~E1 þ

v
c
� ~B1

� �
; (43)

where ~E1 ¼ �ik~U1 þ i~A1 x=c and ~B1 ¼ ik � ~A1. From Eq. (43), we
can now define the first-order polarization and magnetization from
Eqs. (25) and (32)

~P1; ~M1

� �
�
ð
p
e f0 ~n1; ~n1 �

v
c

� �
: (44)

We note that Eq. (44) can be derived from the second-order pondero-
motive Hamiltonian functional,2

�K2 ¼
ð
p
f0 mx02 j~n1j2; (45)

associated with these first-order field perturbations, which yields the
standard expressions ~P1 � �d �K2=d~E

�
1 and

~M1 � �d �K2=d~B
�
1.

Next, we define the perturbed particle momentum from Eq. (14)

~p1 � �ik ~S1 � ðe=cÞ ~A1 ¼ �i mx0 ~n1; (46)

which turns Eq. (39) into~f1 ¼ �~p1 � @f0=@p (where we assumed that
rf0 � 0). Using the definition (44) for the first-order polarization, the
perturbed charge density becomes

~.1 ¼
ð
p
e~f1 ¼

ð
p
e f0

@

@p
� ~p1

� �

¼
ð
p
e �ik � ~n1
� �

f0 � �i k � ~P1; (47)

after integration by parts, so that Eq. (26) [and Eq. (40)] is now
expressed as

ik � ~E1 þ 4p ~P1

� �
� ik � ~D1 ¼ 0: (48)

Upon integration by parts, on the other hand, the perturbed current
density becomes

~J1 ¼ �i
ð
p
e2

v
x0

~E1 þ
v
c
� ~B1

� �
� @f0
@p

¼ �i
ð
p
e f0 x0 ~n1 þ v k � ~n1

� �� 	
� �ix ~P1 þ i kc� ~M1; (49)

where we introduced the definitions (44) for the first-order polariza-
tion and magnetization. Hence, Eq. (33) [and Eq. (41)] is now
expressed as

i kc� ~H1 þ ix ~D1 ¼ 0; (50)

where

~E1 þ 4p ~P1 ¼ i kc� ~R1 � ~D1

~B1 � 4p ~M1 ¼ �ix ~R1 � ~H1

)
; (51)

which are consistent with Eqs. (48) and (50), where ~R1 is related to
the first-order term in the functional derivative dS=dB.
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Finally, we note that the eikonal-averaged second-order polariza-
tion �P2 �

Ð
pf0 �p2 and magnetization �M2 �

Ð
pf0 ð�l2 þ �p2 � v=cÞ

were expressed2,10 in terms of the ponderomotive electric and mag-
netic dipole moments

�p2

�l2

 !
�

e k � ði ~n1 � ~n
�
1Þ

ðe=cÞx0ði ~n1 � ~n
�
1Þ

 !
: (52)

These second-order expressions satisfy the equations k � �P2 ¼ 0 and
ck � �M2 � x �P2 ¼ 0.

2. Functional perturbation theory

We are now able to write an explicit expression that connects the
reference Vlasov–Maxwell fields ðf0;E0;B0Þ to the perturbed
Vlasov–Maxwell fields ðf;E;BÞ by using the relation

ðf;E;BÞ � ðf0;E0;B0Þ þ
ð�
0

@f

@r
;
@E
@r

;
@B
@r

� �
dr: (53)

By integrating the charge and current perturbation derivatives
ð@.=@r; @J=@rÞ, we find the general relations for particle charge and
current densities,

. � .0 �r � P; (54)

J � J0 þ
@P

@t
þ cr�M; (55)

where the total polarization and magnetization

ðP;MÞ �
ð�
0
ðPr;MrÞ dr

’
ð
p
e f � n1; � n1 �

1
c
dx0
dt

þ �2

2
n1 �

1
c
dn1
dt

� �
(56)

are expressed in terms of standard � expansions.9,10,35 Hence, all per-
turbations of the charge and current densities (54)–(55) are expressed
solely in terms of polarization and magnetization effects. This conclu-
sion was also reached through a perturbation expansion of the
Vlasov–Maxwell equations.8

Next, we integrate Eqs. (23) and (36) to obtain the electromag-
netic relations,

Eþ 4pP � D ¼ E0 þ cr� K; (57)

B� 4pM � H ¼ B0 þ
@K
@t

; (58)

where the gauge vector field K is

K � 4p
ð�
0

dS
dB

dr:

We readily verify that

r � D ¼ r � E0 � 4p .0 (59)

and

r�H� 1
c
@D

@t
¼ r� B0 �

1
c
@E0

@t
� 4p

c
J0: (60)

We note, here, the vector field K appearing in Eqs. (57) and (58) can-
cels out in Eq. (60).

V. HAMILTONIAN FORMULATION OF PERTURBED
IDEAL MAGNETOHYDRODYNAMICS

As a second example of a set of dissipationless plasma equations
with a Hamiltonian structure, we explore the Hamiltonian formulation
of ideal magnetohydrodynamics (MHD),13 which has the bracket
structure,

F ; G½ � ¼
ð
x
q�1r�u � dF

du
�dG
du

� �
� dG

du
r � dG

du
þdF

du
� rdG

dq

� �" #

þ
ð
x
q�1rs � dF

du
dG
ds

�dF
ds

dG
du

� �
�q�1 dF

du
� B




�r� dG
dB

� dF
dB

� r� B�q�1 dG
du

� ��
; (61)

with functionals of the mass density q, the plasma single-fluid velocity
u, the entropy per unit mass s, and the magnetic field B (which is
assumed to be divergenceless13). Using the Hamiltonian functional

H ¼
ð
x

q
2
juj2 þ qUðq; sÞ þ 1

8p
jBj2

� �
; (62)

where the internal energy density (per unit mass) Uðq; sÞ satisfies the
first law of thermodynamics dU ¼ T dsþ ðP=q2Þ dq, the equations of
ideal MHD are expressed in Hamiltonian form @tw

a ¼ ½wa;H� as

@tq ¼ �r � ðq uÞ; (63)

@tu ¼ �u � ruþ q�1 J� B=c�rPð Þ; (64)

@t s ¼ �u � rs; (65)

@tB ¼ r� ðu� BÞ; (66)

where J ¼ ðc=4pÞr� B denotes the plasma current density.

A. Dynamically accessible perturbed ideal MHD

We now use the ideal MHD bracket (61) to evaluate the pertur-
bative derivatives @�w

a ¼ ½wa;S�

@�q ¼ �r � dS
du

; (67)

@�u ¼ �r dS
dq

� �
þ q�1 dS

du
�r� u

þq�1 rs
dS
ds

� B�r� dS
dB

� �
; (68)

@�s ¼ �q�1rs � dS
du

; (69)

@�B ¼ �r� B� q�1 dS
du

� �
; (70)

in terms of the perturbation action functional S. We note that these
expressions have been derived previously18,22,23,56 within the concept
of dynamical accessibility of allowed perturbations of ideal MHD equi-
libria with flows. If we introduce the ideal MHD fluid displacement

n � q�1dS=du; (71)

we recover the following standard expressions:39
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@�q ¼ �r � qnð Þ;
@�s ¼ �n � rs;

@�B ¼ r� n� Bð Þ;

9>=
>; (72)

from Eqs. (67), (69), and (70), respectively.
We now identify x as the position of a fluid element, so that the

fluid velocity is defined as u � dx=dt while the fluid displacement is
defined n � dx=d�. Hence, using the commutation relations of the
operators d=dt ¼ @t þ u � r and d=d� ¼ @� þ n � r, the identity
du=d� ¼ dn=dt yields the standard expression for the perturbative
derivative of the fluid velocity,39

@�u ¼ @tnþ u � rn� n � ru: (73)

Equation (68), on the other hand, becomes

@�u ¼ �r dS
dq

� �
þ n�r� uþ q�1 rs

dS
ds

� B�r� dS
dB

� �
;

(74)

whose expression is reminiscent of the Clebsch representation for the
fluid velocity u derived from a Lagrangian variational formulation of
ideal MHD (see also Errata cited in Ref. 13). Here, the functional
derivatives ðdS=dq; dS=ds; dS=dBÞ represent additional degrees of
freedom18,22,23 for dynamically accessible perturbations of the fluid
velocity. We can also obtain an expression for the total time derivative
of the fluid displacement

q
dn
dt

¼ rwa dS
dwa þr � B

dS
dB

� I q
dS
dq

þ B � dS
dB

� �
 �
;

which is obtained by comparing Eqs. (73) and (74).

B. Lagrangian variational principle for ideal MHD

In this section, we review the Lagrangian variational derivation of
the ideal MHD equations (63)–(66). By far the simplest Lagrangian
derivation is based on the constrained variational principle39 on the
basis of Lagrangian density L ¼ 1

2 qjuj
2 � qUðq; sÞ � jBj2=8p

with the constrained variations ðdq; du; ds; dBÞ expressed in terms of
Eqs. (72) and (73), with the Eulerian variation dð Þ � @�ð Þj�¼0. While
Eqs. (63), (65), and (66) are immediately recovered from Eqs. (72)
through the substitutions ð@� ! @t ; n ! uÞ, Eq. (64) is obtained
from the Euler–Lagrange equation with respect to n.

Many variational principles for ideal MHD are expressed in terms
of Clebsch variables to represent the fluid velocity u and the magnetic
field B. Some of the earliest examples include the works of Calkin,40

Seliger and Whitham,41 Merches,42 and Nassar and Putterman,43 while
historical surveys are included in Morrison’s review paper26 and the
recent works of Yahalom.44,45 The most relevant work for our present
purpose, however, is presented by Merches,42 whose notation is modi-
fied here to match our own notation.

We thus begin with the Lagrangian density,42,46

L ¼ 1
2
q juj2 � qUðq; sÞ � 1

8p
jEj2 � jBj2
� �

þa
dq
dt

þ qr � u
� �

� q b
ds
dt

; (75)

where the Lagrange multipliers a and b are used to enforce the
conservation laws of mass and entropy, respectively (with

d=dt ¼ @=@t þ u � r). In Eq. (75), Merches42 introduces the follow-
ing representations for the electric and magnetic fields (also used by
Calkin40):

E ¼ E0 � 4pPþ cr� K

B ¼ B0 þ 4pP� u=cþ @K=@t

�
; (76)

where we have added the reference fields ðE0;B0Þ in order to use
the same Vlasov–Maxwell expressions (57) and (58) derived from the
Vlasov–Maxwell bracket, with the magnetization derived from the
Vlasov–Maxwell expression (32) as M ¼ P� u=c (i.e., it only
includes the moving electric-dipole contribution). Here, the polariza-
tion P and the gauge vector field K are both independent variational
fields, in addition to the ideal MHD fields ðq;u; sÞ and the Lagrange
multipliers ða;bÞ.

The charge density . is derived from Gauss’s law: r � E ¼ 4p.,
where . ¼ .0 �r � P. The current density J, on the other hand, is
derived from the Maxwell equation cr� B� @E=@t ¼ 4p J, where
J ¼ J0 þr� ðP� uÞ þ @P=@t. In Ref. 47, the charge and current
densities ð.0; J0Þ are identified as true densities, and based on this
analysis, the current density is defined by Calkin40 andMerches42 as

J � @P=@t þr� ðP� uÞ þ u ðr � PÞ; (77)

with contributions from the polarization and magnetization current
densities, respectively, as well as the convective polarization-charge
current density u ðr � PÞ.47,48

The Euler–Lagrange equations

@

@t
@L

@ð@tvaÞ

� �
þr � @L

@ðrvaÞ

� �
¼ @L

@va
;

for va ¼ ða; b; q; u; s;P;KÞ are now, respectively, expressed as Eqs.
(63) and (65), and

@taþr � ða uÞ ¼ a ðr � uÞ þ 1
2
juj2 � ðU þ P=qÞ; (78)

rðq aÞ ¼ quþ arq� qbrsþ B�P=c; (79)

@tðqbÞ þ r � ðqb uÞ ¼ qT; (80)

0 ¼ Eþ u� B=c; (81)

@tBþ cr� E ¼ 0: (82)

It is simple to see how Eqs. (81) and (82) are combined to give Eq.
(66). The remaining equations (78)–(80) are now expressed as

da=dt ¼ juj2=2� ðU þ P=qÞ
db=dt ¼ T

)
; (83)

with the generalized Clebsch representation for the fluid velocity,

u ¼ raþ brsþP� B=ðqcÞ; (84)

where polarization drives a cross field flow. We note that Eqs. (83) can
also be written in terms of the Hamiltonian functional (62) as

da
dt

� 1
q
dH
du

� u� dH
dq

; (85)

db
dt

� 1
q
dH
ds

; (86)

while Eq. (77) can be expressed as
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@P

@t
þr� ðP� uÞ þ u ðr � PÞ � cr� dH

dB
: (87)

We note that the Lagrangian variational principle of Nassar and
Putterman43 obtain the fluid-velocity expression u ¼ raþ brs
þðr� KÞ � B=q, instead of Eq. (84).

We now reconstruct Eq. (64) from Eqs. (83) and (84) as follows:
First, we begin by taking the gradient of the first equation in Eq. (83)

@traþr u � rað Þ ¼ ru � u� q�1rP � Trs;

where we used rU ¼ Trsþ ðP=q2Þrq. Second, we use Eqs. (83)
and (84) to find

@tra ¼ @tu� Trsþrðu � brsÞ
�u� rb�rsð Þ � @t P� B=ðqcÞð Þ;

so that, after cancellations, we obtain

@tu ¼ ru � u�r u � ðraþ brsÞ½ � þ u� rb�rsð Þ
�q�1 rP þ @t P� B=ðqcÞð Þ: (88)

Third, using Eqs. (84) and the vorticity expression

r� u ¼ rb�rsþr� P� B=ðqcÞð Þ; (89)

we obtain the expressions

r u � ðraþ brsÞ½ � ¼ rjuj2 �r u � P� B=ðqcÞð Þ½ �;
u� rb�rsð Þ ¼ ru � u� u � ru� u�r� P� B=ðqcÞð Þ;

so that Eq. (88) becomes

du
dt

þ q�1rP ¼ @t P� B=ðqcÞð Þ � u�r� P� B=ðqcÞð Þ

þr u � P� B=ðqcÞð Þ½ �

¼ @P

@t
þr� ðP� uÞ þ u ðr � PÞ


 �
� B
qc

;

after using the ideal MHD equations (63) and (66), as well as the vec-
tor identity,

rðA � B� CÞ ¼ A�r� ðB� CÞ þ B�r� ðC� AÞ

þC�r� ðA� BÞ � ðA� BÞr � C

�ðB� CÞr � A� ðC� AÞr � B; (90)

which holds for any three-vector fields ðA;B;CÞ. Finally, after using
the definition (77) for the current density, we recover Eq. (64).

Hence, we have shown that the ideal MHD Lagrangian density
(75), with the Merches–Calkin representation (76) for the electric and
magnetic fields, yields the ideal MHD equations (63)–(66).

C. Perturbed fluid velocity

Concluding this section, we would now like to reconcile the per-
turbative derivative of the fluid velocity (74) with the perturbative
derivative of Eq. (84)

@u
@�

¼ r da
d�

� n � ra

� �
þ db

d�
� n � rb

� �
rs�r n � brsð Þ þ ðn � rsÞrbþ @P

@�
� B
qc

þP

qc
�r� ðn� BÞ þ r � ðq nÞP� B

q2c
;

¼ r da
d�

� n � u
� �

þ db
d�

rsþ n�r� uþr n � P� B=ðqcÞð Þ½ � � n�r� P� B=ðqcÞð Þ

þ @P

@�
þr � ðq nÞ P

q


 �
� B
qc

þ P

qc
�r� ðn� BÞ; (91)

where we inserted the definition d=d� ¼ @=@�þ n � r and we used
the perturbation derivatives (72).

Next, using again the vector identity (90), Eq. (91) becomes

@u
@�

¼ r da
d�

� n � u
� �

þ db
d�

rsþ n�r� u

þ @P

@�
þr� ðP� nÞ þ n ðr � PÞ


 �
� B
qc

: (92)

When compared with Eq. (74), we obtain the Clebsch-variable pertur-
bation derivatives,

da
d�

� 1
q
dS
du

� u� dS
dq

; (93)

db
d�

� 1
q
dS
ds

; (94)

while the polarization perturbation derivative is

@P

@�
þr� ðP� nÞ þ n ðr � PÞ � cr� dS

dB
: (95)

This last equation implies that the polarization charge density
q � �r � P satisfies the standard charge conservation law: @q=@�
þr � ðq nÞ ¼ 0. Finally, the similarities between Eqs. (85)–(87) and
Eqs. (93)–(95) show a common Hamiltonian structure.

VI. HAMILTONIAN PERTURBATION OF DYNAMICAL
PLASMA INVARIANTS

While Casimir invariants are naturally preserved by the
Hamiltonian perturbation framework considered here, we now
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explore how the energy-momentum functionals of the
Vlasov–Maxwell equations,

H ¼
ð
z
f Kþ 1

8p

ð
x
jEj2 þ jBj2
� �

; (96)

P ¼
ð
z
f pþ

ð
x

E� B
4pc

; (97)

and the ideal MHD equations,

H ¼
ð
x

1
2
q juj2 þ qUðq; sÞ þ 1

8p
jBj2

� �
; (98)

P ¼
ð
x
q u (99)

are perturbed within our formulation based on Eq. (2).

A. Perturbed Vlasov–Maxwell energy-momentum

The perturbation derivative (2) of the Vlasov–Maxwell energy
functional is

@H
@�

¼
ð
z
f
dK
d�

þ
ð
x

E
4p

� @E
@�

þ B
4p

� @B
@�

� �
; (100)

where

dK
d�

¼ K; Sf g � e
c
v � @A

@�

¼ @S

@t
� e

@U
@�

� �
þ eE � @S

@p
; (101)

@H
@�

¼
ð
z
f

@S

@t
� e

@U
@�

� �
þ
ð
x

E
4p

� @D
@�

þ B
4p

� @B
@�

� �
: (102)

We note that @H=@� � �@S=@t ¼ �½S;H� because of the antisym-
metry of the bracket ½ ; �. Hence, the Hamiltonian perturbation

@H
@�

¼ �
ð
z

@f

@t
S�

ð
x

@E
@t

� dS
dE

þ @B
@t

� dS
dB

� �

vanishes for Vlasov–Maxwell equilibria (i.e., when @=@t � 0).
The perturbation derivative (2) of the Vlasov–Maxwell momen-

tum functional is

@P
@�

¼
ð
z
f
dp
d�

þ
ð
x

@E
@�

� dP
dE

þ @B
@�

� dP
dB

� �
; (103)

where

@E
@�

� dP
dE

þ @B
@�

� dP
dB

¼ @E
@�

� B
4pc

þ E
4pc

� @B
@�

(104)

and

dp
d�

¼ p; Sf g � e
c
@A
@�

¼ � rSþ e
c
@A
@�

� �
þ e

c
@S

@p
� B: (105)

Using Eqs. (25) and (35), we obtain

@P
@�

¼ �
ð
z
f rSþ e

c
@A
@�

� �
þ
ð
x

@D

@�
� B
4pc

þ E
4pc

� @B
@�

� �
: (106)

In Eqs. (102) and (106), polarization enters the perturbative evolutions
of the energy-momentum functionals explicitly through @D=@�.

B. Perturbed ideal MHD energy-momentum

The perturbation derivative (2) of the ideal MHD energy func-
tional is

@H
@�

¼
ð
x

qu � @u
@�

þ B
4p

� @B
@�

� �
þ
ð
x
n � rP þ 1

2
qrjuj2

� �

¼
ð

qu � dn
dt

þ n � rP þ B
4p

� r � ðn� BÞ

 �

; (107)

where @u=@� is defined by Eq. (74) and @B=@� ¼ r� ðn� BÞ.
Through a number of integrations by parts, Hameiri18 has shown how
Eq. (107) can be expressed as

@H
@�

¼
ð
x
n � q u � ruþrP � J� Bð Þ þ r � ðq uÞ dS

dq




þu � rs
dS
ds

�r� ðu� BÞ � dS
dB

�
� � @S

@t
; (108)

which is again expected from the antisymmetry of the bracket ½ ; �:
@H=@� ¼ �½S;H� � �@S=@t.

The perturbation derivative (2) of the ideal MHD momentum
functional, on the other hand, is

@P
@�

¼
ð
x
q

dn
dt

� n � ru

� �
� ur � ðq nÞ


 �

¼
ð
x
q
dn
dt

�r � n quð Þ

 �

¼
ð
x
q
dn
dt

: (109)

In Subsection VIC, we will explore how the second-order pertur-
bation derivative of the Hamiltonian functionals can be used to inves-
tigate plasma stability.

C. Stability analyses and dynamical accessibility

The stability analyses of Vlasov–Maxwell and ideal MHD equi-
libria have a long and rich history in plasma physics.49–51 Here, only
dynamically accessible perturbation variations are considered25 since
they automatically preserve all Casimir invariants: dC ¼ ð@C=@�Þ�¼0
� 0, since ½C;G� � 0 for all functionals G.

For the purpose of investigating dynamically accessible plasma
stability, we consider the second-order variation of the energy
functional

d2H � 1
2
@2H
@�2

����
�¼0

(110)

derived from the second-order perturbation derivative of the energy
functional

@2H
@�2

¼ @H
@�

; S

 �

¼
ð
x

@wa

@�

d
dwa

@H
@�

� �
� H; S½ �;S½ �: (111)
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1. Vlasov–Maxwell stability

We first consider the Vlasov–Maxwell case using the first
variation,

d
@H
@�

� �
¼
ð
z
df

dK
d�

þ
ð
x

1
4p

dE � @E
@�

þ dB � @B
@�

� �
:

Equation (111) becomes

@2H
@�2

¼
ð
z
f
d2K
d�2

þ 1
4p

ð
x

���� @E@�
����
2

þ
���� @B@�

����
2

 !
; (112)

where

d2K
d�2

¼ dK
d�

; S

� �
� e

c
@A
@�

� @

@p
dK
d�

� �
:

We can also integrate by parts the kinetic term to obtainð
z
f
d2K
d�2

¼ �
ð
z

dK
d�

f;Sf g � e
c
@A
@�

� @f

@p

� �
�
ð
z

@f

@�

dK
d�

:

Hence, the second variation of the Vlasov–Maxwell energy functional
is expressed as

d2H ¼ � 1
2

ð
z

dK
d�

� �2

�¼0
f00ðKÞ þ

1
8p

ð
x
jdEj2 þ jdBj2
� �

; (113)

which is identical to the second-order Vlasov–Maxwell free energy
obtained by Morrison and Pfirsch.19 Here, the unperturbed Vlasov
distribution f0ðKÞ is assumed to be a function of the kinetic energy
only, and a sufficient condition for stability is f00ðKÞ < 0.

2. Ideal MHD stability

For the ideal MHD case, we begin with the variation of the first-
order perturbation derivative of the ideal MHD energy functional (107),

d
@H
@�

� �
¼
ð
x
dqu � dn

dt
þ du � q dn

dt
þrn � u

� �
 �

þ
ð
x
n � r dq

@P
@q

þ ds
@P
@s

� �

þ
ð
x

dB
4p

� @B
@�

þ B
4p

� r � n� dBð Þ

 �

;

which yields, after integration by parts, the following functional
derivatives:

d
dq

@H
@�

� �
¼ u � dn

dt
� ðr � nÞ @P

@q
; (114)

d
du

@H
@�

� �
¼ q

dn
dt

þrn � u
� �

; (115)

d
ds

@H
@�

� �
¼ �ðr � nÞ @P

@s
; (116)

d
dB

@H
@�

� �
¼ 1

4p
@B
@�

þ ðr � BÞ � n

� �
: (117)

After additional integration by parts, and using Eq. (74), the second-
order perturbation derivative of the energy functional is expressed as

@2H=@�2 � @2K=@�2 þ @2W=@�2, where we have divided the energy
functional H into the kinetic energy functional K � 1

2

Ð
xq juj

2, with
@K=@� ¼

Ð
xqu � dn=dt and

@2K
@�2

¼
ð
x
q
@u
@�

� dn
dt

þrn � u
� �

þ @q
@�

u � dn
dt


 �
; (118)

and the potential energy functional W � H�K, with @W=@�
¼
Ð
x½n � rP þr� ðn� BÞ � B=4p� and

@2W
@�2

¼
ð
x
ðr � nÞ n � rP þ q

@P
@q

ðr � nÞ2

 �

þ 1
4p

ð
x

@B
@�

����
����
2

þ ðr � BÞ � n � @B
@�

 !
:

We, therefore, obtain the standard ideal MHD energy principle,
d2W � 1

2 ð@2W=@�2Þ�¼0
49,51

d2W ¼ 1
2

ð
x
ðr � nÞ n � rP0 þ c P0 ðr � nÞ2



þ 1
4p

jB1j2 þ ðr � B0Þ � n � B1

� ��
; (119)

where B1 ¼ r� ðn� B0Þ and c P0 � q0 P
0
0ðq0Þ.

We note that higher order perturbative derivatives can be consid-
ered to investigate marginal stability (in which d2W ¼ 0). Indeed, a
cubic (third-order) energy principle d3W � 1

6 ð@3W=@�3Þ�¼0 can be
derived from the third-order perturbative derivative,

@3W
@�3

¼
ð
x

@q
@�

d
dq

@2W
@�2

� �
þ @s
@�

d
ds

@2W
@�2

� �
þ @B

@�
� d
dB

@2W
@�2

� �" #
;

(120)

where

d
@2W
@�2

� �
¼
ð
x
ðr � nÞ n � r dq

@P
@q

þ ds
@P
@s

� �


þdq
@

@q
q
@P
@q

� �
ðr � nÞ2 þ q ds

@2P
@s@q

ðr � nÞ2
�

þ 1
4p

ð
x

@B
@�

� 2r� n� dBð Þ þ ðr � dBÞ � n
� 	�

þðr � BÞ � n � r � n� dBð Þ
�

from which functional derivatives dð@2
�WÞ=dwa can be calculated.

Similar expressions have been considered in the context of marginal
ideal MHD stability by Pfirsch and Sudan52 and the derivation of
Manley–Rowe coupling coefficients for nonlinear three-wave ideal
MHD interactions by Hirota.53 In both the cases, the third-order
functionals are cubic expressions in powers of the fluid displacement n.
The third-order perturbation Lagrangian for the perturbed
Vlasov–Maxwell equations has been derived in Ref. 8, which could also
be used to investigate higher-order plasma stability and resonant non-
linear three-wave interactions.

VII. SUMMARY AND PROSPECTS

In the present work, the Hamiltonian formulations of the pertur-
bative Vlasov–Maxwell equations and the perturbative ideal
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magnetohydrodynamics are given in terms of a theoretical functional
representation. In each representation, the reduced polarization and
magnetization (25) and (32) play a crucial role not only in perturbative
Vlasov–Maxwell theory but also in the Clebsch representation (76) of
ideal magnetohydrodynamics.

The central role of polarization in Vlasov perturbation theory is
perhaps not surprising, because Vlasov perturbations can only involve
displacements of infinitesimal elements in phase space that conserve
particle numbers. Hence, phase-space displacements dx=d� that are
species-dependent (in a quasi-neutral plasma environment) naturally
lead to finite polarization (25). What is perhaps surprising is that, in
the ideal MHD variational principle based on the ideal MHD action
functional (75), the variation with respect to polarization leads to the
ideal MHD constraint (81) when the generalized Clebsch representa-
tion (76) is used.

In conclusion, we note that several Hamiltonian representations
have been found for the Hall and extended MHD equations54–56 as
well as various reduced plasma-fluid models (e.g., reduced ideal MHD
equations57 and gyrofluid equations58,59), which are now amenable to
Hamiltonian perturbation theory as represented in this paper. The
Hamiltonian perturbation framework presented here can also be
applied to the Hamiltonian structures of kinetic-MHD equations and
reduced plasma models (e.g., the gyrokinetic Vlasov–Maxwell equa-
tions). These reduced Vlasov–Maxwell equations will be of particular
interest in future work since they involve perturbed Vlasov–Maxwell
brackets,60 with perturbation polarization and magnetization already
imbedded in them.
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APPENDIX A: PERTURBATION VARIATIONAL
PRINCIPLES

1. Perturbed single-particle dynamics

In this appendix, we consider the least-action principle for
single-particle dynamics dA½C� ¼ 0 expressed in terms of the action
integral7

A C½ � �
ð
C
c ¼

ð
C

e
c
Aþ p

� �
� dx � Hdt � Sd�


 �
; (A1)

which is defined along an open path C with fixed end points in the
parameter space ðt; �Þ. Stationarity of the action integral with

respect to arbitrary phase-space variations ðdx; dpÞ, which vanish at
the end points of the open path C, yields the Euler–Lagrange
equations,

dx ¼ @H

@p
dt þ @S

@p
d�; (A2)

dp ¼ eE dt þ e
c
dx � B� rSþ e

c
@A
@�

� �
d�; (A3)

from which we recover Eqs. (13) and (14).
We now require Eqs. (A2) and (A3) to be valid for any open

path C with the same fixed end points. For this purpose, we con-
sider the integral along the closed loop @A � C � C0, where the
open surface A in the parameter space ðt; �Þ denotes the area
enclosed by @A. Using Stokes’ theorem, we obtainþ

@A
c ¼

ð
A
dc �

ð
A
K� d��dt;

where the Lagrangian scalar field

K� ¼
dx
d�

� eEþ e
c
dx
dt

� B� dp
dt

� �

þ dp
d�

� dx
dt

� p
m

� �
þ dS

dt
� e

@U
@�

� 1
c
dx
dt

� @A
@�

� �

� dS
dt

� e
@U
@�

� 1
c
dx
dt

� @A
@�

� �
(A4)

is defined after making use of Eqs. (A2) and (A3). The condition of
path independence, therefore, requires that K� � 0, from which we
recover Eq. (18).

Finally, we rewrite Eq. (A4) as

K� ¼
@S

@t
� @H

@�
þ @H

@p
� rSþ e

c
@A
@�

� �

þ e Eþ v
c
� B

� �
� @S
@p

; (A5)

so that the partial derivatives

@K�

@E
;
@K�

@B

� �
¼ e

dx
d�

;
e
c
dx
d�

� dx
dt

� �
(A6)

can be used to define the polarization and magnetization,

P�; M�ð Þ �
ð
p

@K�

@E
;
@K�

@B

� �
f; (A7)

which appear in Eqs. (25) and (32).

2. Variational principle for perturbed Vlasov–Maxwell
equations

We now present the variational principle d
Ð
L� dt ¼ 0 from

which the perturbed Vlasov–Maxwell equations are derived. Here,
the perturbation Lagrangian functional8 is

L� ¼
ð
z
fK� þ

ð
x

1
4p

E � @E
@�

� B � @B
@�

� �
; (A8)

where the variational fields are ðf ;E;BÞ and the Lagrangian scalar
field is defined as
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K� ¼
@S

@t
� e

@U
@�

� �
þ v � rSþ e

c
@A
@�

� �
þ e Eþ v

c
� B

� �
� @S
@p

:

(A9)

The perturbation Lagrangian functional (A8) was recently used8 to
explore the perturbation variational structure of the Vlasov–Maxwell
equations.

The variations of the perturbation Lagrangian functional (A8)

dL� ¼
ð
z
dfK� þ f dE � @K�

@E
þ dB � @K�

@B

� �
 �

þ
ð
x

1
4p

dE � @E
@�

� dB � @B
@�

� �
(A10)

yield the identities

dL�

df
¼ K� � 0; (A11)

dL�

dE
¼
ð
p
e f

dx
d�

þ 1
4p

@E
@�

¼ cr� dS
dB

� �
� 1

4p
@D

@�
; (A12)

dL�

dB
¼
ð
p
e f

dx
d�

� dx
dt

� �
� 1
4p

@B
@�

¼ � @

@t
dS
dB

� �
� � 1

4p
@H

@�
;

(A13)

where we used Eqs. (35) and (36), respectively, with Eq. (A7) and
dx=d� � @S=@p and dx=dt ¼ @H=@p ¼ v. Hence, by combining
these results, the Eulerian variation of the perturbation Lagrangian
functional (A8) yields the following expression:

dL� ¼
ð
z
df

dL�

df
þ
ð
x

dE � dL�

dE
þ dB � dL�

dB

� �

¼
ð
x

1
4p

dE � @D
@�

� dB � @H
@�

� �

¼ � @

@t

ð
x
dB � dS

dB

� �
; (A14)

where we assumed that the field variations ðdE; dBÞ satisfy the
Faraday constraint cr� dEþ @dB=@t ¼ 0.

APPENDIX B: HAMILTONIAN CONSTRAINT

In this appendix, we derive the Hamiltonian constraint (17).
We greatly simplify the derivation by adopting an extended phase-
space representation whereby the Hamiltonian functions ðH;SÞ are
extended to ðH� � H� g;S� � S� fÞ, and the extended Poisson
bracket is

fF; Gg� � F; Gf g þ e
c
@F
@p

� @A
@t

@G
@g

þ @A
@�

@G
@f

� �

� e
c
@G
@p

� @A
@t

@F
@g

þ @A
@�

@F
@f

� �

þ @F
@g

@G
@t

� @F
@t

@G
@g

� �
þ @F

@f
@G
@�

� @F
@�

@G
@f

� �
; (B1)

which is obtained by adding the vector-potential terms
ð@A=@t; @A=@�Þ and the canonical-pair terms associated with time

ðt; gÞ and perturbation ð�; fÞ to the standard Poisson bracket (5).
Hence, the operators (15) and (16) become d=dt ¼ f ;H�g� and
d=d� ¼ f ;S�g�, respectively. We note that the extended Poisson
bracket (B1) is obtained from the extended symplectic one-form,

c� ¼ ðeA=cþ pÞ � dx � g dt � fd�;

by inversion of the Lagrange two-form x� � dc�. Since the two-
form x� is closed (i.e., dx� ¼ d2c� ¼ 0, which requires
r � B ¼ 0), the extended Poisson bracket (B1) automatically satis-
fies the Jacobi property.

Our derivation of the Hamiltonian constraint (17) now pro-
ceeds simply from the fact that the extended Poisson bracket satis-
fies the extended version of the Jacobi identity. First, we write

d
dt

df
d�

� �
� d
d�

df
dt

� �
¼ ff ; S�g�;H�
 �� � ff ; H�g�;S�
 ��
¼ ff ; S�g�;H�
 �� þ fH�; f g�;S�
 ��

;

where we used the antisymmetry of the extended Poisson bracket
(B1) in the second term on the right. We now use the Jacobi iden-
tity to obtain the commutation relation,

0 � d
dt

df
d�

� �
� d
d�

df
dt

� �
¼ � fS�; H�g�; f


 ��
; (B2)

which must be valid for any function f. Therefore, this commutation
relation implies that

0 ¼ S�; H�f g� ¼ @S

@t
� @H

@�

� �
þ S; Hf g

� e
c

@S

@p
� @A
@t

� @H

@p
� @A
@�

� �

� dS
dt

� dH
d�

� S; Hf g; (B3)

and thus, the Hamiltonian constraint (17) is recovered.
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