Towards probabilistic intrusion detection

in supervisory control of discrete event systems !

Romulo Meira-Goées * Christoforos Keroglou ** Stéphane Lafortune *

* Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, USA
e-mail: {romulo,stephane} @umich.edu
** Division of Decision and Control Systems, School of Electrical
Engineering and Computer Science
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: keroglou@kth.se

Abstract: In control systems, sensor deception is a class of attacks where an attacker manipulates
sensor readings to cause damage to the system. Our work investigates quantitative measurements to
detect this class of attacks in the context of stochastic supervisory control. We introduce the notion of e-
safe systems, which is a first step to generalize qualitative intrusion detection conditions to quantitative
intrusion detection conditions. We provide sufficient and necessary conditions to verify if a system is
e-safe. Moreover, we provide an algorithm that verifies these conditions, which implies that the problem

is decidable.

Keywords: Supervisory control and automata; Discrete event modeling and simulation; Intrusion

detection; Security;

1. INTRODUCTION

The control community recently started to incorporate security
aspects into the design of feedback control systems (Cardenas
et al., 2008; Teixeira et al., 2012). Understanding and designing
feedback control systems that are robust against attacks is of
critical importance nowadays. A key step towards feedback
control systems that are robust against attacks is an intrusion
detection system. This paper focuses on the design of better
intrusion detection modules for control systems. We investigate
this problem in the context of stochastic supervisory control
theory, where the underlying uncontrolled system has been
abstracted as a stochastic discrete transition system (the plant in
this work), where sensor outputs belong to a finite set of events.
Driven by these events, a high-level supervisory controller,
or simply supervisor, controls the behavior of the plant via
actuator commands.

Based on this event-driven model, we incorporate an attacker
that hijacks a subset of the events and sends to the supervisor
incorrect information about the plant’s sensors; this type of
attack is known as sensor deception attack. In this scenario,
an intrusion detection module monitors the behavior of the
controlled system and decides if an attacker is disrupting the
nominal controlled behavior.

Prior work on security against sensor deception attacks in the
field of Discrete Event Systems (DES) (Rashidinejad et al.,
2019) mainly focuses on designing attack strategies for fixed
supervisors (Meira-Gées et al., 2017; Su, 2018; Meira-Gées
et al., 2019a,b), on designing intrusion detection modules for
fixed supervisors (Thorsley and Teneketzis, 2006; Carvalho
et al., 2018; Lima et al., 2019) or designing robust supervi-
sors (Su, 2018; Meira-Gdes et al., 2019c; Wang et al., 2020).
Some of these works considered stochastic models (Thorsley

1 The work of R.M.G. and S.L. is supported by US NSF grant CNS-1738103.

and Teneketzis, 2006; Meira-Godes et al., 2019b), while the
remainder considered logical models.

In (Thorsley and Teneketzis, 2006), the attacker rewrites actu-
ator commands with given probabilities. Although these prob-
abilities generate a probabilistic measure on the controlled sys-
tem, the intrusion detection problem is investigated under a
logical framework. The works of (Carvalho et al., 2018; Lima
et al., 2019) extend the intrusion detection problem for general
attack models, including sensor and actuator attacks, under the
same logical framework.

Since intrusion detection in the context of logical models is
a strong requirement, there is a need to develop quantitative
frameworks for detection of sensor deception attacks, to com-
plement the logical approach. To investigate this problem, we
propose to adopt a stochastic framework where the plant is a
stochastic automaton under the control of a logical determin-
istic supervisor. In this context, we are able to calculate likeli-
hoods of attacks based on strings observed by the supervisor.

The stochastic framework adopted is similar to the one in
(Meira-Gées et al., 2019b) and is inspired by the prior work
in (Kumar and Garg, 2001). We introduce the notion of e-safe
systems which is a first step to generalize the qualitative notions
of logical intrusion detection to quantitative notions of intrusion
detection. The definition of e-safety captures quantitatively the
attacks that are undetectable by a logical intrusion detection
module that operates on the controlled system, assuming a
fixed supervisor and a set of compromised events (sensors).
Intuitively, an attacker might leave a detectable probabilistic
trace when it modifies the nominal controlled behavior.

The paper is organized as follows. Section 2 introduces the nec-
essary background used throughout the paper. The framework
of supervisory control theory under sensor deception attacks is
presented in Section 3. Section 4 presents the definition of e-
safe systems and the verification problem of this property. In

Section 5, we provide the solution methodology for the studied
problem and discuss its correctness. We conclude the paper in
Section 6.

2. PRELIMINARIES
2.1 Supervisory control

We consider the supervisory level of a feedback control sys-
tem, where the uncontrolled system is modeled as a De-
terministic Finite-State Automaton (DFA) in the discrete-
event modeling formalism. A DFA is denoted by G =
(Xa,2,0a, 0,6, Xa.m), where X is the finite set of states,
3. is the finite set of events, 6¢ : Xg X X — X is the partial
transition function, xg ¢ is the initial state and Xg ,, is the
set of marked states. The function ¢ is extended, in the usual
manner, to the domain X x X*.

For any string s € %%, s[i] denotes the 7' event of s such that
s = s[1]s[2] ... s[|s|], where |s| denotes the length of s. The
ith prefix of s is denoted by s', namely s' = s[1]... s[i] and
s" = . Finally, N is the set of natural numbers, [n] is the set
of natural numbers bounded by n and [n] ™ is the set of positive
natural numbers bounded by n.

The language and the marked language generated by G are
defined by L(G) = {s € £*|dg(z0,G,s)'} and L, (G) = {s €
L(G)|da(z0,¢,8) € Xa,m}, where | means that the function
is defined for these arguments. A string s € L(G) generates a
unique run z18[1]zy . .. s[n|T|s 41, Where ;11 = dg (x4, si])
for i € [|s|]* and 21 = =z,c. A sub-run in G is defined
as x1s[1]xa ... s[n]a |41, Where 2,1 = d¢ (i, s[i]) for i €
[|s|]]" and 21 € X. The active event set of state z € X is
defined as I'¢(z) = {0 € X|dg(x, o)!}. Lastly, the operation
CoAc(G) = (Xcoac(@), Ly 0CoAc(G)> T0,CoAc(G)s XGym), a8
in (Cassandras and Lafortune, 2008), returns the coaccessible
part of automaton G, i.e., L(G) = pre(L,(G)), where pre(L)
returns all the prefixes of language L.

The system G, in supervisory control theory, is considered as
the plant (uncontrolled system) that needs to be controlled to
meet a desired specification. The limited control capabilities
in G are characterized by partitioning the set X into two
disjoint sets, the set of controllable events . and the set of
uncontrollable events X2,,...

A supervisor dynamically enables/disables controllable events
of the plant such that it generates a controlled behavior that sat-
isfies a desired specification. A supervisor is formally defined
as a function S : ¥* — I', where I = { C ¥|X,. C v} is the
set of admissible control decisions. The closed-loop behavior
of the controlled system is denoted by S/G and defined by
the language L£(S/G); see, e.g., (Cassandras and Lafortune,
2008). Without loss of generality, .S is realized by an automaton
R = (Xg,%,0r,%o,R)-

2.2 Stochastic supervisory control

We consider a stochastic DES modeled as a Probabilistic Finite-
State Automaton (PFA). A PFA is denoted by H = (Xg, X,
P, xo, 1, Xa,m), where Xpg, ¥, o g and Xp ,, are defined
as in a DFA, Py : Xy x ¥ x Xy — [0,1] is the transi-
tion probability function. The probability function Py (z, 0, y)
specifies the probability of moving from state * € Xpg to
state y € Xy with event ¢ € . When it is convenient, we
use the notation Pr;”Y = Py(z,0,y) and we write P (z)
when 3y € Xy such that P;;”Y > 0. We only consider the

case of nonterminating PFA, i.e., for any x € Xy we have
that ses Pg(z) = 1. This assumption is without loss of
generality, as any terminating PFA can be transformed into a
nonterminating one, as shown in (Lawford and Wonham, 1993).

The function §y is defined to bridge the gap between a PFA
and a DFA, where 0y (z, o) = y if P;;”Y > 0. In this work, we
assume that dz; is deterministic, i.e., there does not exist y, y* €
Xy, y* # y, such that P57 > 0 and P57 > 0. Using
this definition, every PFA H is associated to a corresponding
DFA G where 6 (z,0) = dg(x,0) and L(H) := L(G). For
simplicity, whenever we use a DFA operator in a PFA H, it
means that we are analyzing the corresponding DFA G.

Finally, the notion of probabilistic languages (p-languages) of
a PFA was introduced in (Garg et al., 1999). Formally, L,,(H) :
¥* — [0, 1] is defined for s € * and 0 € ¥ as :

Ly(H)(e) =1 ¢y

Ly(H)(s)PE7Y if & = 8p (0.1, 9)
LP(H)(SJ) = { Yy = 5H(x0,H750) 2)
0 otherwise

In stochastic supervisory control theory, the system H is con-
sidered as the plant but there are different manners of studying
its closed-loop behavior (Lawford and Wonham, 1993; Kumar
and Garg, 2001; Pantelic et al., 2014). In this paper, we use the
results of supervisory control of stochastic DES introduced by
(Kumar and Garg, 2001), where only the plant behaves stochas-
tically. Namely, both the specification and the supervisor are
deterministic and defined as in the previously-described super-
visory control framework. However, the supervisor alters the
probabilistic behavior of the plant via the control actions it takes
(disabling events). Conditions for the existence of a supervisor
for the above control problem are provided in (Kumar and Garg,
2001).

Formalizing the previous discussion, the disablement of events
by R increases the probability of the enabled ones. In other
words, R/ H generates another p-language, in general, different
than the p-language of H. Given a state x € Xp, a state
y € Xpg, and an event 0 € I'y(z) N T'r(y), the probability
of o being executed is given by the standard normalization:

Pp(x)
ZU/EFH(J;)HFR(y) Py (z)

We define M,, = H||,R as the PFA that describes the be-
havior of R/H, where ||, is defined based on Equation (3)
and the standard parallel composition || (see (Cassandras and
Lafortune, 2008)). Formally, M,, = (X, , %, P, , To, M,) 18
defined by Xpr, € Xg x Xg, o.M, = (®o,m,%o,r), and
forx = (x1,22), ¥y = (Y1,y2) € Xg X Xgand o € X the
transition probability is:

Py, = 3)

P"ghacz if 61{(%1, U) =wnA
dr(w2,0) =12 @
0 otherwise

Py, (z,0,y) =

For simplicity and without loss of generality, we assume that
the plant H has one critical state, denoted z..;; € Xy and
supervisor R ensures that this state is not reachable in R/H.
We define the set of unsafe strings as L.+ = {s € ¥* |
Pr(xo,m, S, Terit) > 0}

Example 1. We assume that two vehicles are traveling in the
same direction on an infinite road as shown in Fig. 1(a). The
vehicle in front is assumed to be manually driven while the

vehicle behind is assumed to be autonomous. Instead of their
exact position on the road, we represent their state by their
relative position, i.e., the difference of their exact positions.
The vehicles could either sfay in their positions, events s; and
S92, or move to an adjacent position, events m; and my. For
simplicity, we assume that once the relative distance is greater
than or equal to three, or equal to zero the experiment ends.
Figure 1(b) models this problem as a PFA, where the events of
the autonomous vehicle are controllable, . = {s1,m;}, the
probability transition function is encoded in the transition arcs
and the name of the states is the relative distance between the
vehicles.

=D fu} “te

Relative distance = 2
Autonomous Uncontrolled

Vehicle Vehicle

Infinite road

(a) Problem description
721,01 12,01 m2,0.1
—>

721,01
S1,04 S1,04
S2,04 S2,04

(b) Model of the autonomous vehicle problem

Fig. 1. Simplified autonomous vehicle example

The goal of the autonomous vehicle is to avoid crashing into
the front car, i.e., state 0 is critical. The corresponding DFA of
the model in Fig. 1(b) without state 0 provides the supremal su-
pervisor for this problem. The closed-loop controlled behavior
M, is shown in Fig. 2.

72,0.11...

m1,0.1
S1,044.. 51,04
S2,044.. S2,04

Fig. 2. The controlled system M,

3. ATTACKED SYSTEM DESCRIPTION
3.1 Notation

We define ¥, C X as the set of compromised events, i.e., the at-
tacker can insert/delete events in this set on the communication
channel. We use subscripts to identify attacker modifications;
the sets ¥; = {e; | e € B} and By = {eq | e € Z,}
are the sets of inserted and deleted events, respectively. Events
without subscripts are legitimate events generated by the plant
H, whereas events with subscripts are events altered by the
attacker. For convenience, let X, = X; U X, be the editable
event set and >, = ¥ U X, the complete event set.

The mask M : ¥,,, — ¥ removes the subscripts from events in
Ye, i€, M(eq) = M(e;) = e. Let IT (ITF) be a projection
operator that projects events in X, to events in X generated by
the plant (observed by the supervisor). Namely, IT1? outputs the
event that is executed in H, i.e., [(¢;) = e and [T () =
1 (e) = e. On the other hand, TI* outputs the event observed
by the supervisor, i.e, [T (e4) = € and I1¥(¢;) = I1%(e) = e.
Lastly, strings s = 117 (s) and sp = I1%(s) are the plant
projection and the supervisor projection of string s € X7 .

3.2 Attacked controlled systems

In this work, sensor deception attacks are considered, where
an attacker hijacks a subset of the sensors and modifies them
in order to reach a specific goal. Similarly as in (Meira-Godes
et al.,, 2019b), we assume that an attacker is modeled as a
deterministic attack function f4 : ¥,, — X with constraints
based on the set of compromised events >, (Meira-Gées et al.,
2019b). For simplicity and without loss of generality, we as-
sume that an attack function is given as an automaton A =
(Xa,Xm,04,0,4); for more details on the definition of the
attack function see (Meira-Gées et al., 2019a,b). Intuitively,
the attacker observes events from the plant and remembers its
previous modifications to decide the modified string it will send
to the supervisor.

The presence of a general sensor deception attacker defined by
A disturbs the nominal behavior of controlled system. In fact, a
new controlled system, denoted as attacked system, is produced
in the presence of an attacker. We review the definition of this
attacked system. First, we need to modify automata H and R
so that they include attack actions.

Definition 1. Given H and X, we define the attacked plant H,
as: H, = (Xu,, %m, Pa,, %o,H,)

1: XHQ =Xy
28 Yo
Péf’e’y) ifee Yand oy (z,e) =y
1 ifeecd;andz =y
3 POV = pEMEY) if e € 53, and
om(z, M(e)) =y
undefined otherwise

where z,y € Xy, ande € X,
4 xo,H, = To,H

Note that, H, violates) .y, Pg (v) = 1forany » € Xg,
since we introduce the insertion events with probability one
and deletion events with the same probability as their legitimate
events. Nonetheless, we do not analyze H, by itself as it is just
an intermediate step.

Similarly to the construction of H,, we modify the behavior
of R to reflect the modifications made by an attacker on
the communication channel. We assume that R respects the
controllability condition (Cassandras and Lafortune, 2008).

Definition 2. Given R and X, we define the attacked supervi-
sor R, = (Xr,,Zm,0R,,%o0,R,) aS:

1: AXR{l =Xz
20 Y
or(z,e) ife € X and og(z,e)!
. oz ife € ¥4 and dr(x, M(e))!
3 Op,(v,¢) = Sr(z, M(e)) ife € 3; and dgr(x, M(e))!

undefined otherwise
where z € X, ande € X,
4: To,R, = TO,R

Based on H,, R, and A, we define the attacked system as
M, = H,||,(Rq||A). We used the parentheses with (R,||4) to
remind that A and R generate a new supervisor that supervises
H,. The PFA M, defines the language of the attacked system
in X7 , i.e., with the subscripts for each attacker modification.
For convenience, we define:

Xerita = {x € X, | 35 € L(M,) s.t. erir = da, (T0,6,,5)}

Remark 1: Although it could be that the attacker acts as a
supervisor in the composition H,||,(R,||A4), we only consider

attackers A that respect controllability whenever the attacker
does not make an insertion. When an attacker inserts an event,
it is assumed that the attacker acts faster than the plant, i.e.,
the plant is “blocked” to execute events during this short period
of “time”. On the other hand, the attacker does not disable any
plant event when it does not insert an event. It is easy to check if
an attacker satisfies these conditions (Meira-Gdes et al., 2019b).

Remark 2: The PFA M, is versatile since two useful languages
other than L£(M,) are easily extracted from it. Namely, the
attacked language executed by H is obtained by IT7 (L(H,
ll,(Re||A4))) while the language seen by the supervisor is
obtained by IF(L(H,||,(R.||A))).

In (Meira-Gdes et al., 2019b), the notion of winning level of an
attacker A is defined to be the probability that M, generates un-
safe strings. Namely, wina =3 o5 . Lp(Ma)(s) 2, where
Lcrit,a = {8 € E;kana (ZCO’]\JQ,S) € Xcrit,a}- Moreover,
an optimal attack function A°P!, one with the largest win 4,
exists, is realizable, and is deterministic and memoryless. We
call an attacker that implements an optimal attack function as
an optimal reachability attacker.

In this paper, we focus on investigating the detection of these
optimal strategies. In other words, the attacker might leave a
probabilistic trace in order to achieve an optimal result. This
trace could be used to detect if the controlled system is under
attack.

Example 2. Back to our running example, we assume that
an attacker manipulates events ¥, = {s2,mo}. Figure 3(a)
illustrates an optimal reachability attack strategy, where the
attacker simply inserts event mo when the relative distance
between the vehicles is 1. The attacked system M, is depicted
in Fig. 3(b) and using the results in (Meira-Gdes et al., 2019b),
we get that win gope = 0.5.

mog
gy

S\ {mi} 3\ {m=}

(a) Optimal reachability attacker A°Pt for M,

(b) Attacked system M,

Fig. 3. Optimal attack strategy and attacked system

4. PROBABILISTIC INTRUSION DETECTION PROBLEM
4.1 Intuition on the problem formulation

In (Meira-Goes et al., 2019b), an attacker is detected when the
attacked system generates a string with a supervisor projection
outside of L(M,,). In fact, the detection modules defined in
(Lima et al., 2019) and (Carvalho et al., 2018) only detect
these strings. Nonetheless, strings that reach the critical state
and whose II% projection belongs to £(M,,) are undetectable
by these detection modules. Our objective is to use the proba-
bilistic information about these strings, that previously was not
leveraged, to provide more information to detection modules.

2 The set I:CM-WL exactly contains independent measurable elements of
Lcrit,au

4

Let us revisit Example 2 to provide more intuition on our
goal. The shortest string that reaches the critical state in the
attacked system is mimo;m1. However, if we want to detect
and prevent a successful attack, we must detect before it reaches
the critical state. In this case, string s = mmeg; is the shortest
string where the attack can be mitigated since we can disable
my after detection at this point. The supervisor projection of
sis sgp = If(s) mimso meanwhile its plant projection
sy = I (s) = my. Thus, the supervisor observes string sg
while the plant executes string sy . There are two options once
string sp is observed: it was genuinely generated by M,, or
it was crafted by M,. It is impossible to disambiguate these
choices by only using string observation.

Let us compare the likelihood of sp being generated in M,
with the likelihood of s being generated in M,. The string sp
is generated by M,, with probability 0.1 * 0.1 = 0.01, while s
is generated by M, with probability 0.1 * 1 = 0.1. Thus, string
s is 90% more likely to be generated than sg, which means
that it is more likely that M, generated string s once string
sg is observed. This information can be used to disambiguate
these strings. An intrusion detection module can make better
decisions based on this new information.

In the next section, we introduce the notion of e-safe systems
which is related to the likelihood of system M, being the
generator of the aforementioned ambiguous strings. Intuitively,
e-safe systems are those with every ambiguous string being
more likely to be generated by the attacked system M,,.

4.2 e-safe systems

As was mentioned before, the intuition behind e-safe systems
is based on comparing the probability of generating a string
before it reaches the critical state in M, and the probability
of its supervisor projection being generated in M,,. These
two strings have the same observation and are considered
ambiguous but it is possible that one is more likely to be
generated than the other.

Similar as in the definition of safe-controllability (Paoli et al.,
2011) and NA-safe-controlabillity (Lima et al., 2019), we say
a state is a detection state if from this state the critical state
is reachable by a string with uncontrollable events and one
controllable event. We denote by X 4. as the set of all detection
states in M. Formally, X4.: = {x € Xpr, | s € (Zg U
E)E:n s.t. 5]ua (I’, S) S Xcrit,a A HH(S) [SDIB Ny

ucl-
Second, let Lge: {s € L(M,)|(srg € L(My,)) A
(6, (0,7, 5 8) € Xaet) N (O, (To,0,,8") & Xaer, © < [s])}
be the set of ambiguous strings, i.e., strings in M, that reach a
state in the detection state set and whose supervisor projection
is in M,. Note that, L4.; does not consider strings after a state
in Xy is reached. In our running example, X4.; = { 1’} and

Lger = {mamay, simima;, samimayg, ... }

Definition 3. Given the two systems M,, and M, and a fixed
e € (0.5, 1], the system M,, is denoted as e-safe with respect to
an optimal reachability attacker if Vs € L4, then

LOL)S
Lp(Mp)(sr) + Lp(Ma)(s) —

Definition 3 states that given an ambiguous string, the like-
lihood that this string is executed by M, compared to the
likelihood of its supervisor projection being executed by M, is
greater than e. If we choose an € value and M, is e-safe, then by
observing an ambiguous string it is more likely, with at least €

&)

confidence, that the attacked system generated this string. This
definition was inspired by the maximum a posteriori probability
(MAP) estimate.

It is important to note the similarity and the differences between
our work and the work of fault diagnosis. In fault diagnosis of
a logical system, the fault detector should be able to identify
with certainty one that an observed string belongs to the faulty
behavior. In the case of a probabilistic system, the notion of
A-diagnosability states that in the limit the detector is able to
identify the faulty behavior again with certainty one (Thorsley
and Teneketzis, 2005; Bertrand et al., 2014; Yin et al., 2019).
The notion of AA-diagnosability states that in the limit the fail-
ure event is included in the observed behavior with probability
one but the failure detection decision is not made with certainty
(Thorsley and Teneketzis, 2005; Bertrand et al., 2014; Yin et al.,
2019).

Our definition of e-safety does not distinguish the ambiguous
strings with certainty one as in the case of diagnosability and
A-diagnosability, nor distinguish these strings with an arbitrary
small uncertainty as in the case of AA-diagnosability. It has
a fixed parameter e that defines the certainty level of the
disambiguation of strings. The higher this parameter is the more
certain the disambiguation becomes, e.g., when € = 1, we fall
back into the intrusion detection of a logical system, which
coincides with the definition of logical diagnosability.

Based on Definition 3, we state two verification problems.

Problem 1. Given a controlled system M,, and the set of com-
promised events Y, verify if M, is e-safe w.r.t. an optimal
reachability attacker.

Another problem is to find is the largest ¢, if one exists, such
that the controlled system M, is e-safe.

Problem 2. Given a controlled system M, and the set of com-
promised events 3, find, if it exists, €* = inf{e € (0.5,1] |
M, is e-safe}.

5. SOLUTION METHODOLOGY
5.1 The verifier and solution intuition

Only strings in L4, are of interest, i.e., strings whose supervi-
sor projections are in £(M,,) and that reach a detection state.
We would like to construct an apparatus where these strings are
easily manipulated. For this reason, we first construct the DFA
T that captures strings in £(M,,) N TT7(L(M,)).

Definition 4. Let T be the DFA that generates TI*(L(T)) =
L(M,) N TIR(L(M,)). Namely, the states X7 € Xy, X
Xum,» o0 = (To,n,,,%o,nm,) and o7 ((21,32),€) = (y1,92)
if dps, (21,11 (e)) = y; and 6y, (z2,e) = yo fore € B,
and (x1,22), (y1,y2) € X, X X, with 2o & Xger. The
marked states of T are Xp,,, = {(z1,22) € Xp | Is €
£(T) s.t. 5T($0,T7 8) = (Il,xg), To € Xdet}-

Note that, the marked states of T are related to the set Lg.;. The
following lemma states this relationship.
Lemma 1. L,,(T) = Lget-

Proof: 1t follows from the construction of 7. 0

Based on 7', we define the verifier V' that captures string
executions of Lg.; in both M,, and M,,.

Definition 5. Based on CoAc(T), we define the verifier V' =
(XV7 Zm7 PV7 X0,V , XV,m)~ We have XV = XC’oAc(T)» Zm 18

the complete set of events, Py : Xy x %, x Xy — [0,1]2,
zo,v = xo, and Xy, = X ,,. The transition probability
function Py is defined as for x = (z1,22), ¥ = (y1,y2) €
XV:

Py, (1, 1T%(e), y1)
Py, (z2,e,92)
undefined

if dconc(r)(z,e) =y

otherwise

Pv(ff,&y) =

Although the verifier V' is not a PFA since Py is defined
differently, we apply definitions for PFA to the verifier V, e.g.,
L(V). In this manner, we state the following lemma.

Lemma 2. L,,(V) = Ly (T)and L(V) = pre(Ly,(V)).

Proof: 1t follows from the construction of V' and Lemma 1. O

Given z = (21,22), ¥y = (y1,¥2) € Xy and e € %,,, the
first element of the vector Py (z,e,y) denotes the probability
of generating I1%(e) in M,, from state x; € M, to state
y1 € M,. The second element of Py (z,e,y) denotes the
probability of generating event e in M, from state zo € M,
to state yo € M,. Let 215[1]x2s[2] ... s[|s|]z|5 41 be the sub-
run in V' generated by s € X7 starting in state ;. We define
the vector Py)"" = Py (1, s[1], 22) © Py (22,s[2],23) ©®---®
Py (x4, 8[|5], 2|5+1), where © is the entry-wise product of
vectors. When 1 = xg v, we use P = PV,

We are now ready to state our main theorem on the verification
of e-safe systems.

Theorem 3. A system is e-safe if and only if
Py |2
inf {VH} > e
seLn (V) | Py[1] + P [2]
Proof: The proof follows from the Definition 3, Lemma 2,
Ly(My)(sg) = Py[1], and L(M,)(s) = P} [2]. 0
What remains to be shown is the existence of an algorithm

that checks the aforementioned condition. For that reason, we
consider two cases:

(1) The set Lg.: has a finite number of strings. As a conse-
quence, computing the ratio
Py[2]
Py1] + Py 2]
forall s € Ly can be completed in finite time. Moreover,
based on Lemma 2, L ., has finite number of strings if and
only if V' is an acyclic directed graph.

(2) The set L4 has an infinite number of strings, which
implies that V' is cyclic. In this case, we cannot apply
Theorem 3 directly as a test. We need to find another
method for this case.

Next, we provide methods for both cases: acyclic and cyclic
verifier V. Fortunately, these two cases are connected and the
method used for an acyclic verifier is a special case of the
general method for a cyclic verifier. Nonetheless, we present
these two methods sequentially for readability purposes.

5.2 Acyclic verifier

Again, the set Lg; has finitely many strings if and only if V'
is acyclic. There exists different algorithms to check if V' is
acyclic, e.g., Depth-First-Search, Tarjan’s strongly connected
components algorithm, etc. (Bang-Jensen and Gutin, 2008). We
assume that the acyclicity of V has been confirmed and present
Algorithm 1 to verify e-safety. This algorithm simply checks
each marked string in V individually for e-safety.

Algorithm 1 Verification of e-safe for finite L g,

Input: V and €

Output: e-safety or not e-safe
1: function ACYCLIC_VERIFIER(V €)
2: forall s € £,,,(V) do

3 Compute P,

4 if vl < ¢ then
Ps[]+Pg 2]

5: return Not e-safe

6: end if

7 end for

8 return e-safe

9: end function

‘We omit the proof of correctness of Algorithm 1 since it follows
directly from Theorem 3 and the fact that V' is acyclic.

5.3 Cyclic verifier

Although Theorem 3 holds when V is cyclic, the set of strings
to be verified is infinite. Therefore, Algorithm 1 is a pseudo-
algorithm since it does not terminate. Nevertheless, we will
show that we can use the result for acyclic verifiers to handle
the case of cyclic verifiers. Namely, we decompose the cyclic
verifier into an acyclic verifier V,. and a finite set of cycles C'.
Intuitively, we directly apply Algorithm 1 to V.. Algorithm 1
tests the e-safety condition on V. but it is not sufficient to
determine if V is e-safe. To complete the test for V', we verify
the set of cycles C' in a similar manner as V..

Proposition 4 provides the result on the existence of such
decomposition.

Proposition 4. (Sect.1, pp-39 (Bang-Jensen and Gutin, 2008))
In a directed graph, every open walk (vertex can repeat) can be
decomposed as a simple path (no repeated vertex) and simple
cycles.

Proposition 4 is easily extended to DFA, where walks, paths and
cycles are defined over runs and sub-runs xs[1]. .. |4 s[|s|]
Llsl+1-

We define V,. as the acyclic part of V, i.e., one can think of
Vac as arooted tree with ¢y as the root and states of Xy, as
leaves. Namely, V. generates the marked language £,, (Vo) =
{s € Ln(V) | Farunzys[l]zes2]...s]s|]z)s41, 21 =
xo,v and z; # x; Vi # j}. In this manner, Algorithm 1 can be
directly applied to V,.. Nonetheless, we only have a necessary
condition since L, (Vae) C Lget.

Next, we define C' to be the set of all simple cycles in
V,ie, C = {ax = xs[1]...8[|s]]lz1 € (XvEn)* |
xisasub-runin Vand z; # x;, i # j € [|s||T}}. This set can
be obtained by algorithms that find simple cycles in directed
graphs, e.g., Johnson’s algorithm (Mateti and Deo, 1976). The
following theorem provides necessary and sufficient conditions
to test e-safety condition based on the constructed verifier V.

Theorem 5. Given the verifier V, the system M, is e-safe if and
only if:

(1) The acyclic part of V' denoted as V. is e-safe; and

(2) Forall (zqs[1]...s]|s|]x1) € C, Py™ 2] > Py™ (1]

Proof: We start by the only if part by assuming that M, is
e-safe. The first condition is immediate since L, (V,.) C
Lget. We show the second condition by contradiction. As-
sume that there exists ¢ = y1t[1]ya ...y t[|t|lyr € C such

that P3Y'[1] > P3¥'[2]. By Lemma 2 and the Pumping
Lemma, there exists a run x1s[1]z[2] ... zxs[k]c"s[k + n|t] +
aptn)e)+1 - - - s[|8[]7)s)41, Where 21 = 2oy, s = s1t"sp =
s[1]...s[k]t"s[k +nlt| + 1] ...s[|s|] € L, (V) and ¢ means
that the cycle sub-run is repeated n times. Since s1t"sy €
Ly, (V) and M, is e-safe:

slt"sz
ol I ©)
Pyo2 (1] + Pyt 72 [2]
il ™

PP T T

Equation (7) is true for any n € N. We can rewrite P{?tns? [i] =

P [i]p‘t/",yl [¢], i € {1,2}. From our assumption, ?{%ﬁ <
\'4
1. Thus, Ing € N such that:
el sl AN ®
Ppre2(1] p‘tyl 1] 1—c¢

It contradicts Equation (7) and the fact that M, is e-safe.

We move to the if part of the proof. It is assumed that con-
ditions (1) and (2) are satisfied. Again Proposition 4 and
Lemma 2 let us write any string s € Lg.; that generates
the run x1s[1] ... s[|s|]z|s41 as crt[1]cat[2]. .. cppt[|t|]2)41
where t € L,,,(Vae), 1 = xo,v, and ¢; is a closed-run (starting
and ending in z;) or ¢; = x; (no cyclic sub-run). The closed-
run ¢; is a composition of the simple cycles ¢}, . .. ,cf'i with
c =yti;[ys ... ti;[|ti;|]yy € C. This composition means
that these simple cycles are used in some way, not necessarily
sequentially, to construct ¢;. Since t € L,,(V,.), we have that

Pt,xl 2
\t/ml[] > _c (Condition (1))
PR T

and -
tij Yy’

P J 1 2

= 2

Pvz.ﬁyl [1
for every i € [|t||" and j € [k;]T. As a consequence, we can
group ¢ with the composition of simple cycles to produce s and
obtain

1 (Condition (2))

-

[2] €
Pl ~ 1—e

That concludes our proof. O

Theorem 5 shows that Problem 1 and Problem 2 are decidable
since the sets L,,(V,.) and C are finite sets. Similar to Al-
gorithm 1, we provide a general algorithm to verify the e-safe
condition of M,,.

The proof of correctness of Algorithm 2 follows directly from
Theorem 5. Note that, Algorithm 2 has exponential complexity
since both the number of finite strings in the marked language
of V. and the number of cycles in C' are exponential in the
number of states in V.

Example 3. We return to our running example and verify if the
controlled system M,, depicted in Fig. 2 is 0.9-safe w.r.t. the
attacked system M, illustrated in Fig. 3(b). We construct the
verifier V, shown in Fig. 4. The acyclic verifier V,. generates
a marked language L, (Vo) = {mimao;}. We see that V.
is 0.9-safe. Next, the set of all single cycles in V is C =
{(2,2)51(2,2),(2,2)s2(2,2)}. It follows that condition (2) of
Theorem 5 holds. Therefore, M,, is 0.9-safe w.r.t. M,,.

Algorithm 2 Verification of e-safety for arbitrary L g

Input: V and e

Output: c-safe or not e-safe
1: Compute V. and C from V

2: if Not e-safe = ACYCLIC_VERIFIER(V,, €) then
3 return Not e-safe

4: end if

s: forall c = z15[1]. .. 5[|s|]z|541 € C do

6: Compute Py
7
8
9
0
1

if P‘S/’”“'1 [2] < Pf,"“ [1] then
return Not e-safe
: end if
: end for
. return e-safe

Fig. 4. Verifier V

6. CONCLUSION

We have considered the problem of detection of sensor de-
ception attacks in the context of stochastic supervisory control
theory. The notion of e-safe systems is introduced as a first step
to obtain quantitative measurements to help intrusion detection
modules. These modules can use this information to reason
about strings that are considered undetectable when only quali-
tative reasoning is used. Necessary and sufficient conditions to
test e-safety are presented. Furthermore, an algorithm is pro-
vided to test these conditions which shows that verification of
e-safety is decidable. The algorithms to test e-safety presented
in this paper are in the worst case exponential in time.

The presented definition of e-safety is parameterized by a
specific attack strategy. It would be of interest to consider
a more general definition parameterized by a class of attack
strategies (e.g., deterministic attack strategies). Moreover, it
would be of interest to soften the e-safety condition.

REFERENCES

Bang-Jensen, J. and Gutin, G.Z. (2008). Digraphs: Theory,
Algorithms and Applications. Springer Publishing Company,
Incorporated, 2nd edition.

Bertrand, N., Haddad, S., and Lefaucheux, E. (2014). Founda-
tion of Diagnosis and Predictability in Probabilistic Systems.
In TARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 29,
417-429. New Delhi, India.

Cardenas, A.A., Amin, S., and Sastry, S. (2008). Secure con-
trol: Towards survivable cyber-physical systems. In 2008
The 28th International Conference on Distributed Comput-
ing Systems Workshops, 495-500.

Carvalho, L.K., Wu, Y.C., Kwong, R., and Lafortune, S. (2018).
Detection and mitigation of classes of attacks in supervisory
control systems. Automatica, 97, 121 — 133.

Cassandras, C.G. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2 edition.

Garg, VK., Kumar, R., and Marcus, S.I. (1999). A probabilistic
language formalism for stochastic discrete-event systems.
IEEE Transactions on Automatic Control, 44(2), 280-293.

Kumar, R. and Garg, V.K. (2001). Control of stochastic discrete
event systems modeled by probabilistic languages. IEEE
Transactions on Automatic Control, 46(4), 593-606.

Lawford, M. and Wonham, W.M. (1993). Supervisory control
of probabilistic discrete event systems. In Proceedings of
36th Midwest Symposium on Circuits and Systems, 327-331.

Lima, PM., Alves, M.V.S., Carvalho, L.K., and Moreira, M.V.
(2019). Security against communication network attacks of
cyber-physical systems. Journal of Control, Automation and
Electrical Systems, 30(1), 125-135.

Mateti, P. and Deo, N. (1976). On algorithms for enumerating
all circuits of a graph. SIAM J. Comput., 5, 90-99.

Meira-Gées, R., Kang, E., Kwong, R., and Lafortune, S. (2017).
Stealthy deception attacks for cyber-physical systems. In
2017 IEEE 56th Annual Conference on Decision and Control
(CDC), 4224-4230.

Meira-Gées, R., Kang, E., Kwong, R., and Lafortune, S.
(2019a). Synthesis of sensor deception attacks at the super-
visory layer of cyber-physical systems. under review.

Meira-Gées, R., Kwong, R., and Lafortune, S. (2019b). Syn-
thesis of sensor deception attacks for systems modeled as
probabilistic automata. In 2019 American Control Confer-
ence (ACC).

Meira-Goées, R., Marchand, H., and Lafortune, S. (2019c¢). To-
wards resilient supervisors against sensor deception attacks.
In To appear at 2019 IEEE 58th Annual Conference on De-
cision and Control (CDC).

Pantelic, V., Lawford, M., and Postma, S. (2014). A framework
for supervisory control of probabilistic discrete event sys-
tems. [2th IFAC International Workshop on Discrete Event
Systems (WODES), 47(2), 477 — 484.

Paoli, A., Sartini, M., and Lafortune, S. (2011). Active fault
tolerant control of discrete event systems using online diag-
nostics. Automatica, 47(4), 639-649.

Rashidinejad, A., Wetzels, B., Reniers, M., Lin, L., Zhu, Y.,
and Su, R. (2019). Supervisory control of discrete-event
systems under attacks: An overview and outlook. In 2079
18th European Control Conference (ECC), 1732—1739.

Su, R. (2018). Supervisor synthesis to thwart cyber attack with
bounded sensor reading alterations. Automatica, 94, 35 — 44.

Teixeira, A., Pérez, D., Sandberg, H., and Johansson, K.H.
(2012). Attack models and scenarios for networked control
systems. In Proceedings of the 1st International Conference
on High Confidence Networked Systems, HICONS *12, 55—
64. ACM, New York, NY, USA.

Thorsley, D. and Teneketzis, D. (2005). Diagnosability of
stochastic discrete-event systems. [EEE Transactions on
Automatic Control, 50(4), 476-492.

Thorsley, D. and Teneketzis, D. (2006). Intrusion detection in
controlled discrete event systems. In Proceedings of the 45th
IEEE Conference on Decision and Control, 6047-6054.

Wang, Z., Meira-Gées, R., Lafortune, S., and Kwong, R.
(2020). Mitigation of classes of attacks using a probabilistic
discrete event system framework. In 15th IFAC Workshop on
Discrete Event Systems WODES 2020 (to appear).

Yin, X., Chen, J., Li, Z., and Li, S. (2019). Robust fault diagno-
sis of stochastic discrete event systems. IEEE Transactions
on Automatic Control, 64, 4237-4244.

