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6.2. Néron-Severi of Xd is torsion-free 81

Chapter 7. Index of the visible subgroup and the Tate-Shafarevich group 91
7.1. Visible versus Mordell-Weil 91
7.2. Tamagawa number 94
7.3. Application of the BSD formula 98

Chapter 8. Monodromy of ℓ-torsion and decomposition of the Jacobian 101
8.1. Statement of results 101
8.2. New and old 102
8.3. Endomorphism rings 104
8.4. The Λ-module structure of J [ℓ] 107
8.5. Monodromy of J [λ] 108
8.6. Independence 113
8.7. Conclusion 117

Appendix A. An additional hyperelliptic family 121
A.1. Introduction 121
A.2. The BSD conjecture 121
A.3. Descent 122
A.4. Degree of the L-function 126
A.5. Additional remarks 127

Bibliography 129



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Abstract

We study the Jacobian J of the smooth projective curve C of genus r− 1 with
affine model yr = xr−1(x+ 1)(x+ t) over the function field Fp(t), when p is prime
and r ≥ 2 is an integer prime to p. When q is a power of p and d is a positive
integer, we compute the L-function of J over Fq(t

1/d) and show that the Birch and

Swinnerton-Dyer conjecture holds for J over Fq(t
1/d). When d is divisible by r

and of the form pν + 1, and Kd := Fp(µd, t
1/d), we write down explicit points in

J(Kd), show that they generate a subgroup V of rank (r−1)(d−2) whose index in
J(Kd) is finite and a power of p, and show that the order of the Tate-Shafarevich
group of J over Kd is [J(Kd) : V ]2. When r > 2, we prove that the “new” part

of J is isogenous over Fp(t) to the square of a simple abelian variety of dimension
φ(r)/2 with endomorphism algebra Z[µr]

+. For a prime ℓ with ℓ ∤ pr, we prove that
J [ℓ](L) = {0} for any abelian extension L of Fp(t).
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Introduction

It is known that for every prime p and every genus g > 0, there exist Jacobians
J of dimension g over the rational function field K = Fp(t) such that the rank
of J(K) is arbitrarily large [49]. One of the main goals in this work is to make
this phenomenon more explicit. Specifically, for any prime number p and infinitely
many positive integers g, we exhibit a curve of genus g over K and explicit divisors
on that curve that generate a subgroup V of large rank in the Mordell-Weil group of
the Jacobian of the curve. We also prove precise results on the conjecture of Birch
and Swinnerton-Dyer for these Jacobians, giving information about the index of
the subgroup V in the Mordell-Weil group, and about the Tate-Shafarevich group
of the Jacobian.

All of this work generalizes previous results in the case g = 1 from [10,52,53].
In those papers, the authors analyze the arithmetic of the Legendre curve y2 =
x(x+ 1)(x+ t), an elliptic curve defined over K. For each field Kd appearing in a
tower of field extensions of K, they prove that the Legendre curve over Kd satisfies
the conjecture of Birch and Swinnerton-Dyer. Furthermore, for infinitely many d,
they find explicit divisors on the Legendre curve that generate a subgroup V of
large rank in the Mordell-Weil group. They bound the index of the subgroup V in
the Mordell-Weil group and give results about the Tate-Shafarevich group.

The statements of the main results in this paper are quite parallel to those for
the Legendre elliptic curve. However, since we work in higher genus—where the
curve and its Jacobian are distinct objects—the proofs are more complicated and
require more advanced algebraic geometry. For example, we have to construct the
regular minimal model of our curve from first principles (rather than relying on
Tate’s algorithm), the relations among the points we write down are less evident,
and the analysis of torsion in the Jacobian requires more work. Moreover, our
results cast new light on those of [52] insofar as we determine the structure of the
group of points under consideration as a module over a suitable group ring.

As part of our analysis, we prove several results in more generality than needed
here, and these results may be of use in analyzing the arithmetic of other curves over
function fields. These include a proof that the Néron-Severi group of a general class
of surfaces is torsion-free (Propositions 6.18 and 6.21) and an integrality result for
heights on Jacobians (Proposition 7.2). We also note that the monodromy questions
answered in the last chapter inspired a related work [18] in which a new method
to compute monodromy groups of superelliptic curves is developed.

1
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Historical background

Let g be a positive integer. Over a fixed number field, it is not known whether
there exist Jacobian varieties of dimension g whose Mordell-Weil groups have ar-
bitrarily large rank. In contrast, there are several results of this type over a fixed
function field, some of which we describe below.

In [46], Shafarevich and Tate construct elliptic curves with arbitrarily large
rank over Fq(t). The curves in their construction are isotrivial, i.e., each is isomor-
phic, after a finite extension, to a curve defined over Fq.

In [42], Shioda studies the elliptic curve over k(t) defined by y2 = x3+atnx+btm

where k is an arbitrary field and a, b ∈ k satisfy ab(4a3t3n + 27b2t2m) %= 0. When
char(k) = 0, he proves the rank of the Mordell-Weil group has a uniform upper
bound of 56, and he gives necessary and sufficient conditions on m and on n for
meeting this bound. When char(k) = p ≡ −1 (mod 4) and when d = (pν + 1)/2
as ν varies over positive odd integers, he proves that the elliptic curves over k(t)
defined by y2 = x3+x+ td achieve arbitrarily large rank. These curves are given as
examples of the main result of [42], in which Shioda computes the Picard number
for Delsarte surfaces. Fundamental to this work is the realization of any Delsarte
surface as a quotient of a Fermat surface.

Motivated by this work of Shioda, in [50] Ulmer proves that the non-isotrivial
elliptic curve y2 + xy = x3 − t over Fp(t) obtains arbitrarily large rank over the

fields Fp(t
1/d), where d ranges over divisors of pn+1. He realizes the corresponding

elliptic surface as a quotient of a Fermat surface; from earlier work of Shioda and
Katsura [44], this Fermat surface admits a dominant rational map from a product
of Fermat curves. It follows that this elliptic curve satisfies the conjecture of Birch
and Swinnerton-Dyer. Furthermore, the zeta function of the elliptic surface can be
determined from that of the Fermat surface. Using Jacobi sums, lower bounds are
found for the rank of the elliptic curve over towers of function fields.

The geometric construction in [44] is later generalized in the work of Berger
[5], where towers of surfaces dominated by products of curves are constructed as
suitable blow-ups of products of smooth curves. In [50], Ulmer elaborates on the
geometry and arithmetic of this construction, proving a formula for the ranks of
the Jacobians of the curves constructed in [5].

In [55], Ulmer and Zarhin combine this rank formula with work on endomor-
phisms of abelian varieties. For k a field of characteristic zero, they construct
absolutely simple Jacobians over k(t) with bounded ranks in certain towers of ex-
tensions of k(t). As one example, they prove that the Mordell-Weil group of the
Jacobian of the genus g curve defined by ty2 = x2g+1 − x+ t− 1 has rank 2g over
the field Q(t1/p

r

) for any prime power pr. In [34], Pries and Ulmer introduce an
analogous construction of surfaces that are dominated by a product of curves at
each layer in a tower of Artin-Schreier extensions. They prove a formula for the
ranks of the Jacobians of their curves, and produce examples of Jacobians with
bounded and with unbounded ranks.

Another example from [50] is the curve over k(t) defined by y2 + xy + ty =
x3 + tx2. For k an algebraically closed field of characteristic zero and d a positive
integer, the curve has rank zero over the fields k(t1/d). For k = Fp and d = pn + 1,

the curve has rank d− 2 over k(t1/d), and explicit generators are found. Later, in
[52], a 2-isogeny to the Legendre curve y2 = x(x + 1)(x + t) is obtained, and this
construction motivates our work.
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The main results

Let p be an odd prime, let r ≥ 2 be an integer not divisible by p, and let
K = Fp(t). Generalizing the results in [52], [10], and [53], we consider the smooth
projective curve C = Cr of genus g = r − 1 over K with affine model

yr = xr−1(x+ 1)(x+ t).

The Jacobian Jr of Cr is a principally polarized abelian variety over K of dimension
g.

We study the arithmetic of J = Jr over extensions of K of the form Fq(u)

where u ∈ K satisfies ud = t, e.g., the extension Kd = Fp(µd, u). Some of our
results hold for general data p, q, r, d, while others hold under specific constraints.
We first state a result in a specific case:

Theorem 1. Let p be a prime number, let d = pν + 1 for some integer ν > 0,
and let r be a divisor of d. Then there is an explicit group of divisors generating a
subgroup V ⊂ J(Kd) with the following properties:

(1) The Z-rank of V is (r − 1)(d− 2) and the torsion of V has order r3.
(2) The index of V in J(Kd) is finite and a power of p.
(3) The Tate-Shafarevich group X(J/Kd) of J/Kd is finite of order

|X(J/Kd)| = [J(Kd) : V ]2.

We prove even more about V , describing it completely as a module over a
certain group ring and as a lattice with respect to the canonical height pairing on
J .

In the general case, we compute the L-function and prove the BSD conjecture:

Theorem 2. Let p be a prime number, let q be a power of p, and let r and d
be positive integers not divisible by p. Then:

(1) The conjecture of Birch and Swinnerton-Dyer holds for J over Fq(u).
(2) The L-function of J/Fq(u) can be expressed explicitly in terms of Jacobi

sums. (See Theorem 5.4 below for the precise statement.)
(3) For sufficiently large q, the order of vanishing of L(J/Fq(u), s) at s = 1

can be expressed in terms of the action on the set (Z/dZ)× (Z/rZ) of the
subgroup of (Z/ lcm(d, r)Z)× generated by p. (See Proposition 5.9 below
for the precise statement.)

The rank calculation in this result of course agrees with that given by the
explicit points in the case d = pν +1, r | d, and Fq = Fp(µd). We expect that there
are many other values of q, r and d yielding large ranks, as in [10].

Finally, we prove very precise results about the decomposition of J up to isogeny
into simple abelian varieties and about torsion in abelian extensions. To state
them, note that if r′ | r, then there is a surjective map of curves Cr → Cr′ and a
corresponding homomorphism of Jacobians Jr → Jr′ induced by push-forward of
divisors. We define Jnew

r to be the identity component of the intersection of the
kernels of these homomorphisms over all divisors r′ of r with r′ < r.

Theorem 3.

(1) If r = 2, then Jnew
r equals Jr, which is an abelian variety of dimension 1,

and thus Jnew
r is absolutely simple.
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(2) If r > 2, then Jnew
r is simple over Fp(t), while over Fp(t) it is isogenous

to the square of a simple abelian variety of dimension φ(r)/2 whose endo-
morphism algebra is the real cyclotomic field Q(µr)

+.
(3) If L is an abelian extension of Fp(t) and if ℓ is prime with ℓ ∤ r, then Jr(L)

contains no non-trivial elements of order ℓ.

Overview of the paper

Our study involves more than one approach to the key result of part (1) of
Theorem 1 (the lower bound on the rank of J over Kd when d = pν + 1). Some
of the arguments are more elementary or less elementary than others, with cor-
respondingly weaker or stronger results. We include these multiple approaches so
that the reader may see many techniques in action, and may choose the approaches
that suit his or her temperament and background.

In Chapter 1, we give basic information about the curve C and Jacobian J we
are studying. We write down explicit divisors in the case d = pν + 1, and we find
relations satisfied by the classes of these divisors in J . These relations turn out to
be the only ones, but that is not proved in general until much later in the paper.

In Chapter 2, we assume that r is prime and use descent arguments to bound
the rank of J from below in the case when d = pν + 1. The reader who is willing
to assume r is prime need only read these first two chapters to obtain one of the
main results of the paper.

In Chapter 3, we construct the minimal, regular, proper model X → P1 of
C/Fq(u) for any values of d and r. In particular, we compute the singular fibers of
X → P1. This allows us to compute the component groups of the Néron model of
J . We also give a precise connection between the model X and a product of curves.

In Chapter 4, we consider the case where d = pν +1 and r | d, and we compute
the heights of the explicit divisors introduced in Chapter 1. This allows us to
compute the rank of the explicit subgroup V and its structure over the group ring
Z[µr × µd].

In Chapter 5, we give an elementary calculation of the L-function of J over
Fq(u) (for any d and r) in terms of Jacobi sums. We also show that the BSD
conjecture holds for J , and we give an elementary calculation of the rank of J(Fq(u))
for any d and r and all sufficiently large q.

In the fairly technical Chapters 6 and 7, we prove several results about the
surface X that allow us to deduce that the index of V in J(Kd) is a power of p
when d = pν +1 and r divides d. We also use the BSD formula to relate this index
to the order of the Tate-Shafarevich group.

In the equally technical Chapter 8, we prove strong results on the monodromy
of the ℓ-torsion of J for ℓ prime to pr. This gives precise statements about torsion
points on J over abelian or solvable extensions of Fp(t) and about the decomposition
of J up to isogeny into simple abelian varieties.

The methods of this paper can be used to study other curves as well. We give
an explicit family of curves in Section 1.6 and point out how some of the results of
this paper extend to the Jacobians of these curves. At the request of the referee, we
include Appendix A, in which we give more details on these examples. Specifically,
we prove a lower bound on the rank of the Jacobian of the hyperelliptic curve X
over Fq(t) defined by y2 = x

∏g
i=1(x + ai)(t + aix) with g odd and with distinct

nonzero ai ∈ Fq over fields of the form Kd = Fq(µd, t
1/d) with d = qν + 1. We also
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show that the BSD conjecture holds for the Jacobian of X over Fqn(t
1/d) for all n

and all d prime to p, and we give an upper bound on the rank using the L-function.
Recently, Ulmer and Voloch [54] introduced a family of curves generalizing

those treated in this paper. They study curves defined by the equation

yr = h(x)h(t/x),

where h is a polynomial that is not of the form fm, for any m %= 1, m | r. (The gen-
eralized Legendre curves studied in this paper and the hyperelliptic curves discussed
in the appendix are all examples from this family.) They prove that the number of
points in an arithmetic family of such curves is unbounded, and they also show that
the surface over k defined by this equation is dominated by a product of curves.
The emphasis in [54] is on rational points on the curves, whereas techniques from
this paper may be useful for proving interesting results on the Jacobians of these
curves.

Guide

The leitfaden below indicates dependencies among the chapters of the paper.
We also record here the chapters or sections needed to prove various parts of the
main results.

A proof of lower bounds as in Theorem 1(1) (i.e., that the rank of J(Kd) is at
least (r − 1)(d− 2) and the torsion has order r3) in the case where r is prime and
divides d = pν + 1 is contained in Chapters 1 and 2, and more specifically follows
from Proposition 1.5 and Theorem 2.1.

The lower bounds of Theorem 1(1) in the case of general r dividing d = pν + 1
are proved in Section 4.3.2 using results from Chapter 1, Section 4.1, and earlier
parts of Chapter 4. Theorem 1(1) is established in full generality in Corollary 4.20.

Parts (2) and (3) of Theorem 1 are proved in Chapter 7, specifically in Theo-
rem 7.1 and Theorem 7.7 respectively, using results from Chapters 1, 3, 4, 5, and
6.

Theorem 2 is proved in Chapter 5 using results from Chapters 1 and 3.
Finally, Theorem 3 is proved in Chapter 8 using definitions from Chapter 1

and precise information on the Néron model of J deduced from properties of the
regular proper model X of Chapter 3. (To be precise, the claim about p-torsion is
not treated in Chapter 8, but a stronger result is proved in Section 6.1.)
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Figure 1. Leitfaden

Notation

Throughout, k is a field of characteristic p ≥ 0 and K is the rational function
field k(t). We write Fq to denote a finite ground field of cardinality q, with q being
a power of p. If n is positive and not divisible by the characteristic p of k, we write
µn for the group of n-th roots of unity in an algebraic closure of k. For a prime p
and a positive integer d not divisible by p, we write Kd for the extension Fp(µd, u)
of Fp(t) with ud = t. We view k(u) as the function field of P1

u where the subscript
u reminds us that the coordinate is u.
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CHAPTER 1

The curve, explicit divisors, and relations

In this chapter, we define a curve C over K = k(t) whose Jacobian J is the
main object of study. When k = Fp, there is a rich supply of explicit points on
C defined over certain extensions of K, and the divisors supported on these points
turn out to generate a subgroup of J of large rank.

More precisely, we study the arithmetic of C and J over extensions of Fp(t) of

the form Fq(t
1/d) for q a power of p and d ∈ N relatively prime to p. Let K = Fp(t)

and Kd = Fp(µd, u) where µd denotes the d-th roots of unity and u = t1/d. These
fields are the most important fields in the paper, especially when d has the form
d = pν + 1 for an integer ν > 0, although we consider more general extensions of
the form Fq(t

1/d) as well.

1.1. A generalization of the Legendre curve

Choose a positive integer r not divisible by p = char(k). We consider the
smooth, absolutely irreducible, projective curve C over k(t) associated to the affine
curve

(1.1) yr = xr−1(x+ 1)(x+ t).

Note that when r = 2, this is an elliptic curve called the Legendre curve which
was studied in [52].

1.1.1. Constructing a smooth model. We explicitly construct the smooth
projective model of C. First, consider the projective curve in P2 over Fp(t) given
by

C ′ : Y rZ = Xr−1(X + Z)(X + tZ).

A straightforward calculation using the Jacobian criterion shows that C ′ is smooth
when r = 2, in which case we take C = C ′. If r > 2, then the Jacobian criterion
reveals that C ′ is singular at the point [0, 0, 1] and is smooth elsewhere. We produce
a smooth projective curve by blowing up this point.

Let V be the complement of [0, 0, 1] in C ′. Let U be the affine curve with
equation

v = ur−1(uv + 1)(uv + t).

Another Jacobian criterion calculation shows that U is smooth. The map

X = uv, Y = v, Z = 1

gives an isomorphism π between U \{u=v=0} and V \{[−1, 0, 1], [−t, 0, 1], [0, 1, 0]}.
Gluing U and V along this map yields a smooth projective curve which we denote
C.

We claim that π : C → C ′ is the normalization of C ′. Indeed, π factors through
the normalization of C ′ since C is smooth and thus normal. Moreover, π is visibly

7
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finite and birational. Since a finite birational morphism to a normal scheme is an
isomorphism, π : C → C ′ is indeed the normalization of C.

Note that π is a bijection as well. In fact, it is a universal homeomorphism1,
so for every field extension L of Fp(t), there is a bijection of rational points

C(L) →̃ C ′(L).

It is convenient to specify points of C by giving the corresponding points of C ′

using the affine coordinates x = X/Z and y = Y/Z.
The reader who prefers to avoid the abstraction in the last two paragraphs

is invited to work directly with the smooth curve C. This adds no significant
inconvenience to what follows.

1.1.2. First points. Let Q∞ be the point of C corresponding to the point
at infinity on C ′, namely [0, 1, 0]. Let Q0, Q1, and Qt be the points of C given
by (x, y) = (0, 0), (−1, 0), and (−t, 0) respectively. (Here we use the convention
mentioned at the end of the preceding subsection, namely we define points of C via
C ′.)

1.1.3. Genus calculation.

Lemma 1.1. The curve C has genus g = r − 1.

Proof. Consider the covering

f : C → P1

induced by the function x. The ramification points of f are Q0, Q1, Qt and Q∞,
each with ramification index r. The Riemman-Hurwitz formula implies

2g − 2 = −2r + 4(r − 1),

thus g = r − 1. !

1.1.4. Immersion in J . Let J be the Jacobian of C; it is a principally polar-
ized abelian variety of dimension g = r − 1. We imbed C in J via the Abel-Jacobi
map using Q∞ as a base point:

C → J

P *→ [P −Q∞]

where [P −Q∞] is the class of P −Q∞ in Pic0(C) = J .

1.1.5. Automorphisms. Note that if k contains µr, the r-th roots of unity,
then every element of µr gives an automorphism of C. More precisely, we have
automorphisms

(x, y) *→ (x, ζjry)

where ζr is a primitive r-th root of unity and 0 ≤ j < r. These automorphisms
fix Q∞, so the induced automorphisms of J are compatible with the embedding
C →֒ J .

As we verify below, these are not all of the automorphisms of C, but they are
the only ones that play an important role in this paper.

1Indeed, π is projective, so universally closed and surjective, and it is injective and induces
isomorphisms on the residue fields, so is universally injective by [15, 3.5.8].
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1.1.6. Complement: Hyperelliptic model and 2-torsion. We remark
that the curve C is hyperelliptic. More precisely, making the substitution (x, y) →
(x, xy) in the equation yr = xr−1(x+ 1)(x+ t), we see that C is birational to the
curve given by

x2 + (t+ 1− yr)x+ t = 0

and projection on the y-coordinate makes this a (separable) 2-to-1 cover of the
projective line. If p %= 2, we may complete the square and make the appropriate
change of coordinates (a translation of x) to arrive at the equation

x2 = y2r − 2(t+ 1)yr + (t− 1)2

=
(

yr − (
√
t+ 1)2

)(

yr − (
√
t− 1)2

)

.

If, in addition, d is even and r is odd, then
√
t ∈ k(u) and the two factors on

the right hand side are irreducible in k(u)[y]. It follows from [33, Lemma 12.9] that
J has no 2-torsion over k(u).

This is a first hint towards later results. For example, J(Kd)tor has order
r3 when r divides d = pν + 1 (Theorem 7.1). More generally (Corollary 6.1 and
Theorem 8.1), J has no torsion of order prime to r over any abelian extension of
k(t).

1.2. Explicit points and the visible subgroup

Next, we write down several points on C defined over the extensions Kd, and
we consider the subgroup they generate in the Jacobian.

1.2.1. Special extensions. For the rest of Chapter 1, we assume that d =
pν + 1 for some integer ν > 0, and we assume that r divides d. In this situation, it
turns out that C has a plentiful supply of points defined over Kd, and the divisors
supported on these points generate a subgroup of J(Kd) of large rank.

The extension Kd/K is Galois with Galois group the semidirect product of
Gal(Fp(µd, t)/K) ∼= Gal(Fp(µd)/Fp) (a cyclic group of order 2ν generated by the
p-power Frobenius) by Gal(Kd/Fp(µd, t)) (a cyclic group of order d generated by a
primitive d-th root of unity).

Remark 1.2. There are many triples p, r, d satisfying our hypotheses. Indeed,
for a fixed prime p, there are infinitely many integers r > 1 such that r divides pµ+1
for some µ. (The number of such r less that X is asymptotic to X/(logX)2/3; see
[32, Theorem 4.2].) For any such p and r, there are infinitely many ν such that r
divides pν + 1. Indeed, pµ + 1 divides pν + 1 whenever ν = mµ with m odd.

Alternatively, for a fixed r, there are infinitely many primes p such that r divides
pµ + 1 for some µ. These p are determined by congruence conditions modulo r,
namely by the requirement that −1 be in the subgroup of (Z/rZ)× generated by p.

1.2.2. Explicit points. We continue to assume that d = pν + 1 and r|d.
Under these hypotheses, we note that

P (u) :=
(

u, u(u+ 1)d/r
)
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is a point on C defined over Kd. Indeed,

ur−1(u+ 1)(u+ t) = ur(u+ 1)(1 + upν

)

= ur(u+ 1)p
ν+1

=
(

u(u+ 1)d/r
)r

.

We find other points by applying the automorphisms ζjr discussed in Section 1.1.5
above and the action of the elements of the Galois group of Kd/K. In all, this
yields rd distinct points.

Although it is arguably unnatural, for typographical convenience we fix a prim-

itive d-th root of unity ζd ∈ Kd and we set ζr = ζ
d/r
d . Then the points just

constructed can be enumerated as

Pi,j =
(

ζidu, ζ
j
rζ

i
du(ζ

i
du+ 1)d/r

)

where i ∈ Z/dZ and j ∈ Z/rZ.
Identifying C with its image in J via the map in Section 1.1.4 produces divisor

classes in J(Kd) that we also denote by Pi,j . The subgroup generated by these
points is one of the main objects of study in this paper.

1.2.3. R-module structure. Next we introduce a certain group ring acting
on J(Kd). We noted above that there is an action of µr ⊂ Aut(C) on C and on J .
There are also actions of µd

∼= Gal(Kd/Fp(µd, t)) ⊂ Gal(Kd/K) on C(Kd) and on
J(Kd), and these actions are compatible with the inclusion C →֒ J .

Let R be the integral group ring of µd × µr, i.e., let

R =
Z[σ, τ ]

(σd − 1, τ r − 1)
.

The natural action of R on the points Pi,j is:

σiτ j(Pa,b) = Pa+i,b+j .

(Here and below we read the indices i modulo d and j modulo r.)

1.2.4. The “visible” subgroup. We define V = Vr,d to be the subgroup of
J(Kd) generated by the Pi,j . It is evident that V is also the cyclic R-submodule
of J(Kd) generated by P0,0. In other words, there is a surjective homomorphism of
R-modules

R → V
∑

ij

aijσ
iτ j *→

∑

ij

aijσ
iτ j(P0,0) =

∑

ij

aijPi,j .

One of the main results of the paper is a complete determination of the “visible”
subgroup V . Here we use visible in the straightforward sense that these are divisors
we can easily see. As far as we know, there is no connection with the Mazur-Stein
theory of visible elements in the Tate-Shafarevich group.
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1.3. Relations

As above, let V = Vr,d be the R-submodule of J(Kd) generated by P0,0. The
goal of this section is to work toward computing the structure of V as a group and
as an R-module. Explicitly, we show that V is a quotient of R/I for a certain ideal
I. Ultimately, in Chapter 4, we verify that V is isomorphic to R/I as an R-module
and compute the structure of R/I as a group.

Throughout, we identify C(Kd) with its image in J(Kd) via the immersion
P *→ [P −Q∞].

Considering the divisors of x, x+1, and x+ t, one finds that the classes of Q0,
Q1, and Qt are r-torsion. Considering the divisor of y, one finds that Qt ∼ Q0−Q1,
so Qt is in the subgroup generated by Q0 and Q1.

Now consider the functions x− ζidu,

∆j := ζ
−jd/r
d y − x(x+ 1)d/r,

and

Γj := ζ
−jd/r
d yxd/r−1 − ud/r(x+ 1)d/r.

Calculating as in [52, Proposition 3.2], we find that

div(x− ζidu) =
r−1
∑

j=0

Pi,j − rQ∞,

div(∆j) =

d−1
∑

i=0

Pi,j + (r − 1)Q0 +Q1 − (r + d)Q∞,

and

div(Γj) =

d−1
∑

i=0

Pi,−i+j +Q1 − (d+ 1)Q∞.

Considering the divisor of Γj for any j shows that Q1 is in V , and then considering
the divisor of ∆j for any j shows that Q0 is also in V . (Here we use the fact that
Q0 is r-torsion.) Thus V contains the classes of Q0, Q1 and Qt.

Now for 1 ≤ j ≤ r − 1 we set

Dj := div(∆j/∆j−1) =
∑

i

(Pi,j − Pi,j−1),

and

Ej := div(Γj/Γj−1) =
∑

i

(Pi,j−i − Pi,j−1−i),

and for 0 ≤ i ≤ d− 1 we set

Fi := div(x− ζidu) =
∑

j

Pi,j − rQ∞.

These divisors are zero in the Jacobian Jr(Kd).
Restating this in terms of the module homomorphism R → V , we see that for

1 ≤ j ≤ r − 1 the elements

dj :=
∑

i

(σiτ j − σiτ j−1) = (τ j − τ j−1)
∑

i

σi,

ej :=
∑

i

(σiτ j+d−i − σiτ j−1+d−i) = (τ j − τ j−1)
∑

i

σiτd−i,
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and for 0 ≤ i ≤ d− 1 the elements

fi :=
∑

j

σiτ j = σi
∑

j

τ j

map to zero in V .
Let I be the ideal of R generated by

(τ − 1)
∑

i

σi, (τ − 1)
∑

i

σiτd−i, and
∑

j

τ j .

Then it is easy to see that dj , ej , and fi all lie in I, that they generate it as an
ideal, and in fact that they form a basis of I as a Z-module.

Thus there is a surjection of R-modules R/I → V . We will eventually show
that this surjection is in fact an isomorphism; see Theorem 1.6.

Note that R has rank rd as a Z-module, so the rank of R/I as a Z-module is
rd− d− 2(r − 1) = (r − 1)(d− 2). Thus the rank of V is at most (r − 1)(d− 2).

1.4. Torsion

In this section, we show that certain torsion divisors are not zero; more precisely
that the order of the torsion subgroup of V is divisible by r3. The main result is
Proposition 1.5 below.

Lemma 1.3. The classes of Q0 and Q1 each have order r and generate a sub-
group of V isomorphic to Z/rZ× Z/rZ.

Proof. It suffices to prove the claim over FpKd = Fp(u). We have already seen
that Q0 and Q1 have order dividing r. Suppose that aQ0+bQ1 = 0 in V for integers
a, b ∈ {0, 1, · · · r − 1}, not both equal to zero. Then there is a function h in the
function field of the curve C with div(h) = (a/r) div(x)+(b/r) div(x+1). Since we
are working over Fp, we may choose h such that hr = xa(x+1)b. Let Y denote the
curve with function field Kd(x, h). Consider the inclusions Kd(x) →֒ Kd(x, h) →֒
Kd(C) and the corresponding surjections C → Y → P1. The map Y → P1 is of
degree greater than one, and C → P1 is fully ramified over x = −t. This is a
contradiction, since Y → P1 is unramified over x = −t. Hence, aQ0+ bQ1 = 0 only
when r divides both a and b, and Q0 and Q1 generate independent cyclic subgroups
of order r. !

Next we introduce elements of V ⊂ J(Kd) as follows:

Q2 :=

r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

Pi,j

and

Q3 := Q0 − 2Q2.

Lemma 1.4.

(1) (1− ζr)Q2 = Q0.
(2) If r is odd, then rQ2 = 0.
(3) If r is even, then 2rQ2 = 0 and (r/2)Q3 = 0.
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Proof. (1) We have

(1− ζr)Q2 = (1− ζr)
r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

Pi,j

=

r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

(Pi,j − Pi,j+1)

=
r−1
∑

k=0

∑

i≡k mod r

r−1−k
∑

j=0

(Pi,j − Pi,j+1)

=

r−1
∑

k=0

∑

i≡k mod r

(Pi,0 − Pi,r−k)

=
d−1
∑

i=0

(Pi,0 − Pi,−i) .

Considering the divisor of ∆0/Γ0 shows that the last quantity is equal to Q0 in J .
(2) Assume that r is odd, which implies that j(j − r)/2 is an integer for all

integers j. Consider the element of R given by

ρodd :=
r−1
∑

j=0





j(j − r)

2
(dj − ej) + (r − j)

∑

i≡j mod r

fi



 ,

where dj , ej , and fi are as in the previous subsection. We compute that

ρodd = r





r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

σiτ j



 .

Applying both sides of this equality to P0,0 proves that rQ2 = 0 in J .
(3) Now assume that r is even and consider

ρeven :=

r−1
∑

j=0



j(j − r) (dj − ej) + 2(r − j)
∑

i≡j mod r

fi



 .

A calculation similar to the one above shows that

ρeven = 2r





r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

σiτ j



 ,

and applying both sides of this equality to P0,0 proves that 2rQ2 = 0 in J .
Finally, we note that when r is even, then (1− j)(j − r)/2 is an integer for all

integers j. Consider

ρ′even :=

r−1
∑

j=1

(

(1− j)(j − r)

2
(dj − ej)

)

−
r−1
∑

j=0

∑

i≡j mod r

(r − j)fi.

We compute that

ρ′even = (r/2)





d−1
∑

i=0

(

σi − σiτ−i
)

− 2
r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

σiτ j



 .
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Applying both sides of this equality to P0,0 and noting as above that Q0 =
∑

i Pi,0−
Pi,−i shows that (r/2)(Q0 − 2Q2) = 0 in J .

This completes the proof of the lemma. !

The reader who wonders where Q2 and Q3 come from should consult the proof
of Proposition 4.17.

We write 〈Q0, Q1, Q2〉 for the subgroup of J(Kd) generated by Q0, Q1, and Q2.
Note that 〈Q1, Q2, Q3〉 = 〈Q0, Q1, Q2〉.

Proposition 1.5. Let T be the subgroup 〈Q0, Q1, Q2〉 of J(Kd). Then the
order of T is r3. More precisely:

(1) If r is odd, then the map (a, b, c) *→ aQ0 + bQ1 + cQ2 induces an isomor-
phism (Z/rZ)3 ∼= T .

(2) If r is even, then the map (a, b, c) *→ aQ1+ bQ2+ cQ3 induces an isomor-
phism (Z/rZ)× (Z/2rZ)× (Z/(r/2)Z) ∼= T .

Proof. (1) Assume that r is odd. Lemmas 1.3 and 1.4(2) show that the map
under consideration is well-defined. It is surjective by the definition of T . To see
that it is injective, suppose that aQ0+ bQ1+ cQ2 = 0. Applying (1− ζr) and using
Lemma 1.4(1) shows that cQ0 = 0. By Lemma 1.3, c = 0 in Z/rZ, and applying
Lemma 1.3 again shows that a = b = 0 in Z/rZ. This shows the map is injective,
thus an isomorphism.

(2) Now assume that r is even. Lemmas 1.3 and 1.4(3) show that the map
under consideration is well-defined. It is again surjective by the definition of T .
To see that it is injective, suppose that aQ1 + bQ2 + cQ3 = 0. Applying (1 − ζr)
and using Lemma 1.4(1) and Lemma 1.3 shows that b − 2c = 0 in Z/rZ and, in
particular, that b is even. Using that 2Q2 = Q0 −Q3, we compute

0 = aQ1 + bQ2 + cQ3

= cQ0 + aQ1 + (b− 2c)Q2

= cQ0 + aQ1 +
b− 2c

2
(Q0 −Q3)

= (b/2)Q0 + aQ1.

By Lemma 1.3, b/2 = a = 0 in Z/rZ and therefore b = 0 in Z/2rZ. Since b−2c = 0
in Z/rZ, we see that c = 0 in Z/(r/2)Z, and this shows the map is injective, thus
an isomorphism.

This completes the proof of the Proposition. !

1.5. First main theorem

We can now state the main “explicit points” theorem of this paper.
Recall that the group ring R = Z[σ, τ ]/(σd − 1, τ r − 1) acts on J(Kd) and that

V is the cyclic submodule of J(Kd) generated by P0,0. Recall also that I ⊂ R is
the ideal generated by

(τ − 1)
∑

i

σi, (τ − 1)
∑

i

σiτd−i, and
∑

j

τ j .
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Theorem 1.6.

(1) The map

R → V
∑

ij

aijσ
iτ j *→

∑

ij

aijPi,j

induces an isomorphism R/I ∼= V of R-modules.
(2) As a Z-module, V has rank (r − 2)(d − 2), and its torsion subgroup has

order r3 and is equal to the group T defined in Proposition 1.5.

We prove Theorem 1.6 in Chapter 4 by computing the canonical height pairing
on V ; see Theorem 4.19. In the case when r is an odd prime, we give a more elemen-
tary proof of part (2) in Chapter 2 using a descent calculation; see Theorem 2.1.

1.6. Complement: Other curves

The basic “trick” allowing one to write down points on C extends to many
other curves. In this section, we briefly discuss one class of examples. A more
detailed analysis is provided in Appendix A.

Let p be an odd prime and k a field of characteristic p and cardinality q. Fix an
odd integer g > 1 and a polynomial h(x) ∈ k[x] of degree g. Assume h has distinct,
nonzero roots.

Let X be the smooth, projective curve over K = k(t) defined by

y2 = xh(x)xgh(t/x).

Since the right hand side has degree 2g+1 in x, the genus of X is g. Let ∞ be the
(K-rational) point at infinity on X.

Let J be the Jacobian of X. We embed X in J using ∞ as the base point.
If d = qν + 1 and Kd = k(µd, u) with ud = t, then X has a Kd-rational point,

namely

P (u) : (x, y) =
(

u, u(g+1)/2h(u)d/2
)

.

Letting the Galois group of Kd over K act on P (u) yields points Pj = P (ζjdu)
where ζd is a primitive d-th root of unity and j = 0, . . . , d − 1. We consider the
subgroup V of J(Kd) generated by the images of the d points Pj , and the images
of the points where y = 0.

By writing down the divisors of certain functions, as in Section 1.3, we show
that the rank of the subgroup V is at most d.

It is natural to bound the rank of V from below by computing a coboundary
map related to 2-descent. More precisely, extending k if necessary we may assume
that the roots of h lie in k. Then the Weierstrass points of X are defined over K and
the divisors of degree zero supported on them generate the full 2-torsion subgroup
of J . In particular, J [2] ∼= µ2g

2
∼= (Z/2Z)2g over K. We obtain a coboundary map

J(Kd)/2J(Kd) →֒ H1(Kd, J [2]) ∼=
(

K×
d /K×2

d

)2g
.

Analyzing the image of V under this map (along the lines of [52, Section 4]) allows
one to show that the rank of V is at least d− 2 when d is of the form qν + 1 (and
at least d− 1 when g > 1). This work is also closely related to the calculations in
Chapter 2 for the curve C that is our main object of study.
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In the appendix, we also consider a certain surface Xd equipped with a mor-
phism Xd → P1 whose generic fiber is X/Kd, and we prove that this surface is
dominated by a product of curves. This shows that the BSD conjecture holds for
J over Fq(u) where ud = t, q is any power of p, and d is any positive integer prime
to p. All this is closely related to our work in Chapters 3 and 5 on C.

In the last part of the appendix, we obtain an upper bound on the order of
vanishing of the L-function of J/Kd at s = 1, thereby bounding the rank of J(Kd)
from above. This is closely related to our work in Chapter 5 on the L-function of
JC .

We note that some of the finer analysis of this paper is unlikely to go through
without much additional work. For example, the upper and lower bounds on the
rank of J over Kd differ significantly, and we have not determined the exact rank.
Indeed, the degree of the L-function of J over Kd is asymptotic to g2d as d → ∞,
whereas the rank of V is less than d. This suggests that the leading coefficient of
L(J/Kd, s) at s = 1 is likely to be of arithmetic nature, and that the connection
between the index of V in J(Kd) and the order of X(J/Kd) may not be as simple
as it is for the curve C studied in the rest of this paper. We would be delighted if
readers of this paper took up these questions.
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CHAPTER 2

Descent calculations

Throughout this chapter, r is an odd, positive, prime number dividing d, and
d = pν + 1 for some integer ν > 0. Let Kd = Fp(µd, u) where ud = t. In this
context, there is a fairly short and elementary proof that the visible subgroup of
J(Kd) has large rank.

More precisely, let C be the curve studied in Chapter 1, let J be its Jacobian,
and let V be the “visible” subgroup of J(Kd) defined in Section 1.2, so that V is
generated by the image of the point P = (u, u(u + 1)d/r) under the Abel-Jacobi
mapping C →֒ J and its Galois conjugates. Recall that the choices made in Chap-
ter 1 allow us to index these points as Pi,j with i ∈ Z/dZ and j ∈ Z/rZ.

Using the theory of descent, as developed in [8], we prove the following theorem.

Theorem 2.1. The subgroup V of J(Kd) has rank (r − 1)(d− 2). Moreover,

J(Kd)[r
∞] ∼= V [r∞] ∼= (Z/rZ)3.

The proof is given in Section 2.4.

2.1. The isogeny φ

Recall that there is an action of the r-th roots of unity µr on C and an induced

action on J . Recall also that ζr = ζ
d/r
d ∈ Kd is a fixed r-th root of unity. If D is

a divisor of degree 0 on C/Kd then the divisor

(1 + ζr + · · ·+ ζr−1
r )∗(D)

is easily seen to be the pullback of a divisor of degree 0 on P1 under the map C → P1

that is the projection on the x coordinate. Since the Jacobian of P1 is trivial, the
endomorphism (1 + ζr + · · ·+ ζr−1

r ) acts trivially on J .
We want to restate this in terms of the endomorphism ring of J . To avoid

notational confusion, write H for the cyclic group of order r and let Z[H] be the
group ring of H. Somewhat abusively, we use ζr also to denote an r-th root of
unity in characteristic zero. Then, as usual, Z[ζr] will denote the ring of integers
in the cyclotomic field Q(ζr). The action of µr on J induces a homomorphism
Z[H] → End(J) where End(J) denotes the endomorphism ring of J over Kd.

There is a surjective ring homomorphism Z[H] → Z[ζr] sending the elements of
H to the powers of ζr. The kernel is generated by

∑

h∈H h. The discussion above
shows that the homomorphism Z[H] → End(J) factors through Z[ζr]. The induced
map Z[ζr] → End(J) is an embedding, since End(J) is torsion-free.

Let φ : J → J be the endomorphism 1− ζr.

Proposition 2.2. The endomorphism φ = 1 − ζr is a separable isogeny of
degree r2.

17
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Proof. In Z[ζr], there is an equality of ideals (1− ζr)
r−1 = (r), i.e., the ratio

of (1− ζr)
r−1 and r is a unit. It follows that (1− ζr)

r−1 and the separable isogeny
r : J → J factor through each other. Therefore 1− ζr is an isogeny, and

deg(1− ζr)
r−1 = deg r = r2g = r2(r−1).

Since φ = 1− ζr, this proves that deg(φ) = r2. Since r is prime to p, it follows that
φ is separable. !

We write J(Kd)[φ] and V [φ] for the kernel of φ on J(Kd) and V respectively.

Corollary 2.3. J(Kd)[φ] is a two-dimensional vector space over Fr with basis
Q0 and Q1. Moreover, V [φ] = J(Kd)[φ].

Proof. For the first assertion, we verify that the divisor classes Q0 and Q1

are contained in the kernel of φ, and they generate a subgroup of J(Kd) of order
r2 by Lemma 1.3. Since φ has degree r2, it follows that Q0 and Q1 generate the
kernel. Since Q0 and Q1 lie in V [φ] ⊂ J(Kd)[φ] we also have V [φ] = J(Kd)[φ]. !

For any element ǫ ∈ End(J), let ǫ∨ denote its Rosati dual, that is, its image
under the Rosati involution on End(J). If ǫ is an automorphism of J coming from
an automorphism of C, then one has ǫ∨ = ǫ−1. It follows that φ∨ = 1− ζ−1

r .

Lemma 2.4. We have J [φ] = J [φ∨], as group subschemes of J .

Proof. Since (1 − ζr)/(1 − ζ−1
r ) is a unit in Z[ζr], it is clear that the endo-

morphisms φ = 1 − ζr and φ∨ = 1 − ζ−1
r factor through each other and thus have

the same kernel. !

2.2. The homomorphism (x− T )

Let ∆ = {Q0, Q1, Qt}, the set of affine ramification points of the morphism
C → P1, (x, y) *→ x, which lie over x = 0, x = −1, and x = −t respectively. We
write Div(CKd

) for the Kd-rational divisors on C and Div0(CKd
) for those of degree

0. There is a canonical surjective homomorphism Div0(CKd
) → J(Kd).

Following ideas from [8], we define a homomorphism

(x− T ) : Div(CKd
) →

∏

Q∈∆

K×
d /K×r

d

that plays a crucial role in the proof of Theorem 2.1. Its properties are described
in Proposition 2.5. For an element v ∈ ∏

Q∈∆
K×

d /K×r
d , we write v = (v0, v1, vt),

where vi is the coordinate corresponding to Qi.
Let C◦ ⊂ C be the complement of ∆ ∪ {Q∞}. We define the homomorphism

(x− T )′ : Div(C◦
Kd

) →
∏

Q∈∆

K×
d /K×r

d

by setting
P *→ (x(P )− x(Q))Q∈∆

,

and defining (x − T )′ on divisors by multiplicativity. (The individual points P in
a divisor D need not be Kd-rational, but if D is Kd-rational, then (x − T )′ takes
values in

∏

K×
d /K×r

d .)
We now define the homomorphism

(x− T ) : Div(CKd
) →

∏

Q∈∆

K×
d /K×r

d
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as follows: let D ∈ Div(CKd
) be a divisor on CKd

and choose D′ ∈ Div(C◦
Kd

) ⊂
Div(CKd

) such that D′ is linearly equivalent to D. Then set

(x− T )(D) := (x− T )′(D′).

For a proof that (x− T ) is well-defined, see [8, 6.2.2].
Fix a separable closure Ksep

d of Kd, and let G be Gal(Ksep
d /Kd). For any G-

moduleM and integer i ≥ 0, we abbreviate the usual notationHi(G,M) for the i-th
Galois cohomology group of M to Hi(M). For a finite G-module M of cardinality

not divisible by p, we denote by M∨ the dual G-module Hom(M,Ksep×
d ).

Proposition 2.5. There is a homomorphism α : H1(J [φ]) →
∏

Q∈∆
K×

d /K×r
d

such that:

(1) there is a short exact sequence of G-modules

0 → H1(J [φ])
α→

∏

Q∈∆

K×
d /K×r

d
N→ K×

d /K×r
d → 0,

where N is the map sending (v0, v1, vt) to v1vt/v0; and
(2) the homomorphism (x− T ) restricted to Div0(CKd

) is the composition

Div0(CKd
) ։ J(Kd)/φJ(Kd)

∂→֒ H1(J [φ])
α→

∏

Q∈∆

K×
d /K×r

d ,

where ∂ is induced by the Galois cohomology coboundary map for φ.

Proof. The proof is an application of the general theory of descent as devel-
oped in [8].

Let E be (Z/rZ)∆, the G-module of Z/rZ-valued functions on ∆. Note that
the G-action on E is trivial. We define a G-module map α∨ : E → J [φ] defined by
h *→ ∑

Q∈∆
h(Q) · [Q]. Note that this is well-defined since J [φ] is annihilated by r.

Proposition 2.2 shows that α∨ is surjective. Its kernel R0 is the Z/rZ-submodule
of E generated by the map ρ that sends Q0 *→ −1, Q1 *→ 1, Qt *→ 1. The resulting
short exact sequence of G-modules

(2.1) 0 → R0 → E
α∨

→ J [φ] → 0

is split-exact, since it consists of modules that are free as Z/rZ-modules and have
trivial G-action. Dualizing (2.1) and taking Galois cohomology, we obtain

(2.2) 0 → H1(J [φ]∨) → H1(E∨) → H1(R∨
0 ) → 0,

which is again split-exact by functoriality. Then

H1(J [φ]∨) = H1(J [φ∨]) = H1(J [φ]),

where the last step follows from Lemma 2.4. Next, we compute that

H1(E∨) = H1(µ∆

r ) =
∏

Q∈∆

K×
d /K×r

d ,

the last step being a consequence of Hilbert’s Theorem 90. Choosing the isomor-
phism Z/rZ

∼→ R0 given by 1 *→ ρ, we identify H1(R∨
0 ) with H1(µr) = K×

d /K×r
d ,

where the last step again follows from Hilbert’s Theorem 90. With these identi-
fications, the short exact sequence (2.2) becomes the short exact sequence in the
statement of part (1). Part (2) follows from Proposition 6.4 in [8]. !
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It follows from Proposition 2.5 that (x− T ) induces a map

J(Kd) −→
∏

Q∈∆

K×
d /K×r

d .

We denote this map also by (x−T ). The map (x−T ) can be seen as a computation-
friendly substitute for the coboundary map δ : J(Kd) → H1(J [φ]), since (x− T ) =
α ◦ δ, where α is an injection.

The rest of this section is devoted to the computation of (x−T )(Q) for Q ∈ ∆,
Q = Q∞, and Q = Pi,j .

The following lemma states that (x− T ) can be “evaluated on the coordinates
for which it makes sense to do so.”

Lemma 2.6. Suppose Q ∈ ∆ and let D ∈ Div(CKd
) be a divisor with support

outside of {Q,Q∞}. Then

(x− T )(D)Q =
∏

P

(x(P )− x(Q))ordP (D),

where the product is taken over all points P in the support of D.

Proof. Choose D′ ∈ Div(C◦
Kd

) linearly equivalent to D and g ∈ Kd(C)× such
that D′ = D + div(g). Observe that div(g) is supported outside Q and Q∞. Then

(x− T )(D)Q = (x− T )′(D′)Q =
∏

P

(x(P )− x(Q))ordP (D′)

=
∏

P

(x(P )− x(Q))ordP (D+div(g))

=
∏

P

(x(P )− x(Q))ordP (D)
∏

P

(x(P )− x(Q))ordP (g).

In the last expression however, the contribution of the second product is trivial:
∏

P

(x(P )− x(Q))ordP (g) =
∏

P

g(P )ordP (x−x(Q)) = g(Q)rg(Q∞)−r = 1,

where the first equality is due to Weil reciprocity and the second one rests on the
calculation that div(x− x(Q)) = r ·Q− r ·Q∞ for Q ∈ ∆. !

We end this section by applying Proposition 2.5 and Lemma 2.6 to compute
the images under (x− T ) of various divisors.

Proposition 2.7. We have:

(x− T )(Q0) = (t, 1, t),

(x− T )(Q1) = (−1, 1/(1− t), t− 1),

(x− T )(Qt) = (−t, 1− t, t/(t− 1)),

(x− T )(Q∞) = (1, 1, 1),

and

(x− T )(Pi,j) = (ζidu, ζ
i
du+ 1, ζidu+ t).

Proof. Let (x− T )(Q0) = (v0, v1, vt). By Lemma 2.6, v1 = 1 and vt = t. By
Proposition 2.5, v1vt/v0 = 1 in K×

d /K×r
d , so v0 = t. This shows that (x−T )(Q0) =

(t, 1, t). The calculations for Q1 and Qt are similar and will be left as an exercise
for the reader. Using the linear equivalence (r+1)Q∞ ∼ (r−1)Q0+Q1+Qt yields
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that (x − T )(Q∞) = (1, 1, 1). Finally, the assertions for Pi,j follow immediately
from the definition of (x− T ). !

2.3. The image of (x− T )

Recall that V ⊂ J(Kd) is the subgroup generated by the classes of Pi,j , where
i ∈ Z/dZ and j ∈ Z/rZ and where we identify C with its image in J by P *→
[P −Q∞]. Observe that the known torsion elements Q0, Q1, Qt and Q2 (with Q2

defined as in Section 1.4) are all contained in V .

Proposition 2.8. The dimension of (x− T )(V ) is

dimFr
((x− T )(V )) = d.

Proof. First, dimFr
(x− T )(V ) ≤ d since

(x− T )(Pi,j −Q∞) = (x− T )(Pi,0 −Q∞).

To show that the dimension is precisely d, we project from
∏

Q∈∆
K×

d /K×r
d to a

finite-dimensional quotient space of dimension d, and conclude by showing that the
projection is surjective.

For an irreducible polynomial π in k[u], the valuation it induces on K×
d is

denoted valπ : K×
d → Z. We define the following map:

pr :
∏

Q∈∆

K×
d /K×r

d → Fd
r

(v0, v1, vt) *→
(

valu+ζ
−1
d

(v1), valu+ζ
−2
d

(v1), . . . , valu+ζd(v1), valu+1(v1)
)

By Proposition 2.7, (x− T )(Pi,j −Q∞) = (ζidu, ζ
i
du+ 1, ζidu+ t). We see that

pr maps the image of Pi,j −Q∞ to the i-th basis vector. Hence pr maps (x−T )(V )
surjectively onto Fd

r . This establishes the proposition. !

Lemma 2.9. The images under (x−T ) of Q1 and Q2 are linearly independent.

Proof. Since (x−T )(Pi,j −Q∞) = (x−T )(Pi,0 −Q∞), as noted in the proof

of Proposition 2.8, the image of Q2 =
∑r−1

j=0

∑r−1−j
k=0

∑

i≡k mod r Pi,j is the same as

that of
∑d−1

i=0 (d− i)(Pi,0−Q∞). Using the notation of the proof of Proposition 2.8,

we find pr((x− T )(Q2)) = (−1,−2, . . . ,−d+ 1, 0) ∈ Fd
r .

Proposition 2.7 gives (x − T )(Q1 − Q∞) = (−1, 1/(1 − t), t − 1). The fac-

torization 1 − t =
∏d−1

i=0 (1 − ζidu) in Kd yields that pr((x − T )(Q1 − Q∞)) =
(−1,−1,−1, . . . ,−1). The lemma now follows. !

2.4. Proof of the main theorem

We now use properties of V as a module over S = Z[ζr] to prove Theorem 2.1.
Write φ = 1− ζr both for the element of S and for the corresponding isogeny of J .
Note that S/φS ∼= Fr.

Proposition 2.10. dimFr
(V/φV ) = d and dimFr

(V [φ]) = 2.

Proof. V is generated over S by the Pi,0 with i ∈ Z/dZ, so dimFr
V/φV is at

most d. On the other hand, the map

(x− T ) : V →
∏

Q∈∆

K×
d /K×r

d
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factors through V/φV (Proposition 2.5 or Proposition 2.7) and its image has Fr-
dimension d (Proposition 2.8), so dimFr

V/φV ≥ d and therefore = d. That
dimFr

V [φ] = 2 was proven in Corollary 2.3. !

Proof of Theorem 2.1. Let Vtor be the torsion submodule of V . Then
V/Vtor is torsion-free, so projective over S, so locally free of some rank ρ. We
use the preceding proposition to compute that ρ = d− 2.

Let S(φ) and V(φ) denote the localizations of S and V respectively at the (prime)
ideal generated by φ. By the structure theorem for modules over a PID, we have

V(φ)
∼= Sρ

(φ) ⊕
t

⊕

i=1

S/(φei)

for some integers t and e1, . . . , et with the ei > 0. Also,

ρ+ t = dimFr
V(φ)/φV(φ) = dimFr

V/φV = d

and
t = dimFr

V(φ)[φ] = dimFr
V [φ] = 2.

It follows that ρ = d− 2. Therefore

rankZ V = (rankZ S)(rankS V ) = (r − 1)(d− 2).

For the torsion assertions, we note from Lemma 2.9 that Q1 and Q2 are linearly
independent in V/φV , since their images in

∏

Q∈∆
K×

d /K×r
d are linearly indepen-

dent. Thus they form a basis of Vtor/φVtor. Moreover, since φQ1 = 0, φQ2 = Q0

(Lemma 1.4), and φQ0 = 0, we have that

V [r∞] = V [φ∞] ∼= S/(φ)⊕ S/(φ2)

as S-modules and
V [r∞] ∼= F3

r = (Z/rZ)3

as Z-modules. Finally, since J(Kd)[φ] = V [φ] (Corollary 2.9), we have that

J(Kd)[r
∞] = V [r∞] ∼= (Z/rZ)3.

This completes the proof of the theorem. !

Remark 2.11. With very small changes, the proof of Theorem 2.1 can be
modified to handle the case where r is an odd prime power. On other hand, these
methods do not suffice to treat the general case, because if r is divisible by two
distinct odd primes, then 1− ζr is a unit in Z[ζr].
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CHAPTER 3

Minimal regular model, local invariants, and

domination by a product of curves

In Section 3.1 of this chapter, we construct two useful models for the curve
C/Kd over P1

u, i.e., surfaces X and Y equipped with projective morphisms to P1
u

with generic fibers C/Kd. The model X is a smooth surface, whereas the model
Y is normal with mild singularities. We also work out the configuration of the
components of the singular fibers of X → P1

u (i.e., their genera, intersections, and
self-intersections). The explicit model X and the analysis of the fibers play a key
role in the height calculations of Chapter 4 and in the monodromy calculations of
Chapter 8.

The analysis of the fibers of X → P1
u is used in Section 3.2 to obtain important

local invariants of the Néron model of J including its component groups and the
connected component of the identity. The local invariants of the Néron model are
used in our analysis of the L-function of J in Chapter 5.

Finally, in Section 3.3 we discuss a precise connection between the model Y and
a certain product of curves. The fact that X and Y are birationally dominated by a
product of curves, as shown in Section 3.3.1, allows us to prove the BSD conjecture
for J . The finer analysis of the geometry of the dominating map, which occupies
the rest of Section 3.3, may be of use in further study of explicit points on C, but
it is not crucial for the rest of the current paper and may be omitted by readers
not interested in the details.

3.1. Models

In this section, k is an arbitrary field. We fix positive integers r and d both
prime to the characteristic of k, and we let C be the curve over k(u) defined as
in Section 1.1 where ud = t. In the applications later in the paper, k is a finite
extension of Fp(µd) for some prime p not dividing rd.

For convenience, in the first part of this section, we assume that d is a multiple
of r. The general case is treated in Section 3.1.5.

The model Y we construct is a suitable compactification of a blow-up of the
irreducible surface in affine 3-space over k defined by yr = xr−1(x + 1)(x + ud).
The model X we construct is obtained by resolving isolated singularities of Y .

3.1.1. Construction of Y. Let R = k[u], U = SpecR, R′ = k[u′], and
U ′ = SpecR′. We glue U and U ′ via u′ = u−1 to obtain P1

u over k.
On P1 over k define

E = OP1(d)⊕OP1(d+ d/r)⊕OP1

so that E is a locally free sheaf of rank 3 on P1. Its projectivization P(E) is a P2

bundle over P1. We introduce homogeneous coordinates X,Y, Z on the part of P(E)

23
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over U and homogeneous coordinates X ′, Y ′, Z ′ on the part over U ′. Then P(E) is
the result of gluing Proj(R[X,Y, Z]) and Proj(R′[X ′, Y ′, Z ′]) via the identifications
u = u′−1, X = udX ′, Y = ud+d/rY ′, and Z = Z ′.

Now define Z ⊂ P(E) as the closed subset where

Y rZ = Xr−1(X + Z)(X + udZ)

in Proj(R[X,Y, Z]) and

Y ′rZ ′ = X ′r−1(X ′ + u′dZ ′)(X ′ + Z ′)

in Proj(R′[X ′, Y ′, Z ′]). Then Z is an irreducible, projective surface equipped with
a morphism to P1

u. The generic fiber is the curve denoted C ′ in Section 1.1, which
is singular at [0, 0, 1].

We write ZU and ZU ′ for the parts of Z over U and U ′ respectively. Then ZU ′

is isomorphic to ZU ; indeed, up to adding primes to coordinates, they are defined
by the same equation. (This is why it is convenient to assume that r divides d.)
We thus focus our attention on ZU , i.e., on

Proj
(

R[X,Y, Z]/(Y rZ −Xr−1(X + Z)(X + udZ))
)

.

We next consider the standard cover of ZU by affine opens where X, Y , or Z are
non-vanishing. These opens are

Z1 := Spec
(

R[x1, y1]/(y
r
1 − xr−1

1 (x1 + 1)(x1 + ud))
)

,

Z2 := Spec
(

R[x2, z2]/(z2 − xr−1
2 (x2 + z2)(x2 + udz2))

)

,

Z3 := Spec
(

R[y3, z3]/(y
r
3z3 − (1 + z3)(1 + udz3))

)

.

The surface Z1 is singular along the curve x1 = y1 = 0, so we blow up along that
curve. (Strictly speaking, Z1 is singular along this curve only if r > 2. Nevertheless,
we proceed as follows even if r = 2.) More precisely, we define

Z11 := Spec
(

R[x11, y11]/(y11 − xr−1
11 (x11y11 + 1)(x11y11 + ud))

)

,

Z12 := Spec
(

R[x12, y12]/(x12y
r
12 − (x12 + 1)(x12 + ud))

)

,

and let Z̃1 be the glueing of Z11 and Z12 given by (x11, y11) = (1/y12, x12y12). The

morphism Z̃1 → Z1 defined by (x1, y1) = (x11y11, y11) = (x12, x12y12) is projective,
surjective, and an isomorphism away from x1 = y1 = 0.

We define YU to be the glueing of Z2, Z3, and Z̃1 by the identifications

(x2, z2) = (1/y3, z3/y3) and (y3, z3) = (1/x11, 1/(x11y11)).

Define YU ′ similarly (by glueing opens Z ′
2, Z

′
3, Z

′
11, and Z ′

12), and let Y be the
glueing of YU and YU ′ along their open sets lying over Spec k[u, u−1]. The result
of this glueing is a projective surface with a morphism to P1

u whose generic fiber
is the curve C/k(u). Note that, directly from its definition, Y is a local complete
intersection.

It is easy to see that Y is already covered by the affine opens Z11, Z2, and Z3,
and we use this cover in some calculations later in Section 6.1. On the other hand,
the coordinates of Z12 are also convenient, which is why they are included in the
discussion.

A straightforward calculation with the Jacobian criterion shows that YU → U
and YU → Spec k are smooth except at the points

u = y11 = 0, xr
11 = 1,
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and, when d > 1, at the points

ud = 1, y3 = 0, z3 = −1.

The fibers of YU → U are irreducible except over u = 0, where the fiber has
irreducible components y11 = 0 and xr

11(x11y11 +1) = 1, both of which are smooth
rational curves. The points of intersection of these irreducible components are the
singular points in the fiber over u = 0. Similar results hold for YU ′ .

To finish our analysis of Y , we note that it satisfies Serre’s conditions Sn for all
n ≥ 0 since it is a local complete intersection. Moreover, it has isolated singularities,
so it satisfies condition R1 (regularity in codimension 1). It follows from Serre’s
criterion that Y is normal.

Summarizing, the discussion above proves the following result.

Proposition 3.1. The surface Y and morphism Y → P1
u have the following

properties:

(1) Y is irreducible, projective, and normal.
(2) The morphism Y → P1

u is projective and generically smooth.
(3) The singularities of Y → P1

u consist of r points in the fiber over u = 0, one
point in each fiber over points u ∈ µd and r points in the fiber over u = ∞.
When d > 1, these are also the singularities of Y, whereas if d = 1, only
the singularities of Y → P1

u over points u ∈ µd are singularities of Y.
(4) The fibers of Y → P1

u are irreducible except over u = 0,∞ where they are
unions of two smooth rational curves meeting transversally in r points.

(5) The generic fiber of Y → P1
u is a smooth projective model of the curve

defined by yr = xr−1(x+ 1)(x+ ud) over k(u).

Remark 3.2. It is tempting to guess that Y is the normalization of Z, but
this is not correct. Indeed, the morphism Y → Z contracts the curve u = y11 = 0
in Z11, so is not finite. It is not hard to check that the normalization of Z is in
fact the surface obtained from Y by contracting this curve and the analogous curve
over u = ∞.

3.1.2. Singularities of Y. We now show that Y has mild singularities. Recall
that rational double points on surfaces are classified by Dynkin diagrams of type
ADE. (See for example [3, 3.31–32].) In particular, to say that a point y ∈ Y is a
rational double point of type An is to say that y is a double point and that there is
a resolution X → Y such that the intersection matrix of the fiber over y is of type
An.

Proposition 3.3. The singularities of Y := Y ×k k are all rational double
points. More precisely, the singularities in the fibers over u = 0 and u = ∞ are
analytically equivalent to the singularity αβ = γd and are thus double points of type
Ad−1.

1 The singularities over the points u ∈ µd are analytically equivalent to the
singularity αβ = γr and are thus double points of type Ar−1.

Proof. For notational simplicity, we assume that k is algebraically closed, so
that Y = Y .

First consider the fiber over u = 0. We use the coordinates of the open Z11,
that is, the hypersurface in A3 defined by y − xr−1(xy + 1)(xy + ud) = 0. (We
drop the subscripts to lighten notation.) The singularities are at the points with

1Of course, a “double point” of type A0 is in fact a smooth point.
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u = y = 0, and xr = 1, and we work in the completed local ring of A3 at each one
of these points. Choose an r-th root of unity ζ and change coordinates x = x′ + ζ

so that x′, y, and u form a system of parameters at one of the points of interest.
In the completed local ring, the element

xr−1(xy + 1) = (x′ + ζ)r−1((x′ + ζ)y + 1)

is a unit, and since d is prime to the characteristic of k, it is also a d-th power.
Defining γ by u = γ(xr−1(xy+1))−1/d, then x′, y, and γ are a system of parameters,
and in these parameters, the defining equation becomes

y (1− (x′ + ζ)r((x′ + ζ)y + 1))− γd = 0.

Finally, note that

(1− (x′ + ζ)r((x′ + ζ)y + 1) = −rζr−1x′ − ζy + (deg ≥ 2)

where “deg ≥ 2” stands for terms of degree at least two in x′ and y. Since r is
prime to the characteristic of k, the coefficient of x′ is not zero so we may set

α = y, β = (1− (x′ + ζ)r((x′ + ζ)y + 1),

and have α,β, γ as a system of parameters. In these coordinates, the defining
equation becomes αβ = γd. This proves that the singularities of Y over u = 0 are
analytically equivalent to αβ = γd.

The argument for the points over u = ∞ is identical to the above.
Now consider the fiber over a point u ∈ µd, using the coordinates of the open

Z3, that is, the hypersurface in A3 defined by yrz − (1 + z)(1 + udz) = 0. (Again
we omit subscripts to lighten notation.) Choose a d-th root of unity ζ and let
u = u′ + ζ. The singular point over u = ζ has coordinates u′ = y = 0, z = −1.
Setting z = α− 1, the defining equation becomes

yr(α− 1)− α
(

1 + (u′ + ζ)d(α− 1)
)

= 0.

As before, α − 1 is an r-th power in the completed local ring, and we set y =
γ(α− 1)−1/r. Moreover,

(

1 + (u′ + ζ)d(α− 1)
)

= −dζd−1u′ + α+ (deg ≥ 2)

so we may set β =
(

1 + (u′ + ζ)d(α− 1)
)

and have α,β, γ as a set of parameters.
In these parameters, the defining equation becomes γr = αβ.

To finish, it remains to observe that the singularity at the origin defined by
αβ = γn is a rational double point of type An−1. This is classical and due to
Jung over the complex numbers. That it continues to hold in any characteristic
not dividing n is stated in many references (for example [2, Page 15]), but we do
not know of a reference for a detailed proof of this calculation.2 It is, however, a
straightforward calculation, and we leave it as an exercise for the reader. !

Remark 3.4. This paper contains two other proofs that the singularities of
Y are rational double points. The first comes from resolving the singularity with
an explicit sequence of blow-ups; see Section 3.1.4. Doing this reveals that the
configurations of exceptional curves are those of rational double points of type An

with n = d−1 or r−1. (It also reveals that the singularities are “absolutely isolated
double points,” i.e., double points such that at every blow up the only singularities

2In connection with a related proof, Artin writes “Following tradition, we omit the rather
tedious verification of these results.”
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are isolated double points. This is one of the many characterizations of rational
double points.) The calculation in Section 3.1.4 is independent of Proposition 3.3,
so there is no circularity.

The second alternative proof (given in Section 3.3 below) uses the fact that Y is
a quotient of a smooth surface by a finite group acting with isolated fixed points and
cyclic stabilizers. This shows that the singularities of Y are cyclic quotient singu-
larities, therefore rational singularities, and it is clear from the equations that they
are double points. (The action is explicit, and we may also apply [3, Exercise 3.4].)

3.1.3. Construction of X . With Y in hand, X is very simple to describe:
We define X → Y to be the minimal desingulariztion of Y .

Let us recall how to desingularize a rational double point of type An. The
resolution has an exceptional divisor consisting of a string of n−1 smooth, rational
curves, each meeting its neighbors transversally and each with self-intersection −2.
If n is odd, we blow up (n − 1)/2 times, each time introducing 2 rational curves.
If n is even, the first (n− 2)/2 blow-ups each introduce 2 rational curves, and the
last introduces a single rational curve.

3.1.4. Fibers of X → P1
u. In this subsection, we record the structure of the

bad fibers of X → P1
u. More specifically, we work out the configuration of irreducible

components in the fibers: their genera, intersection numbers, and multiplicities in
the fiber.

First consider the fiber of Y → P1
u over u = 0. Using the coordinates of the

chart Z11 above, this fiber is the union of two smooth rational curves y = 0 and
1−xr(xy+1) = 0 meeting at the r points y = 0, xr = 1. These crossing points are
singularities of Y of type Ad−1. In the resolution X → Y , each of them is replaced
with a string of d − 1 rational curves. It is not hard to check (by inspecting the
first blow-up) that the components y = 0 and 1 − xr(xy + 1) = 0 meet the end
components of these strings transversely and do not meet the other components.
We label the components so that those in the range j(d− 1)+ ℓ with 1 ≤ ℓ ≤ d− 1
come from the point with x = ζjr .

Resolving the singularities thus yields the configuration of curves displayed
in Figure 1 below. (This picture is for d > 1. If d = 1, then Y does not have
singularities in the fibers over u = 0, and the fiber consists of a pair of smooth
rational curves meeting tranversally at r points.) In the figure, C0 is the strict
transform of 1− xr(xy+1) = 0, Cr(d−1)+1 is the strict transform of y = 0, and the
other curves are the components introduced in the blow-ups.

Each component is a smooth rational curve, and all intersections are transverse.
The components introduced in the blow-up have self-intersection −2. Since the
intersection number of any component of the fiber with the total fiber is 0, the
self-intersections of the strict transforms of C0 and Cr(d−1)+1 are both −r. Those

components are reduced in the fiber of Y → P1
u, so they must also be reduced in

the fiber of X → P1
u. It follows that all components of the fiber of X → P1

u are
reduced. We note that the fiber at 0 is thus semi-stable.

As already noted, a neighborhood of u = 0 in Y is isomorphic to a neigh-
borhoood of u = ∞ in Y , so the the fiber at u = ∞ of X → P1

u is isomorphic to
that at u = 0. (Note that r divides d in the construction of Y in Section 3.1.1. We
see in Section 3.1.5 that the fibers over u = 0 and u = ∞ are not isomorphic for
general d.)
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C0

Cr(d−1)+1

✟✟✟✟✟✟✟

C1

❍❍❍❍❍❍❍

C2
· · ·

✟✟✟✟✟✟✟

Cd−1

✟✟✟✟✟✟✟

C(d−1)+1

❍❍❍❍❍❍❍

C(d−1)+2

· · · ✟✟✟✟✟✟✟

C2(d−1)

✟✟✟✟✟✟✟

C(r−1)(d−1)+1

❍❍❍❍❍❍❍

C(r−1)(d−1)+2

· · · ✟✟✟✟✟✟✟

Cr(d−1)

...

Figure 1. Special fiber at u = 0 for d > 1. We have g(Ci) = 0
for all i, C2

0 = C2
r(d−1)+1 = −r, and C2

i = −2 for 1 ≤ i ≤ r(d− 1).

All components are reduced in the fiber.

We now turn to the fiber over a point u ∈ µd. Since P1
u → P1

t is unramified
over t = 1, the fibers of X → P1

u over the points with ud = 1 are independent of
d, and we may thus assume that d = 1. We work in the chart Z3 with equation
yrz−(1+z)(1+ tz) = 0 where the singularity has coordinates t = 1, y = 0, z = −1.
Replacing t with t+1 and z with z−1, the equation becomes yr(z−1)−z(z−t+tz) =
0, and the singularity is at the origin and is of type Ar−1. The fiber is the curve
yr(z − 1) = z2, which has geometric genus (r − 2)/2 or (r − 1)/2 as r is even or
odd, with a double point at y = z = 0.

We know that the singular point blows up into a chain of r− 1 rational curves,
and our task now is to see how the proper transform of the fiber intersects these
curves. Since the case r = 2 already appears in [52], we assume r > 2 for conve-
nience. It is also convenient to separate the cases where r is odd and where r is
even.

First consider the case where r is odd. After the first blow-up, the relevant
piece of the strict transform of Y has equation yr−2 − yr−1z + z(z − t+ tyz) = 0;
the exceptional divisor is z(z−t) = 0, the union of two reduced lines meeting at the
origin; and the proper transform of the original fiber meets the exceptional divisor
at the origin. The next blow up introduces two lines meeting transversally at one
point, and they have multiplicity 2 in the fiber. The strict transform of the original
fiber passes through the intersection point and meets the components transversally.
This picture continues throughout each of the blowups, and after (r − 1)/2 steps
the strict transform of the original fiber meets the chain of r− 1 rational curves at
the intersection point of the middle two curves, and it meets each of these curves
transversally.
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The picture for r odd is as in Figure 2 below. The curves Di and Ei appear at
the i-th blow up; their multiplicities in the fiber are i; and the self intersections of
each Di or Ei is −2, The curve F is the proper transform of the original fiber, the
smooth projective curve of genus (r − 1)/2 associated to yr = xr−1(x + 1)2. Also
F is reduced in the fiber and its self-intersection is −(r − 1). The intersections of
distinct adjacent components are transversal.

F

#
#
#
#
#
#
#
#
#

Ds

❳❳❳❳❳❳❳
Ds−1

. . .
✘✘✘✘✘✘✘

D2

❳❳❳❳❳❳❳
D1

❅
❅
❅
❅
❅
❅
❅
❅
❅

Es

✘✘✘✘✘✘✘
Es−1

. . . ❳❳❳❳❳❳❳

E2

✘✘✘✘✘✘✘
E1

Figure 2. Special fiber when ud = 1 and r = 2s+1. Here g(Di) =
g(Ei) = 0, g(F ) = (r − 1)/2, D2

i = E2
i = −2, and F 2 = 1 − r.

Multiplicities in the fiber are m(Di) = m(Ei) = i and m(F ) = 1.

The case where r is even is similar until the last stage. After (r−2)/2 blow-ups,
there is a chain of r−2 rational curves and the strict transform of the original fiber
passes through the intersection point of the middle two curves. The equation at this
point is y2−y(r+2)/2z+z(z−t+ty(r−2)/2z) = 0. The tangent cone is y2+z2−tz = 0,
a smooth irreducible conic, so the last blow up introduces one smooth rational curve.
After the last blow-up, the equation becomes 1− yr/2z+ z(z− t+ tyr/2z) = 0, and
the strict transform of the original fiber meets the last exceptional divisor in two
points namely t = y = 0, z = ±1. (Note that r even implies p %= 2, so there really
are two points of intersection.)

The picture for r even is given in Figure 3 below. Again Di and Ei have
multiplicity i in the fiber and self-intersection −2. The curve G has multiplicity
s = r/2 in the fiber and self-intersection −2. The curve F is the strict transform of
the original fiber and is the smooth projective curve associated to yr = xr−1(x+1)2.
It is reduced in the fiber, has genus (r − 2)/2, and has self-intersection −r.

Note that the fibers of X → P1
u over points with ud = 1 are not semi-stable.

However, it follows from [36, Theorem 3.11] that C/Kd acquires semi-stable reduc-
tion at these places after a tamely ramified extension. All other fibers of X → P1

u

are semi-stable. This yields the second part of proposition below.
Summarizing this subsection:

Proposition 3.5. The configurations of components in the singular fibers of
X → P1

u (genera, intersection numbers, and multiplicity in the fiber) are as de-
scribed above and pictured in Figures 1, 2, and 3. The action of Gal(Ksep/K) on
H1(C ×K K,Qℓ) is at worst tamely ramified at every place of K.
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GF

#
#
#
#
#

Ds−1

❳❳❳❳❳❳❳
Ds−2 . . .

✘✘✘✘✘✘✘

D2

❳❳❳❳❳❳❳
D1

❅
❅
❅
❅
❅

Es−1

✘✘✘✘✘✘✘

Es−2

. . . ❳❳❳❳❳❳❳

E2

✘✘✘✘✘✘✘
E1

Figure 3. Special fiber when ud = 1 and r = 2s. We have g(Di) =
g(Ei) = g(G) = 0, g(F ) = (r− 2)/2 = s− 1, D2

i = E2
i = G2 = −2,

and F 2 = −r. Multiplicities in the fiber are m(Di) = m(Ei) = i,
m(G) = s, and m(F ) = 1.

3.1.5. General d. Until now in this section, we have worked under the hy-
pothesis that r divides d. In this subsection, we briefly sketch the construction of
a regular minimal model X → P1

u for general d.
In fact, the only issue is near u = ∞: The charts Z2, Z3, and Z11 are well

defined without assuming that r divides d, and they glue as above to give an
irreducible, normal surface Yo with a projective morphism Yo → A1

u that is a
model of C over k(u). Over u = 0 and u ∈ µd, the same steps as before lead
to a regular, minimal model X o → A1

u. This model is semi-stable at u = 0 with
reduction exactly as pictured in Figure 1, and the reduction at points u ∈ µd is as
pictured in Figures 2 and 3.

The situation over u = ∞ is more complicated, and the most efficient way to
proceed is to first “go up” to level d′ = lcm(d, r) and then take the quotient by the
roots of unity of order d′/d = r/ gcd(d, r). Let H = µd′/d ⊂ µd′ .

They key point to note is that in constructing the model Xd′ → P1
u where

ud′

= t, we started with a completion of the affine model y = xr−1(x+1)(x+ ud′

),

made a change of coordinates u = u′−1, x = ud′

x′, y = ud′+d′/ry′, and then
performed a blow-up by substituting x′ → x′y′, y′ → y′. This yields the chart
with equation y′ − x′r−1(x′y′ + u′d)(x′y′ + 1) = 0. The action of H on these

last coordinates is thus ζ(u′, x′, y′) = (ζ−1u′, ζd
′/rx′, ζ−d′/ry′). Further blowing up

yields the regular minimal model Xd′ whose fiber over u′ = 0 is as described in
Figure 1. The action of H lifts canonically to the model Xd′ .

We now consider the action of H on the special fiber over u′ = 0. This action
preserves the end components and permutes the horizontal chains with gcd(d, r)
orbits. The action has 4 isolated fixed points, which are roughly speaking at the
points where x′ or y′ are 0 or ∞. (Specifying them exactly requires considering
other charts, and we omit the details since they are not important for what follows.)
The exponents on the action on the tangent space are (1, 1) or (1,−1) with one of
each type on each component. Resolving these quotient singularities leads to chains
of rational curves of length 1 and d′/d − 1 = r/ lcm(d, r) − 1 respectively. (The



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3.1. MODELS 31

configuration of the component is computed using the “Hirzebruch-Jung continued
fraction” as in [4, III.5-6].)

The picture is given in Figure 4 below. In that picture, all components are
smooth rational curves. The components labeled Ri,j with 1 ≤ i ≤ gcd(r, d) and
1 ≤ j ≤ d − 1 are the images of the components Cℓ with 1 ≤ ℓ ≤ r(d′ − 1)
in Figure 1. The components labeled Dd′/d and Ed′/d are the images of C0 and
Cr(d′−1)+1 respectively. The components C1 and C2 in Figure 4 come from resolving
the singularity with local exponents (1, 1), and the components Di and Ei with
1 ≤ i ≤ d′/d− 1 come from resolving the singularities with local exponents (1,−1).

Ed′/d

Dd′/d

C2

C1

❇
❇
❇
❇❇ R1,d−1

...

❇
❇
❇
❇❇
R1,2

✂
✂
✂
✂✂
R1,1

· · ·

❇
❇
❇
❇❇ Rgcd(d,r),d−1

...

❇
❇
❇
❇❇
Rgcd(d,r),2

✂
✂
✂
✂✂
Rgcd(d,r),1

✑
✑
✑✑Ed′/d−1 · · ·

✑
✑
✑✑E2 ◗

◗
◗◗

E1

◗
◗
◗◗Dd′/d−1

· · ·
◗
◗
◗◗D2 ✑

✑
✑✑

D1

Figure 4. Special fiber at u = ∞, where ud = t, d not divisible
by r. All components are smooth rational curves. We have R2

i,j =

−2, C2
i = −d′/d, D2

i = E2
i = −2 for 1 ≤ i ≤ d′/d − 1 and

D2
d′/d = E2

d′/d = − gcd(r, d) − 1. Multiplicities in the fiber are

m(Ei,j) = d′/d, m(Ci) = 1, and m(Di) = m(Ei) = i for 1 ≤ i ≤
d′/d.

Since the components of the fiber pictured in Figure 1 are reduced and the
quotient map is étale away from the isolated fixed points, the multiplicites in the
fiber of the components Ri,j , Dd′/d, and Ed′/d are d′/d and the self-intersections
of the Ri,j are all −2. The components C1 and C2 are reduced in the fiber and
have self-intersection −d′/d. The components Di and Di with 1 ≤ i ≤ d′/d − 1
have self-intersection −2 and multiplicity i in the fiber. The components Dd′/d and
Ed′/d have self intersection − gcd(d, r)− 1 and multiplicity d′/d in the fiber.

Remark 3.6. The strings of rational curves in the fiber over u = 0 correspond
to r-th roots of unity, and the components in the string corresponding to ζ ∈ µr

are defined over Fp(ζ). Similarly, the strings of curves Rij correspond to roots of
unity of order gcd(d, r). On the other hand, over places u corresponding to a d-th
root of unity ζ ′ ∈ µd, components in the fibers are all rational over the field Fp(ζ

′).
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Also, when r is even, the two points of intersection of the curves F and G over a
place with u = ζ ′ are defined over Fp(ζ

′).

3.2. Local invariants of the Néron model

In this section we record the local invariants of the Néron model of J , i.e., its
component group and connected component of the identity.

3.2.1. Component groups. The results of [6] Chapter 9, Section 6 allow us
to read off the group of components of the special fiber of the Néron model of JC
from our knowledge of the fibers of X → P1

u.

Proposition 3.7. Suppose that r divides d and consider the group of connected
components of the Néron model of J at various places of Fp(u).

(1) At u = 0 and u = ∞, the group of connected components is isomorphic to
(Z/rdZ)× (Z/dZ)r−2.

(2) At places where ud = 1, the group of connnected components is isomorphic
to Z/rZ.

Proof. Part (1) is exactly the situation treated as an example in [6]; see 9.6
Corollary 11. Part (2) is an exercise using [6, 9.6, Theorem 1] and the well-known
fact that the determinant of the matrix of a root system of type Ar−1 is r. !

Remark 3.8. All components of all fibers of X → P1
u are rational over Fp(µd).

It follows that the group of connected components of JC at each place of Fp(µd, u)

is split, i.e., Gal(Fp/Fp(µd)) acts trivially on it.

3.2.2. Connected components. Recall that the connected component of a
smooth, commutative algebraic group over a perfect field has a filtration whose
subquotients are a unipotent group (itself a repeated extension of copies of the
additive group Ga), a torus, and an abelian variety. For a place v of Kd, let av,
mv, and gv be the dimensions of the unipotent (additive), toral (multiplicative),
and abelian variety subquotients of the connected component of the Néron model
of JC at v. Since C has genus r − 1, there is an equality av +mv + gv = r − 1. At
places of good reduction, gv = r − 1.

Proposition 3.9. Let Kd = Fp(µd, u).

(1) If v is the place of Kd over u = 0, then av = gv = 0 and mv = r − 1.
(2) If v is a place of Kd over u ∈ µd and r is even, then av = (r − 2)/2,

mv = 1, and gv = (r − 2)/2.
(3) If v is a place of Kd over u ∈ µd and r is odd, then av = (r − 1)/2,

mv = 0, and gv = (r − 1)/2.
(4) If v is the place of Kd over u = ∞, then av = r−gcd(r, d), mv = gcd(r, d),

and gv = 0.

Proof. It suffices to compute mv and gv. We note that [6, Section 9.2] gives
gv and mv in terms of the special fiber at v of a minimal regular model of C, i.e., in
terms of X . Over u = 0, where X → P1

u has semi-stable reduction, [6, 9.2, Example
8] shows that gv = 0 and mv = r − 1, proving part (1).

In general, both mv and gv only depend on the reduced curve underlying the
fiber [6, 9.2, Proposition 5]. By [6, 9.2, Proposition 10], gv is the sum of the genera
of the irreducible components of the reduced special fiber. When r is even, the
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reduced fiber is semi-stable, and again [6, 9.2, Example 8] shows that mv = 1,
proving part (2). When r is odd, applying [6, 9.2, Proposition 10] (with C ′ and C
the reduced special fiber, which is tree-like) shows that mv = 0, proving part (3).
Over u = ∞, all components are rational curves, so gv = 0. The reduced fiber is
semistable of arithmetic genus gcd(d, r)−1, so mv = gcd(d, r)−1, which completes
the proof of part (4). !

3.3. Domination by a product of curves

In Section 3.3.1, we show that the surface Y constructed in Section 3.1.1 is
dominated by a product of curves. In the following subsections, we upgrade this to
a precise isomorphism between Y and a quotient of a product of curves by a finite
group in the style of Berger’s construction [5] and of [50]. This casts some light on
the singularities of Y , and it may prove useful later for constructing explicit points
on C over Kd for values of d other than divisors of pf + 1 as in [10, Section 10].

Throughout, k is a field of characteristic p ≥ 0, and r and d are positive integers
prime to p such that r divides d. We assume also that k contains the d-th roots of
unity.

3.3.1. Domination of Y by a product of curves. The surface Y is bira-
tional to the affine surface over k given by yr = xr−1(x+ 1)(x+ ud). Consider the
smooth projective curves over k given by

C = Cr,d : zd = xr − 1 and D = Dr,d : wd = yr − 1.

Then a simple calculation shows that the assignment

φ∗(u) = zw,

φ∗(x) = zd,(3.1)

φ∗(y) = xyzd

defines a dominant rational map φ : C ×k D##$Y .
In the rest of this section, we analyze the geometry of this map more carefully.

3.3.2. Constructing C with its G action. First, we construct a convenient
model of the curve C over k with equation zd = xr−1. Namely, we glue the smooth
k-schemes

U1 = Spec k[x1, z1]/
(

zd1 − xr
1 + 1

)

and

U2 = Spec k[x2, z2]/
(

xr
2(z

d
2 + 1)− 1

)

via the identifications x1 = x−1
2 z

−d/r
2 and z1 = z−1

2 . The result is a smooth
projective curve that we call C.

There is an action of G = µr × µd on C defined by

(ζr, ζd)(x1, z1) = (ζrx1, ζdz1) and (ζr, ζd)(x2, z2) = (ζ−1
r ζ

−d/r
d x2, ζ

−1
d z2).

There are three collections of points on C with non-trivial stabilizers: the r points
where z1 = 0 and xr

1 = 1, which each have stabilizer 1 × µd; the d points where
x1 = 0 and zd1 = −1, which each have stabilizer µr × 1; and the r points where
z2 = 0 and xr

2 = 1, which each have stabilizer

H :=
{

(ζ
−di/r
d , ζid)

∣

∣

∣ 0 ≤ i ≤ d− 1
}

.
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We call these fixed points of type µd, µr, and H respectively.

3.3.3. C ×k D and its fixed points. We let D be the curve defined just
as C was, but with opens V1 and V2 defined with coordinates y1, y2, w1, w2 in
place of x1,. . . ,z2. We let G act “anti-diagonally” on the product surface C ×k D,
i.e., by the action on C defined above, and by the inverse action on D (so that
(ζr, ζd)(y1, w1) = (ζ−1

r y1, ζ
−1
d w1)).

If (c, d) ∈ C×kD, then the stabilizer of (c, d) is the intersection of the stabilizers
c and d in G. This yields the following list of points (c, d) of C×kD with non-trivial
stabilizers:

(i) if both c and d are fixed points of type µd, then Stab(c, d) = µd;
(ii) if both c and d are fixed points of type µr, then Stab(c, d) = µr;
(iii) if both c and d are fixed points of type H, then Stab(c, d) = H;
(iv) if c is of type µd and d is of type H, then Stab(c, d) = (1 × µd) ∩ H, a

cyclic group of order d/r;
(v) if c is of type H and d is of type µd, then Stab(c, d) = (1× µd) ∩H.

We call the fixed points of types (i)-(iii) “unmixed” and the fixed points of types
(iv) and (v) “mixed.” Note that at an unmixed fixed point, the action on the
tangent space in suitable coordinates is of the form (ζ, ζ−1), while at a mixed fixed
point, the action is by scalars ζ.

3.3.4. C̃ ×k D with its G-action. We define C̃ ×k D to be the blow up of
CD ×k D at each of its 2r2 mixed fixed points. The action of G on CD ×k D lifts

uniquely to C̃ ×k D. By the remark above about the action of G on the tangent

space at the mixed fixed points, G fixes the exceptional divisor of C̃ ×k D → C×kD
pointwise. These are “divisorial” fixed points. The other fixed points of G acting

on C̃ ×k D are the inverse images of the unmixed fixed points of C ×k D.

Now consider the quotient C̃ ×k D/G. It is smooth away from the images of
the unmixed fixed points. Those of type (i) fall into r orbits and their images in
the quotient are rational double points of type Ad−1. Those of type (ii) fall into
d orbits and their images in the quotient are rational double points of type Ar−1.
Those of type (iii) fall into r orbits and their images in the quotient are rational
double points of type Ad−1.

3.3.5. An isomorphism. The main goal of this section is the following iso-
morphism. Recall Y , the model of C/Kd defined in Section 3.1.1.

Proposition 3.10. There is a unique isomorphism

ρ :
(

C̃ ×k D
)

/G → Y

such that the composition

C ×k D##$C̃ ×k D → C̃ ×k D/G → Y

is the rational map φ : C ×k D##$Y of equation (3.1) in Section 3.3.1.

Uniqueness is clear. The key point in the proof of existence is the following
lemma.

Lemma 3.11. There exists a G-equivariant, quasi-finite morphism ψ : C̃×kD →
Y (with G acting trivially on Y) inducing the rational map φ : C ×k D##$Y.
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Proof. The rational map φ induces a rational map C̃ ×k D##$Y , and what has
to be shown is that there is a quasi-finite morphism ψ representing this rational

map. To do so, we cover C̃ ×k D with affine opens and check that each is mapped
by a quasi-finite morphism (the unique one compatible with φ) into Y . The details
are tedious but straightforward calculations with coordinates.

It is helpful to have a standard representation of elements of the function field
Y . Using the coordinates of Z1, the field k(Y) is generated by x, y, and u with
relation yr = xr−1(x + 1)(x + ud). (We drop the subscripts 1 to avoid confusion

with coordinates on C̃ ×k D below.) Inclusion of the opens Z2, Z3, Z11, Z12, Z
′
2,

Z ′
3, Z

′
11, and Z ′

12 into Y induces isomorphisms between the function fields of the
opens and that of Y . This leads to the following equalities in k(Y):

x2 = x/y, y3 = y/x, x11 = x/y, x12 = x,

z2 = 1/y, z3 = 1/x, y11 = y, y12 = y/x,

u′ = u−1,

x′
2 = ud/rx/y, y′3 = u−d/ry/x, x′

11 = ud/rx/y, x′
12 = u−dx,

z′2 = ud+d/r/y, z′3 = ud/x, y′11 = u−d−d/ry, y′12 = u−d/ry/x.

Similarly, the function field of C̃ ×k D is generated by x1, z1, y1, w1 with rela-
tions zd1 = xr

1 − 1 and wd
1 = yr1 − 1. Inclusion of the opens Ui × Vj leads to the

equalities:

z2 = z−1
1 , w2 = w−1

1 ,

x2 = z
d/r
1 /x1, y2 = w

d/r
1 /y1.

The blowing up of points in U1 × V2 and U2 × V1 made to pass from C ×k D to

C̃ ×k D leads to additional equalities stated below.
For the last key piece of data, we recall the field inclusion φ∗ : k(Y) →֒ k(C ×k

D). It yields equalities

φ∗(u) = z1w1, φ∗(x) = zd1 , φ∗(y) = x1y1z
d
1 .

We now cover C̃ ×k D with affine opens (many of them, unfortunately) and for each
of them check that there is a quasi-finite morphism from the open to Y that induces
the field inclusion φ∗. The compatibility with φ∗ shows that these morphisms agree

on the overlaps, so this yields a global quasi-finite morphism ψ : C̃ ×k D → Y . Since
the image of φ∗ is generated by z1w1, z

d
1 , and x1y1, it lies inside the G-invariant

subfield of k(C̃ ×k D), and this shows that ψ collapses the orbits of G; this is the
claimed equivariance.

We now make the necessary coordinate calculations, starting with the open
U1 × V1. The formulae above show that

φ∗(u) = z1w1, φ∗(x12) = zd1 , φ∗(y12) = x1y1.

This shows that there is a morphism ψ11 : U1 × V1 → Z12 →֒ Y inducing φ. To see
that ψ11 is quasi-finite, we note that fixing the value of x12 implies at most d choices
for z1, which in turn allows for at most r choices of x1. Fixing y12 then determines
y1 and fixing u determines w1. This shows that ψ11 has fibers of cardinality at
most rd (and generically equal to rd).
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The rest of the proof proceeds similarly with other affine opens of C̃ ×k D.
Considering U2 × V2, we note that

φ∗(u′) = z2w2, φ∗(x′
12) = wd

2 , φ∗(y′12) = x−1
2 y−1

2 .

Since x2 and y2 are units on U2 × V2, these formulae define a morphism ψ22 :
U2 × V2 → Z ′

12 →֒ Y that is compatible with φ. The reader may check that ψ22

and the other morphisms defined below are quasi-finite.
These formulae define ψ away from the blow ups of the mixed fixed points.
Now we focus our attention near a particular mixed fixed point in U1 ×k V2,

say Pij given by x1 = ζir, z1 = 0, y2 = ζjr , and w2 = 0. Let

f =
(xr

1 − 1)

(x1 − ζir)

(yr2 − 1)

(y2 − ζ
j
r )

.

Inverting f gives an affine open subset of U1 ×k V2 on which the only solution of
z1 = w2 = 0 is Pij . We may cover the blow up at Pij of this open with two affine
opens:

T 1
ij = Spec

k[x1, s, y2, w2][1/f ]

(...)

and

T 2
ij = Spec

k[x1, z1, y2, t][1/f ]

(...)

where z1 = sw2 on T 1
ij and w2 = tz1 on T 2

ij .
Noting that

φ∗(u) = s, φ∗(x11) = y2w
d/r
2 x−1

1 , φ∗(y11) = x1s
dw

d−d/r
2 y−1

2 ,

we define a morphism ψ121ija from the open of T 1
ij where x1 %= 0 to Z11. Noting

that

φ∗(u) = s, φ∗(x12) = sdwd
2 , φ∗(y12) = x1y

−1
2 w

−d/r
2 ,

we define a morphism ψ121ijb from the open of T 1
ij where w2 %= 0 to Z12. Since w2

and x1 do not vanish simultaneously on T 1
ij , this defines a morphism ψ121ij : T

1
ij →

Y .
Similarly, noting that

φ∗(u′) = t, φ∗(x′
12) = tdzd1 , φ∗(y′12) = x1y

−1
2 z

−d/r
1 ,

we define a morphism ψ122ija from the open of T 2
ij where z1 %= 0 to Z ′

12. Noting
that

φ∗(u′) = t, φ∗(x′
11) = y2z

d/r
1 x−1

1 , φ∗(y′11) = tdx1z
d−d/r
1 y−1

2 ,

we define a morphism ψ122ijb from the open of T 2
ij where x1 %= 0 to Z ′

11. Since z1 and

x1 do not vanish simultaneously on T 2
ij , this defines a morphism ψ122ij : T

2
ij → Y .

The morphisms ψ121ij and ψ122ij for varying ij patch together to give a mor-

phism ψ12 from the part of C̃ ×k D lying over U1 × V2 to Y .
It remains to consider neighborhoods of the blow ups of the mixed fixed points

in U2 ×k V1. Let Qij be the point where x2 = ζir, z2 = 0, y1 = ζjr , and w1 = 0. Let

g =
(xr

2 − 1)

(x2 − ζir)

(yr1 − 1)

(y1 − ζ
j
r )

.
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Inverting g gives an affine open subset of U2 ×k V1 on which the only solution of
z2 = w1 = 0 is Qij . We may cover the blow up at Qij of this open with two affine
opens:

T 3
ij = Spec

k[x2, s, y1, w1][1/g]

(...)

and

T 4
ij = Spec

k[x2, z2, y1, t][1/g]

(...)

where z2 = sw1 on T 3
ij and w1 = tz2 on T 4

ij .
Noting that

φ∗(u′) = s, φ∗(y′3) = y1x
−1
2 w

−d/r
1 , φ∗(z′3) = wd

1 ,

we define a morphism ψ213ija from the open of T 3
ij where w1 %= 0 to Z ′

3. Noting
that

φ∗(u′) = s, φ∗(x′
2) = x2w

d/r
1 y−1

1 , φ∗(z′2) = x2w
d+d/r
1 y−1

1 ,

we define a morphism ψ213ijb from the open of T 3
ij where y1 %= 0 to Z ′

2. Since w1 and

y1 do not vanish simultaneously on T 3
ij , this defines a morphism ψ213ij : T

3
ij → Y .

Noting that

φ∗(u) = t, φ∗(x2) = x2z
d/r
2 y−1

1 , φ∗(z2) = x2z
d+d/r
2 y−1

1 ,

we define a morphism ψ214ija from the open of T 4
ij where y1 %= 0 to Z2. Noting that

φ∗(u) = t, φ∗(y3) = y1x
−1
2 z

−d/r
2 , φ∗(z3) = zd2 ,

we define a morphism ψ214ijb from the open of T 4
ij where z2 %= 0 to Z3. Since y1 and

z2 do not vanish simultaneously on T 4
ij , this defines a morphism ψ214ij : T

4
ij → Y .

The morphisms ψ213ij and ψ214ij for varying ij patch together to give a mor-

phism ψ21 from the part of C̃ ×k D lying over U2 × V1 to Y .
Finally, the morphisms ψ11, ψ22, ψ12, and ψ21 patch together to give a quasi-

finite morphism ψ : C̃ ⋊D → Y that collapses the orbits of G and induces φ. This
completes the proof of the lemma. !

Proof of Proposition 3.10. By Lemma 3.11, there is a quasi-finite mor-

phism ψ : C̃ ×k D → Y of generic degree rd. By G-equivariance, this factors

through the quotient to give a quasi-finite morphism ρ : C̃ ×k D/G → Y . Consid-
ering degrees shows that ρ is birational. On the other hand, ρ is proper (because
C ×k D is projective) and quasi-finite, so finite. But Y is normal and a birational,
finite morphism to a normal scheme is an isomorphism. This establishes that ρ

gives the desired isomorphism. !

Remark 3.12. Examining the morphism above shows that the fixed points of
types (i) and (iii) map to the singular points of Y in the fibers over u = 0 and ∞.
The fixed points of type (ii) map to the singular points in the fibers over points
u ∈ µd. This gives another proof that the singularities of Y are rational double
points of type Ad−1 and Ar−1.
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CHAPTER 4

Heights and the visible subgroup

In this chapter, we work over Kd = Fp(µd, u) with ud = t, and we assume
that d = pν + 1 and r divides d. We have explicit points Pij defined in Chapter 1
and the subgroup V of J(Kd) generated by their classes. Our first main task is
to compute the Néron-Tate canonical height pairing on V . We then compare this
with a group-theoretic pairing defined on R/I where R is the group ring Z[µd×µr]
and I is the ideal defined in Section 1.3. This allows us to show that there is an
R-module isomorphism V ∼= R/I. We also compute the discriminant of the height
pairing on V .

4.1. Height pairing

In this section, we compute the height pairing on various points of J(Kd).
Recall that we identify C with its image in J by P *→ [P − Q∞]. We consider
the Néron-Tate canonical height pairing divided by log |Fp(µd)|, as discussed for
example in [51, Section 4.3]. This is a Q-valued, non-degenerate, bilinear pairing
that is defined at the beginning of the next subsection.

We compute 〈Pij , P00〉 for 0 ≤ i ≤ d−1 and 0 ≤ j ≤ r−1. This determines the
pairing, since its compatibility with the action of µd×µr implies that 〈Pij , Pi′j′〉 =
〈Pi−i′,j−j′ , P00〉.

Theorem 4.1. The height pairing 〈Pij , P00〉 is given by

〈Pij , P00〉 = −d− 1

rd
·







































−(r − 1)(d− 2) if (i, j) = (0, 0),

r − 2 if i %≡ 0 mod r, j = 0,

2r − 2 if i %= 0, i ≡ 0 mod r, j = 0,

d− 2 if i = 0, j %= 0,

r − 2 if i %= 0, j %= 0, i+ j ≡ 0 mod r,

−2 if i %= 0, j %= 0, i+ j %≡ 0 mod r.

.

This was already proved in [52, Section 8] in the case r = 2, so to avoid
distracting special cases, we assume r > 2 for the rest of this section.

4.1.1. Basic theory. Let P and P ′ be two points on C(Kd) identified as
usual with a subset of J(Kd) using Q∞ as a base point; we later set P = P00 and
P ′ = Pij . Then the height pairing is defined by

〈P, P ′〉 = −(P −Q∞ −DP ) · (P
′ −Q∞)

= −P · P ′ + P ·Q∞ + P ′ ·Q∞ −Q2
∞ −DP · P ′,

with notation as follows: we identify a point of C with the corresponding section
of the regular proper model π : X → P1

u and the dot indicates the intersection
pairing on X . The divisor DP is a divisor with Q-coefficients that is supported on

39
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components of fibers of π and satisfies (P−Q∞+DP )·Z = 0 for every component Z
of every fiber of π. We may also insist thatDP ·Q∞ = 0 in which caseDP is uniquely
determined. The “correction term” DP ·P ′ is a sum of local terms that depend only
on the components of the fiber that P and P ′ meet. The other intersection pairings
can be computed as sums of local terms, except the self-intersection Q∞ ·Q∞ and
(when P ′ = P ) P · P . The latter two are computable in terms of the degree of a
conormal bundle.

4.1.2. Auxiliary results. The following results are useful for computing the
various intersection numbers.

In the first result, we focus attention on the special fiber at a place v with
components C0, C1, . . . , Cn and let Aij (with indices 0 ≤ i, j ≤ n) be the intersection
matrix: Aij = Ci ·Cj . We number the components so that Q∞ meets C0. We write
(DP ·P ′)v for the part of the intersection multiplicity coming from intersections in
the fiber over v. With these conventions, it is easy to see that if P or P ′ meets C0,
then (DP · P ′)v = 0.

Lemma 4.2. Suppose that P intersects Ck, and P ′ intersects Cℓ, with k, ℓ > 0.
Let B be the matrix obtained by deleting the 0-th row and column from A. Let B′ be
the submatrix obtained by deleting the k-th row and ℓ-th column from B. Finally,
let DP denote the fibral divisor satisfying the conditions described above. Then

DP · P ′ = (−1)k+ℓ+1det(B
′)

det(B)
= (−1)k+ℓdet(−B′)

det(−B)
.

Proof. Write DP =
∑n

h=0 dhCh with dh ∈ Q. The conditions on DP imply
DP · Ch = (Q∞ − P ) · Ch for all h. Also d0 = 0 because DP · Q∞ = 0. The
intersection number (DP · P ′)v is just dℓ.

Writing d = (d1, . . . , dn)
t, the conditions on DP are equivalent to

Bd = −ek,

where ek is the k-th standard basis vector. Since B is non-singular, the unique
solution d is given by Cramer’s rule, and thus

(DP · P ′)v = dℓ = (−1)k+ℓ+1det(B
′)

det(B)
,

as desired. !

Lemma 4.3. Let Am be the m ×m root matrix of type A, in other words, the
matrix whose entries are given by

aij =











−2 if i = j,

1 if |i− j| = 1,

0 otherwise.

Then det(−Am) = (m+ 1).

Proof. This is a standard exercise using induction on m. See [21, Page 63].
!
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Lemma 4.4. Let d1, . . . , dr be positive integers, and let B = B(d1, . . . , dr) be
the block matrix















Ad1−1 ed1−1

Ad2−1 ed2−1

. . .
...

Adr−1 edr−1

eTd1−1 eTd2−1 · · · eTdr−1 −r















,

where Am is the m×m root matrix discussed in Lemma 4.3, and em is the column
vector of length m with a 1 in the last spot and 0 everywhere else. (If m = 0, then
Am and em are by convention empty blocks.) Then

det(−B) =

(

∏

di

)(

∑ 1

di

)

.

Proof. We compute the determinant of −B by applying Laplace (cofactor)
expansion, first across the bottom row, and then down the rightmost column. Using
Lemma 4.3, the cofactor corresponding to the entry r is r

∏

di. Another application
of Lemma 4.3 shows that the cofactor corresponding to removing the bottom row,
the row containing the 1 in edi−1, the rightmost column, and the column containing
the 1 of eTdj−1 is −(di − 1)

∏

j +=i dj if i = j and zero otherwise. This shows that the

determinant of −B is

r

r
∏

i=1

di −
r

∑

i=1

(di − 1)
∏

j +=i

dj ,

which is equal to (
∏

di)(
∑

1/di) as desired. !

Lemma 4.5. Let d ≥ 2 and r ≥ 2 be integers and let B = B(d, d, . . . , d) (with
d repeated r times, using the notation of Lemma 4.4).

(1) Let B′ be the matrix obtained from B by deleting the first row and the d-th
column. Then det(−B′) = (−1)d−1dr−2.

(2) Let B′′ be the matrix obtained from B by deleting row d − 1 and column
2(d− 1). Then det(−B′′) = (−1)d−1(d− 1)2dr−2.

Proof. (1) For 1 ≤ n ≤ d − 2, let Rn be the matrix obtained from Ad−1 by
deleting the first n rows and the first n−1 columns. Similarly, let Sn be the matrix
obtained from Ad−1 by deleting the first n columns and the first n − 1 rows. The
matrix B′ under discussion is thus

B′ = B′
1 =



















R1 ed−2

S1 ed−1

Ad−1 ed−1

. . .
...

Ad−1 ed−1

eTd−1 eTd−2 eTd−1 · · · eTd−1 −r



















where there are r− 2 blocks of Ad−1. Note that if d ≥ 3, the upper left entry of B′
1

is 1 and the rest of the first column is zero. Expanding in cofactors down the first
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column shows that det(B′
1) = det(B′

2) where

B′
2 =



















R2 ed−3

S1 ed−1

Ad−1 ed−1

. . .
...

Ad−1 ed−1

eTd−2 eTd−2 eTd−1 · · · eTd−1 −r



















.

Continuing in similar fashion for another d−3 steps shows that det(B′
1) = det(B′

d−1)
where

B′
d−1 =















0 S1 ed−1

Ad−1 ed−1

. . .
...

Ad−1 ed−1

1 eTd−2 eTd−1 · · · eTd−1 −r















.

Now we expand across rows of the S1, finding that det(B′
1) = − det(B′

d) where

B′
d =















0 S2 ed−2

Ad−1 ed−1

. . .
...

Ad−1 ed−1

1 eTd−3 eTd−1 · · · eTd−1 −r















.

Continuing in similar fashion for another d − 3 steps shows that det(B′
1) =

(−1)d det(B′
2d−3) where

B′
2d−3 =















0 1
Ad−1 ed−1

. . .
...

Ad−1 ed−1

1 eTd−1 · · · eTd−1 −r















.

Expanding in cofactors across the top row and then the leftmost column shows that
det(B′

2d−3) = (−1)r(d−1)+1dr−2. Thus

det(−B′
1) = (−1)r(d−1) det(B′

1) = (−1)r(d−1)+d det(B′
2d−3) = (−1)d−1dr−2,

as desired.
(2) The matrix B′′ has the form



















Ad−2 ed−2 ed−2

Ad−2

eTd−2 1
Ad−1 ed−1

. . .
...

1 eTd−2 eTd−1 · · · −r



















.

To compute the determinant, we expand in cofactors along (d−1)st column. There
are two cofactors; the first one, corresponding the the last entry of ed−2, has the
matrix R′

2 in the upper left corner, where R′
n is defined like Rn except we delete the

last n rows and the last n−1 columns. This cofactor is zero since the corresponding
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matrix visibly has less-than-maximal rank. The other term comes from the 1 in
the last row, yielding

det(−B′′) = (−1)r(d−1)+1 det



















−



















Ad−2

Ad−2

eTd−2 1
Ad−1 ed−1

. . .
...

Ad−1 ed−1





































.

Expanding in cofactors along (2d− 3)rd row and using similar reasoning leads to

det(−B′′) = (−1)(d−1) det















−















Ad−2

Ad−2

Ad−1

. . .

Ad−1





























.

The claim now follows by Lemma 4.3. !

The next result is useful for finding the component that a section meets at
a bad fiber. To set it up, let k be a field, let R = k[u](u) (localization of the
polynomial ring at u = 0), and let Z = SpecR[α,β]/(αβ − un) where n is prime
to the characteristic of k. Suppose that Y → SpecR is a proper relative curve and
that P is a point in the special fiber of Y near which Y is étale locally isomorphic
to Z. More precisely, we assume that there is a Zariski open neighborhood U of P
in Y and an étale R-morphism φ : U → Z sending P to the origin (u = α = β = 0)
in Z. Let f = φ∗(α) and g = φ∗(β). Let π : X → Y be the minimal regular model
of Y and suppose that s : SpecR → X is a section such that π ◦ s passes through
P . Let Q be the closed point of SpecR.

Lemma 4.6. With the notation above:

(1) The fiber of π over P consists of a chain of n− 1 rational curves Z1, . . . ,
Zn−1 that can be numbered so that Zi meets Zj if and only if |i − j| = 1
and so that E1 meets the strict transform of f = 0 in X .

(2) s(Q) meets Ei if and only if g ◦ s ∈ R has ordu(g ◦ s) = i.
(3) g/ui restricted to Ei induces an isomorphism Ei

∼= P1. In particular, two
sections s and s′ meeting Ei intersect there if and only if g ◦ s ≡ g ◦ s′

mod ui+1.

Proof. Blowing up Z at the origin ⌊n/2⌋ times yields a minimal resolution

Z̃ → Z with exceptional divisor a chain of rational curves Z1 ∪ · · · ∪ Zn−1 as in
the statement, with E1 meeting the strict transform of α = 0. The fiber product
of Z̃ → Z with U → Z is isomorphic to a neighborhood of the inverse image of P
in X , and this gives the first claim. Moreover, the other two claims are reduced
to the analogous statements on Z, and these are easily checked by considering the
explicit blow-ups used to pass from Z to Z̃. !

4.1.3. First global intersection numbers. We abuse notation somewhat
and use Pij and Q∞ to denote the sections of X → P1 or Y → P1 induced by the
Kd-rational points with those names, but we try to make clear the context in each
such case.
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The section Pij of Y → P1 lies in the union of the opens Z12 and Z ′
12 discussed

in Section 3.1.1, and it has coordinates:

(x12, y12) =
(

ζidu, ζ
j
r (ζ

i
du+ 1)d/r

)

and (x′
12, y

′
12) =

(

ζidu
′d−1, ζjr (ζ

i
d + u′)d/r

)

.

Since the section Q∞ does not meet these opens, it follows that the global inter-
section number Pij ·Q∞ = 0 for all i and j.

Examining the coordinates above, it is clear that if i %= 0, then Pij and P00 do
not meet in Y (and a fortiori in X ) except possibly over u = 0 or u = ∞. Also,
if j %= 0, then P0j and P00 visibly do not meet except possibly over u = −1. Thus
to finish the height computation it suffices to compute local intersection numbers
for u ∈ {0, µd,∞}, the “correction factors” DP00

·Pij at those same places, and the
self-intersections P 2

00 and Q2
∞.

4.1.4. Pairings at u = 0. We now consider the configuration of Q∞ and the
Pij with respect to the components of the special fiber of X → P1 over u = 0, which
is pictured in Figure 1 in Chapter 3.

First, we note that the component labeled C0 is the strict transform of the
component u = yr12 − x12 − 1 = 0 in the chart Z12 and also of the component
u = z2 − xr

2(x2 + z2) = 0 in the chart Z2. The point Q∞ extends to the section
x2 = z2 = 0 in the chart Z2, so it lies on the component C0.

Next, we note that the section Pij of Y → P1 specializes to the point x12 = 0,
y12 = ζir, so the corresponding section of X → P1 must meet one of the components
Cj(d−1)+k with 1 ≤ k ≤ d− 1.

To find the component that Pij meets, we use Lemma 4.6. To that end, let
f = yr12 − x12 − 1 and g = x12/(x12 + 1). In a neighborhood of the points u =
x12 = yr12 − 1 = 0, the equation defining Z12 is fg = ud. We claim that near
each of these points, f and g define an étale morphism to the scheme Z defined
just before Lemma 4.6. (Here by “near” we mean in a Zariski open neighborhood
U of the point of interest in the fiber product of Y → P1 and SpecR → P1.)
The claim follows easily from the Jacobian criterion, as discussed for example in
[6, Definition 3, Page 36]. Indeed, we define

φ : U → A2
Z = SpecR[α,β, γ, δ]/(αβ − ud)

by φ∗(α) = yr12 − x12 − 1, φ∗(β) = x12/(x12 + 1), φ∗(γ) = x12, and φ∗(δ) = y12.
Then in the notation of [6], the image of φ is cut out by g1 = α − δr − γ − 1
and g2 = (γ + 1)β − γ, and they have independent relative differentials of A2

Z/Z
wherever β %= 1 and δ %= 0, which is satisfied in a neighborhood of the points of
interest.

The upshot is that the hypotheses of Lemma 4.6 are satisfied. Since g =
x12/(x12+1) = ζidu/(ζ

i
d+1) has ordu(g) = 1, it follows that Pij lands on component

Cj(d−1)+1. Note also that the value of g/u on Pij at u = 0 is ζid, so the Pij all land
on distinct points. In other words, their local intersection multiplicity is zero.

To finish the analysis, we need to compute the local correction factor (DP00
·

Pij)u=0. Recall that the matrix B constructed in Lemma 4.2 is obtained by deleting
the first row and column from the intersection matrix for the special fiber. Using the
ordering given above for the components, then B = B(d, d, . . . , d) as in Lemma 4.4.
There are r copies of Ad−1 in B, so that B is anm×mmatrix wherem = r(d−1)+1.

First suppose that j = 0. LetB′ be the matrix obtained by deleting the first row
and column from B; a straightforward calculation shows that B′ = B(d−1, d, . . . , d)
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as in Lemma 4.4. Therefore det(−B′) is equal to

(d− 1)dr−1

(

1

d− 1
+

r − 1

d

)

= dr−2(rd− r + 1).

Since det(−B) = rdr−1, applying Lemma 4.2 yields that

(DP00
· Pij)u=0 = det(−B′)/ det(−B) =

d− 1

d
+

1

rd
.

Next we consider the case j %= 0. By symmetry, it suffices to treat the case j = 1.
Letting B′ be the matrix obtained by deleting the first row and the d-th column
of B, Lemma 4.5(1) implies that det(−B′) = (−1)d−1dr−2. Applying Lemma 4.2
yields that

(DP00
· Pij)u=0 = (−1)1+d det(−B′)/ det(−B) =

1

rd
.

Summarizing this subsection:

Proposition 4.7. The local intersection numbers (P00 · Pij)u=0 are zero for
all (i, j) %= (0, 0). The local correction factor at u = 0 is given by:

(DP00
· Pij)u=0 =

{

d−1
d + 1

rd if j = 0,
1
rd if j %= 0.

4.1.5. Pairings at u = ∞. The argument here is very similar to that at
u = 0. In particular, the configuration of components is again given by Figure 1 in
Chapter 3 and the section of X → P1 corresponding to Q∞ meets the component
C0. The section Pij of Y → P1 specializes to the point x′

12 = 0, y′12 = ζi+j
r so the

corresponding section of X → P1 meets component C(i+j)(d−1)+k for some k with
1 ≤ k ≤ d− 1. (Here and below, we read i+ j modulo r and take a representative
in {0, . . . , r − 1}.)

Applying Lemma 4.6 with f = y′r12 − x′
12 − 1 and g = x′

12/(x
′
12 + 1), we find

that Pij meets component C(i+j+1)(d−1) and there are no intersections among the
distinct Pij .

It remains to compute the correction factor DP00
· Pij using the lemmas in

Section 4.1.2. If i + j ≡ 0 mod r, then the matrix obtained by deleting row and
column d− 1 from B has the form:

B′ =

[

Ad−2 0
0 B(0, d, . . . , d)

]

.

Applying Lemmas 4.3 and 4.4 shows that det(−B′) is

(d− 1)dr−1

(

1 +
1

d
+ · · ·+

1

d

)

= (d− 1)dr−1 d+ r − 1

d
.

Thus the local correction factor in this case is

(DP00
· Pij)u=∞ = det(−B′)/ det(−B) =

(d− 1)(r + d− 1)

rd
.

If i + j %≡ 0 mod r, by symmetry we may assume that i + j ≡ 1 mod r. In this
case, the matrix obtained by deleting row d− 1 and column 2(d− 1) is the matrix
B′′ of Lemma 4.5(2), which has det(−B′′) = (−1)d−1(d− 1)2dr−2. Thus

(DP00
· Pij)u=∞ = (−1)d−1 det(−B′′)/ det(−B) =

(d− 1)2

rd
.
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Summarizing this section:

Proposition 4.8. The local intersection numbers (P00 · Pij)u=∞ are zero for
all (i, j) %= (0, 0). The local correction factor at u = ∞ is given by

(DP00
· Pij)u=∞ =

{

(d−1)(r+d−1)
rd if i+ j ≡ 0 mod r,

(d−1)2

rd if i+ j %≡ 0 mod r.

4.1.6. Pairings at u = ζkd . We now focus attention on the fiber of X → P1

over u = ζkd . The configuration of components is given in Figures 2 (r odd) and 3
(r even) of Chapter 3. The component F there is the strict transform of the fiber
of Y → P1 at u = ζkd , and the section Q∞ of X → P1 meets this component.

In the coordinates of the chart Z12, where Pij = (ζidu, ζ
j
r (ζ

i
du + 1)d/r), the

section of Y → P1 corresponding to Pij passes through the singular point in the

fiber if and only if ζi+k
d = −1, or equivalently, if and only if d is even and i+k ≡ d/2

mod d. In this case, the section of X → P1 corresponding to Pij meets one of the
components Di, Ei, or G. Since Pij is a section, it has to meet a component of
multiplicity one in the fiber, i.e., either D1 or E1. Which one it meets is a matter
of labeling conventions, but we need to show that all Pij with ζi+k

d = −1 land on
the same component, so we must work out a few more details.

Dropping subscripts, consider the chart Z = Z12 defined by the equation xyr =
(x+ 1)(x+ ud). Changing coordinates x = x′ − 1 and u = u′ + ζkd , the equation is
(x′ − 1)yr = x′(x′ + u′v) where v is a unit in the local ring at x′ = y = u′ = 0. The
section Pij of Y → P1 has coordinates

(x′(P ), y(P )) =
(

ζi+k
d + 1 + ζidu

′, ζjr (ζ
i+k
d + 1 + ζidu

′)d/r
)

=
(

ζidu
′, ζi+j

r u′d/r
)

where the second equality uses that ζi+k
d = −1.

Now we blow up the origin in x′, y, u′ space and consider the chart with coordi-
nates x′′, y′, u′ where x′ = u′x′′ and y = u′y′. The strict transform of Z is defined
by

(4.1) (u′x′′ − 1)u′r−2y′r = x′′(x′′ + v′)

where v′ is a unit near the origin. It is possible to check that v′ reduces to dζ
k(d−1)
d =

ζ−k
d modulo the maximal ideal. The exceptional divisor is u′ = x′′(x′′ + ζ−k

d ) = 0,

with two components that we label D1 (x′′ = 0) and E1 (x′′ + ζ−k
d = 0). Note

that the original fiber of Y → P1 does not meet the chart under consideration. The
section Pij has coordinates x′′(Pij) = ζid, y

′(Pij) = ζi+j
r u′d/r−1 and thus meets the

component E1. Moreover, when ζkd = −1, then P00 and P0j intersect on E1 with
multiplicity d/r − 1.

Recapping the geometry, the section Pij of X → P1 meets the component E1

over u = ζkd if and only if ζi+k
d = −1, otherwise it meets F . The sections P00 and

Pij ((i, j) %= (0, 0)) meet over u = ζkd if and only if ζkd = −1, i = 0, and d/r > 1, in
which case their intersection multiplicity is d/r − 1.

It remains to compute the correction factor DP00
· Pij . It is zero except when

ζkd = −1 and i = 0, in which case both P00 and Pij meet component E1. The
intersection matrix of the fiber omitting the component F is B = Ar−1, and B′

the matrix obtained by deleting the last row and column of B is Ar−2. Lemma 4.2
implies that

DP00
· P0j = det(−B′)/ det(−B) = (r − 1)/r.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4.1. HEIGHT PAIRING 47

Summarizing this section:

Proposition 4.9. The local intersection numbers at u = ζkd are given by

(P00 · Pij)u=ζk
d
=

{

d/r − 1 if i = 0, j %= 0, and ζkd = −1,

0 if i %= 0 or ζkd %= −1.

The local correction factor at u = ζkd is given by

(DP00
· Pij)u=ζk

d
=

{

(r − 1)/r if ζkd = −1 and i = 0,

0 if ζkd %= −1 or i %= 0.

Remark 4.10. Recall that d = pν + 1. If p is odd, then d is even, and there
is exactly one value of k modulo d, namely d/2, such that ζkd = −1. If p = 2, then
−1 = 1 and ζkd = −1 again for exactly one value of k modulo d, namely k = 0. Thus
for a fixed Pij with i = 0, there is exactly one value of k such that the intersection
number is non-zero and the correction factor is non-zero at u = ζkd .

4.1.7. Self-intersections. We now compute the self-intersections of P00 and
Q∞, proceeding as follows. For a point P ∈ C(Kd), we continue to identify P with
the corresponding section of X → P1. Let I be the ideal sheaf of P , considered
as a divisor on X . Recall that the conormal sheaf to P is the sheaf I/I2 on P .
By [20, V, 1.4.1], P 2 = − deg I/I2. Thus the method is to compute the divisor of
a global section of this sheaf.

It is convenient to rephrase this in terms of differentials. Because P is both a
smooth subvariety of X and a section of X → P1, the exact sequence

0 → I/I2 →
(

Ω
1
X

)

|P
→ Ω

1
P → 0

splits canonically, and we obtain an identification I/I2 ∼= (Ω1
X/P1)|P . In other

words, I/I2 is identified with the sheaf of relative differentials restricted to P . For
typographical convenience, we write ωP for (Ω1

X/P1)|P .

Consider Q∞. As a section of Y → P1, it is given by x2 in the chart Z2 and x′
2

in Z ′
2; these are related by x′

2 = ud/rx2 on the overlap. It follows that dx2 defines
a global section of ωQ∞

that generates it away from u = ∞ and has a zero of order
d/r there. We conclude that Q2

∞ = −d/r in Y . Since X → Y is an isomorphism in
a neighborhood of Q∞, the same equality holds in X .

Now consider P00. In the chart Z12, which is defined (dropping subscripts) by
xyr − (x+ 1)(x+ ud), there is an equality

0 = (yr − 2x− ud − 1)dx+ rxyr−1dy

in Ω
1
Z2/P1 . It follows that dx generates Ω

1
Z2/P1 wherever xy %= 0. In particular,

restricted to P00, it generates ωP00
away from u = 0, u = −1, and u = ∞. We

extend dx to a global section s of ωP00
and compute its divisor.

Near u = 0, passing from Y to X requires several blow ups. We have already
seen that after the first blow up, the strict transform of P00 lies in the smooth locus,
so the rest of the blow ups are irrelevant for the current calculation. We make the
first blow up more explicit. First, let y = y′ + 1, so the equation defining Z12 is

x((y′ + 1)r − 1)− x2 − ud − xud = 0.

Blowing up the origin, the equation becomes

(x′(ry′′ + · · ·+ ur−1y′′r)− x′2 − ud−2 − x′ud−1
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and the section P00 becomes x′ = 1, y′ = ((u + 1)d/r − 1)/u. Differentiating the
equation, one checks that dx′ generates ω near u = 0, and since x = ux′, it follows
that dx extends to a section with a simple zero at u = 0.

Near u = −1, several blow ups are required to pass from Y to X . After the first
blow up, P00 lies in the smooth locus and the later blow ups are irrelevant for the
current calculation. The relevant chart after the first blow up was given in (4.1);
for reference, we copy it here:

(u′x′′ − 1)u′r−2y′r = x′′(x′′ + v′).

Differentiating this relation, one finds that the coefficient of dx′′ is non-zero near
u′ = 0, x′′ = 1, and this shows that shows that dy′ generates ωP00

there. Considering
the valuation of the coefficient of dy′ shows that dx′′ vanishes to order d− d/r− 1.
Since dx = dx′ = u′dx′′, it follows that dx vanishes to order d− d/r.

Finally, near u = ∞, a calculation very similar to that near u = 0 shows that
dx has a simple pole there. In all, the divisor of dx has degree d − d/r and so
P 2
00 = d/r − d.

Summarizing this subsection:

Proposition 4.11. The self-intersections of P00 and Q∞ are

P 2
00 = −d+

d

r
and Q2

∞ = −d

r
.

4.1.8. Proof of Theorem 4.1. We now put all the calculations together.
The local contributions to DP00

· Pij were computed in Propositions 4.7, 4.8, and
4.9; the results of these propositions are summarized in Table 1. In that table, all
congruences are mod r. In the third column, we sum all local contributions over
the places u = ζkd with k = 0, . . . , d− 1.

(i, j) u = 0 u = ∞ ud = 1

(0, 0)
rd− r + 1

rd

(d− 1)(r + d− 1)

rd

r − 1

r

i %≡ 0, j = 0
rd− r + 1

rd

(d− 1)2

rd
0

i %= 0, i ≡ 0, j = 0
rd− r + 1

rd

(d− 1)(r + d− 1)

rd
0

i = 0, j %= 0
1

rd

(d− 1)2

rd

r − 1

r

i %= 0, j %= 0, i+ j ≡ 0
1

rd

(d− 1)(r + d− 1)

rd
0

i %= 0, j %= 0, i+ j %≡ 0
1

rd

(d− 1)2

rd
0

Table 1. Local contributions to DP00
· Pij

By summing the local contributions to the intersection numbers P00 ·Pij given
in Propositions 4.7, 4.8, and 4.9, noting that Pij ·Q∞ = 0 for all i and j as in Sec-
tion 4.1.3, and recalling the self-intersection numbers in the preceding subsection,
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we deduce that:

Pij · P00 =











−d+ d
r if (i, j) = (0, 0),

d
r − 1 i = 0, j %= 0,

0 if i %= 0,

Pij ·Q∞ = 0,

Q2
∞ = −d

r
.

Finally, recalling that

〈P00, Pij〉 = −P00 · Pij + P00 ·Q∞ + Pij ·Q∞ −Q2
∞ −DP00

· Pij

and summing the contributions above yields the theorem. !

Remark 4.12. At this point, it would be possible to deduce from Theorem 4.1
and an elaborate exercise in row reduction that the rank of V is equal to (r−1)(d−2).
We take a slightly more indirect approach in the next two sections that yields more
information about V , ultimately allowing us to determine V precisely as a module
over the group ring R = Z[µd × µr].

4.2. A group-theoretic pairing

Recall the group ring

R = Z[µd × µr] ∼=
Z[σ, τ ]

(σd − 1, τ r − 1)

introduced in Section 1.2.3 of Chapter 1 and the ideal I ⊂ R introduced in Sec-
tion 1.3. In this section, we define a positive definite bilinear form on R/I and
compare it with the height pairing on V via the map R/I → V . This comparison
plays a key role in showing that the map R/I → V is an isomorphism and thus
that J(Kd) has large rank.

4.2.1. A rational splitting. For notational simplicity, in this and the follow-
ing subsection we write G for µd×µr. Let R

0 = R⊗Q = Q[G] be the rational group
ring. Because G is abelian, the regular representation of R0 on itself breaks up into
Q-irreducibles each appearing with multiplicity one. As a result of the multiplicity
condition, if I0 is any ideal of R0 and π : R0 → R0/I0 is the projection, then there
is a unique G-equivariant splitting ρ : R0/I0 → R0.

We work this out explicitly in the case where I is as in Section 1.3 and I0 =
I ⊗Q. We write

sj =
∑

i≡j mod r

σi,

so that
d−1
∑

i=0

σiτd−i =

r−1
∑

j=0

sjτ
r−j.

Recall that I is the ideal of R generated by

(τ − 1)
d−1
∑

i=0

σi, (τ − 1)
r−1
∑

j=0

sjτ
r−j, and

r−1
∑

j=0

τ j .
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Lemma 4.13. The unique G-equivariant splitting ρ : R0/I0 → R0 is determined
by

ρ(σaτ b) = σaτ b



1 +
2

rd

d−1
∑

i=0

σi
r−1
∑

j=0

τ j − 1

d

d−1
∑

i=0

σi − 1

d

r−1
∑

j=0

sjτ
r−j − 1

r

r−1
∑

j=0

τ j



 .

Proof. The formula defines a G-equivariant map R → R. We have to check
that it kills the ideal I0, so that it descends to ρ : R0/I0 → R0, and that it is a
splitting.

The fact that ρ kills I0 follows from the following easily checked identities in
R:

(

d−1
∑

i=0

σi

)2

= d

d−1
∑

i=0

σi,

(

d−1
∑

i=0

σi

)





r−1
∑

j=0

sjτ
r−j



 =
d

r

(

d−1
∑

i=0

σi

)





r−1
∑

j=0

τ j



 ,





r−1
∑

j=0

sjτ
r−j





2

= d
r−1
∑

j=0

sjτ
r−j ,





r−1
∑

j=0

τ j





2

= r
r−1
∑

j=0

τ j ,





r−1
∑

j=0

τ j









r−1
∑

j=0

sjτ
r−j



 =

(

d−1
∑

i=0

σi

)





r−1
∑

j=0

τ j



 .

Using these, it is a straightforward computation to check that ρ(I0) = 0.
To see that ρ is a splitting, it suffices to check that the expression in parentheses

on the right hand side of Lemma 4.13 has the form 1 + ι where ι ∈ I0. But

r
∑

σi = (1 + τ + · · ·+ τ r−1)(1− τ )(
∑

σi) ∈ I

and
r
∑

sjτ
r−j = (1 + τ + · · ·+ τ r−1)(1− τ )(

∑

sjτ
r−j) ∈ I,

so
∑

σi and
∑

sjτ
r−j lie in I0. Since

∑

τ j also lies in I0, it follows that ρ has the
form ρ(r) = r(1 + ι) with ι ∈ I0, so ρ : R0/I0 → R0 is a splitting. !

4.2.2. A pairing. Now we introduce an inner product on R0 by declaring
that

〈

∑

g

agg,
∑

g

bgg

〉

R0

=
∑

g

agbg.

In other words 〈g, h〉R0 = δgh. Crucially, this inner product is positive definite.
The splitting ρ produces an inner product on R0/I0 that is also positive definite.

Namely, we set
〈a, b〉R0/I0 := 〈ρ(a), ρ(b)〉R0 .

The values of this pairing are determined by the following proposition and G-
equivariance.
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Proposition 4.14. With notation as above,

(4.2)
〈

σiτ j , 1
〉

R0/I0 =

1

rd







































(r − 1)(d− 2) if i = j = 0,

2− r if i %≡ 0 mod r, j = 0,

2− 2r if i ≡ 0 mod r, i %≡ 0 mod d, j = 0,

2− d if i = 0, j %≡ 0 mod r,

2− r if i %≡ 0 mod r, i+ j ≡ 0 mod r,

2 if i %≡ 0 mod d, j %≡ 0 mod r, i+ j %≡ 0 mod r.

We leave the proof as an exercise for the reader. It is convenient for the calcu-
lation to note that if a and b are in R0/I0 and if b̃ is any lift of b to R0, then

〈ρ(a), ρ(b)〉R0 = 〈ρ(a), b̃〉R0 .

This follows from the fact that the pairing is G-equivariant, plus the fact that the
irreducible subrepresentations of R appear with multiplicity one. Using this obser-
vation and G-equivariance shows that computing the pairing on R0/I0 amounts to
reading off the coefficients of ρ(1).

4.2.3. Comparison of pairings. We now compare the group-theoretic pair-
ing of the preceding subsections to the height pairing.

More precisely, there is a well-defined map R0/I0 → J(Kd) ⊗ Q given by
r *→ r(P00) whose image is by definition V ⊗ Q. There is a pairing on R0/I0

obtained by using the map to V ⊗Q and the height pairing on J(Kd)⊗Q.
Comparing the height pairing (computed in Theorem 4.1) with the group-

theoretic pairing (computed in Proposition 4.14) shows that they are the same up
to a scalar: the height pairing is (d − 1) times the group theoretic pairing. More
formally, we have shown the following.

Proposition 4.15. For all a, b ∈ R, there is an equality

〈a(P00), b(P00)〉 = (d− 1) 〈a, b〉R0/I0 .

Here, the left hand pairing is the height pairing on Jr(Kd).

Corollary 4.16. The map (R/I)/tor → V/tor is injective and therefore an
isomorphism. The rank of V is thus (r − 1)(d− 2).

Proof. Proposition 4.15 shows that the pairing on (R/I)/tor induced by the
homomorphism (R/I)/tor →֒ R0/I0 → V ⊗Q is positive definite. It follows imme-
diately that the homomorphism (R/I)/tor → V/tor is injective, and it is surjective
by the definition of V , so it is an isomorphism. !

4.3. Structure of the visible subgroup

In this section, we complete our analysis of V by showing that it is isomorphic
to R/I as an R-module and by analyzing the torsion in R/I as an abelian group.
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4.3.1. R/I as a group. We noted in Section 1.3 that I is a free Z-module of
rank d+2(r− 1), so R/I has rank (r− 1)(d− 2). With more work we can compute
the torsion subgroup of R/I.

Proposition 4.17. There is an isomorphism of Z-modules

R/I ∼= Z(r−1)(d−2) ⊕ T

where

T =

{

(Z/rZ)3 if r is odd,

Z/(r/2)Z⊕ Z/rZ⊕ Z/(2r)Z if r is even.

Thus the torsion subgroup of R/I has order r3.

Proof. The plan for the proof is to choose bases of R and I as Z-modules,
use them to write down the matrix of the inclusion of Z-modules I → R, and use
row operations to compute the invariant factors of this matrix.

Here is some useful notation. Let φ : Zr → Zd be the homomorphism

φ(a1, . . . , ar) = (a1, . . . , ar, a1, . . . , ar, . . . , a1, . . . , ar).

In words, φ simply repeats its argument d/r times. Let ψ : Zr → Zdr be the
homomorphism

ψ(a1, . . . , ar) = (φ(a1, . . . , ar),φ(a2, a3, . . . , ar, a1), . . . ,φ(ar, a1, . . . , ar−1)).

In words, ψ rotates its argument r times and repeats each result d/r times. It is
convenient to apply ψ to an s×r matrix, by applying it to each row, thus obtaining
a map from s×r matrices to s×dr matrices. Let Id denote the d×d identity matrix;
let 0r denote the zero vector in Zr, and let 1r denote the vector (1, 1, . . . , 1) ∈ Zr.

As an ordered basis of R we choose

1,σ, . . . ,σd−1, τ,στ, . . . ,σd−1τ, τ2, . . . ,σd−1τ r−1.

As an ordered basis of I we choose

f0, f1, . . . , fd−1, d1, . . . , dr−1, e1, . . . , er−1,

defined as in Section 1.3.
With respect to these bases, the first d+r−1 rows of the matrix of the inclusion

I → R have the form

Id Id Id · · · Id Id
φ(−1r) φ(1r) φ(0r) · · · φ(0r) φ(0r)
φ(0r) φ(−1r) φ(1r) · · · φ(0r) φ(0r)

...
...

...
. . .

...
...

φ(0r) φ(0r) φ(0r) · · · φ(−1r) φ(1r)

.

The last r − 1 rows are ψ applied to the (r − 1)× r matrix:










−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 · · · 0 −1 1











.

We refer to the rows by the names of the corresponding generators of I. Thus
fi for i = 0, . . . , d− 1 refers to the first d rows, dj for j = 1, . . . , r − 1 refers to the
next r − 1 rows, and ej for j = 1, . . . , r − 1 refers to the last r − 1 rows.
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We now perform row operations on this matrix as follows. First, we replace
row d1 with

r−1
∑

j=1

jdj +
∑

i

fi,

which has the effect of replacing row d1 with

φ(0r) φ(0r) φ(0r) · · · φ(0r) φ(r1r).

Next, we replace row e1 with
r−1
∑

j=1

jej ,

which has the effect of replacing row e1 with

ψ(−1,−1, . . . ,−1, r − 1).

Now we replace row e2 with
r−1
∑

j=2

(

j

2

)

ej ,

which has the effect of replacing row e2 with

ψ

(

0,−1,−2, . . . ,−(r − 2),

(

r − 1

2

))

.

Now we subtract a suitable combination of the fi rows from the last r − 1 rows so
as to make the lower left (r − 1) × d block identically zero. The last r − 1 rows
e1, . . . , er−1 then take the form

φ(0) φ(0, . . . , 0, r,−r) φ(0, . . . , 0, r, 0,−r)
. . . φ(r, 0, . . . , 0,−r)

φ(0) φ
(

− 1,−1, . . . ,
(

r

2

)

− 1, −2−r(r−3)
2

)

φ
(

− 2, . . . ,
(

r

2

)

− 2, r − 2, −4−r(r−3)
2

)

. . . φ
(

1− r +
(

r

2

)

, 1, . . . , 1, 2(1−r)−r(r−3)
2

)

φ(0) φ(0,−1, 2,−1, 0 . . . , 0) . . .

φ(0) φ(0, 0,−1, 2,−1, 0 . . . , 0) . . .

...

φ(0) φ(0, . . . ,−1, 2,−1) . . . .

Now we replace row e2 with e2 −
∑r−1

j=2

(

j
2

)

dj , which yields

φ(0) φ(0, . . . ,
(

r

2

)

,
r(3−r)

2
) φ(0, . . . ,

(

r

2

)

, r,
r(3−r)

2
) . . .

φ(0,
(

r

2

)

, r, . . . , r,
r(3−r)

2
) φ(0, r(3−r)

2
, . . . ,

r(3−r)
2

, r(2− r)).

We now divide into two cases according to the parity of r. If r is odd, we
replace e2 with

e2 −
r − 1

2
e1 +

r − 1

2
d1,

which yields

φ(0) φ(0, . . . , 0, r) φ(0, . . . , r, r) . . . φ(0, r, . . . , r).

Note that every entry in this vector is divisible by r. Arranging the rows in the
order

f0, . . . , fd−1, d2, e3, . . . , er−1, e1, e2, d3, . . . , dr−1, d1
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yields a matrix in row-echelon form and with the property that the leading entry
of each row divides every entry to the right. Looking at the leading terms then
reveals that the invariant factors are 1 repeated d+ 2r − 5 times and r repeated 3
times.

Now we turn to the case when r is even. Replacing row e2 with

e2 −
r

2
e1

yields

φ(0) φ(0, . . . , 0,− r
2 ,

3r
2 ) φ(0, . . . ,− r

2 , r,
3r
2 )

. . . φ
(

− r2

2 ,−
r(r−3)

2 , . . . ,− r(r−3)
2 ,− r(r−4)

2

)

.

Note that every entry in this vector is divisible by r/2.
Now we replace e1 with

e1 + 2e2 + (r − 1)d1,

which yields

φ(0) φ(0, . . . , 0, 2r) φ(0, . . . , 0, 2r, 2r) . . . φ(0, 2r, 2r, . . . , 2r).

Note that every entry in this vector is divisible by 2r. Arranging the rows in the
order

f0, . . . , fd−1, d2, e3, . . . , er−1, e2, e1, d3, . . . , dr−1, d1

yields a matrix in row-echelon form and with the property that the leading entry
of each row divides every entry to the right. Looking at the leading terms then
reveals that the invariant factors are 1 repeated d + 2r − 5 times and r/2, r, and
2r each appearing once.

This completes the proof of the theorem. !

We record the torsion classes provided by the proof. They are not used later in
the paper, but they help explain the definition of the elements Q2 and Q3 ∈ J(Kd)
introduced in Section 1.4.

Proposition 4.18. If r is odd, the classes of

∑

i

σi,
∑

i

σiτd−i, and

r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

σiτ j

in R/I are torsion of order r and generate a group of order r3. If r is even, the
classes of

∑

i

σi,

r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

σiτ j , and

−
r−2
∑

j=0

∑

i≡r−1−j mod r

σiτ j +
∑

i +≡0 mod r

σiτ r−1 + 2
r−1
∑

j=1

r−1
∑

k=r−j

∑

i≡k mod r

σiτ j

in R/I are torsion of orders r, 2r, and r/2 respectively, and they generate a group
of order r3.
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Proof. Considering the row d1, after row reduction as above, we find that
∑

i σ
iτ r−1 is r torsion, and this element is equivalent in R/I to

∑

i σ
i.

Assume r is odd. Considering the row e1, we see that

r−1
∑

j=1





∑

i≡r−1−j mod r

σi −
∑

i≡r−1 mod r

σi



 τ j

is r-torsion. Adding
∑

i≡r−1 mod r fi, one checks that this is equivalent in R/I to

r−1
∑

j=0

∑

i≡r−1−j mod r

σiτ j ,

which in turn is equivalent to
∑

i σ
iτd−i. Also, from the row e2, we can see that

r−1
∑

j=1

r−1
∑

k=r−j

∑

i≡k mod r

σiτ j

is r-torsion. The negative of this element is equivalent in R/I to

r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

σiτ j .

Since the three r-torsion elements just exhibited are associated to distinct rows of
a matrix in row-echelon form, they are independent, i.e., they generate a subgroup
of order r3. This completes the proof in the case that r is odd.

When r is even, the proof for the first class is as in the case for r odd. From
the relation from row e1, we can conclude that

r−1
∑

j=1

r−1
∑

i=r−j

∑

i≡k mod r

σiτ j

is 2r-torsion. Since
∑

j τ
j = 0 in R/I, the negative of this is equivalent to

r−1
∑

j=0

r−1−j
∑

k=0

∑

i≡k mod r

σiτ j .

Combining the relation from row e2 with the fact that
∑

i σ
i is r-torsion, we can

check that

2
∑

1≤j≤r−1
r−j≤k≤r−1
i≡k mod r

σiτ j +
∑

i≡r−1 mod r
0≤j≤r−1

σiτ j +
∑

i +≡0 mod r

σiτ r−1 −
∑

0≤j≤r−2
i≡r−1−j mod r

σiτ j

is r
2 -torsion. Since

∑

j τ
j = 0 in R/I, the second term is zero, and the result follows

as above. !

4.3.2. R/I and V . We can now finish the proof that V is isomorphic as an
R-module to R/I.

Theorem 4.19. The projection R/I → V defined by r *→ r(P00) is an isomor-
phism.
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Proof. Write W for R/I. We have a commutative diagram with exact rows:

0 !! Wtor
!!

""

W !!

""

W/Wtor
!!

""

0

0 !! Vtor
!! V !! V/Vtor

!! 0.

By definition, the middle vertical arrow is surjective, thus so is the right vertical ar-
row. By Corollary 4.16, the right vertical arrow is injective, so it is an isomorphism.
The snake lemma then shows that the left vertical arrow is surjective. But Propo-
sition 4.17 shows that Wtor has order r3, whereas Proposition 1.5 shows that Vtor

has order at least r3. It follows that the left vertical arrow is also an isomorphism.
Now another application of the snake lemma shows the middle vertical arrow is an
isomorphism as well, and this is our claim. !

Corollary 4.20. The subgroup V of J(Kd), generated by P00 and its conju-
gates under Gal(Kd/K), is isomorphic as a Z-module to

Z(r−1)(d−2) ⊕
{

(Z/rZ)3 if r is odd,

Z/(r/2)Z⊕ Z/rZ⊕ Z/(2r)Z if r is even.

Remark 4.21. It would be possible at this point to give lower bounds on the
rank of J over various subfields of Fp(t

1/d), along the lines of [52, Corollary 4.4].
However, we delay the discussion of ranks until the end of the following chapter,
where it is possible to give exact values for the rank.

4.4. Discriminants

In this section we work out the discriminant of the height pairing on V/tor.
This is used in Chapter 7 to obtain information on the index of V in J(Kd) and on
the Tate-Shafarevich group of J/Kd.

With notation as in the previous subsection, let W = R/I. Recall that there
is a canonical G-equivariant splitting ρ : W → R0 and a pairing on W given by
〈a, b〉R0/I0 = 〈ρ(a), ρ(b)〉R0 where the second pairing is the Euclidean pairing on

R0. Recall that, up to a scalar (d − 1), the pairing on W is the canonical height
pairing on V .

Write det(W/tor) for the discriminant of this pairing on W modulo torsion and
det(I) for the discriminant of the pairing on I induced by that on R.

We would like to relate these discriminants to each other. To that end, we
consider a slightly more general situation: let H be an arbitrary ideal of R, and
U = R0/H0. One still has a G-equivariant splitting ̺ : U → R0 and an induced
pairing on U .

Proposition 4.22. With notation as above,

det(H) =
|Utor|

2

det(U/tor)
.

Proof. First suppose that H is saturated, i.e., that U is torsion-free. Let
e1, . . . , ek be a Z-basis of H and extend it to a Z-basis e1, . . . , en of R. Write ei for
the image of ei in U , so that ek+1, . . . , en is a Z-basis of U . Because the pairing on
R is the Euclidean pairing, the discriminant

|det (〈ei, ej〉)| = 1.
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Now let

fi =

{

ei if i ≤ k,

̺(ei) if i > k.

This is a Q-basis of R0. The change of basis matrix is upper triangular with 1’s on
the diagonal, so it has determinant 1 and

|det (〈fi, fj〉)| = |det (〈ei, ej〉)| = 1.

Now ̺(U) is orthogonal to H, so the new Gram matrix (〈fi, fj〉) is block diagonal.
Its upper left k × k block is just (〈ei, ej〉) and the determinant of this block is
± det(H). The lower right (n − k) × (n − k) block is just (〈̺(ei), ̺(ej)〉) and the
determinant of this block is ± det(U) = ± det(U/tor). Thus these two discriminants
are reciprocal and this proves the claim in the case when H is saturated.

For general H, let H ′ be the saturation, so that |H ′/H| = |Utor| and R/H ′ =
U/tor. Then

det(H) = |H ′/H|2 det(H ′) = |Utor|
2 det(H ′) =

|Utor|
2

det(U/tor)
,

as desired. !

Proposition 4.23. We have

det(I) = rd+2d2r−2.

Proof. It is not hard to check that the following is a Z-basis for I:

αi = σi
∑

τ j i = 0, . . . , d− 1,

βj = (τ j − 1)
∑

σi j = 1, . . . , r − 1,

γj = (τ j − 1)
∑

σiτd−i j = 1, . . . , r − 1.

The values of the pairing are

〈αi,αi′〉 = rδii′ ,

〈αi,βj〉 = 0,

〈αi, γj〉 = 0,

〈βj ,βj′〉 = d(δjj′ + 1),

〈βj , γj′〉 = 0,

〈γj , γj′〉 = d(δjj′ + 1),

so the Gram matrix for this basis of I is block diagonal. An inductive argument
shows that if A is the sum of an identity matrix of size a × a and a matrix of the
same size with all entries 1, then det(A) = a + 1. Thus det(I) = rd+2d2r−2 as
desired. !

Corollary 4.24. If W = R/I, then

det(W/tor) = r4−dd2−2r.

Also

det(V/tor) = (d− 1)(r−1)(d−2)r4−dd2−2r.
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Proof. The first claim follows from Proposition 4.17. The second follows from
Theorem 4.19 and Corollary 4.24, keeping in mind the scalar (d − 1) relating the
group-theoretic and height pairings as in Proposition 4.15. !
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CHAPTER 5

The L-function and the BSD conjecture

In this chapter, we compute the Hasse-Weil L-function of the Jacobian J of C
over certain extensions of Fp(t) and prove the conjecture of Birch and Swinnerton-
Dyer for J . This leads to a combinatorial calculation of the rank of J . We use the
refined BSD conjecture in Chapter 7 to relate the Tate-Shafarevich group of J to
the visible subgroup V defined in Section 1.2.4.

We work in the context of general r and d in this chapter; namely, k = Fq

is any finite field of characteristic p, d is any integer prime to p, K = k(u) with
u = t1/d, r is any integer prime to p, C is the curve of genus r − 1 over K defined
as in Section 1.1 of Chapter 1, and J is the Jacobian of C. Unless stated otherwise
we do not assume that r divides d nor that d divides q − 1.

5.1. The L-function

5.1.1. Definition and first properties. We fix a prime ℓ %= p and consider

H1(C ×K,Qℓ) ∼= H1(J ×K,Qℓ)

as a representation of Gal(Ksep/K) where K = Fq(u).
The corresponding L-function L(J/K, s) = L(C/K, s) is defined by the Euler

product

L(J/K, s) =
∏

v

det
(

1− Frv q−s
v

∣

∣H1(J ×K,Qℓ)
Iv
)−1

.

Here v runs through the places of K, Frv is the (geometric) Frobenius element at
v, qv is the cardinality of the residue field at v, Iv is the inertia group at v, and
H1(J ×K,Qℓ)

Iv is the subspace of H1(J ×K,Qℓ) invariant under Iv.
It is known that L(J/K, s) is a rational function in q−s (where q = #k = #Fq).

Proposition 6.31 in the next chapter shows that the K/k-trace of J vanishes. This
implies that L(J/K, s) is in fact a polynomial in q−s.

The Grothendieck-Ogg-Shafarevich formula gives the degree of L(J/K, s) as a
rational function in q−s (and therefore as a polynomial in our case) in terms of the
conductor of the representation H1(J × K,Qℓ). We review this in Section 5.1.3
below.

See [51, Section 6.2] for more details and references about the preceding two
paragraphs. We do not need to go into details about these assertions here, because
we give an elementary calculation of L(J/K, s) from its definition in Section 5.3
below that shows that it is a polynomial of known degree.

5.1.2. Analysis of local factors. In this subsection, we make the local factor

Lv := det
(

1− Frv q−s
v

∣

∣H1(J ×K,Qℓ)
Iv
)

more explicit using the regular proper model X constructed in Section 3.1. Roughly
speaking, the familiar fact that we may calculate the local L-factor at places of good

59
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reduction by counting points continues to hold at all places. Some care is required
because the genus is greater than 1 and the result ultimately depends on delicate
properties of the Néron model.

Proposition 5.1. For a place v of K = k(u), let Dv be a decomposition group
at v and let Iv ⊂ Dv be the corresponding inertia group. Let Xv be the fiber of
X → P1

u over the corresponding point of P1
u. Then there is a canonical isomorphism

H1(J ×K,Qℓ)
Iv ∼= H1(Xv × k,Qℓ)

that is compatible with the actions of Dv/Iv ∼= Gal(k/k).

Proof. This seems to be well-known to experts, but it is hard to find an early
reference. A recent preprint of Bouw and Wewers [7] has a nice exposition that we
include here for the convenience of the reader.1

First, we have the standard fact that H1 is closely connected to the Picard
group: Writing Vℓ for the Tate module, then

H1(J ×K,Qℓ) ∼= VℓPic
0(C) and H1(Xv × k,Qℓ) ∼= VℓPic

0(Xv).

Second, let J → P1
u be the Néron model of the Jacobian J , and let J 0

v be the
connected component of the identity of the fiber at v. Then by [41, Lemma 2],

(

VℓPic
0(C)

)Iv ∼= VℓJ
0
v .

Finally, and this is the delicate point, the hypotheses of [6, 9.5, Theorem 4b] are
satisfied and this implies that

J 0
v
∼= Pic0(Xv).

(Roughly speaking, this result says that the Néron model represents the relative
Picard functor. In order to apply it, we need to know that X is a regular proper
model and that the gcd of the multiplicites of the components of Xv is one. This
last point was shown directly in Section 3.1, and it also follows from the fact that
C/K has a rational point so X → P1 has a section.)

Combining the displayed isomorphisms completes the proof. !

Next we make the connection with point counting. Write kv for the residue field
at v and kv,n for the extension of kv of degree n. Then the Grothendieck-Lefschetz
trace formula applied to Xv says:

(5.1) |Xv(kv,n)| =

2
∑

i=0

(−1)itr
(

Frnv |H
i(Xv × k,Qℓ)

)

.

The fibers Xv are connected, so H0(Xv × k,Qℓ) = Qℓ with trivial Frobenius
action. On the other hand, H2(Xv × k,Qℓ) has dimension equal to the number
of irreducible components of Xv × k and is isomorphic to Qℓ(−1) tensored with
a permutation representation keeping track of the action of Frobenius on the set
of irreducible components. In particular, the trace of Frnv on H2(Xv × k,Qℓ) is
equal to cv,n|kv,n| where cv,n is the number of irreducible components of Xv × k
that are rational over kv,n and |kv,n| is the cardinality of kv,n. Thus, computing

1The main point of [7] is that local L-factors can be computed efficiently from semi-stable
models rather than regular models, especially for superelliptic curves. This is relevant for our
work, but we need the regular proper model X for other reasons, e.g., computing heights, so the
approach of [7] would not in the end save us anything.
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H1(Xv × k,Qℓ) with its Frobenius action is reduced to counting points. The end
result is recorded in Proposition 5.6 below once we establish the necessary notation
for characters.

5.1.3. Conductors and degree of the L-function. We write cv for the
exponent of the conductor of the representation H1(J × K,Qℓ) at v. Since the
latter is tamely ramified (by Proposition 3.5), the conductor at v is simply the
codimension of H1(J × K,Qℓ)

Iv in H1(J × K,Qℓ). Using Proposition 5.1, cv is
the difference between the Qℓ-dimension of the Tate module of the generic fiber
and that of the special fiber. In terms of the notation in Proposition 3.9, the
dimension of the Tate module of the special fiber is 2gv + mv. It follows that
cv = 2(r − 1)− 2gv −mv, and using Proposition 3.9, we find that

(5.2) cv =











r − 1 if v lies over t = 0 or t = 1,

2r − gcd(d, r)− 1 if v lies over t = ∞,

0 otherwise.

Assuming Proposition 6.31 below, we know that the L-function is a polynomial
in T = q−s. In this case, the Grothendieck-Ogg-Shafarevich formula gives its degree
as

(5.3) degL(J/K, T ) = −4(r − 1) +
∑

v

cv = (d− 1)(r − 1)− (gcd(d, r)− 1).

We confirm this below with a more elementary proof that avoids the forward
reference to Proposition 6.31.

5.2. The conjecture of Birch and Swinnerton-Dyer for J

In this section we continue studying the arithmetic of J in the case of general r
and d, so K = k(u) with ud = t, and k is finite of characteristic p not dividing rd.
As above, let L(J/K, s) be the Hasse-Weil L-function of J . We write L∗(J/K, 1)
for the leading coefficient in the Taylor expansion of L(J/K, s) near s = 1. (This
is defined because we know that L(J/K, s) is a rational function that is regular in
a neighborhood of s = 1.)

We let X(J/K) be the Tate-Shafarevich group of J . This is not yet known
a priori to be finite, but we show that it is finite in our case. We let R be the
determinant of the canonical height pairing on J(K) modulo torsion. (This is
(log q)rank J(K) times the determinant of the Q-valued pairing discussed in Chap-
ter 4.) Finally, we let τ = τ (J/K) be the Tamagawa number associated to J . This
is defined precisely and computed explicitly in Section 7.2.

Theorem 5.2. The conjecture of Birch and Swinnerton-Dyer holds for J over
K = Fq(t

1/d). More precisely, we have

ords=1 L(J/K, s) = rank J(K),

and X(J/K) is finite, and

L∗(J/K, 1) =
|X(J/K)|R τ

|J(K)tor|2
.

Proof. We saw in Section 3.3 that the surface X is dominated by a product
of curves. This implies the Tate conjecture for X and therefore the BSD conjecture
for J . See [51, Sections 8.2 and 6.3] for more details on these implications. !
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Remark 5.3. The most complete reference for the leading term part of the
BSD conjecture (i.e., the second displayed equation in the Theorem) is [22]. The
formulation in [22] differs slightly from that above. We compare the two formula-
tions and show they are equivalent in Section 7.3.1 below.

5.3. Elementary calculation of the L-function

In this section we calculate the Hasse-Weil L-function of J in terms of Jacobi
sums. The arguments here are quite parallel to those in Section 3 of [10], so we
use some of the definitions and notations of that paper, and we omit some of the
details.

5.3.1. Characters and Jacobi sums. Let Q be an algebraic closure of Q,
and let OQ be the ring of integers of Q. Choose a prime p ⊂ OQ over p and define

Fp := O
Q
/p, so that Fp is an algebraic closure of Fp. All finite fields in this section

are considered as subfields of Fp. Reduction modulo p defines an isomorphism

between the roots of unity with order prime to p in O×

Q
and F

×

p . The Teichmüller

character τ : F
×

p → O×

Q
is the unique homomorphism that gives a right inverse to

the reduction map.

Consider a multiplicative character χ : k× → Q
×

for the finite field k. We
employ the usual convention that χ(0) = 0 if χ is non-trivial, and χtriv(0) = 1.

If χ1 and χ2 are multiplicative characters k× → Q
×
, we define a Jacobi sum

J(χ1,χ2) :=
∑

u+v+1=0

χ1(u)χ2(v)

where the sum is over u, v ∈ k. If we need to emphasize the underlying field, we
write Jk(χ1,χ2).

5.3.2. Orbits and Jacobi sums. We write 〈a〉 for the fractional part of a
rational number a, so that 〈a〉 ∈ [0, 1) and a − 〈a〉 ∈ Z. If i ∈ Z/nZ, and if ı̃ and
ı̃′ ∈ Z are representatives of i, then 〈ı̃/n〉 = 〈ı̃′/n〉, so we may unambiguously define
〈i/n〉 as 〈ı̃/n〉.

Define

(5.4) S =

{

(i, j) ∈ Z/dZ× Z/rZ

∣

∣

∣

∣

i %= 0, j %= 0,

〈

i

d

〉

+

〈

j

r

〉

%∈ Z

}

.

Then (Z/ lcm(d, r)Z)× acts on S diagonally by

t · (i, j) = (ti, jj) for t ∈ (Z/ lcm(d, r)Z)×.

We write O for the set of orbits of S under the diagonal action of the cyclic subgroup
of (Z/ lcm(d, r)Z)× generated by q.

If o ∈ O is an orbit, we write |o| for the cardinality of o. Define a Jacobi sum
by

(5.5) Jo = J(χi, ρj),

where (i, j) ∈ o, where the sum is over Fq|o| , and where

χi = τ i(q
|o|−1)/d, ρj = τ j(q

|o|−1)/r.

Well-known properties of Jacobi sums show that Jo is independent of the choice of
(i, j) and that it is a Weil integer of size q1/2.
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5.3.3. The L-function in terms of Jacobi sums.

Theorem 5.4. With notations as above, the Hasse-Weil L-function of J/K is

L(J/K, s) =
∏

o∈O

(

1− J2
o q

−|o|s
)

.

The proof of Theorem 5.4 is given in Section 5.3.5 after some preliminaries in
the next subsection.

Remark 5.5. Note that the degree of L(J/K, s) as a polynomial in q−s is the
cardinality of S, namely (d−1)(r−1)−(gcd(d, r)−1). This confirms the calculation
of the degree in Section 5.1.3.

5.3.4. Explicit local L-factors. We now turn to some preliminaries toward
the proof of Theorem 5.4.

If β is an Fqn -rational point of P1
u and v is the place of k = Fq(u) under β,

we write aβ,qn for the trace of the qn-power Frobenius on H1(J × K,Qℓ)
Iv , or

equivalently (by Proposition 5.1) on H1(Xv × k,Qℓ). We may compute this trace
using Equation (5.1) and the remarks in the paragraph following it.

Proposition 5.6. Let s = gcd(r, qn − 1) and φ = τ (q
n−1)/s. For all β ∈ Fqn ,

we have

aβ,qn = −
s−1
∑

j=1

∑

γ∈Fqn

φj
(

γr−1(γ + 1)(γ + α)
)

where α = βd. If β = ∞, then

aβ,qn = gcd(d, s)− 1 = gcd(d, r, qn − 1)− 1.

Proof. If β %∈ {0, µd,∞}, then the fiber Xv is the smooth projective model of
the affine curve yr = xr−1(x + 1)(x + βd) with one point at infinity. A standard
exercise gives the number of points as an exponential sum:

|Xv(Fqn)| = 1 +
s−1
∑

j=0

∑

γ∈Fqn

φj
(

γr−1(γ + 1)(γ + α)
)

= qn + 1 +

s−1
∑

j=1

∑

γ∈Fqn

φj
(

γr−1(γ + 1)(γ + α)
)

.

Since Xv × k is irreducible, using Equation (5.1) and the remarks in the paragraph
following it shows that

aβ,qn = −
s−1
∑

j=1

∑

γ∈Fqn

φj
(

γr−1(γ + 1)(γ + α)
)

,

as claimed.
If β = 0, then the calculations in Section 3.1.4 (see Figure 1) show that

|Xv(Fqn)| = (s(d− 1) + 2) qn + 2− s.
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On the other hand, the number cv,n of rational components is s(d− 1) + 2, so the
trace is s− 1. The displayed formula in the Proposition simplifies:

−
s−1
∑

j=1

∑

γ∈Fqn

φj
(

γr−1(γ + 1)(γ + α)
)

=−
s−1
∑

j=1

∑

γ∈(Fqn )×

φj(γ + 1)

=s− 1,

so the exponential sum is the trace, as desired.
If βd = 1, we consider the cases r odd (§3.1.4, Figure 2) and r even (§3.1.4,

Figure 3) separately. Let F be the smooth projective model of the curve yr =
xr−1(x+1)2. In both cases, the number cv,n of irreducible components is r. When
r is odd, the number of Fqn -rational points is (r−1)qn+ |F (Fqn)|, and the curve F
has unibranch singularities at (0, 0) and (−1, 0) and one point at infinity. We see
that

qn + 1− aβ,qn = |F (Fqn)| = qn + 1 +
s−1
∑

j=1

∑

γ∈Fqn

φj
(

γr−1(γ + 1)2
)

,

and this gives the desired result. If r is even, we have

|Xv(Fqn)| = (r − 1)qn − 1 + |F (Fqn)|,

and the curve F has a unibranch singularity at (0, 0), a singularity with two
branches at (−1, 0), and one point at infinity. We see that

qn + 1− aβ,qn = |F (Fqn)|− 1 = qn + 1 +
s−1
∑

j=1

∑

γ∈Fqn

φj
(

γr−1(γ + 1)2
)

and this gives the desired result.
Finally, at β = ∞ (§3.1.4, Figure 4), we have that cv,n = 2d′/d+2+gcd(d, r, qn−

1) and |Xv(Fqn)| = cv,nq
n+2−gcd(d, r, qn−1), so we find that aβ,qn = gcd(d, r, qn−

1)− 1, as desired.
This completes the proof of the Proposition. !

5.3.5. Proof of Theorem 5.4. The proof is very similar to that of [10,
Theorem 3.2.1], so we omit many details. We keep the notation of Proposition 5.6.

By a standard unwinding, we have

(5.6) logL(J/K, T ) =
∑

n≥1

Tn

n

∑

β∈P1(Fqn )

aβ,qn

where, as in the previous subsection, aβ,qn is the trace of the qn-power Frobenius

on H1(C,Qℓ)
Iv with v the place of K = Fq(u) under β.

Now let e = gcd(d, qn− 1) and ψ = τ (q
n−1)/e. Grouping points β ∈ P1(Fqn) by

their images under β *→ α = βd and using Proposition 5.6, we have

∑

β∈P1(Fqn )

aβ,qn = a∞,qn −
∑

α∈Fqn

e−1
∑

i=0

ψi(α)
s−1
∑

j=1

∑

γ∈Fqn

φj
(

γr−1(γ + 1)(γ + α)
)

.

Changing the order of summation and replacing α with αγ, the last displayed
quantity is equal to

a∞,qn −
e−1
∑

i=0

s−1
∑

j=1

JFqn
(ψi,φj)2.
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Note that a∞,qn = gcd(e, s)− 1; J(ψ0,φj) = 0 for 0 < j < s; J(ψi,φj) = ±1 when
0 < i < e, 0 < j < s; and 〈i/e〉+ 〈j/s〉 ∈ Z. We find that

(5.7)
∑

β∈P1(Fqn )

aβ,qn = −
∑

0<i<e
0<j<s

〈i/e〉+〈j/s〉+∈Z

JFqn
(ψi,φj)2.

On the other hand,

(5.8) log
∏

o∈O

(

1− J2
oT

|o|
)

= −
∑

n≥1

Tn

n

∑

o such that
|o| divides n

J2n/|o|
o |o|.

The coefficient of Tn/n can be rewritten as

∑

(i,j)∈S
(qn−1)(i,j)=(0,0)

JF
q|o|

(

τ i(q
|o|−1)/d, τ j(q

|o|−1)/r
)2n/|o|

.

Using the Hasse-Davenport relation, we have

∑

(i,j)∈S
(qn−1)(i,j)=(0,0)

JFqn

(

τ i(q
n−1)/d, τ j(q

n−1)/r
)2

=
∑

i∈(0,e), j∈(0,s)
〈i/e〉+〈j/s〉+∈Z

JFqn

(

τ i(q
n−1)/e, τ j(q

n−1)/s
)2

.

Therefore

(5.9)
∑

o such that
|o| divides n

J2n/|o|
o |o| =

∑

i∈(0,e), j∈(0,s)
〈i/e〉+〈j/s〉+∈Z

JFqn

(

τ i(q
n−1)/e, τ j(q

n−1)/s
)2

.

Comparing (5.9) and (5.8) with (5.7) and (5.6) gives the desired equality. !

5.4. Ranks

We give a combinatorial formula for the rank of J(K) where K = Fq(t
1/d) for

general d when q is sufficiently large. We also consider special values of d where we
have better control on the variation of the rank with q. Recall that K = Fq(u) and

Kd = Fp(u, µd) where u = t1/d.

5.4.1. The case when r divides d and d = pν + 1.

Corollary 5.7. If r divides d, d = pν + 1, and d divides q − 1, then

rankZ V = rankZ J(Fq(u)) = ords=1 L(J/Fq(u), s) = (r − 1)(d− 2).

In particular, the index of V in J(Kd) is finite. Moreover, the leading term of the
L-function satisfies

L∗(J/Fq(u), 1) = (log q)(r−1)(d−2).

Proof. When r | d, then ords=1 L(J/Fq(u), s) ≤ (r − 1)(d− 2) by the calcu-
lation of the degree of the L-function in (5.3). Note that Kd ⊂ K since d | (q − 1).
Thus we have a priori inequalities

rankZ V ≤ rankZ J(Kd) ≤ rankZ J(K) ≤ ords=1 L(J/K, s),
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where the right hand inequality relies on the known part of the BSD conjecture for
abelian varieties over function fields, see [51, Proposition 6.7] for example. We saw
in Corollary 4.16 that V has rank (r−1)(d−2), so the inequalities are all equalities.

For the assertion on the leading coefficient, we simply note that the equalities
in the preceding paragraph show that

L(J/Fq(u)), s) =
(

1− q1−s
)(r−1)(d−2)

.

One then computes the leading term by taking the (r− 1)(d− 2)-th derivative. !

5.4.2. The case when r and d divide pν + 1. We have seen that the rank
of J(Kd) is large when r divides d and d has the form pν + 1. In this subsection,
we show that the rank is also large over various subfields of Kd, along the lines of
[52, Corollary 4.4]. The case of Fp(t

1/d) is of particular interest.
We write ϕ(e) for Euler’s ϕ function, i.e., for the cardinality of (Z/eZ)×. If

q and e are relatively prime positive integers, let oq(e) denote the order of q in
(Z/eZ)×.

Corollary 5.8. Suppose that r and d divide pν +1 for some ν. Then the rank
of J over Fq(t

1/d) is equal to

∑

e|d
1<s|r

ϕ(e)ϕ(s)

oq(lcm(e, s))
− 2

∑

1<s|r

ϕ(s)

oq(s)
.

In particular, for every p, and every genus g = r − 1 with r dividing pν + 1, the
rank over Fp(u) of Jacobians of curves of genus g is unbounded.

The conclusion in the last sentence is known for every p and every genus g by
[49], but the ideas of this paper give a new, constructive, and relatively elementary
proof.

Proof. Choose an integer ν such that d and r divide d′ = pν + 1. Let ud =
(u′)d

′

= t. We have field containments Fq(u) ⊂ Fq(µd′ , u′) and Kd′ = Fp(µd′ , u′) ⊂
Fq(µd′ , u′), and an equality

J(Fq(u))⊗Q ∼= (J(Fq(µd′ , u′))⊗Q)
G

where G = Gal(Fq(µd′ , u′)/Fq(u)). To bound rankJ(Fq(u)) = dimQ J(Fq(u)) ⊗ Q

we just need to compute the dimension of a space of invariants. Moreover, by
Corollary 5.7,

J(Fq(µd′ , u′))⊗Q = J(Kd′)⊗Q.

Thus, without loss we may replace q with gcd(q, |Fp(µd′)|), so that Fq(u) is a subfield
of Kd′ .

Our task then is to compute

dimQ (J(Kd′)⊗Q)
G
= dimQ (Vd′ ⊗Q)

G

where G = Gal(Kd′/Fq(u)) and Vd′ ⊂ J(Kd′) is the explicit subgroup. We have
that Vd′ ⊗ Q ∼= R0

d′/I0d′ where R0
d′ and I0d′ are as in Sections 1.3 and 4.2.1, with d

replaced by d′.
Now G is the semi-direct product of the normal subgroup dZ/d′Z by 〈q〉, the

cyclic subgroup of (Z/d′Z)× generated by q. The action of d sends Pij to Pi+d,j and
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the action of q sends Pij to Pqi,qj . Transfering this action to R0
d′/I0d′ , and noting

that
(

R0
d′

)dZ/d′Z ∼= R0
d,

we see that the dimension of
(

R0
d′/I0d′

)G
is equal to the dimension of the Frq-

invariants on
Q[µd × µr]/I

0
d

where I0d is the Q-subspace of the group ring Q[µd × µr] ∼= Q[σ, τ ]/(σd − 1, τ r − 1)
generated by the elements

(τ j − 1)
∑

σi (j = 1, . . . , r − 1), (τ j − 1)
∑

σiτd−i (j = 1, . . . , r − 1),

and σi
∑

τ j (i = 0, . . . , d− 1),

as in Section 1.3.
Now both Q[µd×µr] and Id have bases that are permuted by Frq, so to compute

the dimension of the space of invariants, we just need to count the number of orbits
of Frq on the basis. One sees easily that the space of Frq invariants on Q[µd × µr]
has dimension

∑

e|d
s|r

ϕ(e)ϕ(s)

oq(lcm(e, s))
,

and the space of Frq invariants on I0d has dimension

∑

e|d

ϕ(e)

oq(e)
+ 2

∑

1<s|r

ϕ(s)

oq(s)
.

Subtracting the last displayed quantity from the previous gives the desired dimen-
sion as stated in the Corollary.

To establish the last sentence of the statement, it suffices to note that for a
fixed q = p and r, the dimension computed above is unbounded as d varies through
numbers of the form pν + 1 divisible by r. Indeed, the negative terms depend only
on p and r and the “main” term in the first sum is

φ(pν + 1)φ(r)/op(p
ν + 1) ≥ φ(pν + 1)φ(r)/(2ν),

and this is clearly unbounded as ν varies. !

5.4.3. General r, d, q. Now we treat the most general case, but with slightly
less control on the rank as a function of q.

Recall the set S ⊂ Z/dZ× Z/rZ from (5.4) in Section 5.3.2. We decompose S
into two disjoint pieces, S = A ∪B where

A = {(i, j) ∈ S | 〈i/d〉+ 〈j/r〉 > 1},

B = {(i, j) ∈ S | 〈i/d〉+ 〈j/r〉 < 1}.

Consider 〈p〉 ⊂ (Z/ lcm(d, r)Z)×. We say that an element (i, j) ∈ S is balanced if,
for every t ∈ (Z/ lcm(d, r)Z)×, the set 〈p〉t(i, j) is evenly divided between A and B,
i.e.,

|〈p〉t(i, j) ∩ A| = |〈p〉t(i, j) ∩B|.

Recall that O is the set of orbits of S under 〈q〉. Note that (i, j) is balanced if
and only if (qi, qj) is balanced. We say that o ∈ O is balanced if each (i, j) ∈ o is
balanced and not balanced otherwise.
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Proposition 5.9. Let K = Fq(t
1/d). The order of vanishing ords=1 L(J/K, s)

(and therefore the rank of J(K)) is at most the number of orbits o ∈ O that are
balanced in the sense above. If Fq is a sufficiently large extension of Fp (depending
only on d and r), then the rank is equal to the number of balanced orbits.

This generalizes [10, Theorem 2.2] except that we have less control on how
large q should be to have equality.

Proof. We use the notations of the earlier parts of this chapter, in particular
the Jacobi sums Jo from (5.5) in Section 5.3. By Theorem 5.4, the order of vanishing
of L(J/K, s) at s = 1 is equal to the number of orbits o ∈ O such that J2

o = q|o|.
The proposition follows from the claim that Jo is a root of unity times q|o|/2 if
and only if the orbit o is balanced. Indeed, the number of o such that J2

o = q|o| is
certainly at most the number of o where Jo is a root of unity times q|o|/2, and this
gives the asserted inequality. Moreover, if we replace q with qn, each Jo is replaced
with Jn

o , so if q is a sufficiently large power of p, any Jo that is a root of unity
times q|o|/2 satisfies J2

o = q|o|. Here “sufficiently large” is certainly bounded by the
degree of the L-function as a polynomial in T , and this is a function only of r and
d.

We finish by proving the claim that Jo is a root of unity times q|o|/2 if and
only if o is balanced. If |o| is odd, then the orbit cannot be balanced and the proof
below will show it is also impossible for Jo to be a root of unity times q|o|/2. For
this reason, we focus on the case that |o| is even.

The argument generalizes that of [10, Proposition 4.1], which is the special case
r = 2. Recall the set S ⊂ Z/dZ×Z/rZ from (5.4) and its decomposition S = A∪B
as in Section 5.4.3, where

A = {(i, j) ∈ S | 〈i/d〉+ 〈j/r〉 > 1}, B = {(i, j) ∈ S | 〈i/d〉+ 〈j/r〉 < 1}.

Given (i, j) ∈ S, let i′ = i/gcd(d, i) and j′ = j/gcd(r, j). Let d′ = d/gcd(d, i)
and r′ = r/gcd(r, j). Let e = lcm(d′, r′). Recall that

Jo = J(χi, ρj) = J(τ i(q
|o|−1)/d, τ j(q

|o|−1)/r).

Thus Jo ∈ Q(µe). For a ∈ (Z/eZ)×, let σa ∈ Gal(Q(µe)/Q) be the automorphism
with σa(ζe) = ζae .

Let ν be such that q|o| = pν . Write p for the prime of Q(µe) induced by the
fixed prime p of Q. By Stickelberger’s Theorem (e.g., [9, Thm. 3.6.6 and Prop.
2.5.14]), if the valuation of p is 1, then the valuation of Jo at the prime σa(p) is

(5.10) −ν +
ν−1
∑

ℓ=0

〈aj
′pℓ

r′
〉+ 〈ai

′pℓ

d′
〉+ 〈a(−i′r′ − j′d′)pℓ

r′d′
〉.

Since J2
o /q

|o| is a unit away from primes over p, it is a root of unity if and only if
its valuation at every prime over p is 0. This is equivalent to the property that the
quantity in (5.10) equals ν/2 for each a ∈ (Z/eZ)×.

Fix a and ℓ. The sum of the three fractional parts in (5.10) is either 1 or 2 since

the three fractions add up to 0. The sum is 1 if and only if 〈aj′pℓ

r′ 〉 + 〈ai′pℓ

d′ 〉 < 1.
Choose a representative t ∈ Z/gcd(d, r)Z for a and note that the fractional terms
in the last inequality do not depend on this choice. Thus the sum is 1 if and only
if tpℓ · (i, j) is in B.
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For fixed a, it follows that the quantity in (5.10) equals ν/2 if and only if exactly
half of the values of ℓ ∈ {0, . . . , ν − 1} have the property that tpℓ · (i, j) is in B,
which is the definition of (i, j) being balanced. Thus the quantity in (5.10) equals
ν/2 for all a ∈ (Z/eZ)× if and only if o is balanced. !

Remarks 5.10.

(1) When r = 2, it is proved in [52, Proposition 4.1] that the order of vanishing
is always the number of balanced orbits, i.e., there is no need to enlarge
q. Numerical experiments show that this is no longer the case for r > 2.
It would be interesting to have a sharp bound on the value of q needed to
obtain the maximal rank for a given r and d.

(2) If r divides d and d divides pν + 1, then it is easy to see that every orbit
o is balanced, and the argument in [48, Section 8] shows that J2

o = q for
all o and any q. Thus in this case we get an exact calculation of the rank,
which the reader may check agrees with Corollary 5.8.
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CHAPTER 6

Analysis of J [p] and NS(Xd)tor

In this chapter, we investigate more deeply the arithmetic and geometry of the
smooth projective curve C : yr = xr−1(x + 1)(x + t) of genus g = r − 1 and its
Jacobian J . We prove several technical results about the minimal regular model
X and the Néron model J → P1. Specifically, in Section 6.1, we analyze the
Kodaira-Spencer map to show that the Jacobian J of C has no p-torsion over any
separable extension of K = Fq(t) (see Corollary 6.1). In Section 6.2, we prove that
the Néron-Severi group of Xd is torsion-free (see Theorem 6.13). These results will
be used in Chapter 7 to understand the index of the visible subgroup V in J(Kd).

6.1. Kodaira-Spencer and p-torsion

Our goal in this section is to show that the Jacobian J of C has no p-torsion
over any separable extension of K = Fq(t), a result stated more formally as follows:

Corollary 6.1. The p-torsion of J satisfies J(K)[p] = J(Ksep)[p] = 0.

To prove Corollary 6.1, we apply a result of Voloch after showing that the
Kodaira-Spencer map of the Néron model J → P1

t is generically an isomorphism
and that J is ordinary.

6.1.1. Background on the Kodaira-Spencer map and p-torsion. Be-
fore launching into the technicalities of the proof of Corollary 6.1, we provide some
background on the Kodaira-Spencer map and its connection to p-torsion of abelian
varieties. This subsection is purely motivational and nothing in it will be used later
in the paper. Thus the expert or impatient reader may skip directly to Subsec-
tion 6.1.2.

Consider a non-isotrivial elliptic curve E over a function field K = Fq(C) of
characteristic p. It is known [47, Prop. I.7.3] that if E(K)[p] is non-trivial, then
the j-invariant of E is a p-th power, i.e., j(E) ∈ Kp. Since E is non-isotrivial,
the j-invariant is non-constant, and it is a p-th power if and only if the morphism
j : C → P1 is inseparable, if and only if its derivative vanishes identically. Passing
to the contrapositive, we see that if the derivative of j : C → P1 does not vanish
identically, then E(K) has no non-trivial p-torsion. In [57], Voloch extends this
result to higher-dimensional abelian varieties, where “derivative of j” is replaced
with a suitable Kodaira-Spencer map.

Next, we give a brief overview of the Kodaira-Spencer map for a family of
abelian varieties. More precisely, let B be a smooth (possibly non-projective) curve
over an algebraically closed field k and let π : A → B be an abelian scheme over B.
Fix a closed point b ∈ B and let A be the fiber π−1(b). There is an exact sequence
of tangent sheaves on A:

0 → TA → (TA)|A → (π∗(TB))|A → 0.

71
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Taking cohomology, we see that H0(A, (π∗(TB))|A)
∼= TB,b as k-vector spaces, and

the coboundary map is a homomorphism

(6.1) TB,b → H1(A, TA).

This should be thought of as the derivative at the point b of the map from B to
the moduli space of abelian varieties. Indeed, H1(A, TA) is the space of first-order
deformations of A, i.e., the tangent space to the moduli space at A, and the map
(6.1) measures the variation of the family π : A → B at the point b. (For more
details, we suggest the following references: In [26, Ch. 4], one of the originators of
the theory explains the interpretation of the H1 and the map above in the context
of complex varieties; [56, III.9.1] gives a compact but clear presentation of the same
material; and [20, III.9.13.2] gives the interpretation of the H1 in the context of
schemes.)

We now reformulate (6.1). The tangent bundle to an abelian variety is trivial,
so

H1(A, TA) ∼= H1(A, TA,0 ⊗k OA) ∼= TA,0 ⊗k H
1(A,OA).

Thus the map (6.1) can be rewritten as an element of

Homk

(

TB,b, TA,0 ⊗k H1(A,OA)
) ∼= Homk

(

Ω
1
A,0,Ω

1
B,b ⊗k H1(A,OA)

)

.

Next, we note that Ω1
A,0 is canonically isomorphic to the stalk of π∗Ω

1
A/B at b, and

H1(A,OA) is the stalk at b of R1π∗OA. If we now let the point b vary, the last
description of the derivative (6.1) globalizes to a morphism

KS : π∗Ω
1
A/B → Ω

1
B ⊗OB

R1π∗OA

of OB-modules.
Voloch’s theorem then states that if the Kodaira-Spencer mapKS is generically

an isomorphism (i.e., an isomorphism over a dense open subset of B), then the
generic fiber of A over B has no p-torsion points over the field k(B).

In the next subsection, we restart from the beginning, defining the Kodaira-
Spencer map for our context, and in the following subsections we prove that it is
generically an isomorphism.

6.1.2. The Kodaira-Spencer map for J and Y. In this subsection we
work over Fq(u) where ud = t and r and d are relatively prime to p. We make no
further assumptions on r, d, or q.

Let U ⊆ P1
u be the open subset where ud %∈ {0, 1,∞}. In Section 3.1.1 we

constructed a proper smooth model π : Y → U of C/Fq(u), i.e., a scheme with a
proper smooth morphism to U whose generic fiber is C. The Néron model σ : J →
U is an abelian scheme whose fiber over a point of U is just the Jacobian of the
fiber of π over that point.

Consider the sheaves of relative differentials (of 1-forms)

Ω
1
U , Ω

1
J , Ω

1
J /U

on the schemes U/Fq, J /Fq, and J /U respectively (see [27, §6.1.2]). The following
lemma, applied with S = Spec(Fq) and f = σ, implies there is an exact sequence
of locally free OJ -modules

(6.2) 0 → σ∗
Ω

1
U → Ω

1
J → Ω

1
J /U → 0

since J /Fq, U/Fq, and σ are smooth and of finite type.
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Lemma 6.2. Let X, Y , and S be locally Noetherian schemes and let f : X → Y
and g : Y → S be smooth morphisms of finite type. Then there is an exact sequence

0 → f∗
Ω

1
Y/S → Ω

1
X/S → Ω

1
X/Y → 0

of locally free OX-modules.

Proof. First, there is an exact sequence

(6.3) f∗
Ω

1
Y/S → Ω

1
X/S → Ω

1
X/Y → 0

of OX -modules since X,Y, S are all schemes (see [27, 6.1.24]). We must show that
the terms of this sequence are all locally free as OX -modules and that the first map
is injective.

Let x ∈ X be a geometric point, and let y = f(x) and s = g(y). Then the
fibers

Ω
1
X/S,x, Ω

1
Y/S,y, Ω

1
X/Y,x

are smooth of ranks

dimx Xs, dimy Ys, dimx Xy

respectively, since gf , g, f are smooth (see [27, 6.2.5]). Hence Ω
1
X/S and Ω

1
X/Y

are locally free OX -modules and f∗
Ω

1
Y/S is a locally free f∗OY -module (and thus

a locally free OX -module). Finally,

dimx Xs = dimx Xy + dimy Ys

so the first map of (6.3) is injective as claimed. !

Taking the direct image of (6.2) under σ and applying the projection formula
(see [27, 5.2.32]) leads to a morphism

KSJ : σ∗Ω
1
J /U → Ω

1
U ⊗OU

R1σ∗OJ

which is the “Kodaira-Spencer map” of the family σ : J → U . Similarly, Lemma 6.2
implies there is an exact sequence of OY -modules

(6.4) 0 → π∗
Ω

1
U → Ω

1
Y → Ω

1
Y/U → 0

and a morphism

KSY : π∗Ω
1
Y/U → Ω

1
U ⊗OU

R1π∗OY .

The main technical point of this section is the following.

Theorem 6.3. The maps KSJ and KSY are isomorphisms of locally free OU -
modules of rank r − 1.

The proof is given in the remaining part of this section. The key point is to
explicitly calculate the “Kodaira-Spencer pairing” on

H0(U,Ω1
Y/U )×H0(U,Ω1

Y/U )

and to show that it is non-degenerate.
Our motivation for considering the Kodaira-Spencer map KSJ is that we use

Theorem 6.3 to prove Corollary 6.1.
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Proof that Theorem 6.3 implies Corollary 6.1. The statement over K
follows from that over Ksep. The latter follows from [57, Page 1093, Proposition],
which says that if an abelian variety over a global function field is ordinary and
its Kodaira-Spencer map is generically an isomorphism, then it has no p-torsion
over any separable extension. Proposition 6.12 (see Section 6.1.8) states that J is
ordinary, and Theorem 6.3 states that the Kodaira-Spencer map is generically an
isomorphism. !

Remark 6.4. The proof that J has no p-torsion over Ksep via Kodaira-Spencer
is not so simple. The ideas of [53, 9.4], also not so simple, yield a proof that J has
no p-torsion over Fq(u) where ud = t and d = pν + 1. The more straightforward
idea of using p-descent (i.e., calculating the p-Selmer group and comparing with
the rank) is simpler, but yields a much weaker result, namely that J has no torsion
over Fq(u) where ud = t and d = pν + 1 with ν ≤ 2. As soon as ν > 2, the p-part
of the Tate-Shafarevich group is non-trivial and the p-descent strategy fails.

6.1.3. Reductions to Y. The following statement is probably well-known,
but we have not found a suitable reference.

Proposition 6.5. There are isomorphisms

σ∗Ω
1
J /U

∼= π∗Ω
1
Y/U and R1σ∗OJ

∼= R1π∗OY

of locally free OU -modules of rank g such that the following diagram commutes:

σ∗Ω
1
J /U

KSJ
!!

""

Ω
1
U ⊗OU

R1σ∗OJ

""

π∗Ω
1
Y/U

KSY
!! Ω

1
U ⊗OU

R1π∗OY .

In particular, KSJ is an isomorphism of OU -modules if and only if KSY is.

Proof. The map π : Y → U admits a section U → Y since it is proper and
its generic fiber C has a rational point. The section can be used to construct
a map AJ : Y → J , the so-called Abel-Jacobi map. It is a closed immersion
(cf. [31, Proposition 2.3]), and thus AJ∗ is exact. Therefore there are isomorphisms
of OU -modules

Riσ∗(AJ∗OY) ∼= Riπ∗OY , σ∗(AJ∗Ω
1
Y/U )

∼= π∗Ω
1
Y/U ,

isomorphisms of OJ -modules

AJ∗(π
∗
Ω

1
U )

∼= AJ∗(AJ∗(σ∗
Ω

1
U ))

∼= σ∗
Ω

1
U ⊗OJ

AJ∗OY ,

and an exact sequence of OJ -modules

0 → σ∗
Ω

1
U ⊗OJ

AJ∗OY → AJ∗Ω
1
Y → AJ∗Ω

1
Y/U → 0.

The structure map OJ → AJ∗OY associated to AJ : Y → J induces a mor-
phism R1σ∗OJ → R1σ∗ (AJ∗OY) and thus a morphism

R1σ∗OJ → R1π∗OY .

Similarly, the pull-back map on 1-forms Ω1
J /U → AJ∗Ω

1
Y/U induces a morphism

σ∗Ω
1
J /U → π∗Ω

1
Y/U .
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Both displayed morphisms are isomorphisms of locally free OU -modules of rank g
since the respective fibers at each x ∈ U are isomorphisms of g-dimensional vector
spaces (cf. [31, Proposition 2.1 and Proposition 2.2]).

The displayed exact sequence lies in a commutative diagram

0 !! σ∗
Ω

1
U

!!

""

Ω
1
J

!!

""

Ω
1
J /U

!!

""

0

0 !! σ∗
Ω

1
U ⊗OU

AJ∗OY
!! AJ∗Ω

1
Y

!! AJ∗Ω
1
Y/U

!! 0

of OJ -modules whose first row is exact and where the right two vertical maps are
pull-back maps on 1-forms. Applying σ∗, the projection formula, and the isomor-
phisms displayed above yields a commutative diagram whose rows are long exact
sequences of OU -modules and a portion of which is the desired diagram

σ∗Ω
1
J /U

!!

""

Ω
1
U ⊗OU

R1σ∗OJ

""

π∗Ω
1
Y/U

!! Ω
1
U ⊗OU

R1π∗OY .

!

6.1.4. Reduction to the Kodaira-Spencer pairing. For the rest of this
section, we suppose that d = 1. This suffices to prove Theorem 6.3 since U is an
étale cover of P1

t $ {0, 1,∞}.
Rather than showing that KSY is an isomorphism directly, it is more convenient

for us to consider the “Kodaira-Spencer pairing” on global 1-forms

H0(U,π∗Ω
1
Y/U )×H0(U,π∗Ω

1
Y/U ) −→ H0(U,Ω1

U )
∼= Rdt

ωi × ωj *−→ (ωi,ωj)

where R = H0(U,OU ). The pairing is defined by taking the cup product

KSY(ωi) ∪ ωj ∈ H0(U,Ω1
U ⊗OU

R1π∗Ω
1
Y/U )

followed by the map

H0(U,Ω1
U ⊗OU

R1π∗Ω
1
Y/U ) →̃ H0(U,Ω1

U ⊗OU
OU ) ∼= H0(U,Ω1

U )

induced by the relative trace

R1π∗Ω
1
Y/U →̃ OU .

In particular, to show that KSY is an isomorphism is the same as to show that
the Kodaira-Spencer pairing is a perfect pairing of free R-modules. Proposition 6.5
then implies that KSJ is an isomorphism, completing the proof of Theorem 6.3.

After some preparatory material, a proof that the pairing is perfect is given in
Section 6.1.7.
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6.1.5. Relative 1-forms. Recall that d = 1 and thus R = H0(U,OU ) =
Fq[t][1/(t(t− 1))]. Recall also that C is the smooth proper curve over K associated
to the affine curve yr = xr−1(x + 1)(x + t), that Y → U is a proper smooth map
with generic fiber C, and that Y is covered by the sets

Y1 := Spec
(

R[x11, y11]/(y11 − xr−1
11 (x11y11 + 1)(x11y11 + t))

)

,

Y2 := Spec
(

R[x2, z2]/(z2 − xr−1
2 (x2 + z2)(x2 + tz2))

)

,

Y3 := Spec (R[y3, z3]/(y
r
3z3 − (1 + z3)(1 + tz3)))

(cf. Section 3.1.1). These coordinates are related by the identities

(x, y) = (x11y11, y11) = (x2/z2, 1/z2) = (1/z3, y3/z3).

For 1 ≤ i ≤ r− 1, the expression xi−1dx/yi corresponds to a unique meromor-
phic 1-form ωi on Y . The restrictions of ωi to the open sets Y1, Y2, Y3 are

xi
11dy11
y11

+ xi−1
11 dx11, xi

2

(

dx2

x2
− dz2

z2

)

, − dz3
yi3z3

respectively. These are clearly non-zero forms.

Lemma 6.6. ωi is everywhere regular, i.e., is an element of H0(Y ,Ω1
Y/U).

Proof. On the one hand, ωi is clearly regular on Y1 away from y11 = 0. On
the other hand, if y11 = 0, then dy11/y11 has a pole of order one and xi

11 vanishes
to order i, so ωi is regular on Y1. For use just below, we record that ωi vanishes to
order exactly i− 1 along the divisor x11 = 0.

Similarly, if x2 or z2 vanish, then both vanish and ωi is regular on Y2.
Finally, z3 never vanishes, and if y3 = 0, then the identity

ryr−1
3 z3dy3 + (yr3 − (1 + tz3)− t(1 + z3))dz3 = 0

on Y3 shows that dz3 has a zero of order at least r−1. More precisely, the coefficient
of dz3 is a unit in a neighborhood of y3 = 0 while the coefficient of dy3 has a zero
of order at least r − 1. Hence ωi is regular on Y3. !

Lemma 6.7. The relative 1-forms ωi form an R-basis of H0(Y ,Ω1
Y/U ).

Proof. There is an isomorphism H0(Y ,Ω1
Y/U )

∼= H0(U,π∗Ω
1
Y/U ). Since π is

a family of smooth projective curves of genus g = r − 1, the sheaf π∗Ω
1
Y/U is a

locally free sheaf of OU -modules of rank r − 1 whose fiber at a closed point u ∈ U
is H0(π−1(u),Ω1

π−1(u)/κ(u)). This last is a vector space of dimension r− 1 over the

residue field κ(u), and to prove the lemma it suffices to show that the images of the
ωi in H0(π−1(u),Ω1

π−1(u)/κ(u)) form a κ(u) basis for all u ∈ U . But, as mentioned

above, ωi has a zero of order i− 1 at the point x11 = y11 = 0 in each fiber, so the
restrictions of the ωi to the fibers are linearly independent. Since there are r− 1 of
them, they form a basis. !

Let C = C ×K K.

Corollary 6.8. The relative 1-forms ω1, . . . ,ωr−1 form a K-basis of
H0(C,Ω1

C/K) and a K-basis of H0(C,Ω1
C/K

).
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Proof. This is immediate from Lemma 6.7 since

H0(C,Ω1
C/K) ∼= H0(Y ,Ω1

Y/U )⊗R K

and
H0(C,Ω1

C/K
) ∼= H0(Y ,Ω1

Y/U )⊗R K.

!

6.1.6. Lifting 1-forms. Recall that there is an exact sequence of OY -modules

0 → π∗
Ω

1
U → Ω

1
Y → Ω

1
Y/U → 0

and that Y1 ∪ Y2 ∪ Y3 is an open affine cover of Y → U . In this subsection, we
regard ωi as a section in H0(Y ,Ω1

Y/U ) and find, for each j = 1, 2, 3, a lift of ωi to

a section in H0(Yj ,Ω
1
Y) so that we can calculate KSY(ωi).

Proposition 6.9. The 1-forms

xi
11dy11
y11

+ xi−1
11 dx11, xi

2

(

dx2

x2
− dz2

z2

)

, − dz3
yi3z3

− 1 + z3
yi3

dt

t− 1
.

are sections in H0(Yj ,Ω
1
Y) for j = 1, 2, 3 respectively, and each lifts ωi.

The proof occupies the remainder of this subsection.
First consider Y1, where (dropping subscripts) there is an equality

(6.5) 0 = y − xr−1(xy + 1)(xy + t),

the differential of which leads to the relation

(6.6) 0 = (1− xr(xy + t)− xr(xy + 1)) dy − xr−1(xy + 1) dt

− xr−2 ((r − 1)(xy + 1)(xy + t) + xy(xy + t) + (xy + 1)xy) dx.

Now consider the naive lift of ωi to a 1-form on Y1

xi−1d(xy)

y
=

xidy

y
+ xi−1dx.

This is obviously regular away from y = 0. The equality (6.5) shows that, in an open
neighborhood of y = 0, the function y is a unit times xr−1. Also, the coefficients
of dx and dt in (6.6) are divisible by xr−2 and, near y = 0, the coefficient of dy is a
unit. Therefore, we may rewrite xidy (with i ≥ 1) as a regular 1-form times xr−1,
and thus xidy/y is everywhere regular on Y1. This shows that the naive lift of ωi

is a section in H0(Y1,Ω
1
Y).

Next we turn to Y2, where (dropping subscripts) there is an equality

(6.7) 0 = z − xr−1(x+ z)(x+ zt),

the differential of which leads to the relation

(6.8) 0 =
(

1− xr−1(x+ zt)− xr−1(x+ z)t
)

dz − xr−1(x+ z)z dt

− xr−2 ((r − 1)(x+ z)(x+ zt) + x(x+ zt) + x(x+ z)) dx.

Now consider the naive lift of ωi to a 1-form on Y2:

xi−1d(x/z)

1/z
= xi

(

dx

x
− dz

z

)

.

This is obviously regular away from z = 0. Near z = 0, the equality (6.7) shows
that z is a unit times xr+1. Also, near z = 0, the coefficient of dz in (6.8) is a unit
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and the coefficients of dx and dt are divisible by xr. Therefore, we may rewrite
xidz (with i ≥ 1) as a regular 1-form times xr+1, and thus xidz/z is everywhere
regular on Y2. This shows that the naive lift of ωi is a section in H0(Y2,Ω

1
Y).

Finally, we turn to Y3, where (dropping subscripts) there is an equality

(6.9) 0 = yrz − (1 + z)(1 + tz),

the differential of which leads to the relation

(6.10) 0 =
(

ryr−1z
)

dy + (yr − (1 + tz)− (1 + z)t) dz − ((1 + z)z) dt.

This time it is necessary to work harder since the naive lift of ωi turns out not to
be regular on all of Y3. Instead of it, we add a term involving dt and consider

−dz

yiz
− 1 + z

yi
dt

t− 1
.

This is regular where y %= 0 since t− 1 and z are units on all of Y3, so it remains to
show it is regular in a neighborhood of y = 0. The equations (6.9) and (6.10) and
some algebra allow us to rewrite this lift as

ryr−i−1

f
dy − 1 + z

yi

(

1

f
+

1

t− 1

)

dt =
yr−1−i

f

(

r dy +
y(z − 1)

t− 1
dt

)

where f = yr − (1 + tz) − (1 + z)t. The right side is regular in a neighborhood
of y = 0 since then t − 1 and f are units. Therefore this lift of ωi is a section in
H0(Y3,Ω

1
Y).

6.1.7. Computing the Kodaira-Spencer pairing. In this section we cal-
culate the pairing

H0(U,π∗Ω
1
Y/U )×H0(U,π∗Ω

1
Y/U ) → H0(U,Ω1

U )

ωi × ωj *→ (ωi,ωj).

The proof of the following proposition occupies the remainder of this subsection:

Proposition 6.10. (ωi,ωj) =
r dt

t(t−1) if i+ j = r, and otherwise (ωi,ωj) = 0.

In particular, Proposition 6.10 and Corollary 6.7 together imply that the pairing
is a perfect pairing of free R-modules since r/t(t− 1) is a unit in R.

Recall that Hi(Y ,F) ∼= H0(U,Riπ∗F) for any coherent sheaf F on Y since U
is affine. Recall also that there is a long exact sequence of OU -modules

· · · → Riπ∗π
∗
Ω

1
U → Riπ∗Ω

1
Y → Riπ∗Ω

1
Y/U → · · ·

obtained by applying π∗ and its right derived functors to (6.4). Therefore the
corresponding sequence of global sections

· · · → H0(U,Riπ∗π
∗
Ω

1
U ) → H0(U,Riπ∗Ω

1
Y) → H0(U,Riπ∗Ω

1
Y/U ) → · · ·

is equal to the long exact cohomology sequence

· · · → Hi(Y ,π∗
Ω

1
U ) → Hi(Y ,Ω1

Y) → Hi(Y ,Ω1
Y/U ) → · · · .

In particular, KSY induces a map

H0(U,π∗Ω
1
Y/U ) → H1(U,R1π∗π

∗
Ω

1
U ),

which is the boundary map of cohomology

H0(Y ,Ω1
Y/U) → H1(Y ,π∗

Ω
1
U ).
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Fixing i and taking differences, on Yj ∩ Yk, for j, k ∈ {1, 2, 3}, of the lifts

in Proposition 6.9 yields the following Čech cocycle in H1(Y ,π∗
Ω

1
U ) representing

KSY(ωi):

g12 = g21 = 0, g23 = −g32 = g13 = −g31 =
1 + z3
yi3

dt

t− 1

where gjk is a section in H0(Yj ∩ Yk,π
∗
Ω

1
U ).

Taking the cup product of KSY(ωi) with ωj yields a class in

H1(Y ,π∗
Ω

1
U ⊗OY

Ω
1
Y/U )

∼= H0(U,Ω1
U ⊗OU

R1π∗Ω
1
Y/U )

∼= H0(U,Ω1
U )⊗R H0(U,R1π∗Ω

1
Y/U )

given by the product of dt
t−1 and the class h in H0(U,R1π∗Ω

1
Y/U ) represented by

the Čech cocycle

h12 = h21 = 0, h23 = −h32 = h13 = −h31 =
1 + z3

yi+j
3

dz3
z3

.

It remains to calculate the image of h via the relative trace map

H0(U,R1π∗Ω
1
Y/U ) → H0(U,OU ).

Consider, for j = 1, 2, 3, the meromorphic relative 1-forms σj on Yj given by

σ1 = σ2 = 0, σ3 = −1 + z3

yi+j
3

dz3
z3

.

On Yj ∩ Yk, they satisfy hjk = σj − σk. Therefore, for z ∈ U and P ∈ Yj,z,
the residue rP = ResP (σj) satisfies rP = ResP (σk) if P ∈ Yk,z. In particular, the
relative trace of h is the global section of OU whose restriction to OU,z is

∑

P∈Yz
rP .

It is clear that rP = 0 except possibly at the points (y3, z3) = (0,−1) and
(0,−1/t) in Y3,z. The identities

yr3z3 − (1 + z3)(1 + tz3) = 0 and ryr−1
3 z3 dy3 = (yr3 − (1 + tz3)− t(1 + z3)) dz3

allow us to rewrite σ3 as

−rz3(1 + z3)

1− z23t

dy3

y1+i+j−r
3

= − rz23
(1 + tz3)(1− z23t)

dy3

y1+i+j−2r
3

.

The specializations of the left and right at z3 = −1/t and z3 = −1 are

−r(−1/t)(1 + (−1/t))

1− (1/t2)t

dy3

y1+i+j−r
3

=
r

t

dy3

y1+i+j−r
3

and

− r

(1− t)(1− t)

dy3

y1+i+j−2r
3

respectively. In particular, if P ∈ Y3, then

rP =

{

r
t if P = (0,−1/t) and i+ j = r,

0 otherwise,

since 1 + i+ j − 2r ≤ −2. Therefore

(ωi,ωj) =

{

dt
t−1

r
t if i+ j = r,

0 otherwise,

as claimed.
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Remark 6.11. Variants of this calculation for r = 2, i.e., for the Legendre
curve, go back to the origins of hypergeometric functions and appear in many places
in the literature, sometimes lifted to the level of the Gauss-Manin connection, and
with varying conventions, bases, and signs.

6.1.8. J is ordinary. We recall that “J is ordinary” means that J(K)[p] has
cardinality pg where g = r − 1 is the dimension of J . This property is obviously
preserved under change of ground field.

Recall (e.g., [37, Section 2]) that the Cartier operator

Car : H0(C,Ω1
C/K

) → H0(C,Ω1
C/K

)

is a semi-linear operator satisfying

Car(ω + ω′) = Car(ω) + Car(ω′) and Car(fpω) = f Car(ω)

for all f in the function field K(C). Also, for x ∈ K(C),

Car

(

xidx

x

)

= 0 if p ∤ i and Car

(

dx

x

)

=
dx

x
.

It is known that J being ordinary is equivalent to the Cartier operator of C being
an isomorphism. (This can be deduced from [37, Proposition 10, page 41].)

Proposition 6.12. The operator Car : H0(C,Ω1
C/K

) → H0(C,Ω1
C/K

) is an

isomorphism. In particular, the Jacobian J of C is ordinary.

Proof. Corollary 6.8 says that ω1, . . . ,ωr−1 form a K-basis of H0(C,Ω1
C/K

).

We show, for all 1 ≤ i ≤ r − 1, that Car(ωi) is a non-zero multiple of ωa where
pa ≡ i mod r. This implies that Car is an isomorphism, as required.

Since p ∤ r, given i with 1 ≤ i ≤ r− 1, we may solve ap− br = i in integers a, b.
Moreover, adjusting a, b by mr,mp, for some m, we may assume that 0 ≤ b < p,
and having done this, it follows that 0 < a < r. We then have

ωi =

(

x

y

)i
dx

x
=

xiybr

yap
dx

x
=

h(x)

yap
dx

x

where h(x) = xi+(r−1)b(x+ 1)b(x+ t)b. Thus

Car(ωi) = y−a Car

(

h(x)
dx

x

)

.

Now the exponents of x appearing in h are in the range

[i+ (r − 1)b, i+ (r + 1)b] = [ap− b, ap+ b],

and the only multiple of p in this range is ap. Letting c be the coefficient of xap in
h(x), then Car(h(x)dx/x) = c1/pxa dx/x and

Car(ωi) = c1/p(x/y)adx/x = c1/pωa.

Thus it remains to prove that c %= 0.
It is clear that c is the coefficient of xb in (x+ 1)b(x+ t)b, and so

c =

b
∑

j=0

(

b

j

)2

tj = 1 + b2t+ · · ·+ b2tb−1 + tb.

Since t is transcendental over Fp, this expression is not zero inK, and this completes
the proof. !



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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6.2. Néron-Severi of Xd is torsion-free

In this section, we assume that k is a perfect field of characteristic p ≥ 0 not
dividing d and containing µd and that r divides d. Let Xd → P1

u be the minimal
regular model of C/Kd constructed in Section 3.1. We regard Xd as a surface over
k. Our aim in this section is to prove the following result.

Theorem 6.13. The Néron-Severi group of Xd is torsion-free.

Along the way we work in more generality so that the same result may be
deduced for most surfaces related to the Berger construction. It would be possible
to remove the restrictions that r divides d and that k contains µd, but we leave this
as an exercise for the reader.

We occasionally refer to the Néron-Severi and Picard groups of certain singular
surfaces. We recall here three familiar facts that continue to hold for singular but
normal surfaces. Namely, if S is a projective, normal, geometrically irreducible
surface over a perfect field k, then the Picard functor PicS/k is represented by
a scheme locally of finite type over k, the identity component is represented by
a projective algebraic group, and the tangent space at the identity is canonically
isomorphic to H1(S,OS). See 9.4.8, 9.5.4, and 9.5.11 in [24] and recall that S is
integral and normal over k since it is integral and normal over the perfect field k.

By definition, the Néron-Severi group of a projective, normal, irreducible sur-
face S over a field k is the image NS(S) of Pic(S) in

NS(S ×k k) := Pic(S ×k k)/Pic0(S ×k k).

Thus NS(S) is a subgroup of NS(S ×k k). Therefore, to prove Theorem 6.13 it
suffices to treat the case where k is algebraically closed; in this section, we assume
k = k when convenient, but in some places we consider more general fields k.

6.2.1. Shioda-Tate isomorphism. Let k be a perfect field, let B be a
smooth, projective, geometrically irreducible curve over k, and let S be a smooth,
projective, geometrically irreducible surface over k equipped with a generically
smooth and surjective morphism π : S → B. Let K = k(B) be the function
field of B, let J/K be the Jacobian of the generic fiber of π, and let (A, τ ) be the
K/k-trace of J .

Recall that L1Pic(S) is the subgroup of Pic(S) consisting of classes of divisors
orthogonal to a fiber of π, that L2Pic(S) is the subgroup of L1Pic(S) consisting of
classes of divisors supported in the fibers of π, and that Li NS(S), for i = 1, 2 is
the corresponding subgroup of NS(S).

Proposition 6.14. There is a homomorphism

L1 NS(S)

L2 NS(S)
→ MW(J) =

J(K)

τA(k)

with finite kernel and cokernel. It is an isomorphism if π has a section and if k is
either finite or algebraically closed.

See [51, Proposition 4.1].

6.2.2. NStor and Jtor. We continue the notation of the previous section. We
further assume that k is finite or algebraically closed.
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If Pic0(S) = 0, then NS(S) ∼= Pic(S) and the K/k-trace of J vanishes. There-
fore Proposition 6.14 implies that there is an isomorphism

L1Pic(S)

L2Pic(S)
∼= J(K).

If, moreover, π admits a section, then L2Pic(S) is torsion-free. (See, for example,
Section 4.1 in [51].) Finally, NS(S)tor is contained in L1Pic(S) since its elements
are numerically equivalent to zero. Therefore we conclude the following:

Proposition 6.15. If Pic0(S) = 0 and if π admits a section, then the Shioda-
Tate isomorphism induces an injection NS(S)tor → J(K)tor.

Later in the paper, we use Proposition 6.15 and bounds on NS(X )tor to bound
J(K)tor. The reverse is also possible: good control on J(K)tor suffices to bound
NS(X )tor.

6.2.3. Birational invariance.

Proposition 6.16. Suppose S1 and S2 are projective, normal surfaces over k
and f : S1 → S2 is a birational map. Then NS(S1)tor ∼= NS(S2)tor and Pic0(S1) ∼=
Pic0(S2).

Proof. By resolution of singularities and [20, V.5.5], there is a smooth pro-
jective surface S with birational maps f1 : S → S1 and f2 : S → S2 satisfying
f = f2 ◦ f−1

1 . It suffices to prove the proposition with (S,S1, f1) and (S,S2, f2) in
lieu of (S1,S2, f). Therefore we may suppose, without loss of generality, that S1 is
smooth and projective and that f is a birational morphism, in other words, that f
is a morphism and induces a birational isomorphism.

If s ∈ S2 is a point over which f is not an isomorphism, then since S1 is smooth,
it is known (e.g., Corollary 2.7 in [3]) that

f−1(s) =

n
∑

i=1

riEi

where the Ei are pairwise distinct integral curves on S1 and the ri are positive
integers. Moreover, the restriction of the intersection pairing on S1 to the subgroup
of NS(S1) generated by the classes of the Ei is negative definite.

Let {s1, . . . , sm} be the set of points over which f is not an isomorphism, let ni

be the number of components of f−1(si), let Ei1, . . . , Eini
denote the components

of f−1(si), and let N =
∑m

i=1 ni so that N is the total number of exceptional curves
introduced in passing from S2 to S1.

There is a homomorphism ZN → Pic(S1) given by sending (a11, . . . , amnm
) to

the class of
∑m

i=1

∑ni

j=1 aijEij . We also have f∗ : Pic(S2) → Pic(S1). Trivial modi-

fications of the proof of V.3.2 in [20], show that these maps induce an isomorphism

Pic(S1) ∼= Pic(S2)⊕ ZN .

It follows that Pic0(S1) ∼= Pic0(S2) as claimed. It also follows that NS(S1) ∼=
NS(S2)⊕ ZN and thus that NS(S1)tor ∼= NS(S2)tor as claimed. !
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6.2.4. Geometric method. In this subsection, we use a geometric method
to kill torsion in Néron-Severi under suitable hypotheses. In the application to
Xd, this method suffices to kill torsion of order coprime to r and not divisible by
p = Char(k); however, by itself, it does not seem to handle primes dividing r.

Let S be a smooth, irreducible, projective surface over k, and let G ⊆ Autk(S)
be a finite subgroup.

Lemma 6.17. The quotient S/G is normal, irreducible, and projective.

Proof. It is clear that S/G is irreducible. It follows from [39, Chapter III,
Section 12, Corollary] that it is normal and from [19, Lecture 10] that it is projec-
tive. !

Therefore Pic(S/G) has the properties detailed in the second paragraph after
the statement of Theorem 6.13.

Proposition 6.18. Suppose some fiber of S → S/G contains exactly one
point. If ℓ %= p is a prime number such that Pic(S)[ℓ]G = 0, then NS(S/G)[ℓ] =
Pic(S/G)[ℓ] = 0.

Proof. Every element of NS(S/G)[ℓ] lifts to Pic(S/G)[ℓ] since Pic0(S/G) is
divisible, and thus it suffices to show that Pic(S/G)[ℓ]=0. Suppose that L is a line
bundle on S/G whose class in Pic(S/G) is ℓ-torsion. We must show that it is trivial
in Pic(S/G).

If we choose an isomorphism Lℓ ∼= OS/G, then the OS/G-module

A = OS/G ⊕ L⊕ L2 ⊕ · · ·⊕ Lℓ−1

inherits the structure of a sheaf of OS/G-algebras. Let

T = Spec
OS/G

A

(global Spec) so that there is a finite étale morphism T → S/G of degree ℓ. This
morphism has a section if and only if L is trivial, i.e., L ∼= OS/G.

The pull back of L to S is trivial since Pic(S)[ℓ]G = 0. Therefore, the fiber
product S×S/G T is trivial as an étale cover of S; in other words, there is a section
of the projection

S ×S/G T → S.

This yields a commutative diagram

S !!

##
❈❈

❈❈
❈❈

❈❈
T

$$③③
③③
③③
③③

S/G.

On one hand, by hypothesis some fiber of the quotient map S → S/G contains
exactly one point. On the other hand, T → S/G is finite étale of degree ℓ. It
follows that the image of S in T has degree 1 over S/G and that T → S/G is
not connected. Hence the covering T → S/G is trivial, i.e., T ∼= (S/G)× (Z/ℓZ).
Therefore L is trivial in Pic(S/G) as claimed. !
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6.2.5. Some group cohomology. In this subsection, we collect some facts
about the group cohomology of G = µr.

Let g be a generator of G. Recall that for an Fℓ[G]-module M , the elements
D = 1−g and N = 1+g+ · · ·+gr−1 of Fℓ[G] act on M and there are isomorphisms

Hi(G,M) ∼=











ker(D) if i = 0,

ker(N)/im(D) if i ≥ 1 is odd,

ker(D)/im(N) if i ≥ 2 is even.

Let R = Fℓ[G] be the regular representation of G, and let W be the quotient
of R by the subspace of G-invariants RG.

Lemma 6.19.

(1) Hi(G,R) ∼=
{

Fℓ if i = 0,

0 if i > 0;

(2) Hi(G,Fℓ) ∼=
{

Fℓ if i = 0 or ℓ | r,

0 if i > 0 and ℓ ∤ r;
(3) Hi(G,W ) ∼= Hi+1(G,Fℓ) for i ≥ 0;
(4) Hi(G,W ⊗W ) ∼= Hi+1(G,W ) for i > 0.

Proof. We may identity RG with the trivial Fℓ[G]-module Fℓ, which is the
i = 0 part of (1). The rest of part (1) follows from [40, page 112, Proposition 1]
since Fℓ[G] is co-induced. Part (2) is a simple exercise using the isomorphisms
displayed just before the lemma. For part (3), by the definition of W , there is an
exact sequence

(6.11) 0 → Fℓ → R → W → 0.

Taking cohomology yields an exact sequence

0 → H0(G,Fℓ) → H0(G,R) → H0(G,W ) → H1(G,Fℓ) → 0

and identities Hi(G,W ) ∼= Hi+1(G,Fℓ), for i ≥ 0.
Since R ⊗ W is co-induced, applying [40, p. 112, Proposition 1] implies that

Hi(G,R ⊗ W ) = 0 for i > 0. Tensoring (6.11) with W and taking cohomology
produces an exact sequence

0 → H0(G,W ) → H0(G,R⊗W ) → H0(G,W ⊗W ) → H1(G,W ) → 0

and identities Hi(G,W ⊗W ) ∼= Hi+1(G,W ) for i > 0. !

Consider an exact sequence of Fℓ[G]-modules

0 → Fℓ → W̃ → W → 0.

Lemma 6.20. W̃ ∼= Fℓ ⊕W or W̃ ∼= R as Fℓ[G]-modules.

Proof. There is an element w ∈ W that generatesW as an Fℓ[G]-module, that

is, W is cyclic as an Fℓ[G]-module. Let w̃ ∈ W̃ be a lift of w. The Fℓ[G]-submodule

of W̃ generated by w̃ maps surjectively to W̃ . If this map is an isomorphism, the
above sequence is split and W̃ ∼= Fℓ ⊕W . Otherwise the submodule must be all of
W̃ , in which case W̃ is cyclic and has Fℓ-dimension r, so is isomorphic to R. !

Note that R ∼= Fℓ ⊕W if ℓ ∤ r.
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6.2.6. Cohomological method. Recall that r > 1 is an integer not divisible
by p. In this subsection, we develop a more elaborate, cohomological method to kill
torsion in Néron-Severi. We need it to kill ℓ-torsion in NS(Xd) when ℓ is a prime
dividing r.

To state the result, let C → P1 (resp., D → P1) be a Galois branched cover
with group G = µr that is totally ramified over b1 > 0 (resp., b2 > 0) points of P1

and unramified elsewhere. Let G act diagonally on S = C ×k D.

Proposition 6.21. NS(S/G)[ℓ] = Pic(S/G)[ℓ] = 0 for any prime number
ℓ %= p.

The proof occupies the remainder of this subsection. It suffices to treat the
case where k is algebraically closed, so we make this assumption for the rest of this
section.

To lighten notation, for a scheme Y over k we write Hi(Y) for the étale coho-
mology group Hi(Yet,Fℓ) and Hi

c(Y) for the étale cohomology group with compact
supports.

Lemma 6.22. The following G-modules are isomorphic:

(1) H0(C) ∼= H2(C) ∼= H0(D) ∼= H2(D) ∼= Fℓ;
(2) H1(C) ∼= W b1−2 and H1(D) ∼= W b2−2.

Proof. The first part is well known since C,D are irreducible projective curves,
and it suffices to prove the second part for C since the argument for D is identical.

Let Co denote the maximal open subset of C where C → P1 is unramified and
let Po be the image of Co in P1. Then Po is P1 minus b1 points and f : Co → Po is
an étale Galois cover with group G. We first check that there is an isomorphism

H1(Co) ∼= Fℓ ⊕Rb1−2.

Indeed, H1(Co) ∼= H1(Po, f∗Fℓ) since f is finite. The stalk of f∗Fℓ at the generic

point of Po may be identified as a G-module with R, and it has an action of π
(p)
1 ,

the prime-to-p fundamental group of Po. Moreover [30, V.2.17], H1(Po, f∗Fℓ) is

isomorphic to the Galois cohomology group H1(π
(p)
1 , R). Using the fact that π

(p)
1

is the free pro-prime-to-p group on b1 − 1 generators σ1, . . . ,σb1−1, it is an easy

exercise to check that H1(π
(p)
1 , R) is isomorphic to the cokernel of the map

R → Rb1−1, λ *→ (σ1λ− λ, . . . ,σb1−1λ− λ).

Since each generator σi acts on R as multiplication by some generator of G (by our
hypothesis that C → P1 is totally ramified at each branch point), the cokernel is
isomorphic to Fℓ ⊕Rb1−2, as desired.

To finish, we note that H1(Co) ∼= H1
c (C

o)∗ by Poincaré duality and that, by
excision, there is an exact sequence

0 → H0(C) → H0(C \ Co) → H1
c (C

o) → H1(C) → 0.

Since H0(C \ Co) ∼= Fd
ℓ as a G-module, the result follows easily. !

Lemma 6.23. Let X be a variety over k. Let G be a finite group of order prime
to p which acts on X, and let Y = X/G. Then for i ≥ 1,

Hi(Y,O) = Hi(X,O)G.
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Proof. Recall that by a variety over k, we mean a separated scheme of finite
type over k. Let (Vi) be a cover of Y by open affines. Let Ui ⊂ X be the preimage
of Vi; the Vi are G-invariant and, since X → Y is finite, are also affine. Separability
implies that intersections of the Vi (resp. Ui) are also affine. If Ȟ denotes Čech
cohomology, by [20, III.4.5], then

Ȟi((Vi),O) = Hi(Y,O)

and similarly for X. For i ≥ 1, consider the Čech complex

· · · −→ Ci−1((Ui),O) −→ Ci((Ui),O) −→ Ci+1((Ui),O) −→ · · · .

If we take G-invariants, we obtain the corresponding Čech complex for Y . All of
the groups above are k-vector spaces and the order of G is prime to p, so taking
G-invariants commutes with taking homology. The claim follows. !

Recall G = µr, and let T = S/G.

Lemma 6.24. Pic0(T ) = 0.

Proof. Lemma 6.23 and the Künneth formula imply

H1(T ,O) = H1(S,O)G =
(

H1(C,O)⊕H1(D,O)
)G

= 0.

In particular, Pic0(T ) = 0 since its tangent space space is H1(T ,O) and thus is
trivial. !

Therefore, NS(T ) = Pic(T ) and

NS(T )[ℓ] = Pic(T )[ℓ] = H1(T , µℓ) = H1(T ),

since k is algebraically closed. The rest of the proof of Proposition 6.21 is a some-
what elaborate calculation of H1(T ); in particular, we show it vanishes.

Let Z ⊂ S be the reduced subscheme of fixed points, which by our hypotheses
consists simply of b1b2 distinct points. We identify Z with its image in T as well.
Let So = S \ Z and T o = T \ Z and note that So → T o is an étale Galois cover
with group G and that T o is smooth.

Lemma 6.25. We have the following isomorphisms of Fℓ[G]-modules:

Hi(S) ∼=











Fℓ if i = 0 or 4,

W b1+b2−4 if i = 1 or 3,

F2
ℓ ⊕ (W ⊗W )(b1−2)(b2−2) if i = 2.

Proof. This follows from the Künneth formula

Hi(S) ∼= ⊕i
j=0

(

Hj(C)⊗Hi−j(D)
)

and Lemma 6.22. !

By excision, there is an exact sequence

0 → H0(T ) → H0(Z) → H1
c (T

o) → H1(T ) → 0

and an isomorphism
Hj

c (T
o) ∼= Hj(T ),

for j ≥ 2, since Z is zero dimensional. We also have the Poincaré duality isomor-
phism

Hj
c (T

o) ∼= H4−j(T o)∗
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for 0 ≤ j ≤ 4. Therefore, to show that H1(T ) = 0 we must show that H3(T o) has
dimension b1b2 − 1 as an Fℓ-vector space; its dimension is at least this. To show
equality we use the Hochschild-Serre spectral sequence

(6.12) Ei,j
2 = Hi(G,Hj(So)) =⇒ Hi+j(T o).

To compute the E2 term, we begin by computing Hj(So).

Lemma 6.26. We have the following isomorphisms of Fℓ[G]-modules:

Hj
c (S

o) ∼=































F
a1

ℓ ⊕Ra2 ⊕W a3 if j = 1,

F2
ℓ ⊕ (W ⊗W )(b1−2)(b2−2) if j = 2,

W b1+b2−4 if j = 3,

Fℓ if j = 4,

0 otherwise

where a1 + a2 = b1b2 − 1 and a2 + a3 = b1 + b2 − 4.

Proof. By excision, there is an exact sequence

0 → H0(S) → H0(Z) → H1
c (S

o) → H1(S) → 0

and isomorphisms

Hj
c (S

o) ∼= Hj(S)

for j ≥ 2, since Z is zero dimensional and non-empty. Therefore, Lemmas 6.20
and 6.25 imply that H4−j

c (So) has the desired form. (Roughly speaking, a3 is the
number of copies of W in H1(C) over which the extension H1

c (S
o) is split.) !

Corollary 6.27. We have the following isomorphisms of Fℓ[G]-modules:

Hj(So) ∼=































Fℓ if j = 0,

W b1+b2−4 if j = 1,

F2
ℓ ⊕ (W ⊗W )(b1−2)(b2−2) if j = 2,

F
a1

ℓ ⊕Ra2 ⊕W a3 if j = 3,

0 otherwise,

where a1 + a2 = b1b2 − 1 and a2 + a3 = b1 + b2 − 4.

Proof. The Poincaré duality isomorphism states that

Hj(So)∗ ∼= H4−j
c (So)

for 0 ≤ j ≤ 4. In particular, Fℓ, R,W are self-dual as Fℓ[G]-modules, so Hj(So)∗

is also self-dual, and thus Hj(So) has the desired form. !

Applying Lemma 6.19 and Corollary 6.27, we find that if ℓ ∤ r, then

(6.13) dimEi,j
2 = dim(Hi(G,Hj(So))) =

{

b1b2 − 1 if i = 0, j = 3,

0 if i ≥ 1, j ≥ 0.

One can deduce more, but when ℓ ∤ r this already suffices to show that (6.12)
degenerates and

dimH3(T o) = dimE0,3
2 = b1b2 − 1
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as claimed. Therefore, we suppose for the remainder of this subsection that ℓ | r
and apply Lemma 6.19 and Corollary 6.27 to deduce

(6.14) dimEi,j
2 =































1 if i ≥ 0, j = 0,

b1 + b2 − 4 if i ≥ 0, j = 1,

b1b2 − 2b1 − 2b2 + 6 if i > 0, j = 2,

b1b2 − 1 + a3 if i = 0, j = 3,

b1b2 − b1 − b2 + 3 + 2a3 if i > 0, j = 3.

One can also deduce more in this case, but these suffice for our purposes. More
precisely, to show dimH3(T o) = b1b2 − 1, it suffices to show that a3 = 0 and

dimH3(T o) ≤ dimE0,3
2 .

The spectral sequence (6.12) has non-zero groups only in the first quadrant

and has only four non-trivial rows, i.e., Ei,j
h = 0 unless i ≥ 0 and 0 ≤ j ≤ 3. It

follows immediately that di,jh = 0 if h > 4 or if j > 3 or if h > j + 1, and also that

Ei,j
∞ = Ei,j

5 .

Lemma 6.28. The differentials di,jh in the spectral sequence (6.12) satisfy the

following: For h ≥ 2 and i ≥ 1, rank di,3h = dimEi+h,4−h
2 . Moreover, with notation

as in Corollary 6.27, a3 = 0.

Proof. Since T o is not complete and dim(T o) = 2, it follows that Hi+j(T o)

vanishes for i ≥ 1 and j = 3. Thus Ei,3
5 vanishes, and the definitions of Ei,3

h for
h = 1, 2, 3 imply that

dimEi,3
2 = rank di,32 + rank di,33 + rank di,34

for i ≥ 1. Moreover,

rank di,32 + rank di,33 + rank di,34 ≤ dimEi+2,2
2 + dimEi+3,1

2 + dimEi+4,0
2

and so

dimEi,3
2 ≤ dimEi+2,2

2 + dimEi+3,1
2 + dimEi+4,0

2

for i ≥ 1. Comparing dimensions using (6.14), we see that a3 = 0 and that

(6.15) rank di,3h = dimEi+h,4−h
2

for i ≥ 1 and h = 2, 3, 4. Trivially, rank di,3h = 0 for h ≥ 5 since Ei+h,4−h
2 = 0 for

h ≥ 5. This establishes the claims of the lemma. !

Lemma 6.29. The differentials di,jh in the spectral sequence (6.12) satisfy

d2,2h = d3,1h = d4,0h = 0

for h ≥ 2.

Proof. By Lemma 6.28, rank d1,33 = dimE4,1
2 . Therefore, dimE4,1

3 = dimE4,1
2

and d2,22 = 0. Similarly, Lemma 6.28 says that rank d1,34 = dimE5,0
2 which implies

that d3,12 = d2,23 = 0. Trivially, d2,2h vanishes for h > 3, d3,1h vanishes for h > 2, and

d4,0h vanishes for h > 1. This completes the proof of the lemma. !

Lemma 6.30. With notation as above, dimH3(T o) ≤ dimE0,3
2 = b1b2 − 1.
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Proof. On one hand, the previous lemma says that all the differentials di,jh
with domain Ei,j

h vanish when i + j = 4, i ≥ 2, and h ≥ 2. On the other hand,
H4(T o) = 0, so Ei,j

∞ = 0 for i+ j = 4. It follows that

dimH3(T o) =
∑

i+j=3

dimEi,j
∞ ≤

∑

i+j=3

dimEi,j
2 −

∑

i+j=4
i≥2

dimEi,j
2 .

Applying Equation (6.14), this last difference is dimE0,3
2 and (6.14) together with

Lemma 6.28 shows that dimE0,3
2 = b1b2 − 1. This completes the proof of the

lemma. !

As noted after Lemma 6.25, the inequality dimH3(T o) ≤ b1b2 − 1 completes
the proof that H1(T ) = 0 and that of Proposition 6.21.

6.2.7. Proof of Theorem 6.13. The statement of Theorem 6.13 is that
NS(Xd)tor = 0. By Proposition 6.15, there is an injection NS(Xd)tor → J(K)tor.
Moreover, we proved in Corollary 6.1 that J(K) has no p-torsion, thus neither does
NS(Xd). It thus suffices to prove that NS(Xd)[ℓ] = 0 for every prime ℓ %= p.

For the rest of the proof, suppose ℓ %= p. By Proposition 6.16, it suffices to
prove NS(T1)[ℓ] = 0 for some T1 that is birational to Xd. Recall from Section 3.3
that Xd is birational to the quotient S/(µr × µd) constructed as follows:

Let Cd and Dd be the smooth, projective curves over k with affine models

Cd : zd = xr − 1 and Dd : wd = yr − 1

respectively, and let S = Cd ×k Dd. The action of µr × µd on A2 ×k A2 given by

(x, y, z, w) *→ (ηx, η−1y, ζz, ζ−1w)

induces an action on S.
Let T = S/µr. Observe that Proposition 6.21 implies NS(T )[ℓ] = 0 and that

Lemma 6.24 implies Pic0(T ) = 0. Now let S1 → T be a resolution of singularities
of T that is an isomorphism away from the singular points. The action of µd on S
has isolated fixed points that are disjoint from the fixed points of the action of µr.
It also descends to an action on T and then lifts (uniquely) to an action on S1 with
isolated fixed points (cf. [20, II.7.15]). Proposition 6.16 implies that Pic0(S1) =
Pic0(T ) = 0, and so Pic(S1)[ℓ] = NS(S1)[ℓ] = 0. A fortiori , Pic(S1)[ℓ]

G = 0, and
thus we may apply Proposition 6.18 to deduce that NS(T1)[ℓ] = 0 for T1 = S1/µd

and ℓ %= p. This completes the proof since T1 is birational to S/(µr × µd) and thus
to Xd. !

For future use, we record one other byproduct of our analysis.

Proposition 6.31. Pic0(Xd) = 0 and thus the K/k-trace of J is trivial.

Proof. As observed in the proof of Theorem 6.13, Lemma 6.24 implies that
Pic0(S/µr) = 0. Using the fact thatH1(S/µr,O) is the tangent space of Pic0(S/µr)
(and similarly for S/(µr × µd)) along with Lemma 6.23, we see that

Pic0(S/(µr × µd)) = 0.

Therefore Pic0(Xd) = 0 since Xd and S/(µr × µd) are birational. Finally, the K/k-
trace of J vanishes since it is inseparably isogenous to Pic0(Xd)/Pic

0(P1)—see [11]
or [43]—and since Pic0(Xd) vanishes. !



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 7

Index of the visible subgroup and the

Tate-Shafarevich group

In this chapter, we work under the hypotheses that r divides d, d = pν +1, and
d divides q − 1. The first goal is to understand the index of the visible subgroup
V in J(Kd). Ultimately, we find that the index is a power of p and equal to the
square root of the order of the Tate-Shafarevich group X(J/Kd). Specifically,
in Section 7.1, we determine the torsion subgroup J(Fq(u))tor and prove that the
index of V in Jr(Fq(u)) is a power of p, Theorem 7.1. In Section 7.2, we find the
Tamagawa number τ (J/Fq(u)) of the Jacobian J of C over Fq(u), Proposition 7.5.
Finally, in Section 7.3, we prove an analytic class number formula relating the
Tate-Shafarevich group X(J/Fq(u)) and the index [J(Fq(u)) : V ], Theorem 7.7.

7.1. Visible versus Mordell-Weil

Let V be the visible subgroup of J(Fq(u)), that is, the subgroup generated by

P = (u, u(u+ 1)d/r) ∈ C(Fq(u)) →֒ J(Fq(u))

and its Galois conjugates. By Corollary 5.7, we know that

rankV = rank J(Fq(u)) = (r − 1)(d− 2).

In particular, V has finite index in J(Fq(u)). In this section, we show that this
index is a power of p thus completing our knowledge of J(Fq(u)). More precisely:

Theorem 7.1. Suppose that r divides d, that d = pν + 1, and that d divides
q− 1. The torsion subgroup J(Fq(u))tor equals Vtor and has order r3. The index of
V in Jr(Fq(u)) is a power of p.

The proof is given later in this section. Before giving it, we prove a general
integrality result for regulators of Jacobians over function fields.

7.1.1. Integrality. Let B (resp. S) be a curve (resp. surface) over k = Fq. We
assume that B and S are smooth, projective, and geometrically irreducible, that
S is equipped with a surjective and generically smooth morphism π : S → B, and
that π has a section whose image we denote O. Let NS(S) be the Néron-Severi
group of S, and let L1 NS(S) and L2 NS(S) be the subgroups of NS(S) defined in
Section 6.2.1.

Let K = k(B) be the function field of B, let J/K be the Jacobian of the generic
fiber of π, let (A, τ ) be the K/k-trace of J , and let MW(J) be the Mordell-Weil
group J(K)/τA(k). By Proposition 6.14 there is an isomorphism

L1 NS(S)

L2 NS(S)
→ MW(J),

since π has a section and since k is finite.

91
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We write det(MW(J)/tor) for the discriminant of the height pairing on MW(J)
modulo torsion. Also, for each place v of K, we write Nv for the subgroup of NS(S)
generated by non-identity components of π−1(v) and dv for the discriminant of the
intersection pairing of S restricted to Nv; by convention, we set dv = 1 if Nv = 0. If
J → B is the Néron model of J/K, then it follows from [6, Section 9.6, Theorem 1]
that dv is also the order of the group of connected components of the fiber of J → B
over v.

With these notations, our integrality result is as follows.

Proposition 7.2. The rational number

|NS(S)tor|
2

(

∏

v

dv

)

det(MW(J)/tor)

|MW(J)tor|2

is an integer.

This generalizes [52, Proposition 9.1], which is the case where dim(J) = 1 and
A = 0. (In that case, NS(S)tor is known to be trivial.) The general case is closely
related to, but apparently not contained in, the discussion in [13, Section 5].

Proof. Let F be the class in NS(S) of a fiber of π. Then L1 NS(S) is the
subgroup of NS(S) consisting of classes orthogonal to F .

The intersection form on S is degenerate when restricted to L1 NS(S); indeed
its radical is ZF . We write L̄1 NS(S) and L̄2 NS(S) for the respective quotients of
L1 NS(S) and L2 NS(S) by ZF so that the intersection pairing on S then defines a
non-degenerate pairing on L̄1 NS(S). For any torsion-free subgroup L ⊂ L̄1 NS(S),
we write Disc(L) for the discriminant of the intersection form restricted to L (i.e.,
the absolute value of the determinant of the matrix of pairings on a basis); by
convention, we set Disc(0) = 1.

We identify Nv with its image in L̄2 NS(S) so that Disc(Nv) = dv and so that
there is an orthogonal direct sum decomposition

L̄2 NS(S) =
⊕

v

Nv.

We also let d =
∏

v dv so that d = Disc(L̄2 NS(S)).
Choose elements Q1, . . . , Qm ∈ MW(J) that map to a basis of MW(J)/tor and

thus a basis of

MW(J)⊗Q =
L̄1 NS(S)⊗Q

L̄2 NS(S)⊗Q
.

Each Qi has a naive lift Q̃i to L̄1 NS(S)⊗Q represented by a Z-linear combination

of “horizontal” divisors. The projection of Q̃i onto the orthogonal complement of
L̄2 NS(S)⊗Q is represented by a Q-linear combination of divisors. It follows from
Cramer’s rule that the denominator appearing in the coefficient of a component of
π−1(v) divides dv. In particular, the multiple Ri = dQi has a lift R̃i to L̄1 NS(S)
(i.e., with integral coefficients) that is orthogonal to L̄2 NS(S).

By the definition of the height pairing,

〈Ri, Rj〉 = −(R̃i) · (R̃j)

where the dot on the right hand side signifies the intersection pairing on L̄1 NS(S).
It follows that

Disc
(

ZR̃1 + · · ·+ ZR̃m

)

= d2m det(MW(J)/tor),
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since the R̃i map to a basis of d · (MW(J)/tor). Now let N be the subgroup of

L̄1 NS(S) generated by the R̃i and by L̄2 NS(S).
On the one hand, there is an orthogonal direct sum decomposition

N =
(

ZR̃1 + · · ·+ ZR̃m

)

⊕ L̄2 NS(S)

and so

Disc(N) = d2m+1 det(MW(J)/tor).

Moreover, the assumption that π has a section implies that L2 NS(S) is torsion-free
and that F is indivisible in L2 NS(S), and thus L̄2 NS(S) and N are also torsion-
free.

On the other hand, the index of N in L̄1 NS(S) is dm|MW(J)tor|. It follows
that

Disc(L̄1 NS(S)/tor)

|L̄1 NS(S)tor|2
=

Disc(N/tor)

d2m|MW(J)tor|2|Ntor|2
= d

det(MW(J)/tor)

|MW(J)tor|2
,

since N is torsion-free. Finally, if we note that

L̄1 NS(S)tor = L1 NS(S)tor = NS(S)tor,

then we find that

Disc(L̄1NS(S)/tor) = |NS(S)tor|
2

(

∏

v

dv

)

det(MW(J)/tor)

|MW(J)tor|2
.

In particular, the left side is an integer since the intersection pairing on S is integer
valued, and thus the right side is an integer as claimed. !

7.1.2. Proof of Theorem 7.1. We apply the integrality result Propo-
sition 7.2 to Xd and J .

On the one hand, NS(Xd) is torsion-free by Theorem 6.13. Moreover,
∏

v

dv = d2r−2rd+2

by Proposition 3.7.
On the other hand, the Fq(u)/Fq-trace of J vanishes by Proposition 6.31, and

thus MW(J) = J(Fq(u)). Moreover,

det(J(Fq(u))/tor)

|J(Fq(u))tor|2
= [J(Fq(u)) : V ]−2 det(V/tor)

|Vtor|2
.

We also have
det(V/tor)

|Vtor|2
= (d− 1)(r−1)(d−2)r−d−2d2−2r.

by Corollaries 4.20 and 4.24.
Applying Proposition 7.2 gives that

(d− 1)(r−1)(d−2)

[J(Fq(u)) : V ]2

is an integer. Since d = pν + 1, this shows that the index is a power of p. By
Corollary 6.1, J(Fq(u)) has no p-torsion, so J(Fq(u))tor = Vtor. This completes the
proof of the theorem. !
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7.2. Tamagawa number

In this section we compute the Tamagawa number τ (J/Fq(u)) of the Jacobian
J of C over Fq(u). First, we review the definition for a general abelian variety over
a function field and show how to calculate τ in terms of more familiar invariants.
Next, we specialize to the case of a Jacobian and relate τ to invariants of the curve.
Finally, we specialize to the Jacobian J over Fq(u) studied in the rest of this paper.

7.2.1. Tamagawa numbers of abelian varieties over function fields.

Let B be a curve of genus gB over k = Fq. Let F = Fq(B) be the function field
of B, and let AF be the adèles of F . There is a natural measure µ =

∏

µv on AF

where µv is the Haar measure that assigns measure 1 to the ring of integers Ov in
the completion Fv for each place v of F . The quotient AF /F is compact and we
set DF = µ(AF /F ). By [59, 2.1.3],

(7.1) DF = qgB−1.

Let A be an abelian variety of dimension g over F and ω a top-degree differential
on A. For each v, the differential ω induces a differential ωv on the base change
Av of A to Fv. Using µv, this produces a measure |ωv|µ

g
v on Av(Fv). When the

differential ωv is a Néron differential, then Tate has shown (cf. [45, 1.4]) that

(7.2)

∫

Av(Ov)

|ωv|µ
g
v =

#A(Fv)

qgv

where Fv is the residue field at v, qv = qdeg(v) is its cardinality, and #A(Fv) is the
number of points on the special fiber of the Néron model of A. Thus if #A(Fv)

◦ is
the number of points on the identity component of the special fiber of the Néron
model of A and we set

(7.3) λv =
#A(Fv)

◦

qgv
,

then {λv} is a set of convergence factors in the sense of Weil [59, 2.3]. In this
situation, we may form the product measure

Ω = Ω(F,ω, (λv)) = D−g
F

∏

v

λ−1
v |ωv|µ

g
v.

By the product formula, Ω is independent of the choice of ω. Finally, we define the
Tamagawa number τ (A/F ) to be the measure of the set of AF points of A with
respect to Ω.

Since A is a projective variety, A(AF ) =
∏

v A(Ov) and the measure can be
computed as a product of local factors:

τ (A/F ) = D−g
F

∏

v

λ−1
v

∫

Av(Ov)

|ωv|µ
g
v.

Using (7.2) and (7.3), the local factor λ−1
v

∫

Av(Ov)
|ωv|µ

g
v is equal to qfvv dv where

dv is the order of the group of components on the Néron model at v and fv is the
integer such that πfv

v ωv is a Néron differential at v. (Here πv is a uniformiser at v.)
Thus the product of local terms is

∏

v

qfvv dv = q
∑

v deg(v)fv
∏

v

dv.
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We want to write
∑

v deg(v)fv as a global invariant. Let σ : A → B be the Néron
model of A/L, let z : B → A be the zero section, and let

ω = z∗

(

gX
∧

Ω
1
J /B

)

=

gX
∧

(

z∗Ω1
J /B

)

.

This is an invertible sheaf on B whose degree we denote degω. It is then clear from
the definition above of fv that

∑

v deg(v)fv = − degω. Combined with the local
calculation in the preceding paragraph, this yields

(7.4) τ (A/F ) = qg(1−gB)−deg(ω)
∏

v

dv.

7.2.2. Tamagawa numbers of Jacobians. Let B be a smooth, projective,
geometrically irreducible curve of genus gB over k = Fq. Let F = k(B) be its
function field, and let X/F be a smooth, projective, and geometrically irreducible
curve of genus gX .

We give ourselves two sorts of models ofX. First, let S ′ be a normal, projective,
geometrically irreducible surface over k = Fq equipped with a surjective morphism
π′ : S ′ → B whose generic fiber is X/F . We assume that π′ is smooth away from
a finite set of points. We also assume that π′ admits a section s : B → S ′ whose
image lies in the smooth locus of S ′. Furthermore, assume that S ′ has at worst
rational double point singularities (cf. [3, Ch. 3]). Note that the singularities of S ′

lie in the singularities of π′, since B is smooth.
Second, let σ : S → S ′ be a minimal resolution of singularities, so that the

composition π = π′ ◦ σ : S → S ′ → B is a minimal regular model of X/F . In the
applications, S ′ is the model Y constructed in Chapter 3 and S is X .

Now let A/F be the Jacobian of X/F , and let τ : A → B be the Néron model
of A/F , with zero section z : B → A. Our goal in this subsection is to describe the
invariants entering into the Tamagawa number of A in terms of the surfaces S or
S ′.

We first consider the local term dv, the order of the group of connected com-
ponents of the fiber of the Néron model at v. The next proposition is not strictly
necessary for our purposes (because we were able to determine the dv from examples
treated in [6, Section 9.6]), but we include it for completeness.

Let X0, . . . , Xn be the reduced irreducible components of π−1(v). We number
them so that the section s passes through X0. Let M be the n × n matrix of
intersection numbers:

Mi,j = (Xi ·Xj), 1 ≤ i, j ≤ n.

(Note that we do not include intersections with X0.)

Proposition 7.3. dv = detM .

Proof. This follows from [6, Theorem 9.6.1]. Indeed, let I = {0, . . . , n}, and
for i ∈ I, let δi be the multiplicity of Xi in π−1(v) and ei the geometric multiplicity
of Xi. (These integers are defined more precisely in [6, Definition 9.1.3].) Since
the section s passes through X0, we have δ0 = 1. Since the residue field Fv is a
finite extension of Fq, and is therefore perfect, we have ei = 1 for all i. (A reduced
scheme over Fv remains reduced after base change to the algebraic closure of Fv.)
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Let ZI be the free abelian group on I. Let β : ZI →Z be given by β(a0, . . . , an)=
∑

aiδi, and let α : ZI → ZI be given by the intersection matrix
(

e−1
i (Xi ·Xj)

)

i,j∈I
= (Xi ·Xj)i,j∈I .

Then [6, Theorem 9.6.1] says that the group of connected components of A at v is
canonically isomorphic to kerβ/imα. Because δ0 = 1, we may identify kerβ with
the free abelian group on X1, . . . , Xn, and the result then follows immediately from
the definition of M . !

Next we turn to the global invariant deg(ω).

Proposition 7.4. Let So ⊂ S ′ be the smooth locus, and let πo : So → B the
restriction of π′ to So. Then there is an isomorphism

z∗Ω1
A/B

∼= πo
∗Ω

1
So/B.

In particular,

ω ∼=
gX
∧

(

πo
∗Ω

1
So/B

)

.

Proof. Let Lie(G) → B be the Lie algebra of a group scheme G → B (see
[12, II.2]). By [6, 9.7/1], the Néron model A → B represents the relative Picard
functor Pic0S/B since S is smooth and π admits a section. Therefore

(z∗Ω1
A/B)

∨ ∼= Lie(A/B) ∼= Lie(Pic0(S/B)) ∼= Lie(Pic(S/B)) ∼= R1π∗OS

by [28, 1.1 and 1.3].
By [23, Corollary 24] (with X = S, Y = B, and S = Spec k), the relative

dualizing sheaf ωS/B exists and satisfies

(R1π∗OS)
∨ ∼= π∗ωS/B

and
ωS/B

∼= Ω
2
S/k ⊗ π∗(Ω1

B/k)
∨.

Combining these facts and using the projection formula, we have

z∗Ω1
A/B

∼= π∗Ω
2
S/k ⊗ (Ω1

B/k)
∨.

To finish the proof, we show that

π∗Ω
2
S/k

∼= πo
∗Ω

1
So/B ⊗ Ω

1
B/k.

To that end, let ωS/k, ωS′/k, and ωSo/k be the dualizing sheaves of S, S ′, and So

respectively. Since these surfaces have at worst rational double points, their dualiz-
ing sheaves are invertible [3, §3.11, Corollary 4.19], and since S and So are smooth,
ωS/k

∼= Ω
2
S/k and ωSo/k

∼= Ω
2
So/k

∼= ωS′/k|So . Moreover, by [3, Corollary 4.19],

σ∗ωS
∼= ωS′ . Thus

π∗Ω
2
S/k

∼= π′
∗ωS′

∼= πo
∗Ω

2
So/k

where the second isomorphism holds because the complement of So in S ′ has codi-
mension 2. Finally, since πo : So → B is smooth, there is an exact sequence of
locally free sheaves

0 → πo∗
Ω

1
B/k → Ω

1
So/k → Ω

1
So/B → 0,

and so, taking the second exterior power,

Ω
2
So/k

∼= πo∗
Ω

1
B/k ⊗ Ω

1
So/B. !
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7.2.3. The Tamagawa number of J . We now specialize to the Jacobian J
that is the subject of this paper. The main result of this section is the following
calculation of the Tamagawa number of J .

Proposition 7.5. If r divides d and if d divides q − 1, then

τ (J/Fq(u)) = q−(d−2)(r−1)/2d2r−2rd+2.

The proof occupies the rest of this subsection.
Suppose that r divides d and that d divides q − 1. Recall that in Section 3.1.1

we constructed proper models π′ : Y → B and π : X → B of C/Fq(u) over B = P1
u,

i.e., schemes with proper morphisms to B whose generic fibers are C. The models
X → B and Y → B have the properties required of S and S ′ in the preceding
section, so Propositions 7.3 and 7.4 apply.

However, rather than applying Proposition 7.3, we simply refer to Proposi-
tion 3.7 to obtain:

∏

v

dv = (rdr−1)2rd = d2r−2rd+2.

To finish the proof, we must compute qgC(1−gB)−deg(ω) = qr−1−deg(ω).
Recall from Lemma 6.7 the relative 1-forms ωi which form a basis of the R-

module H0(U,π′
∗Ω

1
Y/B).

Lemma 7.6. Each ωi extends to a section in H0(B,π∗Ω
1
Y/B) that has order of

vanishing di/r at u = ∞ and is non-vanishing everywhere else.

Proof. The proof of Lemma 6.6 shows that ωi extends to a nowhere vanishing
section of π∗Ω

1
Y/B over B $ {∞}. There is an involution

(x, y, u) *→ (x/ud, y/ud(r+1)/r, 1/u),

since r divides d. The pullback of xi−1dx/yi via this involution is udi/rxi−1dx/yi

and thus it takes the non-zero regular 1-form of Y0 to a regular 1-form on Y∞ with
order of vanishing di/r. !

Clearly the sections ωi ∈ H0(B,π∗Ω
1
Y/B) restrict to elements ofH0(B,πo

∗Ω
1
Yo/B)

where Yo is the complement in Y of the finitely many singularities of Y → B
(which, since d > 1, also happen to be the finitely many singular points of Y , see
Proposition 3.1).

We conclude that
ω1 ∧ · · · ∧ ωr−1

yields a global section of ∧r−1πo
∗Ω

1
Yo/B. Moreover, the proof of Lemma 6.7 shows

that the ωi are linearly independent on each fiber of Y → B where u is finite, and
over u = ∞, the sections udi/rωi are (non-vanishing and) linearly independent. It
follows that ω1 ∧ · · ·∧ωr−1 is everywhere regular, non-vanishing away from u = ∞,
and has a zero of order

r−1
∑

i=1

di

r
=

d(r − 1)

2

at u = ∞. We conclude that deg(ω) = d(r − 1)/2 and

τ (J/K) = q(r−1)−d(r−1)/2
∏

v

dv = q−(d−2)(r−1)/2d2r−2rd+2,

as desired. This completes the proof of Proposition 7.5. !
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7.3. Application of the BSD formula

We saw in Theorem 5.2 that the Birch and Swinnerton-Dyer conjecture holds
for J/Fq(u). Moreover, under the assumptions that r divides d, that d = pν + 1,
and that d divides q − 1, we have calculated most of the terms appearing in the
leading coefficient formula of this conjecture. Synthesizing this leads to a beautiful
analytic class number formula relating the Tate-Shafarevich group X(J/Fq(u)) and
the index [J(Fq(u)) : V ].

Before deriving this result, we compare the formulation of the BSD conjecture
in Theorem 5.2 to that in [22].

7.3.1. Two variants of the refined BSD conjecture. At the time that
Tate stated the BSD conjecture in its most general form in [45], there was uncer-
tainty as to the right local factors of the L-function at places of bad reduction.
Tate therefore used the Tamagawa principle to state the leading coefficient part of
the BSD conjecture. The correct local factors were defined later by Serre in [38],
and using them we formulate the leading coefficient conjecture (as Theorem 5.2)
in what we feel is its most natural form. However, the best reference for the proof
of the leading coefficient conjecture, namely [22], uses Tate’s formulation. In this
subsection, we compare the two formulations and show that they are equivalent for
Jacobians of curves with a rational point.

To that end, let F be the function field of a curve over Fq, let Y/F be a smooth
projective curve of genus g with an F -rational point, and let A be the Jacobian of
Y . Define local L-factors for each place v of F by

Lv(q
−s
v ) := det

(

1− Frv q−s
v

∣

∣H1(A× F ,Qℓ)
Iv
)

.

Let µ =
∏

µv and DL be as in Section 7.2. Choose a top-degree differential ω on
A and form the local integrals

∫

A(Fv)

|ωv|µ
g
v

and the convergence factors

λv :=
#Av(Fv)

0

qgv
as in Section 7.2. Finally, choose a finite set S of places of F containing all places
where Y has bad reduction.

Tate’s formulation of the leading term conjecture is that the leading term as
s → 1 of

Dg
F

(

∏

v∈S

∫

A(Fv)
|ωv|µ

g
v

)(

∏

v +∈S Lv(q
−s
v )

)

is |X(A/F )|R/|A(F )tor|
2. On the other hand, our formulation asserts that the

latter quantity (i.e., |X(A/F )|R/|A(F )tor|
2) is the leading coefficient as s → 1 of

L(A/F, s)

τ (A/F )
=

(

∏

v

Lv(q
−s
v )−1

)

Dg
F

(

∏

v

λv
∫

A(Fv)
|ωv|µ

g
v

)

where both products are over all places of F . The factor on the right is 1 if v %∈ S,
so to see that the two formulations are equivalent, it will suffice to show that

Lv(q
−1
v ) = λv

for all v ∈ S.
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In fact this equality holds for all v. Indeed, [29, Lemma, page 182] implies that
Lv(q

−1
v ) is equal to #Pic0(Yv)/q

g
v where Yv is the fiber at v of a regular minimal

model of Y . But as we noted in the proof of Proposition 5.1, the assumption that
Y has a rational point implies that Pic0(Yv) is the group of Fv rational points on
A0

v, the identity component of the Néron model of A at v. Thus

Lv(q
−1
v ) =

#Pic0(Yv)

qgv
=

#A0
v(Fv)

qgv
= λv.

This completes the verification that the two formulations of the BSD conjecture
are equivalent.

7.3.2. An analytic class number formula. Now we turn to the application
of the BSD conjecture to a formula for the order of X(J/Fq(u)).

Theorem 7.7. Assume that r divides d, that d = pν + 1, and that d divides
q − 1. Then the Tate-Shafarevich group X(J/Fq(u)) has order

|X(J/Fq(u))| = [J(Fq(u)) : V ]2
(

q

p2ν

)(r−1)(d−2)/2

.

In particular, its order is a power of p. In the special case Fq(u) = Kd, then

|X(J/Kd)| = [J(Kd) : V ]2.

Proof. By Corollary 5.7 the leading coefficient of the L-function is

L∗(J/Fq(u), 1) = (log q)(r−1)(d−2).

Taking into account the factor of log q relating the Q-valued height pairing of Chap-
ter 4 and the Néron-Tate canonical height, the BSD formula for the leading coeffi-
cient says

1 =
|X(J/Fq(u))| det(J(Fq(u))/tor) τ (J/Fq(u))

|J(Fq(u)))tor|2
.

Using that

det(J(Fq(u))/tor) =
det(V/tor)

[J(Fq(u)) : V ]2

and our calculations

det(V/tor) = (d− 1)(r−1)(d−2)r4−dd2−2r

(Corollary 4.24),

τ (J/Fq(u)) = q−(d−2)(r−1)/2d2r−2rd+2

(Proposition 7.5), and

|J(Fq(u))tor| = r3

(Theorem 7.1), we find

|X(J/Fq(u))| = [J(Fq(u)) : V ]2
(

q

p2ν

)(r−1)(d−2)/2

,

as desired.
We showed in Theorem 7.1 that [J(Fq(u)) : V ] is a power of p, so the same is

true of |X(J/Fq(u))|.
The assertion for the special case Fq(u) = Kd follows from the fact that the

field of constants of Kd is Fp(µd) = Fp2ν . !
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Remark 7.8. Under the hypotheses of this section, it is possible to describe
X(J/Fq(u)) and J(Fq(u))/V as modules over the group ring Zp[Gal(Fq(u)/Fp(t))]
in terms of the combinatorics of the action by multiplication of the cyclic group
〈p〉 ⊂ (Z/dZ)× on the set Z/dZ× µr. See [53, Section 9.4] for details.
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CHAPTER 8

Monodromy of ℓ-torsion and decomposition of the

Jacobian

In this chapter, we consider the action of Galois on torsion points of the Ja-
cobian J and use the results to understand the decomposition of J up to isogeny
into a sum of simple abelian varieties. Our results depend heavily on knowledge
of the regular proper model X → P1 constructed in Chapter 3. Interested readers
are referred to [18], where a general technique for computing monodromy groups of
certain superelliptic curves is developed. The methods of [18] yield results similar
to those in this chapter in a more general context without the need to construct
regular models.

8.1. Statement of results

Let k be an algebraically closed field of characteristic p ≥ 0, let r ≥ 2 be an
integer not divisible by p, and let ℓ be a prime satisfying ℓ %= p and ℓ ∤ r. As in
the rest of this paper, let C = Cr be the smooth, projective curve over K = k(t)
birational to the affine curve given by

(8.1) yr = xr−1(x+ 1)(x+ t),

let J be its Jacobian, and let J [ℓ] be the Galois module of ℓ-torsion.
In this chapter, we study the structure of a monodromy group, namely the

Galois group of K(J [ℓ]) over K. We use the results about the monodromy group to
bound ℓ-torsion over solvable extensions of K and to determine how J decomposes
up to isogeny into a sum of simple abelian varieties, both over K and over K.

We first state the consequences of the monodromy result that motivated its
study, then discuss the monodromy result itself.

Theorem 8.1. If L/K is an abelian extension, then J [ℓ](L) = {0}. If ℓ > 3
or r is odd, then the same holds for any solvable extension L/K.

In the following section we define the “new part” of J , denoted Jnew
r , and we

show that there is an isogeny

(8.2)
⊕

s|r

Jnew
s −→ J

over K, where the sum runs over positive divisors s of r and Jnew
s is the new

part of the Jacobian of Cs. It turns out that Jnew
1 = J1 = 0 and that Jnew

s has
dimension φ(s) where φ(s) is the cardinality of (Z/sZ)× when s > 1. Moreover, the
action of µr on Cr induces an action of the ring of integers Z[ζr] ⊂ Q(ζr) on Jnew

r .
Our second main result says that Jnew

r does not decompose further over certain
extensions of K:

101
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Theorem 8.2. The new part Jnew
r is simple over K, and EndK(Jnew

r ) ∼= Z[ζr].
The same conclusions hold over K(u) where ud = t for any positive integer d not
divisible by p.

If r = 2, Jnew
r is an elliptic curve, so is obviously absolutely simple. Moreover,

it is non-isotrivial, so EndK(Jnew
r ) = Z. For r > 2, although Jnew

r is simple over
many extensions of K, we see below it is not absolutely simple.

Write Z[ζr]
+ = Z[ζr + ζ−1

r ] for the ring of integers in the real cyclotomic field
Q(ζr)

+.

Theorem 8.3. Suppose that r > 2, and let K ′ = K((1− t)1/r). Then there is
an abelian variety B defined over K such that:

(1) There is an isogeny Jnew
r → B2 defined over K ′ whose kernel is killed by

multiplication by 2r.
(2) EndK(B) = EndK(B) = Z[ζr]

+, and B is absolutely simple.

In particular, EndK(Jnew
r ) is isomorphic to an order in M2(Z[ζr]

+).

In Section 8.5.2 below, we introduce a twist Cχ of C (closely related to the
extension K ′/K) with Jacobian Jχ and new part Aχ := Jnew

χ . The curve Cχ has
an involution σ that allows us to show that Aχ is isogenous to B × B over K.
Since Aχ becomes isomorphic to Jnew

r over K ′, this explains the factorization in
Theorem 8.3.

The theorems above are applications of results on the monodromy groups of
J [ℓ] and Jχ[ℓ], in other words on the image of the natural homomorphisms from
Gal(Ksep/K) to AutFℓ

(J [ℓ]) and AutFℓ
(Jχ[ℓ]). Our detailed knowledge of the regu-

lar proper model X → P1 of C and of the Néron model of J (in Chapter 3) together
with some group theory allow us to determine the monodromy groups.

To define the group-theoretic structure of the monodromy group, consider Λ =
Fℓ[z]/(z

r−1 + · · · + 1), which is a quotient of the group ring of µr over Fℓ. The
torsion points J [ℓ] and Jχ[ℓ] have natural structures of free, rank 2 modules over
Λ, and Jχ[ℓ] admits an action of σ that “anti-commutes” with the µr action. We
ultimately find that for ℓ > 3, the monodromy group of Jχ[ℓ] is

SL2(Λ
+) ⊂ GL2(Λ)

where Λ+ is the subring of Λ generated by ζ+ ζ−1 and ζ is the class of z in Λ. This
is very natural, because SL2(Λ

+) is the commutator subgroup of the centralizer
in GL2(Λ) of the semi-direct product µr⋊〈σ〉. The results of [18] extend this
conclusion to a broad class of superelliptic Jacobians.

8.2. New and old

In this section, we establish the decomposition of J into new and old parts,
leading to the isogeny (8.2).

It is convenient to work with coordinates on C different than those in (8.1).
Namely, for s a positive divisor of r, let Cs be the smooth, projective curve birational
to the affine curve

(8.3) xsy
s
s = (xs + 1)(xs + t).

(For s = r, the coordinates here are related to those in (8.1) by (x, y) = (xr, xryr).)
For positive divisors s and s′ of r with s′ dividing s, there is a morphism πs,s′ :

Cs → Cs′ defined by πs,s′ : (xs, ys) *→ (xs′ , ys′) = (xs, y
s/s′

s ).
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Let Js be the Jacobian of Cs; it is a principally polarized abelian variety of
dimension s−1. By Albanese functoriality (push forward of divisors), πs,s′ induces
a map Js → Js′ , which we denote again by πs,s′ . Picard functoriality (pull back of
divisors) induces another map π∗

s,s′ : Js′ → Js. Considering πs,s′ and π∗
s,s′ at the

level of divisors shows that the endomorphism πs,s′ ◦ π∗
s,s′ of Js′ is multiplication

by s/s′.
The group µr ⊂ k× acts on Cr by ζr(xr, yr) = (xr, ζryr). We let µr act on

Cs via the quotient map µr → µs, so that ζr(xs, ys) = (xs, ζ
r/s
r ys). With these

definitions, the induced maps πs,s′ : Js → Js′ and π∗
s,s′ : Js′ → Js are equivariant

for the µr actions.
Let R be the group ring Z[µr]. (This agrees with the definition of R in Sec-

tion 1.2.3 since d = 1.) Then πs,s′ and π∗
s,s′ are homomorphisms of R-modules.

Now we define Jnew
s as the identity component of the intersection of the kernels

of πs,s′ where s′ runs through positive divisors of s strictly less than s:

Jnew
s :=

(

⋂

s′<s

ker (πs,s′ : Js → Js′)

)0

.

Note that Jnew
s is preserved by the action of µr on Js.

The main result of this section is a decomposition of Jr up to isogeny.

Proposition 8.4. For s > 1, the dimension of Jnew
s is φ(s) and Jnew

1 = J1 =
0. The homomorphism

⊕

s|r

Jnew
s → J

(zs) *→
∑

s|r

π∗
r,s(zs)

is an isogeny whose kernel is killed by multiplication by r.

Proof. The cotangent space at the origin of Js is canonically isomorphic to
the space of 1-forms H0(Cs,Ω

1
Cs/k

), so we may compute the differential of π∗
s,s′ :

Js′ → Js by examining its effect on 1-forms.
We computed the space of 1-forms on Cs in the proof of Lemma 6.7. In terms

of the coordinates used here, H0(Cs,Ω
1
Cs/k

) has a basis consisting of eigenforms for

the action of µr, namely ωs,i = y−i
s dxs/xs for i = 1, . . . , s − 1. It is then evident

that π∗
s,s′ induces the inclusion on 1-forms

H0(Cs′ ,Ω
1
Cs′/k

) →֒ H0(Cs,Ω
1
Cs/k

)

that sends ωs′,i to ωs,(s/s′)i.
It follows that the cotangent space of Jnew

s is spanned by the 1-forms ωs,i where
i is relatively prime to s. In particular, for s > 1, the dimension of Jnew

s is φ(s).
For s = 1, Cs has genus 0, so Jnew

1 = J1 = 0.
It is also clear that the map displayed in the statement of the proposition

induces an isomorphism on the cotangent spaces, so it is a separable isogeny. It
remains to prove that the kernel is killed by r.

Write r as a product of primes r = ℓ1 · · · ℓm. We proceed by induction on m.
If r = ℓ1 is prime, the result is obvious, since J1 = 0 and Jnew

ℓ1
= Jℓ1 .
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Before giving the proof for general r, we note that if ℓ1 divides r, considering
the action of the maps πs,s′ on divisors yields the formula:

(8.4) πr,r/ℓ1 ◦ π∗
r,s =

{

ℓπr/ℓ1,s if s divides r/ℓ1,

π∗
r/ℓ1,s/ℓ1

◦ πs,s/ℓ1 otherwise.

Now suppose that (zs)s|r is in the kernel, i.e.,

0 =
∑

s|r

π∗
r,s(zs)

in Jr. Applying πr,r/ℓ1 and using the formula (8.4), we have

0 =
∑

s|r

πr,r/ℓ1π
∗
r,s(zs)

= ℓ1
∑

s|(r/ℓ1)

πr/ℓ1,s(zs) +
∑

s∤(r/ℓ1)

π∗
r/ℓ1,s/ℓ1

πs,s/ℓ1(zs)

= ℓ1
∑

s|(r/ℓ1)

πr/ℓ1,s(zs)

where the last equality holds because zs is in Jnew
s , so is killed by πs,s/ℓ1 . By

induction, each ℓ1zs is killed by r/ℓ1, so each zs with s|(r/ℓ1) is r-torsion. Repeating
the argument with ℓ1 replaced by the other ℓi implies that all the zs with s < r are
r-torsion. Finally, the equality 0 =

∑

s|r π
∗
r,s(zs) in Jr implies that zr is r-torsion

as well. !

Remarks 8.5.

(1) We used that J1 = 0, but this is not necessary. A slight variant of the
argument works for the new part of any cyclic cover Cr → C1 even when
C1 is not assumed to be rational.

(2) Temporarily write Jnew,sub
r for Jnew

r as defined above. We could also
consider a new quotient:

Jnew,quot
r =

Jr
∑

s<r π
∗
r,sJs

.

Arguments similar to those in the proof above show that the natural map
Jnew,sub
r → Jr → Jnew,quot

r is an isogeny whose kernel is killed by r.

Corollary 8.6. Suppose that ℓ is a prime not dividing r. Then there is an
isomorphism of Fℓ-vector spaces

⊕

s|r

Jnew
s [ℓ] ∼= Jr[ℓ]

compatible with the action of µr and the action of the Galois group Gal(Ksep/K).

Proof. The isomorphism is immediate from Proposition 8.4, since ℓ does not
divide r. !

8.3. Endomorphism rings

In this section we define a ring Λ that acts naturally on J [ℓ] and record some
auxiliary results about it. As always, r > 1 is an integer and ℓ is a prime not
dividing r.
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8.3.1. Definition of Λ. For each positive divisor s of r, let Φs(z) be the s-th
cyclotomic polynomial, and let Ψs(z) = zs−1 + · · ·+ 1. Then

∏

s|r

Φs(z) = zr − 1 and
∏

1<s|r

Φs(z) = Ψr(z).

Consider the group ring of µr over Fℓ:

Fℓ[µr] ∼=
Fℓ[z]

(zr − 1)

and its quotient

Λ :=
Fℓ[z]

(Ψr(z))
=

Fℓ[z]

(zr−1 + · · ·+ 1)
.

We often write ζ for the class of z in Fℓ[µr] or Λ.
Since ℓ does not divide r, the r-th roots of unity are distinct in Fℓ, so the

polynomials Φs are pairwise relatively prime in Fℓ[z]. By the Chinese Remainder
Theorem,

Λ =
Fℓ[z]

(Ψr(z))
∼=

∏

1<s|r

Fℓ[z]

(Φs(z))

and
Fℓ[µr] ∼= Fℓ ⊕ Λ

where (1 + ζ + · · ·+ ζr−1)/r on the left corresponds to (1, 0) on the right.
Note that Os := Z[z]/(Φs(z)) is isomorphic to the ring of integers Z[ζs] in the

cyclotomic field Q(ζs) and that Os/ℓ ∼= Fℓ[z]/(Φs(z)). Therefore

Λ ∼=
∏

1<s|r

Os/ℓ,

and ζ on the left maps to an s-th root of unity ζs in the factor Os/ℓ on the right,
justifying the notational use of ζ on the left. This isomorphism is convenient as it
allows us to use certain well-known results from the theory of cyclotomic fields.

8.3.2. The subring Λ
+. Consider the involution of Fℓ[µr] that sends ζ to

ζ−1. We write Fℓ[µr]
+ for the subring of invariant elements. The factors in the

decomposition Fℓ[µr] ∼= Fℓ ⊕ Λ are preserved by the involution, and we write Λ
+

for the invariant subring Fℓ[µr]
+ ∩ Λ.

Lemma 8.7.

(1) Λ
+ is the subring of Λ generated by ζ + ζ−1.

(2) Let O+
s be the ring of integers in the real cyclotomic field Q(ζs + ζ−1

s ).
Then

Λ
+ ∼=

∏

1<s|r

O+
s /ℓ.

Proof. (1) The group ring Fℓ[µr] has Fℓ-basis 1, ζ, . . . , ζr−1, and Λ is the
quotient by the line generated by 1 + · · · + ζr−1. Let τi = ζi + ζ−i. If r is odd,
it is clear that Fℓ[µr]

+ has basis 1, τ1, . . . , τ(r−1)/2. If r is even, a basis of Fℓ[µr]
+

is given by 1, τ1, . . . , τ(r−2)/2, ζ
r/2. Since ℓ %= 2 when r is even, τr/2 = 2ζr/2 and

another basis is 1, τ1, . . . , τr/2. Projecting to Λ, we see that 1, . . . , τu is a basis of

Λ
+, where u is (r− 3)/2 or (r− 2)/2 as r is odd or even. Since τ i1 = τi plus a linear

combination of 1 and the τj with j < i, it follows that Λ+ is generated as a ring by
τ1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

106 8. MONODROMY OF ℓ-TORSION AND DECOMPOSITION OF THE JACOBIAN

(2) Under the isomorphism Λ ∼=
∏

1<s|r Os/ℓ, the involution on the left core-

sponds to complex conjugation on the right. Taking invariants yields

Λ
+ ∼=

∏

1<s|r

(Os/ℓ)
+.

By part (1), (Os/ℓ)
+ is generated as a ring by the image of ζ + ζ−1. Since O+

s is
generated as a ring by ζs + ζ−1

s [58, Proposition 2.16], the reduction map O+
s →

(Os/ℓ)
+ is surjective, so (Os/ℓ)

+ ∼= O+
s /ℓ, and this completes the proof. !

8.3.3. Primes of Λ and Λ
+. Since ℓ does not divide r, the roots of Ψr(z)

are distinct modulo ℓ, and so Λ and Λ
+ are semi-simple algebras over Fℓ.

We write λ for a prime ideal of Λ and Fλ for the quotient Λ/λ. This is a finite
extension field of Fℓ. We say that λ has level s if the quotient map Λ → Λ/λ factors
through Λ → Os/ℓ, or equivalently, if Φs(z) ∈ λ. Clearly each λ has a well-defined
level s > 1 that is a divisor of r, and we may identify the primes of Λ of level s
with the primes of Os over ℓ.

Similarly, for a prime λ+ ⊂ Λ
+, we define Fλ+ := Λ

+/λ+, and we define the
level of λ+ to be the divisor s of r such that the quotient Λ

+ → Λ
+/λ+ factors

through Λ
+ → O+

s /ℓ. Thus the primes of Λ+ of level s are naturally identified with
the primes of O+

s over ℓ.
We say that λ ⊂ Λ lies over λ+ ⊂ Λ

+ if λ ∩ Λ
+ = λ+. In this case, if λ has

level s then so does λ+, and the prime of Os corresponding to λ lies over the prime
of O+

s corresponding to λ+.

8.3.4. Splitting of primes. In this subsection, we focus on the “new” quo-
tients Or/ℓ and O+

r /ℓ of Λ and Λ
+. For typographical convenience, we omit the

subscript and write O and O+ for Or and O+
r .

We review the structure of O+/ℓ and O/ℓ, dividing into three cases: First, if
r = 2, then O = O+ = Z and O+/ℓ = O/ℓ = Fℓ.

Before defining the second and third cases, we introduce some notation. Let
or(ℓ) be the order of ℓ in (Z/rZ)×. Let o+r (ℓ) be the order of ℓ in (Z/rZ)×/〈±1〉.
Standard results in cyclotomic fields (see, e.g., [58], Chapter 2) indicate that ℓ splits
into h = φ(r)/(2o+r (ℓ)) primes in O+. Write λ+

1 . . . ,λ+
h for the primes of O+ over

ℓ. Let Fλi
:= O/λi and Fλ

+
i
:= O+/λ+

i be the residue fields.

The second case, which we call the inert case, is when r > 2 and −1 is congruent
to a power of ℓ modulo r. In this case, or(ℓ) = 2o+r (ℓ). Each λ+

i remains prime
in O, i.e., λi = λ+

i O is a prime ideal of O. The residue field Fλi
is a quadratic

extension of Fλ
+
i
.

The third case, which we call the split case, is when r > 2 and −1 is not
congruent to a power of ℓ modulo r. In this case, o+r (ℓ) = or(ℓ) and the h primes
λ+
i of O+ over ℓ each split into two primes, call them λi and λg−i, in O, where

g = 2h. The residue fields satisfy Fλi
∼= Fλg−i

∼= Fλ
+
i
and O/λ+

i is a semi-simple

quadratic algebra over Fλ
+
i
, namely Fλi

⊕ Fλg−i
.

Via the identification of primes of O and O+ over ℓ with primes of Λ and Λ
+ of

level r, the discussion in the second and third cases applies to the splitting behavior
of primes λ+ ⊂ Λ

+ in Λ.
One of the reasons it is convenient to focus on the new part O = Or is the

possibility that the primes of O+
r over ℓ may be inert in Or while the primes of O+

s

over ℓ may be split in Os for a divisor s of r.
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8.3.5. Auxiliary results. We record two lemmas to be used later.
Note that Λ is a direct sum of fields Fλ and that Fλ

∼= Fℓor(ℓ) for all λ of level r.
However, the various Fλ are non-isomorphic as Λ-modules. Similarly, the various
Fλ+ are non-isomorphic as Λ+-modules. We state this more formally for later use:

Lemma 8.8. Suppose that λ+
1 and λ+

2 are distinct primes of Λ+. Then there
does not exist an isomorphism of fields Fλ

+
1

∼= Fλ
+
2
carrying the class of ζ + ζ−1 in

Fλ
+
1
to its class in Fλ

+
2
.

Proof. Since Λ
+ is generated over Fℓ by ζ + ζ−1, a field isomorphism Fλ

+
1

∼=
Fλ

+
2
as in the statement would induce an isomorphism of Λ+-modules. But the Λ+-

modules Fλ
+
1
and Fλ

+
2
are not isomorphic since they have distinct annihilators. !

Lemma 8.9. Suppose that ℓ = 3. Then the number of primes λ+ ⊂ Λ
+ such

that Fλ+
∼= F3 is











0 if r is odd,

1 if r ≡ 2 (mod 4),

2 if r ≡ 0 (mod 4).

If r ≡ 2 (mod 4), the prime has level 2, and if r ≡ 0 (mod 4) one of the primes
has level 2 and the other has level 4.

Proof. Suppose there is a prime λ+ ⊂ Λ
+ with Fλ+

∼= F3 and choose a prime
λ ⊂ Λ over it. Then Fλ is a subfield of F9, so the multiplicative order of ζ in Fλ

must divide 8 and the level of λ must divide 8. (In particular, λ+ does not exist if
r is odd.) To finish, we note that the unique prime of O+

8 over ℓ = 3 has residue
field F9, while O+

4 and O+
2 , both being isomorphic to Z, have unique primes over

3, each with residue field F3. !

8.4. The Λ-module structure of J [ℓ]

Recall that Λ is Fℓ[z]/(z
r−1 + · · ·+1) and that J [ℓ] denotes the ℓ-torsion in J .

Proposition 8.10. The action of µr on J gives J [ℓ] the structure of a free Λ-
module of rank 2. For every prime λ of Λ, the submodule J [λ] ⊂ J [ℓ] of λ-torsion
has the structure of a free Fλ = Λ/λ-module of rank 2.

Proof. The action of µr on C = Cr and J = Jr gives the Tate module

VℓJ ∼= H1(C,Qℓ)

the structure of a module over

Qℓ[µr] ∼=
∏

s|r

Qℓ[z]/Φs(z).

The map Cr → C1 = P1 presents Cr as a Galois branched cover of P1 with Galois
group µr. In this context, a formula of Artin gives the character of H1(Cr,Qℓ)
as a representation of µr in terms of the ramification data of Cr → C1. See
[30, Corollary 2.8] for the precise statement. One finds that the character is 2(χreg−
χtriv) where χreg and χtriv are the characters of regular and trivial representations
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respectively. Thus VℓJ is isomorphic to the direct sum of two copies of the regular
representation modulo the trivial representation. Equivalently,

VℓJ ∼=





∏

1<s|r

Qℓ[z]/Φs(z)





2

where the product is over divisors of r that are > 1.
Since TℓJ ⊂ VℓJ is preserved by the action of µr and ℓ is prime to r, we have

that

TℓJ ∼=





∏

1<s|r

Zℓ[z]/Φs(z)





2

and

J [ℓ] ∼=





∏

1<s|r

Fℓ[z]/Φs(z)





2

∼= Λ
2.

This is the first assertion of the proposition. The second follows immediately from
the equality

Λ[λ] ∼= Λ/λ.

!

A slight elaboration of this argument shows that Jnew
s [ℓ] is a free module of

rank 2 over Os/ℓ for each divisor s of r.

8.5. Monodromy of J [λ]

Our next task is to study the action of Gal(Ksep/K) on J [λ] where λ is a prime
of Λ.

8.5.1. Fundamental groups. Let P1
k be the projective line over k with co-

ordinate t, so that the function field of P1
k is K = k(t). Let U be the Zariski open

subset P1
k \ {0, 1,∞}. We saw in Chapter 3 that J has good reduction at every

place of U . Proposition 3.5 and the discussion in Section 3.1.5 show that the action
of Gal(Ksep/K) on H1(C,Qℓ) is at worst tamely ramified at places in P1

k \ U . It
follows that the actions of Gal(Ksep/K) on J [ℓ] and on J [λ] ⊂ J [ℓ] factor through
the quotient Gal(Ksep/K) → πt

1(U) where πt
1(U) is the tame fundamental group

(with base point the geometric generic point given by the choice of Ksep, which we
omit from the notation).

It is known ([16, Corollary to Theorem 14] or [17, XIII.2.12]) that πt
1(U)

is topologically generated by elements γ0, γ1, γ∞ with γ0γ1γ∞ = 1 and with γx
topologically generating the inertia group at x.

Choose a basis of the free, rank 2 Λ-module J [ℓ], and fix the corresponding
isomorphism

AutΛ(J [ℓ]) ∼= GL2(Λ).

Let ρ : πt
1(U) → GL2(Λ) be the representation giving the action of π1

t (U) on J [ℓ].
Also, let ρλ : πt

1(U) → GL2(Fλ) be the composition

πt
1(U) → GL2(Λ) → GL2(Fλ),
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giving the action of πt
1(U) on J [λ]. Later in this section, we determine the image

of ρλ.

8.5.2. Twisting. It is convenient to consider a twist of C and of its Jacobian.
Let Cχ be the smooth projective curve over K associated to the affine curve

(1− t)xyr = (x+ 1)(x+ t).

It is evident that Cχ becomes isomorphic to C over the Kummer extension K(v)
where vr = 1− t.

The extension K(v)/K is unramified over U , so the action of Gal(Ksep/K)
on K(v) factors through πt

1(U), and Kummer theory shows that the character
χ : πt

1(U) → µr with χ(g) := g(v)/v satisfies χ(γ0) = 1, χ(γ1) = ζ−1 and χ(γ∞) = ζ

for some primitive r-th root of unity ζ ∈ k.
Now consider the Jacobian Jχ of Cχ. It admits an action of Z[µr] and we may

define Aχ := Jnew
χ and Jχ[λ] in the same manner we defined A = Jnew and J [λ].

Over K(v), since Jχ and J are isomorphic, it follows that Jχ[ℓ] ∼= J [ℓ] ∼= Λ
2 and

Jχ[λ] ∼= J [λ] ∼= F2
λ.

Since the action of µr on C and Cχ is via the y coordinate, we may identify ζ

above with an element of µr ⊂ Λ → Fλ. Let

ρχ : πt
1(U) → Aut(Jχ[ℓ]) ∼= GL2(Λ)

be the representation giving the action of πt
1(U) on Jχ[ℓ], and let ρχ,λ : πt

1(U) →
GL2(Fλ) be the quotient giving the action on Jχ[λ]. Then the discussion above
shows that there are isomorphisms ρχ ∼= ρ ⊗ χ and ρχ,λ ∼= ρλ ⊗ χ. We use this
“twisting” to deduce information about ρλ and ρ.

8.5.3. Local monodromy. Our next goal is to record the Jordan forms of
the matrices ρλ(γx) and ρχ,λ(γx).

Proposition 8.11. Suppose that λ ⊂ Λ is a prime of level r > 2. For x ∈
{0, 1,∞}, let gx = ρλ(γx) and gχ,x = ρχ,λ(γx). Let ζ ∈ Fλ be the primitive r-th
root of unity ζ = χ(γ∞). Then:

(1) g0 is unipotent and non-trivial, g1 is semi-simple with eigenvalues 1 and
ζ2, and g∞ is non-semi-simple with eigenvalue ζ−1 repeated twice. Equiv-
alently, writing ∼ for conjugacy in GL2(Fλ),

g0 ∼
(

1 1
0 1

)

, g1 ∼
(

1 0
0 ζ2

)

, and g∞ ∼
(

ζ−1 1
0 ζ−1

)

.

(2) gχ,0 and gχ,∞ are unipotent and non-trivial, and gχ,1 is semi-simple with

eigenvalues ζ−1 and ζ. Equivalently,

gχ,0 ∼
(

1 1
0 1

)

, gχ,1 ∼
(

ζ−1 0
0 ζ

)

, and gχ,∞ ∼
(

1 1
0 1

)

.

Note that parts (1) and (2) are equivalent via the isomorphism ρχ,λ ∼= ρλ ⊗ χ,
but we use both ρλ and ρχ,λ in the proof.

Proof of Proposition 8.11. By Proposition 3.9, the minimal regular model
X of C has semi-stable reduction at t = 0. Indeed, the fiber at 0 of X , call it X0, is
a pair of smooth rational curves crossing transversally at r points. It follows that
the action of γ0 on J [ℓ] is unipotent (see [1, Theorem 1.4] for a modern account)
and therefore that the action of γ0 on J [λ] is unipotent. It remains to see that it
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is non-trivial. To that end, let J0 be the fiber at 0 of the Néron model of J . If
I0 ⊂ πt

1(U) denotes the inertia subgroup at 0, we have

J [ℓ]I0 ∼= J0[ℓ].

By [6, 9.5, Corollary 11], the group of connected components of J0 has order r,
so is prime to ℓ. By Proposition 3.9, the identity component of J0 is a torus of
dimension r − 1. It follows that

J0[ℓ] ∼= (Z/ℓZ)r−1.

We need to understand the action of µr on this group. Since X → P1 admits a
section, [6, 9.5, Theorem 4] shows that J0

∼= Pic0(X0). Noting that µr acts on X0

by cyclically permuting the points where the two components cross, we see that
there is an isomorphism of Λ-modules

J0[ℓ] ∼= Λ.

It follows that

J [λ]I0 ∼= Fλ.

Since this has dimension 1 over Fλ, we deduce that g0 is not the identity. This
proves our claim for g0.

Our claim for gχ,0 follows from the isomorphism ρχ,λ ∼= ρλ ⊗ χ. Alternatively,
it also follows from the fact that 1− t is an r-th power in the completed local ring
k[[t]], so the regular minimal models of C and Cχ are isomorphic over k[[t]] and the
action of inertia is the same.

Now we turn to Cχ in a neighborhood of t = ∞. Changing coordinates (x, y) *→
(tx, y), the defining equation of Cχ becomes

1− t

t
xyr = (x+ 1)(x+ t−1).

But (1 − t)/t is a unit, and thus an r-th power, in k[[t−1]] so we may change
coordinates (x, y) *→ (x, (t/(1− t))1/ry), yielding

xyr = (x+ 1)(x+ t−1).

Up to substituting t−1 for t, this is exactly the defining equation of C. We conclude
that the action of γ∞ on Jχ[ℓ] is the same as the action of γ0 on J [ℓ] and similarly
for the submodules Jχ[λ] and J [λ]. In particular, gχ,∞ is unipotent and non-trivial,
as claimed.

The claim for g∞ follows from that for gχ,∞ and the isomorphism ρχ,λ ∼= ρλ⊗χ.
Now we turn to a consideration of g1. Letting I1 ⊂ πt

1(U) be the inertia group
at t = 1, our first claim is that J [λ]I1 is a one-dimensional Fλ-vector space. The
proof is very similar to the proof above that J [λ]I0 is 1-dimensional. First we note
that

J [ℓ]I1 ∼= J1[ℓ]

where J1 is the fiber of the Néron model of J at t = 1. By Proposition 3.7, the
component group of J1 has order r (the hypothesis that r divides d is not needed
at t = 1), and by Proposition 3.9, the identity component is an extension of a
1-dimensional torus by an abelian variety of dimension (r − 2)/2 if r is even, and
is an abelian variety of dimension (r − 1)/2 if r is odd. In both cases, this abelian
variety is the Jacobian of the smooth model of the curve zyr = (1 + z)2. Viewing
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this curve as a µr-Galois cover of the line allows us to compute the structure of the
ℓ-torsion of its Jacobian as a Λ-module, and we find that

J1[ℓ] ∼= Λ.

It follows that
J [ℓ]I1 ∼= Λ

and that
J [λ]I1 ∼= Fλ.

Since this has dimension 1 over Fλ, we deduce that g1 has 1 as an eigenvalue. Our
second claim is that det(g1) = ζ2, which follows from the equality g1 = g−1

0 g−1
∞ and

from previous computations for g0 and g∞. Thus the eigenvalues of g1 are 1 and
ζ2, and since r > 2, these are distinct and g1 is semi-simple as claimed.

Finally, our claim about gχ,1 follows from the isomorphism ρχ,λ ∼= ρλ ⊗ χ. !

Proposition 8.12. Suppose r = 2. For x ∈ {0, 1,∞}, let gx = ρλ(γx) and let
gχ,x = ρχ,λ(γx). Then g0 and g1 are unipotent and non-trivial, and g∞ is non-semi-
simple with eigenvalue −1 repeated twice. Equivalently, writing ∼ for conjugacy in
GL2(Fλ),

g0 ∼ g1 ∼
(

1 1
0 1

)

, and g∞ ∼
(

−1 1
0 −1

)

,

and

gχ,0 ∼ gχ,∞ ∼
(

1 1
0 1

)

, and gχ,1 ∼
(

−1 1
0 −1

)

.

Proof. The same proof as in the case r > 2 works up until the penultimate
paragraph, where g1 has eigenvalues 1 and ζ2 = 1, and thus we can no longer
deduce that g1 is semi-simple. If it were semi-simple, g1 would be the identity,
contradicting the fact that C = J has bad reduction at t = 1. Thus g1 is unipotent
and non-semi-simple in this case. !

8.5.4. Group theory. We write Gλ for ρλ(π
t
1(U)) and Gχ,λ for ρχ,λ(π

t
1(U)).

The main result of this section is a calculation of these groups.

Proposition 8.13. Let λ ⊂ Λ be a prime of level r.

(1) If ℓ = 2, then Gλ,χ is isomorphic to the dihedral group D2r of order 2r.
(2) If ℓ = 3 and r = 10, then Gχ,λ % SL2(Fλ+) = SL2(F9) and Gχ,λ is

isomorphic to Ã5, a double cover of the alternating group A5.
(3) If ℓ > 3 or ℓ = 3 and r %= 10, then

Gχ,λ
∼= SL2(Fλ+) ⊂ GL2(Fλ)

where λ+ is the prime of Λ+ under λ.
(4) For all ℓ and r,

Gλ
∼= µr ·Gχ,λ.

Proof. We first prove part (4): To see that Gλ
∼= µr · Gχ,λ, note that Gλ ⊂

µr ·Gχ,λ, since the values of χ lie in µr. For the opposite containment, we observe
that if m is an integer such that ℓm ≡ 1 (mod r), then gℓm∞ is the scalar matrix
ζ−1 and it follows that µr and Gχ,λ are contained in Gλ.

Next we claim that the lines fixed by gχ,0 and gχ,∞ are distinct. Indeed, if they

were not, then gχ,1 = g−1
χ,0g

−1
χ,∞ would fix the same line, but by Proposition 8.11, 1

is not an eigenvalue of gχ,1. Thus there is a basis e1, e2 of J [λ] such that gχ,0 fixes
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e1 and gχ,∞ fixes e2. Scaling e2 if necessary, the matrices of gχ,0 and gχ,∞ in the
new basis have the form

gχ,0 =

(

1 1
0 1

)

and gχ,∞ =

(

1 0
c 1

)

for some uniquely determined c ∈ Fλ with c %= 0. Proposition 8.11 implies that gχ,1
has trace ζ + ζ−1. Since gχ,1 = g−1

χ,0g
−1
χ,∞, we calculate that c = ζ + ζ−1 − 2.

If ℓ = 2, setting

h =

(

1 1
1 + ζ 1 + ζ−1

)

,

the reader may check that

h−1gχ,∞h =

(

0 1
1 0

)

and h−1g−1
χ,0g

−1
χ,∞h =

(

ζ−1 0
0 ζ

)

.

It follows that Gχ,λ is dihedral of order 2r, and this proves part (1).
To prove parts (2) and (3), we assume that ℓ > 2, and we apply Dickson’s

theorem [14, page 44]. It says that if ℓ > 2, then the subgroup of SL2(Fℓ) generated
by

(

1 1
0 1

)

and

(

1 0
c 1

)

is SL2(Fℓ(c)) except for one exceptional case, namely where ℓ = 3 and c2 = −1, in
which case the group is a double cover of A5.

1 For our c, Fℓ(c) = Fλ+ so, apart
from the possible exceptional case, we have Gχ,λ

∼= SL2(Fλ+). Equality holds here
in particular when ℓ > 3.

Note that in the exceptional case Fλ+ = F3(c) = F9 since [F3(c) : F3] ≤ 2 and
since −1 is not a square in F3. If Fλ+ = F9, then ζ ∈ Fλ ⊂ F81, so r divides
80 = 16 ·5. We cannot be in the exceptional case if 20|r or 8|r, because the order of
gχ,1 in PSL2 is r or r/2 as r is odd or even, and A5 has no elements of order 10 or
4. Also, c does not generate F9 if r = 4 or r = 2, so the only possible exceptional
cases are when r = 5 and r = 10.

Recalling that c = ζr + ζ−1
r − 2 and ℓ = 3, we have

c2 = ζ2r + ζ−2
r − ζr − ζ−1

r .

When r = 5, we have (c2)3 = −c2, so c2 %∈ F3 and we are not in the exceptional
case. When r = 10, −ζ10 = ζ5 and we see that

c2 = ζ210 + ζ−2
10 − ζ10 − ζ−1

10

= ζ25 + ζ−2
5 + ζ5 + ζ−1

5

= −1,

so we are in the exceptional case, i.e., Gχ,λ is a double cover of A5. !

Remark 8.14. Note that if λ ⊂ Λ is a prime of level s > 2, then J [λ] ∼= Js[λ]
as a module over πt

1(U), so Proposition 8.13 determines the monodromy of J [λ] for
all primes λ.

1Gorenstein does not state explicitly which c give rise to the exceptional case, but the para-
graph containing the first display on page 45 of [14] shows that we are in the exceptional case
exactly when ℓ = 3 and c2 = −1.
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8.6. Independence

8.6.1. Statement. In the previous section, we determined Gλ and Gχ,λ, the
images of πt

1(U) in AutFλ
(J [λ]) and AutFλ

(Jχ[λ]). Our goal in this section is to
determine G and Gχ, the images of πt

1(U) in AutΛ(J [ℓ]) and AutΛ(Jχ[ℓ]), i.e., the
image of the representations

ρℓ : π
t
1(U) → AutΛ(J [ℓ]) ∼= GL2(Λ)

and

ρχ,ℓ : π
t
1(U) → AutΛ(Jχ[ℓ]) ∼= GL2(Λ)

where Λ is the ring of endomorphisms discussed in Section 8.3. Since ρχ,ℓ ∼= ρℓ⊗χ,
it suffices to determine Gχ. It turns out that Gχ is the product over a suitable
set of λ of the Gχ,λ; the set in question is not all λ, because there is one obvious
dependency among the Gχ,λ.

To motivate the main result, consider a prime λ+ of Λ+ that splits in Λ into
primes λ1 and λ2. The proof of Proposition 8.13 shows that after choosing suitable
bases, the image of

πt
1(U) → AutFλ1

(A[λ1])×AutFλ2
(A[λ2]) ∼= GL2(Fλ1

)×GL2(Fλ2
)

is generated by the elements
((

1 1
0 1

)

,

(

1 1
0 1

))

and

((

1 0
c1 1

)

,

(

1 0
c2 1

))

where c1 and c2 are the images of ζ + ζ−1 − 2 in Fλ1
and Fλ2

. Since λ1 and λ2

lie over the same prime λ+ of Λ+, and since c1 and c2 lie in Fλ+ , there is a field
isomorphism Fλ1

∼= Fλ2
that carries c1 to c2. This shows that the image of the map

under consideration is “small”: it is the graph of an isomorphism Gχ,λ1
∼= Gχ,λ2

.
The main result of this section shows that when ℓ > 2 this is the only relation
among the Gχ,λ.

Theorem 8.15. Let S be a set of primes of Λ such that for every prime λ+ of
Λ
+ there is a unique prime in S over λ+. Let Gχ be the image of

ρχ,ℓ : π
t
1(U) → AutΛ(Jχ[ℓ]) ∼= GL2(Λ)

and let G be the image of

ρℓ : π
t
1(U) → AutΛ(J [ℓ]) ∼= GL2(Λ).

(1) If ℓ > 2, then there is an isomorphism

Gχ
∼=

∏

λ∈S

Gχ,λ.

In particular, if ℓ > 3 or ℓ = 3 and 10 ∤ r, then

Gχ
∼= SL2(Λ

+) ⊂ GL2(Λ).

(2) If ℓ = 2, then

Gχ
∼= D2r.

(3) G ∼= µr ·Gχ.

The proof of the theorem occupies the rest of this section. In the next subsec-
tion, we dispose of the easy parts of the proof. The remaining sections deal with
the main issue, namely the isomorphism Gχ

∼=
∏

λ∈S Gχ,λ for ℓ > 2.
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8.6.2. First part of the proof of Theorem 8.15. The proof of part (3) is
essentially identical to that of part (4) of Proposition 8.13 and is left to the reader.

Now consider part (2), the case ℓ = 2. In view of part (1) of Proposition 8.13,
the conclusion here is exactly the opposite of that in part (1): the Gχ,λ are highly
dependent. To prove it, we note that Cχ is hyperelliptic, as we see from the defining
equation (1 − t)xyr = (x + 1)(x + t) via projection to the x-line. Rewriting the
equation as

x2 + (t+ 1 + (t− 1)yr)x+ t = 0

and completing the square (as we may do since p %= ℓ = 2), the equation takes the
form

z2 = y2r + 2

(

t+ 1

t− 1

)

yr + 1.

The 2-torsion points on the Jacobian of a hyperelliptic curve z2 = f(y) are repre-
sented by divisors of degree zero supported on the points (y, 0) where y is a zero
of f . It follows that the monodromy group of the 2-torsion is equal to the Ga-
lois group of f . In our case, the Galois group is D2r. Indeed, the roots of f are
the solutions of yr = w1 and yr = w2 where w1 and w2 = 1/w1 are the roots
of w2 + (t + 1)/(t − 1)w + 1. The discriminant of this quadratic polynomial is
16t/(t− 1)2, so its roots lie in K(t1/2). The splitting field K0 of f is thus a degree
r Kummer extension of K(t1/2), and Gal(K(t1/2)/K) acts on Gal(K0/K(t1/2)) by
inversion, so Gχ

∼= Gal(K0/K) ∼= D2r. This proves part (2).
For use in the next section, we note that the fixed field of the cyclic group

Cr ⊂ D2r is the quadratic extension K(t1/2) of K = k(t).
To end this subsection, we prove the “in particular” part of (1). Recall that we

have shown that if ℓ > 3 or ℓ = 3 and the level of λ is not 10, then Gχ,λ
∼= SL2(Fλ+).

Let S+ be the set of all primes of Λ+ and let S be as in the statement of the theorem,
so that there is a bijection S → S+ that sends a prime λ to the prime λ+ under it.
Then the image of SL2(Λ

+) ⊂ SL2(Λ) under the projection

SL2(Λ) =
∏

λ

SL2(Fλ) →
∏

λ∈S

SL2(Fλ)

is the product
∏

λ+∈S+ SL2(Fλ+). Since

∏

λ∈S

Gχ,λ =
∏

λ+∈S+

SL2(Fλ+),

this establishes the desired isomorphism Gχ
∼= SL2(Λ

+).
To finish the proof of the theorem, it remains to establish the first sentence of

part (1). We do this in Section 8.6.5 below.

8.6.3. Several lemmas. We collect together several group-theoretic lemmas
to be used below. Recall that a group is said to be perfect if it is its own commutator
subgroup, or equivalently, if it has no non-trivial abelian quotients, and it is said
to be solvable if its Jordan-Holder factors are all abelian.

Lemma 8.16.

(1) SL2(Fq) is perfect unless q = 2, 3, in which case it is solvable.

(2) The group Ã5 of Proposition 8.13(2) is perfect.
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(3) If q > 3, the non-trivial quotients of SL2(Fq) are SL2(Fq) and PSL2(Fq).
The non-trivial quotients of SL2(F3) are SL2(F3), PSL2(F3), and Z/3Z.

The non-trivial quotients of Ã5 are Ã5 and A5.
(4) Suppose ℓ ≥ 3 and let Ha = SL2(Fℓa) for a ≥ 1. If H is a non-trivial

quotient of both Ha and Hb, then a = b. If ℓ = 3, then for all a, Ã5 and
Ha have no common non-trivial quotients.

Proof. The assertions in (1) and (3) related to SL2(Fq) are well known, see
[60, Section 3.3.2]

The group Ã5 ⊂ SL2(F9) is generated by h0 =
(

1 1
0 1

)

and h∞ =
(

1 0
i 1

)

where

i2 = −1. If Ã5 → H is a non-trivial quotient with kernel N , then N projects to
a normal subgroup of A5, i.e., to the trivial group or all of A5 since A5 is simple
[60, Section 2.3.3]. In the former case, N is either Ã5 or A5. In the latter case,

since H is non-trivial, N %= Ã5, so projects isomorphically to A5. We claim no such
N exists. Indeed, if it did, Ã5 would be the product of A5 and ±1. On the other
hand, the reader may check that (h∞h0h

−1
∞ h0)

2 = −1, which shows that Ã5 is not

the product A5 × {±1}. This shows that the quotients of Ã5 are as stated in part
(3).

Since A5 is non-abelian and simple, and thus perfect, the commutator subgroup
of Ã5 projects onto A5. The analysis of the preceding paragraph shows it is all of
Ã5, i.e., Ã5 is perfect. This establishes part (2).

Part (3) gives us a list of quotients of SL2(Fq) and Ã5, and part (4) is then
reduced to an easy exercise by considering the orders of the quotients. Indeed, if
ℓ > 3, the non-trivial quotients of SL2(Fℓa) have order ℓa(ℓ2a − 1) or ℓa(ℓ2a − 1)/2
and these numbers are all distinct for distinct values of a. If ℓ = 3, the non-trivial
quotients have order ℓa(ℓ2a−1) or ℓa(ℓ2a−1)/2 or 3, with 3 occuring only if a = 1.
Again, there are no coincidences, and this establishes the part of (4) related to Ha

and Hb. To establish the last sentence, note that the non-trivial quotients of Ã5

have order 120 or 60. These numbers are divisble by 3 and not by 9, and they are
not 3(32 − 1) = 24 nor 3(32 − 1)/2 = 12, so Ã5 and SL2(F3a) have no common
non-trivial quotients. !

Given a field automorphism φ : Fq→Fq , we define an automorphism SL2(Fq) →
SL2(Fq) by applying φ to the matrix entries. Similarly, φ gives a well-defined
automorphism of PSL2(Fq).

Lemma 8.17. Assume that q is odd.

(1) Every automorphism of PSL2(Fq) is given by congugation by an element
of GL2(Fq) composed with a field automorphism as above.

(2) Every automorphism of PSL2(Fq) lifts (uniquely) to SL2(Fq).

Proof. For (1), see [35, p. 795]. It follows immediately that an automorphism
of PSL2(Fq) lifts to SL2(Fq) since conjugation and field automorphisms both pre-
serve the kernel {±1} of SL2(Fq) → PSL2(Fq). Since the kernel is central, any two
lifts would differ by a homomorphism PSL2(Fq) → {±1}, and there are no non-
trivial such homomorphisms by Lemma 8.16 part (3). This establishes part (2). !

Lemma 8.18.

(1) (“Goursat’s lemma”) Let H1 and H2 be groups, and let H ⊂ H1 × H2

be a subgroup that projects surjectively onto H1 and H2. Identify the
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kernel Ni of H → H3−i with a subgroup of Hi. Then the image of H in
H/N1 ×H/N2 is the graph of an isomorphism H/N1 → H/N2.

(2) With assumptions as in part (1), assume that H1 and H2 have no common
non-trivial quotients. Then H = H1 ×H2.

(3) Suppose that H1, . . . , Hn are groups with each Hi perfect, and suppose that
H ⊂ H1 × · · · × Hn is a subgroup such that for all 1 ≤ i < j ≤ n, the
projection H → Hi ×Hj is surjective. Then H = H1 × · · ·×Hn.

Proof. Part (1) is proved in [35, Lemma 5.2.1]. Part (2) is immediate from
part (1). Part (3) is [35, Lemma 5.2.2]. !

8.6.4. Pairwise independence. Our aim in this section is to prove the fol-
lowing pairwise independence result.

Proposition 8.19. If λ1 %= λ2 are distinct primes in S, then

πt
1(U) → Gχ,λ1

×Gχ,λ2

is surjective.

Proof. Note that if r = 2 then S is a single prime, so the proposition is
vacuous. Thus we assume r > 2.

We writeG12 for the image in the proposition, and we note that by the definition
of the Gχ,λ, G12 projects surjectively onto each factor Gχ,λi

.
We first treat the case ℓ > 3. Fix isomorphisms Gχ,λi

∼= SL2(Fλ+
i
) for i = 1, 2.

Here and below, we write λ+
i for the prime of Λ+ under λi . Let gi,0 and gi,∞

be the images of γ0 and γ∞ ∈ πt
1(U) in SL2(Fλ

+
i
). By Proposition 8.11, these are

unipotent matrices.
By Lemma 8.18(2) we may assume that Gχ,λ1

and Gχ,λ2
have common non-

trivial quotients. By Lemma 8.16(3) this occurs if and only if Fλ
+
1
and Fλ

+
2
have

the same cardinality.
If G12 is not all of the product, the Lemma 8.18(1) yields either an isomorphism

SL2(Fλ
+
1
) → SL2(Fλ

+
2
) or an isomorphism PSL2(Fλ

+
1
) → PSL2(Fλ

+
2
). In the former

case, since this isomorphism is induced by the image of πt
1(U) in G12, it sends

g1,0 to g2,0 and g1,∞ to g2,∞. In the latter case, the isomorphism lifts to SL2 by
Lemma 8.17(2). Moreover, the lifted isomorphism sends g1,0 to ±g2,0. In fact, by
Lemma 8.17(3) the image must be +g2,0 because g1,0 is unipotent and −g2,0 is not.
Similarly, the lifted automorphism must send g1,∞ to g2,∞.

Summarizing, if G12 is not all of the product, we have an isomorphism

ψ : SL2(Fλ
+
1
) → SL2(Fλ

+
2
)

such that ψ(g1,0) = g2,0 and ψ(g1,∞) = g2,∞. But such an isomorphism is impos-
sible. Indeed, by Lemma 8.17(1), ψ is the composition of conjugation and a field
automorphism φ : Fλ+

1
→ Fλ+

2
. Since ψ(g−1

1,0g
−1
1,∞) = g−1

2,0g
−1
2,∞, φ must send the trace

of g−1
1,0g

−1
1,∞ to the trace of g−1

2,0g
−1
2,∞. By Proposition 8.11(2), these traces are the

images of ζ + ζ−1 ∈ Λ
+ in Fλ

+
1

and Fλ
+
2
. But Lemma 8.8 shows that no such φ

exists, so no such ψ exists either. We conclude that G12 is all of the product, as
desired.

Now assume ℓ = 3. If Gχ,λi
are both SL2(Fℓa) with a > 1, then the argument

above applies verbatim. Thus it remains to treat the possibilities that Gχ,λi
∼= Ã5

or SL2(F3). The Ã5 case does not in fact occur. Indeed, Gχ,λ
∼= Ã5 if and only of
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r = 10, and O+
10 has a unique prime over ℓ = 3, so there do not exist two distinct

primes λi ∈ S with Gχ,λi
∼= Ã5.

The last case to discuss is when Gχ,λi
∼= SL2(F3), and by Lemma 8.9 this does

indeed occur exactly when 4|r, the two primes being the unique primes over ℓ = 3
of levels 2 and 4. The argument above is not sufficient in this case, because SL2(F3)
has an additional quotient, namely Z/3Z. But we may argue directly as follows:
By Proposition 8.11, in this case G12 is generated by

h0 =

((

1 1
0 1

)

,

(

1 1
0 1

))

and h∞ =

((

1 0
−1 1

)

,

(

1 0
1 1

))

.

Then we compute directly that

(

g0g∞g−1
0 g∞g0g

−1
∞

)2
=

((

1 0
−1 1

)

,

(

1 0
0 1

))

and
(

g∞g0g
−1
∞ g0g∞g−1

0

)2
=

((

1 1
0 1

)

,

(

1 0
0 1

))

.

It follows immediately that G12 = SL2(F3)× SL2(F3). This completes the proof of
the proposition. !

8.6.5. End of the proof of Theorem 8.15. We divide S into the disjoint
union of

S1 = {λ ∈ S |Gχ,λ %∼= SL2(F3)}

and

S2 = {λ ∈ S |Gχ,λ
∼= SL2(F3)} .

If λ ∈ S1, then by Lemma 8.16, Gχ,λ is perfect. Applying Proposition 8.19 and
Lemma 8.18(3), we conclude that

πt
1(U) →

∏

λ∈S1

Gχ,λ =: H1

is surjective.
Note that by Lemma 8.9, S2 has at most two elements, so Proposition 8.19

shows that

πt
1(U) →

∏

λ∈S2

Gχ,λ =: H2

is surjective.
Now H1 is a product of perfect groups, so is perfect, whereas H2 is a product of

solvable groups, so is solvable. Therefore H1 and H2 have no common non-trivial
quotients. It follows from Lemma 8.18(2) that

πt
1(U) → H1 ×H2

is surjective. Since

H1 ×H2 =
∏

λ∈S

Gχ,λ,

this completes the proof of the theorem. !

8.7. Conclusion

We are now in position to prove the results stated in Section 8.1.
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8.7.1. Torsion. In view of Corollary 8.6, the following is a slight strengthening
of Theorem 8.1.

Theorem 8.20. If L/K is an abelian extension, then Jnew
r [ℓ](L) = 0. If r %=

2, 4 or ℓ > 3, then the same conclusion holds for any solvable extension L/K.

Proof. Let L/K be a finite extension and write A for Jnew
r . Noting that

A[ℓ](L) = A[ℓ](L ∩K(A[ℓ])) and that the intersection of a Galois extension with a
solvable or abelian extension is again solvable or abelian, we may replace L with
L ∩K(A[ℓ]).

If L/K is abelian, we have Gal(K(A[ℓ])/L) ⊃ [G,G] where [G,G] is the com-
mutator subgroup of G = Gal(K(A[ℓ]/K)). Thus A[ℓ](L) ⊂ A[ℓ](F ) where F is the
subfield of K(A[ℓ]) fixed by [G,G], and it suffices to show that A[ℓ](F ) = 0.

If r %= 2, 4 or ℓ > 3, then by Theorem 8.15, G = Gal(K(A[ℓ]/K)) is isomorphic
to µr · SL2(O

+/ℓ) and SL2(O
+/ℓ) is a product of groups SL2(Fλ) with |Fλ| > 3. It

follows that the commutator subgroup [G,G] satisfies

[G,G] ∼=
∏

λ

SL2(Fλ).

The invariants of this group acting on A[ℓ] ∼=
∏

λ F
2
λ are trivial, so A[ℓ](F ) = 0 as

desired.
If ℓ = 3 and r = 2 or 4, then G ∼= µr · SL2(F3) and [G,G] is the subgroup

of SL2(F3) generated by
(

0 1
−1 0

)

and
(

−1 −1
−1 1

)

. (This is the 2-Sylow subgroup of

SL2(F3).) Since the eigenvalues of
(

0 1
−1 0

)

are ±
√
−1, already this matrix has no

invariants on F2
3, so a fortiori [G,G] has no invariants, and again A[ℓ](F ) = 0 as

desired.
If ℓ = 2, then G ∼= D2r and [G,G] ∼= Cr, the cyclic group of order r. This

groups acts on A[ℓ] by characters of order r, so has no non-zero invariants, and we
again have A[ℓ](F ) = 0.

If L is only assumed to be solvable, the same argument works provided that
ℓ > 3 or r %= 2, 4, because in these cases the derived series of G stabilizes at
∏

λ SL2(Fλ). !

8.7.2. Decomposition of Aχ. In this section, we prove a slight refinement
of Theorem 8.3. Throughout, we assume r > 2.

Recall that Cχ was defined by

(1− t)xyr = (x+ 1)(x+ t).

We observe that there is an involution σ : Cχ → Cχ defined by

σ(x, y) =

(−x− t

x+ 1
,
1

y

)

and that we have the equality σζr = ζ−1
r σ of automorphisms of Cχ. There is an

induced action of σ on Jχ that preserves Aχ = Jnew
χ , and the equality σζr = ζ−1

r σ

holds in the endomorphism ring of Aχ as well.

Let K ′ = K((1− t)1/r), so that Aχ and A become isomorphic over K ′. In view
of this isomorphism, Theorem 8.3 is implied by the following.

Theorem 8.21. Let B be the abelian subvariety (1 + σ)Aχ ⊂ Aχ.

(1) There is an isogeny Aχ → B2 over K whose kernel is killed by multipli-
cation by 2r.

(2) EndK(B) = EndK(B) = Z[ζr]
+, and B is absolutely simple.
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Proof. Define morphisms

Aχ → (1 + σ)Aχ × (1− σ)Aχ

P *→ ((1 + σ)P, (1− σ)P )

and

(1 + σ)Aχ × (1− σ)Aχ → Aχ

(P1, P2) *→ P1 + P2.

Using that σ2 = 1, we find that the compositions are both multiplication by 2. This
proves that Aχ is isogenous to (1 + σ)Aχ × (1− σ)Aχ by an isogeny whose kernel
is killed by 2.

Now consider the element δ = ζr − ζ−1
r of End(Aχ). Using that r > 2 and

considering the action on differentials we see that δ is an isogeny, and since the
norm of δ as an element of Z[ζr] divides r, the kernel of δ is killed by r.

We compute that (1 + σ)δ = δ(1− σ) and (1− σ)δ = δ(1 + σ), so the isogeny
δ : Aχ → Aχ exchanges the subvarieties (1 + σ)Aχ and (1 − σ)Aχ. In particular,
(1− σ)Aχ is isogenous to B = (1+ σ)Aχ by an isogeny whose kernel is killed by r.

Combining this with the isogeny Aχ → (1+ σ)Aχ × (1− σ)Aχ, we see that Aχ

is isogenous to B ×B by an isogeny with kernel killed by 2r. This proves the first
part of the theorem.

For the second part, since

(1 + σ)(ζr + ζ−1
r ) = (ζr + ζ−1

r )(1 + σ),

we have that O+ = Z[ζr]
+ ⊂ EndK(B). Thus it suffices to prove that EndK(B) =

O+.
Let F be a finite extension of K such that all elements of EndK(B) are defined

over F . Let ℓ be a prime %= p and not dividing 2r such that ℓ > [F : K]. We claim
that restriction induces an isomorphism Gal(F (Aχ[ℓ])/F ) ∼= Gal(K(Aχ[ℓ])/K).
Clearly it is injective, so it suffice to show it is onto. Let H be the image, a
subgroup of Gχ = Gal(K(Aχ[ℓ])/K) and note that the index of H in Gχ is at most
[F : K]. If g ∈ Gχ has order ℓ, then the orbits of g on the coset space Gχ/H
have size 1 or ℓ. Since |Gχ/H| ≤ [F : K] < ℓ, they must have order 1, so g ∈ H.
But Theorem 8.15 and the proof of Proposition 8.13 show that Gχ is generated by
elements of order ℓ, so H = Gχ, establishing our claim.

Next we note that the existence of the isogeny Aχ → B × B and the isogeny
δ : Aχ → Aχ switching the two factors shows that F (B[ℓ]) = F (Aχ[ℓ]). Thus we
have

Gal(F (B[ℓ])/F ) ∼= Gal(F (Aχ[ℓ])/F ) ∼= Gal(K(Aχ[ℓ])/K) ∼= SL2(O
+/ℓ)

where the last isomorphism is Theorem 8.15.
Now we assume for convenience that ℓ splits completely in Q(ζr)

+, i.e., that
ℓ ≡ ±1 ∈ (Z/rZ)×. In this case O+/ℓ is the product of φ(r)/2 copies of Fℓ

and SL2(O
+/ℓ) is the product of φ(r)/2 copies of SL2(Fℓ). The Fℓ-subalgebra

of AutFℓ
(B[ℓ]) ∼= Mφ(r)(Fℓ) generated by SL2(O

+/ℓ) is then isomorphic to the
product of φ(r)/2 copies of M2(Fℓ) and thus has dimension 2φ(r). By the double
centralizer theorem [25, Theorem. 2.43], the centralizer of SL2(O

+) in AutFℓ
(B[ℓ])

has dimension φ(r)/2 over Fℓ. Since EndF (B)/ℓ lies in this centralizer, it has
dimension at most φ(r)/2, and thus EndF (B) has Z-rank at most φ(r)/2. But
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O+ ⊂ EndF (B) has Z-rank φ(r)/2 and is a maximal order in its fraction field, so
we have O+ = EndF (B) = EndK(B), as desired.

Finally, we note that since EndK(B) is a domain, B is absolutely simple.
This completes the proof. !

8.7.3. Simplicity of A. Note that k(t1/d) is linearly disjoint from k((1−t)1/r)
for any value of d. Thus the following implies Theorem 8.2.

Theorem 8.22. Suppose that F is a finite extension of K that is linearly
disjoint from k((1 − t)1/r). Then A = Jnew

r is simple over F , and we have
EndF (A) ∼= Z[ζr].

Proof. O = Z[ζr] is a domain, so if EndF (A) ∼= O, then A is simple over F .
It thus suffices to show that EndF (A) ∼= O.

Noting that EndK(A)⊗Q = M2(Q(ζr)
+) is a central simple algebra of dimen-

sion 4 over Q(ζr)
+, the double centralizer theorem implies that

dimQ(ζr) (EndF (A)⊗Q) ≤ 2.

But EndK(A) ⊗ Q is generated over Q(ζr) by 1 and σ. Our hypothesis on F and
Proposition 8.15 imply that there is an element of Gal(F (A[ℓ])/F ) acting on A[ℓ]
as ζr. Since σ does not commute with ζr, we conclude that σ %∈ EndF (A) and
therefore EndK(A)⊗ Q = Q(ζr). Since O is the maximal order in Q(ζr), we have
EndF (A) ∼= O, as desired. !
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APPENDIX A

An additional hyperelliptic family

A.1. Introduction

In Section 1.6, we write that the methods used in this paper may be applied
to the study of the arithmetic of Jacobians of other generalizations of the Legendre
curve. In this appendix, we give more details on a family of curves mentioned in
that section.

Let g denote an odd positive integer, p an odd prime, and k a finite field of
characteristic p and cardinality q. Let a1, . . . , ag ∈ k be distinct and non-zero, and
let X be the smooth, projective, hyperelliptic curve over K = k(t) with affine model

(A.1) y2 = x

g
∏

i=1

(x+ ai)(aix+ t).

Note that X has genus g. When g = 1, X is essentially the Legendre curve, and
there are differences between the cases g = 1 and g > 1, so from now on we assume
that g > 1.

Write JX for the Jacobian of X. Let ν be a nonnegative integer, d = qν + 1,
and set Kd = k(µd, u) where ud = t. Our main object of study is the Mordell-Weil
group JX(Kd) and a certain subgroup of it generated by explicit divisors on X.

The principal results of this appendix are:

Theorem A.1.

(1) JX satisfies the conjecture of Birch and Swinnerton-Dyer over each of the
fields Kd.

(2) The 2-power torsion subgroup of J(Kd) has the form

(Z/2aZ)× (Z/2Z)2g−1

for some integer a > 1.
(3) The rank of JX(Kd) is at least d− 1.
(4) The rank of JX(Kd) is at most g2d.

The proof of the theorem will occupy the rest of the appendix. For point (3),
we will exhibit explicit divisors generating a subgroup of JX(Kd) of rank at least
d− 1.

A.2. The BSD conjecture

In this section, we prove part (1) of Theorem A.1.
Consider the curve X over Kd and let Xd be a smooth, projective surface over

k(µd) equipped with a morphism Xd → P1 whose generic fiber is X/Kd. One may
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construct Xd starting from the affine surface over k(µd) defined by

y2 = x

g
∏

i=1

(x+ ai)(aix+ ud)

together with its projection to the affine line with coordinate u.
As reviewed in [51] (and already used in Theorem 5.2), in order to show that

Xd satisfies the Tate conjecture and JX satisfies the BSD conjecture, it suffices to
show that Xd is dominated by a product of curves.

To show that the surface Xd admits a dominant rational map from a product
of curves, we consider the affine surface Yd defined by the equation

xgy2 =

g
∏

i=1

(x+ ai)(aix+ ud).

Observe that since g is odd, Yd is birational to Xd.
Let Cd denote the smooth, affine curve defined by the equation

w2 =

g
∏

i=1

(zd + ai).

Define a morphism

ϕ : Cd × Cd → Yd

by (w1, z1, w2, z2) *→ (x, y, u) = (zd1 , w1w2, z1z2). It is easy to see that ϕ is gener-
ically finite of degree 2d. This proves that Yd, and thus Xd, is dominated by a
product of curves, and it completes the proof of part (1) of Theorem A.1.

Since it is easy to do so, we add some further details on ϕ. First, note that Cd
admits an action of the group G = µ2×µd. Let G act on Cd×Cd “anti-diagonally”;
that is, for g ∈ G and P,Q ∈ Cd(K), we define

(P,Q)g = (P g, Qg−1

).

We claim that ϕ induces a birational isomorphism from the quotient (Cd × Cd)/G
to the surface Xd. Indeed, it is clear from the expression defining ϕ that ϕ factors
through the quotient, and therefore induces a dominant rational map of degree 1,
in other words, a birational isomorphism.

We note that the arguments of this section prove more generally that the BSD
conjecture holds for X over the fields Fqn(t

1/d) for any n and any d prime to p.

A.3. Descent

In this section, we prove parts (2) and (3) of Theorem A.1.
Let Q∞ be the unique point at infinity with respect to the model (A.1). We

embed X in JX using Q∞ as a base point:

X → JX

P *→ P −Q∞,

and we identify points of X with their images in JX .
Let Q0 denote the point (0, 0). For 1 ≤ j ≤ g, let Qj denote the point (−aj , 0),

and let Q′
j denote the point (−t/aj , 0). These (together with Q∞) are the Weier-

strass points of X, they are K-rational, and it is well known that their images in
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JX generate its 2-torsion subgroup. The divisor of the function y is

Q0 +

g
∑

j=1

(

Qj +Q′
j

)

− (2g + 1)Q∞,

so

(A.2) Q0 = −
g

∑

j=1

(

Qj +Q′
j

)

=

g
∑

j=1

(

Qj +Q′
j

)

in JX . Thus the points Qj and Q′
j for 1 ≤ j ≤ g form a basis of the F2-vector space

JX(K)[2].
Fix a primitive d-th root of unity ζd in Kd. For 0 ≤ j ≤ d− 1, let

Pj =

(

ζ
j
du, (ζ

j
du)

(g+1)/2

g
∏

i=1

(ζjdu+ ai)
d/2

)

.

Recall that g is odd, and that q is odd, so d = qν + 1 is even. Observe that the Pj

are in X(Kd). Indeed, substituting ζ
j
du for x in the right hand side of (A.1), we

find

ζ
j
du

g
∏

i=1

(ζjdu+ ai)(aiζ
j
du+ ud) = ζ

j
du

g
∏

i=1

(ζjdu+ ai)ζ
j
du(ζ

−j
d uqν + ai)

= (ζjdu)
g+1

g
∏

i=1

(ζjdu+ ai)
qν+1

since aq
ν

i = ai and ζ
qν

d = ζ−1
d .

Let T be the subgroup of JX(Kd) generated by the Qj and Q′
j , and let V be the

subgroup of JX(Kd) generated by T and the Pj . Using a map related to 2-descent,
we are going to prove that the image of T in JX(Kd)/2JX(Kd) has dimension 2g−1
and that the image of V in JX(Kd)/2JX(Kd) has dimension d+ 2g − 1.

These assertions imply parts (2) and (3) of Theorem A.1 by a standard descent
argument which we now review. We have already seen that T , the subgroup gener-
ated by the Qj and Q′

j , is equal to JX(Kd)[2]. By the structure theorem for finitely
generated abelian groups, the 2-power torsion subgroup JX(Kd)[2

∞] satisfies

JX(Kd)[2
∞] ∼=

t
⊕

ℓ=1

(Z/2eℓZ)

for uniquely determined integers t and eℓ with e1 ≥ e2 ≥ · · · ≥ et > 0. Since
JX(Kd)[2] has dimension 2g over F2, we have that t = 2g. Once we know that
the image of JX(Kd)[2] in JX(KD)/2JX(Kd) has dimension 2g − 1, we find that
exactly one of the eℓ is > 1. This reduces part (2) of Theorem A.1 to our claim
that the image of T in JX(Kd)/2JX(Kd) has dimension 2g − 1.

For part (3), we note that the structure theorem for finitely generated abelian
groups plus the calculation that JX(Kd)[2] has dimension 2g over F2 implies that

dimF2
(JX(Kd)/2JX(Kd)) = ρ+ 2g

where ρ is the rank of JX(Kd). Once we know that the dimension of the image of
V in JX(Kd)/2JX(Kd) is d+2g− 1, we may conclude that ρ ≥ d− 1. This reduces
part (3) of Theorem A.1 to our claim that the image of V in JX(Kd)/2JX(Kd) has
dimension d+ 2g − 1.
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We now turn to calculating the dimensions of the images of T and V in
JX(Kd)/2JX(Kd). In parallel with the discussion in Section 2.2, we define a 2-
descent map

(x− T ) : DivX(Kd) −→
(

K×
d /K×2

d

)2g+1

to serve as a substitute for the coboundary map from JX(Kd)/2JX(Kd) to the
cohomology group H1(Kd, JX [2]). We start by defining a map

(x− T ) : X(Kd) −→
(

K×
d /K×2

d

)2g+1

and then extend by Z-linearity to DivX(Kd).
To lighten notation, write W for (K×

d /K×2
d )2g+1 and

w = (w0, w1, . . . , wg, w
′
1, . . . , w

′
g)

for an element of W . If P ∈ X(Kd) and P %= Qj , Q
′
j , Q∞, then the map is defined

by

(x− T )(P ) = (w0, w1, . . . , wg, w
′
1, . . . , w

′
g)

where

w0 = x(P ),

wi = x(P ) + ai for 1 ≤ i ≤ g,

w′
i = aix(P ) + t for 1 ≤ i ≤ g.

When P = Qj or Q′
j , this expression needs further clarification, since it gives zero

for one coordinate. Instead, we set the value at that coordinate to be the product of
the other coordinates (cf. Prop 2.7). Finally, we define (x−T )(Q∞) = (1, 1, . . . , 1).

An analysis parallel to that in Chapter 2 and [8] shows that the composition

Div0 X(Kd) → JX(Kd) → JX(Kd)/2JX(Kd)

→֒ H1(Kd, JX [2]) ⊂
(

K×
d /K×2

d

)2g+1

is equal to the restriction of (x− T ) to Div0 X(Kd). In particular, to compute the
images of T and V in JX(Kd)/2JX(Kd), it will suffice to compute their images in
W , i.e., their images under (x− T ).

Note that t and the elements of k = Fq are squares in K×
d , i.e., trivial in

K×
d /K×2

d . From this it follows that (x−T )(Q0) is trivial, and in view of (A.2), we
have

(x− T )





g
∑

j=1

(

Qj +Q′
j

)



 = (1, . . . , 1).

(This can also of course be checked directly.) It follows that the dimension of the
image of T in W is at most 2g−1 and the dimension of V in W is at most d+2g−1.
To complete the proof, we must show that these inequalities are in fact equalities.

Observe that the field of constants in Kd is isomorphic to Fq2ν . The norm map

F×
q2ν −→ F×

qν

is given by α *→ αd and is surjective. It follows that any a ∈ k = Fq has a d-th root
in Kd, and the place of K = k(t) where t − a vanishes splits into d places in Kd.

These are the places where u− ζ
j
dα vanishes with 0 ≤ j ≤ d− 1 and α a fixed d-th

root of a.
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Now fix a d-th root αi of a1ai for 1 ≤ i ≤ g. It will be convenient later to assume
that α1 = −a1. (This is legitimate, since a1 ∈ Fq so (−a1)

d = (−a1)
q+1 = a21.) Let

πi be the place of Kd where u − αi vanishes, and let ordπi
be the corresponding

valuation.
In parallel with the proof of Prop. 2.8, define a linear map pr1 : W → F

2g
2 by

pr1(w) =
(

ordπ1
(w1), . . . , ordπg

(w1), ordπ1
(w′

1), . . . , ordπg
(w′

1)
)

.

Let I be the g×g identity matrix over F2 and let B be the g×g matrix over F2 whose
first row entries are all 1 and whose other entries are 0. Then a straightforward
application of the definitions shows that the matrix whose rows are pr1 ◦(x−T )(Qj)
(for 1 ≤ j ≤ g) followed by pr1 ◦(x− T )(Q′

j) (for 1 ≤ j ≤ g) has the form

(A.3)

(

B I
I B

)

.

This matrix has rank 2g− 1 which implies that the dimension of the image of T in
W is 2g − 1. This completes the proof of part (2) of Theorem A.1.

Working toward part (3) of the theorem, we next consider the images of the
points Pj under pr1 ◦ (x−T ). Keeping in mind our choice of α1 above, we find that

(A.4) pr1 ◦ (x− T )(Pj) =

{

(1, 0, . . . , 0, 1, 0, . . . , 0) if j = 0

(0, . . . , 0) if j %= 0

where the entries 1 appear in columns 1 and g + 1. In particular, using equa-
tions (A.3) and (A.4), we have

pr1 ◦ (x− T )(P0) = pr1 ◦ (x− T )



Q1 +

g
∑

j=2

Q′
j



(A.5)

= pr1 ◦ (x− T )



Q′
1 +

g
∑

j=2

Qj



 .(A.6)

It follows that the image of V in F
2g
2 is the same as the image of T in F

2g
2 , and this

image has dimension 2g − 1. Let V1 denote the kernel of the map

pr1 ◦ (x− T ) : V → F
2g
2 .

We have that V1 contains 2V , Pj for 1 ≤ j ≤ d − 1, and (by equations (A.5) and
(A.6)) the elements

P0 +Q1 +

g
∑

j=2

Q′
j and P0 +Q′

1 +

g
∑

j=2

Qj .

A dimension count then shows that these elements generate V1.
Now we introduce a second projection pr2 : W → Fd

2. Namely, let ρj be the

place of Kd where u+ζ
−j
d a1 vanishes, and let ordρj

be the corresponding valuation.
Then define

pr2(w) =
(

ordρ0
(w1), . . . , ordρd−1

(w1)
)

.

Let e0, . . . , ed−1 be the standard basis of Fd
2 with a shift of one in the indexing

(so e0 = (1, 0, . . . , 0) and ed−1 = (0, . . . , 0, 1)). Then a straightforward calculation
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reveals that

pr2 ◦ (x− T )(Pj) = ej ,

pr2 ◦ (x− T )(Q1) =

d−1
∑

ℓ=0

eℓ,

pr2 ◦ (x− T )(Qj) = 0 for 2 ≤ j ≤ g,

pr2 ◦ (x− T )(Q′
1) =

d−1
∑

ℓ=0

eℓ,

and

pr2 ◦ (x− T )(Q′
j) = 0 for 2 ≤ j ≤ g.

It follows easily that pr2 ◦ (x − T ) sends V1 surjectively onto the codimension
1 subspace of Fd

2 where the first entry vanishes. Denoting by V2 the kernel of
pr2 ◦ (x− T ) on V1, we also see that V2 is generated by 2V and the element

d−1
∑

j=0

Pj +Q1 +

g
∑

j=2

Q′
j .

To finish the proof, we note that

(x− T )





d−1
∑

j=0

Pj +Q1 +

g
∑

j=2

Q′
j



 %= 0.

For example, its component w2 is

g
∏

ℓ=3

(t− a2aℓ),

and this is not a square in Kd since the ai are distinct.
In summary, we have shown that V/V1 has dimension 2g − 1, V1/V2 has di-

mension d− 1 and V2 has a 1-dimensional image in W . This shows that the image
of V in W has dimension d + 2g − 1, and this completes the proof of part (3) of
Theorem A.1.

A.4. Degree of the L-function

In this section, we sketch a proof of part (4) of Theorem A.1.
Since the BSD conjecture holds for JX , the rank of JX(Kd) is equal to the

order of vanishing of L(JX/Kd, s) at s = 1. We will show that the L-function is
a polynomial in q−s and estimate its degree, thus giving an upper bound on the
order of vanishing and the rank.

It is known that L(JX/Kd, s) is a rational function in q−s and that it is a poly-
nomial in q−s if and only if the K/k-trace of JX (or more precisely, the Kd/k(µd)-
trace) vanishes; see [51, Chap. 5, Lemma 6.5]. Arguing as in Proposition 6.31 and
using the explicit domination of Xd by a product of curves given in Section A.2, we
see that the trace vanishes and the L-function is a polynomial.
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To complete this sketch we estimate the degree of the L-function of the Jaco-
bian, and thus determine the upper bound on the rank. By the Grothendieck-Ogg-
Shafarevich formula, the degree of the L-function is

−4gX + deg(n)

where n denotes conductor of JX over Kd and deg(n) denotes its degree.
We start by considering the case d = 1.
For 1 ≤ i ≤ j ≤ g, let S be the set of places corresponding to the polynomials

t − aiaj . Letting cv be as in Section 5.1.3, one checks that X1 has semistable
reduction at each such place and that

∑

v∈S

cv = g + 2

(

g

2

)

= g2.

More precisely, for each pair i ≤ j, the reduction of X at t − aiaj has ordinary
double points at (x, y) = (ai, 0) and (x, y) = (aj , 0), and their contribution to the
conductor is 1 when i = j and 2 when i < j. Moreover, the reduction of X is
smooth away from such double points, so it suffices to count the number of pairs
(i, j) with 1 ≤ i, j ≤ g.

The only other places of (possibly) bad reduction are at t = 0,∞. We claim
the Tate module of JX has tame reduction there and thus the corresponding con-
tribution to the conductor equals the drop of the degree of the corresponding Euler
factor (which is between 0 and 2g). Indeed, the extension K(JX [4]) is Galois over
K1 of degree a power of two, so it is a tamely ramified extension ofK. Moreover, JX
acquires semiabelian reduction over it. In particular, this implies the Tate module
of JX is everywhere tamely ramified over the extension K(JX [4]) and hence over
K.

Now we consider the case d > 1.
For each of the d places of Kd over t− aiaj , the contribution to the conductor

remains unchanged, so is 1 when i = j and 2 when i < j. Moreover, the contribution
to the conductor is between 0 and 2g for u = 0,∞. Therefore we have

deg(n) ≤ d ·
∑

v∈S

cv + 2 · 2g = dg2 + 4g

which implies that the degree of the L-function is ≤ dg2. It follows that the rank of
the Mordell-Weil group of JX(Kd) is also at most g2d. This completes our sketch
of the proof of part (4) of Theorem A.1.

A.5. Additional remarks

Remark A.2. It is interesting to note the differences between the Jacobian
studied in this appendix and the Legendre curve E studied in [52]. In particular,
the rank of JX(Kd) is either d− 1 or d, whereas the rank of E(Kd) is d− 2. There
are two relations among the analogues of the Pj on E which seem not to generalize
readily to X, although it is possible that there is one relation.

Remark A.3. There is an interesting involution of X, given in the coordinates
above by

ι(x, y) =
(

t/x, yt(g+1)/2/xg+1
)

.
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(An analogous involution exists for E, where it is translation by Q0.) On X, we
have ι(Q0) = Q∞, ι(Qi) = Q′

i for 1 ≤ i ≤ g, and ι(Pj) = P ′
j where the P ′

j are new
points with coordinates

P ′
j =

(

ζ
−j
d uqν , (ζ−j

d uqν )(g+1)/2

g
∏

i=1

(ζjdu+ ai)
d/2

)

.

We do not know whether these points are independent of the Pj .
It would be interesting to investigate the consequences for the monodromy of

JX [ℓ] of the existence of ι, along the lines of Chapter 8.
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sium internacional de topoloǵıa algebraica International symposium on algebraic topology,
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