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ABSTRACT: Precise control over the size, shape, composition, structure, and crystal phase
of random alloy and intermetallic nanocrystals has been intensively explored in
technologically important applications in recent years. Different from the monometallic
nanocrystals and other types of structural nanocrystals such as core−shell and
heterostructured nanocrystals, well-defined multimetallic random alloy and intermetallic
nanocrystals exhibit unique and intriguing physicochemical properties, serving as ideal
models for benefiting the structure-to-property studies. As such, random alloy and
intermetallic nanocrystals have attracted extensive attention and interest in scientific research
and shown huge potential in various fields. In this review, we focus specifically on
summarizing the synthetic principles and strategies developed to form random alloy and
intermetallic nanocrystals with enhanced performance. Some representative examples are
purposely selected for emphasizing basic concepts and mechanistic understanding. We then
highlight the fascinating properties and widespread applications of random alloy and intermetallic nanocrystals in electrocatalysis,
heterogeneous catalysis, optical and photocatalysis, as well as magnetism and conclude the review by addressing the prospects and
current challenges for the controlled synthesis of random alloy and intermetallic nanocrystals.
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1. INTRODUCTION

Metals, covering more than 75% of the elements in the
periodic table, have received wide recognition due to their
extensive applications in photonics, catalysis, energy storage
and conversion, electronics, and medicine.1−17 Especially, the
metals in a finely divided state known as nanocrystals generally
exhibit fascinating properties that are radically different from
the bulk materials. It has been widely demonstrated that the
intriguing properties of metal nanocrystals mainly stem from
the surface effect and quantum size effect that can be
manipulated in terms of size, shape, composition, structure,
and crystal phase.18−32 A notable example can be found in Au,
where Au nanocrystals showed remarkable catalytic activity for
low-temperature carbon monoxide (CO) oxidation even
though bulk Au is inactive for this reaction.33,34 Inspired by
this incredible discovery, tremendous efforts have been
devoted to developing a wide variety of synthetic approaches
to controllably synthesize metal nanocrystals for greatly
enhancing their performance over the past two decades.35−49

Despite the great success, it is well-documented that
monometallic nanocrystals generally cannot meet all the
requirements in practical applications, where metal nanocryst-
als are anticipated to simultaneously possess high activity, high
chemical and structural stability, high selectivity, and low cost.
To potentially meet all of these requirements, in recent years it
has drawn increasing attention in the development of well-
defined multimetallic nanocrystals with fascinating perform-
ance. Multimetallic nanocrystals composed of distinct metal
elements exhibit unique physicochemical properties that are
superior to monometallic nanocrystals for a given application
due to synergetic effects associated with different metals.50−59

Typically, the incorporation of a second metal for the
formation of bimetallic nanocrystals can dramatically alter
their electronic structures and spatial arrangement modes,
further benefiting the unprecedented improvement in perform-
ance.60−66 For example, the electrochemical activity toward
oxygen reduction reaction (ORR) can be markedly intensified
with the incorporation of a 3d transition metal M (M = Ni, Co,
Fe, or Cu, etc.) into Pt nanocrystals for the formation of Pt−M
bimetallic nanocrystals.67−76 By incorporating heterometals
together, the Pt−M bimetallic nanocrystals could be used not
only to endow a bifunctionality but also to greatly reduce the
overall cost by decreasing the use of Pt. Additional example
further showed that the localized surface plasmon resonance
(LSPR) properties of Au nanocrystals can be further improved
through alloying with Ag.23 This strategy has been easily
expanded to syntheses of other multimetallic nanocrystals with
desirable properties: for example, the synthesis of hexoctahe-
dral Au89Pd11 nanocrystals with enhanced electrocatalytic
performance toward formic acid oxidation reaction (FAOR),
the preparation of pentacle Au86Cu14 nanocrystals with
enhanced LSPR property and catalytic activity toward the

reduction of p-nitrophenol, and the fabrication of rhombic
dodecahedral Ir38Ni28Cu34 nanoframes (NFs) with enhanced
electrocatalytic activity toward oxygen evolution reaction
(OER).21,53,77−91 Aiming at further optimization of their
properties, it is of critical importance to rationally manipulate
the experimental parameters to synthesize the multimetallic
nanocrystals with well-defined size, shape, composition,
structure and crystal phase, as their expressed properties
strongly depend on these structural parameters.18,92−104

The physical structures of multimetallic nanocrystals are
known to be multitudinous and complicated.105−107 In some
cases, these multimetallic nanocrystals might present entirely
different properties, even though they have the same
composition and stoichiometry.105,108−110 It has been proven
that these performance differences can be ascribed to the
variation in atomic-scale features (e.g., atomic ordering, spatial
element distribution, and surface structure). For example, Cui
and co-workers recently demonstrated that ordered interme-
tallic Pd3Mn nanocrystals exhibit superior electrocatalytic
activity toward ORR as compared with their counterparts in
a disordered phase.111 Sun and co-workers also confirmed that
the chemical stability and electrocatalytic activity of FePt
nanocrystals toward ORR and hydrogen evolution reaction
(HER) could be greatly improved by changing their crystal
phase from the atomically disordered phase to the ordered
phase.112 Therefore, it is inappropriate to simply use
“composition” to define multimetallic nanocrystals, and thus
increasingly attention have been turned to the development of
new synthetic protocols to purposefully modulate the atomic-
scale features of multimetallic nanocrystals.113−119

An alloy generally refers to a single-phase solid solution
consisting of mixed metallic components, while part of which
could also be a nonmetallic element(s) (e.g., steel). When the
atoms of alloy constituents are randomly distributed across the
lattice, it can be designed as a random alloy. When the atoms
of the components form a structurally ordered solid-state alloy
and occupy the lattice with a specific atom stoichiometry, it is
conventionally called an intermetallic compound. The ordered
atomic arrangements in an intermetallic structure could be
isotropic or in a specific crystallographic direction, depending
on the stoichiometry and the formation conditions,10,12,105 but
intermetallics always have a long-range atomic ordering. As
such, these features endow the intermetallic compounds with
unique properties and applications, which is considerably
different from other structured nanocrystals such as core−shell
and heterostructured nanocrystals.120−126 It has been well-
established that the interconversion between random alloy and
intermetallic nanocrystals can be readily achieved when the
specific condition (e.g., temperature, stoichiometry, and atom
binding environment) is met, significantly facilitating structure-
to-property studies.31,112,127−132 Among them, noble-metal
based multimetallic nanocrystals have received comprehensive
concern by the many researchers around the world, due to
their excellent activities and stabilities. In recent years, it has
become a field of active research related to the synthesis of
random alloy and intermetallic nanocrystals by rationally
manipulating the atomic ordering, due to their remarkable
properties toward a broad range of applications.30,133−143 A
large number of such studies have not only deepened our
understanding of their fascinating nanoscale properties but also
showed the great potential of these noble−metal-based
multimetallic nanocrystals in various fields.92,141,144−148
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Although there have been several review articles focusing on
random alloy nanocrystals or ordered intermetallic nanocryst-
als of some specific metals in recent years,1,5,32,92,93,99,123 a
comprehensive outline on noble−metal-based random alloy
and intermetallic nanocrystals simultaneously covering their
synthetic approaches and applications is still intriguing. It
should be worth noting that some of the representative articles
are carefully selected to highlight the latest advances as much
as possible. The goal of this review is to summarize recent
advances related to the syntheses and applications of noble-
metal based random alloy and intermetallic nanocrystals. In
particular, we highlight the formation mechanisms and the
most commonly practiced approaches for syntheses capable of
preparing random alloy and intermetallic nanocrystals with
tunable and well-controlled properties. After that, we further
place a special emphasis on their fascinating properties and
widespread applications, including electrocatalysis, heteroge-
neous catalysis, photocatalysis, as well as optics and magnet-
ism. Finally, we address some of the current challenges and

developing trends associated with the controllable synthesis of
random alloy and intermetallic nanocrystals based on the
previous summary.

2. GENERAL PRINCIPLES FOR THE FORMATION OF
RANDOM ALLOY AND INTERMETALLIC
NANOCRYSTALS

2.1. Atomic Ordering

As mentioned above, the nanocrystals can be broadly classified
into random alloys and atomic-ordered intermetallic com-
pounds.1,10,12 An intermetallic compound is reserved for alloys
that have strict stoichiometry, atomically ordered arrangement,
and a well-defined atom binding environment. It should be
pointed out that the atomic-scale features including spatial
arrangement, atomic ordering, and faceting are critically
important parameters to determine their expressed physico-
chemical properties. Especially, random alloys and intermetal-
lic compounds typically exhibit markedly different properties
even if they possess the same atomic ratio and elemental

Table 1. Some Typical Noble Metal-Based Intermetallic Nanocrystals Reported Previouslya

intermetallic
formula crystal structure preparation conditions ICDD PDF card literature

Pt3Ti Cu3Au, Pm3̅m Pt3Ti random alloy annealed at 600 °C, 12 h 03-065-3259 ref 165
Pt3V Cu3Au, Pm3̅m Pt3V random alloy annealed at 650−700 °C, 24 h 01-072-3016 ref 166
Pt3Cr Cu3Au, Pm3̅m Pt3Cr random alloy annealed at 700 °C, 24 h 01-071-7609 ref 135
Pt3Mn Cu3Au, Pm3̅m Pt(acac)2 + Mn(acac)2 OAm/OA at 200 °C, 0.5 h 01-071-9674 ref 167
Pt3Co Cu3Au, Pm3̅m Pt3Co random alloy annealed at 700 °C, 2 h 01-071-7410 ref 168
Pt3Fe Cu3Au, Pm3̅m Pt3Fe random alloy annealed at 600 °C, 12 h JCPDS: 29-0716 ref 169
PtFe AuCu, P4/mmm Pt−Fe random alloy annealed at 700 °C JCPDS: 65-1051 refs 128, 157, and

161
PtNi AuCu, P4/mmm Pt(acac)2 + Ni(acac)2 KBH(Et)3 in THF, RT 01-072-2524 ref 170
PtFe3 Cu3Au, Pm3̅m PtFe3 random alloy annealed at 600 °C, 12 h 01-071-8365 ref 136
PtCu3 Cu3Au, Pm3̅m PtCu3 random alloy annealed at 1000 °C, 10 h 03-065-3247 ref 171
Pt3Zn Cu3Au, Pm3̅m Pt(acac)2 + Zn(acac)2 PVP in DMF at 180 °C, 9 h 01-072-3028 ref 172
Pt3Zn Cu3Au, Pm3̅m Pt(acac)2 + Zn(acac)2 OAm/OA at 350 °C, 1 h 01-072-3028 ref 173
PtZn AuCu, P4/mmm Pt/C + Zn chips, heated at 500 °C, 8 h 01-072-3027 ref 174
Pt3Sn Cu3Au, Pm3̅m H2PtCl6 + SnCl2, DDA + HDD, at 300 °C, 0.5 h 01-072-2977 ref 175
PdFe AuCu, P4/mmm PdFe random alloy annealed at 500 °C, 2 h 01-089-2051 ref 176
Au10Pd40Co50 AuCu, P4/mmm Au10Pd40Co50 random alloy annealed at 800 °C, 0.5 h 01-071-7394 (for

PdCo)
ref 177

PdCu CsCl, Pm3̅m PdCu random alloy annealed at 400 °C 01-080-4575 ref 138
PdCu CsCl, Pm3̅m PdCu random alloy annealed at 375 °C, 1h 01-080-4575 ref 129
PdZn AuCu, P4/mmm Pd2(dba)3 + Et2Zn OAm at 250 °C, 1 h 01-072-2936 ref 178
Pd3Pb Cu3Au, Pm3̅m Pd/C + Pb(Ac)2, EG, microwave 300W, 0.1 h 01-089-2062 ref 179
Pd3Fe Cu3Au, Pm3̅m Pd3Fe random alloy annealed at 600 °C, 24 h JCPDS: 65-7280 ref 110
Cu3Au Cu3Au, Pm3̅m Cu(Ac)2 + Au nanoparticles OAm/OA at 300 °C 01-088-1731 ref 180
AuCu AuCu, P4/mmm HAuCl4 + CuCl2, glycerol at 300 °C, 5 h 01-089-2037 ref 181
AuCu AuCu, P4/mmm AuCu random alloy annealed at 500 °C, 12 h 01-089-2037 ref 182
RhBi NiAs, P63/mmc Bi(Ac)3 + Rh2(Ac)4, EG, microwave 1.6 kW, 240 °C, 1 h ref 183
Au3Fe Cu3Au, Pm3̅m HAuCl4 + Fe(acac)3, reduced by n-butyllithium in OAm and octyl

ether at 250 °C
ref 184

Au3Co Cu3Au, Pm3̅m HAuCl4 + Co(acac)2, reduced by n-butyllithium in OAm and octyl
ether at 250 °C

ref 184

Au3Ni Cu3Au, Pm3̅m HAuCl4 + Ni(acac)2, reduced by n-butyllithium in OAm and octyl
ether at 250 °C

ref 184

PtBi/Pt NiAs, P63/mmc (PtBi
core)

Pt(acac)2 + Bi(Ac)3 in NH4Br/OAm/1-octadecene,160 °C, 5 h ref 122

aAdapted with permission from ref 130, and modified. Copyright 2019 National Academy of Sciences, USA. Note: the related abbreviations:
Bi(Ac)3: bismuth(III) acetate; DDA: dodecylamine; DMF: N,N-dimethylformamide; EG: ethylene glycol; Et2Zn: diethylzinc; HDD: 1,2-
hexadecandiol; Co(acac)2: cobalt(II) acetylacetonate; Fe(acac)3: iron(III) acetylacetonate; Mn(acac)2: manganese(II) acetylacetonate; Ni(acac)2:
nickel(II) acetylacetonate; OA: oleic acid; OAm: oleylamine; Pb(Ac)2: lead(II) acetate; Pd2(dba)3: tris(dibenzylideneacetone)dipalladium(0);
PVP: poly(vinylpyrrolidone); Pt(acac)2: platinum(II) acetylacetonate; Rh2(Ac)4: rhodium acetate dimer; THF: tetrahydrofuran; Zn(acac)2:
zinc(II) acetylacetonate.
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composition. Thermodynamically, the favorable positions for
atoms in the lattice are largely associated with atomic radii,
atomic interactions, and lattice parameters.12 Note that the
formation of thermodynamically stable alloys will be favorable
during the synthesis when both metallic compositions meet the
Hume−Rothery rules: (i) an atomic radii discrepancy of less
than 15%; (ii) the similar crystal lattices and electro-
negativities; (iii) the same valence state.149 In some cases,
the assistance of extra heating is also required to facilitate the
interdiffusion of atoms and to avail of an alloy formation,
especially for the systems with relatively low reaction
temperature that cannot effectively ensure the atoms to
reach their favorable positions via a diffusion process.150,151

In theory, the generation of ordered intermetallic com-
pounds is energetically more favorable than disordered alloys
at low temperatures due to the low entropy associated with the
ordered arrangement of atoms and the negative value of the
change in enthalpy derived from the higher bonding energy in
intermetallics.152 Some typical noble metal-based intermetallic
nanocrystals with information such as crystal structure and
preparation conditions that were reported previously are given
in Table 1. However, the formation of alloys with disordered
atomic arrangements seems to be prevalent instead of ordered
intermetallic compounds in most of the practical syntheses,
since their synthetic temperatures that are usually below the
critical phase-transition temperature can not greatly facilitate
the interdiffusion with the high-activation-energy barrier and
equilibration. In recent years, ordered intermetallic compounds
have gained increasing interest due to their remarkable
performance and highly controllable compositions and surface
structures.66,129,153−164 Consequently, an in-depth understand-
ing of the effects governed by the thermodynamic and kinetic

parameters and the achievement in the synthesis of high-
quality ordered intermetallic nanocrystals are essential.
2.2. Thermodynamic and Kinetic Perspective on Random
Alloy and Intermetallic Nanocrystals

2.2.1. Thermodynamic Analysis. For simplicity, here we
mainly focus on the ideal bimetallic system. In a bulk system,
the excess Gibbs free energy upon mixing can be defined by
the changes in enthalpy (ΔHmix) and entropy (ΔSmix) during
the formation of a random alloy or intermetallic com-
pound:1,12,185−187

G H T Smix mix mixΔ = Δ − Δ (1)

where T is the absolute temperature. Typically, when ΔGmix is
negative, a random alloy or intermetallic compound should
form spontaneously under a given set of experimental
conditions, resulting in dramatically lowering the overall free
energy. It should be mentioned that the change in entropy is
generally believed to be always positive upon mixing different
metals, and thus the generation of a random alloy or
intermetallic compound is entropically favorable. According
to eq 1, it is not difficult to find that ΔHmix value played a
major role in facilitating the formation of a random alloy or
intermetallic compound because TΔSmix is constantly positive.
If the bond formation between different atoms is exothermic,
ΔHmix should be negative. As a result, ΔGmix will be negative
under these conditions, thereby benefiting the spontaneous
formation of a random alloy or intermetallic compound.
If the mixing between different atoms is endothermic

(ΔHmix > 0), the formation of the resultant product should be
temperature-dependent. At relatively high temperatures, the
contribution from entropy normally becomes much larger than
that from enthalpy, the formation of a random alloy or

Figure 1. (a) Atomic-resolution HAADF-STEM images of a single Pt3Co nanoparticle obtained at different temperatures and annealing times. (b)
A comparison of the driving force for forming ordered structures at different crystallographic facets and in the bulk derived from DFT calculations.
(c) Changes in the percentages of the surface facets, for example, {111}, {110}, and {100}, as a function of annealing condition. Adapted with
permission from ref 131 and modified. Copyright 2015 Nature Publishing Group under [Creative Commons Attribution 4.0 International License]
[http://creativecommons.org/licenses/by/4.0/].
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intermetallic compound will be favorably derived from a
negative ΔGmix. In contrast, ΔGmix should be positive at
relatively low temperatures, resulting in the segregation
between different components.
In addition, eq 1 can also be applied to interpret the

transition process from random alloy to ordered intermetallic.
In this case, the change in entropy is usually negative due to
the disorder-to-order transition, and the change in enthalpy is
also negative derived from the higher bonding energy in
intermetallics. As a result, low temperatures will be beneficial
to the disorder-to-order transition while high temperatures will
lead to a favorable transition to the disordered phase. It should
be also emphasized that the critical phase-transition temper-
ature is defined by the temperature, at which the changes in
total Gibbs free energy are equal to zero.
However, the surface free energies in real systems might lead

to completely different scenarios as compared to those cases
predicted by the simplified and idealized model. For
nanocrystals, the surface free energy has a major influence
on the total free energy of the system.8,101,185 As a result, the
surface free energy should also be involved to precisely predict
the changes in Gibbs free energy,185 as given by

G H T S Amix mix mix γΔ = Δ − Δ + Δ (2)

where Δγ is the changes in specific surface free energy and A is
the surface area of the nanocrystal. During the disorder-to-
order transition, A remains constant by assuming that no shape
change is observed. Note that Δγ is generally positive because
the ordered surface has much higher bond energy than a
disordered one. To further explain the shifting of disorder-to-
order phase transition temperature in nanocrystals as
compared with that of the bulk, eq 3 can be established
based on eq 2, where Tnano and Tbulk are the critical phase
transition temperatures in nanocrystals and the bulk,
respectively.12

T T A H/ 1 ( /V) /nano bulk Vγ= + Δ Δ (3)

As is known to all, the change in volume-specific bulk
enthalpy (ΔHV) is negative and the specific surface area (A/V)
is inversely proportional to the nanocrystal size.8,15,39,188−190

Hence, according to eq 3, it suggests that smaller nanocrystals
should possess lower disorder-to-order phase transition
temperatures. A typical example was demonstrated by Alloyeau
and co-workers,153 who found that PtCo nanocrystals with an
average size of 2.4−3 nm had phase-transition temperatures
between 175−325 °C. It was well documented that these
phase-transition temperatures were significantly lower than
that of the bulk PtCo. In addition to the size effect, the shape
of a nanocrystal could also dramatically affect the changes in
Gibbs free energy,131 since the facets exposed on a nanocrystal
have a strong correlation with the shape and different facets
generally possess diverse specific surface free energies. As such,
it is concluded that the nanocrystal shape has a non-negligible
impact on the disorder-to-order transition temperature
associated with the total change in Gibbs’ free energy. Obvious
changes to the ratio of {100} facets during the in situ heating of
an individual Pt3Co nanocrystal together with the formation of
the ordered intermetallic phase were observed, and the {111}
facets became dominant (Figure 1). Moreover, surface
segregation is often observed during the disorder-to-order
transition, when the stoichiometric composition of a given
nanocrystal deviates slightly from the favored ratio.181,191−195

Overall, the size, shape, and composition of nanocrystals all

have a major influence on their surface free energies and thus
the disorder-to-order transition.

2.2.2. Kinetic Analysis. In contrast to thermodynamics,
kinetics is affected by a variety of dynamic factors during the
formation of a random alloy or intermetallic compound, where
the nucleation, growth, and diffusion processes are typically
involved. It is important to note that these processes are largely
related to bond breaking and formation, as well as atom
diffusion. Here, we mainly focus on the key factors to affect the
kinetics of the disorder-to-order transition at a given
temperature. According to the Johnson-Mehl-Avram-Kolmo-
gorov (JMAK) theory,196−198 the kinetics of transformation
during the disorder-to-order transition are given by

f Nv t1 exp( /3 )3 nπ= − − (4)

where f is fraction transformed, N is the rate of nucleation, v is
the growth rate, t is reaction time, and n is held to have an
integer value between 1 and 4. Note that the transformations
follow a characteristic s-shaped profile, where the trans-
formation rates are slow at the beginning and the end of the
transformation but fast in between. Specifically, many nuclei of
the ordered phase form at a slow rate during the initial period,
as the formation of the ordered phase is generally required to
overcome the larger kinetic energy barriers to reach the
thermodynamic minimum. Subsequently, the nuclei grow into
nanocrystals at a fast rate and consume the disordered phase
while nuclei continue to form in the remaining parent phase.
The reaction rate begins to slow when the transformation
approaches completion. It should be noted that many
significant assumptions and simplifications are made in this
equation. First, the nuclei are believed to be distributed
randomly in space. Second, the growth rate is independent of
the extent of transformation and also keeps at the same rate in
all directions. These assumptions do not affect the qualitative
trends during the kinetic analyses, so the general conclusions
remain valid.
During the disorder-to-order transition, atom diffusion is

found to be a kinetically controlled process that involves the
motion of atoms through a jumping or hopping mechanism,
facilitating atom arrangement. It should be pointed out that
jumping or hopping is conceptually the most basic mechanism
for adatoms diffusion, and in this model, motion occurs
through successive jumps to adjacent sites, the number of
which depends on the nature of the surface lattice. The rate of
atom migration within a lattice (D) can be defined by
considering random atomic jumping:199,200

D D E RTexp( / )o diff= − (5)

where D0 is the diffusion pre-exponential factor, Ediff is the
energy barrier for an atom to jump from one site to another, T
is the absolute temperature, and R is the ideal gas constant. It
should be emphasized that D0 is largely associated with the
bonding strength and the type and effective mass of the
atom.199 In principle, weakly bonded atoms typically possess a
lower defect formation energy and jumping barrier in the atom
diffusion process. For example, the disorder-to-order transition
in the Au−Cu system is much easier as compared to those in
Pt-based systems that have relatively stronger bonding
atoms.150,180,201−204 Note that the atom diffusion process is
mainly dominated by vacancy diffusion with a much lower
energy barrier as compared to the atom-exchange for metals.
To greatly accelerate the atom diffusion process during the
disorder-to-order transition, a viable mean is to raise the
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reaction temperature to facilitate the generation of vacancies or
defects and atom migration in the crystal lattice. In addition to
thermal activation, another effective strategy is to artificially
introduce the vacancies or defects into the parent phase to
speed up the diffusion process. For example, introducing Au
atoms to the Pt−Fe system is employed to generate vacancies
and thus achieve the phase transition.205 This is most likely
because Au atoms with low surface energy are immiscible to
FePt and tend to segregate onto the FePt nanocrystal surface at
600 °C, resulting in a formation of vacancies within the
nanocrystal. Furthermore, it has been well demonstrated that
the size, shape, and composition of nanocrystals have a major
impact on the transition kinetics due to their distinctive surface
and/or interface free energies and atom diffusion
rates.154,164,177,206−216

3. SYNTHETIC APPROACHES TO RANDOM ALLOY
NANOCRYSTALS

Many efforts have been devoted to the synthesis of a rich
variety of random alloy nanocrystals with well-defined size,
shape, composition, and structure in the past deca-
des.50,54,104,120,167,217−231 Typically, the random alloy nano-
crystals exhibit unique physicochemical properties, which are
superior to nanocrystals consisting of individual metals. Aiming
at acquiring the desired random alloy nanocrystals, it is very
essential to master over the synthetic approaches. In this
chapter, we mainly focus on the common approaches for the
synthesis of random alloy nanocrystals and highlight their
recent progress. Table 2 summarizes some representative
examples related to the synthesis of random alloy nanocrystals
using different approaches.

3.1. Co-Reduction

Co-reduction is a straightforward and versatile approach for
the facile synthesis of random alloy nanocrystals, where
rational choice of reducing agent, capping agent, coordination
ligand, and reaction temperature all have big effects on the size,
shape, composition, and structure of the final product. This
approach typically involves the simultaneous reduction of two
or more metal-containing precursors to charge neutral atoms,
which then undergoes the nucleation and growth.232,247−251

According to the classic nucleation theory, as proposed by
LaMer and co-workers,252 it is of critical importance to
effectively separate the nucleation and growth into two distinct
processes to enable tuning the size and dispersity of the
resultant alloy nanocrystals in a synthetic system. It should be
pointed out that the nucleation and growth processes of
nanocrystals are largely related to the reduction rate of the
metal precursors in solution. Therefore, the key to the
successful synthesis of well-defined random alloy nanocrystals
in the co-reduction process is capable of rationally modulating
the reduction rate of the metal precursors.
Normally, metal ions possess intrinsic differences in

reduction potential. The metal ions with higher reduction
potentials are quickly reduced as compared to those with low
reduction potentials under the same conditions. To enable
forming alloyed nanocrystals via co-reduction, a viable means is
to strategically select the metal combinations with pertinent
redox potentials and possible alloy phase to ensure their
matched reduction rates and the stable product. For example,
Pd−Pt random alloy nanocrystals can be readily synthesized
through co-reduction, due to their minor differences in
reduction potentials (+0.9 V for Pd2+/Pd, +1.18 V for Pt2+/
Pt).232,253−257 Specifically, Sun and co-workers reported their
synthesis of Pd−Pt random alloy nanocrystals by simulta-
neously reducing Pd(acac)2 and Pt(acac)2 with morpholine
borane as a reducing agent in the presence of OAm as both the
solvent and stabilizer (Figure 2).232 It was revealed that the use
of morpholine borane with strong reducing power and the
appropriate temperature were the keys to the success of the
synthesis. By simply manipulating the feeding ratio of the two
precursors and reaction temperature, the composition and size
of the resultant nanocrystals could be precisely controlled.
They found that the atomic ratio between Pd and Pt in the
final product was nearly proportional to the feeding ratio
between Pd(acac)2 and Pt(acac)2. Subsequent studies have
also demonstrated this notion.27,257,258 Therefore, controlling
the feeding ratio of precursors has become a simple and viable
route to manipulate the composition of the final product.
However, the small difference in reduction potentials of the
precursors involved is not always essential since it might also
enable the opportunity to generate core−shell nanocrystals via
a one-pot approach. Skrabalak and co-workers reported that
Pd−Pt core−shell nanodendrites could be formed in the
presence of Pd(acac)2 and Pt(acac)2 (as the precursors) and
OAm (as both reducing agent and solvent) at 160 °C.233 In
comparison with the work reported by Sun and co-workers,232

it is not difficult to conclude that structures of the final product
could be determined by the reducing agents (OAm vs
morpholine borane/OAm) and probably the reaction temper-
atures (160 °C vs 60/90/180 °C) in each case, even though
Pd(acac)2 and Pt(acac)2 that have similar reduction potentials
were used as the precursors in both reports. Explicitly, to
achieve a co-reduction, one needs to comprehensively design
various synthetic conditions and reaction parameters such as

Table 2. Summary of Some Representative Random Alloy
Nanocrystals with Corresponding Synthetic Approaches

synthetic
approach

metal
composition morphology reference

co-reduction PdPt nanosphere refs 232
and 233

Ag@AgAu core−frame nanocube ref 234
Pt3Ni nanocube, nano-octahedron ref 76
PtCu nanorod ref 231

seed-mediated
synthesis

AuAg, AuSn,
AuPt

nanosphere ref 235

AuPd, AuPt,
AuCu

nanowire ref 236

Pd@PdCu nanocube ref 237
AgPt-tipped
Au

nanorod ref 238

thermal
decomposition

PtFe nanosphere, nanocube,
nanowire

refs 239
and 240

galvanic
replacement

AuAg nanocage refs 241
and 242

PdPt hollow nanocube ref 243
PdAg triangular nanoframe ref 244

Kirkendall effect PtFe hollow nanosphere ref 103
AuAg,
AuPdAg,
PdAg

double-walled nanobox ref 245

oxidative
etching

PtNi nano-octahedron ref 246

Pt3Ni rhombic dodecahedral and
tetrahexahedral nanoframe

refs 68
and 220
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the solvent, reducing agent(s), capping agent(s), and reducing
temperature, including the comparable precursors but not just
a consideration on the closeness of their reduction potentials.
When the two metal precursors have relatively large

differences in reduction potential, the core−shell nanocrystals
might be favorably generated with great probability due to the
sequential reduction in solution. To synchronize the reduction
rate of the two precursors to generate random alloy
nanocrystals rather than core−shell nanocrystals, a viable
route is to tune the molar ratio of the two precursors because
the reduction potential of metal ions depends strongly on the
concentration of ions. For example, Sun and co-workers
demonstrated the one-pot synthesis of uniform AuxAg100−x
random alloy nanocrystals by coreducing HAuCl4 and AgNO3
with OAm as the reducing agent and surfactant in the presence
of octadecene (ODE) at 120 °C.259 It was observed that when
the feeding amount of Ag precursor is relatively higher than
that of the Au precursor in the reaction stock solution, the
difference of the reduction rates between both precursors can
be significantly reduced, thus promoting their co-reduction.
Specifically, Au60Ag40 random alloy nanocrystals could be
easily obtained when the molar feeding ratio for AgNO3 and
HAuCl4 attained 10. Using a series of characterization
methods, such as high-resolution transmission electron
microscopy (HRTEM), energy-dispersive spectroscopy
(EDS), and UV−Vis spectra, they further confirmed the
formation of random alloy nanocrystals. Furthermore, they
concluded that the reaction temperature played an important
role in the formation of random alloy nanocrystals, while a low
temperature (65 °C) or high temperature (180 °C) would
promote phase segregation. It was uncovered that the phase
segregation mainly resulted from a large gap of the reduction

rates between the Au and Ag precursors under similar
conditions. For instance, the Au precursor can be generally
reduced at 65 °C, whereas the reduction of the Ag precursor
occurs at a temperature as high as 180 °C. Meanwhile, the
chloride ions from the Au precursor could also alter the relative
reduction rates, likely due to the significant difference in
reduction potential between AuCl4

− and Au3+. In addition to
the above-mentioned route, it is also viable to alter the relative
concentrations of metal precursors by adding the solutions
dropwise with the assistance of a syringe pump. A typical
example was demonstrated by Qin and co-workers,234 who
synthesized Ag−(Ag−Au) core−frame nanocubes (NCbs) by
adding AgNO3 and HAuCl4 dropwise into a solution
containing Ag seeds, ascorbic acid (AA), and PVP. It was
also demonstrated that this approach could precisely control
the relative amounts of Ag and Au atoms in solution.
Altogether, altering the relative concentrations of metal
precursors is an effective approach for generating the random
alloy nanocrystals with precise control over the composition.
It is not always possible to well match the reduction rates by

varying the relative concentrations of metal precursors. To
solve this problem, it might be often required to introduce
appropriate reducing agents, solvents, coordination ligands,
capping agents, surfactants, or foreign ions and tune other
synthetic parameters to achieve the co-reduction of different
metal precursors in the solution system. It should be pointed
out that the coordination ligands could strongly coordinate
with the metal ions (reactants), profoundly improve their
stability, reduction potential, and reduction kinetics, whereas
the capping agents could selectively bind to a specific class of
facets on the nanocrystals (products), effectively alter the
surface energy and anisotropy as well as subsequent adsorption
behavior. For example, Wang and co-workers demonstrated
the synthesis of Pt3Sn random alloy nanocrystals by coreducing
PtCl4 and SnCl2 in a mixed solution of OAm and OA, with the
use of borane tertbutylamine as a reducing agent.260 Because
Pt and Sn precursors have a larger difference in reduction rate,
the addition of borane tertbutylamine with strong reducing
power was confirmed to be more advantageous for
simultaneous reduction of the Pt and Sn precursors to prepare
alloyed nanocrystals. This co-reduction approach, with an
appropriate selection of the reducing agent and precursors,
could also be adopted for preparing random alloy nanocrystals
in other metal systems. Previously, Fang and co-workers
developed a new strategy for the synthesis of Pt3Ni octahedra
and NCbs (Figure 3) by simultaneously reducing Pt(acac)2
and Ni(acac)2 in the presence of W(CO)6.

76 For the synthesis
of Pt3Ni nano-octahedra, W(CO)6 was added into a mixed
solution containing Pt(acac)2, Ni(acac)2, OAm, and oleic acid
(OA) under Ar atmosphere at 130 °C and then the reaction
temperature was increased to 230 °C under vigorous agitation.
It was revealed that the introduction of W(CO)6 was the key
to facilitating the formation of random alloy nanocrystals, since
the low reduction potential of W decomposed from W(CO)6
could dramatically facilitate the reduction of Pt(acac)2 in the
early stage, leading to a fast Pt nucleation, whereas the
generated W cations would decelerate the subsequent
nanocrystal growth (to match the reduction of Ni).
Furthermore, they believed that the use of OAm could
stabilize {111} facets of Pt3Ni nanocrystals via selective
adsorption and thus lower the surface free energy on Pt3Ni
{111} facets. More importantly, it was revealed that the
introduction of W(CO)6 was the key to controlling the shape

Figure 2. (a) TEM image of the 5 nm Pd67Pt33 random alloy
nanocrystals via one-pot synthesis. The inset is the HRTEM image of
a typical 5 nm Pd67Pt33 random alloy nanocrystals. (b) HAADF-
STEM image and the corresponding EDX elemental mapping of Pd
(green) and Pt (red) for several typical Pd67Pt33 random alloy
nanocrystals. (c) TEM image of 6.5 nm Pd67Pt31 random alloy
nanocrystals synthesized by injecting morpholine borane at 40 °C. (d)
Correlation between the adding amount of Pt(acac)2 and the amount
of Pt in the final product. Adapted from ref 232 and modified.
Copyright 2011 American Chemical Society.
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of Pt3Ni nanocrystals. For the synthesis of Pt3Ni NCbs,
Pt(acac)2, OAm, and OA were first mixed under the Ar
atmosphere and then heated to 130 °C, followed by adding
W(CO)6 into the reaction solution. After that, a solution
containing NiCl2·6H2O, OAm, and OA was added dropwise
while the reaction temperature was raised to 200 °C. They
ultimately concluded that the formation of {100} facets was
due to slowly injecting the NiCl2 solution. In both cases, as
discussed above, a slower rate of injecting the Ni precursor
favored the formation of Pt3Ni{100}-bounded NCbs, whereas
a faster rate of injecting the Ni precursor resulted in a
formation of Pt3Ni{111}-terminated octahedral nanocrystals.
As such, it was demonstrated that the injecting rate of the Ni
precursor in the early stage played an important role in
adjusting the CO adsorption energy on different facets.
Shortly, Yang and co-workers reported the synthesis of
truncated octahedral Pt3Ni nanocrystals by coreducing Pt-
(acac)2 and Ni(acac)2 with tert-butylamine-borane (TBAB)
and hexadecanediol as the reducing agents in the presence of
diphenyl ether, long-alkane-chain amines, and adamantanecar-
boxylic acid.261 They demonstrated that the simultaneous use
of TBAB and hexadecanediol with strong reducing powers was
very necessary to precisely synchronize the reduction rates of
both precursors and thus to facilitate the formation of Pt3Ni
random alloy nanocrystals while preserving good dispersion
and well-defined shape. In another example demonstrated by
Schaak and co-workers, PtCu nanorods could be formed by
coreducing Pt(acac)2 and Cu(acac)2 in a solution containing
OA, OAm, ODE and hexadecanediol.231 On the basis of UV−
visible spectroscopic measurement, it was determined that the
initial formation of a Cu−Pt complex through coordination in
a mixed solvent and the sequential decomposition of this
complex led to the formation of CuPt random alloy nanorods.
The length of the nanorods could be precisely controlled by
altering the concentrations and types of solvents. Importantly,
they demonstrated that OAm could selectively absorb on the
{100} facets of the PtCu nanorods, resulting in the preferential
growth along the [111] direction. In short, some highly

complex interactions could generate in the presence of
appropriate reducing agents, solvents, coordination ligands,
capping agents, surfactants, or foreign ions, and these
interactions can potentially be utilized to precisely control
the reduction rates of different precursors during a synthesis.
The use of chemical additives (e.g., reducing agents,

solvents, coordination ligands, capping agents, surfactants,
and foreign ions) in the reaction system generally can markedly
alter the reduction potential and stability of metal ions through
coordination and thus their reaction kinetics.56,60,83,263−274

One successful example was demonstrated by Xia and co-
workers. They discovered that the introduction of 63 mM KBr
in EG solution consisting of Na2PdCl4 and K2PtCl4 could
immediately cause the ligand exchange between chloride and
bromide ions, resulting in a significant decrease of the
difference in reduction rate between the Pd and Pt precursors
and thus facilitating the formation of random alloy nano-
cubes.254 The addition of KBr not only promotes the
formation of PdBr4

2− and PtBr4
2− via coordination but also

selectively catches and stabilizes the {100} facets. They further
observed a core−shell structure on Pd−Pt octahedral nano-
crystals in the absence of KBr, due to the significant difference
between the initial reduction rates of PdCl4

2− and PtCl4
2−.

Similarly, the addition of halide ions (e.g., Cl−, Br−, and I−)
into a precursor solution containing Au3+ and Pd2+ can also
quickly form the Au−halide and Pd−halide complexes.275

They identified monodisperse Au−Pd random alloy and core−
shell icosahedral nanocrystals by simply tuning the concen-
tration ratio between Br− and Cl−. Specifically, the reduction
potential and reduction rate decreased in the order of
[AuCl4]

− > [AuBr4]
− > [AuI4]

− and [PdCl4]
− > [PdBr4]

− >
[PdI4]

−. As a result of their dual functions, it can be concluded
that the use of some chemical additives in a reaction solution
played an critical role in forming random alloy structure and
regulating the morphology of the as-obtained nanocrystals. In
another report, Fang and co-workers demonstrated the one-pot
synthesis of PtCu random alloy NCbs by coreducing Pt(acac)2
and Cu(acac)2 in the presence of 1,2-tetradecanediol, ODE,
OAm, tetraoctylammonium bromide, and 1-dodecanethiol
(DDT).276 Importantly, DDT was found to enable promoting
the co-reduction of Pt2+ and Cu2+ ions via coordination.
Specifically, the composition of the final product could be
readily tuned by varying the amount of DDT. It is worth
noting that these chemical additives can also absorb
preferentially to specific facets on the nanocrystal and thus
affect the subsequent growth process. Yan and co-workers
reported the synthesis of sub-10 nm Pd−Pt nanotetrahedra
and NCbs by simultaneously reducing K2PtCl4 and Na2PdCl4
(Figure 4).277 When HCHO served as the reducing agent in
the presence of sodium oxalate (Na2C2O4), the tetrahedral
nanocrystals enclosed by {111} facets were obtained. They
found that the addition of C2O4

2− could stabilize the {111}
facets. Furthermore, by replacing the Na2C2O4 with high
concentrations of Br− and low concentrations of I−, the final
product would become NCbs enclosed by {100} facets, due to
the selective absorption of the halides on the {100} facets. In
summary, the presence of chemical additives in a reaction
solution can dramatically affect the reduction rate by complex
interactions, and these interactions should be further explored
to controllably tune the size, shape, and composition of
resultant nanocrystals.
Besides, sonication-assisted reduction, microwave-assisted

reduction, or photoassisted reduction can be adopted to

Figure 3. TEM images of (a) Pt3Ni octahedra and (c) nanocubes
synthesized via co-reduction. HRTEM images of (b) a typical Pt3Ni
octahedron and (d) nanocube. Reproduced from ref 262. Copyright
2010 American Chemical Society.
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prepare a variety of alloy nanocrystals in the absence of
chemical reducing agents.44,278−286 These approaches can be
performed at a relatively low reaction temperature or even
room temperature. For example, Grieser and co-workers
reported on the synthesis of Pt−Ru random alloy nanocrystals
by sonication-assisted co-reduction of K2PtCl4 and RuCl3.

283

El-Shall and co-workers utilized a microwave-assisted co-
reduction approach to synthesize various random alloy
nanocrystals (e.g., CuPd, CuRh, AuPd, AuRh, PtRh, PdRh,
and AuPt) in well-controlled size and shape.284 It should be
pointed out that these approaches can also be applied to the

preparation of some special random alloy nanocrystals that
cannot be obtained by using the chemical reducing agent in the
co-reduction synthesis. A typical example was demonstrated by
Nenoff and co-workers, who synthesized the stable Ag−Ni
random alloy nanocrystals by simultaneously reducing the Ag
and Ni precursors via γ-irradiation.285 Note that the Ag−Ni
random alloy nanocrystals are generally believed to be
thermodynamically unstable due to low immiscibility and
large lattice mismatch between Ag and Ni. In this case, the
introduction of γ-irradiation can quickly reduce Ag and Ni ions
to atoms and then quench them in the lattice, facilitating the
formation of a stable Ag−Ni random alloy.

3.2. Seed-Mediated Synthesis

A well-known, seed-mediated growth approach offers a very
effective synthetic route for preparing well-controlled bimet-
allic nanocrystals, especially for the synthesis of core−shell and
heterostructured bimetallic nanocrystals.1,7,199,287−294 It is
worth mentioning that generally the key synthetic challenge
for making core−shell nanocrystals is to keep the precursor
concentration of the second shell metal always below the
critical value on the LaMer plot to prevent homogeneous
nucleation. However, it is not very common to adopt the seed-
mediated growth approach to synthesize alloy nanocrystals
because it can effectively separate the reduction of different
precursors as compared to the co-reduction approach. In some
cases, by elaborately designing the reaction system, alloyed
nanocrystals can also be obtained.295−303 A common strategy is
to utilize a seed-based diffusion route in the synthesis of
random alloy nanocrystals. Very recently, Murray and co-
workers used this approach to generate a series of Au−L (L =
Ag, Pt, Hg, Sn, and Cd) random alloy nanocrystals with
tunable compositions at relatively high temperatures (Figure
5).235 In a typical synthesis of Au−Ag random alloy
nanocrystals, a solution containing 5.5 nm Au seeds, AgBF4

Figure 4. (a) Schematic illustration showing the shape-controlled
synthesis of Pt−Pd tetrahedra and nanocubes synthesized via co-
reduction. TEM images of (b) Pt−Pd tetrahedra and (c) nanocubes.
The insets in panels (b) and (c) are HRTEM images of a single Pt−
Pd tetrahedron and nanocube, respectively. Adapted from ref 277 and
modified. Copyright 2011 American Chemical Society.

Figure 5. (a) Schematically illustrating the proposed formation mechanism for generating uniform alloyed bimetallic nanocrystals through a
possible core−shell structure during a seed-mediated synthesis. TEM images of (c) Au nanocrystal seeds, (d) Au−Ag random alloy nanocrystals,
and (e) Au−Sn random alloy nanocrystals. Adapted from ref 235 and modified. Copyright 2015 American Chemical Society.
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as a precursor, 1,2-hexadecanediol, and oleyl alcohol as
reducing agents, OA, OAm, and ODE as the solvent and
stabilizer was heated to 150−180 °C in a flask under N2
atmosphere. By simply manipulating the amount of Ag
precursor added, the final metal ratio in Au−Ag random
alloy nanocrystals could be tunable. They found that the
choice of reaction temperature was predominantly dictated by
the nature of the doping metal. For the easily reducible metals,
such as Ag and Hg, completion of the reaction requires
temperatures as low as 150 or 180 °C, whereas for metals like
Pt, Sn, Cd, relatively higher temperatures up to 200, 210, and
300 °C, respectively, were necessary. It is worth mentioning
that the condition of the high reaction temperature is of critical
importance to promote the reduction and subsequent alloying.
High temperatures can also effectively remove the defects
determined in the as-synthesized Au nanocrystals. Further-
more, this approach has also been successfully applied to the
synthesis of other bimetallic and trimetallic nanoalloys.
Ravishankar and co-workers demonstrated this approach in
2018.236 They synthesized a series of uniform and mono-
dispersed Au-based random alloy (AuPd, AuPt, and AuCu)
nanowires with a controllable composition by employing
ultrathin Au nanowires as the seeds in the presence of the
second metal precursor and EG. Similarly, the composition of
the resultant random alloy nanowires also depended strongly
on the second metal precursor concentration.
Another viable strategy for the synthesis of random alloy

nanocrystals through a seed-mediated route is to directly
convert a core−shell structure to an alloy by controlling the
heating process in solution or gas-phase. This approach
typically involves an interdiffusion and mixing between two
metallic components through a thermal activation process
commonly referred to as alloying. Especially, this process
became favorable when both metallic compositions meet the
Hume−Rothery rules,149 as discussed in section 2.1. A typical
example was demonstrated by Tracy and co-workers, who
utilized 8 nm Au as the seeds to successfully synthesize Au−Ag
core−shell nanocrystals, followed by dispersing them in OAm
and subsequent heating to 250 °C for 2 h.304 They realized
that the heating process could facilitate the interdiffusion of Au
and Ag, resulting in a production of Au−Ag random alloy
nanocrystals. The key to the successful conversion from a
core−shell structure to an alloy is mainly due to satisfying the
Hume−Rothery rules for Au and Ag. To further facilitate the
interdiffusion process for the formation of atomically
homogeneous alloys, a higher reaction temperature is often
required. However, because of the limitation of solvent boiling
point, it is impossible to complete the reaction in solution at an
extremely high temperature. This obstacle can be overcome by
carrying out the reaction via annealing in a gas atmosphere. In
a recent report, Yin and co-workers synthesized fully alloyed
Au−Ag nanospheres by annealing the Au−Ag core−shell
nanospheres at elevated temperatures in a nitrogen atmosphere
(Figure 6).305 To avoid the aggregation of nanocrystals during
the annealing process, a layer of silica with a thickness of ∼15
nm was required to be uniformly coated on the Au−Ag core−
shell nanospheres before the annealing. It was believed that the
use of such an elevated temperature could dramatically
increase the mobility of the metal atoms, favoring homoge-
neous distribution for both Ag and Au elements and removing
crystallographic defects in the nanosphere. This approach has
also been extended to other systems, such as Pt−Ru and Pt−
Cu random alloy nanocrystals.306−308

In addition to the aforementioned approach, the seed-
mediated co-reduction (SMCR) method is also powerful in the
synthesis of nanocrystals with alloyed shells with well-defined
shapes and compositions.309 This approach involves a
simultaneous reduction of two metal precursors to deposit
bimetallic nanocrystals onto well-controlled seeds. Note that
the shape of the seeds can be well transferred to the alloyed
shells. This method was initially developed by Skrabalak and
co-workers to prepare octahedral nanocrystals with alloyed
Au−Pd shells.296 In a typical synthesis, AA as a reducing agent
was added into a solution containing Au seeds, H2PdCl4,
HAuCl4, and cetyltrimethylammonium bromide (CTAB),
followed by keeping the system undisturbed at 25 °C for 0.5
h. In this specific case, it seems that the small lattice mismatch
between Au and Pd (∼4%), the high stability of Au seeds to
prevent galvanic replacement, and easy co-reduction of Au and
Pd precursors are the key parameters of SMCR. Importantly,
they found that the size and shape of the final products could
be well-controlled by tuning the size and shape of the seeds,
the pH of the solution, and the metal precursor ratios.
However, for those compositions with a larger lattice
mismatch, it is still a great challenge to yield alloyed
nanostructures in SMCR as generally the large lattice
mismatch could result in a phase-separation and island growth
rather than conformal deposition during a seed-mediated
synthesis. A recent study conducted by the same group
demonstrated that random alloy formation and conformal
overgrowth are possible in such a system with high lattice
mismatch.237 Specifically, the codeposition of Pd and Cu
elements (7% mismatch for Pd−Cu) onto Pd NCbs was
achieved in SMCR, where H2PdCl4 and CuCl2 were coreduced
by AA in a solution containing Pd seeds and CTAB. Similarly,
the morphology and element distribution of the resultant

Figure 6. TEM images of (a) Au−Ag core−shell nanocrystals, (b)
Au−Ag−SiO2 onion nanocrystals, and (c) Ag−Au random alloy
nanospheres synthesized through a seed-mediated route. (d)
HAADF-STEM image of several representative Ag−Au random
alloy nanospheres and the corresponding EDX elemental mapping of
Au (red) and Ag (green). The insets in panels (a) and (c) are
HRTEM images of a single Au−Ag core−shell nanocrystal and Ag−
Au random alloy nanosphere, respectively. Adapted from ref 305 and
modified. Copyright 2014 American Chemical Society.
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nanocrystals can be readily tuned by adjusting the reaction
kinetics of two metal precursors. This study further deepens
our understanding of SMCR as a general strategy to synthesize
multicomponent nanocrystals with structurally defined nano-
crystals.
One more impressive development in seed-mediated

synthesis is the construction of heteronanostructured nano-
crystals via a site-selective codeposition of binary or ternary
metallic random alloy onto the well-defined seeds. In this
approach, it is of critical importance to purposely select the
growth or control growth rates on different facets of metal
seeds, depicted previously.238,310−313 Chen and co-workers
have demonstrated this site-selective seeded growth approach
in two steps:310 (1) synthesizing the well-defined Cu seeds;
(2) site-selectively depositing PdCu or PtCu random alloy
onto the Cu seeds, yielding bimetallic heterodimer nanocryst-
als. The key to the successful synthesis mainly relies on
judiciously adjusting the reduction kinetics of Cu. More
importantly, this approach can also be applied to other systems
that utilize CdS nanorods as the seeds for selectively depositing
PtNi or PtCo random alloy onto the tips of nanorods.311

However, it is not always effective to achieve site-selective
growth by merely tuning the reduction rate of different
precursors. It is often necessary to precoat a protecting shell on
specific crystal facets to suppress subsequent deposition on
these facets, thereby significantly benefiting an anisotropic
growth. A typical example was demonstrated by Wang and co-
workers,238 who preferentially coated a silver layer on the side
surface of Au nanobipyramids, followed by codepositing Ag
and Pd at their tips. Interestingly, Au nanorods can also be
used as the seeds for overgrowth of AgPd or AgPt random
alloy at their tips, further demonstrating the generality of this
approach.238

3.3. Thermal Decomposition

The thermal decomposition of organometallic compounds is a
powerful and versatile approach to prepare a variety of highly
monodisperse random alloy nanocrystals.57,314−325 It has been
proven that this approach is especially suitable for metal
precursors that are difficult to be reduced through a wet-
chemical reduction approach with relatively low reduction
potentials (e.g., Ni-, Fe-, and Co-precursors). Generally, this
approach combines reduction and decomposition processes
and chooses some common organometallic compounds, such
as including carbonyls, acetylacetonates, and cupferronates, as
the precursors that can readily decompose under heating.
Similar to the co-reduction approach, all the synthetic factors
including solvent, capping agents, surfactants, the molar ratio
of the metal precursors, as well as reaction time and
temperature, play a critical role in tuning the size, shape, and
composition of the resultant random alloy nanocrystals. One
successful example was demonstrated by Sun and co-workers,
where PtFe random alloy nanocrystals with tunable composi-
tion were synthesized by simultaneous reduction of Pt(acac)2
and thermal decomposition of Fe(CO)5 with a long-chain 1,2-
hexadecanediol as a reducing agent in the presence of OA and
OAm as both the solvent and stabilizer.323 In this case,
Pt(acac)2 is reduced to zerovalent Pt atoms while Fe(CO)5 is
synergetically decomposed to zerovalent Fe atoms at an
appropriately high temperature. It was observed that the
composition of the as-prepared random alloy nanocrystals
could be readily controlled by manipulating the molar ratio
between Fe(CO)5 and Pt(acac)2. It was reported that the

feeding ratio between Fe(CO)5 and Pt(acac)2 was not the
same as the Fe/Pt composition ratio in the resultant PtFe
random alloy nanocrystals as Fe(CO)5 was hard to completely
decompose due to its low decomposition rate. For a given
composition in an alloy product, an appropriate tuning of the
input precursor ratio is necessary. Later, the same group
further optimized this approach to achieve the synthesis of
size-, shape-, and composition-controlled PtFe nanocrystals
(Figure 7).239 They found that the overall size of resultant

nanocrystals could be greatly affected by the nucleation rate. A
faster nucleation rate generates nanocrystals in smaller sizes,
whereas a slower nucleation rate yields larger nanocrystals. As a
result, the synthesis without the use of an additional reducing
agent led to the formation of larger PtFe nanocrystals.
Furthermore, they demonstrated that the morphology of
resultant nanocrystals could be tuned by adjusting the
synthetic parameters, including the feeding molar ratio of
stabilizer to the precursor, addition sequence of the precursors
and stabilizers, heating temperature, and heating ramp rate.240

In this synthesis, PtFe NCbs could be synthesized by altering
the addition sequence of OA and OAm and the molar ratio of
Fe(CO)5 to Pt(acac)2. Once the OA was first introduced into
the reaction solution, the cubic Pt-rich nuclei were quickly
formed derived from the strong tendency of OA to bind to Fe.
Subsequently, preferentially depositing the Fe-rich species on
the {100} planes led to the formation of cubic PtFe
nanocrystals. In comparison, the PtFe nanowires in an average
length of >200 nm could be prepared when only OAm was
introduced, since OAm could form an elongated reverse-
micelle to limit the radial growth under the synthetic
conditions. By further replacing the OAm with a mixed
solvent containing of OAm and ODE, the shorter PtFe
nanowires could be produced. In short, a great deal of similar
thermal decomposition approaches have been widely used for
the controlled synthesis of well-defined random alloy nano-
crystals.

Figure 7. (a) Schematically illustrating the formation of FePt random
alloy nanocrystals via thermal decomposition. TEM images of (b)
typical 6 nm Fe50Pt50 random alloy nanocubes and (c) FePt spherical
nanocrystals. (a,b) Adapted with permission from ref 239 and
modified. Copyright 2006 WILEY-VCH. (c) Adapted from ref 324
and modified. Copyright 2004 American Chemical Society.
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In some cases, when the reduction rates or thermal
decomposition rate of the two metal precursors involved in
one reaction system could not be well matched, it is possible to
form separate monometallic phases instead of the random alloy
phase. However, these problems can be easily overcome by
using single-source molecular precursors containing two kinds
of metals that possess stable metal−metal bonds within the
precursor molecules. The composition of the final product is
largely associated with the composition of the bimetallic
precursors. For example, as demonstrated by Lukehart and co-
workers, FePt random alloy nanocrystals in size of 5.8 nm were
synthesized by thermally decomposing presynthesized
Pt3Fe3(CO)15 in toluene as the solvent in the presence of
OAm and OA as the surfactants.326 Specifically, Pt3Fe3(CO)15
as a bimetallic precursor could be easily prepared by reacting
Fe(CO)5 with tris(norbornylene)-platinum(0). In another
report, Thanh and co-workers synthesized a series of random
alloy nanocrystals through the thermal decomposition of
different types of molecular bimetallic carbonyl clusters anions,
such as [Fe3Pt3(CO)15]

1− , [Fe4Pt(CO)16]
2− , [Fe-

Co3(CO)12]
1−, and [FeNi5(CO)13]

2−, instead of neutral
bimetallic carbonyl clusters (Figure 8).327 They ultimately

concluded that the composition of the resultant random alloy
nanocrystals (e.g., FePt, Fe4Pt, FeCo3, and FeNi5) mainly
depended on a metal fraction in the precursor. It is worth
noting that, as precursors, molecular bimetallic carbonyl
clusters are much easier to decompose as compared with
molecular bimetallic carbonyl clusters anions in the context of
the practical synthesis, due to the absence of extra ligands in
the former. As a result, the size of the resultant random alloy
nanocrystals is generally much smaller when the former is used
in the synthesis. In brief, the thermal decomposition approach
provides a simple but effective route for generating random
alloy nanocrystals with precise control over the composition.

3.4. Galvanic Replacement

Galvanic replacement provides a particularly facile and versatile
approach to prepare a wide variety of hollow random alloy
nanocrystals with precisely controlled sizes, shapes, and
elemental compositions. Galvanic replacement reaction is an
electrochemical process that typically involves the oxidation of
one metal (often referred to as a sacrificial template) by the
ions of another metal with a more positive reduction
potential.51,230,243,328−344 In this process, the metal ions will
be rapidly reduced by capturing the electrons from the
template and then deposited onto the exterior of the template,
while the pristine template will be oxidized to metal ions from
special sites and dissolved into the solution due to the
favorable difference in the reduction potentials of the two
metals. As a result, the final product typically inherits the shape
of the original template, except for a slight increment in
dimensions. It should be emphasized that the addition of the
secondary metal ion and subsequent galvanic replacement
process must be carefully manipulated to ensure that the
developed shape of the preprepared metal template will not be
destroyed.
As mentioned above, the driving force for galvanic

replacement reaction originates from the difference in the
reduction potentials from both metals involved. The potential
difference (ΔE) can be derived using the Nernst equation:

E E RT nF Q( / )ln0Δ = Δ + (6)

where ΔE0 is the difference of standard potentials between
both metals involved at 25 °C, R is the ideal gas constant, T is
the Kelvin temperature, n is the molar number of electrons
transferred in the redox reaction, F is Faraday’s constant, and Q
is the reaction quotient based on the concentrations of the
reactants and products at a given time. According to equation
6, the actual potential difference of the reduction potentials
(ΔE) is strongly determined by the concentrations of relevant
ions and temperature, as well as the involvement of other
nonstandard conditions. Additionally, ΔE can also be
evaluated by the associated change in Gibbs free energy (ΔG):

G nF EΔ = − Δ (7)

A spontaneous galvanic replacement reaction will easily
occur once a system has a positive ΔE, leading to a negative
ΔG. A notable example is the galvanic replacement reaction
between Ag NCbs and HAuCl4 as reported in previous
work.241 Note that Ag has a relatively low reduction potential
as compared with Au3+, Pd2+, and Pt2+. The Au3+-involved
overall reaction in this process can be summarized as follows:

3Ag AuCl 3Ag Au 4Cl4+ → + +− + −

Typically, the galvanic replacement will immediately occur
once an aqueous HAuCl4 solution is introduced to a
suspension of Ag NCbs. It was observed that the reaction
generally initiated at those sites of the Ag NCbs with defects,
stacking faults, or steps that possess the highest surface energy.
In this galvanic replacement reaction, Ag atoms are gradually
oxidized to Ag+ ions and dissolved into solution, while the
generated electrons are quickly captured by Au3+ ions to
produce Au atoms through a reduction process. The newly
yielded Au atoms tend to deposit epitaxially on the surface of
the Ag template while the lattice mismatch between Ag and Au
is small (4.086 vs 4.078 Å for Ag and Au, respectively). It is
believed that the formation of a thin and incomplete layer of

Figure 8. Atomic models of bimetallic carbonyl complexes, for
example, (a) [Fe3Pt3(CO)15]

2− and (c) [Fe4Pt(CO)16]
2−, that have

been used as precursors for preparing bimetallic nanocrystals (red =
O, gray = C, blue = Fe, and purple = Pt). TEM images of the
corresponding (b) bimetallic FePt nanocrystals and (d) Fe4Pt
nanocrystals derived from the above-mentioned precursors. Adapted
from ref 327 and modified. Copyright 2009 American Chemical
Society.
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Au on the Ag template in the early stages can effectively
prevent the underneath Ag from being oxidized. Meanwhile,
some formed pits on the surface, accompanying the successive
Au deposition, can serve as the reaction channel for the
continuous dissolution of Ag, resulting in the formation of a
hollow structure. As a result, the formation of the Au−Ag
random alloy as the final product is theoretically possible
because Ag and Au have similar lattice parameters and the
resultant random alloy structure should be more thermody-
namically stable as compared with the phase-segregated
structure. Inspired by this work, a large variety of shapes
(e.g., spheres, rods, and wires) and other templates (e.g., Co,
Ni, and Cu) have also been involved in the syntheses of
random alloy nanocrystals using this galvanic replacement
approach.
Recently, Huang and co-workers reported a one-pot

synthesis of rhombic dodecahedral PtCu random alloy NFs
with an average size of 17 nm by reducing a mixture of
Pt(acac)2 and CuCl2 with glucose as the reducing agent in the
presence of OAm and OA as both the solvent and stabilizer.345

They carried out a systematic study by screening the
appropriate precursors, reducing agents, and optimizing the
volume ratio between OAm and OA under the same
conditions. They found that the generation of rhombic
dodecahedral PtCu random alloy NFs was mainly attributed
to the initial formation of Cu nanocrystals and subsequent
galvanic replacement between Cu nanocrystals and Pt(acac)2
at elevated temperatures. To better control the degree of
galvanic replacement, moreover, a relatively low concentration
of metal precursors is generally required to be added to
partially react with the templates, triggering the selective
deposition on the surface of the templates, thereby generating
nanocrystals with different structures. This strategy was
demonstrated by Xue and co-workers, who prepared triangular
PdAg random alloy NFs by utilizing Ag nanoprisms as the
templates.244 By altering the adding amount of the H2PdCl4
solution, the ridge thickness of the resultant PdAg random
alloy NFs could be readily tuned from 4.0 to 9.2 nm, due to the
preferential deposition on the prism edges with high-energy
{100} facets. It is noteworthy that introducing a template-
selective etchant is also necessary for this approach to
completely remove the template and promote the formation
of alloy.
Another effective route for facilitating a galvanic replacement

reaction is to introduce coordination ligands into a reaction
system to accelerate the reaction kinetics, since the use of
coordination ligands can dramatically alter the reduction
potentials of the metal ions and thus move the equilibrium
toward the direction of galvanic replacement. It is believed that
the driving force in the galvanic replacement reaction is the
potential difference between metal ions and the template. Due
to the strong coordination effect, the metal ions will quickly
transform into more stable species once the coordination
ligands are added. Therefore, the potential difference between
the as-formed species and the template will be enhanced,
thereby promoting an occurrence of the galvanic replacement
at a faster rate. A successful example was demonstrated by
Zheng and co-workers who synthesized hollow PdPt random
alloy NCbs using iodide ions in a one-step one-pot synthesis to
achieve the temporal separation of template formation and
galvanic replacement reaction (Figure 9a,b).243 In a typical
synthesis, a mixture of Pd(acac)2, Pt(acac)2, NaI, PVP, and
DMF was transferred to a Teflon-lined stainless-steel

autoclave. The system was then heated to 150 °C and
maintained for 8 h. Importantly, the addition of iodide ions to
the reaction solution led to a generation of [PdI4]

2− as the
dominating precursor that could be easily reduced in DMF as
compared to Pt(acac)2. Combined with transmission electron
microscopy (TEM), energy-dispersive X-ray spectroscopy
(EDX), and inductively coupled plasma (ICP) analyses, they
identified that Pd NCbs formed first, followed by a galvanic
replacement reaction with Pt(acac)2 to generate 12.5 nm
hollow PdPt random alloy NCbs during the synthesis.
Furthermore, they demonstrated the types of precursors and
the reducing agent, and reaction temperature could signifi-
cantly affect the reduction process of the Pd and Pt precursors,
effectively preventing their co-reduction from occurring.
Therefore, they believed that the simultaneous use of iodide
ions and acetylacetonate precursors played an essential role in
effectively separating the formation of the template and
subsequent galvanic replacement reaction, resulting in the
successful synthesis of hollow random alloy nanocrystals. Most
recently, Xia and co-workers further demonstrated that instead
of iodide ions, bromide ions could also be used to play the
same role.331,334 It was found that the bromide ions could be
strongly complexed with Pt2+ ions and markedly facilitate the
galvanic replacement while at the same time preserving the
shape of the template through selective adsorption.
Besides, the random alloy nanocrystals can also be

synthesized by combining the galvanic replacement with co-
reduction. This approach involves simply introducing a
reducing agent into a reaction solution. Aiming at preparing
alloy nanocrystals with desired nanostructures, it is of critical

Figure 9. TEM image of (a) Pd−Pt hollow nanocubes and (b) the
corresponding line-scanning profile across a hollow Pd−Pt nanocube.
The insets in panels (a) and (b) are HRTEM and HAADF-STEM
images of a single hollow Pd−Pt nanocube, respectively. TEM image
of (c) the Pd−Pt random alloy nanocages prepared via galvanic
replacement and (d) the corresponding line-scanning profile across a
Pd−Pt random alloy nanocage. The insets in panels (c) and (d) are
HAADF-STEM image and the EDX elemental mapping of a single
Pd−Pt random alloy nanocage, respectively. (a,b) Adapted with
permission from ref 243 and modified. Copyright 2009 WILEY-VCH.
(c,d) Adapted from ref 330 and modified. Copyright 2011 American
Chemical Society.
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importance to rationally manipulate both the rates of co-
reduction and galvanic replacement reactions. Xia and co-
workers established an approach to synthesize the hollow Pd−
Pt random alloy nanocages by introducing citric acid (CA) as
the reducing agent into a mixture containing Pd NCbs,
K2PtCl4, KBr, and PVP (Figure 9c,d).330 Because of the
selective adsorption of bromide ions on the {100} facets of the
Pd NCbs, the galvanic replacement reaction was initiated at
the side faces of the Pd NCbs, promoting the generation of Pd
concave nanocubes (CNCs) in the early stage. After this step,
both the Pt2+ and the generating Pd2+ ions were reduced to
atoms by CA and the newly formed Pt and Pd atoms were then
codeposited on the CNC as a Pd−Pt random alloy shell. With
the reaction proceeded, the interior of Pd CNCs was gradually
dissolved through the galvanic replacement reaction, eventually
yielding hollow Pd−Pt random alloy nanocages. Meanwhile, if
CA was replaced by AA that has a stronger reducing power
during the synthesis, the morphology of the final product
would switch from nanocages to nanodendrites as the
reduction of Pt precursor was accelerated and the reaction
rate of galvanic replacement was thus decreased. As such, the
morphology of the resultant nanocrystals was confirmed to be
sensitive to both the rates of co-reduction and galvanic
replacement reactions. This general approach has also been
extended to the Au−Ag and Pt−Ag systems.339,346−348 In a
recent report, Qin and co-workers reported their synthesis of
Au−Ag random alloy nanocages with Ag-enriched walls by
utilizing AA as a reducing agent in the presence of NaOH.242

Note that the reducing power of AA could be observably
increased with the pH of a solution. As a result, the released
Ag+ ions, that were formed through the galvanic replacement
reaction between Ag NCbs and HAuCl4, were immediately
reduced to Ag atoms and redeposited onto the surface of the
Ag NCbs, resulting in a formation of hollow Au−Ag random
alloy nanostructures with >80% of Ag in the original template
being preserved in the walls.

3.5. Kirkendall Effect

It has garnered increasing attention that hollow random alloy
nanocrystals with tunable structures and compositions can now
be prepared uniquely using a nanoscale Kirkendall effect. The
nanoscale Kirkendall effect is a common phenomenon
involving an unequal mutual diffusion rate at the interface of
coupled materials.349−354 Usually, when the inward diffusion
rate of metal is significantly lower than the outward diffusion
rate of another metal, the lattice vacancies would be
continuously generated at the boundaries, resulting in a hollow
structure. The synthesis of hollow random alloy nanocrystals
via Kirkendall effect is a two-step process: (i) synthesizing the
well-defined solid metal nanocrystals and (ii) adding second
metal-containing precursors into the solution to trigger the
reaction with the presynthesized nanocrystals. It should be
noted that, since these two metals have relatively large
differences in diffusion rate, the unequal atom flow could
lead to the continuous generation of vacancies at the interface
between these two metals and subsequent condensation of
excess vacancies to form void or gap. For example, Wei and co-
workers reported their synthesis of hollow PtFe random alloy
nanocrystals with a Pt-skin surface via space-confined pyrolysis
and the nanoscale Kirkendall effect. They found that, in the
presence of the Fe precursor, the solid Pt nanocrystals,
covering by a polydopamine layer onto the surface, could be
completely transformed into hollow PtFe random alloy

nanocrystals with a nitrogen-doped carbon-shell upon heating.
It was identified that the formation of hollow alloy nanocrystals
was mainly due to the faster outward diffusion rate of Pt as
compared with the inward diffusion rate of Fe during the H2-
assisted high-temperature annealing. It is worth noting that the
presence of the polydopamine layer could strongly adsorb the
Fe ions via chelating effect and be employed to create a
confined space for alleviating nanocrystal sintering.103

The nanoscale Kirkendall effect can also be applied to
precise control of the random alloy nanocrystals in their
morphology and composition. Puntes and co-workers
developed a synthetic approach to prepare polymetallic hollow
nanocrystals with various morphologies and compositions by
the simultaneous or sequential action of galvanic replacement
with the Kirkendall effect at room temperature (Figure 10).245

In this case, Ag nanocrystals were used as templates in the
presence of CTAB as the surfactant and complexing agent and
AA as the reducing agent. A series of nanocrystals with
different levels of the hierarchical structure was readily formed
at room temperature when Au, Pd, or Pt as the oxidizing
agents were introduced into the reaction solution. They
concluded that the use of CTAB could significantly decrease
the reducing ability of AA and drive the Kirkendall effect to
take place. Specifically, it was demonstrated that the formation
of the cavity via galvanic replacement and subsequent Au
deposition on the surface would benefit the generation of a
unique nanostructure composed of a thin film of silver between
two layers of gold as a diffusion intermetallic couple. This
unique nanostructure could result in void formation beneath
the surface since the diffusion rate of Ag in Au is faster than
that of Au in Ag. Subsequently, the coalescence of excess voids
promoted the formation of a continuous cavity parallel to the
surface of the template, allowing the inner wall to be coated

Figure 10. (a) Optical and morphological changes and the
corresponding HAADF-STEM images of AuAg double-walled nano-
boxes. (b) HAADF-STEM image of AuAg double-walled nanoboxes.
The inset in panel (b) is HAADF-STEM image of a single AuAg
double-walled nanobox. (c) EDX elemental mapping of Ag (red) and
Au (green) for bimetallic AuAg nanoboxes. Reproduced with
permission from ref 245. Copyright 2011 AAAS.
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with gold. This method can be further extended to a
preparation of trimetallic structures of the Pd−Au−Ag
double-walled nano box with an Ag core, coated with a
PdAu random alloy layer. Despite the success of the hollow
interior formation via the nanoscale Kirkendall effect in these
syntheses, it might still require more evidence to strongly
support this hypothesis. To this end, Mirsaidov and co-workers
later experimentally verified the mechanism of the Kirkendall
effect by using a liquid cell TEM to directly observe the
structural transformation of Ag NCbs in the presence of Au
ions.355 They uncovered the structural evolution from Ag
NCbs to hollow structure mainly stemming from the
nucleation and growth of voids at the interface between Ag
and Au via the coupled action of galvanic replacement and the
Kirkendall effect. They further manifested that the Au ion
concentration, the oxidation state of Au, and the reaction
temperature played an essential role in controllably achieving
the structural transition. In summary, approaches based on the
nanoscale Kirkendall effect show many advantages in the
preparation of hollow nanocrystals with well-defined size and
shape as compared to other methods.

3.6. Oxidative Etching

Oxidative etching approach provides access to a large number
of random alloy nanocrystals that are unattainable through
simple co-reduction, seed-mediated growth, thermal decom-
position, or galvanic replacement. This approach typically
involves oxidation of zerovalent species, such as atoms,
clusters, and seeds, to ionic forms by oxidative etchant (e.g.,
O2, CO, H2O2, Fe(III) species), together with corrosive
species and/or coordination ligands for the metal
ions.71,246,356−362 As a result, the oxidative etching approach
is essential to achieve the precise control over the nucleation
and growth of nanocrystals based on the synergetic effect of
oxidation and reduction reactions involved. For instance, Li
and co-workers synthesized concave Pt−Ni random alloy
nanocrystals using dimethylglyoxime as a selective coordina-
tion ligand for Ni in solution (Figure 11a,b).246 In this work,
the as-synthesized PtNi octahedra nanocrystals were com-
pletely converted to concave Pt−Ni random alloy nanocrystals
by selective coordination of dimethylglyoxime to Ni and
subsequent chemical etching using dilute acetic acid. The
chemical etching time plays a crucial role in controlling the
concavity degree of the resultant random alloy nanocrystals
precisely. Similarly, Yang and co-workers prepared hollow
Pt3Ni rhombic dodecahedra NFs by employing oxidative
etching with the assistance of OAm as the coordination ligand
in an organic solution containing hexane and chloroform
(Figure 11c,d).220 They first synthesized PtNi3 rhombic
dodecahedra nanocrystals in size of 20 nm using an OAm-
mediated approach and then stored them in hexane and
chloroform for 2 weeks in ambient conditions. The presence of
dissolved O2 could promote the oxidation of Ni surface,
yielding soluble metal complexes through the coordination of
OAm. Using a series of characterization techniques, including
HRTEM, EDX, and X-ray photoelectron spectroscopy (XPS),
they demonstrated that the as-obtained PtNi3 rhombic
dodecahedra nanocrystals underwent both structural and
compositional transformation into hollow Pt3Ni NFs with
the same shape, revealing that the dissolution of Ni initially
proceeded in the interior of the polyhedra, rather than on the
edges, due to an inhomogeneous elemental distribution in the
parent structure.

Except for the solution phase, the oxidative etching approach
could also be carried out via annealing in the gas atmosphere.
Fang and co-workers demonstrated that Pt3Ni tetrahexahedral
nanoframes (THH NFs) in the average size of ∼22 nm could
be harvested by annealing the as-prepared carbon-supported
PtNi4 THH nanocrystals in the presence of CO as a gaseous
etchant.68 They reported that the selective removal of Ni from
the PtNi4 THH precursors was mainly attributed to the
formation of the volatile Ni(CO)4 complexes under CO
atmosphere at elevated temperatures. By carrying out a series
of control experiments with different annealing times, they
concluded that the surface Ni atoms were preferentially etched
along the ⟨100⟩ direction, driving the continuous segregation
of Ni on the outermost layer, thereby forming the stable
hollow THH NFs with a distribution of Pt component at
specific positions.

4. SYNTHETIC APPROACHES TO INTERMETALLIC
NANOCRYSTALS

Benefiting from the great efforts by many research groups, we
extensively searched literature that describes synthetic
protocols of intermetallic nanocrystal preparation with well-
tunable properties. As discussed in section section 2.1, noble
metal-based random alloy nanocrystals, such as Pt−M′ (M′ =
Fe, Co, Ni, Mn, etc.), are usually yielded at a synthesis
temperature, whereas their ordered intermetallic counterparts
are normally generated through relatively high-temperature
annealing, despite some exceptions such as the Pt3Sn system
(vide inf ra). In terms of the phase of the converted
nanocrystals, as shown in Table 1, Pt3M′ intermetallics
typically possess a cubic structure (Cu3Au-type, Pm3̅m) but
PtM′ intermetallics generally have a tetragonal structure
(AuCu-type, P4/mmm). In this chapter, we mainly focus on

Figure 11. (a) TEM and (b) magnified TEM images of the PtNi2
random alloy nanocrystals synthesized via oxidative etching. (c) TEM
image of hollow Pt3Ni nanoframes. (d) Structural model, HAADF-
STEM image, and the corresponding EDX elemental mapping of Pt
(red) and Ni (green) for a single hollow Pt3Ni nanoframe. (a,b)
Reproduced with permission from ref 246. Copyright 2012 WILEY-
VCH. (c,d) Adapted with permission from ref 220 and modified.
Copyright 2014 AAAS.
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the most commonly practiced synthetic approaches and
discuss the recent progress of these intermetallic conversion
strategies. It should be worth noting that parts of these
methods would generate analogous products derived from
homophyly reaction routes or basic mechanisms. It is also very
common to synthesize nanocrystals with complex structures by
a combination of two or more different synthetic strategies.
Table 3 summarizes some representative examples concerning
the synthesis of intermetallic nanocrystals using various
approaches.

4.1. Thermal Annealing

In the overview of thermodynamic and kinetic analyses, a
random alloyed structure is more prevalent than the
intermetallic variants when a synthesis is maintained below
the disorder-to-order transition temperature. At elevated
temperature, thermal annealing for a sufficient period is
arguably the most straightforward and powerful strategy for
generating the intermetallic nanocrystals by facilitating the
arrangement of metal atoms and d-d orbital interactions. This
method has proven effective for the formation of a variety of
both bi- or trimetallic intermetallic nanocrystals, as well as
intermetallic semiconductor and superconducting nanocryst-
als.128,165,378−384 Overall, thermal annealing can lead to a large
number of ordered intermetallic nanocrystals, where the atom
ordering degree can be easily tailored by varying experimental
parameters such as the annealing temperature, annealing time,
and the nature of support and protecting template.
4.1.1. Direct Annealing. Direct annealing is the most

widely adopted protocol by far to the generation of ordered
intermetallic nanocrystals.385−399 In this process, as-prepared
nanocrystals with random characteristics serve as primary
intermediates for the conversion into intermetallic nanocrystals
with ordered atomic arrangement via thermal treatment in an
atmosphere or vacuum. It is often required to have annealing at
high temperatures and/or long times due to the relatively high
kinetic barriers involved in the atomic ordering. Such a process
may cause a nanocrystal aggregation and/or sintering through

Oswald ripening, leading to physical structure changes and
thus impacting the critical disorder-to-order transition temper-
ature. For example, Abruña, DiSalvo, and co-workers
demonstrated that the as-synthesized atomically disordered
Pt3Ti nanocrystals were converted into atomically ordered
Pt3Ti nanocrystals via thermal treatment in vacuum at
temperature starting at 500 °C (Figure 12).165 Note that
when the annealing temperature exceeds 550 °C, additional
peaks assigned to the 100, 110, 210, 211, 300, and 310
ordering reflections of Pt3Ti begin to be visible in the X-ray
diffraction (XRD) pattern. Further increase of the annealing
temperature to 600 °C could increase the intensity of the
above-mentioned superlattice peaks compared with the
fundamental peaks, demonstrating that the annealing temper-
ature is an important parameter to tune the ordering degree of
the as-obtained nanocrystals. Therefore, to completely convert
Pt3Ti nanocrystals from a disordered phase to the ordered
structure with a Pm3̅m space group, referred to as Cu3Au-type
structure, an annealing temperature between 550 and 600 °C is
required to promote both Pt and Ti atoms interdiffusion.
However, the annealing process at or above the disorder-to-
order transition temperature inevitably leads to a dramatic
increase of particle size, as well as a formation of a
thermodynamically stable polyhedral shape to minimize the
total surface energy. As evidenced by TEM analysis, the as-
synthesized Pt3Ti nanocrystals in the disordered phase are in
the average size of 3 nm, whereas the nanocrystals could grow
to 37 nm after annealing at 600 °C with an ordered
intermetallic crystal phase. It is hard to control the nanocrystal
size in this approach. Particularly, the polydispersity of Pt3Ti
nanocrystals with an atomically ordered structure would make
it difficult to extract structure−function relationships for the
practical electrocatalytic application. Therefore, it is critical to
achieving the disorder-to-order transition, while maintaining
the size and shape of the as-developed intermetallic nano-
crystals simultaneously.
By regulating in situ annealing conditions in a scanning

transmission electron microscope (Figure 1), Chi and co-
workers synthesized and directly revealed a series of Pt3Co
structures with different atom arrangements during thermal
annealing, including face-centered cubic ( fcc) and disordered
Pt-rich shell on the randomly alloyed core, nucleation of
structurally ordered domains, fully ordered L12 phase, and
initiation of amorphization phase.131 They found that
structurally ordered domains of Pt3Co nanocrystals enclosed
by predominant {100} facets could be formed by annealing at
600 °C for 20 min. By simply prolonging the annealing time at
the same temperature, the formation of a fully ordered phase
with a similar morphology became favorable. Furthermore, it
was determined that an annealing temperature at as high as
800 °C was critically important in facilitating the formation of
the amorphous phase with a rounded shape. It was also
observed that the annealing environment in different gases
could further tune the surface reshaping and atom diffusion of
the Pt−Co nanocrystals. These results suggest that the
evolution of surface area on each type of nanocrystal facets,
such as {100}, {111}, and {110}, and diffusion behaviors are
strongly correlated with the annealing conditions. In all, a
broad range of similar approaches has been employed for the
synthesis of ordered intermetallic nanocrystals, where a careful
selection of annealing temperature, annealing time, and
annealing atmosphere plays a crucial role in facilitating the
degree of the ordering, size, and shape of the final product.

Table 3. Summary of Some Representative Intermetallic
Nanocrystals Obtained from Various Synthetic Approaches

synthetic
approach

metal
composition morphology reference

thermal annealing Pt3Co, Pt3Ti nanosphere refs 131 and
165

PtFe loaded on
carbon

nanosphere ref 363

Pt5Ce nanosphere ref 364
PtFe, PtSn,
PtZn

nanosphere refs 365−367

liquid-phase-
based method

PtPb@Pt nanoplate ref 120

PtPb nanorod ref 368
PdCu nanocube ref 369
AuPtFe, AuCu nanosphere refs 98 and 370
PdSn, PtSn,
AuSn

hollow nanosphere
and nanorod

refs 371 and
372

PtCu3 nanocage ref 373
Pt3Sn nanocube, concave

nanocube
ref 374

PtNi excavated
nanomultipod

ref 375

other synthetic
methods

PtFe, PtPb,
PtGa

nanosphere refs 213, 376,
and 377
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4.1.2. Support-Assisted Annealing. Unlike direct
annealing, in the support-assisted annealing approach, one is

generally required to deposit the nanocrystals on more stable
supports with larger surface areas (e.g., porous carbon, porous

Figure 12. (a) XRD patterns of the Pt−Ti nanocrystals with different compositions that are annealed at 600 °C. Simulated XRD peaks for the
disordered fcc-type and the ordered Cu3Au-type structures are indicated by solid markers at the bottom and the top of the figure, respectively,
together with the corresponding structural models. (b) XRD patterns of the Pt−Ti nanocrystals annealed in vacuum at different temperatures.
Simulated XRD peaks for the disordered fcc-type and the ordered Cu3Au-type structures are indicated by solid markers at the bottom and the top of
the figure, respectively. Reproduced from ref 165. Copyright 2008 American Chemical Society.

Figure 13. (a) Schematic illustration of the homemade device for the in situ annealing and synchrotron-based XRD characterization. (b) XRD
patterns of the annealed Pt3Co/C (700 °C in a conventional tube furnace, the top) and the as-synthesized Pt3Co/C (the middle) recorded using
the homemade device. The lines on the bottom show standard XRD pattern of intermetallic Pt3Co (ICDD PDF card 01-071-7410). (c) In situ
XRD patterns of Pt3Co/C heated in the homemade device under forming gas as a function of the temperatures (left panel) and annealing time-
dependent in situ XRD patterns heated at 750 °C in the homemade device under forming gas (right panel). Both dashed lines represent the as-
synthesized Pt3Co/C random alloy. (d) TEM image of ordered intermetallic FePt nanocrystals encapsulated in ordered mesopores. (a−c) Adapted
with permission from ref 130 and modified. Copyright 2019 National Academy of Sciences, USA. (d) Adapted from ref 363 and modified.
Copyright 2011 American Chemical Society.
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oxide/carbon composite, graphene, and carbon nanotubes)
before the annealing is carried out to effectively mitigate
nanocrystal aggregation/sintering during this thermal proc-
ess.138,152,157,159,166,179,363,400−418 It was found that the
supports could well immobilize the nanocrystals and prevent
them from migration at high temperatures, as their strong
anchoring effects could greatly alleviate interparticle diffusion.
Meanwhile, the presence of these supports can dramatically
improve the electronic density of the nanocrystals and thus
accelerate the electrocatalytic process. To avoid uncontrolled
nanocrystal aggregation, however, a load of metal on the
supports is generally required to be carefully considered before
annealing. Carbon black is one of the most common supports
extensively used in fuel cells and batteries. Abruña and co-
workers demonstrated a successful example in monitoring the
conversion of intermetallic phase Pt3Co loaded on a carbon
support and also observed its intermetallic conversion
behavior.130 Cabon-supported Pt3Co (Pt3Co/C) random
alloy nanocrystals were prepared by a coreducing slurry of
H2PtCl6 and CoCl2 in the presence of Vulcan XC-72 carbon in
a tube furnace at 300 °C under forming gas (5%H2/95%N2)
for 2 h. The random alloy Pt3Co/C was converted to its
intermetallic phase through annealing at 700 °C in a
conventional tube furnace. Their XRD patterns recorded
using a synchrotron source in a homemade device (Figure 13a)
are presented in Figure 13b, in which the intermetallic pattern
(the top panel of Figure 13b) exhibited multiple superlattice
ordering peaks with a distinguished “new peak” (the 110-peak)
compared with the random alloy pattern (the middle panel of
Figure 13b), and matches the standard XRD card of the
ordered Pt3Co (PDF 01-071-7410, the bottom panel of Figure
13b) perfectly. The authors further heated the random alloy
Pt3Co/C using the homemade device (Figure 13a) under
forming gas for 2 h and collected its in situ synchrotron XRD
patterns as a function of the annealing temperatures (the left
panel of Figure 13c), identifying its critical phase-transition
temperature (Tc = 750 °C) under this condition. An increase
of both fractions of the ordered phase and the average crystal
domain sizes with increasing the annealing temperatures
between 600 and 750 °C was also observed, which is similar
to the behavior of the bulk Cu3Au and PtCo nanocrystals. At
750 °C (the optimal annealing temperature), heating time-
dependent investigation indicated that 2 h was a sufficient time
to achieve the conversion equilibrium with an average crystal
domain size of 6 nm (the right panel of Figure 13c). Lee and
co-workers also reported their synthesis of well-dispersed
ordered intermetallic FePt nanocrystals inside ordered
mesostructured silica/carbon composites through thermal
annealing under mixed Ar/H2 (5 wt %) (Figure 13d).363 In
the first step, the ordered mesostructured composites were
formed via self-assembly of polyisoprene-blockpoly (ethylene
oxide) (PI-b-PEO) block copolymers with aluminosilicate sols
in the presence of a hydrophobic iron precursor (dimethyla-
minomethylferrocene) and a hydrophobic platinum precursor
[dimethyl (1,5-cyclooctadiene) platinum(II)]. Next, the as-
prepared composites were heated at 800 °C for 2 h, generating
ordered intermetallic FePt nanocrystals encapsulated in the
ordered mesopores. Interestingly, they found that the particle
size of the resultant ordered intermetallic FePt nanocrystals
could be readily tuned from 2.4 to 10 nm by varying the
quantities of the Pt and Fe precursors in the solution. On the
other side, one should keep in mind that an extremely high
loading of the metals on the support could result in

uncontrolled nanocrystal aggregation toward larger nanocryst-
als eventually.
Nevertheless, support-assisted thermal activation is not

always compelling to facilitate the disorder-to-order transition,
as it might also create an opportunity to benefit the order-to-
disorder conversion during the process. A notable example was
recently reported by Tilley and co-workers.419 They synthe-
sized partially disordered Pt3Sn NCbs through low-temper-
ature thermal annealing of ordered intermetallic Pt3Sn NCbs in
air. In particular, the size and shape of the Pt3Sn nanocrystals
could be well-preserved after thermal treatment at 200−250
°C. It should be mentioned that these temperatures seem to be
around the critical phase-transition temperature of Pt3Sn
nanocrystals. Therefore, they believed that a choice of the right
temperature played a critical role in achieving the order-to-
disorder transition. Such a phenomenon might also be
observed in other bimetallic combinations with the develop-
ment of synthetic techniques.
In the aforementioned studies, it seems that the simulta-

neous use of two or more metal precursors (except for the
support) in a reaction system is crucial for the preparation of
the ordered intermetallic nanocrystals. However, it should be
mentioned that, in some cases, strong metal−support
interactions can be employed to synthesize ordered inter-
metallic nanocrystals on the interface between the nanocrystals
and support under high-temperature annealing conditions,
since some supports such as transition metal oxides,
hydroxides, and carbides can act as the precursors of the
metals under a reducing atmosphere.148,162,420−427 This
concept was demonstrated by Peŕez-Omil and co-workers.
They produced ordered intermetallic CePt5 nanocrystals by
reducing the Pt/CeO2 catalyst at elevated temperatures in a
reductive H2 atmosphere (Figure 14).364 Using the HRTEM
technique combined with simulation, they carried out a
systematic study and uncovered the structure evolution process

Figure 14. (a,b) HRTEM images recorded on the 4% Pt/CeO2
nanocrystals annealing at 773 K. (c) HRTEM image recorded on the
4% Pt/CeO2 nanocrystals annealing at 1173 K. (d) Image simulation
of the CePt5 phase along the [010] zone axis. Adapted with
permission from ref 364 and modified. Copyright 1997 Academic
Press.
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of the Pt/CeO2 catalyst at temperatures ranging from 200 to
950 °C. Particularly, when the Pt/CeO2 catalyst was annealing
at a temperature up to 700 °C, it was observed that a thin,
subnanometric ceria decoration layer preferentially orientates
with the Pt nanocrystals where they have grown. It was further
validated that CePt5 was the only ordered intermetallic phase
in the catalyst and the alloying phenomena could only be
detected at high reduction temperatures (800−950 °C) that
accelerate the interdiffusion of atoms. Recently, Wu and co-
workers extended the support-assisted annealing approach to
other ordered intermetallic systems, demonstrating that two-
dimensional (2D) early transition metal carbides (MXenes),
especially Ti3AlC2, could serve as supports for the in situ
formation of Pt3Ti intermetallic nanocrystals by a thermal
reduction under an H2 atmosphere at 550 °C.162 Altogether,
the support-assisted annealing strategy offers a unique and
effective route for the controllable synthesis of ordered
intermetallic nanocrystals with uniform dispersity on support.
4.1.3. Protective Shell-Assisted Annealing. The use of

oxides (such as MgO, Al2O3, and SiO2) and polymers as
protective coating layers is another simple yet versatile
approach for preventing the aggregation and regrowth of
nanocrystals during the subsequent heat treatment, leading to
precise control on the size of the ordered intermetallic
nanocrystals as a result of the complete elimination of
interparticle diffusion.366,367,428−439 As compared with the
support-assisted annealing approach, this coating confinement
method is more efficient in stabilizing the nanocrystals against
sintering and in precisely controlling the size of the final
products. However, this protective layer must be removable to
expose the nanocrystal surface in the post-treatment for further
applications. It is worth mentioning that, in most cases, it is
difficult to complete the structural transition from the random
alloy to the ordered intermetallic phases with the confinement
of the coating layer since the coating shell dramatically limits
the atomic mobility/diffusion and increases the kinetic energy
barrier in the atom ordering process. For the formation of fully
ordered intermetallic nanocrystals rather than partially ordered
phases, elevated annealing temperatures are required in this
approach. As an example, Sun and co-workers successfully
demonstrated this approach by employing a thin layer of MgO
as the protecting shell to prepare ordered intermetallic PtFe
nanocrystals at high annealing temperatures (Figure 15).365 In
a typical synthesis, a mixture of Pt(acac)2, Fe(CO)5, OAm,

OA, and octadec-1-ene was heated to 240 °C for 1 h, and then
MgO was coated on the as-obtained PtFe nanocrystals with a
chemical disorder structure by decomposing a mixture of
Mg(acac)2, 1,2-tetradecanediol, OAm, OA, and benzyl ether.
By carrying out a thermal treatment under Ar + 5% H2 at 750
°C for over 6 h and subsequent removal of MgO via acid
leaching, the as-prepared PtFe nanocrystals could be converted
into ordered intermetallic phase while a good dispersibility was
preserved. More importantly, this approach has also been
extended to the synthesis of ordered intermetallic nanocrystals
with different structures and components, for instance, PtCo,
PtSn, and PtZn nanocrystals.13,105,366,367

As the second example, Hyeon and co-workers further
expanded the protective shell-assisted annealing method to
other systems, showing that N-doped carbon with a porous
structure could serve as a protective shell for the formation of
atomically ordered intermetallic PtFe nanocrystals with an
average size of 6.5 nm during the annealing treatment
process.157 In this case, by simply impregnating the as-
prepared carbon-supported PtFe nanocrystals in a dopamine
hydrochloride aqueous solution followed by polymerization at
700 °C, the polydopamine-coated fcc PtFe nanocrystals were
readily converted into N-doped carbon-coated PtFe nano-
crystals with an ordered phase. It is noteworthy to point out
that the in situ formed carbon shell plays a significant role in
preventing the nanocrystals from the emergence of agglomer-
ation/sintering during the thermal annealing process. Fur-
thermore, they revealed that the thickness of the N-doped
carbon shell could be precisely controlled within a range from
subnanometer to 3.5 nm by tuning the impregnating time of
polydopamine. In summary, from the aforementioned
examples, the major advantage of the protective shell-assisted
annealing strategy is the ability to effectively stabilize the
nanocrystals against sintering and thus potentially improve the
dispersion of resultant-ordered intermetallic nanocrystals.

4.1.4. Defects/Vacancies-Assisted Annealing. To
achieve the disorder-to-order transition, defects/vacancies are
generally introduced to decrease the diffusion barrier and
thereby promote the ordering process of metal atoms under
high-temperature annealing conditions. Unlike other annealing
approaches, this method is mainly used for tuning the
composition of nanocrystals by introducing other metals to
generate defects/vacancies, significantly benefiting the struc-
ture transition upon heating and performance improvement.
Taking ordered intermetallic PtFeL′ (L′ = Au, Cu, Ag, Mn,
and Sb) nanocrystals as representative examples, it is believed
that doping other metals to the disordered PtFe nanocrystals
could help facilitate the atomic ordering process, generating
the ordered intermetallic PtFe nanocrystals at a relatively lower
temperature as compared to the case without dop-
ing.195,207,209,215,394,440 Depending on the alloying power of
the L′ atoms with either Pt or Fe atoms, it was determined that
the strong interaction between Pt and Fe atoms would squeeze
the L′ atoms out to the nanocrystal surface upon high-
temperature annealing since the above-mentioned L′ atoms
possess weaker interaction with either Pt or Fe atoms. Along
with L′ atoms segregating onto the nanocrystal surface, defects
would be created within each nanocrystal to promote metal
atom diffusion and structural conversion from disorder to
order. For example, as demonstrated by Sun and co-workers,
monodisperse 4 nm fcc FePtAu nanocrystals with tunable
compositions were converted to ordered intermetallic FePtAu
nanocrystals by annealing at 600 °C, with Au segregating on

Figure 15. (a) Schematically illustrating the synthesis of fct FePt
nanocrystals from fcc FePt/MgO nanocrystals via a protective shell-
assisted annealing approach. TEM images of (b) 7 nm fcc FePt
nanocrystals, (c) as-synthesized fcc FePt/MgO nanocrystals, and (d)
fct FePt/MgO nanocrystals synthesized via thermal annealing of fcc
FePt/MgO nanocrystals at 750 °C for 6 h. Adapted with permission
from ref 365 and modified. Copyright 2009 Wiley-VCH.
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the FePt nanocrystal surface derived from the lower
intersolubility between Au and PtFe.205 In this process, the
disorder-to-order transition could be strongly affected by the
doping content of 20 at % Au, generating optimal atomic
ordering in the FePt structure. They ultimately concluded that
the doped Au atoms were able to enhance the mobility of the
host matrix atoms by creating defects/vacancies, thus
promoting the kinetics of the ordering process. Later on, the
same group reported that the ordered intermetallic PtFe
nanocrystals could also be prepared by annealing dumbbell
structured PtFe−Fe3O4 nanocrystals or core−shell structured
PtFe−Fe3O4 nanocrystals in a reducing H2/Ar gas, where
atomic ordering was promoted by creating vacancies upon the
Fe3O4 reduction to Fe.112,161 Similarly, this approach was also
extended to other ordered intermetallic fabrication, such as
PdFe, PdCo, and PtCo.10,177,394,420

4.1.5. Other Thermal Annealing Approaches. Apart
from the above-mentioned strategies, several other methods
have been developed to suppress the sintering/aggregation
during the disorder-to-order transition process at elevated
temperatures. These approaches involved the usages of a
surfactant-free KCl matrix, linker molecules, mixed salt
powders, and pulsed-laser annealing.169,380,441−444 For exam-
ple, DiSalvo and co-workers reported their synthesis of ordered
intermetallic nanocrystals with various components through a
surfactant-free KCl matrix method.169 In this approach, an
insoluble KCl byproduct would be formed in situ upon the fast
reduction of chloride-based precursors in the presence of a
strong reducing agent (e.g., KEt3BH) and served as a
protective matrix to stabilize the nanocrystals in a subsequent
thermal annealing treatment. By simply tuning the annealing
conditions or the content of KCl in the precursors, the size of
the resultant products can be readily controlled. Before this
work, Liu and co-workers also disseminated that the ordered
intermetallic nanocrystals could be prepared by direct high-
temperature annealing in the presence of NaCl powders.443 It
is important to note that these inorganic salts used in the
nanocrystal sintering may not be very efficient in assisting the
phase conversion, as they can only act as a physical barrier
rather than a microstructural shell around each nanocrystal.
Additionally, Inoue and co-workers released an approach for
yielding ordered intermetallic nanocrystals by employing linker
molecules to stabilize the nanocrystals as well as to suppress
the nanocrystal coalescence upon annealing.444 Overall, the
growing interest in developing new synthesis strategies for the
conversion of ordered intermetallic nanocrystals is stimulated
by their enhanced properties and promising applications as
compared to those from the random alloy nanocrystals.

4.2. Liquid-Phase-Based Synthesis Approaches

Liquid-phase-based synthesis is the foremost and effective
approach to generate a variety of ordered intermetallic
nanocrystals with well-defined sizes, shapes, compositions,
and structures, including bimetallic nanocrystals and multi-
metallic nanocrystals.47,120,172,184,369,375,445−456 As compared
with the solid-state annealing in the gas atmosphere, the liquid-
phase synthesis usually carries out at a relatively low
temperature (typically, < 350 °C) mainly due to the limitation
of the solvent boiling point, which is lower than the required
structure transition temperature. To overcome this obstacle, it
is of critical importance to significantly lower the kinetics
energy barrier in the disorder-to-order transition by simply
adjusting the experimental conditions, including the addition

of various reducing agents and/or capping agents in the
reaction solution, introduction of a dopant metal, and diffusing
of a second metal into the as-synthesized seeds.

4.2.1. One-Pot Synthesis. One-pot synthesis is arguably
the most straightforward and powerful approach for synthesiz-
ing ordered intermetallic nanocrystals with well-defined size,
shape, dispersity, and composition at relatively mild con-
ditions.374,457−467 This approach involves the simultaneous
addition of all reactants, such as precursors, solvents, reducing
agents, stabilizers, and capping ligands, in just one reactor,
where the reactions can proceed at a given temperature until
the reactions reach equilibrium, effectively avoiding a lengthy
separation of the intermediates while dramatically increasing
the product yield. Traditionally, the simultaneous reduction of
different metal-containing precursors with a strong reducing
agent, such as AA, TBAB, NaBH4, or n-butyllithium, has
turned out to be an effective strategy for generating the
ordered intermetallic nanocrystals in one-pot synthesis,
especially for metals with a relatively large difference in
reduction potential, high binding energy, low electronegativity,
or immiscibility in the bulk state.120,144,184,368,457,468−470 For
example, Huang and co-workers adopted this approach to
synthesize nanoplates consisting of intermetallic PtPb core and
Pt shell of ∼1 nm in thickness by using AA as the reducing
agent in the presence of OAm/1-octadecene as mixed solvent
(Figure 16a,b).120 They reported that the use of AA was

critical for the formation of PtPb/Pt nanoplate as AA can act as
a weak acid to remove the Pb atoms during the synthetic
process, facilitating the Pt atoms to diffuse inward and
rearrange. By simply reducing the amount of AA, the formation
of ordered intermetallic PtPb phase became favorable. As an
additional example, Yang and co-workers demonstrated the

Figure 16. (a) TEM image of core−shell PtPb−Pt nanoplates with
hcp PtPb cores and Pt shells acquired in a one-pot synthesis and (b)
the corresponding SAED pattern of a single hexagonal nanoplate. (c)
TEM image of the hcp PtPb nanorods acquired in a one-pot synthesis.
(d) The growing surfaces of the hcp PtPb nanorods viewed along
⟨110⟩ direction. (a,b) Reproduced with permission from ref 120.
Copyright 2016 AAAS. (c,d) Adapted from ref 368 and modified.
Copyright 2007 American Chemical Society.
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synthesis of ordered intermetallic PtPb nanorods. They used
TBAB as the reducing agent to simultaneously reduce Pt and
Pb precursors in the presence of diphenyl ether, adamantane-
carboxylic acid (ACA), hexadecanethiol (HDT), and hex-
adecylamine (HDA) at 180 °C under an argon atmosphere
(Figure 16c,d).368 The shape of PtPb products could be
precisely controlled by varying the amount of TBAB and HDT,
the molar ratio of ACA to HDT, and the reaction time.
Interestingly, they claimed that the formation of nanorods
could be attributed to the difference in coordination numbers
along with low-indexed facets of the PtPb nanocrystals with
their hexagonal crystal structure, where adatom preferably
incorporates into the top and bottom facets with relatively
high-binding numbers, benefiting the growth along the ⟨001⟩
direction. Around the same time, Schaak and Cable reported
their synthesis of R−Sn, (R = Ag, Au, Co, Cu, Fe, and Ni) and
Pb−R′ (R′ = Bi, Pb, Sn, and Sb) binary intermetallic
nanocrystal systems with ordered phases using NaBH4 as a
strong reducing agent in polyol systems at relatively low
temperatures.445 To promote the formation of the ordered
intermetallic nanocrystals, this work indicates that a strong
reducing agent is essential to achieve the co-reduction of
different precursors with relatively large differences in
reduction potential.
It was found that certain capping agents (e.g., halide ions,

organic phosphine, or organic amines) in the reaction solution
can selectively bind to specific crystal facets of the nanocrystal
through surface chemisorption, effectively redefining the
anisotropy in surface free energy and thus driving the
disorder-to-order phase transition in the one-pot syn-
thesis.59,173,452,471,472 To this end, Hou and co-workers
synthesized ordered intermetallic PtBi nanoplates using
NH4Br as the capping agent to simultaneously reduce the
Pt- and Bi-precursors in the presence of OAm at 200 °C under
a nitrogen stream.452 They further carried out a systematic
study and explored the function of other halide ions (e.g., F−,
Cl−, or I−) and different types of bromide-containing reagents
while other synthetic parameters were kept the same. They
concluded that bromide ions played a significant role in the
formation of nanoplates with predominant exposed {101}
facets via selective absorption. In a later report, the same group
demonstrated that the crystal phase of FePt nanocrystals could
be tuned to an ordered structure by the addition of different
halide ions (e.g., Cl−, Br−, or I−) in the solution containing
Pt(acac)2, Fe(acac)3, and OAm at 350 °C under nitrogen.113

For a synthesis without the addition of halide ions, disordered
FePt nanocrystals in the mean size of ∼5 nm were obtained.
Another typical example of ordered intermetallic nanocrystal
synthesis in cubic shape has been given by Yu and co-workers.
They prepared ordered intermetallic PdCu NCbs by
simultaneously reducing Pd- and Cu-precursors using
trioctylphosphine (TOP) as a capping agent and stabilizer in
the presence of OAm as both a solvent and a reducing agent at
250 °C under N2 atmosphere.369 The shape of the PdCu
nanocrystals could be readily controlled by tuning the amount
of TOP, reaction temperature, and the molar ratio of Pd/Cu.
Interestingly, they found that the P atom derived from TOP
could selectively cap the {100} facets of the PdCu nanocryst-
als, resulting in a dramatic decrease in total surface energy on
the {100} facets and thereby producing PdCu NCbs in the
average size of 12 nm. In summary, the presence of desirable
capping agents in the reaction solution is of critical importance
to simultaneously control the shape and the crystal phase of

the resultant products in the one-pot synthesis since the
capping agent can decrease the surface energy of specific
crystal facets via selective adsorption and thus facilitate the
atomic ordering process.
In addition to using the reducing agents and capping agents

in the reaction solution, the introduction of a dopant metal in
one-pot synthesis has also been demonstrated to be viable for
the preparation of ordered intermetallic nanocrystals. This is
suggested to be largely associated with defects and lattice strain
introduced by the doping atoms, as discussed previously in
section 4.1.4 about the annealing approach. In general, doping
metals that are immiscible to the parent metals might be
squeezed out of the parent metal lattice at a relatively high
synthesis temperature, leading to lattice vacancies and inducing
the mobility of parent metals to a rearrangement. As
demonstrated by Kinge and co-workers, the addition of the
Au precursor to a solution containing Pt(acac)2, Fe(CO)5, 1,2-
hexadecanediol, octyl ether, HDA, OAm, and OA led to a
formation of ordered intermetallic FePtAu nanocrystals in the
size of ∼6 nm.370 The group systematically investigated the
effect of the reaction temperature on the crystallographic phase
of the as-prepared products, revealing that the onset of reaction
temperature for generating the ordered face-centered tetrago-
nal ( fct, e.g., L10) phase was as low as 150 °C. Meanwhile, the
composition of the ordered intermetallic FePtAu nanocrystals
could also be readily tuned by varying the reaction temper-
ature. Furthermore, by prolonging the reaction time to 3 h, the
domination of the highly ordered phase in FePtAu nanocryst-
als could be observed due to the kinetic development. Several
years later, Wang and co-workers further studied the FePt
system using this approach with other dopants, showing that
Ag and Cu could be incorporated into the lattice of FePt
nanocrystals in one-pot synthesis, thereby forming ordered
intermetallic FePtAg and FePtCu nanocrystals.195,473 Alto-
gether, introducing a dopant metal in one-pot synthesis
provides exquisite control over both the composition and
crystal phase of final products via adjusting the synthetic
parameters, such as the concentration of doping metal
precursor, reaction temperature, and duration of the reaction.
More importantly, this concept and strategy could be
potentially extendible to other systems.160,209,215,394

4.2.2. Seed-Mediated Synthesis. Seed-mediated syn-
thesis is the most viable approach to control the size, shape,
and composition of ordered intermetallic nanocrystals by
effectively separating the complicated nucleation from the
subsequent growth processes.174,175,178,371,474−480 Typically,
this approach involves two steps: (i) synthesizing seeds with
well-defined size, shape, composition, and structure and (ii)
diffusing a second metal into the as-prepared seeds. This
approach was initially adopted in 2007 by Schaak and Cable,
who used a series of single-component metal nanocrystals
including Pd, Cu, and Au as the seeds for the entire synthesis
of ordered intermetallic L″−Zn (L″ = Pd, Cu, and Au)
nanocrystals.178 In the first step, different types of metal-
containing precursors dissolved in 1-octylamine were added
into a hot solution of HDA, respectively, in which the metal-
containing precursors were completely reduced to generate
zerovalent metal nanocrystals. A 1-octylamine solution of
Et2Zn was then quickly injected in the system, forming ordered
intermetallic Zn-based nanocrystals via seed-mediated diffusion
growth at relatively high temperatures. Recently, Zhu and co-
workers utilized the seed-mediated diffusion approach to
prepare ordered intermetallic AuCu nanocrystals in the average
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size of 8 nm by employing Au nanocrystals as the seeds in the
presence of OAm (Figure 17a,b).98 In this example, the
reduced Cu atoms by OAm could rapidly diffuse into Au seeds,
resulting in the formation of ordered intermetallic AuCu
nanocrystals at 290 °C and disordered AuCu nanocrystals at
210 °C, while preserving the product in the similar size, shape,
and composition. They found that the composition of AuCu
nanocrystals could be readily controlled by simply tuning the
mass ratio of Au seed and Cu(acac)2. These results indicate
that the formation of ordered intermetallic nanocrystals might
require high reaction temperatures in the presence of single-
component metal nanocrystals as the seeds due to the
involvement of the relatively higher diffusion barriers and the
longer diffusion distances. Skrabalak and co-workers recently
demonstrated a paradigm in achieving core−shell ORR
nanocatalysts, containing randomly alloyed PtCu shells and
PdCu cores that could be either the atomically random fcc
phase (A1, Fm3m) or the intermetallic CsCl-like phase (B2,
Pm3m).464 Similarly, the authors deposited randomly alloyed
Pt−M (M = Ni, Co, Cu, or Fe) shells on intermetallic PdCu
B2 cores with a variation of the shell thickness and
composition (Pt:M ratios), showing a 230% and 270% ORR
activity increment on PtCu- and PtNi-shells, respectively, in
comparison with the Pt reference.481 These studies show that
both the surface structure and the core nature could impact the
ORR performance in acidic media.
In some cases, the large difference in diffusion rate between

different metals enables an opportunity of harvesting ordered
intermetallic nanocrystals with hollow structures during the
seed-mediated synthesis. This phenomenon is commonly
referred to as the nanoscale Kirkendall effect. Typically,
when the inward diffusion rate of metal is significantly lower
than the outward diffusion rate of another metal, the lattice
vacancies would be continuously generated at the boundaries,

resulting in the emergence of a hollow structure. One typical
example was given by Schaak and co-worker, where a series of
ordered intermetallic M*−Sn (M* = Pd, Fe, Co, and Ni)
nanocrystals with hollow structures were formed by using
shape- and size-controlled Sn nanocrystals as the seeds in the
presence of tetraethylene glycol (TTGE) (Figure 17c,d).371

Taking the synthesis of ordered intermetallic FeSn2 nanocryst-
als as a demonstration, they found that unequal diffusion rates
between the Sn and Fe atoms led to the void formation
through the Kirkendall effect, driving the conversion of the
cubic Sn nanocrystals into ordered intermetallic FeSn2
nanocrystals with various shapes containing hollow squares,
U-shaped structures, and nanorod dimers. The shape variation
was attributed to the anisotropic nanostructure of the
tetragonal Sn seeds, where the top and bottom faces are
possible to be more reactive sites as compared with the four
side faces with a higher atomic density of Sn atoms, triggering
an anisotropic Kirkendall effect. Importantly, it was further
confirmed that the transition from the cubic structure of Sn
seeds to ordered intermetallic FeSn2 nanocrystals largely
associated with the size and shape of seeds. Shortly, the
same group further extended this approach to their synthesis of
various ordered intermetallic L‴−Sn (L‴ = Au, Ag, Pt, and
Ru) nanorods with hollow structures using Sn nanorods as the
seeds.372

In addition to the use of single-component metal nano-
crystals as seeds for ordered intermetallic nanocrystal
preparation, random alloy structure of bimetallic or multi-
metallic nanocrystals is accessible to convert into the
intermetallic structure during the seed-mediated synthesis.
For example, Skrabalak and co-workers adopted the seed-
mediated co-reduction route and synthesized ordered inter-
metallic PdCu nanocrystals with a high monodispersity using
disordered PdCu nanocrystals as the seeds in a solution

Figure 17. (a) Schematic illustration of the synthesis of fcc and fct AuCu alloy nanocrystals by utilizing the Au nanocrystals as seeds. (b) HAADF-
STEM image of as-synthesized AuCu alloy nanocrystals with the fct structure. (c) TEM images of ordered intermetallic FeSn2 nanocrystals with
different types of hollow structures (scale on each: ∼50 nm). (d) formation scheme of ordered intermetallic FeSn2 nanocrystals via a seed-mediated
growth. (a,b) Adapted from ref 98 and modified. Copyright 2017 American Chemical Society. (c,d) Adapted from ref 371 and modified. Copyright
2007 American Chemical Society.
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containing PdBr2, Cu(ac)2, OAm, and TOP at 270 °C (Figure
18).208 The morphology and crystal structure of the ordered

intermetallic PdCu nanocrystals were confirmed by HRTEM
and XRD. HRTEM images showed that the nanocrystals were
comprised of atomically ordered PdCu cores and segregated
thin Pd shells. The team also found that the use of bromide
ions could destabilize the interaction between TOP and
nanocrystal surfaces during the seed-mediated co-reduction
process, which promotes the deposition of the monomers on
PdCu seeds via heterogeneous nucleation instead of homoge-
neous nucleation. Moreover, carrying out a time-evolution
study by quenching the reactions at different periods revealed
that the atomic ordering process associated with intraparticle
diffusion of atoms in the seed-mediated co-reduction synthesis
was expected to be size-dependent, most likely due to the
activation barrier originating from the size-dependent surface
free energetics. In contrast, they proposed that the thermal
annealing process was strongly related to interparticle diffusion
with relatively longer diffusion length and higher diffusion
barrier, resulting in the particles sintering/aggregation after
annealing. Subsequent studies by the same group expanded
this methodology to simultaneously overgrow Au and Cu
atoms on random alloy AuCu nanocrystals for the synthesis of
monodisperse ordered intermetallic AuCu nanocrystals in
solution.154 They first prepared random alloy AuCu nano-
crystals in size of 6.5 nm by injecting a precursor solution,
consisting of Au(ac)3, Cu(ac)2, and OAm, into a preheated
solution containing ODE, OA, and 1,2-dodecanediol at 185 °C
under Ar. The random alloy AuCu seeds were then added to a
solution of Au(ac)3, CuBr, ODE, 1,2-dodecanediol, and OAm
at 280 °C, leading to the formation of monodisperse ordered
intermetallic AuCu nanocrystals in size of 9.7 nm via a size
refocusing mechanism. Using TEM and XRD characterization,
they verified the proposed size refocusing mechanism, where
smaller nanocrystals with a larger surface-to-volume ratio were
constantly dissolved and redeposited onto energetically more
stable larger nanocrystals along with the disorder-to-order

transformation. Significantly, this concept related to the use of
size refocusing to achieve the disorder-to-order conversion is
anticipated to be potentially expandable to other systems in the
seed-mediated co-reduction synthesis.

4.2.3. Hydrothermal/Solvothermal Approach. Hydro-
thermal and solvothermal approaches, which are typically
carried out at an elevated temperature and pressure in water
(hydrothermal) or organic solvent (solvothermal) media in a
sealed Teflon-lined stainless-steel autoclave, are considered to
be good choices for the scalable production of ordered
intermetallic nanocrystals with controlled size and
shape.373−375,482−485 In general, water and nonaqueous
media at a reaction temperature beyond their boiling point
or high-pressure display an obvious variation in their
physicochemical properties, such as viscosity, solubility, and
dissociation constant, resulting in a remarkable enhancement
in the reactivity of reactants and an input of external energy. As
a result, hydrothermal and solvothermal approaches offer a
potential platform for achieving the disorder-to-order trans-
formation by overcoming the high energy barriers. However, in
the context of practical synthesis, the structural types of the
final product are strongly dependent on specific synthetic
parameters, including temperature, pressure, metal combina-
tion, composition, types of capping agent and reducing agent,
and so on. For example, Chen and co-workers utilized the
hydrothermal method and prepared ordered intermetallic PtPb
nanodendrites with controllable compositions by coreducing
the Pt and Pb inorganic precursors in an aqueous solution
consisting of formic acid as the reducing agent.484 It was
uncovered that the use of formic acid, specific metal
combination and composition, had an important influence
on the formation of ordered intermetallic nanocrystals. This
strategy can also be expanded to a series of ordered
intermetallic Pt−Q (Q = Bi, Au, Pd, and Ru) and PdRu
nanodendrite syntheses by simply altering the types of
precursors involved. Furthermore, the compositions of these
ordered intermetallic nanodendrites could also be tuned by
varying the molar ratio of different precursors.484 Shortly, Peter
and co-workers reported that the ordered intermetallic Pd3Pb
nanocrystals in different shapes could be prepared via the
hydrothermal method using NaBH4 as the reducing agent in
the presence of PVP as the surfactant at 240 °C for 24 h.483

They identified that the addition of NaBH4 and PVP might be
crucial in determining the formation of ordered intermetallic
nanocrystals. Importantly, this approach can also be extended
for the formation of other Pd and group IV metal-based
ordered intermetallic nanocrystals by carefully choosing
appropriate precursor salts.483

Besides the hydrothermal approach, the solvothermal
approach has also been widely adopted for the generation of
ordered intermetallic nanocrystals by simply replacing water
with organic solvents, such as OAm, TTEG, and DMF.
Specifically, the boiling point of these organic solvents
decreased in the order of OAm > TTEG > DMF, and their
polarity increased in the order of OAm < DMF < TTEG.
Realizing that these mentioned solvents can also act as
reducing agents during the synthesis and their reducing powers
could be increased with the temperature and pH. Therefore, in
the context of practical synthesis, it is critically important to
correctly choose appropriate solvents based on their respective
characteristics. For example, Lou and co-workers employed the
solvothermal approach to synthesize the ordered intermetallic
PtCu3 nanocages by utilizing OAm as both the reducing agent

Figure 18. (a) Schematic illustration of the synthesis of ordered
intermetallic PdCu alloy nanocrystals by utilizing the disordered
PdCu alloy nanocrystals as seeds. (b) TEM images of (b) disordered
PdCu nanocrystals and (c) ordered intermetallic PdCu nanocrystals.
The insets in panels (b) and (c) are HRTEM images of a typical
PdCu nanocrystal with a disordered structure and PdCu nanocrystal
with an ordered structure, respectively. Adapted from ref 208 and
modified. Copyright 2016 American Chemical Society.
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and solvent in the presence of CTAB as both the capping agent
and surfactant.373 On the basis of a series of control
experiments, they ultimately concluded that the formation of
intermetallic PtCu3 nanocages was mainly due to the galvanic
replacement between preformed Cu nanocrystals and Pt
species. In a later report, Li and co-workers successfully
synthesized cubic, concave cubic, and defect-rich cubic
intermetallic Pt3Sn nanocrystals by simply tuning the
concentrations of the Pt− and Sn−precursors under the
solvothermal conditions (Figure 19a−d).374 In a typical
synthesis, a solution of Pt(acac)2, SnCl2, and DMF was
added to an autoclave and then the system was heated to 180
°C for 12 h. They believed that the high reaction temperature
and high pressure in the solvothermal synthesis process
provided extra energy for achieving the atomic ordering and
thus generating the ordered intermetallic nanocrystals with
surface defects. Specifically, the formation of surface defects
was derived from the oxidative etching caused by O2 and Cl−

from the Sn precursor. Moreover, this approach can also be
applied to the synthesis of Pt−Mn nanocrystals with an
atomically ordered structure. Later, Xie and co-workers also
reported a solvothermal synthesis of hexagonal close-packed
Pt−Ni excavated nanomultipods, in which the mean diameter
and length of the branches were around 35 and 145 nm
(Figure 19e,f).375 They determined that the use of form-
aldehyde might be of critical importance for the successful
generation of the unique hexagonal closest packed (hcp)
structure. Meanwhile, it was believed that CO molecules
generated by decomposing formaldehyde would induce the
diffusion of Pt to the edge of nanomultipods, followed by
diffusion of Ni to the edge to form excavated branches.
4.2.4. Electrochemical Approach. The electrochemical

approach has been used as an efficient and convenient strategy
for the synthesis of ordered intermetallic nanocrystals with
controllable compositions and high yields due to its simple
setup and facile operation.171,486−497 Generally, the extra
electric current is required to drive the transfer of electrons by
supplying the energy to the system and thus stimulate the

chemical reactions that do not occur spontaneously. For
instance, Hall and co-workers developed the electrochemical
deposition approach to synthesize the metastable ordered
intermetallic Pd31Bi12 nanocrystals in an aqueous electrolyte at
room temperature.498 In this process, a potential of −0.1 V was
constantly applied for 1000 s in an aqueous solution containing
Na2PdCl4, Bi(C2H3O2)3, CH3COOH, and C10H16N2O8
(EDTA). Using a series of characterization methods including
XRD, HRTEM, XPS, and selected area electron diffraction
(SAED), the group demonstrated that the as-synthesized
Pd31Bi12 nanocrystals in the average diameter of 35 nm
possessed an atomically ordered crystal structure. Shortly, they
reported an electrochemical dealloying approach to directly
convert colloidally synthesized ordered intermetallic PdBi2
nanocrystals to ordered intermetallic Pd3Bi nanocrystals
under ambient conditions (Figure 20).488 Briefly, the ordered
intermetallic PdBi2 nanocrystals were first synthesized via a
reduction of Pd(acac)2 and Bi(C2H3O2)3 in OAm at 300 °C,
yielding ordered intermetallic PdBi2 nanocrystals. The as-
prepared colloidal products were further electrochemically
cycling under O2 at 1600 rpm in 0.1 M KOH repeatedly,
generating ordered intermetallic Pd3Bi nanocrystals. They
reported that the facile removal of Bi from PdBi2 by the
controlled electrochemical corrosion and subsequent atomic
restructuring played an important role in generating the
ordered intermetallic Pd3Bi nanocrystals under the exper-
imental conditions.

4.2.5. Microwave-Assisted Reduction Approach. The
microwave-assisted reduction approach is an emerging strategy
for the preparation of ordered intermetallic nanocrystals with
greater precision as compared with those methods using the
conventionally heating process.499−503 Typically, microwave
treatment can rapidly and uniformly heat the reagents
including solvents, intermediates, and products, accelerating
the fast reduction of metal-containing precursors and favoring
instantaneous nucleation in the solution. For example, as
demonstrated by Armbrüster and co-workers, Rh−Bi nano-
plates with hcp structure could be formed by simultaneously

Figure 19. HAADF-STEM images of (a) a single concave cubic and (c) defect-rich cubic intermetallic Pt3Sn nanocrystal and (b, d) the
corresponding atomic-resolution HAADF-STEM images taken from the yellow regions in HAADF-STEM images. (e) SEM image of hcp Pt−Ni
excavated nanomultipods. (f) HRTEM image taken from a single branch of a representative hcp Pt−Ni excavated nanomultipod. (a−d) Adapted
with permission from ref 374 and modified. Copyright 2016 Wiley-VCH. (e,f) Adapted with permission from ref 375 and modified. Copyright 2017
Springer Nature.
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reducing Rh2(C2H3O2)4 and Bi(C2H3O2)3 in EG (as both the
reducing agent and solvent) in the absence of surfactants under
rapid microwave heating.183 These as-synthesized nanoplates
possessed an average diameter of about 60 nm and thickness of
less than 20 nm. According to quantum chemical LMTO-ASA
calculations, it was reported that the chemical bonding in RhBi
comprised heteropolar covalent Rh−Bi bonding via three-
center bonds and homoatomic covalent Rh−Rh bonding,
benefiting the electron transfer from bismuth to rhodium. In a
recent report, Ruck and co-workers utilized the microwave-
assisted reduction route and obtained a series of ordered
intermetallic Pd−Bi nanocrystals by simply varying the molar
ratio of different precursors, reaction temperature, heating
time, solvent, and the addition of auxiliaries like OAm, OA,
and KOH at relatively low temperatures in minutes.504 It was
determined that the optimal reaction temperatures and heating
times were between 170 and 240 °C and a few minutes up to 1
h, respectively.
4.3. Other Synthetic Approaches

In addition to the aforementioned synthetic approaches, there
are also some unique methods used for the preparation of
ordered intermetallic nanocrystals, such as biological tem-
plates, w/o microemulsion media, and sonication-assisted
reduction.213,376,377 For example, Belcher and co-workers
used a biological template to directly synthesize ordered
intermetallic FePt nanocrystals with the desired composition
under ambient conditions.376 They realized that a selective
addition of specific peptides could promote the formation of
FePt nanocrystals and their crystallization with a chemically
ordered structure. As an additional example, Magno and co-
workers utilized w/o microemulsions as reaction media to
prepare PtPb nanocrystals with precise size-control in the
range of 3−6 nm.213 According to the authors, the PtPb

product was ordered intermetallic, having the same crystal
structure as Pt. By altering the reaction temperature and the
microemulsion compositions including the metal-precursors
and reducing agent, the size of the droplets could be readily
tuned, resulting in a precise size-control in the resultant
nanocrystals with ordered structure. Furthermore, Gedanken
and co-workers showed that the ordered intermetallic Ga−Pt
nanocrystals embedded on graphene could be successfully
formed by sonicating an aqueous solution containing H2PtCl6
and molten gallium.377 The aforementioned examples show-
case that many alternative pathways are capable of being
developed for the fabrication of ordered intermetallic nano-
crystals.

5. APPLICATIONS OF RANDOM ALLOY AND
INTERMETALLIC NANOCRYSTALS

The noble metal-based nanocrystals have been widely used in
various fields, including electrochemical reactions [e.g., ORR,
hydrogen oxidation, small carbohydrate molecular oxidation
and CO2 e l e c t r o ch em i c a l r e du c t i o n r e a c t i o n
(eCO2RR)

505,506], other reactions related to photochemical
reactions,507,508 and heterogeneous catalysis in the petroleum
industry, as well as magnetism. These applications are strongly
dependent on their sizes, shapes, compositions, structures, and
crystal phases. In this chapter, we mainly outline the
applications of noble-metal-based random alloy and inter-
metallic nanocrystals in catalytic, optical and photocatalytic,
and magnetic aspects, with an extended discussion of property
and catalysis on other associated systems such as core−shell
structured and surface index-dependent catalysts if necessary.

5.1. Electrochemical Applications

Electrocatalytic reactions generally involve a series of complex
pathways, including the adsorption of reactants, the reaction of
the adsorbed species, and desorption of reaction prod-
ucts.509−511 It is intensively demonstrated that the catalytic
performance (e.g., activity, selectivity, and durability) of the
electrocatalysts is largely associated with their sizes, shapes,
compositions, structures, and crystal phases over the past few
decades.267,512,513 Aiming to develop efficient catalysts, these
parameters are required to be elaborately controlled during the
synthesis. According to the general Sabatier principle raised by
Paul Sabatier,514 the optimal catalytic performance can be
readily achieved for a given reaction when the interactions
between the catalyst surface and the reactants/intermediates/
product are “just right”, that is, neither too strong nor too
weak. Note that the principle can be described by plotting the
reaction rate as a function of the heat of adsorption, and such a
plot is generally shown as a volcano plot with a clear trend,
where the highest activity corresponds to be the appropriate
value of the binding energy.515 As such, the volcano plot has
been extensively applied to the design of advanced catalysts for
varieties of chemical reactions.510,516−518 Later, Nørskov and
co-workers further demonstrated that, in fact, the binding
energy is strongly correlated to the position of the d-band
center of a catalyst defined by the surface electronic structure
of the transition metal alloys.519 Variations in the width of the
d-band could inevitably cause alternations in the position of
the d-band center, as d-filling would not change for any
transition metals, and thus keeps the d-band at the Fermi level.
To compensate for variations in the width of the d-band
derived from changes in metal coordination number, it is
required to accordingly shift the d-states up or down, totally

Figure 20. (a) Cyclic voltammograms of the PdBi2 nanocrystals in Ar-
saturated 0.1 M KOH before and after the electrochemical dealloying.
(b) HAADF-STEM image shows the ordered atomic arrangement of
as-prepared PdBi2 nanocrystals. (c) HAADF-STEM image and the
corresponding EDX elemental mapping of Pt (green) and Bi (red) for
as-prepared PdBi2 nanocrystals. (d) HAADF-STEM image of a typical
Pd3Bi nanocrystal with the ordered atomic arrangement after 10,000
cycles of accelerated durability testing. Adapted from ref 488 and
modified. Copyright 2019 American Chemical Society.
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depending on the nature of the change. Normally, the catalyst
with a higher d-band center can strongly bind to the adsorbed
species as compared to that with a lower d-band center. By
taking advantage of density functional theory (DFT)
calculations, the in-depth understanding of molecule inter-
actions on catalyst surfaces paves a way for knowing the effects
of different factors and thus facilitates the development of
efficient catalysts through less of a trial and error
practice.520−522 Moreover, with the emergence and develop-
ment of a series of characterization techniques in recent years,
more invaluable evidence in enhancing the overall catalytic
performance is correlated with atomic-scale features of the
catalysts.523,524

Relative to monometallic nanocrystals, random alloy and
intermetallic bimetallic nanocrystals have served as modeling
systems for investigating the ligand (electronic), geometric
(surface strain), and ensemble (coordination) effects on the
overall electrocatalytic performance.14,90,525 Ligand effect
associates with binding strength of adsorbates by surface
electronic structures of nanocrystals with the electron
interaction between metals, which is much more obvious
when a second or third metal introduced into the nanocrystal.
As demonstrated by Strasser and co-workers,526 these
fundamental effects are typically derived from the introduction
of a second metal and have also been confirmed to significantly
alter the d-band center position with regard to the Fermi-level
of a bimetallic catalyst, thus enhancing the catalytic perform-
ance. Geometric effect, normally caused by a lattice mismatch,
twined structure, or structure defectiveness, can also alter the
characteristics of nanocrystals when their surface atoms are
restructured. The strain due to a lattice mismatch can also be
classified as an expansive (tensile) or compressive strain
compared with the bulk counterpart materials. Specifically, the
compressive strain causes the d-band center downward,
dramatically leading to a decrease of the bonding strength of
the adsorbed species on the catalyst surface. In contrast, the d-
band center upshifts in the presence of the tensile strain,
increasing the bonding strength. Ensemble effect or synergistic
effect resulting from more than one reactive site often
enhances the catalytic performance including catalytic activity
and selectivity. Take the Pd−Ag alloy system as an example,
Stevenson and co-workers found that by introducing Pd into a
Ag particle surface, the single Pd sites surrounded by Ag are
favorable to the steps of oxygen bond breaking and desorption
for the ORR due to the ensemble effect.91 However, it should
be emphasized that these effects are difficult to be fully
identified and isolated due to the coexistence of geometric and
ligand effects, and, in some cases, all three effects.527−530 These
aforementioned effects all have been exploited to develop
advanced catalysts with a significantly enhanced electro-
catalytic performance for a broad range of catalytic reactions.
In this section, we mainly concentrate on electrocatalytic
applications of random alloy and intermetallic nanocrystals by
exquisitely presenting plenty of representative examples.
5.1.1. Oxygen Reduction Reaction (ORR). Being a

cathode half-reaction of fuel cell and metal-air (such as Li−air
and Zn-air) batteries, the electrochemical ORR has a high
overpotential and is sluggish mainly due to the strong
interaction between oxygen-based intermediates generated in
the electrochemical reaction and the catalytic surface (i.e., Pt
atoms). In acid or alkaline media, ORR occurs mainly through
two pathways: the indirect two-electron pathway to generate
H2O2 (eqs 8 and 9) as an intermediate and the direct four-

electron pathway to produce H2O (eqs 10 and 11).531,532 For
fuel cell performance, normally a four-electron ORR pathway is
preferred.

EO 2H 2e H O 0.680 V vs RHE2(g) (aq) 2 2(aq) 0+ + = = ++ −

EH O 2H 2e 2H O 1.776 V vs RHE2 2(aq) (aq) 2 (aq) 0+ + = = ++ −

(8)

E

O H O 2e HO OH

0.080 V vs RHE

2(g) 2 (aq) 2(aq) (aq)

0

+ + = +

= +

− − −

EHO H O 2e 3OH 0.880 V vs RHE2(aq) 2 (aq) (aq) 0+ + = = +− − −

(9)

EO 4H 4e 2H O 1.230 V vs RHE2(g) (aq) 2 (aq) 0+ + = = ++ −
(10)

EO 2H O 4e 4OH 0.401 V vs RHE2(g) 2 (aq) (aq) 0+ + = = +− −

(11)

This section will outline the strategies of recently designed
and developed noble metal (especially Pt- and Pd-based)
random alloy and intermetallic nanocatalysts, and will also
discuss how to promote their catalytic performance such as
activity and durability toward ORR.

5.1.1.1. Pt-Based Random Alloy Catalysts. Pt is the most
promising metal as the cathode catalyst in the proton-exchange
membrane fuel cell (PEMFC). However, it is a low-abundance
element in the Earth’s crust and notoriously expensive. To
minimize the use of Pt and boost its ORR performance
simultaneously, researchers have developed several synthetic
approaches to explore the solution. The first strategy is to
synthesize core−shell nanocrystals in which Pt533,534 or Pt-
based random alloy140,535,536 is designed as the shell to
maximize the utilization of Pt. Meanwhile, the electronic and
structural behaviors of the Pt-based shell can be easily tailored
by carefully tuning the shell thickness, core−shell composition,
particle size, and shape to improve the ORR activity and
durability over state-of-the-art pure Pt nanocatalysts. The
tensile or compressive strain effect possibly existing in such a
structure could be an additional contribution to the enhance-
ment of the ORR performance. The design, synthesis, and
performance of these core−shell ORR catalysts have been
extensively outlined in recent years.533,535,537 It is worth
mentioning that shape-controlled cores have also been
introduced into this strategy to induce the shell lattice with
the preferred facet such as {111} and to enhance the ORR
activity. Examples include a Pd nano-octahedral core with an
ultrathin Pt−Ni shell,67 Pd nanoicosahedral core,538 and nano-
octahedral core42,254 with an ultrathin Pt shell, respectively.
The second strategy is to incorporate the 3d transition

metals (Fe, Co, Cu, especially Ni) into Pt lattice with shape
and composition control. The use of a 3d transition metal
could decrease the fraction of Pt in the cathode cata-
lyst.19,38,69,104,115,219,227,318,539−545 Most importantly, the ran-
domly alloyed transition metal could adjust the Pt d-band
center546−549 to optimize the ORR activity and selectivity
together with the ligand effect, geometric effect, and strain
effect. The d-band center theory could be used to explain/
predict the ORR reaction behavior via the electronic
structure.550,551 For example, if the Pt d-band center position
shifts downward after alloying a 3d transition metal, the
catalyst surface would show not only a reduced binding affinity
to oxygen and weakened O−O bond breaking but also an
enhanced bonding formation between adsorbed reactants. This
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would increase the selectivity of H2O2. In contrast, if the d-
band center position shifts upward, it could lead to stronger
binding between oxygen and active sites, facilitating O−O
bond breaking and generating H2O as the final product.550

Stamenkovic and co-workers uncovered a fundamental
relationship in electrocatalytic trends on Pt3M′* (M′* = Co,
Ni, Fe, Ti, V) surface between the surface electronic structure
and their ORR catalytic activity, providing a strategy to
optimize the composition and crystallographic facets of Pt-
based bimetallic random alloy toward ORR.547,549 They further
demonstrated an ORR catalytic activity order of Pt3Ni(111)≫
Pt3Ni(110) > Pt3Ni(100) using extended single-crystal
surfaces and showed the surface on Pt3Ni(111) exhibits an
enhanced ORR activity that is 10-fold higher than Pt(111) and
90-fold higher than the current state-of-the-art Pt/C
catalysts.547 This performance enhancement is attributed to
the surface-sensitive adsorption of OHad on Pt3Ni(hkl) and its
inhibiting effect on O2 adsorption. The Pt3Ni(111) surface
contains an unusual electronic structure (downshift of d-band
center position) and surface atoms rearrangement in the near-
surface region, exhibiting the highest ORR kinetics in
comparison with Pt3Ni(110) and Pt3Ni(100).
The third strategy is to “transfer” the crystal facet-defined

advantages from bulk catalysts and single-crystal surfaces to the
nanoscale realm through a particle shape-controlled synthetic
approach, which is more practical for the next development of
fuel cell nanocatalysts. Since the Pt3Ni(111) that has its unique
position of d-band center and weak interaction between its
surface atoms and nonreactive oxygenated species exhibits the
highest ORR kinetics in an acidic environment, nanocatalysts
containing the exclusive Pt3Ni(111) facets have drawn growing
attention. By sharing the insight of outstanding ORR
performance on the Pt3Ni(111) surface,

547 as the first “nano-
transferring” example, Fang and co-workers created a novel
synthesis route in which W(CO)6 was used as a special
reducing agent and demonstrated their shape-controlled
preparation of Pt3Ni nano-octahedra exclusively terminated
by {111} facets,262 exhibiting much improved ORR activity.
Shortly, Xia and co-workers refined this synthesis and modified
the post-treatment process, reporting an ORR mass activity of
the harvested Pt−Ni nano-octahedra as high as 3.3 A/mgPt.

73

Yang and co-workers also disseminated their shape-controlled
synthesis of {111}-bound Pt3Ni nano-octahedra258 and
nanoicosahedra,272 reporting 0.44 A/mgPt and 0.62 A/mgPt
as their ORR mass activities in 0.1 M HClO4, respectively.
After this work, Strasser and co-workers reported their
synthesis of octahedral PtxNi1−x random alloy nanocrystals
with an ORR mass activity of ∼1.7 A/mgPt.

115 Subsequently,
Pt3Ni NFs with a Pt-skin structure evolved from PtNi3
rhombic dodecahedra were reported by Chen and co-workers,
exhibiting an enhanced ORR mass activity of 5.7 A/mgPt.

220 In
the next year, Huang and co-workers revealed their synthetic
work of Mo-doped Pt3Ni nano-octahedra, showing ORR mass
activity as high as 6.98A/mgPt.

72 It is believed that element Mo
prefers staying at subsurface positions near the particle edges in
vacuum and surface vertex/edge sites in oxidizing conditions,
enhancing the ORR performance and stability.104,116 Shortly,
this group also synthesized a class of 2D PtPb−Pt core−shell
nanoplate catalysts with large biaxial strains that help to
optimize the Pt−O bond strength, exhibiting an ORR mass
activity of 4.30 A/mgPt.

120 Recently, Tian and co-workers
developed Pt−Ni random alloy nanocages with an ORR mass
activity of 3.52 A/mgPt.

71 Remarkably, the existence of fewer

strongly bonded platinum−oxygen (Pt−O) sites in the as-
synthesized nanocatalysts induced by the strain and ligand
effects was attributed to the high stability with negligible
activity decay after 50,000 potential cycles.
Although other shape-controlled Pt-based random alloy

nanocatalysts, such as Pt−Cu,276,552 Pt−Fe,323,553 and Pt−
Co,76,249,317 have also been well-developed in recent years, an
excellent paradigm of the facet-dependent Pt−Ni random alloy
nanocatalyst synthesis with precise size- and composition-
control demonstrate a novel way in the ORR activity
improvement potentially used in PEMFCs. Such progress is
outlined in Figure 21a.

5.1.1.2. Pt-Based Intermetallic Nanocatalysts. As men-
tioned above, the (111) facets of Pt3Ni possess the most active
ORR sites in the acidic electrolyte. However, this is limited by
possible leaching of the Ni-composition due to the potentially
unstable nature of the 3d metals.10,92 To stabilize the Pt-based
nanocatalysts against chemical oxidation and dealloying during
the electrochemical process, researchers have dedicated to the
fabrication of atomically ordered intermetallic nanocrystals.
Compared with the random alloy phase as a counterpart, the
atomically ordered structures of Pt-based intermetallics,
inc luding Pt−Fe,112 , 136 , 157 , 161 ,555 Pt−Ni,108 Pt−
Co , 1 1 8 , 1 6 8 , 3 8 5 , 3 8 7 , 3 9 3 , 3 9 6 , 4 0 0 , 4 3 1 P t−Ga , 3 7 7 P t−
Cu,127,144,171,402,413,486 Pt−Bi,122,397,457 and Pt−Pb,120,446
have a strong d-d orbital interaction between Pt and transition
metal M″ (M″ = Fe, Co, Ni, Cu, Bi, Pb, etc.) and can be more
efficient to stabilize the component M″ from non-noble metal
leaching. In other words, the electronic and geometric effects

Figure 21. (a) Mass activity comparison of various crystal facet-
dependent Pt−Ni nanocatalysts toward ORR in the acidic electrolyte,
reported by the following groups: Fang,262 Yang,258,272 Strasser,115

Xia,73 Huang,72,120 Tian,71 and Chen.220 (b) Mass activity
comparison of various types of Pd-based catalysts toward ORR in
O2-saturated 0.1 M KOH solution, reported by the following groups:
Myers,450 Adzic,177 DiSalvo,382 Huang,129 Hall,488 and Guo.554 Data
are adapted from the mentioned publications.
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in Pt−M″ could substantially be strengthened once the
random alloys are transformed into intermetallic compounds.
For instance, Sun and co-workers compared the ORR
performance between 8 nm fcc-structured PtFe random alloy
nanocrystals and their corresponding L10 PtFe−Pt core−shell
intermetallic nanocatalysts in 0.1 M HClO4 solution,161

demonstrating that Fe can be stabilized more efficiently than
the intermetallic structure with a 5 Å Pt shell. The fully
ordered L10 PtFe nanocatalysts were fabricated by annealing
the MgO-coated dumbbell-like Fe3O4−FePt nanocrystals
under the Ar/H2 atmosphere. By etching Fe atoms on the
surface of L10 PtFe nanocatalysts followed by a further heat-
treatment at 400 °C, a compressive Pt-shell consisting of about
2 atomic layers could be generated, leading to the formation of
L10 PtFe−Pt core−shell nanocatalysts. This core−shell
intermetallic structure exhibits superior mass activity (0.7 A/
mgPt at 0.9 V) and excellent durability with no obvious
dropping down of the ORR activity after 30,000 potential
cycles between 0.6 and 0.95 V in oxygen-saturated 0.1 M
HClO4 at 80 °C, meeting the DOE 2020 target (<40% loss in
mass activity). In a later report, they further improved the
ORR performance by replacing Fe in the L10 PtFe−Pt ordered
intermetallic structure with Co.114 To effectively stabilize Co in
the corrosive fuel cell environment, ordered L10 PtCo−Pt
core−shell nanocatalysts with 2−3 atomic layers of strained Pt
shell were synthesized. The Pt layers possess a shorter Pt−Pt
distance on the surface of core−shell nanocatalysts, leading to
more evident biaxial compressive strains that can further
weaken the bonding of oxygen species (such as O2*) to the Pt
surface and thus lower the overpotential kinetically.
The same method of stabilizing the transition metal M″ in

the intermetallic Pt−M″ structure by coating a layer of Pt skin
or a thin-shell of Pt-based alloy has successfully been applied to
other systems, such as Pt-skinned intermetallic L12 PtCu3
(with an ORR specific activity of 8.4-time higher than that of
Pt/C in 0.1 M HClO4).

556 As another example, fcc Pt−Cu
random alloy as the shells were deposited on PdCu B2
intermetallic seeds in a facet-dependent manner, generating
PdCu−PtCu core−shell nanocatalysts with highly strained
surfaces. These compressively strained PdCu−PtCu nano-
catalysts demonstrated high ORR mass activities (2.55 A/mgPt
at 0.9 V versus RHE) and enhanced durability with no
apparent structural changes after 10,000 potential cycles in 0.1
M HClO4. This strategy can also be extended to other metal
nanoparticle systems. Huang and co-workers reported their
synthesis of intermetallic PtPb−PtNi octahedra as a new class
of catalysts.446 These nano-octahedra with an ordered PtPb
core and active Pt−Ni surface showed superior ORR specific
(5.16 A/cm2) and mass activities (5.16 A/mgPt) in 0.1 M
HClO4 solution. They can also endure over 15,000 potential
cycles with negligible activity decay. Similarly, Guo and co-
workers developed a class of 2D nanoplates comprising an
intermetallic hcp-PtBi core and ultrathin Pt shell, showing little
loss in ORR activity during the accelerated durability test
(ADT) in 0.1 M HClO4 solution.

122

5.1.1.3. Pd-Based Catalysts. As a class of Pt-free catalysts,
Pd-based nanocatalysts are efficient toward ORR, not only in
acidic solutions557 but also in alkaline media. In recent years,
extensive efforts have been dedicated to the improvement of
ORR activities in alkaline media.177,208,369,415,450,554,558 Unlike
acidic solutions, the alkaline media confer many beneficial
features to ORR, such as the reduced adsorption energies of
anions,559 the surface-independent outer-sphere electron

transfer processes in its initial stage which enables the
utilization of a wide range of non-Pt catalysts,560 less corrosive
environment to the catalysts, and more importantly, much
faster kinetics.561 Just like the case in acidic media, alloying a
transition metal M″ into Pd will result in electronic structure
modifications (e.g., the d-band shift) that will directly affect the
catalyst-adsorbate bond strength.562,563 Reports from previous
studies already suggest that many Pd,564 Pd-based random
alloys (such as Pd−Ag,565 Pd−Ir,566 and Pd−Cu567) and Pd-
based intermetallic (such as Pd−Cu,129,487 Pd−Pb,59,382,456,568
Pd−Bi,488 Pd−Fe,434 Pd−Cu−Co,129 Pd−Cu−Fe,569 Au−O−
PdZn,570 and Pd−Cu−Au194) nanocatalysts exhibit superior
alkaline ORR performance than Pt. Some particular results in
this aspect are recounted as follows.
Adzic and co-workers reported their synthesis of Au

decorated ordered PdCu nanocatalysts, exhibiting comparable
activity to Pt in acid and alkaline media.177 The superior
stability, after 10,000 potential cycles, was also attributed to the
ordered structure as well as the protective effect of the Au
clusters from the catalyst surface. DiSalvo and co-workers
developed a high-performance ordered Pd3Pb intermetallic
catalyst with a significant increase in mass activity in O2-
saturated 0.1 M KOH media.382 Shortly, intermetallic PdCuCo
as a trimetallic ORR nanocatalyst was demonstrated.129 Under
the dual tuning on the composition and intermetallic phase,
the ordered catalysts exhibited preponderant activity enhanced
stability over those from a disordered PdCuCo counterpart
and those of the commercial Pt/C catalysts. This could arise
from the ligand effect and the compressive strain effect from
the Pd surface due to the smaller atomic size of Cu and Co.
Remarkably, Hall and co-workers reported an electrochemical
dealloying process to convert the as-synthesized PdBi2 to Pd3Bi
nanocrystals under ambient conditions by removal of the Bi
from the surface with simultaneously enabling interdiffusion of
the constituent atoms via vacancy diffusion.488 Both the PdBi2
to Pd3Bi are ordered intermetallic phases. However, the
converted Pd3Bi exhibited 11-time higher ORR mass activity
(1.2 A/mgPd) than that of Pt/C in 0.1 M KOH. Recently, it
was also demonstrated that intermetallic Pd3Pb nanoflowers
show 11.4-fold higher ORR mass activity (1.14 A/mgPd) than
that of commercial Pt/C and high stability toward ORR in 0.1
M KOH solution (23.7% loss vs 35% Pt/C loss in mass activity
after 10,000 potential cycles). These features were attributed to
the contribution from various ultrathin nanoplates terminated
by {200} facets on both the planar surfaces of these Pd3Pb
nanoflowers.571 Besides, Guo and co-workers demonstrated
that the PdMo random alloy in the form of a highly curved and
subnanometer-thick metal nanosheet (metallene) is an efficient
and stable electrocatalyst toward ORR in alkaline electro-
lytes.554 The high atomic utilization, as well as the large
electrochemically active surface area, of this thin-sheet-
structure results in a mass activity as high as 16.37 A/mgPd,
which is 78-times higher than those of commercial Pt/C and
Pd/C catalysts. ORR mass activities of the above-mentioned
achievements are illustrated in Figure 21b.

5.1.2. Small Molecule Oxidation (MOR/EOR/FAOR).
Since the electrochemical oxidation of small molecules, such as
hydrogen oxidation reaction (HOR), FAOR, methanol
oxidation reaction (MOR), and ethanol oxidation reaction
(EOR), is a class of typical anode reactions in fuel cells,
development of highly efficient electrocatalysts for these
reactions is the key to achieve high power density fuel cells.
Pt-based nanocatalysts are still favorable candidates due to
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their superb catalytic nature. As recounted above, Pt is a scarce
element. In addition to increasing the surface area-to-volume
ratio of Pt nanocrystals by appropriately reducing the particle
size, strategies for improving the anode catalytic performance
include alloying with other metal(s) and modulating the atom
arrangement on the surface (crystal facet) of the random alloy
nanocrystals. Fang and co-workers synthesized cubic Pt−Cu
random nanoalloys using a co-reduction approach and applied
them as MOR catalysts552 in 2009. These Pt−Cu NCbs
demonstrated the highest MOR electrocatalytic activity
(Figure 22a) in comparison with their counterparts (spherical
Pt−Cu and monometallic Pt nanocrystals in similar sizes) as
shown in the cyclic voltammograms (CVs), which was further
confirmed by the chronoamperometric measurements per-
formed at 0.8 V (Figure 22b). This superior performance was
attributed to both the composition and shape (crystal facet)
effects. Yan and co-workers reported their in-depth inves-
tigations of both effects on MOR three-years later.572 They
comparatively evaluated the MOR catalytic activities of high-
indexed bimetallic Pt−Cu CNCs, high-indexed trimetallic Pt−
Pd−Cu CNCs, {100}-terminated bimetallic Pt−Cu NCbs, and
{100}-terminated monometallic Pt NCbs in similar sizes. As
shown in Figure 22c,d, high-index random alloy samples were
identified as the more promising MOR catalysts than both the
low-indexed random alloy and monometallic Pt NCbs in terms
of both Pt-based mass activity and specific activity toward
MOR. Between both high-indexed samples, it seems that the
presence of the third element Pd could also alter the activity.
This study validates that high-index facets of Pt-based random
alloy nanostructures possess a high density of low-coordinated
atoms14 possibly with lattice strain and could serve as

promising catalytic promoters for MOR with cleaving C−H
and C−O bonds.
The synthesis and application of high-indexed Pt-based

nanopolyhedra as advanced electrocatalysts have drawn
growing attention in recent years.192,403,459,540,573−575 Since it
has been reported that high-indexed crystal planes of Pt can
also effectively promote the activity of FAOR,576,577 Fang and
co-workers developed a series of Pt-based nanocrystals exposed
with high-indexed planes using a co-reduction approach in a
high-temperature organic solution system, including Pt3Co
CNCs,40 Pt3Fe CNCs,

578 PtNi4 THH nanocrystals, and Pt3Ni
THH NFs.68 The PtNi4 THH nanocrystals prepared via a
colloidal method as catalytic precursors are terminated with
well-defined (730)-facets and enriched Pt component was
segregated on the edges. Mond process was further applied to
the THH precursors through thermal annealing in the
presence of CO by extracting most of the Ni component,
leading to a generation of Pt3Ni THH NFs that possess a 3D
open-structure comprising ridges as thin as a few nanometers
(Figure 22e,f). The temperature-controlled post-thermal
treatment further promotes an alloying between the segregated
Pt and the remaining Ni atoms through surface restructuring,
which is different from the traditional vacancy defect-involved
and ill-defined acid etching.220 In comparison with the state-of-
the-art Pt/C (40 wt % Pt), the resultant Pt3Ni THH NFs
exhibit high FAOR activity as shown in Figure 22g (e.g., 4
times at 60 s) and low cathodic-to-anodic-scan current ratio as
indicated in Figure 22h (1.7 vs 9.1), suggesting that they are
much less vulnerable to surface poisoning.
The dealloy process and oxidation behavior of the anode

nanocatalysts in fuel cells are much more severe than that of
the cathode counterparts. To tackle this problem, intermetallic

Figure 22. (a) Cyclic voltammograms of MOR on Pt−Cu on Pt−Cu nanocubes (), Pt−Cu nanospheres (− −), and Pt nanospheres (−·−·) in
0.1 M HClO4/1 M CH3OH solution (scan rate: 0.02 V s−1). (b) Chronoamperometric results of MOR at 0.8 V on the same samples in the same
solution. (c) Specific activity and (d) mass activity for MOR on Pt−Pd−Cu concave nanocubes (CNCs), Pt−Cu CNCs, Pt−Cu nanocubes
(NCbs), and Pt NCbs with similar sizes in 0.1 M HClO4/1 M CH3OH solution. For (d), the current density was normalized in reference to the
unit weight of total metal and Pt loaded on the working electrode, respectively. (e) HRTEM images of THH NFs in different zone axes as
illustrated in models of (f). For (f), the pewter and green colors represent Pt and Pt3Ni (not to the atomic ratio), respectively. (g) Current density−
time curves of Pt3Ni THH NFs/C and Pt/C (40 wt % Pt) recorded in (0.1 M HClO4 + 0.5 M HCOOH) solution 0.30 V (vs RHE). (h) Cyclic
voltammograms of Pt3Ni THH NFs/C and Pt/C (40 wt % Pt) in the same solution for (g) at a scan rate of 0.1 V s−1. (a,b) Reproduced with
permission from ref 552. Copyright 2009 WILEY-VCH. (c,d) Adapted with permission from ref 572 and modified. Copyright 2012 WILEY-VCH.
(e−h) Reproduced from ref 68. Copyright 2017 American Chemical Society.
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catalysts demonstrated superior activity and durability toward
the electrochemical oxidation against the component leaching
and chemical oxidation.107,129,163,166,205,367,373,475,579 For exam-
ple, Li and co-workers reported that intermetallic Pt3Ga
coupled with an atomic-layer Pt through the engineering of the
surface strain and showed apparent high specific activity (7.195
mA/cm−2) and mass activity (1.094 mA/ugPt) for MOR
compared with its unstrained counterpart and commercial Pt/
C catalysts. This study implied that the strained Pt3Ga surface
was more energetically favorable for MOR and the stronger
binding to OH* on the stretched atomic-layer-Pt-sites enabled
an easier removal of CO*.463 Wang and co-workers also
prepared ordered PtFexCu1−x ternary intermetallic nano-
catalysts,107 in which facilitates the phase formation from a
disordered fcc structure to an ordered body-centered tetragonal
(bct) PtFe phase at the low annealing temperature. These
ternary nanocatalysts exhibit significantly enhanced activity

and stability due to the ordered intermetallic bct-PtFe structure
and the relatively inert Cu that partially replaced Fe and
mitigated the dissolution, respectively. Most recently, L10-PtZn
intermetallic nanocatalysts were prepared through a Pt2+-
exchanged zeolitic imidazolate framework-8 (ZIF-8) NCbs by
Kwon et al. The L10-PtZn intermetallics were embedded in a
hollow, N-doped carbon nanocage via one-step calcination and
demonstrated an excellent MOR specific activity in 0.1 M
HClO4 (3-times higher than that of Pt/C).580

In alkaline media, the oxidation reactions such as HOR are
sluggish compared with the cases in acidic solutions, requiring
new anode catalysts that can further improve the HOR kinetics
in alkaline fuel cells.581 Abruña and co-worker recently
developed a series of Rh- and Rh-based random alloy
nanocatalysts, including Pt7Rh3/C, Ir9Rh1/C, Rh9Ru1/C, and
Rh9Pd1/C, that outperformed Ir/C and Pt/C toward HOR in
alkaline media.581 In this work, Ir9Rh1/C was identified as the

Figure 23. (a) High-resolution HAADF-STEM image of Co-doped (Co−RuIr) nanocrystals. (b) STEM-EDX mappings of Co−RuIr nanocrystals.
(c,d) LSV curves and Tafel plots of Co−RuIr, RuIr, and commercial Pt−C electrocatalysts for HER in H2-saturated HClO4 solution (0.1 M),
respectively. (e,f) LSV curves and Tafel plots of Co−RuIr, RuIr, as well as state-of-the-art (commercial) RuO2 and IrO2 electrocatalysts for OER in
H2-saturated HClO4 solution (0.1 M), respectively. Adapted with permission from ref 603 and modified. Copyright 2019 Wiley-VCH.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00436
Chem. Rev. 2021, 121, 736−795

765

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00436?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00436?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00436?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00436?fig=fig23&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00436?ref=pdf


most effective anode catalyst among all the studied analogs in
terms of its specific activity. Zhang and co-workers reported
multimetallic core−shell nanoplates using selective element
segregation and the etching approach.582 The obtained
PtCuPd−Ru possesses a unique yolk−cage nanostructure,
exhibiting superior electrocatalytic activity and stability toward
MOR compared with the PtCu nanoplates and commercial Pt/
C catalysts. Recently, one-pot synthesis of PdZn nanosheets
with an unconventional fct structure and thickness of less than
5 nm was also demonstrated.583 Compared to the Pd
counterpart catalysts, the PdZn nanosheets show a much
enhanced PdO reduction peak in the 1.0 M NaOH aqueous
solution, which indicates large electrochemical surface area of
the Pd exposure. Consequently, much improved EOR mass
acidity and stability in alkaline media were reported.
5.1.3. Water Electrolysis. The water-splitting as an

efficient and environmentally benign process is promising for
sustainable hydrogen production.584 The design of the water
electrolysis, first reported in 1789,585 is related to two half-cell
reactions: the HER and OER. Both reactions require efficient
electrocatalysts such as platinum-group metals, 3d transition
metals, their corresponding metal random alloys, and 3d
transition metal-based materials such as carbides,586,587

nitrides,588−590 phosphides,591 sulfides,592,593 and hydrox-
ides.594−596 In this section, we focus on the discussion of
recent progress in noble-based metal electrocatalysts for HER
and OER.
5.1.3.1. Hydrogen Evolution Reaction (HER). Although the

conversion of water to hydrogen in both acid and alkaline
media has been extensively studied, there are still many
challenges in this technique, especially, the sluggish kinetics in
alkaline electrolytes.61,375,597−599 Among various electrocata-
lysts, platinum group metals (PGMs), especially Pt and Ir,
possess superior hydrogen adsorption characteristics and are
still promising catalysts for HER.82,264,600−603 Markovic and
co-workers found that Ir and Pt0.1Ru0.9 exhibit enhanced
activity toward HOR/HER in alkaline solution, and they
proposed that the more oxophilic sites on active sites (Ru
atoms of Pt−Ru and Ir atoms) promoted the adsorption of
OHad species, which reached an optimal balance between the
adsorption/dissociation of H2 and the adsorption of hydroxyl
species (OHad).

604 On the other hand, coupling PGMs with
water-dissociation promoters is commonly used to boost HER
activity in alkaline media. For example, Gao and co-workers
introduced a sulfite while synthesizing Pt−M‴ (M‴ = Ni, Co,
Fe) random alloy nanowires, leading to the formation of M‴−
S bonds on the surfaces.602 Thus, atomic level Pt/M‴-S(OH)
interfaces promote hydrogen generation in alkaline media.
Similarly, Wang and co-workers developed nitrogen-modified
Pt−Ni nanowires to resolve the kinetic issue successfully.61

The in-depth analysis suggested that the introduced nitrogen
could modulate the electron structure around Ni sites,
generating empty dz

2 orbitals for water adsorption and
activation. This strategy could be extended to other bimetallic
systems such as Pt−Co, Pt−Ni, and Pt−Cu for boosting the
performance toward HER.
Another strategy to boost HER activity of the PGM-based

catalysts is the improvement of the intrinsic activity on every
single site. One of the examples is to alloy the PGMs with a
transition metal, not only reducing the PGM loading but also
improving the electrochemical performance on an atomic scale.
As a case study, Qiao and co-workers designed and synthesized
Co-doped RuIr random alloy (Co−RuIr) nanocrystals as the

strengthened electrocatalysts to promote HER using the
engineered electronic structure.603 The high-resolution
HAADF-STEM image indicates that the Co dopants do not
change the intrinsic lattice distances in the RuIr nanocrystals
(Figure 23a), whereas EDX elemental maps (Figure 23b)
suggest that Co atoms are distributed randomly at a low
concentration. These characterizations conclude that the Co
dopant only modified the surfaces of the nanocatalysts, which
was validated by its electrochemical performance compared
with its counterparts. Figure 23c,d presents linear sweep
voltammetry (LSV) curves and Tafel plots as HER perform-
ance evaluated in H2-saturated HClO4 solution (0.1 M),
showing that Co−RuIr with an overpotential of 14 mV only
(Figure 23c) and low Tafel slope of 31.1 mV dec−1 at 10 mA
cm−2 (Figure 23d) exhibits a significant enhancement
compared with the undoped RuIr counterpart (with an
overpotential and Tafel slope of as high as 110 mV and 45.6
mV dec−1, respectively) and is comparable with the state-of-
the-art Pt/C toward HER.603

5.1.3.2. Oxygen Evolution Reaction (OER). As an anode
half-cell reaction in both acidic polymer electrolyte water
electrolyzers (PEWEs) and alkaline water electrolyzers
(AWEs), the OER has been widely studied for decades to
improve its kinetics that is hindered by the significant
overpotential.605 The catalysts used for OER are mainly
metal oxides with high activity, stability, and electronic
conductivity, such as PtO2, RuO2, and IrO2,

606 although
nanostructured metal sulfide (CuCo2S4) was recently reported
as well.607 Despite the limited reports on the metal random
alloy nanocatalysts toward OER, the following examples are
insightful and prospective.271,595,596 Lee and co-workers
reported a rational synthetic strategy of yielding robust,
multimetallic, Ir-based, double-layered NFs.85 In this work,
core−shell alloy nanostructures could be fabricated in a one-
plot synthesis by leveraging the different kinetics of dual Ir
precursors and transition metal (Ni and Cu) precursors,
followed by transforming into a multimetallic IrNiCu dual
NFs-NFs rhombic dodecahedral structure via selective etching.
Such IrNiCu nanocatalysts provided a high specific surface
area and demonstrated excellent activity and durability toward
OER in acidic media.
In the above-discussed Co-RuIr system (section 4.1.4),603

transition metal Co modified the surface characteristic of the
RuIr catalysts. To deliver a current density of 10 mA cm−2, as
shown in Figure 23e,f, the Co-RuIr required an overpotential
and Tafel slope of as low as 235 mV and 66.9 mV dec−1 in
comparison with 344 mV and 111.5 mV dec−1 from the
undoped RuIr counterpart, respectively, indicating fast OER
kinetics. The improved OER (as well as the discussed HER)
performance of Co-RuIr is attributed to a dual effect that
modifies the concentration of O-based species and Ru sites
valence states.603 Additional exploration for the dopant
elements by Qiao and co-workers suggests that Co outper-
forms Fe and Ni toward the water-splitting reaction among
their studied systems.603

5.1.4. CO2 Reduction Reaction (eCO2RR). Despite the
extensive efforts on exploring sustainable energy resources,
today’s majority of global energy consumption is still derived
from nonsustainable fossil fuels, including petroleum, coal, and
natural gas. Plentiful use of these flammable resources is
causing the rapid concentration-increase of the emitted carbon
dioxide (CO2) in the atmosphere as well as the subsequent
environmental concerns (e.g., greenhouse effects, sea level rise,
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and ocean acidification). To tackle this problem, CO2

reduction is one of the most promising pathways to achieve
a carbon-neutral chemical synthesis due to its dual potentials in
environmental protection and storage of intermittent renew-
able energy. The CO2 reduction could be realized through a
wide range of possible methodologies, such as the Fischer−
Tropsch process,608,609 photochemical reductions,508,610,611

hydrogenation,523,608 and eCO2RR.
612−615 Among these

conversion approaches, eCO2RR is one of the most attractive
and promising routes that have been recognized by
far.505,613,616

Although some single noble (as well as transition) metals,
such as platinum (Pt),617,618 palladium (Pd),437,619 gold
(Au),620 copper (Cu),621−623 cobalt (Co),624 indium (In),625

and silver (Ag)-based metals,626,627 show remarkable perform-
ance as superior eCO2RR catalysts, it has been reported that
their random alloys such as indium(In)-based,628 Pd-
based,64,142,629,630 Ag-based,91 especially Cu-based631 (such
as bimetallic Cu−Au,66,109 Cu−Pt,97 Cu−In,632,633 and Cu−
Pd142,629,630) random alloys are also promising eCO2RR
catalysts with a tunable control. In addition to durable
stability, catalytic activity, and catalyst selectivity are critical
challenges for catalyst development in eCO2RR. It was
reported that some noble/post-transition metals generally
exhibit satisfactory catalytic selectivity (for example, Ag and Au
for CO and tin (Sn) and lead (Pb) for formic acid) but with
relatively high onset overpotentials on their surfaces,505,626

whereas Cu-based catalysts are the only known metallic
electrocatalysts with an appreciable activity to directly produce
hydrocarbons,634−636 such as methane,635,637 ethylene,636 and
ethanol with acceptable efficiencies,638 although its selectivity
in bulk form still needs to improve.634,639,640 In a remark, the
partial current densities for eCO2RR and distinct onset
potentials (vs CO binding strength) of some metals are
presented in Figure 24a,b.

It has been reported that the eCO2RR performance is greatly
dependent on the catalyst particle size, shape, composition,
and phase structure. In the case of Cu eCO2RR, for example,
previous investigations indicate that nanometer-sized Cu could
enhance the current densities of methanation compared with a
high-purity Cu foil.635 Experimental results also suggest that
selectivity is dependent on the adsorption strength of eCO2RR
intermediates on the catalyst surfaces. For instance, the study
on single crystal Cu electrodes shows that the formation of
ethylene is favored on Cu(100),641 formation of methane is
dominant on Cu(111),642,643 and formation of a primary
alcohol is preferred on Cu(110).642 Due to various reaction
mechanisms, eCO2RR usually occurs via two pathways. That
is, a C1 pathway yielding methane or methanol and a C2
pathway leading to ethylene or ethanol. Koper and co-workers
reported that for the C1 pathway the CHOads is the key
intermediate of the C−O bond breaking toward the formation
of methane, whereas for the C2 pathway, a CO dimer is first
generated, followed by the formation of a surface-bonded
enediol, enediolate, or an oxametallacycel that are in relation to
the formation of ethylene.627 Further study showed that the
reduction of ethylene oxide to ethylene is significantly faster on
Cu(100) terraces compared with Cu (111) at low over-
potentials.629 Literature further indicates that different shapes
of Cu nanocrystals exhibit distinct selectivity of
eCO2RR.

644−647 Coincidently, Cu NCbs with the Cu(100)
surface favors the formation of C2 products, especially ethylene
at a low overpotential compared with methane,648,649 whereas
Cu nano-octahedra with exclusive Cu(111) facets facilitate the
generation of methane and other C1 products.640,642,650

Bimetallic catalysts exhibit phase- and composition-dependent
eCO2RR selectivity as well. For example, bimetallic Cu−Pd
nanocatalysts with different elemental arrangements (ordered,
disordered, phase-separated) demonstrated diverse selectivities
(Figure 24c−f).142 In particular, the random alloy and ordered
intermetallic CuPd nanocatalysts exhibit high selectivity for C1

Figure 24. (a, b) Volcano plots: (a) partial current density for eCO2RR at −0.8 V as a function of CO binding strength; (b) distinct onset
potentials as a function of CO binding energy: the overall eCO2RR, and methane or methanol. (c-f): Faradaic efficiencies of eCO2RR as a function
of cathode potential for each of the major products using three types of different Pd−Cu nanocatalysts (insets in d-f): (c) for product CO; (d) for
product CH4; (e) for product C2H4; (f) for product C2H5OH. Adapted with permission from ref.s142,627 and modified. Copyright © 2014, 2017
American Chemical Society.
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products (CO, CH4, >80%), whereas the phase-separated
CuPd and Cu3Pd (not shown in Figure 24) avail high
selectivity for C2 chemicals (C2H4, C2H5OH, >60%).
While electrochemical conversion of CO2 to multicarbon

products has remaining challenges in selectivity, Faradaic
efficiency, and overpotential, catalytic transform CO2 to single-
carbon products, especially CO, provides more opportunities
for electrochemical CO2 valorization.651 Given the above,
another strategy to yield CO2 to C2 and larger hydrocarbons is
to combine the eCO2RR with the synthesis gas (syngas)
conversion process associated with a catalyst modification like
controlling Cu enrichment of Au surfaces.652 As an advantage
in this strategy, the mechanism in the generation of CO
through eCO2 RR is clearer than the formation of C2 species
and the rate-limiting step for CO is generally understood to
proceed through a *COOH intermediate.653 Also, syngas
made from eCO2 RR can subsequently be upgraded to high-
value chemicals through the Fischer−Tropsch process.652

Moreover, tailoring the syngas composition with high
production rates by designing different electrocatalytic systems
makes it particularly attractive and flexible for the downstream
process.651 Since the binding properties of the intermediate
from CO2 to CO are determined by the electronic density of
nanocatalysts, Yang and co-workers demonstrated that both
the electronic effect and the geometric effect on the surface of
AuxCu1−x nanoalloys dictate the activity toward eCO2RR and
thus enable tuning the binding strength between the catalytic
surfaces and the intermediates to an optimal value.66,652 To
this end, several bimetallic alloys such as dendritic Cu−In,121
Pd−Sn nanocrystals,381 and Ag−Sn based nanostructures91 are
promising electrocatalysts. Interestingly, the ordered interme-
tallic AuCu nanocrystals promote the Faradaic efficiency of
eCO2 RR to CO as high as 80%, whereas their disordered

counterpart demonstrates a high catalytic activity toward
HER.109

5.2. Other Associated Applications

In addition to their ubiquitous applications as electrocatalysts,
noble-metal-based random alloy and intermetallic nanocrystals
have also shown promising potential for applications in
heterogeneous catalysis, optics, photocatalysis, and magnetics.
In recent years, tremendous efforts have been devoted to
optimizing and enhancing their heterogeneous catalytic,
optical, photocatalytic, and magnetic properties by precisely
engineering their atomic-scale features using a rich variety of
synthetic approaches. Here we try to cover these related
applications as much as possible in order to comprehensively
present the significance of random alloy and intermetallic
nanocrystals. In this section, the latest progress in random alloy
and intermetallic nanocrystals is specifically addressed by
exclusively listing some typical cases associated with these
applications.

5.2.1. Heterogeneous Catalytic Applications. Noble-
metal-based nanocrystals also exhibit their interesting proper-
ties as a class of heterogeneous nanocatalysts, such as
hydrogenation, dehydrogenation, and reforming reaction,6,654

being widely used in petrochemical, pharmaceutical, and fine
chemical industries. To yield high-value chemicals with
enhanced activity and selectivity in fine chemical engineering,
the development of noble metal-based catalysts randomly
alloyed with 3d transition metals with a tunable ligand effect,
geometric effect, and ensemble effect has attracted increasing
interest. For a long time, Pt-based random alloys (Pt−
Cu,655,656 Pt−Fe,657 Pt−Pd,257,658 Pt−Co,40,250,316 Pt−
Ni,246 ,659 and Pt−Rh217), Pd−based random al-
loys,248,273,660,661 Au−based random alloys,662,663 and Ag−

Figure 25. (a,b) Performance of Pd−Ga bimetallic catalysts as well as commercial 5% Pd/Al2O3 toward hydrogenation of acetylene: (a) conversion
percentage of acetylene and (b) selectivity to ethylene. (c,d) Conversion percentage of styrene hydrogenation as a function of reaction time (TOF
unit: [mol converted styrene]/[mol catalyst × h]) on Pt3Co, Pt3Fe, and Pt nanocatalysts: (c) Pt3Co concave nanocubes, Pt3Co nanocubes, and Pt
nanocubes (all sizes are ∼15 nm) and (d) 10 and 20 nm Pt3Fe concave nanocubes, 10 nm Pt3Fe nanocubes, and 10 nm Pt nanocubes. (a,b)
Adapted with permission from ref 665 and modified. Copyright 2014 IOP Publishing. (c,d) Adapted with permission from refs 40 and 578, and
modified. Copyright 2014 and 2015 Wiley-VCH, respectively.
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based random alloys79,664 systems have been extensively
investigated. Chaudhari and co-workers developed a series of
Pt-based nanocatalysts toward oxidation of glucose, glycerol
with enhanced catalytic activity and selectivity,655,657,658

reporting that the PtPd catalysts displayed significantly
enhanced activity [turnover frequency (TOF) = 2404 h−1]
and improved selectivity of 44% toward glucaric acid from
glucose.625 Their study also indicates an unusual oxidation
activity (TOF = 3543h−1) and 46% glucaric acid selectivity on
a catalyst of PtCu3 supported on TiO2.

622

As discussed previously, the disordered−ordered “phase
effect” and particle shape effect of the bimetallic catalysts can
also be observed in the heterogeneous reactions. As a model
reaction of C3 polyol conversion from biomass feedstocks, for
example, a study on oxidation of glycerol to tartronic acid in
the aqueous phase indicated that the ordered intermetallic fct-
PtFe4.5 nanocatalysts displayed an activity as high as ∼3-times
that from the disordered fcc-PtFe4.5 random nanoalloys (TOF
in mol molPt

−1 h−1: 26,340 vs 8126) at 70 °C under 1 atm O2-
pressure. It was believed that the surface interfacial strain and
appropriate electronic structure modification in the ordered
intermetallic fct-PtFe4.5 were the major driving force of
activating the C−H and C−O bonds more efficiently.657

This “phase effect” from geometric and electronic differences
can also be determined from the catalytic performance of Pd−
Ga random alloy and intermetallic particles (20−32 μm)
toward the gaseous hydrogenation of acetylene.665 Despite
diverse compositions and testing conditions applied, it can be
seen that intermetallic Pd−Ga (GaPd, Ga7Pd3, and GaPd2)
catalysts showed higher selectivity to ethylene than the random
alloy Ga5Pd95 counterpart (Figure 25a,b) as well as the
commercial 5% Pd/Al2O3, although the conversion rates for all
the tested bimetallic catalysts are comparable.
The shape effect of bimetallic catalysts on the hydrogenation

of olefins has been extensively studied in recent years.666 Fang
and co-workers systematically prepared Pt3Co and Pt3Fe
nanocatalysts with shape-control and applied them in the
hydrogenation of styrene as a model reaction.40,578 They
demonstrated that the TOF of high-indexed Pt3Co concave
NCbs is ∼1.25-fold and ∼2-fold of that of {100}-terminated
Pt3Co and Pt NCbs, respectively, and the turnover rate closely
connects to the dissociative adsorption of H2 and activation of
the unsaturated bond in the Pt3Co evaluation (Figure 25c).40

They shortly showed that the hydrogenation of styrene can
also be promoted by high-indexed Pt3Fe concave NCbs that
possess a superior reactivity of H−H cleavage and CC bond
activation to the {100}-bounded Pt3Fe NCbs of similar particle
size (Figure 25d).578

Another case study is about how to efficiently converse
syngas or CO2 to chemical fuels, which was also mentioned in
section 5.1.4. Pd-based catalysts are considered as efficient
candidates for hydrogenation, especially CO2 hydrogena-
tion.421,667−671 Schlögl and co-workers reported that Pd−Ga
intermetallic nanocatalysts with different structures and
compositions displayed highly selective semihydrogenation
catalytic characteristics for acetylene outperforming, and they
believed that the electronic modification and isolation of active
sites are the origin of the excellent catalytic improvement.667

Shortly, the intermetallic Pd2Ga supported on SiO2 was
applied for low-pressure CO2 hydrogenation to methanol,
exhibiting higher activity than that of the conventional Cu/
ZnO/Al2O3 catalysts.

669 Recently, bimetallic Pd−In nanocryst-
als also showed superior performance for CO2 hydrogenation
reaction.670 Williams and co-workers identified that the
optimized intermetallic PdIn nanocrystals displayed improved
methanol selectivity in the temperature range of 190−270 °C,
reaching >80% selectivity at 270 °C compared with 45%
selectivity from the conventional heterogeneous Cu/ZnO/
Al2O3 catalysts.

670

5.2.2. Optical and Photocatalytic Applications. Nor-
mally, noble metal-based nanocrystals exhibited different colors
originating from their strong interactions between the incident
light and the confined free electrons of metal nanocrystals
under the resonant condition.672,673 This optical phenomenon
is typically known as the LSPR,674 and the resonance peak
position and profile are dependent on the type of metal
nanocrystals, with the visible region for Cu, Au, and Ag and the
ultraviolet region for Rh, Ru, Pt, and Pd.1,675 The LSPR peak
position and profile could be modulated by forming random
alloys, intermetallic compounds, and core−shell structures,
such as b imeta l l i c Au−Ag263 , 6 7 6− 6 8 1 and Au−
Cu310,678,679,682−684 nanostructures. For example, Chen and
co-workers demonstrated that the LSPR peak of the Cu3Au
random alloyed nanorods could be readily tuned over the
spectrum from the visible spectrum to near-infrared.310 Also, it
demonstrated that the LSPR behavior could be determined by

Figure 26. SERS spectra at an excitation wavelength of 785 nm. (a) Spectra were collected from 1,4-BDT adsorbed on substrates of Ag
cuboctahedra, Ag−Au core−shell cuboctahedra, and Ag−Au core−shell concave cuboctahedra, respectively. (b) Spectra were recorded during the
reaction of 4-nitrothiophenol to 4-aminothiophenol reduced by NaBH4 and catalyzed by Ag−Au core−shell concave cuboctahedra. (c) Spectra
were recorded during the oxidation of 4-aminothiophenol oxidized by NaBH4 and catalyzed by Ag−Au core−shell concave cuboctahedra. Adapted
from ref 686 and modified. Copyright 2016 American Chemical Society.
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the size, shape, composition, structure, and crystal phase of
metal nanocrystals.672,673,685 There are a variety of applications
in utilizing the LSRP phenomenon, e.g., the surface-enhanced
Raman scattering (SERS), photocatalysis, artificial photosyn-
thesis, solar cell, biomedicine, and sensing. Figure 26a presents
the SERS spectra collected from 1,4-benzenedithiol (1,4-BDT)
adsorbed on the Ag cuboctahedra, Ag−Au core−shell
cuboctahedra, and Ag−Au core−shell concave cuboctahedra,
which were prepared through a galvanic replacement reaction
in solution.686 SERS enhancement factor (EF) of the Ag−Au
core−shell concave cuboctahedra outperforms both the regular
Ag−Au core−shell cuboctahedra and the Ag cuboctahedra as
the counterparts, showing SERS signal of as high as a ∼74-fold
increment at an excitation wavelength of 785 nm. Besides the
structure and shape effect (existing more “hot spots”), in this
case, it was reported that the stronger bond between Au-
thiolate over that between Ag-thiolate could make an
additional contribution to such a SERS signal increase since
the composition distribution in the Ag−Au concave
cuboctahedra are not homogeneous.687 By taking advantage
of this Ag−Au concave cuboctahedra, the superb SERS
performance can be applied to monitor a reaction as an
example of the applications using the catalytic feature of their
surface Au atoms. Figure 26b,c presents time-dependent SERS
spectra during a reduction of 4-nitrothiophenol to 4-amino-
thiophenol by NaBH4 through a 4,4′-dimercaptoazobenzene
(trans-DMAB) intermediate and subsequent oxidation of 4-
ATP back to trans-DMAB upon the introduction of H2O2,
respectively, demonstrating that the Ag−Au core−shell
concave cuboctahedra could be a unique SERS probe for
monitoring these reactions. These characteristic properties
make random alloy and intermetallic nanocrystals promising
for applications in SERS, photocatalysis, artificial photosyn-
thesis, plasmon-assisted nanocrystal synthesis, photothermal
therapy, biomedicine, sensing, and solar cells.674,688−697

Similarly, it can also be extended to other photocatalytic
systems with tunable size, shape, and composition, such as Pt−
Au,698 Pd−Au,275,301,699 Cu−Au,268,310 and Ag−Au.700
It has also been observed, by integrating a plasmonic metal

(e.g., Cu, Au, or Ag) with a highly catalytic nanocrystal (e.g.,
Rh, Ru, Pd, or Pt) in a system, the catalytic performance of
bimetallic nanocrystals is dramatically improved by coupling
with light, and some interesting photochemical transformations

become more favorable.689 In this case, light is absorbed in
particularly resonant plasmonic frequencies and then released
as the input energy to drive the overall reactions occurring on
the surface of bimetallic nanocrystals. Extensive investigations
have demonstrated that this concept can be further extended
to other polymetallic systems.309,701,702

Unlike the phonon-driven chemical reaction triggered by
thermal heating of a catalyst, charge-carrier-driven reactions
can be activated in a different mechanism, where a stimulus
from outside (i.e., light) is provided to excite the hot-carrier.689

The resonant optical excitation of surface plasmon produces
energetic hot-carriers (hot-electron and hot-hole) to allow the
photochemical reactions. Figure 27 illustrates the surface-
plasmon-driven hot-carrier generation and hot-electron trans-
fer/back-transfer process on a clean metal surface and metal/
adsorbates. Although numerous hot electron-driven processes
have been reported, few examples that rationalize the hot-holes
extracted from metallic nanostructures were released while
some interesting work in plasmonic photochemistry demon-
strated the use of sacrificial reagents for the hole scavenging
reactions.703−705 For example, Li and co-workers investigated
the plasmonic hot-holes on the Au/TiO2 photocatalyst toward
water oxidation.705 They utilized Kelvin probe force
microscopy to image the distribution of holes probed by
surface photovoltage and applied photodeposition together
with electron microscopic element mapping to position the
reaction sites. They reported that most of the plasmonic holes,
the active sites, are concentrated near the Au−TiO2 interface.
This interfacial effect on the plasmonic water oxidation
reaction can be extended to other Au-based photocatalytic
systems, such as Au/SrTiO3 and Au/BaTiO3.
In recent years, there have been wide applications associated

with the LSPR optical in artificial photocatalysis.23,24,706,707 For
instance, Neretina and co-workers adapted a vapor phase
template-assembly technique and synthesized nanoprism-like
AuCu structures with a strong LSPR.684 With an illumination
of 10 mW/cm2 laser light, the AuCu photocatalysts were
evaluated using 4-nitrophenol reduction by NaBH4 as a model
reaction and showed a 32-fold enhancement in terms of the
reaction rate constant. With the incorporation of plasmonic
elements like Au, Ag, and Cu with catalytic metals such as Pt,
Pd, and Rh, such metal random alloys could exhibit enhanced
catalytic activity under light illumination, paving the way for

Figure 27. Plasmon-induced hot-carrier generation and hot-electron transfer/back-transfer processes in clean metal and metal/adsorbate. In each
case, the left component (relative to energy y axis) displays the Fermi level (EF) of plasmonic metals and the right component (relative to energy y
axis) illustrates the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) for adsorbates. The gray
parts represent the population of electronic states. CID: chemical interface damping. Adapted from ref 704 and modified. Copyright 2018 American
Chemical Society.
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photocatalysis development as well.1,700,708,709 For core−shell
structures, Huang and co-workers pointed out the LSPR
properties of Au−Pd can be maintained by turning the Pd−
shell thickness and shape.699 The LSPR absorption band can
be seen when the Pd shell is less than 1 nm for the cubes,
cuboctahedra, and truncated octahedra of 35 and 45 nm Au
core nanostructures. For smaller Au−Pd core−shell octahedra,
the Pd−shell thickness can be extended to 5 nm with an
observation of the visible band, while for 74 nm Au−core
nanostructure, the LSPR band is more recognizable for all-
shaped nanocrystals. The Au−Pd and Au−Pt core−shell
systems generally show no plasmon resonance in the visible
region if the shell is too thick. It was also demonstrated by Sun
and co-workers that the LSPR of Pd20Ag80 random nanoalloys
almost damped.551 Besides, Kuo and co-workers demonstrated
a one-step synthesis of core−shell nanoicosahedra containing
AuPd random alloy cores and ultrathin Pd−shells (<2 nm).
The AuPd−Pd core−shell nanostructures displayed LSPR-
enhanced conversion of 4-nitrophenol.275

While most researchers focused their work on random alloy-
based photocatalysis, there are limited reports involving the
intermetallics in terms of their optical and photocatalytic
applications. Matsumoto and co-workers synthesized PtPb-
ordered intermetallic nanocrystals (NiAs-type structure, P63/
mmc) on WO3 using a photodeposition/polyol method and
studied the photocatatlytic decomposition of acetic acid as well
as its reaction mechanism on the as-prepared nanocatalysts.501

In comparison with pure WO3 and WO3-supported Pt
catalysts, enhanced catalytic activities from the synthesized
PtPb/WO3 toward the decomposition of the organic
compounds under an oxygen-rich atmosphere and visible
light were determined.
Biomedicine and biomedical applications, such as cancer

diagnosis and therapy, are additional fields where the optical
properties of metal LSRP, including optical sensing and optical
imaging, can be used.16,696,710 For example, Xia and co-workers
have extensively manipulated and studied Au-based nanostruc-
tures with tunable surface plasmon resonance peak, biocom-
patible, and a well-established functional surface.711,712 To
sculpture the Au-based nanocages with tunable layer-thickness,
they synthesized Ag NCbs first, followed by a galvanic
replacement and oxidative etching process.712 Using a
multimodal nonlinear optical microscopic technique,713 they
subsequently found that the Au/Ag nanocages emit a two-
photon luminescence (2PL).712 Although the 2PL process is
efficient because of the enhancement of the plasmon
resonance, three-photon luminescence (3PL) has more merit
for cellular imaging in the aspect of phototoxicity. Figure 28
presents a comparison of 2PL and 3PL imaging of Au/Ag
nanocages (49% Ag/51% Au) in KB cells (a carcinoma cell
line) and liver tissues. As shown in Figure 28a,b, Au/Ag
nanocages in cells could be visualized by both 2PL and 3PL at
the same level of intensity. After 90 s scanning using a 760 nm
laser, it was determined that a membrane blebbing occurred
and the damage was confirmed by ethidium bromide staining,
associated with a reduced 2PL intensity from nanocages as
shown in Figure 28c. With the same treatment, however,
Figure 28d displays a different result in which neither
membrane blebbing nor reduced 3PL intensity was observed
since no thermal effect was involved in 3PL. By comparing 2PL
with 3PL micrographs imaged from the same liver tissue slice
(Figure 28e,f), one can discern that fluorescence from the issue
can be completely suppressed at 1290 nm excitation and a

weak background made it much easier to identify the Au/Ag
nanocages, which is another benefit for the imaging with 3PL.

5.2.3. Magnetic and Magnetism-Featured Applica-
tions. Magnetic nanocrystals represent an important class of
functional nanomaterials and have attracted increasing interest
for their nanoscale magnetism and widespread applications.
Over the years, bimetallic magnetic nanocrystals have been
widely exploited and applied to a broad range of areas,
including biochemistry, medicine, medical therapy, and
ultrahigh density information storage et al.714−720 It has been
found that nanocrystals can transform from multidomain to
single domain with the apparent increase in coercivity when
the size of ferromagnetic nanocrystals reduces down to a
critical size.721−723 As such, tremendous efforts have been
devoted to precisely tuning the size of magnetic nanocrystals
via different approaches.724−726 With the blooming develop-
ment of synthetic approaches, more and more studies seem to
turn to magnetic applications related to nanocrystals with well-
defined shape, composition, structure, and crystal phase.727−730

Actually, it has been confirmed that the structural parameters
are dependent on their magnetism. More importantly, these
investigations deepen our understanding of their magnetic
properties and also exhibit the great potential of these
nanocrystals in magnetism-related applications.406,731−733

Typically, nanomaterials containing Fe-, Co-, Ni-, Cr-, and
Mn-based metals, random alloy, oxides may possess
f e r r o m a g n e t i c o r p a r a m a g n e t i c p r o p e r -
ties.395,420,428,447,718,734−736 Since noble-transition-metal-based
random alloys and intermetallic compounds for magnetic
applications represent a typical topic and have been system-
atically discussed elsewhere,13 we focus on the case study of
FePt in this section.

Figure 28. Comparison of 2PL and 3PL imaging of Au/Ag nanocages
(51% Au/49% Ag) in KB cells (a−d) and liver tissues (e,f). (a) 2PL
image and (b) 3PL image of Au/Ag nanocages (red) in KB cells
before laser scanning. (c) Image of the same cell as in (a) after
scanning with a 760 nm femtosecond laser for 90 s. Laser power after
objective: 1.9 mW. After scanning, membrane blebbing (arrowed) and
compromised membrane integrity indicated by ethidium bromide
labeling (green) were observed. (d) 3PL image of the same cell as in
panel (b) after scanning with a 1290 nm femtosecond laser for 90 s.
Laser power after objective: 4.0 mW. No morphological change or
plasma membrane damage was observed. (e) 3PL imaging of Au/Ag
nanocages (white circles) in liver tissue. (f) 2PL imaging in the same
area as in panel (e). White arrow: anomalously strong autofluor-
escence from the tissue. Laser power after objective: 7.0 mW. Scale
bars: 10 mm. Adapted with permission from ref 712 and modified.
Copyright 2010 Wiley-VCH.
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FePt random alloy and intermetallic nanocrystals could be
prepared from a high-temperature organic colloidal system
with a postannealing treatment323 and have been inspired as
potential magnetic storage media.239,737 For a magnetic
domain, the energy barrier required to reverse the magnet-
ization, from one to another, generally needs to be >60 times
higher than the thermal energy. It was reported that the L10-
FePt nanocrystal was one of the most promising candidates for
heat-assisted magnetic recording because of its large K (7 ×
106 J m−3), Tc (750 K), and robust stability.13 Also, the
magnetic properties of the FePt nanocrystals are very sensitive
to their size, size distribution, composition, and crystal
structure. It is therefore essential to control the quality of as-
prepared magnetic nanocrystals.1,13 The mentioned colloidal
synthesis approach has demonstrated the possibility of size-,
composition-, and particle shape-control.240 However, a post-
treatment of thermal annealing may be necessary to convert
the disordered fcc-type FePt nanocrystals to ordered L10-FePt
nanocrystals.738 Sun and co-workers facilitated fully ordered
L10-FePt nanocrystals with strong ferromagnetism using a
developed annealing strategy (Figure 15) from MgO-coated

dumbbell-like fcc-FePt−Fe3O4 nanocrystals as the starting
point (Figure 29a−c).112,161,438 The success in the ordered
phase conversion is ascribed to the MgO-coated shell and
conjugated Fe3O4. MgO functions as a tentative particle
protection layer, preventing particle aggregation and sintering
during the annealing stage, whereas the Fe3O4 attached on the
FePt nanocrystals helps to create defects upon reduction and
such a dumbbell structure facilitates Fe/Pt diffusion to
generate fully ordered fct-phase (Figure 29d,e). This fcc-to-fct
phase transition was further monitored by the determined
hysteresis loops that descript the change of the magnetic
moment as a function of the applied magnetic field strength.
Different from the superparamagnetic behavior from the fcc-
FePt nanocrystals at room temperature (the black loop in
Figure 29f), the annealed FePt nanocrystals (for 1 and 6 h)
showed a two-phase (superparamagnetic and ferromagnetic,
the red loop in Figure 29f) and a single-phase (ferromagnetic,
the blue loop in Figure 29f) hysteresis characteristics,
respectively. The structure-based magnetic behaviors of these
FePt nanocrystals coincide with their electrocatalytic perform-
ance very well. As shown in Figure 29g−i, the fully ordered,

Figure 29. TEM images and magnetic/electrochemical properties of FePt-based nanocrystals. (a) TEM and (b) HRTEM images of dumbbell fcc
FePt−Fe3O4 nanocrystals. (c) TEM image of MgO-supported fcc FePt−Fe3O4 nanocrystals. (d) TEM image of carbon-supported fct FePt
nanocatalysts (fully ordered) after thermal annealing at 700 °C under Ar + 5% H2 for 6 h followed by acid washing. (e) XRD patterns of the fully
and partially ordered fct FePt nanocatalysts. (f) Hysteresis loops of the fcc FePt, the fully and partially ordered fct FePt nanocatalysts. (g) ORR
polarization curves of comm Pt (commercial catalysts Pt/C, 20 wt % Pt) and carbon-supported fcc-FePt, partially and fully ordered fct-FePt
nanocatalysts in 0.1 M HClO4 (rotating speed: 1600 rpm; scan rate, 10 mV/s). (h) and (i) Specific activities and mass activities of all the catalysts
mentioned in panel (g) at 0.9 V. Adapted from ref 112 and modified. Copyright 2015 American Chemical Society.
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ferromagnetic fct-FePt intermetallic nanocrystals exhibit the
much higher ORR activity than the disordered, super-
paramagnetic fcc-FePt random alloy nanocrystals.
The fcc-FePt random alloy nanocrystals with a relatively

small Ku are regarded as “soft” magnetic materials (small
coercivity), while the fully ordered fct-FePt intermetallic
nanocrystals show a larger Ku and are treated as “hard”
(large coercivity) magnetic media.239 A similar phenomenon
was observed when Fe was replaced by Co to achieve fully
ordered hard-magnet L10-CoPt intermetallic nanocryst-
als.114,406 It was also found that the L10-CoPt nanocrystals
obtained from 6 h annealing are strongly ferromagnetic,
whereas the fcc CoPt nanocrystals received directly from the
synthesis process without annealing are superparamagnetic.114

Those magnetic nanocrystals possessing superparamagnetic
properties have the potential of being applied to biomedicine
study. They could serve as sensitive magnetic probes in
magnetic resonance imaging (MRI), efficient separation of
biomolecules, and targeted drug delivery.51,715,718−720 Among
these applications, surface-functionalized bimetallic noble
metal magnetic nanocrystals, especially Ag-based nanocrystals,
are promising for the isolation and detection of bacteria.714,719

FePt nanocrystals conjugated with Vancomycin (Van) exhibit
high sensitivity to bacteria with a terminal peptide of D-Ala-D-
Ala on cell walls.715

6. CONCLUDING REMARKS
Noble metal-based random alloy and intermetallic nanocrystals
pertain to the big family of solid solution structure. They often
exhibit different properties and applications from their bulk
counterparts. It has been well established that the remarkable
properties are closely associated with their size, shape,
composition, structure, and crystal phase that can be precisely
controlled and optimized. As such, a vast set of noble metal-
based random alloy and intermetallic nanocrystals are currently
attainably derived from the tremendous efforts from many
research groups and then explored to apply in various fields.
Despite the significant achievement, there is still much space to
be left in terms of attaining robust and reproducible synthetic
approaches that can generate well-controlled noble metal-
based random alloy and intermetallic nanocrystals, in parallel
with deeply understanding the formation mechanisms involved
in the syntheses. It should be emphasized that a large number
of unsolved issues need to be addressed jointly combined with
experiments, theories, and instruments, further driving the
transition from empirical syntheses to theoretically supported
syntheses.
During the syntheses, the most common issue is to the

reproducibility. Considering that the significant deviation in
the quality of chemicals involved in different laboratories might
impose a great challenge to reproduce some of the syntheses, it
seems to be an urgent task to improve the quality of present
chemicals at this stage for enabling reproducing these
nanocrystals. For example, Mirkin and co-workers discovered
that different batches of CTAB from various manufacturers
could lead to the final products with diverse morphologies
under the same experimental conditions during the synthesis of
Au nanocrystals, due to the different contents of iodide ions as
an impurity.739 Moreover, it is possible to draw ambiguous or
incorrect conclusions from experimental observations, as some
of the syntheses are highly sensitive to a subtle difference in
experimental conditions, leading to misunderstanding the key
parameters to the syntheses. Typically, qualitative assessments

are primarily concluded based on controlled experiments by
purposely altering one or two parameters in most of the
previous reports related to the synthesis of nanocrystals. It is
worth pointing out that, in some cases, it is hard to completely
distinguish each parameter effects on the outcome in practical
syntheses, ultimately resulting in the speculative conclusions
for the formation mechanism. As compared to the qualitative
assessment, it seems that increasingly interests begin to focus
on the more precise and reliable quantitative evaluation to
enable gaining deep insights into the synthesis of the
nanocrystals. Once the reaction kinetics are acquired, the
protocols for these nanocrystals should be easily reproduced by
exquisitely controlling the nucleation and growth processes
predictably.
Extensive studies have demonstrated that the size, shape,

composition, structure, and crystal phase all play an essential
role in the properties of resultant nanocrystals. As a result, it is
of critical importance to simultaneously achieve control over
these parameters during the syntheses, especially for ordered
intermetallic nanocrystals with well-defined size, shape, and
composition. High-temperature annealing approach is gen-
erally believed to be a commonly used approach for generating
ordered intermetallic nanocrystals. While this approach allows
for precise control over the composition and atomic ordering,
it is still a big challenge to manipulate the size and shape of the
nanocrystals, as annealing process at high temperature often
destroy the original shape of as-synthesized nanocrystals in
most cases and lead to severely nanocrystals aggregation/
sintering. To solve this issue, a robust coating layer is required
to deposit on the surface of the as-synthesized nanocrystals
before annealing. Unfortunately, it is demonstrated that the
coating layers will dramatically impede nanoscale mass
transport, resulting in forming the partially ordered nanocryst-
als. In comparison, liquid synthesis approaches exhibit great
potential for the formation of well-controlled ordered
intermetallic nanocrystals under a relatively mild condition.
Due to the lack of enough insights for the fundamental
parameters involved in the synthesis, the limited availability of
ordered intermetallic nanocrystals with well-controlled size and
shape is reported up to now, and thus more new synthetic
protocols need to be developed.
To meet the demand from future industrial applications,

nanocrystals on the kilogram level are typically required. As
such, it is very essential to develop new synthetic approaches
for achieving scalable production. In general, most current
approaches for the synthesis of nanocrystals involves the
reaction with volumes in the range of 1−100 mL and the
production on the milligram scale in each batch. It is not
realistic to raise the yields by simply increasing the volume of
the reaction solution while maintaining the same molar ratio of
all reagents. To this end, new effective approaches related to
continuous flow and droplet-based reaction systems have
recently been developed. These approaches hold the potential
for realizing automation, significantly decreasing the overall
cost, and achieving precise control over the quality of the
product as compared to the conventional batch approaches.
Further studies associated with rationally manipulating the
experimental parameters are still needed to be completed in
scalable production.
Compared with the random alloy nanocrystals, it was

furthermore determined that the ordered intermetallic nano-
crystals possess predictable electronic and lattice structure with
high activity in a given application and high stability in harsh
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environments. It seems that migration of more components,
high active surface defects, and high-indexed facets to those
promising intermetallic nanocrystals could be an effective
strategy to further enhance their intrinsic activities and
stabilities. For example, Yamaguchi and co-workers demon-
strated that the incorporation of Cu into ordered intermetallic
PtFe nanocrystals to facilitate a formation of PtFeCu
nanocrystals with the same crystal phase could dramatically
improve their electrocatalytic stability toward ORR.378 Mean-
while, it is also expected that the ordered intermetallic
nanocrystals could serve as templates for the formation of
core−shell nanostructures with well-defined surface structures,
which could remarkably reduce the use of noble metals and
enhance the catalytic properties. For instance, Skrabalak and
co-workers have demonstrated that core−shell nanocrystals
with random alloy Pt-M (where M = Ni, Co, Cu, or Fe) shells
and ordered intermetallic PdCu core exhibited enhanced
activity and durability toward ORR.481 On the basis of these
studies, it can be predicted that there is large room to
extensively develop intermetallic improved synthetic strategies
to further improve the material performance in various
practical applications.
Overall, the development of a synthetic approach for shape-

controlled random alloy and ordered intermetallic nanocrystals
and the exploration of their pivotal applications create
prosperous opportunities yet with new challenges. The critical
importance in this blossoming field has been highlighted in
some paradigms provided by several research groups. It is
foreseeable that these efforts will pay off in a great way, as the
best is yet to come.
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ABBREVIATIONS
ΔG Gibbs free energy
ΔH enthalpy
ΔS entropy
2D two-dimensional
3D three-dimensional
AA ascorbic acid
ACA adamantanecarboxylic acid
acac acetylacetonate
ADT accelerated durability test
AWEs alkaline water electrolyzers
bct body-centered tetragonal
1,4-BDT 1,4-benzenedithiol
Bi(Ac)3 bismuth(III) acetate
CA citric acid
CO carbon monoxide
CO2 carbon dioxide
Co(acac)2 cobalt(II) acetylacetonate
CNC concave nanocube
CTAB cetyltrimethylammonium bromide
CV cyclic voltammograms
DDA dodecylamine
DDT 1-dodecanethiol
DFT density functional theory
trans-DMAB 4,4′-dimercaptoazobenzene
DMF N,N-dimethylformamide
DOE department of energy, U.S.
eCO2RR CO2 electrochemical reduction reaction
EDS energy-dispersive spectroscopy
EDTA ethylenediaminetetraacetic acid
EDX energy-dispersive X-ray spectroscopy
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EF enhancement factor
EG ethylene glycol
EOR ethanol oxidation reaction
Et2Zn diethylzinc
FAOR formic acid oxidation reaction
fcc face-centered cubic
fct face-centered tetragonal
Fe(acac)3 iron(III) acetylacetonate
HAADF high-angle annular dark-field
HCHO formaldehyde
hcp hexagonal closest packed
HDA hexadecylamine
HDD 1,2-hexadecandiol
HDT hexadecanethiol
HER hydrogen evolution reaction
HOR hydrogen oxidation reaction
HRTEM high-resolution transmission electron micros-

copy
ICP inductively coupled plasma
JMAK Johnson-Mehl-Avram-Kolmogorov
LMTO-ASA linear muffin-tin orbitals in the atomic sphere

approximation
LSPR localized surface plasmon resonance
LSV linear sweep voltammetry
Mn(acac)2 manganese(II) acetylacetonate
MOR methanol oxidation reaction
MRI magnetic resonance imaging
MXenes metal carbides
NCb nanocube
NFs nanoframes
Ni(acac)2 nickel(II) acetylacetonate
OA oleic acid
OAm oleylamine
ODE octadecene
OER oxygen evolution reaction
OMC ordered mesoporous carbon
ORR oxygen reduction reaction
Pb(Ac)2 lead(II) acetate
Pd2(dba)3 tris(dibenzylideneacetone)dipalladium(0)
PEMFC proton-exchange membrane fuel cell
PEWEs polymer electrolyte water electrolyzers
PGMs platinum group metals
PI-b-PEO polyisoprene-blockpoly (ethylene oxide)
2PL two-photon luminescence
3PL three-photon luminescence
PVP poly(vinyl pyrrolidone)
Pt(acac)2 platinum(II) acetylacetonate
Rh2(Ac)4 rhodium acetate dimer
SAED selected area electron diffraction
SEM scanning electron microscope
SERS surface-enhanced Raman scattering
SMCR seed-mediated co-reduction
STEM scanning transmission electron microscopy
TBAB tert-butylamine-borane
TEM transmission electron microscopy
THF tetrahydrofuran
THH tetrahexahedral
TOF turnover frequency
TOP trioctylphosphine
TTGE tetraethylene glycol
Van vancomycin
w/o water-in-oil
XPS X-ray photoelectron spectroscopy

XRD X-ray diffraction
ZIF-8 zeolitic imidazolate framework-8
Zn(acac)2 zinc(II) acetylacetonate
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M. Atomically Resolved Dealloying of Structurally Ordered Pt
Nanoalloy as an Oxygen Reduction Reaction Electrocatalyst. ACS
Catal. 2016, 6, 5530−5534.
(145) Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson,
T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.;
Nørskov, J. K. Alloys of Platinum and Early Transition Metals as
Oxygen Reduction Electrocatalysts. Nat. Chem. 2009, 1, 552−556.
(146) He, J.; Johnson, N. J. J.; Huang, A.; Berlinguette, C. P.
Electrocatalytic Alloys for CO2 Reduction. ChemSusChem 2018, 11,
48−57.
(147) Praetorius, C.; Zinner, M.; Köhl, A.; Kießling, H.; Brück, S.;
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Al-Shamery, K.; Borchert, H.; Parisi, J.; Kolny-Olesiak, J. Pt/Sn
Intermetallic, Core/Shell and Alloy Nanoparticles: Colloidal Synthesis
and Structural Control. Chem. Mater. 2013, 25, 1400−1407.
(176) Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Pt-Decorated
Composition-Tunable Pd−Fe@Pd/C Core−Shell Nanoparticles with
Enhanced Electrocatalytic Activity toward the Oxygen Reduction
Reaction. J. Am. Chem. Soc. 2018, 140, 7248−7255.
(177) Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Wu, L.; Zhu, Y.; Adzic, R.
R. Gold-Promoted Structurally Ordered Intermetallic Palladium
Cobalt Nanoparticles for the Oxygen Reduction Reaction. Nat.
Commun. 2014, 5, 5185.
(178) Cable, R. E.; Schaak, R. E. Solution Synthesis of Nanocrystal-
line M−Zn (M = Pd, Au, Cu) Intermetallic Compounds via Chemical

Conversion of Metal Nanoparticle Precursors. Chem. Mater. 2007, 19,
4098−4104.
(179) Gunji, T.; Noh, S. H.; Tanabe, T.; Han, B.; Nien, C. Y.;
Ohsaka, T.; Matsumoto, F. Enhanced Electrocatalytic Activity of
Carbon-Supported Ordered Intermetallic Palladium−Lead (Pd3Pb)
Nanoparticles toward Electrooxidation of Formic Acid. Chem. Mater.
2017, 29, 2906−2913.
(180) Chen, W.; Yu, R.; Li, L.; Wang, A.; Peng, Q.; Li, Y. A Seed-
Based Diffusion Route to Monodisperse Intermetallic CuAu Nano-
crystals. Angew. Chem., Int. Ed. 2010, 49, 2917−2921.
(181) Wang, G.; Huang, B.; Xiao, L.; Ren, Z.; Chen, H.; Wang, D.;
Abruña, H. D.; Lu, J.; Zhuang, L. Pt Skin on AuCu Intermetallic
Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. J. Am.
Chem. Soc. 2014, 136, 9643−9649.
(182) Sra, A. K.; Schaak, R. E. Synthesis of Atomically Ordered
AuCu and AuCu3 Nanocrystals from Bimetallic Nanoparticle
Precursors. J. Am. Chem. Soc. 2004, 126, 6667−6672.
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Mayrhofer, K. J. J.; Hodnik, N.; Gabersčěk, M. Positive Effect of
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