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REGULARITY OF A GRADIENT FLOW GENERATED BY THE
ANISOTROPIC LANDAU--DE GENNES ENERGY WITH A

SINGULAR POTENTIAL\ast 

YUNING LIU\dagger , XIN YANG LU\ddagger , AND XIANG XU\S 

Abstract. In this paper we study a gradient flow generated by the Landau--de Gennes free
energy that describes nematic liquid crystal configurations in the space of Q-tensors. This free
energy density functional is composed of three quadratic terms as the elastic energy density part,
and a singular potential in the bulk part that is considered as a natural enforcement of a physical
constraint on the eigenvalues of Q. The system is a nondiagonal parabolic system with a singular
potential which trends to infinity logarithmically when the eigenvalues of Q approach the physical
boundary. We give a rigorous proof that for rather general initial data with possibly infinite free
energy, the system has a unique strong solution after any positive time t0. Furthermore, this unique
strong solution detaches from the physical boundary after a sufficiently large time T0. We also give
an estimate of the Hausdorff measure of the set where the solution touches the physical boundary
and thus prove a partial regularity result of the solution in the intermediate stage (0, T0).
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1. Introduction. The Landau--de Gennes theory is a continuum theory of ne-
matic liquid crystals [10]. When formulating static or dynamic continuum theories a
crucial step is to select an appropriate order parameter that captures the microscopic
structure of the rod-like molecule systems. In our framework the order parameter is
a matrix-valued function that takes values in the following so-called Q-tensor space

(1.1) \scrQ :=
\Bigl\{ 
M \in \BbbR 3\times 3

\bigm| \bigm| trM = 0; M =MT
\Bigr\} 
.

It is considered as a suitably normalized second order moment of the probability
distribution function that dictates locally preferred orientations of nematic molecular
directors (cf. [2, 21, 22]).

To formulate the problem, let \BbbT n be the unit box/square in \BbbR n with n = 2 or
3. For each order parameter Q : \BbbT n \rightarrow \scrQ , the associated free energy functional \scrE (Q)
consists of the elastic and the bulk parts, which reads as

(1.2) \scrE (Q) := \scrG (Q) + \scrB (Q) - \alpha \| Q\| 2L2(\BbbT n).
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Here \scrG stands for the anisotropic elastic energy that contains three quadratic terms
of \nabla Q:
(1.3)

\scrG (Q) :=

\Biggl\{ \int 
\BbbT 3

\bigl( 
L1\partial kQij\partial kQij + L2\partial jQik\partial kQij + L3\partial jQij\partial kQik

\bigr) 
dx if Q \in H1(\BbbT n),

+\infty otherwise,

where L1, L2, L3 are material dependent constants. Here and in what follows, \partial kQij
denotes the kth spatial partial derivative of the ijth component of Q, and we adopt the
Einstein summation convention by summing over repeated Latin letters. Following
[19], we assume

(1.4) L1 > 3| L2 + L3| ,

which ensures that (1.3) fulfills the strong Legendre condition.
Further, \scrB (Q) denotes the bulk energy

\scrB (Q) :=

\int 
\BbbT 3

\psi (Q) dx,

where the integrand \psi (Q) is the singular potential introduced in [5]:

(1.5) \psi (Q) :=

\left\{   inf
\rho \in \scrA Q

\int 
\BbbS 2
\rho (p) ln \rho (p) dp if  - 1

3
< \lambda i(Q) <

2

3
, 1 \leq i \leq 3,

+\infty otherwise.

Here \lambda i(Q) denotes the ith eigenvalue of the matrix Q and \scrA Q is the admissible class
defined by

\scrA Q =

\biggl\{ 
\rho (p) : \BbbS 2 \rightarrow \BbbR +

\bigm| \bigm| \| \rho \| L1(\BbbS 2) = 1;

\int 
\BbbS 2

\biggl( 
p\otimes p - 1

3
\BbbI 
\biggr) 
\rho (p) dp = Q

\biggr\} 
.

It is noted that the singular potential (1.5) imposes physical constraints on the ei-
genvalues of Q. Further, \alpha > 0 in (1.2) is a temperature dependent constant which
characterizes the relative intensity of the molecular Brownian motion and the mo-
lecular interaction [5]. We refer interested readers to [2, 5, 4, 3, 15, 20] for detailed
discussions of basic analytic properties of \psi , such as convexity, smoothness in its
effective domain, blow-up rates near the physical boundary, etc. Meanwhile, var-
ious problems in static and dynamic configurations concerning \psi can be found in
[7, 11, 13, 14, 15, 16, 27]. Specifically, the free energy in related dynamic problems
considered so far in the existing literature [11, 14, 15, 27] only involves the L1 iso-
tropic term. Therefore, we are motivated to study the dynamic problem whose free
energy contains anisotropic L2, L3 terms. It is worth pointing out that the presence
of such terms is more than a mere technical challenge, since they make it impossible
to recover any kind of maximum principle, which was crucial in [27].

This paper is concerned with a rigorous study of the gradient flow generated by
\scrE (Q) in the Hilbert space L2(\BbbT n;\scrQ ):

(1.6)

\Biggl\{ 
\partial tQ(t, \cdot ) \in  - \partial \scrE (Q(t, \cdot )), t > 0,

Q(0, x) = Q0(x), x \in \BbbT n,

subject to periodic boundary condition

(1.7) Q(t, x+ ei) = Q(t, x) for (t, x) \in \BbbR + \times \partial \BbbT n.
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3340 YUNING LIU, XIN YANG LU, AND XIANG XU

Here in (1.6), \partial \scrE (Q) is formally the variation of the free energy (1.2). However, due
to the singular feature of \psi (Q), it should be understood as subdifferential (see Lemma
3.5 for more details).

Parallel to the Q-tensor space (1.1), we introduce the physical Q-tensor space by

(1.8) \scrQ phy :=

\biggl\{ 
M \in \scrQ 

\bigm| \bigm|  - 1

3
< \lambda 1(M) \leq \lambda 2(M) \leq \lambda 3(M) <

2

3

\biggr\} 
,

where \lambda i(M) denotes the ith eigenvalue of the matrix M , ordered nondecreasingly.
Any element in \scrQ phy is called a physical Q-tensor.

Our first main result ensures the existence and uniqueness of solutions to the
gradient flow (1.6) with rather general initial data.

Theorem 1.1. Let n = 2 or 3. For any initial data

(1.9) Q0 \in \{ Q \in L2(\BbbT n;\scrQ phy) | \scrE (Q) <\infty \} 
L2(\BbbT n)

,

there exists a unique global solution Q(t, x) : \BbbR + \times \BbbT n \rightarrow \scrQ phy of (1.6) such that

\partial tQij = 2L1\Delta Qij + 2(L2 + L3)\partial j\partial kQik  - 
2

3
(L2 + L3)\partial k\partial \ell Q\ell k\delta ij

 - \partial \psi 

\partial Qij
+

1

3
tr

\biggl( 
\partial \psi 

\partial Q

\biggr) 
\delta ij + 2\alpha Qij(1.10)

holds almost everywhere in (0,\infty )\times \BbbT n. And for any fixed t0 > 0, the solution satisfies

(1.11) Q \in L\infty (t0,\infty ;H1(\BbbT n)), \partial tQ \in L2
loc(t0,\infty ;L2(\BbbT n)),

and the energy dissipative equality

(1.12)

\int T

t0

\bigl( 
\| \partial tQ(t, \cdot )\| 2L2(\BbbT 3) + \| \partial \scrE (Q(t, \cdot ))\| 2L2(\BbbT 3)

\bigr) 
dt = 2\scrE (Q(t0)) - 2\scrE (Q(T ))

for all 0 < t0 < T < +\infty . Further, Q(t, \cdot ) is physical in the sense that

(1.13) Q(t, x) \in \scrQ phy \forall t > 0, a.e. x \in \BbbT n.

It is worthy to point out that due to the energy dissipative property of the gradient
flow as well as the convexity of the singular potential, for any T > 0 one can formally
establish the a priori estimate of Q in L\infty 

loc(0, T ;H
1(\BbbT n)) \cap L2

loc(0, T ;H
2(\BbbT n)). As a

consequence, existence of weak solutions to (1.6) can be achieved by using two level
approximation schemes as in [27], i.e., regularizing the initial data and the singular
free energy. However, such arguments involve fairly complicated approximation pro-
cedures. Fortunately, Ambrosio, Gigli, and Savar\'e [1] provide a powerful framework
to obtain the solution under very general assumptions of the initial data.

To establish higher regularity, namely a uniform-in-time H2 bound of the solution
Q, essential difficulties arise from the anisotropic terms. Without the L2 +L3 terms,
the convexity of \psi as well as the classical L1 - L\infty estimate of heat equation ensure the
strict physicality at any positive time (see section 8 in [27] for details), and henceforth
the conventional energy method applies. Concerning the gradient flow (1.6), unfor-
tunately the anisotropic terms make such a maximum principle argument invalid. As
a consequence, the proof of higher regularity of the solution becomes quite subtle in
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the sense that Q might not stay inside any compact subset of \scrQ phy. To overcome
such a difficulty, we need to make a careful exploitation of its gradient flow structure,
as well as to combine several results on the gradient flow theory given in [1] and the
Gamma-convergence of gradient flows discussed in [26, 25]. These lead to the next
theorem, which improves the regularity by establishing the uniform-in-time H2 bound
of the unique solution to the gradient flow (1.6). Further, it can be shown that this
unique solution detaches from its physical boundary after a sufficiently large time T0.

Theorem 1.2. For any t0 > 0, the solution established in Theorem 1.1 enjoys
the improved regularity Q \in L\infty (t0,+\infty ;H2(\BbbT n)), and for almost every t \geq t0 there
holds that

(1.14) \| \Delta Q(t, \cdot )\| L2(\BbbT n) \leq CL

\Bigl( 
e4\alpha 

\sqrt{} 
\scrE (Q(t0)) - inf \scrE + 1 + 2\alpha \| Q(t, \cdot )\| L2(\BbbT n)

\Bigr) 
,

where CL is expressed by

(1.15) CL :=
1

2(L1  - | L2 + L3| )

\sqrt{} 
L1 + | L2 + L3| 

L1 + | L2 + L3|  - 2
\sqrt{} 
L1| L2 + L3| 

.

Furthermore, under the stronger assumption

(1.16) L1  - 3| L2 + L3|  - \alpha C2
\BbbT n > 0,

where C\BbbT n = (2\pi )n is the Poincar\'e constant in \BbbT n, there exists T0 > 0 such that the
unique solution is strictly physical for all t \geq T0 in the sense that

(1.17)  - 1

3
+ \kappa \leq \lambda i(Q(t, x)) \leq 2

3
 - \kappa \forall x \in \BbbT n

for some constant \kappa \in (0, 1/6).

During the period (0, T0), a partial regularity result of the unique solution can
be established, i.e., the Hausdorff dimension of the set where the solution touches the
physical boundary \partial \scrQ phy.

Theorem 1.3. Let Q(t, x) be the unique strong solution of (1.6) established in
Theorem 1.2. Then for a.e. t \in (0, T0), the contact set

(1.18) \Sigma t := \{ x \in \BbbT n | Q(t, x) \in \partial \scrQ phy\} 

has the following estimate:
\bullet dim\scrH (\Sigma t) \leq 2 for n = 3.
\bullet dim\scrH (\Sigma t) = 0 for n = 2.

The rest of the paper is organized as follows. Some notations and preliminaries
are provided in section 2. The proofs of the three main results, namely Theorems 1.1,
1.2, and 1.3, are given in sections 3, 4, and 5, respectively.

2. Preliminaries. We start with a few basic notations in Q-tensor theory. For
any Q \in \scrQ , | Q| :=

\sqrt{} 
tr(QtQ) represents the Frobenius norm of Q. The gradient of

the function \psi (Q) will be abbreviated by \psi \prime (Q), and its components are denoted by

\psi \prime 
ij(Q) := \partial \psi (Q)

\partial Qij
. Moreover, we denote L2(\BbbT n;\scrQ ) the Hilbert space endowed with the

L2 metric

\| Q\| L2(\BbbT n) =

\sqrt{} \int 
\BbbT n

tr(QtQ) =

\sqrt{} \int 
\BbbT n

tr(Q2) for Q : \BbbT n \rightarrow \scrQ .
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Here and after, for brevity, \| \cdot \| L2(\BbbT n) will often be written as \| \cdot \| L2 , or simply \| \cdot \| .
Next we provide some preliminaries of gradient flow theory in a Hilbert space.

We start with some basic definitions in a Hilbert space H, with inner product \langle \cdot , \cdot \rangle 
and norm \| \cdot \| (cf. [8, 12]).

Definition 2.1. A function f : H \rightarrow \BbbR \cup \{ +\infty \} is called proper if f is not
identically equal to +\infty . The effective domain of f is defined by

D(f) =
\bigl\{ 
u \in H| f(u) < +\infty 

\bigr\} 
.

By [5], the effective domain D(\psi ) is equivalent to (1.5).

Definition 2.2. Let \lambda \in \BbbR ; then a \lambda -convex function F : H \rightarrow ( - \infty ,+\infty ] is a
function satisfying

F ((1 - t)u+ tv) \leq (1 - t)F (u) + tF (v) - \lambda 

2
t(1 - t)\| u - v\| 2 \forall u, v \in H.

For each u \in H, \partial F [u] is defined as the set of w \in H such that

F (u) + \langle w, v  - u\rangle + \lambda 

2
\| u - v\| 2 \leq F (v) \forall v \in H.

The mapping \partial F : H \rightarrow 2H is called the subdifferential of F . Further, we say that
u \in D(\partial F ), the domain of \partial F , provided \partial F [u] is not empty.

Definition 2.3. We say that u(t) is a gradient flow of F starting from u0 \in H
if it is a locally absolutely continuous curve in (0,+\infty ) such that

(2.1)

\Biggl\{ 
\partial tu(t) \in  - \partial F (u(t)), a.e. t > 0,

lim
t\rightarrow 0+

u(t) = u0.

The next result is due to [1, Theorem 4.0.4], which was originally stated under the
metric space setting. For the purpose of proving Theorem 1.1, it suffices to rewrite it
in the Hilbert space setting.

Proposition 2.4. Let \lambda \in \BbbR , and let F : H \rightarrow ( - \infty ,+\infty ] be a proper, \lambda -convex,
bounded from below, and lower semicontinuous functional. Then for each u0 \in D(F ),
u(t) = limk\rightarrow +\infty Jkt/k(u0) with J\tau being the resolvent

(2.2) X \in J\tau (Y ) \Leftarrow \Rightarrow X \in argmin

\biggl\{ 
F (\cdot ) + 1

2\tau 
\| Y  - \cdot \| 2

\biggr\} 
satisfies the following:

1. Variational inequality: u is the unique solution to the evolution variational
inequality
(2.3)
1

2

d

dt
\| u(t) - v\| 2+ \lambda 

2
\| u(t) - v\| 2+F (u(t)) \leq F (v) for a.e. t > 0 and v \in D(F ),

among all the locally absolutely continuous curves such that u(t) \rightarrow u0 as
t \downarrow 0+.

2. Regularizing effect: u is locally Lipschitz regular, and u(t, \cdot ) \in D(\scrE ) for all
t > 0.
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Remark 2.5. It is well known that for a \lambda -convex function F : H \rightarrow ( - \infty ,+\infty ],
a locally absolutely continuous curve u(t) in (0,+\infty ) satisfies (2.1) if and only if it
satisfies the evolution variational inequality (2.3).

Now we turn to the \Gamma -convergence of gradient flows in a Hilbert space, a theory
developed in [25, 26]. Let \{ un\} be the solution to the gradient flow

(2.4) \partial tun =  - \nabla En(un)

of a C1 functional sequence \{ En\} . Assume En \Gamma -converges to a functional F , and

there is a general sense of convergence un
S\rightarrow u, relative to which the \Gamma -convergence

of En to F holds. We introduce the ``energy-excess"" along a family of curves un(t)

with un(t)
S\rightarrow u(t) by setting

\~D(t) = lim sup
n\rightarrow \infty 

En(un(t)) - F (u(t)).

The main result of [26] is the following.

Proposition 2.6. Assume En and F satisfy a \Gamma  - lim inf relation: if un
S\rightarrow u as

n\rightarrow \infty , then

lim inf
n\rightarrow \infty 

En(un) \geq F (u).

Assume that the following two additional conditions hold:

1. (Lower bound on the velocities) If un(t)
S\rightarrow u(t) for all t \in [0, T ), then there

exists f \in L1(0, T ) such that for every s \in [0, T ),

(2.5) lim inf
n\rightarrow \infty 

\int s

0

\| \partial tun(t)\| 2H dt \geq 
\int s

0

\bigl[ 
\| \partial tu(t)\| 2H  - f(t) \~D(t)

\bigr] 
dt.

2. (Lower bound for the slopes) If un
S\rightarrow u, then

(2.6) lim inf
n\rightarrow \infty 

\| \nabla En(un)\| 2H dt \geq \| \nabla F (u)\| 2H  - C \~D,

where C is a universal constant, and \| \nabla F (u)\| denotes the minimal norm of
the elements in \partial F (u).

Assume un(t) is a family of solutions to (2.4) on [0, T ) with un(t)
S\rightarrow u(t) for all

t \in [0, T ), such that

En(un(0)) - En(un(t)) =

\int t

0

\| \partial tun(s)\| 2H ds \forall t \in [0, T ).

Assume also that

lim
n\rightarrow \infty 

En(un(0)) = F (u(0));

then u \in H1(0, T ;H) and is a solution to \partial tu =  - \partial F (u) on [0, T ). Moreover, \~D(t) =
0 for all t (that is, the solutions ``remain well-prepared"") and

\| \partial tun\| H
n\rightarrow \infty  -  -  -  - \rightarrow \| \partial tu\| H , \| \nabla En(un)\| H

n\rightarrow \infty  -  -  -  - \rightarrow \| \nabla F (u)\| H in L2(0, T ).
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3. Proof of Theorem 1.1: Existence of solutions. This section is devoted
to the proof of Theorem 1.1. First, with the choices H = L2(\BbbT n;\scrQ ) and F = \scrE 
(defined in (1.2)), we show that the assumptions in Proposition 2.4 are satisfied, so
that there exists a unique solution Q(t, \cdot ) in variational inequality setting (2.3) (see
Proposition 3.4 below). Moreover, since the free energy is  - 2\alpha convex, the solution
achieved in Proposition 3.4 is equivalent to the solution of the gradient flow (1.6) in the
subdifferential setting. As a consequence, we compute explicitly the subdifferential of
\scrE and obtain a unique strong solution to (1.10). Finally, we apply two theorems in [1]
to show further regularity properties of Q in Theorem 1.1. Since all of the following
arguments are valid for both \BbbT 3 and \BbbT 2 with minor modifications, for brevity we
discuss the case of \BbbT 3 only.

In this subsection we consider the following settings:

(H, \| \cdot \| ) = L2(\BbbT 3;\scrQ ), F = \scrE (Q).

To begin with, we need to verify that all assumptions in Proposition 2.4 are valid,
which is given in the following two lemmas.

Lemma 3.1. The free energy functional \scrE is proper, bounded from below,  - 2\alpha 
convex, and lower semicontinuous in L2(\BbbT 3;\scrQ ).

Proof. First we show that the elastic energy \scrG is nonnegative, convex, and lower
semicontinuous in L2(\BbbT 3;\scrQ ). It is proved in [19] that when L1 > 0, L1+L2+L3 > 0,
\scrG satisfies the strong Legendre condition, which implies the convexity of \scrG . It suffices
to show that \scrG is nonnegative when Q \in H1(\BbbT 3), which follows from the coefficient
assumption (1.4), integration by parts, and the Cauchy--Schwarz inequality:

\scrG (Q) \geq 
\int 
\BbbT 3

\Bigl( 
L1\partial kQij\partial kQij + L2\partial kQik\partial kQij + L3\partial jQij\partial kQik

\Bigr) 
dx

=

\int 
\BbbT 3

\Bigl[ 
L1\partial kQij\partial kQij + (L2 + L3)\partial jQik\partial kQij

\Bigr] 
dx

\geq 
\int 
\BbbT 3

\bigl( 
L1  - 3| L2 + L3| 

\bigr) 
| \nabla Q| 2 dx \geq 0.(3.1)

Besides, since \scrG is convex and quadratic, it is lower semicontinuous [17, Theorem 8.1].
Next we show that the functional \scrB is convex, bounded from below, and lower

semicontinuous in L2(\BbbT 3;\scrQ ). The convexity of \scrB follows from [5, 15]. A lower bounded
can be derived from the inequality x lnx \geq  - 1/e for any x \geq 0:

(3.2) \scrB =

\int 
\BbbT 3

\psi (Q) dx \geq  - 4\pi 2| \BbbT 3| /e.

To show the lower semicontinuity of \scrB , let Qn \rightarrow Q strongly in L2(\BbbT 3). If
lim infn\rightarrow \infty \psi (Qn) = +\infty on a set of positive measure, then the proof is done. Thus
upon subsequence we assume

(3.3) lim inf
n\rightarrow \infty 

\scrB (Qn) = lim
n\rightarrow \infty 

\scrB (Qn) < +\infty , and Qn(x)
n\rightarrow \infty  -  -  -  - \rightarrow Q(x) for a.e. x \in \BbbT 3.

Consequently, for all n \in \BbbN sufficiently large and a.e. x \in \BbbT 3, all eigenvalues of
Qn(x) are in ( - 1/3, 2/3). Moreover, the eigenvalues of Q(x) are in [ - 1/3, 2/3] since
convergence of eigenvalues follows from convergence of the matrices (cf. [24]).

We claim that for a.e. x \in \BbbT 3 the eigenvalues of Q(x) are in ( - 1/3, 2/3). To this
aim, we argue by contradiction. Assume the opposite, i.e., E =

\bigl\{ 
x \in \BbbT 3, \lambda 1(Q(x)) =
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 - 1/3
\bigr\} 
has positive measure. Then it follows from [5] that \psi (Qn(x))

n\rightarrow \infty  -  -  -  - \rightarrow +\infty in
E, and henceforth Fatou's lemma implies

lim inf
n\rightarrow \infty 

\scrB (Qn) \geq lim inf
n\rightarrow \infty 

\int 
E

\psi (Qn) dx+ lim inf
n\rightarrow \infty 

\int 
\BbbT 3\setminus E

\psi (Qn) dx

\geq 
\int 
E

lim inf
n\rightarrow \infty 

\psi (Qn) dx - 4\pi 2

e
| \BbbT 3 \setminus E| = +\infty ,

which contradicts (3.3). Thus the claim is proved. Since \psi is smooth in D(\psi ) = \scrQ phy

(see [15]), we have \psi (Qn(x))
n\rightarrow \infty  -  -  -  - \rightarrow \psi (Q(x)) for a.e. x \in \BbbT 3. Thus Fatou's lemma

implies

lim inf
n\rightarrow \infty 

\scrB (Qn) \geq 
\int 
\BbbT 3

lim inf
n\rightarrow \infty 

\psi (Qn) dx =

\int 
\BbbT 3

\psi (Q(x)) dx = \scrB (Q).

To sum up, \scrE is  - 2\alpha convex and lower semicontinuous in L2(\BbbT 3;\scrQ ). It remains
to show that \scrE is proper and bounded from below. Clearly, \scrE (Q) < +\infty provided
Q \in H1(\BbbT 3) and Q(x) \in D(\psi ) a.e. x \in \BbbT 3, and hence \scrE is proper. Further, if Q is
not physical, then \scrE (Q) = +\infty , while if Q is physical, then \| Q\| L2(\BbbT 3) is bounded,
and hence \scrE is bounded from below since both \scrG and \psi are bounded from below.

Remark 3.2. It is noted that the coefficient assumption (1.4) is different from the
one in [9, 18], which ensures that the elastic energy \scrG is coercive only.

Lemma 3.3. For any R,P0, P1 \in D(\scrE ), denote \gamma t = (1  - t)P0 + tP1, t \in [0, 1];
then for each 0 < \tau < 1/2\alpha the functional

(3.4) \Phi (\tau ,R; \gamma t) :=
\| \gamma t  - R\| 2

2\tau 
+ \scrE (\gamma t)

is (1/\tau  - 2\alpha )-convex on \gamma t in the sense that

\Phi (\tau ,R; \gamma t)

\leq (1 - t)\Phi (\tau ,R;P0) + t\Phi (\tau ,R;P1) - 
(1 - 2\alpha \tau )

2\tau 
t(1 - t)\| P1  - P0\| 2 \forall t \in [0, 1].(3.5)

Proof. We infer from the convexity of \scrG and \scrB that

\Phi (\tau ,R; \gamma t)

=

\bigm\| \bigm\| (1 - t)P0 + tP1  - R
\bigm\| \bigm\| 2

2\tau 
+ (\scrG + \scrB )((1 - t)P0 + tP1) - \alpha 

\bigm\| \bigm\| (1 - t)P0 + tP1

\bigm\| \bigm\| 2
\leq (1 - t)\| P0  - R\| 2 + t\| P1  - R\| 2  - t(1 - t)\| P0  - P1\| 2

2\tau 
+ (1 - t)(\scrG + \scrB )(P0)

+ t(\scrG + \scrB )(P1) - \alpha 
\bigl[ 
(1 - t)\| P0\| 2 + t\| P1\| 2  - t(1 - t)\| P0  - P1\| 2

\bigr] 
= (1 - t)\Phi (\tau ,R;P0) + t\Phi (\tau ,R;P1) - 

(1 - 2\alpha \tau )

2\tau 
t(1 - t)\| P1  - P0\| 2.

To sum up, we manage to verify that all assumptions of Proposition 2.4 are
satisfied, which leads to the following proposition.

Proposition 3.4. Let n = 3. For any initial data,

(3.6) Q0 \in D(\scrE ) := \{ Q \in L2(\BbbT 3;\scrQ phy) | \scrE (Q) <\infty \} 
L2(\BbbT 3)

.

D
ow

nl
oa

de
d 

06
/3

0/
21

 to
 1

28
.1

64
.1

00
.1

30
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3346 YUNING LIU, XIN YANG LU, AND XIANG XU

Let Q(t) = limk\rightarrow +\infty Jkt/k(Q0) with J being the resolvent

X \in J\tau (Y ) \Leftarrow \Rightarrow X \in argmin

\biggl\{ 
F (\cdot ) + 1

2\tau 
\| Y  - \cdot \| 2

\biggr\} 
.

Then we have the following:
1. Variational inequality: Q is the unique solution to the evolution variational

inequality

d

dt
\| Q(t, \cdot ) - P\| 2L2(\BbbT 3)  - \alpha \| Q(t, \cdot ) - P\| 2L2(\BbbT 3) + \scrE (Q(t, \cdot )) \leq \scrE (P )

for a.e. t > 0 and P \in D(\scrE ),
(3.7)

among all locally absolutely continuous curves such that Q(t, \cdot ) \rightarrow Q0 as t \downarrow 
0+.

2. Regularizing effect: Q is locally Lipschitz, and Q(t, \cdot ) \in D(\scrE ) for all t > 0.
In particular, Q is physical in the sense that

(3.8)  - 1

3
< \lambda i(Q(t, x)) < +

2

3
\forall t > 0, a.e. x \in \BbbT 3.

To proceed, note that \scrE is  - 2\alpha convex in L2(\BbbT 3;\scrQ ), and hence by Remark 2.5 we
know that Q(t, \cdot ) constructed in Proposition 3.4 is the unique solution to the gradient
flow (1.6). The following lemma computes explicitly the subdifferential of the free
energy \scrE .

Lemma 3.5. For any Q \in D(\partial \scrE ) and 1 \leq i, j \leq 3, we have

 - \partial \scrE (Q)ij = 2L1\Delta Qij + 2(L2 + L3)\partial kjQik  - 
2(L2 + L3)

3
\partial k\ell Qk\ell \delta ij

 - \psi \prime (Q)ij +
tr(\psi \prime (Q))

3
\delta ij + 2\alpha Qij .

Proof. To begin with, it is immediate to derive

(3.9) \partial \scrG (Q)ij =  - 2L1\Delta Qij  - 2(L2 + L3)\partial k\partial jQik +
2

3
(L2 + L3)\partial \ell \partial kQk\ell \delta ij .

Next we need to verify that

\partial \scrB (Q) =

\biggl\{ 
\psi \prime (Q) - 1

3
tr(\psi \prime (Q))\BbbI 3

\biggr\} 
.

Case 1: Q is strictly physical.
Let R \in C\infty 

c (\BbbT 3,\scrQ ). Then by convexity and smoothness of \psi , any element
\xi \in \partial \scrB (Q) satisfies\int 

\BbbT 3

\bigl[ 
\psi \prime (Q) : R

\bigr] 
dx = lim

\varepsilon \rightarrow 0+

\scrB (Q+ \varepsilon R) - \scrB (Q)

\varepsilon 
\geq \langle \xi ,R\rangle L2(\BbbT 3),

 - 
\int 
\BbbT 3

\bigl[ 
\psi \prime (Q) : R

\bigr] 
dx = lim

\varepsilon \rightarrow 0+

\scrB (Q - \varepsilon R) - \scrB (Q)

\varepsilon 
\geq  - \langle \xi ,R\rangle L2(\BbbT 3),

which indicates \langle \xi ,R\rangle L2(\BbbT 3) = \langle \psi \prime (Q), R\rangle L2(\BbbT 3). By density,

(3.10) \xi = \psi \prime (Q) - tr(\psi \prime (Q))\BbbI 3/3

D
ow

nl
oa

de
d 

06
/3

0/
21

 to
 1

28
.1

64
.1

00
.1

30
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FLOW OF THE ANISOTROPIC LANDAU--DE GENNES ENERGY 3347

as an element in the Hilbert space L2(\BbbT n;\scrQ ). Hence \partial \scrB (Q) = \{ \psi \prime (Q) - tr(\psi \prime (Q))\BbbI 3/3\} 
for any uniformly physical Q.

Case 2: Q is not strictly physical.
We define

(3.11) \rho (P ) := min
1\leq i\leq 3

\biggl\{ 
\lambda i(P ) +

1

3
,
2

3
 - \lambda i(P )

\biggr\} 
\forall P \in \scrQ ,

and A\eta := \{ x \in \BbbT 3 : \rho (Q(x)) < \eta \} for arbitrarily small \eta > 0. Since Q \in D(\partial \scrE ) \subset 
D(\scrE ), we have \psi (Q) < +\infty , and thus | A\eta | \rightarrow 0 as \eta \rightarrow 0+. Let

T\eta (Q) := \{ R \in L\infty (\BbbT 3;\scrQ ) : R \equiv 0 on A\eta \} .

Let us consider any fixed \eta > 0, and let R \in T\eta (Q). Then it is easy to check that
\rho (Q) \geq \eta outside A\eta , and for all sufficiently small \varepsilon we have \rho (Q\pm \varepsilon R) \geq \eta /2 outside
A\eta ; hence

\scrB (Q+ \varepsilon R) =

\int 
\BbbT 3\setminus A\eta 

\psi (Q+ \varepsilon R) dx+

\int 
A\eta 

\psi (Q) dx < +\infty .

This together with the convexity of \psi implies that for any sufficiently small \varepsilon > 0,

\varepsilon 

\int 
\BbbT 3\setminus A\eta 

\bigl[ 
\psi \prime (Q+ \varepsilon R) : R

\bigr] 
dx \geq \scrB (Q+ \varepsilon R) - \scrB (Q)

=

\int 
\BbbT 3\setminus A\eta 

\bigl[ 
\psi (Q+ \varepsilon R) - \psi (Q)

\bigr] 
dx \geq \varepsilon 

\int 
\BbbT 3\setminus A\eta 

\bigl[ 
\psi \prime (Q) : R

\bigr] 
dx,

and dividing by \varepsilon gives

lim inf
\varepsilon \rightarrow 0+

\scrB (Q+ \varepsilon R) - \scrB (Q)

\varepsilon 
\geq 

\int 
\BbbT 3\setminus A\eta 

\bigl[ 
\psi \prime (Q) : R

\bigr] 
dx,(3.12)

lim sup
\varepsilon \rightarrow 0+

\scrB (Q+ \varepsilon R) - \scrB (Q)

\varepsilon 
\leq lim sup

\varepsilon \rightarrow 0+

\int 
\BbbT 3\setminus A\eta 

\bigl[ 
\psi \prime (Q+ \varepsilon R) : R

\bigr] 
dx.(3.13)

Meanwhile, note that

\psi \prime \in L\infty (\BbbT 3 \setminus A\eta ), lim
\varepsilon \rightarrow 0+

\int 
\BbbT 3\setminus A\eta 

\bigl[ 
\psi \prime (Q+ \varepsilon R) : R

\bigr] 
dx =

\int 
\BbbT 3\setminus A\eta 

\bigl[ 
\psi \prime (Q) : R

\bigr] 
dx

=

\int 
\BbbT 3

\bigl[ 
\psi \prime (Q) : R

\bigr] 
dx

due to the fact that R \equiv 0 on A\eta . This together with (3.12), (3.13) yields

lim
\varepsilon \rightarrow 0+

\scrB (Q+ \varepsilon R) - \scrB (Q)

\varepsilon 
=

\int 
\BbbT 3

\bigl[ 
\psi \prime (Q) : R

\bigr] 
dx.

Further, as discussed in Case 1, for any R \in 
\bigcup 
\eta >0 T\eta (Q) we have

\langle \xi ,R\rangle L2(\BbbT 3) = \langle \psi \prime (Q), R\rangle L2(\BbbT 3).

By density, it follows that \xi = \psi \prime (Q) - tr(\psi \prime (Q))\BbbI 3/3 as elements of the Hilbert space
L2(\BbbT 3;\scrQ ). Hence \partial \scrB (Q) = \{ \psi \prime (Q) - tr(\psi \prime (Q))\BbbI 3/3\} even if Q \subset D(\partial \scrE ) is not strictly
physical.
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By Lemma 3.1, \scrG and \scrB are proper, convex, and lower semicontinuous, and the
intersection D(\scrG ) \cap intD(\scrB ) is nonempty, so we get \partial (\scrG + \scrB )(Q) = \partial \scrG (Q) + \partial \scrB (Q)
by [6, Theorem 2.10]. Since the last term  - \alpha \| Q\| 2L2(\BbbT 3) is a C1 perturbation of the
energy, we infer

(3.14) \partial \scrE (Q) = \partial (\scrG + \scrB )(Q) - 2\alpha Q = \partial \scrG (Q) + \partial \scrB (Q) - 2\alpha Q,

which concludes the proof.

Proposition 3.4 leads to higher regularity of the solution Q. Since the energy \scrE is
 - 2\alpha -convex, and since the solution Q(t, \cdot ) satisfies Q(t, \cdot ) \in D(\scrE ) for all time t > 0,
we conclude that for any t \geq t0 > 0 the function Q(t, \cdot ) is the gradient flow of \scrE in
L2(\BbbT n;\scrQ ) with initial datum Q(t0, \cdot ) \in D(\scrE ). Thus we can apply [1, Theorem 2.4.15]
to obtain the following proposition.

Proposition 3.6. Let Q(t, \cdot ) be the solution given by Theorem 1.1. Then the
map

t \mapsto \rightarrow e - 2\alpha t\| \partial \scrE (Q(t, \cdot ))\| L2(\BbbT 3)

is nonincreasing and right continuous on [t0,+\infty ) for all t0 > 0.

Finally, combining [1, Corollary 2.4.11] and [1, Theorem 2.3.3] we obtain the
energy identity (1.12).

Proposition 3.7. The solution Q(t, \cdot ) given by Theorem 1.1 satisfies the energy
equality\int T

t0

1

2

\bigl( 
\| \partial tQ(t, \cdot )\| 2L2(\BbbT 3) +

1

2
\| \partial \scrE (Q(t, \cdot ))\| 2L2(\BbbT 3)

\bigr) 
dt = \scrE (Q(t0)) - \scrE (Q(T ))

for all 0 < t0 < T < +\infty .

In conclusion, the proof of Theorem 1.1 is complete.

Remark 3.8. The nonincreasing property of e - 2\alpha t\| \partial \scrE (Q(t, \cdot ))\| L2(\BbbT 3) in Proposi-
tion 3.6 will play an essential role in the proof of Theorem 1.2, which is the main
reason that the Ambrosio--Gigli--Savar\'e gradient flow theory in [1] is adopted in this
section rather than the classical Brezis--Pazy theory.

4. Proof of Theorem 1.2: Higher regularity of solutions. This section
is devoted to the proof of Theorem 1.2. Since there is only minor modification of
arguments between \BbbT 2 and \BbbT 3, we only discuss the case in \BbbT 3.

It is noted that the maximum principle argument utilized in [27] fails due to the
presence of the anisotropic terms, and hence the solution Q(t, \cdot ) is not ensured to stay
detached from the physical boundary \partial \scrQ at any positive time t. To achieve the proof,
we have to put together several results in [1, 25, 26] and to make a full exploitation
of the gradient flow structure in (1.6).

Our main strategy is as follows. First, to avoid the singular feature of \partial \scrE (Q) in
(1.6), we shall consider a sequence of smooth gradient flows (4.19) that are generated
by an approximation sequence \{ \scrE n\} defined in (4.6) of the free energy \scrE . Second,
we will prove \Gamma -convergence of \{ \scrE n\} to \scrE in Proposition 4.2, which together with
energy dissipative equality achieved in Proposition 3.7 can show the ``convergence""
of the gradient flow sequence (4.19) to (1.6). Next we will show in Proposition 4.6
that the solution sequence \{ Qn\} to the gradient flow sequence (4.19) is in H2(\BbbT 3;\scrQ )
space, and give a corresponding estimate of the H2 bound of Q in terms of \| \partial \scrE (Q)\| ,
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which together with Proposition 3.6 leads to the uniform-in-time bound for \| \partial \scrE (Q)\| .
Finally, we make use of the convexity of \psi and Sobolev interpolation inequalities to
derive strict physicality of the solution at all large times.

Here and after, we denote \{ \psi n\} the sequence of functions that is used in [27] to
approximate the Ball--Majumdar bulk potential \psi : first, we introduce the Moreau--
Yosida approximations

(4.1) \~\psi n(Q) := inf
A\in \scrQ 

\{ n| A - Q| 2 + \psi (A)\} , Q \in \scrQ .

Then using a smooth regularization we define

(4.2) \psi n(Q) = n5
\int 
\scrQ 

\~\psi n
\bigl( 
n(Q - R)

\bigr) 
\phi (R) dR, Q \in \scrQ .

Here \phi \in C\infty 
c (\scrQ , R+) is of unit mass. Let us recall [27, Proposition 3.1]; for each

n \geq 1, we have the following:
(M0) \psi n is an isotropic function of Q.

(M1) \psi n is both smooth and convex in \scrQ .

(M2) \psi n is bounded from below, i.e.,  - 4\pi 2| \BbbT 3| /e \leq \psi n(R) for all R \in \scrQ , for all
n \geq 1.

(M3) \psi n \leq \psi n+1 \leq \psi on \scrQ for n \geq 1.
(M4) \psi n \rightarrow \psi in L\infty 

loc

\bigl( 
D(\psi )

\bigr) 
as n \rightarrow \infty , and \psi n is uniformly divergent on

\scrQ \setminus D(\psi ).
(M5) \partial \psi n

\partial Q \rightarrow \partial \psi 
\partial Q in L\infty 

loc

\bigl( 
D(\psi )

\bigr) 
as n\rightarrow \infty .

(M6) There exist constants \lambda n,\Lambda n > 0 that may depend on n, such that

\lambda n| R|  - \Lambda n \leq 
\bigm| \bigm| \bigm| \bigm| \psi \prime 
n(R) - 

1

3
tr(\psi \prime 

n(R))\BbbI 3
\bigm| \bigm| \bigm| \bigm| \leq \lambda n| R| + \Lambda n \forall R \in \scrQ .

Besides the aforementioned properties (M0)--(M6), we need to further derive the
following finer estimate of the sequence \{ \psi n\} , in order to prove Proposition 4.2 and
Lemma 4.3.

Lemma 4.1. For any n \in \BbbN , there exists a generic constant Cn > 0 such that

\psi n(Q) \geq Cn| Q| 2, outside a fixed compact subset in \scrQ .(4.3)

Moreover, Cn \rightarrow +\infty as n\rightarrow +\infty .

Proof. Since the null matrix 0 \in D(\psi ), taking A = 0 in (4.1) we get the upper
bound

\~\psi n(Q) \leq n| Q| 2 + \psi (0).

On the other hand, since such an infimum in (4.1) is finite, there exists a minimizing
sequence Am \subset D(\psi ) such that

\~\psi n(Q) = lim
m\rightarrow +\infty 

(n | Am  - Q| 2 + \psi (Am))

\geq lim
m\rightarrow +\infty 

n| Am  - Q| 2 + inf \psi \geq ndist(Q,D(\psi ))2 + inf \psi .(4.4)

By the triangle inequality, we have

| Q| \leq dist(Q,D(\psi )) + dist(0, D(\psi )),
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and since 0 \in D(\psi ), we can further get

dist(Q,D(\psi )) \geq | Q|  - diam(D(\psi )).

As a consequence, we see that

\~\psi n(Q) \geq n| Q| 2 - 2ndiam(D(\psi ))| Q| +diam(D(\psi ))2+inf \psi \geq n| Q| 
\Bigl( 
| Q|  - 2diam(D(\psi ))

\Bigr) 
.

Hence we arrive at the uniform quadratic estimate

(4.5)
n

2
| Q| 2 \leq \~\psi n(Q)

in \{ | Q| > 4diam(D(\psi ))\} . Then following the mollification of \~\psi n in (4.2) one can get
(4.3).

We introduce the energy sequence \scrE n : \scrQ \rightarrow \BbbR \cup \{ +\infty \} ,

(4.6) \scrE n(Q) =

\Biggl\{ 
\scrG (Q) +

\int 
\BbbT 3 \psi n(Q) dx - \alpha \| Q\| 2L2(\BbbT 3) if Q \in H1(\BbbT 3)

+\infty otherwise,

and establish a \Gamma -convergence result.

Proposition 4.2. The sequence of energies \{ \scrE n\} \Gamma -converges to \scrE .
Proof. We first show compactness. Let us assume lim infn\rightarrow +\infty \scrE n(Qn) < +\infty .

Upon subsequence, we may assume

(4.7) lim inf
n\rightarrow +\infty 

\scrE n(Qn) = lim
n\rightarrow +\infty 

\scrE n(Qn) < +\infty , sup
n\in \BbbN 

\scrE n(Qn) < +\infty .

We need first to ensure the existence of a strong limit Q. We claim that Qn is
uniformly bounded in L2(\BbbT 3). Otherwise there exists a subsequence \{ Qnk

\} , such
that \| Qnk

\| L2(\BbbT 3) \rightarrow +\infty . It then follows directly from Lemma 3.1 and (4.3) that
\scrE nk

(Qnk
) \rightarrow +\infty , which contradicts the assumption (4.7).

Further, note that

(L1  - 3| L2 + L3| ) sup
n

\| \nabla Qn\| 2L2(\BbbT 3)

\leq sup
n

\scrG (Qn) \leq sup
n

\scrE n(Qn) + \alpha sup
n

\| Qn\| 2L2(\BbbT 3) + inf
n,P

\int 
\BbbT 3

| \psi n(P )| dx < +\infty .

ThusQn is uniformly bounded inH1(\BbbT 3), andQn \rightarrow Q (up to a subsequence) strongly
in L2(\BbbT 3).

Next we show \Gamma -lim sup inequality. That is, for any Q \in \scrQ there exists a recovery
sequence Qn such that

(4.8) lim sup
n\rightarrow +\infty 

\scrE n(Qn) \leq \scrE (Q).

Without loss of generality we assume \scrE (Q) < +\infty . Taking Qn = Q, for every n \geq 1
we get from (M3) that

\scrG (Qn) - \alpha \| Qn\| 2L2(\BbbT 3) \equiv \scrG (Q) - \alpha \| Q\| 2L2(\BbbT 3),

\int 
\BbbT 3

\psi n(Qn) dx \leq 
\int 
\BbbT 3

\psi (Q) dx \forall n \geq 1.
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In all, (4.8) is verified.

We proceed to show \Gamma -lim inf inequality. That is, for any sequence Qn \rightarrow Q
strongly in L2(\BbbT 3), it holds that

(4.9) lim inf
n\rightarrow +\infty 

\scrE n(Qn) \geq \scrE (Q).

Without loss of generality we assume lim infn\rightarrow +\infty \scrE n(Qn) < +\infty . Again upon sub-
sequence, we may assume

lim inf
n\rightarrow +\infty 

\scrE n(Qn) = lim
n\rightarrow +\infty 

\scrE n(Qn) < +\infty , sup
n\in \BbbN 

\scrE n(Qn) < +\infty .

As discussed earlier we have Qn \rightarrow Q strongly in L2(\BbbT 3), and upon further extracting
a subsequence we may assume Qn \rightarrow Q a.e. in \BbbT 3. Hence together with the lower
semicontinuity of \scrG achieved in Lemma 3.1 it yields

(4.10) lim
n\rightarrow +\infty 

\| Qn(\cdot )\| 2L2(\BbbT 3) = \| Q(\cdot )\| 2L2(\BbbT 3), lim inf
n\rightarrow +\infty 

\scrG (Qn) \geq \scrG (Q).

It remains to prove

(4.11) lim inf
n\rightarrow +\infty 

\int 
\BbbT 3

\psi n(Qn) dx \geq 
\int 
\BbbT 3

\psi (Q) dx.

To proceed, we denote
D :=

\bigl\{ 
x \in \BbbT 3 : Q(x) \in D(\psi )

\bigr\} 
,

and we distinguish between two cases.
Case 1: \scrB (Q) < +\infty . For any sufficiently small \varepsilon > 0, let us define

(4.12) \BbbT 3
\varepsilon = D \cap 

\biggl\{ 
x \in \BbbT 3 :  - 1

3
+ \varepsilon \leq \lambda i(Q(x)) \leq 2

3
 - \varepsilon , 1 \leq i \leq 3

\biggr\} 
.

Since
\bigm| \bigm| \BbbT 3 \setminus D

\bigm| \bigm| = 0, we get\int 
\BbbT 3

\bigl[ 
\psi n(Qn) - \psi (Q)

\bigr] 
dx =

\int 
D

\bigl[ 
\psi n(Qn) - \psi (Q)

\bigr] 
dx

=

\int 
D\setminus \BbbT 3

\varepsilon 

\bigl[ 
\psi n(Qn) - \psi (Q)] dx+

\int 
\BbbT 3
\varepsilon 

[\psi n(Qn) - \psi (Q)
\bigr] 
dx.(4.13)

On the one hand, for any n \geq 1,\int 
D\setminus \BbbT 3

\varepsilon 

\psi n(Qn) dx \geq lim
\varepsilon \rightarrow 0

(inf
n,P

\psi n(P ))
\bigm| \bigm| D \setminus \BbbT 3

\varepsilon 

\bigm| \bigm| = 0,

and since \psi \in L1(\BbbT 3), as | D \setminus \BbbT 3
\varepsilon | \rightarrow 0, we have

lim
\varepsilon \rightarrow 0

\int 
D\setminus \BbbT 3

\varepsilon 

\psi (Q) dx = 0.

Hence for all \delta > 0, there exists \varepsilon 0 = \varepsilon 0(\delta ) > 0, such that

(4.14)

\int 
D\setminus \BbbT 3

\varepsilon 

\bigl[ 
\psi n(Qn) - \psi (Q)

\bigr] 
dx >  - \delta 

2
\forall n \geq 1 whenever \varepsilon \leq \varepsilon 0.
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On the other hand, it follows from (M5) that \psi n(Q(x)) \rightarrow \psi (Q(x)), \psi \prime 
n(Q(x)) \rightarrow 

\psi \prime (Q(x)) as n \rightarrow +\infty in L\infty (\BbbT 3
\varepsilon ). Thus it implies that for any fixed \varepsilon \leq \varepsilon 0 it holds

that

lim
n\rightarrow \infty 

\int 
\BbbT 3
\varepsilon 

[\psi n(Qn) - \psi (Q)
\bigr] 
dx = 0.

Specifically, for \varepsilon = \varepsilon 0 there exists N0 \in \BbbN , such that

(4.15)

\int 
\BbbT 3
\varepsilon 0

[\psi n(Qn) - \psi (Q)
\bigr] 
dx >  - \delta 

2
\forall n \geq N0.

Combining (4.14) and (4.15) we finish the proof of (4.11) by the arbitrariness of \delta .
Case 2: \scrB (Q) = +\infty . In this case it suffices to check

(4.16) lim inf
n\rightarrow \infty 

\int 
\BbbT 3

\psi n(Qn) dx = +\infty .

If | \BbbT 3 \setminus D| > 0, since Qn \rightarrow Q a.e., it follows from Egorov's theorem that there
exists a set F \subset (\BbbT 3 \setminus D), | F | > 0, such that Qn \rightarrow Q uniformly on F . Note that
Q(x) \in \scrQ \setminus D(\psi ) for all x \in F . Hence the uniform convergence of Qn to Q on F
implies there exists a sequence \varepsilon n \searrow 0+, such that

\lambda i(Qn(x)) \leq  - 1

3
+ \varepsilon n or \lambda i(Qn(x)) \geq 

2

3
 - \varepsilon n \forall 1 \leq i \leq 3.

Then Fatou's lemma and (M4) yield

lim inf
n\rightarrow +\infty 

\int 
F

\psi n(Qn) dx \geq 
\int 
F

lim inf
n\rightarrow +\infty 

\psi n(Qn) dx = +\infty .

Therefore, (4.16) is verified in this case.

Alternatively, if | \BbbT 3 \setminus D| = 0, then using an argument similar to that in Case 1
we have\int 

\BbbT 3

\psi n(Qn) dx =

\int 
D

\psi n(Qn) dx =

\int 
D\setminus \BbbT 3

\varepsilon 

\psi n(Qn) dx+

\int 
\BbbT 3
\varepsilon 

\psi n(Qn) dx,

where \BbbT 3
\varepsilon is given in (4.12). On one hand,

(4.17)

\int 
D\setminus \BbbT 3

\varepsilon 

\psi n(Qn) dx \geq 
\biggl( 
inf
n,P

\psi n(P )

\biggr) \bigm| \bigm| \BbbT 3 \setminus \BbbT 3
\varepsilon 

\bigm| \bigm| \geq  - 4\pi | \BbbT 3| 2

e
\forall \varepsilon > 0.

On the other hand, since \scrB (Q) = +\infty and \BbbT 3
\varepsilon \nearrow D, we infer that for all M > 0, there

exists \varepsilon 0 > 0, such that\int 
\BbbT 3
\varepsilon 

\psi (Q) dx > M + 1 +
4\pi | \BbbT 3| 2

e
\forall \varepsilon \leq \varepsilon 0.

Meanwhile, (M5) indicates that \psi n(Q(x)) \rightarrow \psi (Q(x)), \psi \prime 
n(Q(x)) \rightarrow \psi \prime (Q(x)) in

L\infty (\BbbT 3
\varepsilon 0), which gives \int 

\BbbT 3
\varepsilon 0

\psi n(Qn) dx\rightarrow 
\int 
\BbbT 3
\varepsilon 0

\psi (Q) dx.
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Thus there exists N \in \BbbN , such that

(4.18)

\int 
\BbbT 3
\varepsilon 0

\psi n(Qn) dx >

\int 
\BbbT 3
\varepsilon 0

\psi (Q) dx - 1 > M +
4\pi | \BbbT 3| 2

e
\forall n \geq N.

Putting together (4.17) and (4.18), we conclude that (4.16) is valid. Hence the proof
is complete.

Since in Theorem 1.1 we allow the initial data Q0 \in D(\scrE ), one may not expect
any further regularity at time t = 0. Thus we only aim to prove the regularity of
Q(t, \cdot ) for positive times t > 0.

Let t0 > 0 be arbitrarily given. Consider the gradient flow sequence\Biggl\{ 
\partial tQn \in  - \partial \scrE n(Qn), t \geq t0,

Qn(t0, x) = Q(t0, x),
(4.19)

subject to periodic boundary conditions (1.7). Here we let time start from t0 only
as a matter of convenience, in order to avoid an (unnecessary) time shifting. Note
that the energies \scrE n are also  - 2\alpha -convex, proper, lower semicontinuous, and uni-
formly bounded from below. Thus we can apply [1, Theorem 4.0.4] to get the same
conclusions as in Theorem 1.1 and Propositions 3.6 and 3.7.

As a consequence, we manage to prove the following lemma.

Lemma 4.3. Let Qn be the solution of (4.19). Then for every t0 \in (0, T )

\| \partial \scrE n(Qn(t, \cdot ))\| L2(\BbbT 3) \rightarrow \| \partial \scrE (Q(t, \cdot ))\| L2(\BbbT 3) in L2(t0, T ),

\| \partial tQn(t, \cdot )\| L2(\BbbT 3) \rightarrow \| \partial tQ(t, \cdot )\| L2(\BbbT 3) in L2(t0, T ),

up to a subsequence.

Proof. By Proposition 4.2, we have \scrE n
\Gamma \rightarrow \scrE . We aim to show that we are under

the hypotheses of Proposition 2.6, where the general sense of convergence is considered
to be the strong convergence in L2(\BbbT 3;\scrQ ). Let us first check that the conditions (2.5),
(2.6) are valid for the solutions Qn of (4.19).

By Proposition 3.7 and (M3), we have

\scrE n(Qn)(t) \leq \scrE n(Q(t0)) \leq \scrE (Q(t0)) \forall t > t0, n \in \BbbN .

Hence following a similar argument in the proof of compactness part in Proposition
4.2 we get

(4.20) \{ Qn\} is uniformly bounded in L\infty (t0, T ;H
1(\BbbT 3)).

Next, by Proposition 3.7 and (M3), the energy equality\int T

t0

\bigl( 
\| \partial tQn(t, \cdot )\| 2 + \| \partial \scrE n(Qn(t, \cdot ))\| 2

\bigr) 
dt = 2\scrE n(Q(t0)) - 2\scrE n(Qn(T ))

\leq 2\scrE (Q(t0)) - 2 inf \scrE n(4.21)

holds for all t0 < T < +\infty . Hence

(4.22) \{ \partial tQn\} is uniformly bounded in L2(t0, T ;L
2(\BbbT 3))
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and we can apply the Aubin--Lions lemma to yield

(4.23) Qn \rightarrow \~Q strongly in C
\bigl( 
[t0, T ];L

2(\BbbT 3)
\bigr) 
,

and (4.21) implies that

(4.24) \partial tQn \rightarrow \partial t \~Q weakly in L2(0, T ;L2(\BbbT 3)).

Hence the condition (2.5) is satisfied by taking f = 0. Since each \scrE n is  - 2\alpha convex,
by [23, Proposition 13] we know that the condition (2.6) is also satisfied by taking
C = 0.

Finally, note that the initial data are ``well-prepared"" in the sense of \scrE n(Q(t0)) \rightarrow 
\scrE (Q(t0)), and thus all the assumptions in Proposition 2.6 are satisfied, which in turn
gives that \~Q is a solution of the gradient flow\Biggl\{ 

\partial t \~Q \in  - \partial \scrE ( \~Q),
\~Q(t0) = Q(t0).

Since Q is already a solution, and by Theorem 1.1 we know that such a solution is
unique, we infer \~Q = Q, and the proof is complete.

Now we turn to the H2-regularity of the sequence \{ Qn\} . The following technical
lemma implies the coercivity of \partial \scrG .

Lemma 4.4. For any P \in H2(\BbbT 3;\scrQ ), the operator \partial \scrG (P ) satisfies

2(L1  - | L2 + L3| )\| \Delta P\| 2L2(\BbbT 3) \leq \langle  - \partial \scrG (P ),\Delta P \rangle L2 \leq 2(L1 + | L2 + L3| )\| \Delta P\| 2L2(\BbbT 3).

Proof. Direct computations yield

\langle  - \partial \scrG (P ),\Delta P \rangle L2 =

\int 
\BbbT 3

\biggl[ 
2L1\Delta Pij + 2(L2 + L3)\partial k\partial jPik

 - 2

3
(L2 + L3)\partial \ell \partial kPk\ell \delta ij

\biggr] 
\Delta Pij dx

= 2L1\| \Delta P\| 2L2(\BbbT 3) + 2(L2 + L3)

\int 
\BbbT 3

\partial j\partial kPik\Delta Pij dx,

where the last term on the right-hand side can be treated by integration by parts and
H\"older's inequality:

2(L2 + L3)

\int 
\BbbT 3

\partial k\partial jPik\Delta Pij dx

= 2(L2 + L3)

\int 
\BbbT 3

\partial \ell \partial jPik\partial \ell \partial kPij dx

\leq 2| L2 + L3| 
\int 
\BbbT 3

\sqrt{} \sum 
i,j,k,\ell 

(\partial \ell \partial jPik)
2

\sqrt{} \sum 
i,j,k,\ell 

(\partial \ell \partial kPij)
2 dx

= 2| L2 + L3| 
\int 
\BbbT 3

| \nabla 2P | 2 dx = 2(| L2 + L3| )\| \Delta P\| 2L2(\BbbT 3).

Next we recall the notion of angles between two elements in a Hilbert space
(H, \langle , \rangle ). Given two nonzero elements u, v \in H, the angle between u and v is the
unique value

\angle (u, v) := arccos
\langle u, v\rangle 
\| u\| \| v\| 

\in [0, \pi ], where \| u\| H =
\sqrt{} 

\langle u, u\rangle .
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Then the following triangle inequality is valid.

Lemma 4.5. For any three unit vectors \vec{}u,\vec{}v, \vec{}w \in \BbbS 2, it holds that

(4.25) \angle (\vec{}u,\vec{}v) \leq \angle (\vec{}u, \vec{}w) + \angle (\vec{}v, \vec{}w),

where \angle (\vec{}u,\vec{}v) \in [0, \pi ] stands for the angle between the two vectors \vec{}u and \vec{}v.

Proof. By rotation invariance, we assume the unit vectors \vec{}u, \vec{}v lie on the xy-plane.
And in particular, w.l.o.g. we suppose \vec{}u points in the direction of the x-axis:

\vec{}u = \langle 1, 0, 0\rangle , \vec{}v = \langle a,
\sqrt{} 

1 - a2, 0\rangle , \vec{}w = \langle c1, c2, c3\rangle \in \BbbS 2,  - 1 \leq a \leq 1.

Correspondingly, we have

cos\angle (\vec{}u,\vec{}v) = a, cos\angle (\vec{}u, \vec{}w) = c1, cos\angle (\vec{}v, \vec{}w) = ac1 +
\sqrt{} 
1 - a2c2,

sin\angle (\vec{}u, \vec{}w) =
\sqrt{} 
1 - c21, sin\angle (\vec{}v, \vec{}w) =

\sqrt{} 
1 - 2a

\sqrt{} 
1 - a2c1c2  - a2c21  - (1 - a2)c22.

To prove (4.25), it is equivalent to show that

cos\angle (\vec{}u,\vec{}v) \geq cos
\bigl( 
\angle (\vec{}u, \vec{}w) + \angle (\vec{}v, \vec{}w)

\bigr) 
.

That is,

a \geq c1(ac1 +
\sqrt{} 
1 - a2c2) - 

\sqrt{} 
1 - c21

\sqrt{} 
1 - 2a

\sqrt{} 
1 - a2c1c2  - a2c21  - (1 - a2)c22,

which is equivalent to

(4.26)
\sqrt{} 
1 - c21

\sqrt{} 
1 - 2a

\sqrt{} 
1 - a2c1c2  - a2c21  - (1 - a2)c22 \geq a(c21  - 1)+

\sqrt{} 
1 - a2c1c2.

If the right-hand side of (4.26) is nonpositive, the proof is complete. Otherwise, it is
equivalent to prove

(1 - c21)
\bigl[ 
1 - 2a

\sqrt{} 
1 - a2c1c2  - a2c21  - (1 - a2)c22

\bigr] 
\geq a2(1 - c21)

2 + (1 - a2)c21c
2
2  - 2a

\sqrt{} 
1 - a2(1 - c21)c1c2

\leftrightarrow (1 - c21)(1 - a2c21) - (1 - a2)c22 \geq a2(1 - c21)
2

\leftrightarrow (1 - c21  - c22)(1 - a2) \geq 0,

which is obviously true.

Based on Lemmas 4.3 and 4.4, we show that the H2-norm of Qn can be estimated
in terms of \| \partial \scrE n(Qn(t))\| uniformly in n \in \BbbN .

Proposition 4.6. For any n \in \BbbN , a.e. t \in (t0, T ), it holds that\bigm\| \bigm\| \Delta Qn(t, \cdot )\bigm\| \bigm\| L2(\BbbT 3)
\leq CL

\bigl( \bigm\| \bigm\| \partial \scrE n(Qn(t, \cdot ))\bigm\| \bigm\| L2(\BbbT 3)
+ 2\alpha 

\bigm\| \bigm\| Qn(t, \cdot )\bigm\| \bigm\| L2(\BbbT 3)

\bigr) 
,

where CL is defined in (1.15).

Proof. By Lemma 4.3, we have that (up to a subsequence) \| \partial \scrE n(Qn(t, \cdot ))\| is
convergent to \| \partial \scrE (Q(t, \cdot ))\| for almost every fixed t \in [t0, T ]. Hence for any fixed
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t \in [t0, T ] (after removing a set of measure zero), for any n \in \BbbN it holds (recall (4.6))
that we have for every n \geq 1 and almost every t \in (t0, T ) that\bigm\| \bigm\| \bigm\| \bigm\| \partial \scrG (Qn(t, \cdot )) + \psi \prime 

n(Qn(t, \cdot )) - 
1

3
tr(\psi \prime 

n)(Qn(t, \cdot ))\BbbI 3
\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbT 3)

\leq 
\bigm\| \bigm\| \partial \scrE n(Qn(t, \cdot ))\bigm\| \bigm\| L2(\BbbT 3)

+ 2\alpha 
\bigm\| \bigm\| Qn(t, \cdot )\bigm\| \bigm\| L2(\BbbT 3)

.(4.27)

On the other hand, by (M6), and \{ Qn\} \in L\infty (0, T ;H1(\BbbT 3)), we know that\bigm\| \bigm\| \bigm\| \bigm\| \psi \prime 
n(Qn(t, \cdot )) - 

1

3
tr(\psi \prime 

n)(Qn(t, \cdot ))\BbbI 3
\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbT 3)

\leq \lambda n\| Qn(t, \cdot )\| L2(\BbbT 3) + \Lambda n| \BbbT 3| < +\infty ,

which together with (4.27) implies that\bigm\| \bigm\| \partial \scrG (Qn(t, \cdot ))\bigm\| \bigm\| L2(\BbbT 3)
<\infty .

By Lemma 4.4, we conclude that Qn(t, \cdot ) \in H2(\BbbT 3), a.e. t \geq 0 for any n \in \BbbN .
In the rest of this lemma, for simplicity Qn(\cdot , t) is abbreviated by Qn, and w.l.o.g.

we assume \| \Delta Qn\| L2(\BbbT 3) > 0. By (1.4) and Lemma 4.4, we have\int 
\BbbT 3 (\partial \scrG (Qn) :  - \Delta Qn) dx

\| \partial \scrG (Qn)\| L2\| \Delta Qn\| L2

\geq 
2(L1  - | L2 + L3| )\| \Delta Qn\| 2L2

2(L1 + | L2 + L3| )\| \Delta Qn\| 2L2

\geq L1  - | L2 + L3| 
L1 + | L2 + L3| 

> 0.

Hence the angle between \partial \scrG (Qn) and  - \Delta Qn is bounded by

\angle 
\bigl( 
\partial \scrG (Qn), - \Delta Qn

\bigr) 
\leq arccos

L1  - | L2 + L3| 
L1 + | L2 + L3| 

.

Meanwhile, by (M1) we know that\int 
\BbbT 3

(\partial \psi n(Qn) :  - \Delta Qn) dx \geq 0,

which together with Lemma 4.5 gives

\angle 
\bigl( 
\partial \scrG (Qn), \partial \psi n(Qn)

\bigr) 
\leq \angle 

\bigl( 
\partial \scrG (Qn), - \Delta Qn

\bigr) 
+ \angle 

\bigl( 
\partial \psi n(Qn), - \Delta Qn

\bigr) 
\leq \pi 

2
+ arccos

L1  - | L2 + L3| 
L1 + | L2 + L3| 

.

As a consequence, we obtain that\int 
\BbbT 3

(\partial \scrG (Qn) : \partial \psi n(Qn)) dx(4.28)

\geq cos

\biggl( 
\pi 

2
+ arccos

L1  - | L2 + L3| 
L1 + | L2 + L3| 

\biggr) 
\| \partial \scrG (Qn)\| L2(\BbbT 3)\| \partial \psi n(Qn)\| L2(\BbbT 3)

=  - 
2
\sqrt{} 
L1| L2 + L3| 

L1 + | L2 + L3| 
\| \partial \scrG (Qn)\| L2(\BbbT 3)\| \partial \psi n(Qn)\| L2(\BbbT 3).

Note that 2
\sqrt{} 
L1| L2 + L3| /(L1 + | L2 + L3| ) < 1 by (1.4).
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In all, after combining Lemma 4.4, (4.27), (4.28), and the Cauchy--Schwarz in-
equality we conclude that\bigl( 

\| \partial \scrE n(Qn)\| L2(\BbbT 3) + 2\alpha \| Qn\| L2(\BbbT 3)

\bigr) 2
\geq \| \partial \scrG (Qn)\| 2L2(\BbbT 3) + \| \partial \psi n(Qn)\| 2L2(\BbbT 3)

 - 
4
\sqrt{} 
L1| L2 + L3| 

L1 + | L2 + L3| 
\| \partial \scrG (Qn)\| L2(\BbbT 3)\| \partial \psi n(Qn)\| L2(\BbbT 3)

\geq 
L1 + | L2 + L3|  - 2

\sqrt{} 
L1| L2 + L3| 

L1 + | L2 + L3| 
\| \partial \scrG (Qn)\| 2L2(\BbbT 3)

\geq 
L1 + | L2 + L3|  - 2

\sqrt{} 
L1| L2 + L3| 

L1 + | L2 + L3| 
4(L1  - | L2 + L3| )2\| \Delta Qn\| 2L2(\BbbT 3).(4.29)

The proof is complete.

Summing up the results established in this subsection, we are ready to establish
the improved regularity properties of the unique solution Q obtained in Theorem 1.1.

Proof of Theorem 1.2.
Part 1: Uniform-in-time bound (1.14) It is proved in (4.23) that (up to a sub-

sequence) Qn(t) \rightarrow Q(t, \cdot ) in C
\bigl( 
[t0, T ];L

2(\BbbT 3)
\bigr) 
. Moreover, it follows from Proposi-

tion 4.6 that for a.e. t \in (t0, T ), \| \Delta Qn(t)\| L2(\BbbT 3) is (up to a subsequence) uniformly
bounded in n \in \BbbN . Hence \Delta Q(t, \cdot ) \in L2(\BbbT 3) a.e., and from Lemma 4.3 we can further
make the following estimates:

\| \Delta Q(t, \cdot )\| L2(\BbbT 3) \leq lim inf
n\rightarrow \infty 

\| \Delta Qn(t, \cdot )\| L2(\BbbT 3)

\leq lim inf
n\rightarrow \infty 

CL
\bigl( 
\| \partial \scrE n(Q(t, \cdot ))\| L2(\BbbT 3) + 2\alpha \| Qn(t, \cdot )\| L2(\BbbT 3)

\bigr) 
= CL

\bigl( 
\| \partial \scrE (Q(t, \cdot ))\| L2(\BbbT 3) + 2\alpha \| Q(t, \cdot )\| L2(\BbbT 3)

\bigr) 
,(4.30)

where CL is defined in (1.15).
W.l.o.g., we assume T = t0 + 100. In view of (4.30), it suffices to provide the

L\infty -bound for \| \partial \scrE (Q(t, \cdot ))\| 2L2(\BbbT 3). By (1.12), we have

(4.31)

\int +\infty 

t0

\| \partial \scrE (Q(t, \cdot ))\| 2L2(\BbbT 3) dt \leq \scrE (Q(t0)) - inf \scrE .

Thus for any n \in \BbbN it holds that

(4.32)

\int t0+n+1

t0+n

\| \partial \scrE (Q(t, \cdot ))\| 2L2(\BbbT 3) dt \leq \scrE (Q(t0)) - inf \scrE ,

and hence there exists a set of positive measure An \subset [t0 + n, t0 + n+ 1] such that

(4.33) \| \partial \scrE (Q(t, \cdot ))\| 2L2(\BbbT 3) \leq \scrE (Q(t0)) - inf \scrE + 1 \forall t \in An.

For any n \in \BbbN , n \leq 99, let us choose a time sn \in An, and for the sake of convenience
we set s0 = t0. Obviously, \{ sn\} n\leq 99 is monotone increasing, and sn+1  - sn \leq 2.

Let us then consider the gradient flow sequence

(4.34)

\Biggl\{ 
\partial tPn \in  - \partial \scrE (Pn),
Pn(0, \cdot ) = Q(sn, \cdot ),
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subject to a periodic boundary condition, whose solution Pn is given by the time shift
Pn(t, \cdot ) := Q(sn + t, \cdot ) for all t \geq 0. By Proposition 3.6, the function

t \mapsto \rightarrow e - 2\alpha t\| \partial \scrE (Pn(t))\| L2(\BbbT 3)

is nonincreasing, and thus together with (4.33) we have

\| \partial \scrE (Q(t+ sn, \cdot ))\| 2L2(\BbbT 3) = \| \partial \scrE (Pn(t, \cdot ))\| 2L2(\BbbT 3) \leq e4\alpha (sn+1 - sn)\| \partial \scrE (Pn(0, \cdot ))\| 2L2(\BbbT 3)

\leq e8\alpha \| \partial \scrE (Q(sn, \cdot ))\| 2L2(\BbbT 3) \leq e8\alpha (\scrE (Q(t0)) - inf \scrE + 1)

for a.e. t \in (0, sn+1  - sn). Repeating this argument for all n finally gives

\| \partial \scrE (Q(t, \cdot ))\| L2(\BbbT 3) \leq e4\alpha 
\sqrt{} 

\scrE (Q(t0)) - inf \scrE + 1 for a.e. t \in (t0, t0 + 99).

In addition, we recall that all eigenvalues of Q(t, \cdot ) are in ( - 1/3, 2/3) for a.e. t \in 
(t0, t0 + 99), and hence \| Q(t, \cdot )\| H2(\BbbT 3) is uniform-in-time bounded in (t0, t0 + 99).
Thus (1.14) could be proved by iteration.

Part 2: Strict physicality (1.17). Now that Q is a solution of

\partial tQ =  - \partial \scrG (Q(t, \cdot )) - \psi \prime (Q(t, \cdot )) + tr(\psi \prime (Q(t, \cdot )))
3

\BbbI 3 + 2\alpha Q(t, \cdot ) \forall t > t0,

with Q \in L\infty (t0,+\infty ;H2), let us take the inner product with  - \Delta Q(t, \cdot ). Then it
gives

1

2

d

dt
\| \nabla Q(t, \cdot )\| 2L2(\BbbT 3) = \langle \partial \scrG (Q(t, \cdot )),\Delta Q(t, \cdot )\rangle L2(\BbbT 3) + \langle \psi \prime (Q(t, \cdot )),\Delta Q(t, \cdot )\rangle L2(\BbbT 3)

+ 2\alpha \| \nabla Q(t, \cdot )\| 2L2(\BbbT 3).(4.35)

Note that by (1.16), Lemma 4.4, and the Poincar\'e inequality we have

\langle \partial \scrG (Q(t, \cdot )),\Delta Q(t)\rangle L2(\BbbT 3) \leq  - 2(L1  - | L2 + L3| )\| \Delta Q(t, \cdot )\| 2L2(\BbbT 3)

\leq  - 2(L1  - | L2 + L3| )
C2

\BbbT 3

\| \nabla Q(t, \cdot )\| 2L2(\BbbT 3).(4.36)

On the other hand,

\langle \psi \prime (Q(t, \cdot )),\Delta Q(t, \cdot )\rangle L2(\BbbT 3) =

\int 
\BbbT 3

\psi \prime (Q(t, x))\Delta Q(t, x) dx

=  - 
\int 
\BbbT 3

\psi \prime \prime (Q(t, x))| \nabla Q(t, x)| 2 dx \leq 0(4.37)

due to the convexity of \psi . Inserting (4.36) and (4.37) into (4.35), we get

d

dt
\| \nabla Q(t, \cdot )\| 2L2(\BbbT 3) \leq 4

\biggl( 
 - L1  - | L2 + L3| 

C2
\BbbT 3

+ \alpha 

\biggr) 
\| \nabla Q(t, \cdot )\| 2L2(\BbbT 3) \forall t \geq t0.

Since Q(t0, \cdot ) \in H1(\BbbT 3), it follows from Gronwall's inequality that

(4.38) \| \nabla Q(t, \cdot )\| 2L2(\BbbT 3) \leq exp

\biggl( 
4

\biggl[ 
 - L1  - | L2 + L3| 

C2
\BbbT 3

+ \alpha 

\biggr] 
(t - t0)

\biggr) 
\| \nabla Q(t0, \cdot )\| 2L2(\BbbT 3)
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for all t \geq t0. Denote by \=Q(t) := | \BbbT 3|  - 1
\int 
\BbbT 3 Q(t, \cdot ) dx the mean value of Q(t, \cdot ) over

\BbbT 3. Due to the convexity of \psi , one can apply Jensen's inequality to derive

\psi ( \=Q(t)) = \psi ( \=Q(t))| \BbbT 3| \leq 
\int 
\BbbT 3

\psi (Q(t, x)) dx = \scrE (Q(t)) - \scrG (Q(t)) + \alpha \| Q(t, \cdot )\| 2L2(\BbbT 3)

\leq \scrE (Q(t0)) + \alpha sup
s\geq t0

\| Q(s, \cdot )\| 2L\infty (\BbbT 3)| \BbbT 
3| ,

since \scrG \geq 0 by Lemma 3.1. It is noted that the last bound above is independent of
t \geq t0. Thus

(4.39) \rho 0 := inf
t\geq t0

\rho (Q(t, \cdot )) > 0,

where \rho is defined in (3.11).

Finally, by (4.30) and the Gagliardo--Nirenberg inequality, we obtain

\| Q(t, \cdot ) - \=Q(t)\| L\infty (\BbbT 3)

\leq C \prime \| \nabla Q(t, \cdot )\| 1/2L2(\BbbT 3)\| \Delta Q(t, \cdot )\| 1/2L2(\BbbT 3)

\leq C \prime exp

\biggl( \biggl[ 
 - L1  - | L2 + L3| 

C2
\BbbT 3

+ \alpha 

\biggr] 
(t - t0)

\biggr) \bigm\| \bigm\| \nabla Q(t0, \cdot )
\bigm\| \bigm\| 1/2
L2(\BbbT 3)

\cdot C(t0)1/2(4.40)

for some geometric constant C \prime , and a.e. t \geq t0. This together with (1.16) implies
\| Q(t, \cdot )  - \=Q(t)\| L\infty (\BbbT 3) decays uniformly to zero as t \rightarrow \infty . Since the convergence in
the L\infty norm implies the uniform convergence of all eigenvalues, due to (4.39) we
conclude that there exists some T0 > 0, such that

\rho (Q(t, \cdot )) \geq \rho 0
2

\forall t \geq T0.

Therefore, the proof of Theorem 1.2 is complete.

5. Proof of Theorem 1.3: Size of the contact set. In this section we shall
estimate the Hausdorff dimension of the singular set \Sigma t where the unique global
solution Q(t, x) to (1.6) touches the physical boundary

(5.1) \Sigma t := \{ x \in \BbbT n | Q(t, x) \in \partial \scrQ phy\} .

Here \partial \scrQ phy is the boundary of \scrQ phy where the smallest eigenvalue of any element
equals  - 1/3.

To begin with, we state [20, Theorem 1.2], which provides a lower bound of the
blowup rate of \partial \psi (P ) as P \in \scrQ phy approaches its physical boundary.

Proposition 5.1. For any P \in \scrQ phy, as \lambda 1(P ) \rightarrow  - 1/3 it holds that

(5.2)

\bigm| \bigm| \bigm| \bigm| \partial \psi (P ) - 1

3
tr(\partial \psi (P ))\BbbI 3)

\bigm| \bigm| \bigm| \bigm| \geq C1

\lambda 1(P ) +
1
3

with the constant C1 given by

C1 =

\surd 
3

9
\surd 
2\pi e

\cdot inf
\xi \geq 0

e - \xi I0(\xi )

e
 - \xi 
2 I0(

\xi 
2 )

> 0,(5.3)

where I0(\cdot ) is the zeroth order modified Bessel function of first kind.
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Remark 5.2. As was pointed out in [16, Appendix C],

d(P, \partial \scrQ phy) =

\surd 
6

2

\biggl[ 
\lambda 1(P ) +

1

3

\biggr] 
for any P \in \scrQ phy. Together with Proposition 5.1, it is immediate to see that there
exists a generic and suitably small constant \delta 0 > 0, such that

(5.4)

\bigm| \bigm| \bigm| \bigm| \partial \psi (P ) - 1

3
tr(\partial \psi (P ))\BbbI 3)

\bigm| \bigm| \bigm| \bigm| \geq \surd 
6C1

2d(P, \partial \scrQ phy)
whenever d(P, \partial \scrQ phy) < \delta 0.

The following technical lemma is necessary.

Lemma 5.3. For any s > 0, there exists a sequence of coverings Vm = \{ Bi,m\} of
\Sigma t, where Bi,m = B(xi,m, ri,m), such that

lim
m\rightarrow \infty 

\sum 
i

rsi,m = \scrH s(\Sigma t) \leq lim inf
m\rightarrow \infty 

\sum 
j

\bigm| \bigm| 5r\ast j,m\bigm| \bigm| s.
Here Bi,m = B(xi,m, ri,m) such that Bi,m \subset \{ x \in \BbbT n| d(x,\Sigma t) \leq \delta \} for some \delta > 0,
and r\ast j,m are the radii of the balls B\ast 

j,m, i.e., the subcovering given by the Vitali covering
lemma.

Proof. First, by recalling the definition of Hausdorff content

\scrH s
\delta (\Sigma t) := inf

\biggl\{ \sum 
i

rsi : \Sigma t \subset 
\bigcup 
i

Bi, sup
i
ri < \delta 

\biggr\} 
and the Hausdorff measure

\scrH s(\Sigma t) = lim
\delta \rightarrow 0

\scrH s
\delta (\Sigma t),

we know that for any \delta > 0 we have a sequence of coverings Vm = \{ Bi,m,\delta \} such that

lim
m\rightarrow \infty 

\sum 
i

rsi,m,\delta = \scrH s
\delta (\Sigma t).

Therefore, using the standard diagonal argument we can choose a sufficiently large
m = m(\delta ) such that

0 \leq 
\sum 
i

rsi,m,\delta  - \scrH s
\delta (\Sigma t) := \varepsilon \delta \ll 1, where \varepsilon \delta \rightarrow 0 \leftrightarrow m\rightarrow +\infty ,

which further gives

lim
m\rightarrow \infty 

\sum 
i

rsi,m = \scrH s(\Sigma t), where ri,m := ri,m,\delta (m).

W.l.o.g., we may choose m to be bijective in \delta . Thus Vm = \{ Bi,m\} is an admissible
sequence to achieve the Hausdorff measure.

Note that \{ 5B\ast 
j,m\} is another covering with balls for \Sigma t, and hence for each m,

we have \sum 
j

| 5r\ast j,m| s \geq \scrH s
\delta (m)(\Sigma t) =

\sum 
i

rsi,m,\delta (m)  - \varepsilon \delta ,
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which implies

lim inf
m\rightarrow \infty 

\sum 
j

| 5r\ast j,m| s \geq lim inf
m\rightarrow \infty 

\scrH s
\delta (m)(\Sigma t) = \scrH s(\Sigma t).

The proof is complete.
Using Proposition 5.1 and Lemma 5.3, now we are ready to finish the proof of

Theorem 1.3.

Proof of Theorem 1.3. First, for any t0 > 0, by Theorems 1.1 and 1.2, we know
that the unique strong solution Q(t, x) to (1.10) satisfies

(5.5) Q \in L\infty (t0,+\infty ;H2(\BbbT n)), \partial tQ \in L\infty (t0, T0;L
2(\BbbT n)),

which together with (1.10) gives

\partial \psi (Q) - 1

3
tr(\partial \psi (Q))\BbbI 3 \in L\infty (t0, T0;L

2(\BbbT n)).

Here and after, we are only concerned with t \in (0, T0), which satisfies\bigm\| \bigm\| \bigm\| \bigm\| \partial \psi (Q) - 1

3
tr(\partial \psi (Q))\BbbI 3

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbT n)

< +\infty ,

which obviously has a full measure in (0, T0).
Case 1: n = 3.
By Sobolev embedding H2(\BbbT 3) \lhook \rightarrow C0, 12 (\BbbT 3) and Q \in L\infty (t0,+\infty ;H2), there

exists a generic constant CH > 0 that is independent of t, such that

(5.6) | Q(t, x) - Q(t, y)| \leq CH | x - y| 12 \forall x, y \in \BbbT 3.

In particular, for any given x, let x\bot \in \Sigma t be a projection such that

(5.7) | x - x\bot | = d(x,\Sigma t) := dist(x,\Sigma t),

and henceforth we get

d(Q(t, x), \partial \scrQ phy) \leq | Q(t, x) - Q(t, x\bot )| \leq CH | x - x\bot | 12 = CH
\sqrt{} 

dist(x,\Sigma t).

This combined with Proposition 5.1 implies for any ball B and \delta \ll 1 that\int 
\{ x\in B| d(x,\Sigma t)\leq \delta \} 

\bigm| \bigm| \bigm| \bigm| \partial \psi (Q(t, x)) - 1

3
tr(\partial \psi (Q(t, x)))\BbbI 3

\bigm| \bigm| \bigm| \bigm| 2 dx
\geq C2

1

\int 
\{ x\in B| d(x,\Sigma t)\leq \delta \} 

d(Q(t, x), \partial \scrQ phy)
 - 2dx

\geq C2
1

C2
H

\int 
\{ x\in B| d(x,\Sigma t)\leq \delta \} 

1

dist(x,\Sigma t)
dx.(5.8)

To proceed, by applying Lemma 5.3 with s = 2, we obtain the existence of a sequence
of covering \{ Bi,m\} of \Sigma t with balls Bi,m = B(xi,m, ri,m) such that Bi,m \subset \{ x \in 
\BbbT 3| d(x,\Sigma T ) \leq \delta \} and

lim
m\rightarrow \infty 

\sum 
i

rsi,m = \scrH s(\Sigma t).
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We can assume that each such ball Bi,m intersects \Sigma t, for otherwise we can just
remove it from the covering. By Vitali's covering lemma, for each m we can choose a
subcollection of mutually disjoint balls \{ B\ast 

j,m\} , with B\ast 
j,m = B(x\ast j,m, r

\ast 
j,m) such that

\Sigma t \subset 
\bigcup 
i

Bi,m \subset 
\bigcup 
j

5B\ast 
j,m.

On each such ball B\ast 
j,m, it follows from (5.8) that

(5.9)

\int 
B\ast 

j,m

\bigm| \bigm| \bigm| \bigm| \partial \psi (Q(t, x)) - 1

3
tr(\partial \psi (Q(t, x)))\BbbI 3

\bigm| \bigm| \bigm| \bigm| 2 dx \geq C2
1

C2
H

\int 
B\ast 

j,m

1

dist(x,\Sigma t)
dx.

As each of such ball Bj,m intersects \Sigma t, we can choose an arbitrary intersection point
yj,m \in B\ast 

j,m \cap \Sigma t, and

(5.10)

\int 
B\ast 

j,m

1

dist(x,\Sigma t)
dx \geq 

\int 
B\ast 

j,m

1

| x - yj,m| 
dx.

We claim that the last integral in (5.10) is minimized when yj,m \in \partial B\ast 
j,m. To prove

this claim, w.l.o.g. we assume B\ast 
j,m is the unit ball B centered at the origin, and we

denote yj,m = y = (y1, 0, 0), 0 \leq y1 \leq 1. Hence we consider

f(y) :=

\int 
B

1

| x - y| 
dx.

Then
\partial f

\partial y1
=

\int 
B

x1  - y1
| x - y| 3

dx, where x = (x1, x2, x3).

If y1 = 0, by symmetry we see that \partial f
\partial y1

= 0. If 0 < y1 \leq 1, we denote A = \{ x \in 
\BbbR 3| x1 \geq y1\} , and A\prime is the reflection of A across \{ x \in \BbbR 3| x1 = y1\} . Note that A\cup A\prime 

is symmetric with respect to both \{ x \in \BbbR 3| x1 = y1\} and the point y = (y1, 0, 0).
Thus we have

\partial f

\partial y1
=

\int 
B\setminus (A\cup A\prime )

x1  - y1
| x - y| 3

dx+

\int 
A\cup A\prime 

x1  - y1
| x - y| 3

dx\underbrace{}  \underbrace{}  
=0

< 0

due to the fact that B \setminus (A \cup A\prime ) is entirely contained in \{ x \in \BbbR 3| x1 \leq y1\} . Hence
the claim is proved.

As a consequence,

(5.11)

\int 
B\ast 

j,m

1

| x - yj,m| 
dx \geq 4\pi 

3
| r\ast j,m| 2,

which together with (5.9) and (5.10) gives
(5.12)\int 

B\ast 
j,m

\bigm| \bigm| \bigm| \bigm| \partial \psi (Q(t, x)) - 1

3
tr(\partial \psi (Q(t, x)))\BbbI 3

\bigm| \bigm| \bigm| \bigm| 2 dx \geq \~C| r\ast j,m| 2, where \~C :=
4\pi 

3

C2
1

C2
H

.
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Since \{ B\ast 
j,m\} are nonoverlapping, after summing up the above inequality over j we

obtain \bigm\| \bigm\| \bigm\| \bigm\| \partial \psi (Q(t, x)) - 1

3
tr(\partial \psi (Q(t, x)))\BbbI 3

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(\BbbT 3)

\geq 
\sum 
j

\int 
B\ast 

j,m

\bigm| \bigm| \bigm| \bigm| \partial \psi (Q(t, x)) - 1

3
tr(\partial \psi (Q(t, x)))\BbbI 3

\bigm| \bigm| \bigm| \bigm| 2 dx \geq \~C
\sum 
j

| r\ast j,m| 2,(5.13)

which together with Lemma 5.3 yields

(5.14)

\bigm\| \bigm\| \bigm\| \bigm\| \partial \psi (Q(t, x)) - 1

3
tr(\partial \psi (Q(t, x)))\BbbI 3

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(\BbbT 3)

\geq \~C lim inf
m\rightarrow \infty 

\sum 
j

| r\ast j,m| 2 \geq 
\~C

52
\scrH 2(\Sigma t).

Thus we conclude that dim\scrH (\Sigma t) \leq 2.
Case 2: n = 2.
In the 2D case the Sobolev embedding reads as H2(\BbbT 2) \lhook \rightarrow C\beta (\BbbT 2) for all \beta \in 

(0, 1). Correspondingly, we have

(5.15) \| Q(t, x) - Q(t, y)\| \leq C\beta | x - y| \beta \forall x, y \in \BbbT 2,

and (5.8) is replaced by\int 
\{ x\in B| d(x,\Sigma t)\leq \delta \} 

\bigm| \bigm| \bigm| \bigm| \partial \psi (Q(t, x)) - 1

3
tr(\partial \psi (Q(t, x)))\BbbI 3

\bigm| \bigm| \bigm| \bigm| 2 dx
\geq C2

1

C2
\beta 

\int 
\{ x\in B| d(x,\Sigma t)\leq \delta \} 

1

dist2\beta (x,\Sigma t)
dx.(5.16)

As a consequence, applying Lemma 5.3 with s = 2  - 2\beta , and using Vitali's covering
argument exactly as in Case 1, one may replace (5.14) by\bigm\| \bigm\| \bigm\| \bigm\| \partial \psi (Q(t, x)) - 1

3
tr(\partial \psi (Q(t, x)))\BbbI 3

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(\BbbT 2)

\geq \~C \prime lim inf
m\rightarrow \infty 

\sum 
j

| r\ast j,m| 2 - 2\beta \geq 
\~C \prime 

52 - 2\beta 
\scrH 2 - 2\beta (\Sigma t), where \~C \prime =

4\pi C2
1

C2
\beta 

.(5.17)

In conclusion, we obtain dim\scrH (\Sigma t) \leq 2 - 2\beta for any \beta \in (0, 1). The proof is complete
by the arbitrariness of \beta \in (0, 1).
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