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REGULARITY OF A GRADIENT FLOW GENERATED BY THE
ANISOTROPIC LANDAU-DE GENNES ENERGY WITH A
SINGULAR POTENTIAL*

YUNING LIUT, XIN YANG LU¥, AND XIANG XU$

Abstract. In this paper we study a gradient flow generated by the Landau—de Gennes free
energy that describes nematic liquid crystal configurations in the space of Q-tensors. This free
energy density functional is composed of three quadratic terms as the elastic energy density part,
and a singular potential in the bulk part that is considered as a natural enforcement of a physical
constraint on the eigenvalues of ). The system is a nondiagonal parabolic system with a singular
potential which trends to infinity logarithmically when the eigenvalues of @Q approach the physical
boundary. We give a rigorous proof that for rather general initial data with possibly infinite free
energy, the system has a unique strong solution after any positive time tg. Furthermore, this unique
strong solution detaches from the physical boundary after a sufficiently large time Tp. We also give
an estimate of the Hausdorff measure of the set where the solution touches the physical boundary
and thus prove a partial regularity result of the solution in the intermediate stage (0,70).
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1. Introduction. The Landau-de Gennes theory is a continuum theory of ne-
matic liquid crystals [10]. When formulating static or dynamic continuum theories a
crucial step is to select an appropriate order parameter that captures the microscopic
structure of the rod-like molecule systems. In our framework the order parameter is
a matrix-valued function that takes values in the following so-called Q-tensor space

(1.1) Q= {MeRM’ trM = 0; M:MT}.

It is considered as a suitably normalized second order moment of the probability
distribution function that dictates locally preferred orientations of nematic molecular
directors (cf. [2, 21, 22]).

To formulate the problem, let T™ be the unit box/square in R"™ with n = 2 or
3. For each order parameter @ : T" — Q, the associated free energy functional £(Q)
consists of the elastic and the bulk parts, which reads as

(1.2) £(Q) :=G(Q) + B(Q) — allQ||72(pn)-
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Here G stands for the anisotropic elastic energy that contains three quadratic terms
of VQ:
(1.3)

a(Q) = {fTs (L10kQij0kQij + L20;Qik 0k Qi + L30;Q;;0,Qix) dz  if Q € H*(T"),

400 otherwise,

where L1, Lo, L3 are material dependent constants. Here and in what follows, 0,Q;;
denotes the kth spatial partial derivative of the ijth component of @), and we adopt the
Finstein summation convention by summing over repeated Latin letters. Following
[19], we assume

(1.4) Ly > 3|La + L],

which ensures that (1.3) fulfills the strong Legendre condition.
Further, B(Q) denotes the bulk energy

B(@Q) = [ w(Qds,

where the integrand (@) is the singular potential introduced in [5]:

. L1 2 ,
(1.5) H(Q) = pgj@ /Sz p(p)Inp(p)dp if — 3< Ai(Q) < 3 1=i<3,

+o00 otherwise.

Here X;(Q) denotes the ith eigenvalue of the matrix @ and Ag is the admissible class
defined by

— 1
Ag = {p(p) 8?5 RE | pllois) =1 /82 <p®p— 3H>p(p) dp = Q}-

It is noted that the singular potential (1.5) imposes physical constraints on the ei-
genvalues of Q. Further, o > 0 in (1.2) is a temperature dependent constant which
characterizes the relative intensity of the molecular Brownian motion and the mo-
lecular interaction [5]. We refer interested readers to [2, 5, 4, 3, 15, 20] for detailed
discussions of basic analytic properties of 1, such as convexity, smoothness in its
effective domain, blow-up rates near the physical boundary, etc. Meanwhile, var-
ious problems in static and dynamic configurations concerning v can be found in
[7, 11, 13, 14, 15, 16, 27]. Specifically, the free energy in related dynamic problems
considered so far in the existing literature [11, 14, 15, 27] only involves the L; iso-
tropic term. Therefore, we are motivated to study the dynamic problem whose free
energy contains anisotropic Lo, Ls terms. It is worth pointing out that the presence
of such terms is more than a mere technical challenge, since they make it impossible
to recover any kind of maximum principle, which was crucial in [27].

This paper is concerned with a rigorous study of the gradient flow generated by
£(Q) in the Hilbert space L*(T"; Q):

atQ(tv ) € _ag(Q(t’ ))7 t>0,
Q(0,x) = Qo(x), x e T,

subject to periodic boundary condition

(1.6)

(1.7) Qt,x+e;) = Q(t,x) for (t,z) € RT x oT™.
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Here in (1.6), 0£(Q) is formally the variation of the free energy (1.2). However, due
to the singular feature of ¥(Q), it should be understood as subdifferential (see Lemma
3.5 for more details).

Parallel to the Q-tensor space (1.1), we introduce the physical Q-tensor space by

(18 Q= {80 -3 <D < 2(n) < XD < 3 .

where \;(M) denotes the ith eigenvalue of the matrix M, ordered nondecreasingly.
Any element in Q,p,y is called a physical Q-tensor.

Our first main result ensures the existence and uniqueness of solutions to the
gradient flow (1.6) with rather general initial data.

THEOREM 1.1. Let n =2 or 3. For any initial data

L2 (Tn)
b

(1.9) Qo € {Q € L*(T™; Qpny) | £(Q) < 00}

there exists a unique global solution Q(t,x) : RT x T™ — Q,py of (1.6) such that

2
01Qij = 2L1AQ45 + 2(Lo + L3)0;0,Qir, — g(L2 + L3)0r00Qerij

op 1 [0y
_ anj + 3tr(aQ>5ij + QOéQij

holds almost everywhere in (0,00) x T™. And for any fized to > 0, the solution satisfies

(1.10)

(1.11) Q € L™(ty, 00; H(T™)), 2,Q € L?, (to,00; L*(T™)),

and the energy dissipative equality

T
(1.12) / (10:Q(t, 172 sy + 10E(QUE, ))I[L2(rs) ) dt = 2E(Q(t0)) — 2E(QT))

to

for all 0 < tg < T < +oo. Further, Q(t,-) is physical in the sense that
(1.13) Q(t,x) € Qppy V>0, ae.x €T

It is worthy to point out that due to the energy dissipative property of the gradient
flow as well as the convexity of the singular potential, for any T" > 0 one can formally
establish the a priori estimate of Q in L{ (0,7; H (T™)) N L3 (0,T; H*(T™)). As a
consequence, existence of weak solutions to (1.6) can be achieved by using two level
approximation schemes as in [27], i.e., regularizing the initial data and the singular
free energy. However, such arguments involve fairly complicated approximation pro-
cedures. Fortunately, Ambrosio, Gigli, and Savaré [1] provide a powerful framework
to obtain the solution under very general assumptions of the initial data.

To establish higher regularity, namely a uniform-in-time H? bound of the solution
@, essential difficulties arise from the anisotropic terms. Without the Lo + L3 terms,
the convexity of 1 as well as the classical L' — L™ estimate of heat equation ensure the
strict physicality at any positive time (see section 8 in [27] for details), and henceforth
the conventional energy method applies. Concerning the gradient flow (1.6), unfor-
tunately the anisotropic terms make such a maximum principle argument invalid. As
a consequence, the proof of higher regularity of the solution becomes quite subtle in
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the sense that () might not stay inside any compact subset of Qpp,. To overcome
such a difficulty, we need to make a careful exploitation of its gradient flow structure,
as well as to combine several results on the gradient flow theory given in [1] and the
Gamma-convergence of gradient flows discussed in [26, 25]. These lead to the next
theorem, which improves the regularity by establishing the uniform-in-time H? bound
of the unique solution to the gradient flow (1.6). Further, it can be shown that this
unique solution detaches from its physical boundary after a sufficiently large time Tj.

THEOREM 1.2. For any tg > 0, the solution established in Theorem 1.1 enjoys
the improved regularity Q € L™ (to, +oo; H2(T")), and for almost every t > to there
holds that

(114)  1AQ( llzaen) < Cu (¢* VEQEo)) — nf € + 1+ 20l|Q(L, 2y

where C, is expressed by

1 L Lo+ L
(1.15) Cp = 1+ L + Lg| .
2(L1_|L2+L3|) L1+|L2+L3|*2\/L1|L2+L3|

Furthermore, under the stronger assumption

(1.16) Ly —3|Ly + Ls| — aC2. > 0,

where Ctn = (2m)™ is the Poincaré constant in T", there exists Ty > 0 such that the
unique solution is strictly physical for all t > Ty in the sense that

(1.17) —%—i—/@ﬁ)\i(Q(t,x)) < %—m Ve e T

for some constant k € (0,1/6).

During the period (0,Tp), a partial regularity result of the unique solution can
be established, i.e., the Hausdorff dimension of the set where the solution touches the
physical boundary 0Qpn,.

THEOREM 1.3. Let Q(t,x) be the unique strong solution of (1.6) established in
Theorem 1.2. Then for a.e. t € (0,Ty), the contact set

(1.18) Y= {x e T" | Q(t,x) € 0Qpny}

has the following estimate:
o dimy(3:) <2 forn =3.
o dimy(X) =0 for n=2.
The rest of the paper is organized as follows. Some notations and preliminaries

are provided in section 2. The proofs of the three main results, namely Theorems 1.1,
1.2, and 1.3, are given in sections 3, 4, and 5, respectively.

2. Preliminaries. We start with a few basic notations in @-tensor theory. For

any Q € 9, |Q| := /tr(Q*Q) represents the Frobenius norm of . The gradient of
the function ¥(Q) will be abbreviated by ¥'(Q), and its components are denoted by

15 (Q) = 8(,%3). Moreover, we denote L?(T"; Q) the Hilbert space endowed with the

L? metric
QI L2(1ny = \//Tn tr(QIQ) = \//n tr(Q2?) for Q: T" — Q.
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Here and after, for brevity, || - || z2(r») will often be written as || - ||z2, or simply || - [|.

Next we provide some preliminaries of gradient flow theory in a Hilbert space.
We start with some basic definitions in a Hilbert space H, with inner product (-, )
and norm || - || (cf. [8, 12]).

DEFINITION 2.1. A function f : H — R U {+o0} is called proper if f is not
identically equal to +00. The effective domain of f is defined by

D(f) = {u € H| f(u) < +00}.

By [5], the effective domain D(v)) is equivalent to (1.5).

DEFINITION 2.2. Let A\ € R; then a A-convezx function F : H — (—o0,+00] is a
function satisfying

F((1—tu+tv) <(1—t)F(u)+tF(v) — %t(l —t)[Ju — v]? Yu,v € H.
For each w € H, OF [u] is defined as the set of w € H such that
A
F(u) + (w,v —u) + §Hu —v|? < F(v) YveH.

The mapping OF : H — 2 is called the subdifferential of F. Further, we say that
u € D(OF), the domain of OF, provided OF[u] is not empty.

DEFINITION 2.3. We say that u(t) is a gradient flow of F starting from ug € H
if it is a locally absolutely continuous curve in (0,400) such that

hIIl t == .
U( ) U

{&tu(t) € —0F(u(t)), a.e.t>0,

The next result is due to [1, Theorem 4.0.4], which was originally stated under the
metric space setting. For the purpose of proving Theorem 1.1, it suffices to rewrite it
in the Hilbert space setting.

PROPOSITION 2.4. Let A € R, and let F : H — (—o00, 00| be a proper, A-convet,
bounded from below, and lower semicontinuous functional. Then for each ug € D(F),
u(t) = limg_ 1 o0 th/k(uo) with J. being the resolvent

(2.2) XTGJAY)¢:>X%EM@nm{FC}+;th_wﬁ}

satisfies the following:
1. Variational inequality: w is the unique solution to the evolution variational
inequality

f—\|u(t)—v||2+%||u(t)7v||2+F(u(t)) < F(v) for a.e. t >0 and v € D(F),

among all the locally absolutely continuous curves such that u(t) — wuo as
tlot.

2. Regularizing effect: w is locally Lipschitz regular, and u(t,-) € D(E) for all
t> 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/30/21 to 128.164.100.130. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

FLOW OF THE ANISOTROPIC LANDAU-DE GENNES ENERGY 3343

Remark 2.5. Tt is well known that for a A-convex function F' : H — (—o0, +00],
a locally absolutely continuous curve u(t) in (0,4o00) satisfies (2.1) if and only if it
satisfies the evolution variational inequality (2.3).

Now we turn to the I'-convergence of gradient flows in a Hilbert space, a theory
developed in [25, 26]. Let {u,} be the solution to the gradient flow

(2.4) Oy, = —VE, (uy)

of a C! functional sequence {E,}. Assume FE,, I'-converges to a functional F, and

there is a general sense of convergence u,, 5 u, relative to which the I'-convergence
of E, to F holds. We introduce the “energy-excess” along a family of curves u,(t)

with uy, (t) 5 u(t) by setting

D(t) = limsup Ey, (un(t)) — F(u(t)).

n—oo
The main result of [26] is the following.

PROPOSITION 2.6. Assume E, and F satisfy a T’ —liminf relation: if u, 5w as
n — oo, then

lim inf E,, (u,) > F(u).

n— oo

Assume that the following two additional conditions hold:

1. (Lower bound on the velocities) If wy,(t) 5 u(t) for all t € [0,T), then there
exists f € L'(0,T) such that for every s € [0,T),

@) it [ o (0 dt > / o0 — F0D()] .

2. (Lower bound for the slopes) If u, 5 u, then

(2.6) lim inf | V5, (u,)|[} dt > [V F(w) [} — D,

where C' is a universal constant, and ||V F(u)| denotes the minimal norm of
the elements in OF (u).

Assume u,(t) is a family of solutions to (2.4) on [0,T) with wuy(t) 5 u(t) for all
t€10,T), such that

B (1 (0)) — By (1)) = / 10yun(s)|2 ds Vi € [0,T).

Assume also that
lim FE,(u,(0)) = F(u(0));

n— oo

then w € H(0,T; H) and is a solution to dyu = —dF (u) on [0,T). Moreover, D(t) =
0 for all t (that is, the solutions “remain well-prepared”) and

10vunller == |0cullzr, IV En(un)lir “= |VF ()l in L*(0,T).
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3. Proof of Theorem 1.1: Existence of solutions. This section is devoted
to the proof of Theorem 1.1. First, with the choices H = L?(T"; Q) and F = &
(defined in (1.2)), we show that the assumptions in Proposition 2.4 are satisfied, so
that there exists a unique solution Q(,-) in variational inequality setting (2.3) (see
Proposition 3.4 below). Moreover, since the free energy is —2a convex, the solution
achieved in Proposition 3.4 is equivalent to the solution of the gradient flow (1.6) in the
subdifferential setting. As a consequence, we compute explicitly the subdifferential of
£ and obtain a unique strong solution to (1.10). Finally, we apply two theorems in [1]
to show further regularity properties of ) in Theorem 1.1. Since all of the following
arguments are valid for both T? and T? with minor modifications, for brevity we
discuss the case of T3 only.

In this subsection we consider the following settings:

(|- =L*(T%Q), F=£&Q).

To begin with, we need to verify that all assumptions in Proposition 2.4 are valid,
which is given in the following two lemmas.

LEMMA 3.1. The free energy functional £ is proper, bounded from below, —2«
convex, and lower semicontinuous in L*(T3; Q).

Proof. First we show that the elastic energy G is nonnegative, convex, and lower
semicontinuous in L?(T3; Q). It is proved in [19] that when Ly > 0, L1 + Lo + L3 > 0,
G satisfies the strong Legendre condition, which implies the convexity of G. It suffices
to show that G is nonnegative when @ € H'(T?3), which follows from the coefficient
assumption (1.4), integration by parts, and the Cauchy—Schwarz inequality:

g(Q) > / (Llainjainj + L0k Qi 0k Qi + L38jQijaink) dx
’]TS
= / {Llainjainj + (L2 + L3)8jQikainj} dx
TS
(3.1) > / (L1 — 31Ls + Ls[)VQ[* da > 0.
TS

Besides, since G is convex and quadratic, it is lower semicontinuous [17, Theorem 8.1].

Next we show that the functional B is convex, bounded from below, and lower
semicontinuous in L?(T3; Q). The convexity of B follows from [5, 15]. A lower bounded
can be derived from the inequality lnz > —1/e for any « > 0:

(3.2) B= [ ¥(Q)dr > —4r*T3|/e.
’]I‘3

To show the lower semicontinuity of B, let Q, — @ strongly in L?(T3). If
liminf, % (Qn) = 400 on a set of positive measure, then the proof is done. Thus
upon subsequence we assume

(3.3) liminf B(Q,) = ILm B(Q,) < +00, and Q,(z) =% Q(z) for a.e. x € T,

n— oo

Consequently, for all n € N sufficiently large and a.e. x € T3, all eigenvalues of
Qn(x) are in (—1/3,2/3). Moreover, the eigenvalues of Q(x) are in [—1/3,2/3] since
convergence of eigenvalues follows from convergence of the matrices (cf. [24]).

We claim that for a.e. # € T? the eigenvalues of Q(x) are in (—1/3,2/3). To this
aim, we argue by contradiction. Assume the opposite, i.e., £ = {:z: €T3\ (Q(z)) =

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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n—00

—1/3} has positive measure. Then it follows from [5] that (Qn,(z)) —— +o0 in
FE, and henceforth Fatou’s lemma implies

liminf B(Q,) > hm 1nf 1/) Qn)dx + hm inf V(Qy) dx

n— 00 —00 T3\ E

/ liminf ¥(Q,) dz — —|’]I‘3 \ E| =
E

n— oo

which contradicts (3.3). Thus the claim is proved. Since ¥ is smooth in D(9)) = Qpp,

(see [15]), we have ¥(Qn(z)) =5 1(Q(z)) for a.e. & € T3. Thus Fatou’s lemma
implies

lim inf B(Q,) Z/T liminf ¥(Q,,) dx—/ »(Q B(Q).

n— 00 3 M—00

To sum up, & is —2a convex and lower semicontinuous in L?(T?; Q). It remains
to show that & is proper and bounded from below. Clearly, £(Q) < 400 provided
Q € HYT?) and Q(x) € D(¢)) a.e. x € T3, and hence £ is proper. Further, if @ is
not physical, then £(Q) = +oo , while if Q is physical, then [|Q||z2(7s) is bounded,
and hence £ is bounded from below since both G and v are bounded from below. 0O

Remark 3.2. It is noted that the coefficient assumption (1.4) is different from the
one in [9, 18], which ensures that the elastic energy G is coercive only.

LEMMA 3.3. For any R, Py, P, € D(E), denote v = (1 —t)Py +tPy, t € [0,1];
then for each 0 < 7 < 1/2« the functional

— RJ?
e = RI?

(3.4) (1, By ) o=~

E(m)

is (1/7 — 2a)-convex on 7 in the sense that
¢(T7 R: ryt)

(3.5) <(1-t)®(r,R; Py) + t®(r,R; P1) — %

Proof. We infer from the convexity of G and B that

t(1—t)||Py — Po||*> Vtelo,1].

®(7, R;vt)

1—t)Py+tP, — R
-l )Ozt L T T Yo SN (O Y

< A=t)[R = R+t — B> —t(1 — )| P — P1?

+ (1= t)(G + B)(FP)

- 2T
+4(G + B)(P1) — a[(L = O)|[Po|]® + tl| P1|> — t(1 — 0)|| P — Py
=1 -t)®(1,R; Py) +t®(1,R; P1) — Wt(l — )P — P0||2. 0

To sum up, we manage to verify that all assumptions of Proposition 2.4 are
satisfied, which leads to the following proposition.

PROPOSITION 3.4. Let n = 3. For any initial data,

L*(T%)

(3.6) Qo € D(&) :={Q € LA(T3; Qpny) | £(Q) < 00}
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Let Q(t) = limg—, 4o th/k(Qo) with J being the resolvent
1
Xe;(Y)=X¢e argmin{F(-) + E”Y - ||2}
Then we have the following:
1. Variational inequality: @ is the unique solution to the evolution variational

inequality

d
19 ) = Plliagrs) = allQ(t ) = Pllizcrs) + E(Q(, ) < E(P)
for a.e. t >0 and P € D(E),

(3.7)

among all locally absolutely continuous curves such that Q(t,-) — Qo ast |
(s
2. Regularizing effect: Q is locally Lipschitz, and Q(t,-) € D(E) for all t > 0.
In particular, Q is physical in the sense that
1 2
(3.8) —3< \i(Q(t, ) < +3 Yt >0, a.e. x € T3,

To proceed, note that € is —2a convex in L?(T?; Q), and hence by Remark 2.5 we
know that Q(¢, ) constructed in Proposition 3.4 is the unique solution to the gradient
flow (1.6). The following lemma computes explicitly the subdifferential of the free
energy £.

LEMMA 3.5. For any Q € D(9E) and 1 <i,j < 3, we have

—08(Q)ij = 2L1AQ4; + 2(La + L3) 0k Qir — M&cé@kﬂsij

Proof. To begin with, it is immediate to derive

2
(3.9) 06(Q)i; = —2L1AQ;; — 2(Lo + L3)0x0;Qir + g(Lz + L3) 000k Qre0i;-

Next we need to verify that

o5(Q) = {(@ - (@t .

Case 1: Q is strictly physical.
Let R € C°(T3,Q). Then by convexity and smoothness of %, any element
& € OB(Q) satisfies

*/TB W(Q): R de = lim DWW =R ZB@)

R
0t c <€7 >L2(T3)7

which indicates (£, R)r2(rsy = (' (Q), R) 12(13). By density,
(3.10) £=9'(Q) —tr(¥'(Q))3/3

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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as an element in the Hilbert space L?(T"; Q). Hence 0B(Q) = {¢'(Q)—tr(v'(Q))I5/3}
for any uniformly physical Q.

Case 2: @Q is not strictly physical.

We define

(3.11) p(P) := min {/\i(P) + é, % - /\i(P)} VPeQ,

and A, = {z € T3 : p(Q(z)) < n} for arbitrarily small n > 0. Since Q € D(d€) C
D(€), we have 1(Q) < +oo, and thus |4, — 0 asn — 0. Let

T,(Q):=={Re€ L*(T*Q): R=0onA,}.

Let us consider any fixed n > 0, and let R € T,,(Q). Then it is easy to check that
p(Q) > n outside A,;, and for all sufficiently small € we have p(Q £eR) > n/2 outside
A,; hence

B(Q+¢R) :/

T3\ A,

(Q +eR)dx +/A $(Q) dz < +oo.
This together with the convexity of ¢ implies that for any sufficiently small & > 0,
6/']r3\A [¢'(Q+eR): R|dz > B(Q +eR) — B(Q)
= B@rem —v@lirze [ (@R

T3\ A,

and dividing by ¢ gives

(3.12) lim ing S @ ER) ZB@) / [0/(Q) : R] du,
e—0t € T3\ A,

(3.13) lim sup BQ+eR) - B(Q) < lim sup/ [¢¥'(Q +¢R) : R] da.
0t € csot JT3\A4,

Meanwhile, note that

Y e L=(T*\ 4,), li%lJr [V (Q+¢€R) : R| dx / [v(Q) : R] d=
e— T3\ A, T3\ A,

=Awwwﬂw

due to the fact that R = 0 on A,. This together with (3.12), (3.13) yields

e—0t £

Further, as discussed in Case 1, for any R € Un>0 T,(Q) we have

(&, R)p2(13) = <¢/(Q)7R>L2(T3)'

By density, it follows that & = ¢'(Q) — tr(¢’(Q))I3/3 as elements of the Hilbert space
L3(T3; Q). Hence 0B(Q) = {¢'(Q) —tr(¢/(Q))I3/3} even if Q C D(JE) is not strictly
physical.
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By Lemma 3.1, G and B are proper, convex, and lower semicontinuous, and the
intersection D(G) N intD(B) is nonempty, so we get 9(G + B)(Q) = 9G(Q) + 9B(Q)
by [6, Theorem 2.10]. Since the last term —aHQHzLQ(TB) is a C'! perturbation of the
energy, we infer

(3.14) 98(Q) = 0(G + B)(Q) — 20Q = 96(Q) + 9B(Q) — 20Q,

which concludes the proof. ]

Proposition 3.4 leads to higher regularity of the solution ). Since the energy & is
—2a-convex, and since the solution Q(t,-) satisfies Q(¢t,-) € D(E) for all time ¢ > 0,
we conclude that for any ¢ > to > 0 the function Q(¢,-) is the gradient flow of £ in
L?(T™; Q) with initial datum Q(tg, ) € D(E). Thus we can apply [1, Theorem 2.4.15]
to obtain the following proposition.

PROPOSITION 3.6. Let Q(t,-) be the solution given by Theorem 1.1. Then the
map

t s e 2 OE(Q(E, )l 2 1)
is nonincreasing and right continuous on [tg, +00) for all ty > 0.

Finally, combining [1, Corollary 2.4.11] and [1, Theorem 2.3.3] we obtain the
energy identity (1.12).

PROPOSITION 3.7. The solution Q(t,-) given by Theorem 1.1 satisfies the energy
equality

T
| 3U0QU a0+ 108U o) d = E(@(10)) ~ E(QT)

forall0 <ty <T < 4o0.

In conclusion, the proof of Theorem 1.1 is complete.

Remark 3.8. The nonincreasing property of e~ 2**|0€(Q(t,))||L2(r#) in Proposi-
tion 3.6 will play an essential role in the proof of Theorem 1.2, which is the main
reason that the Ambrosio—Gigli-Savaré gradient flow theory in [1] is adopted in this
section rather than the classical Brezis—Pazy theory.

4. Proof of Theorem 1.2: Higher regularity of solutions. This section
is devoted to the proof of Theorem 1.2. Since there is only minor modification of
arguments between T2 and T2, we only discuss the case in T3.

It is noted that the maximum principle argument utilized in [27] fails due to the
presence of the anisotropic terms, and hence the solution Q(t, -) is not ensured to stay
detached from the physical boundary 0Q at any positive time ¢. To achieve the proof,
we have to put together several results in [1, 25, 26] and to make a full exploitation
of the gradient flow structure in (1.6).

Our main strategy is as follows. First, to avoid the singular feature of 9€(Q) in
(1.6), we shall consider a sequence of smooth gradient flows (4.19) that are generated
by an approximation sequence {&,} defined in (4.6) of the free energy £. Second,
we will prove I'-convergence of {£,} to & in Proposition 4.2, which together with
energy dissipative equality achieved in Proposition 3.7 can show the “convergence”
of the gradient flow sequence (4.19) to (1.6). Next we will show in Proposition 4.6
that the solution sequence {Q,} to the gradient flow sequence (4.19) is in H?(T3; Q)
space, and give a corresponding estimate of the H? bound of Q in terms of ||0£(Q)||,
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which together with Proposition 3.6 leads to the uniform-in-time bound for ||0E(Q)]|.
Finally, we make use of the convexity of ¢ and Sobolev interpolation inequalities to
derive strict physicality of the solution at all large times.

Here and after, we denote {1, } the sequence of functions that is used in [27] to
approximate the Ball-Majumdar bulk potential v: first, we introduce the Moreau—
Yosida approximations

(4.1) Pal(@)i= inf (MA-QF +9(A)},  QeQ.

Then using a smooth regularization we define
(12) wnl@=n" [ u(n(@ - m)o(mar, Qe

Here ¢ € C°(Q,RT) is of unit mass. Let us recall [27, Proposition 3.1]; for each
n > 1, we have the following:
(MO) 1, is an isotropic function of Q.

(M1) 4, is both smooth and convex in Q.
(M2) 1, is bounded from below, i.e., —472|T?|/e < ,,(R) for all R € Q, for all

(M3) Vn < Y1 <Y on Q forn > 1.
(M4) ¢, — @ in L;’;’C(D(w)) as n — oo, and 1, is uniformly divergent on
Q\ D(v)

5) 35/5 — % in L}’OOC(D(@/J)) as n — 0o.

6) There exist constants A,, A, > 0 that may depend on n, such that
1
An|R| — Ay < U0 (R) — gtr(w;(R))Hg < M|R|+ A, VREQ.

Besides the aforementioned properties (MO0)—(M6), we need to further derive the
following finer estimate of the sequence {1, }, in order to prove Proposition 4.2 and
Lemma 4.3.

LEMMA 4.1. For any n € N, there exists a generic constant C,, > 0 such that
(4.3) U (Q) > Cn|QI?, outside a fized compact subset in Q.

Moreover, C,, — +00 as n — +00.

Proof. Since the null matrix 0 € D(¢), taking A = 0 in (4.1) we get the upper
bound

Dn(Q) < nlQP +4(0).

On the other hand, since such an infimum in (4.1) is finite, there exists a minimizing
sequence A,, C D(v) such that

Ga(Q) = Tim (n]dp — QP +Y(4pn))

+oo
(4.4) > lim n|A,, — Q* +inft > ndist(Q, D(v)))* + inf 1.

m——+oo

By the triangle inequality, we have

Q] < dist(Q, D(¥)) + dist(0, D(¢)),
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and since 0 € D(3)), we can further get

dist(Q, D(1) > |Q| — diam(D(¥)).

As a consequence, we see that

Dnl@Q) 2 nlQPP—2n diam(D())|Q|+diam(D())*+inf ¥ = n|Q(|Q]-2diam(D(1)))-

Hence we arrive at the uniform quadratic estimate

21017 < 9 (Q)

(4.5) 5

in {|Q| > 4diam(D(¢)))}. Then following the mollification of v, in (4.2) one can get
(4.3). 0

We introduce the energy sequence &, : @ — RU {+o0},

G(Q) + [ ¥n(Q) da — al|Q|F2 (1= if Q@ € H'(T?)

400 otherwise,

(4.6) &n(Q) = {

and establish a I'-convergence result.
PROPOSITION 4.2. The sequence of energies {€,} T'-converges to £.

Proof. We first show compactness. Let us assume liminf, . E,(Qn) < +o00.
Upon subsequence, we may assume

(4.7) liminf &,(Q,) = ll)IJ'I_l En(Qn) < +o0, sup £,(Qn) < +o0.

n—+o0o neN

We need first to ensure the existence of a strong limit . We claim that @, is
uniformly bounded in L?(T®). Otherwise there exists a subsequence {Q,,}, such
that [|Qn,|lz2(r3) — 4oc. It then follows directly from Lemma 3.1 and (4.3) that
En, (Qn,) = +oo, which contradicts the assumption (4.7).

Further, note that

(L1 — 3|La + Ls|) sup [ VQul|72(ps)
< sup g(Qn) < sup gn(Qn) + asup ||Qn||2L2(’]I‘3) + in}; /3 W)n(P” dz < +o0.
n n n n, T

Thus Q,, is uniformly bounded in H'(T?), and @Q,, — Q (up to a subsequence) strongly
in L2(T3).

Next we show I'-lim sup inequality. That is, for any @ € Q there exists a recovery
sequence @, such that

(48) lim sup £,(Qn) < £(Q).

n—-+oo

Without loss of generality we assume £(Q) < +oo. Taking @, = @, for every n > 1
we get from (M3) that

0(Qn)~0lQulltary = 6@l [ vnlQudr < [ w(Qde Va1
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In all, (4.8) is verified.

We proceed to show I'-liminf inequality. That is, for any sequence @, — @
strongly in L?(T?), it holds that

(4.9) liminf &,(Q,) > £(Q).

n—-+oo

Without loss of generality we assume liminf,, 1 &,(Qn) < +00. Again upon sub-
sequence, we may assume

liminf £,(Q,) = EIE En(Qn) < 400, sup £,(Qn) < +o0.

n—-+oo neN

As discussed earlier we have Q,, — @Q strongly in L?(T3), and upon further extracting
a subsequence we may assume @, — Q a.e. in T3. Hence together with the lower
semicontinuity of G achieved in Lemma 3.1 it yields

(4.10) i [ Qu() ey = 1QO) ey, IminfG(Qn) > 6(Q).

It remains to prove

(4.11) liminf | 9, (Qn)dz > P(Q)dex.
T3

n—-4oo T3

To proceed, we denote
D:={zeT®:Q(z) e D)},

and we distinguish between two cases.
Case 1: B(Q) < +oo. For any sufficiently small € > 0, let us define

(4.12) ’JI‘g’Dﬂ{xe’]l“g:;Jrsg)\i(Q(x))gg5,1<z<3}
Since | T3\ D| = 0, we get
/ [ (@n) — 9(Q)] dz = / [ (@n) — 9(Q)] da
T3 D
(4.13) — [ 6@ - o@)dot [ [0n(Qu) -~ 9(Q)] da.
DA\T?2 T3

On the one hand, for any n > 1,

Un(Qn) dz > lim (inf ¢, (P))|D\ T2| = 0,
D\T3 e—=0"n,P

and since ¢ € L'(T?), as |D \ T?| — 0, we have
lim Q) de = 0.
e—0 D\Tg’

Hence for all § > 0, there exists €9 = €o(d) > 0, such that

(4.14) /D\’]I‘3 [Un(Qn) —¥(Q)] dz > —g Vn >1 whenever € < gq.
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On the other hand, it follows from (M5) that ., (Q(z)) — ¥(Q(x)), ¥, (Q(z)) —
¥ (Q(x)) as n — +oo in L>®(T2). Thus it implies that for any fixed e < g¢ it holds
that

n—oo T3
e

Specifically, for € = g there exists Ny € N, such that

(1.15) [, on@) = 6(@] do > =5 Vo> No.

3
€0

Combining (4.14) and (4.15) we finish the proof of (4.11) by the arbitrariness of d.
Case 2: B(Q) = +o0. In this case it suffices to check

n—oo

(4.16) liminf [ 9,(Q.)dz = +oo.
T3

If |T3\ D| > 0, since Q, — Q a.e., it follows from Egorov’s theorem that there
exists a set F' C (T \ D), |F| > 0, such that Q,, — @ uniformly on F. Note that
Q(z) € Q\ D(®) for all z € F. Hence the uniform convergence of @, to Q on F
implies there exists a sequence &, \, 0T, such that

—&, V1<i<3.

Wl N

M(@n(2)) < 5 +nor A(@u()) >

Then Fatou’s lemma and (M4) yield

lim inf/ Y (Qr) da > / lim}_nf Y (Qr) dx = 400.
F F n—-+0oo

n—-+00

Therefore, (4.16) is verified in this case.

Alternatively, if T3\ D| = 0, then using an argument similar to that in Case 1
we have

T3 D T2

D\T?
where T? is given in (4.12). On one hand,

(4.17) Vn(Qn) da > (injgwn(P)) T3\ T3| > _ 4P Ve > 0.

D\T2

On the other hand, since B(Q) = +oco and T2 D, we infer that for all M > 0, there
exists €9 > 0, such that
47|T3|?

$(Q)dz > M +1+
T2

Meanwhile, (M5) indicates that ¥, (Q(z)) — ¥(Q(x)), ¥, (Q(x)) — ¥'(Q(z)) in
L>°(T2 ), which gives

Ve < gg.

U (Qr) dz — P(Q) dx.

3 3
TED ’]I‘E0
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Thus there exists IV € N, such that

(4.18) UV (Qr) da > P(Q)dr —1> M + M

3 3
Teo TEO

Vn > N.

Putting together (4.17) and (4.18), we conclude that (4.16) is valid. Hence the proof
is complete. 0

Since in Theorem 1.1 we allow the initial data Qg € D(E), one may not expect
any further regularity at time ¢ = 0. Thus we only aim to prove the regularity of
Q(t,-) for positive times t > 0.

Let o > 0 be arbitrarily given. Consider the gradient flow sequence

(419) {atczn € ~06u(Qn). > to,

Qn(th .f) = Q(t07 Z‘),

subject to periodic boundary conditions (1.7). Here we let time start from ¢ only
as a matter of convenience, in order to avoid an (unnecessary) time shifting. Note
that the energies &, are also —2a-convex, proper, lower semicontinuous, and uni-

formly bounded from below. Thus we can apply [1, Theorem 4.0.4] to get the same
conclusions as in Theorem 1.1 and Propositions 3.6 and 3.7.

As a consequence, we manage to prove the following lemma.
LEMMA 4.3. Let Q,, be the solution of (4.19). Then for every ty € (0,T)
10€0(Qu(t, )2 (rs) = 1E(Q(E, ) L2(esy — in LP(to, T),
10:Qn(t, )2y = 10:Q(t, M2y in LP(t0,T),
up to a subsequence.

Proof. By Proposition 4.2, we have &, L €. We aim to show that we are under
the hypotheses of Proposition 2.6, where the general sense of convergence is considered
to be the strong convergence in L?(T3; Q). Let us first check that the conditions (2.5),
(2.6) are valid for the solutions @, of (4.19).

By Proposition 3.7 and (M3), we have

En(Qn) (1) < E.(Q(t)) < E(Q(to)) Vit >to,neN.

Hence following a similar argument in the proof of compactness part in Proposition
4.2 we get

(4.20) {Q,} is uniformly bounded in L*(to, T; H(T?)).

Next, by Proposition 3.7 and (M3), the energy equality

T
/t (10:@n (t, I* + 10€,(Qu(t, )1?) dt = 26.(Q(to)) — 2En(Qn(T))
(4.21) < 28(Q(tp)) —2inf &,
holds for all tg < T < 400. Hence

(4.22) {0;Q,} is uniformly bounded in L?(to, T; L*(T?))
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and we can apply the Aubin—Lions lemma to yield

(4.23) Q. — Q strongly in C([to, TY; LQ(TB))7
and (4.21) implies that
(4.24) 1Qn — 0,Q weakly in L*(0,T; L*(T?)).

Hence the condition (2.5) is satisfied by taking f = 0. Since each &,, is —2a convex,
by [23, Proposition 13] we know that the condition (2.6) is also satisfied by taking
C=0.

Finally, note that the initial data are “well-prepared” in the sense of &, (Q(to)) —
E(Q(to)), and thus all the assumptions in Proposition 2.6 are satisfied, which in turn
gives that Q is a solution of the gradient flow

3::@ € —85(@),
Q(to) = Q(to).

Since @ is already a solution, and by Theorem 1.1 we know that such a solution is
unique, we infer Q = @, and the proof is complete. ]

Now we turn to the H2-regularity of the sequence {@,,}. The following technical
lemma implies the coercivity of 0G.

LEMMA 4.4. For any P € H?(T3; Q), the operator 0G(P) satisfies

2(Ly — |Ly + Ls|) [ AP||Z2(psy < (—0G(P), AP) > < 2(Ly + L2 + Ls|) | AP| 72 gs)-

Proof. Direct computations yield
(—0G(P),AP)2 = /1r3 {QLlAPZ-j +2(La + L3)0k0; P
2
— g(LQ + Lg)agakpkg5ij:| APZ] dx

= 2L1||AP||%2(T5) + 2(L2 + L3)/ 8j6kPikAPij dz,
T3

where the last term on the right-hand side can be treated by integration by parts and
Holder’s inequality:

2(L2 + Lg) / BkajPikAPij dx
T3

=2(Ly + Lg) / 858jPikc’)48kPij dx
T3

< 2Ly + Ly / \/ > (0diPu)? | 3 (00kPy)* du
T2\

25k E ,5,k,¢

— 9Ly + L| / V2P = 2(|Ls + La)|AP| 2 zo). D
'JI‘S

Next we recall the notion of angles between two elements in a Hilbert space
(H,(,)). Given two nonzero elements u,v € H, the angle between u and v is the
unique value

Z(u,v) 1= arccos <ur> € [0,n], where ||ullg = v/ (u, u).

)
[l
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Then the following triangle inequality is valid.

LEMMA 4.5. For any three unit vectors i, v, w € S?, it holds that
(4.25) (1, V) < Z(id, W) + L(U, ),

where Z(@,0) € [0, 7] stands for the angle between the two vectors @ and ¥.

Proof. By rotation invariance, we assume the unit vectors u, v lie on the zy-plane.
And in particular, w.l.o.g. we suppose @ points in the direction of the z-axis:

i=(1,0,0), ¥={a,\/1—a20), @&=/{c,coc3)€S? —1<a<l.
Correspondingly, we have
cos £(4, V) =a, cosZ(U,W)=c1, cosZ(V,W)=ac;+V1—a%ca,

sin Z (0, @) = /1 —c?, sin Z(0,0) = \/1 —2ay/1—a2cica — a?c? — (1 — a?)c3.

To prove (4.25), it is equivalent to show that

cos Z (i, 0) > cos (£(d@, W) + £(T,7)).

That is,

a>ci(ac; + V1 —a%ca) — /11— C%\/l —2ay/1—a2cica — a?c? — (1 — a?)c3,

which is equivalent to

(4.26) \/1—01\/1—2(1\/1—a26162—a281 (1 —a2)c3 > a(ci — 1)+ V1 — a?cico.

If the right-hand side of (4.26) is nonpositive, the proof is complete. Otherwise, it is
equivalent to prove

(1—c)[1- 2a\/1 — a2eics — a’c — (1 —a*)c3]
>a?(1—c)? 4+ (1 —a®)c3ci — QaM(l —2)eren
& (- 01)(1 —a’c}) — (1 —a*)c; > a®(1 - ¢f)?
& (- -c3)(1-d*) >0,

which is obviously true. ad

Based on Lemmas 4.3 and 4.4, we show that the H2-norm of @,, can be estimated
in terms of ||0&,(Qn(t))| uniformly in n € N.

PROPOSITION 4.6. For anyn € N, a.e. t € (to,T), it holds that
[AQn ()| 2 psy < CL (|08 (Qn(ts N 12 sy + 20t/ Qs )| L sy)

where Cp, is defined in (1.15).

Proof. By Lemma 4.3, we have that (up to a subsequence) ||0&,(Qn(t,-))] is
convergent to ||0E(Q(t,-))| for almost every fixed t € [ty,T]. Hence for any fixed
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t € [to,T] (after removing a set of measure zero), for any n € N it holds (recall (4.6))
that we have for every n > 1 and almost every t € (tp,T') that

6@t + @t = Jrtut @ttt

(4.27) < [|0€n(@n(t, N g2 sy + 20| @t ]| L2 s

L2(T3)

On the other hand, by (M6), and {Q,} € L>(0,T; H*(T?)), we know that

which together with (4.27) implies that

’(/);L(Qn(ta )) - %tr(%@)(Qn(t, ))H3 < )\n”Qn(ta ')HL2(T3) —+ An‘T3| < +0o0,

L2(T3)

10G(@n(t. N 2(7s) < 00

By Lemma 4.4, we conclude that Q,(t,-) € H?(T3), a.e. t > 0 for any n € N.

In the rest of this lemma, for simplicity Q.,(+,t) is abbreviated by @,,, and w.l.o.g.
we assume ||AQ, | z2(rsy > 0. By (1.4) and Lemma 4.4, we have

f’]I‘3 (GQ(QH) : _AQn) dx > 2(L1 — |L2 + L3|)HAQnHQL2 > L1 — |L2 + L3|

> 0.
10G(Qu)llz2llAQullzz — 2(L1 +[L2 + Ls)|AQulI72 ~ L1+ [L2 + Ls]

Hence the angle between 0G(Q,,) and —AQ),, is bounded by

Ly —|Ly + Ls|

£(96(Qn), ~AQy) < arccos Ly + |La + L]’

Meanwhile, by (M1) we know that

L @0n(Qu): =20, d = 0
which together with Lemma 4.5 gives

Ly —|Ly + Ls|

T
< — 4 arccos —— .
— 2 Ly + |Ly + Ls|

As a consequence, we obtain that

@2 [ (000Q.): 00.(Q) da

Ly —|L L
> cos <72T + arccos L1+IL21L2D 10G(Qn) | 212 [|0%n (Qn)| L2(12)
2y/L1|Ls + L3
=———F|0 n 203y || O n(Qn .
Ly + |Ly + L] 19G(Gn )2 (TJ)H b (Qn)lL (T2)

Note that 2\/L1|L2 + L3|/(L1 + |L2 + L3|) <1by (14)
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In all, after combining Lemma 4.4, (4.27), (4.28), and the Cauchy—Schwarz in-
equality we conclude that

(19€2(Qu)ll 2(73) + 20| Qnll 2(75))?
> [0G(Qn)lI72(rsy + 1090 (Qn) 729

4\/Ly|Ly+ L
VI ¥ Bl g,y 00 (@) e

Ly + Ly + Ly
Ly + |Ly + L3| — 2y/Ly|Ly + Ls| 2
> 0G(Qn
> L 2 106(@n) B ces
Ly +|Ly + L3| — 2y/L1|Ly + Ls|
(4.29) > PRI A(Ly — | Lo + Ls|)?*| AQun |72 (s
The proof is complete. ad

Summing up the results established in this subsection, we are ready to establish
the improved regularity properties of the unique solution @ obtained in Theorem 1.1.

Proof of Theorem 1.2.

Part 1: Uniform-in-time bound (1.14) It is proved in (4.23) that (up to a sub-
sequence) @y (t) = Q(t,-) in C([to, T]; L*(T?)). Moreover, it follows from Proposi-
tion 4.6 that for a.e. t € (to,T), |[AQn(t)| z2(rs) is (up to a subsequence) uniformly
bounded in n € N. Hence AQ(¢,-) € L?(T?) a.e., and from Lemma 4.3 we can further
make the following estimates:

IAQ( ) < liminf [AQu(E )22
< timinf s (108, (Q(t, ) 2¢00) + 20]Qu(t, Vo)
(4.30) = CL(10€(Q(t, )l 213 + 2a|Q(t, )| 22(19)),
where Cp, is defined in (1.15).

W.lo.g., we assume T = tg + 100. In view of (4.30), it suffices to provide the
L*>*-bound for ||0E(Q(t, '))||2L2(11'3)' By (1.12), we have

“+oo
(431) | 108 QU ey e < £QM0) ~ inte.

to
Thus for any n € N it holds that
to+n+1 )
(4.32) | 108t ey dt < E(QLt0)) ~ it
to+n

and hence there exists a set of positive measure A,, C [ty + n,to + n + 1] such that
(4.33) 10E(Q(t, NNIT2(rsy < E(Q(t)) —infE+1 Vi€ Ay,

For any n € N, n < 99, let us choose a time s,, € A,, and for the sake of convenience
we set s = to. Obviously, {s,}n<g9 is monotone increasing, and s,+1 — s, < 2.

Let us then consider the gradient flow sequence

P, € —0E(P,),
(4.34) {pn(()’ ) =Q(sn,"),
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subject to a periodic boundary condition, whose solution P, is given by the time shift
P,(t,") = Q(sn +t,-) for allt > 0. By Proposition 3.6, the function

i 672atH35(Pn(t))||L2(1r3)
is nonincreasing, and thus together with (4.33) we have

10£(Qt + 50, VN2 rs) = [0E(Plt, D)3 (s) < €221 [OE(Po (0, )) 35
< SNIE(Q(5n, )32 rs) < € (E(Q(to)) — inf € +1)

for a.e. t € (0, 8,41 — Sn). Repeating this argument for all n finally gives

10E(Q(t, )|l L2(rsy < e**V/E(Q(t)) —inf € + 1 for a.e. t € (to,to +99).

In addition, we recall that all eigenvalues of Q(¢,-) are in (—1/3,2/3) for a.e. t €
(to,to +99), and hence [|Q(t, )| g2(rs) is uniform-in-time bounded in (to,to + 99).
Thus (1.14) could be proved by iteration.

Part 2: Strict physicality (1.17). Now that @ is a solution of

tr('(Q(, )

0Q = ~0G(Q(t, ) — V' (QUt, ) +

I3 + 20Q(t,-) Vit > to,

with Q € L™ (to,+oo; H?), let us take the inner product with —AQ(¢,-). Then it
gives

d
%%HVQ(L )H%Q('ﬂg) = <8g(Q(ta ))a AQ(ta )>L2(T3) + <wl(Q(ta ))7 AQ(t7 )>L2(T‘5)
(4.35) +2a||VQ(t, |72 13-

Note that by (1.16), Lemma 4.4, and the Poincaré inequality we have

(0G(Q(t,-), AQ(t)) L2(rsy < —2(Ly — |La + L3|) | AQ(L, ')||2L2(T3)

2(Ly — |La + L3|) 2
cz, VO, ) 72(r2)-

(4.36) < -
On the other hand,

Q). AQUE N aoen) = [ ¥(Q(t.)AQ(1 ) ds
(4.37) = [ ¥ Qua)Iva P dr <o

due to the convexity of ¢. Inserting (4.36) and (4.37) into (4.35), we get

Ly —|Ly + Ls|

cz, + a> IVQ(t, ) 72(rsy Vit > to

d
IV < 4 -

Since Q(tg, ) € H(T3), it follows from Gronwall’s inequality that

Ly —|Lo+ L
1= |L2 3|+

(438) [9Q( s < 0w (4] - 21 o]t = 10) ) 19 Q0. Mo
'ﬂ‘3
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for all t > to. Denote by Q(t) := [T3|7! [, Q(t,-) dz the mean value of Q(t,-) over
T3. Due to the convexity of 1, one can apply Jensen’s inequality to derive
Y(Q)) = v(Q1))|T?| < /TS P(Q(t,2)) dz = E(Q(t) — G(Q()) + allQ(t, )72 ()
< &(Q(to)) + o sup 1Q (s, M Z e (22| T,

since G > 0 by Lemma 3.1. It is noted that the last bound above is independent of
t > tg. Thus

(4.39) po := inf p(Q(t,-)) > 0,

t>to
where p is defined in (3.11).
Finally, by (4.30) and the Gagliardo—Nirenberg inequality, we obtain
1Q(t,) — Q)| Los (rs)
1/2 1/2
< CVQE, )|t 1AQ(E )15

Ly —|Ly+ L
(4.40) < C'exp ([— %
T3

1/2

+ Oé:| (t - tO)) HVQ<t07 ')HLQ(T3) ' C'(tO)l/2

for some geometric constant C’, and a.e. t > tg. This together with (1.16) implies
[Q(t, ) — Q(t)|| oo (rs) decays uniformly to zero as ¢ — oc. Since the convergence in
the L*° norm implies the uniform convergence of all eigenvalues, due to (4.39) we
conclude that there exists some Ty > 0, such that

Q) 25 Vi

Therefore, the proof of Theorem 1.2 is complete. 0

5. Proof of Theorem 1.3: Size of the contact set. In this section we shall
estimate the Hausdorff dimension of the singular set 3; where the unique global
solution Q(t,x) to (1.6) touches the physical boundary

(5.1) Yp={x eT" | Q(t,x) € 0Qphy}-

Here 09,y is the boundary of Q,5, where the smallest eigenvalue of any element
equals —1/3.

To begin with, we state [20, Theorem 1.2], which provides a lower bound of the
blowup rate of 9y(P) as P € Qpp, approaches its physical boundary.

PROPOSITION 5.1. For any P € Qppy, as A\ (P) — —1/3 it holds that

1 Ch
5.2 oY(P) — =tr(0yY(P))l3)| > ————
with the constant Cy given by
—£
(5.3) SR L I‘)(? >0,
2

= - 1n
9v2re €20 e 1 (§)

where Ig(+) is the zeroth order modified Bessel function of first kind.
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Remark 5.2. As was pointed out in [16, Appendix C],
V6 1

for any P € Qpp,. Together with Proposition 5.1, it is immediate to see that there
exists a generic and suitably small constant dy > 0, such that

R O e ) ) e L.

—_—— h d(P, 0.
Z S0P 00 whenever d(P,0Qpny) < 0o

The following technical lemma is necessary.

LEMMA 5.3. For any s > 0, there exists a sequence of coverings Vi, = {B;m} of
Yy, where B,y = B(Xim, Ti.m), such that

lim_ Z 75 = H*(2) < liminf Z 577 -
% J

m—r oo

Here B, = B(Xim,Tim) such that B, C {z € T"|d(z,%;) < 8} for some § > 0,
andry . are the radit of the balls B . i.e., the subcovering given by the Vitali covering
lemma.

Proof. First, by recalling the definition of Hausdorff content
H;(Z:) :=inf ri Xy C| By, supr; <6
6( t) {ZZ: t LlJ i ip i }

and the Hausdorfl measure

Hs(Et) = lim 7—[3(2,5),

6—0

we know that for any § > 0 we have a sequence of coverings V,,, = {B; s} such that
i ST = Hi)
1

Therefore, using the standard diagonal argument we can choose a sufficiently large
m = m(J) such that

0< Zrimﬁf’ﬂg(ﬁt) =5 K 1, where g5 — 0 & m — 400,
i
which further gives

: S S o—
lim E Tim =H (3h), where i m 1= i p 5(m)-
m—00 4=
7

W.l.o.g., we may choose m to be bijective in §. Thus V,,, = {B;n} is an admissible
sequence to achieve the Hausdorff measure.
Note that {5B7,,} is another covering with balls for X, and hence for each m,

we have
E |57’;:7n|5 > 7-Lg(m) (Et) - E 7ﬂf,m,é(m,) — &5,
7 A
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which implies
ggigofz 507 | = lim inf 13, (3¢) = H*(50)-
J
The proof is complete. O

Using Proposition 5.1 and Lemma 5.3, now we are ready to finish the proof of
Theorem 1.3.

Proof of Theorem 1.3. First, for any tg > 0, by Theorems 1.1 and 1.2, we know
that the unique strong solution Q(¢,x) to (1.10) satisfies

(5.5) Q € L™ (ty, +oo; H*(T™)),  9:Q € L*>(to, To; L*(T™)),
which together with (1.10) gives
09(Q) ~ Stx(OV(@)s € L (1o, To; L(T"))

Here and after, we are only concerned with ¢ € (0,7Tp), which satisfies

< 400,

Haw(@) - %tr(aw(Q))Hs

L2(T)

which obviously has a full measure in (0, Tp).

Case 1: n=3.

By Sobolev embedding H2(T?) < C%2(T3) and Q € L™(ty,+oo; H?), there
exists a generic constant C'y > 0 that is independent of ¢, such that

(5.6) Q(t,2) = Qt,y)| < Cle —y|*  Va,y e T
In particular, for any given z, let - € X; be a projection such that
(5.7) |z —at| = d(x, %) := dist(x, Z),
and henceforth we get
d(Q(t,2),0Qpny) < |Q(t7) = Q(t,)| < Cirlw — 2t |* = Cryr/dist(x, %),

This combined with Proposition 5.1 implies for any ball B and § < 1 that

2

OU(Q(t, ) — FUOUQUL )| do

/{9663 d(z,%4)<6}

er / AQ(t, 2), 0Qpny)da
{z€B|d(z,5;)<d}

C? 1
5.8) > 1 e
( O Jiwen|dw,s)<sy dist(z, ;)

To proceed, by applying Lemma 5.3 with s = 2, we obtain the existence of a sequence
of covering {B; } of ¥; with balls B; ., = B(zim,rim) such that B;,, C {x €
T3 d(x, S7) < §} and

Jim 3Tt = M),
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We can assume that each such ball B;,, intersects X, for otherwise we can just

remove it from the covering. By Vitali’s covering lemma, for each m we can choose a
subcollection of mutually disjoint balls { B}, .}, with B}, = B(z},,,r} ) such that

Jmotjm
S €| JBim €| J5B)m
C J

On each such ball B*

(5.9) /B

As each of such ball B; ,, intersects X;, we can choose an arbitrary intersection point
Yj,m € B}, N X, and

(5.10) /B

We claim that the last integral in (5.10) is minimized when y;,, € 0B;,,. To prove
this claim, w.lL.o.g. we assume B is the unit ball B centered at the origin, and we
denote y;.m» =y = (y1,0,0), 0 <y < 1. Hence we consider

1
fly) = /B mdl‘-

of 1 — 4
— = = dx, where = = (z1,x2,3).
oy Jp |z —yp?

it follows from (5.8) that

2

00(QUt, ) — r(OV@L )

C? 1
dz > —;/ ———dux.
o Cs B dist(z, X;)

1 1
dist(z, X) Br, 1= Yjml

* *
Jsm jm

Then

If y1 = 0, by symmetry we see that 6%1 =0. If0 <y <1, wedenote A = {x €
R3|x1 > y1}, and A’ is the reflection of A across {x € R3| 21 = y1}. Note that AU A’
is symmetric with respect to both {z € R*|x; = y;} and the point y = (y1,0,0).

Thus we have

ﬁ:/ $1_y§dx+/ ‘Tl_y;dx<0
oy B\(Aua’) [T — ¥l auvar |z =yl

=0

due to the fact that B\ (AU A’) is entirely contained in {x € R3|z; < y;}. Hence
the claim is proved.
As a consequence,

1 a9
(5.11) /B —dx > ?|rj7m| ,

o | = jm|

which together with (5.9) and (5.10) gives
(5.12)

Jo

J,m

2
~ - 4w C}
* 2 . 1

dz > Clrj |7, where C' := S

OU(QU ) — 5 (U(Q )
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Since {Bj,,} are nonoverlapping, after summing up the above inequality over j we
obtain

2

Jovtat.a) - st

(5.13) > Z/

which together with Lemma 5.3 yields

L2(T9)

OU(Q(t, ) — tr(OVQL )

2

dx > C'Z |r;,m|2,
J

*
J,m

) N
- c
: . * 2 2
> Clim inf E 5l > S H(Z0).
J

14) [Jou(@tt. ) - jurou(@it. oty ¢

L2(T3)

Thus we conclude that dimy (3;) < 2.

Case 2: n = 2.

In the 2D case the Sobolev embedding reads as H?(T?) — C#(T?2) for all 8 €
(0,1). Correspondingly, we have

(5.15) 1Q(t,x) = Q(t.y)l| < Csle —yl®  Va,y e T

and (5.8) is replaced by

2

/ OU(Q(t, 7)) — 5tr(OV(Q(L, )| d
{zeB|d(z,X;)<é}

2
(5.16) it 2’%
C5 JiweBl d(a,m<sy dist™ (z, %)

As a consequence, applying Lemma 5.3 with s = 2 — 23, and using Vitali’s covering
argument exactly as in Case 1, one may replace (5.14) by

1 2
Jovtatt.a) - v
L2(T?)
~ ol ~ 47C?
(5.17) > 1£?Li£of2|r;m|2*2ﬁ > 55725%2*25(2,5), where €' = ggl

J

In conclusion, we obtain dimy (X;) < 2 —2 for any 8 € (0,1). The proof is complete
by the arbitrariness of 8 € (0,1). O
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