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Abstract

We study the Jacobian J of the smooth projective curve C' of genus r — 1 with
affine model y" = 2"~ !(z + 1)(x + t) over the function field F,(¢), when p is prime
and r > 2 is an integer prime to p. When ¢ is a power of p and d is a positive
integer, we compute the L-function of J over F,(¢'/?) and show that the Birch and
Swinnerton-Dyer conjecture holds for J over Fq(tl/ 4). When d is divisible by r
and of the form p¥ 4+ 1, and Ky := ]Fp(ud,tl/d), we write down explicit points in
J(K4), show that they generate a subgroup V of rank (r —1)(d — 2) whose index in
J(Ky) is finite and a power of p, and show that the order of the Tate-Shafarevich
group of J over Ky is [J(Ky) : V]2. When r > 2, we prove that the “new” part
of J is isogenous over F,(t) to the square of a simple abelian variety of dimension
¢(r)/2 with endomorphism algebra Z|[u,.|T. For a prime ¢ with £ { pr, we prove that
J0)(L) = {0} for any abelian extension L of F, ().
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Introduction

It is known that for every prime p and every genus g > 0, there exist Jacobians
J of dimension g over the rational function field K = F,(¢) such that the rank
of J(K) is arbitrarily large [49]. One of the main goals in this work is to make
this phenomenon more explicit. Specifically, for any prime number p and infinitely
many positive integers g, we exhibit a curve of genus g over K and explicit divisors
on that curve that generate a subgroup V of large rank in the Mordell-Weil group of
the Jacobian of the curve. We also prove precise results on the conjecture of Birch
and Swinnerton-Dyer for these Jacobians, giving information about the index of
the subgroup V in the Mordell-Weil group, and about the Tate-Shafarevich group
of the Jacobian.

All of this work generalizes previous results in the case g = 1 from [10,52,53].
In those papers, the authors analyze the arithmetic of the Legendre curve y? =
z(x + 1)(x 4+ t), an elliptic curve defined over K. For each field K, appearing in a
tower of field extensions of K, they prove that the Legendre curve over K, satisfies
the conjecture of Birch and Swinnerton-Dyer. Furthermore, for infinitely many d,
they find explicit divisors on the Legendre curve that generate a subgroup V of
large rank in the Mordell-Weil group. They bound the index of the subgroup V in
the Mordell-Weil group and give results about the Tate-Shafarevich group.

The statements of the main results in this paper are quite parallel to those for
the Legendre elliptic curve. However, since we work in higher genus—where the
curve and its Jacobian are distinct objects—the proofs are more complicated and
require more advanced algebraic geometry. For example, we have to construct the
regular minimal model of our curve from first principles (rather than relying on
Tate’s algorithm), the relations among the points we write down are less evident,
and the analysis of torsion in the Jacobian requires more work. Moreover, our
results cast new light on those of [52] insofar as we determine the structure of the
group of points under consideration as a module over a suitable group ring.

As part of our analysis, we prove several results in more generality than needed
here, and these results may be of use in analyzing the arithmetic of other curves over
function fields. These include a proof that the Néron-Severi group of a general class
of surfaces is torsion-free (Propositions 6.18 and 6.21) and an integrality result for
heights on Jacobians (Proposition 7.2). We also note that the monodromy questions
answered in the last chapter inspired a related work [18] in which a new method
to compute monodromy groups of superelliptic curves is developed.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2 INTRODUCTION

Historical background

Let g be a positive integer. Over a fixed number field, it is not known whether
there exist Jacobian varieties of dimension g whose Mordell-Weil groups have ar-
bitrarily large rank. In contrast, there are several results of this type over a fixed
function field, some of which we describe below.

In [46], Shafarevich and Tate construct elliptic curves with arbitrarily large
rank over Fy(¢). The curves in their construction are isotrivial, i.e., each is isomor-
phic, after a finite extension, to a curve defined over F,.

In [42], Shioda studies the elliptic curve over k(t) defined by y? = z3+at™z+bt™
where k is an arbitrary field and a,b € k satisfy ab(4a3t3™ + 276%t*™) # 0. When
char(k) = 0, he proves the rank of the Mordell-Weil group has a uniform upper
bound of 56, and he gives necessary and sufficient conditions on m and on n for
meeting this bound. When char(k) = p = —1 (mod 4) and when d = (p” + 1)/2
as v varies over positive odd integers, he proves that the elliptic curves over k(t)
defined by y? = 22 +2 +t? achieve arbitrarily large rank. These curves are given as
examples of the main result of [42], in which Shioda computes the Picard number
for Delsarte surfaces. Fundamental to this work is the realization of any Delsarte
surface as a quotient of a Fermat surface.

Motivated by this work of Shioda, in [50] Ulmer proves that the non-isotrivial
elliptic curve y? + zy = x® — t over F,(¢) obtains arbitrarily large rank over the
fields ]Fp(tl/ 4), where d ranges over divisors of p" +1. He realizes the corresponding
elliptic surface as a quotient of a Fermat surface; from earlier work of Shioda and
Katsura [44], this Fermat surface admits a dominant rational map from a product
of Fermat curves. It follows that this elliptic curve satisfies the conjecture of Birch
and Swinnerton-Dyer. Furthermore, the zeta function of the elliptic surface can be
determined from that of the Fermat surface. Using Jacobi sums, lower bounds are
found for the rank of the elliptic curve over towers of function fields.

The geometric construction in [44] is later generalized in the work of Berger
[5], where towers of surfaces dominated by products of curves are constructed as
suitable blow-ups of products of smooth curves. In [50], Ulmer elaborates on the
geometry and arithmetic of this construction, proving a formula for the ranks of
the Jacobians of the curves constructed in [5].

In [55], Ulmer and Zarhin combine this rank formula with work on endomor-
phisms of abelian varieties. For k a field of characteristic zero, they construct
absolutely simple Jacobians over k(t) with bounded ranks in certain towers of ex-
tensions of k(t). As one example, they prove that the Mordell-Weil group of the
Jacobian of the genus g curve defined by ty? = 22971 — 2 +¢ — 1 has rank 2g over
the field Q(t'/?") for any prime power p". In [34], Pries and Ulmer introduce an
analogous construction of surfaces that are dominated by a product of curves at
each layer in a tower of Artin-Schreier extensions. They prove a formula for the
ranks of the Jacobians of their curves, and produce examples of Jacobians with
bounded and with unbounded ranks.

Another example from [50] is the curve over k(t) defined by 3> + ay + ty =
23 4 tz2. For k an algebraically closed field of characteristic zero and d a positive
integer, the curve has rank zero over the fields k(t'/?). For k = F, and d = p" +1,
the curve has rank d — 2 over k(t'/4), and explicit generators are found. Later, in
[52], a 2-isogeny to the Legendre curve y? = z(z + 1)(x + t) is obtained, and this
construction motivates our work.
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THE MAIN RESULTS 3

The main results

Let p be an odd prime, let » > 2 be an integer not divisible by p, and let
K =T,(t). Generalizing the results in [52], [10], and [53], we consider the smooth
projective curve C' = C). of genus g =1 — 1 over K with affine model

Yy ="+ 1) (z+ 1),

The Jacobian J,. of C,. is a principally polarized abelian variety over K of dimension
g.

We study the arithmetic of J = J, over extensions of K of the form F,(u)
where u € K satisfies u? = t, e.g., the extension K; = F,(ug,u). Some of our
results hold for general data p, g, 7, d, while others hold under specific constraints.
We first state a result in a specific case:

THEOREM 1. Let p be a prime number, let d = p” 4+ 1 for some integer v > 0,
and let r be a divisor of d. Then there is an explicit group of divisors generating a
subgroup V C J(K) with the following properties:

(1) The Z-rank of V is (r — 1)(d — 2) and the torsion of V has order 3.
(2) The index of V in J(K,) is finite and a power of p.
(3) The Tate-Shafarevich group II(J/Ky) of J/Kjq is finite of order

[II(J/Kq)| = [J(Kq) : V.

We prove even more about V', describing it completely as a module over a
certain group ring and as a lattice with respect to the canonical height pairing on
J.

In the general case, we compute the L-function and prove the BSD conjecture:

THEOREM 2. Let p be a prime number, let ¢ be a power of p, and let r and d
be positive integers not divisible by p. Then:

(1) The conjecture of Birch and Swinnerton-Dyer holds for J over Fy(u).

(2) The L-function of J/F,(u) can be expressed explicitly in terms of Jacobi
sums. (See Theorem 5.4 below for the precise statement.)

(3) For sufficiently large ¢, the order of vanishing of L(J/F,(u),s) at s =1
can be expressed in terms of the action on the set (Z/dZ) x (Z/rZ) of the
subgroup of (Z/lem(d,r)Z)* generated by p. (See Proposition 5.9 below
for the precise statement.)

The rank calculation in this result of course agrees with that given by the
explicit points in the case d = p” +1, r | d, and F, = F),(uuq). We expect that there
are many other values of ¢, r and d yielding large ranks, as in [10].

Finally, we prove very precise results about the decomposition of J up to isogeny
into simple abelian varieties and about torsion in abelian extensions. To state
them, note that if ' | r, then there is a surjective map of curves C,. — C,» and a
corresponding homomorphism of Jacobians J,, — J,» induced by push-forward of
divisors. We define J2*V to be the identity component of the intersection of the
kernels of these homomorphisms over all divisors r’ of r with ' < r.

THEOREM 3.

(1) If r = 2, then JP*V equals J,., which is an abelian variety of dimension 1,
and thus J*V is absolutely simple.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4 INTRODUCTION

(2) If r > 2, then J*V is simple over F,(¢), while over F,(t) it is isogenous
to the square of a simple abelian variety of dimension ¢(r)/2 whose endo-
morphism algebra is the real cyclotomic field Q(u,)".

(3) If L is an abelian extension of F,(¢) and if £ is prime with £ 1 r, then .J,.(L)
contains no non-trivial elements of order /.

Overview of the paper

Our study involves more than one approach to the key result of part (1) of
Theorem 1 (the lower bound on the rank of J over K, when d = p¥ 4+ 1). Some
of the arguments are more elementary or less elementary than others, with cor-
respondingly weaker or stronger results. We include these multiple approaches so
that the reader may see many techniques in action, and may choose the approaches
that suit his or her temperament and background.

In Chapter 1, we give basic information about the curve C' and Jacobian J we
are studying. We write down explicit divisors in the case d = p¥ + 1, and we find
relations satisfied by the classes of these divisors in J. These relations turn out to
be the only ones, but that is not proved in general until much later in the paper.

In Chapter 2, we assume that r is prime and use descent arguments to bound
the rank of J from below in the case when d = p¥ 4+ 1. The reader who is willing
to assume 7 is prime need only read these first two chapters to obtain one of the
main results of the paper.

In Chapter 3, we construct the minimal, regular, proper model X — P! of
C/F,(u) for any values of d and r. In particular, we compute the singular fibers of
X — P!. This allows us to compute the component groups of the Néron model of
J. We also give a precise connection between the model X and a product of curves.

In Chapter 4, we consider the case where d = p¥ +1 and r | d, and we compute
the heights of the explicit divisors introduced in Chapter 1. This allows us to
compute the rank of the explicit subgroup V and its structure over the group ring
Z[Mr X Md]~

In Chapter 5, we give an elementary calculation of the L-function of J over
Fy(u) (for any d and r) in terms of Jacobi sums. We also show that the BSD
conjecture holds for J, and we give an elementary calculation of the rank of J(F,(u))
for any d and r and all sufficiently large gq.

In the fairly technical Chapters 6 and 7, we prove several results about the
surface X that allow us to deduce that the index of V in J(Ky) is a power of p
when d = p¥ + 1 and r divides d. We also use the BSD formula to relate this index
to the order of the Tate-Shafarevich group.

In the equally technical Chapter 8, we prove strong results on the monodromy
of the ¢-torsion of J for ¢ prime to pr. This gives precise statements about torsion
points on J over abelian or solvable extensions of F,,(t) and about the decomposition
of J up to isogeny into simple abelian varieties.

The methods of this paper can be used to study other curves as well. We give
an explicit family of curves in Section 1.6 and point out how some of the results of
this paper extend to the Jacobians of these curves. At the request of the referee, we
include Appendix A, in which we give more details on these examples. Specifically,
we prove a lower bound on the rank of the Jacobian of the hyperelliptic curve X
over Fy(t) defined by y* = z[[%_,(z + a;)(t + a;z) with g odd and with distinct
nonzero a; € F, over fields of the form K4 = F,(uq, tl/d) with d = ¢ + 1. We also

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



GUIDE 5

show that the BSD conjecture holds for the Jacobian of X over Fyn. (t}/?) for all n
and all d prime to p, and we give an upper bound on the rank using the L-function.

Recently, Ulmer and Voloch [54] introduced a family of curves generalizing
those treated in this paper. They study curves defined by the equation

y" = h(x)h(t/z),

where h is a polynomial that is not of the form f™, for any m # 1, m | r. (The gen-
eralized Legendre curves studied in this paper and the hyperelliptic curves discussed
in the appendix are all examples from this family.) They prove that the number of
points in an arithmetic family of such curves is unbounded, and they also show that
the surface over k defined by this equation is dominated by a product of curves.
The emphasis in [54] is on rational points on the curves, whereas techniques from
this paper may be useful for proving interesting results on the Jacobians of these
curves.

Guide

The leitfaden below indicates dependencies among the chapters of the paper.
We also record here the chapters or sections needed to prove various parts of the
main results.

A proof of lower bounds as in Theorem 1(1) (i.e., that the rank of J(Kj) is at
least (1 — 1)(d — 2) and the torsion has order r3) in the case where r is prime and
divides d = p” + 1 is contained in Chapters 1 and 2, and more specifically follows
from Proposition 1.5 and Theorem 2.1.

The lower bounds of Theorem 1(1) in the case of general r dividing d = p” 4+ 1
are proved in Section 4.3.2 using results from Chapter 1, Section 4.1, and earlier
parts of Chapter 4. Theorem 1(1) is established in full generality in Corollary 4.20.

Parts (2) and (3) of Theorem 1 are proved in Chapter 7, specifically in Theo-
rem 7.1 and Theorem 7.7 respectively, using results from Chapters 1, 3, 4, 5, and
6.

Theorem 2 is proved in Chapter 5 using results from Chapters 1 and 3.

Finally, Theorem 3 is proved in Chapter 8 using definitions from Chapter 1
and precise information on the Néron model of J deduced from properties of the
regular proper model X of Chapter 3. (To be precise, the claim about p-torsion is
not treated in Chapter 8, but a stronger result is proved in Section 6.1.)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 INTRODUCTION
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Chapter 7
Index and III

FIGURE 1. Leitfaden

Notation

Throughout, & is a field of characteristic p > 0 and K is the rational function
field k(t). We write I, to denote a finite ground field of cardinality ¢, with ¢ being
a power of p. If n is positive and not divisible by the characteristic p of k, we write
W, for the group of n-th roots of unity in an algebraic closure of k. For a prime p
and a positive integer d not divisible by p, we write Ky for the extension Fp(uq, u)
of F,(t) with u? = t. We view k(u) as the function field of P. where the subscript
u reminds us that the coordinate is u.
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CHAPTER 1

The curve, explicit divisors, and relations

In this chapter, we define a curve C' over K = k(t) whose Jacobian J is the
main object of study. When k = F,,, there is a rich supply of explicit points on
C defined over certain extensions of K, and the divisors supported on these points
turn out to generate a subgroup of J of large rank.

More precisely, we study the arithmetic of C' and J over extensions of F,(t) of
the form Fq(tl/d) for ¢ a power of p and d € N relatively prime to p. Let K = F,(t)
and K4 = F,(j14,u) where 14 denotes the d-th roots of unity and u = ¢'/¢. These
fields are the most important fields in the paper, especially when d has the form
d = p” + 1 for an integer v > 0, although we consider more general extensions of
the form F,(t'/9) as well.

1.1. A generalization of the Legendre curve

Choose a positive integer r not divisible by p = char(k). We consider the
smooth, absolutely irreducible, projective curve C over k(t) associated to the affine
curve

(1.1) Yy =2 "z + 1) (z+1).

Note that when r = 2, this is an elliptic curve called the Legendre curve which
was studied in [52].

1.1.1. Constructing a smooth model. We explicitly construct the smooth
projective model of C. First, consider the projective curve in P? over F,(t) given
by

C': Y'Z=X"YX+2)(X +1tZ).
A straightforward calculation using the Jacobian criterion shows that C’ is smooth
when r = 2, in which case we take C = C’. If r > 2, then the Jacobian criterion
reveals that C” is singular at the point [0, 0, 1] and is smooth elsewhere. We produce
a smooth projective curve by blowing up this point.

Let V be the complement of [0,0,1] in C’. Let U be the affine curve with

equation
v=u"" (uv+1)(uwv +t).
Another Jacobian criterion calculation shows that U is smooth. The map
X = uw, Y =w, Z =1

gives an isomorphism 7 between U\ {u=v=0} and V\{[-1,0, 1], [-¢,0, 1], [0, 1, 0]}.
Gluing U and V along this map yields a smooth projective curve which we denote
C.

We claim that 7 : ¢ — C’ is the normalization of C’. Indeed, 7 factors through
the normalization of C’ since C is smooth and thus normal. Moreover, 7 is visibly

7
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8 1. THE CURVE, EXPLICIT DIVISORS, AND RELATIONS

finite and birational. Since a finite birational morphism to a normal scheme is an
isomorphism, 7 : C' — C" is indeed the normalization of C.

Note that 7 is a bijection as well. In fact, it is a universal homeomorphism!,
so for every field extension L of F,(¢), there is a bijection of rational points

C(L) = C'(L).

It is convenient to specify points of C by giving the corresponding points of C’
using the affine coordinates x = X/Z and y =Y/Z.

The reader who prefers to avoid the abstraction in the last two paragraphs
is invited to work directly with the smooth curve C'. This adds no significant
inconvenience to what follows.

1.1.2. First points. Let Qo be the point of C' corresponding to the point
at infinity on C’, namely [0,1,0]. Let Qo, @1, and Q; be the points of C' given
by (z,y) = (0,0), (—1,0), and (—t¢,0) respectively. (Here we use the convention
mentioned at the end of the preceding subsection, namely we define points of C' via

')
1.1.3. Genus calculation.
LEMMA 1.1. The curve C has genus g =1 — 1.

ProoF. Consider the covering
f:C— P
induced by the function x. The ramification points of f are Qq, @1, Q: and Q,
each with ramification index r. The Riemman-Hurwitz formula implies
29 —2=-=2r4+4(r — 1),
thus g =r—1. (I
1.1.4. Immersion in J. Let J be the Jacobian of C; it is a principally polar-
ized abelian variety of dimension g = r — 1. We imbed C' in J via the Abel-Jacobi
map using (J as a base point:
C—J
P [P—Qu]

where [P — Qo] is the class of P — Qo in Pic’(C) = J.

1.1.5. Automorphisms. Note that if & contains pu,., the r-th roots of unity,
then every element of u, gives an automorphism of C'. More precisely, we have
automorphisms

(@,y) = (2,¢ly)
where (. is a primitive r-th root of unity and 0 < j < r. These automorphisms
fix Q, so the induced automorphisms of J are compatible with the embedding
C—J.

As we verify below, these are not all of the automorphisms of C, but they are
the only ones that play an important role in this paper.

ndeed, 7 is projective, so universally closed and surjective, and it is injective and induces
isomorphisms on the residue fields, so is universally injective by [15, 3.5.8].
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1.2. EXPLICIT POINTS AND THE VISIBLE SUBGROUP 9

1.1.6. Complement: Hyperelliptic model and 2-torsion. We remark
that the curve C is hyperelliptic. More precisely, making the substitution (z,y) —
(x,2y) in the equation y" = 2"~ (z + 1)(x + t), we see that C is birational to the
curve given by

P24+ (t+1—ye+t=0

and projection on the y-coordinate makes this a (separable) 2-to-1 cover of the
projective line. If p # 2, we may complete the square and make the appropriate
change of coordinates (a translation of z) to arrive at the equation

2t =y* = 2(t+ )y + (t—1)?
= (yr - (Vt+ 1)2> (yr v~ 1)2) .

If, in addition, d is even and r is odd, then v/t € k(u) and the two factors on
the right hand side are irreducible in k(u)[y]. It follows from [33, Lemma 12.9] that
J has no 2-torsion over k(u).

This is a first hint towards later results. For example, J(Ky)ior has order
r® when r divides d = p” + 1 (Theorem 7.1). More generally (Corollary 6.1 and
Theorem 8.1), J has no torsion of order prime to r over any abelian extension of

k(t).

1.2. Explicit points and the visible subgroup

Next, we write down several points on C' defined over the extensions K4, and
we consider the subgroup they generate in the Jacobian.

1.2.1. Special extensions. For the rest of Chapter 1, we assume that d =
p¥ + 1 for some integer v > 0, and we assume that r divides d. In this situation, it
turns out that C has a plentiful supply of points defined over Ky, and the divisors
supported on these points generate a subgroup of J(K,) of large rank.

The extension K;/K is Galois with Galois group the semidirect product of
Gal(Fp(pa,t)/K) = Gal(F,(ua)/Fp) (a cyclic group of order 2v generated by the
p-power Frobenius) by Gal(K;/F,(ua,t)) (a cyclic group of order d generated by a
primitive d-th root of unity).

REMARK 1.2. There are many triples p, r, d satisfying our hypotheses. Indeed,
for a fixed prime p, there are infinitely many integers r > 1 such that r divides p*+1
for some p. (The number of such 7 less that X is asymptotic to X/(log X)?/?; see
[32, Theorem 4.2].) For any such p and r, there are infinitely many v such that r
divides p¥ + 1. Indeed, p* + 1 divides p” + 1 whenever v = mu with m odd.

Alternatively, for a fixed r, there are infinitely many primes p such that r divides
p* + 1 for some pu. These p are determined by congruence conditions modulo r,
namely by the requirement that —1 be in the subgroup of (Z/rZ)* generated by p.

1.2.2. Explicit points. We continue to assume that d = p¥ + 1 and r|d.
Under these hypotheses, we note that

P(u) := (u,u(u + 1)d/7")
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10 1. THE CURVE, EXPLICIT DIVISORS, AND RELATIONS

is a point on C defined over K. Indeed,

W a4 1) (u+t) = u"(u+ 1)1 +uP)

=u"(u+1)P" !
= (u(u + 1)d/r)

We find other points by applying the automorphisms ¢/ discussed in Section 1.1.5
above and the action of the elements of the Galois group of K;/K. In all, this
yields rd distinct points.

Although it is arguably unnatural, for typographical convenience we fix a prim-
d/r
Al

T

itive d-th root of unity (4 € Ky and we set (, =
constructed can be enumerated as

Py = (G, GChu(Chu+1)"/7)

Then the points just

where i € Z/dZ and j € Z/rZ.

Identifying C' with its image in J via the map in Section 1.1.4 produces divisor
classes in J(Kg) that we also denote by P; ;. The subgroup generated by these
points is one of the main objects of study in this paper.

1.2.3. R-module structure. Next we introduce a certain group ring acting
on J(K4). We noted above that there is an action of p, C Aut(C) on C and on J.
There are also actions of g = Gal(Ky/F, (14, t)) C Gal(Ky/K) on C(K,4) and on
J(K4), and these actions are compatible with the inclusion C' < J.

Let R be the integral group ring of pg X p, i.e., let

Zlo, 7]

R=——— 21—+
(cd —1,77 — 1)

The natural action of R on the points P, ; is:
O'iTj(Pawb) = Pa+i,b+j-
(Here and below we read the indices i modulo d and j modulo r.)
1.2.4. The “visible” subgroup. We define V' =V, ; to be the subgroup of
J(K4) generated by the P; ;. It is evident that V is also the cyclic R-submodule

of J(K4) generated by Py . In other words, there is a surjective homomorphism of
R-modules

R—V

E ai;0 7 E ai;0 TJ (PO,O) = E aijPM.

One of the main results of the paper is a complete determination of the “visible”
subgroup V. Here we use visible in the straightforward sense that these are divisors
we can easily see. As far as we know, there is no connection with the Mazur-Stein
theory of visible elements in the Tate-Shafarevich group.
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1.3. Relations

As above, let V =V, 4 be the R-submodule of J(Kj) generated by Fpo. The
goal of this section is to work toward computing the structure of V' as a group and
as an R-module. Explicitly, we show that V is a quotient of R/I for a certain ideal
I. Ultimately, in Chapter 4, we verify that V is isomorphic to R/I as an R-module
and compute the structure of R/I as a group.

Throughout, we identify C'(K;) with its image in J(Kj) via the immersion
P— [P — Q)

Considering the divisors of x, z + 1, and = + ¢, one finds that the classes of Qg,
@1, and Q; are r-torsion. Considering the divisor of y, one finds that Q; ~ Q¢ —Q1,
so Q¢ is in the subgroup generated by Qg and Q1.

Now consider the functions x — (éu,

Ay =Gy — (@ 1),

and
T;:= C:;jd/ryl‘d/r_l _ ud/r(x + 1)d/r.

Calculating as in [52, Proposition 3.2], we find that

r—1
div(z — C4u) = ZPW — 7Q oo,
§=0
d—1
div(A)) =) P+ (r=1D)Qo + Q1 — (1 + d)Qux,
=0

and

div(T Z P irj+Q1— (d+1)Q.
=0
Considering the divisor of I'; for any j shows that @; is in V', and then considering
the divisor of A; for any j shows that Q) is also in V. (Here we use the fact that
Qo is r-torsion.) Thus V contains the classes of Qo, @1 and Q.
Now for 1 < j <r —1 we set

Dy = div(A;/8; 1) =Y (Pij— Pija),
and

Bj:=div(l;/T; 1) =Y (Pij—i— Pij1-4),

%

and for 0 <i<d—1 we set
F; == div(z — (u) = ZPJ TQoo-

These divisors are zero in the Jacobian JT(Kd).
Restating this in terms of the module homomorphism R — V', we see that for
1 <75 <r —1 the elements

d; = Z(U’ﬁ'j — ol = (19 — 17 Zai,

%

ej = Z(O_iTjerfi _ iy = (i Zo,defiv
i

i
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12 1. THE CURVE, EXPLICIT DIVISORS, AND RELATIONS

and for 0 < i < d — 1 the elements
fi = ZaiTj =o' ZTj
J J

map to zero in V.
Let I be the ideal of R generated by

(T—l)ZO’i, (T—l)ZO’deii, and Z’Tj.
i i j

Then it is easy to see that dj, e;, and f; all lie in I, that they generate it as an
ideal, and in fact that they form a basis of I as a Z-module.

Thus there is a surjection of R-modules R/I — V. We will eventually show
that this surjection is in fact an isomorphism; see Theorem 1.6.

Note that R has rank rd as a Z-module, so the rank of R/I as a Z-module is
rd—d—2(r—1) = (r —1)(d — 2). Thus the rank of V is at most (r — 1)(d — 2).

1.4. Torsion

In this section, we show that certain torsion divisors are not zero; more precisely
that the order of the torsion subgroup of V is divisible by 3. The main result is
Proposition 1.5 below.

LEMMA 1.3. The classes of Qo and Q1 each have order r and generate a sub-
group of V' isomorphic to Z/rZ x ZL]rZ.

PROOF. It suffices to prove the claim over F,K; = F,(u). We have already seen
that Qo and @1 have order dividing r. Suppose that aQy+bQ; = 0in V for integers
a, b € {0,1,---r — 1}, not both equal to zero. Then there is a function h in the
function field of the curve C with div(h) = (a/r) div(z) + (b/r) div(z +1). Since we
are working over F,,, we may choose h such that A" = z%(x +1)°. Let Y denote the
curve with function field K4(z, h). Consider the inclusions Ky4(z) — Kg(z,h) —
K4(C) and the corresponding surjections C' — Y — P!. The map Y — P! is of
degree greater than one, and C — P! is fully ramified over x = —t. This is a
contradiction, since Y — P! is unramified over z = —t. Hence, aQo + b@Q, = 0 only
when 7 divides both a and b, and Q)¢ and Q)7 generate independent cyclic subgroups
of order 7. O

Next we introduce elements of V' C J(K,) as follows:

r—1lr—1—j

Q:=> > > Py

j=0 k=0 i=kmod r
and
Q3 == Qo — 2Q2.
LEMMA 1.4.

(1) (1-¢)Q2 = Qo.
(2) Ifr is odd, then rQ2 = 0.
(3) Ifr is even, then 2rQs =0 and (r/2)Qs; = 0.
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1.4. TORSION 13

PrOOF. (1) We have

(1-¢)Q2=(1-¢) _ P,

I
]
3
~
¥

- (Pz 0 — Pi,r k)
k=0i{=k mod r
d—1

= (Pio—Pi—i).
1=0

Considering the divisor of Ay/T'g shows that the last quantity is equal to Qg in J.
(2) Assume that r is odd, which implies that j(j — r)/2 is an integer for all
integers j. Consider the element of R given by

r—1

Podd =Y j(jT_T)(dj—ejﬂ'(T—j) > fis

7=0 i=7 mod r
where dj, e;, and f; are as in the previous subsection. We compute that

r—1lr—1—j

Podd =T ZZ Z

j=0 k=0 ¢=k modr

Applying both sides of this equality to Py ¢ proves that rQ2 = 0 in J.
(3) Now assume that r is even and consider

r—1
peven = D (3G =1 (dj =€) +200=7) D fi
§=0

i=j mod r
A calculation similar to the one above shows that

r—1lr—1—j

=2 [T T

7=0 k=0 i=k modr

and applying both sides of this equality to Py ¢ proves that 2rQs =0 in J.
Finally, we note that when r is even, then (1 — j)(j — r)/2 is an integer for all
integers j. Consider

Plven = ril(l_] J_T)d—eg) Z Yo =i

j=1 7=04=j mod r

We compute that

T
R
\

R

T r—

1—
p/even = (T/Q) (Ui - O—i’r -2 Z

7 k=0 ¢=k mod r

J

«
Il

o
Il

o
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14 1. THE CURVE, EXPLICIT DIVISORS, AND RELATIONS

Applying both sides of this equality to Py ¢ and noting as above that Qo = )", P o—
P, _; shows that (r/2)(Qo —2Q2) =01in J.
This completes the proof of the lemma. O

The reader who wonders where Q2 and (3 come from should consult the proof
of Proposition 4.17.

We write (Qo, @1, Q2) for the subgroup of J(K,) generated by Qo, @1, and Qs.
Note that (Q1, Q2, Q3) = (Qo, Q1, Q2).

PROPOSITION 1.5. Let T be the subgroup (Qo,Q1,Q2) of J(K4). Then the
order of T is 3. More precisely:

(1) Ifr is odd, then the map (a,b,c) — aQo + bQ1 + cQ2 induces an isomor-
phism (Z/rZ)® = T.

(2) Ifr is even, then the map (a,b,c) — a@Qy + bQ2 + cQ3 induces an isomor-
phism (Z/rZ) x (Z/2rZ) x (Z/(r/2)Z) = T.

PROOF. (1) Assume that r is odd. Lemmas 1.3 and 1.4(2) show that the map
under consideration is well-defined. It is surjective by the definition of T. To see
that it is injective, suppose that aQo + bQ1 + cQ2 = 0. Applying (1 — () and using
Lemma 1.4(1) shows that cQo = 0. By Lemma 1.3, ¢ = 0 in Z/rZ, and applying
Lemma 1.3 again shows that @ = b = 0 in Z/rZ. This shows the map is injective,
thus an isomorphism.

(2) Now assume that r is even. Lemmas 1.3 and 1.4(3) show that the map
under consideration is well-defined. It is again surjective by the definition of T
To see that it is injective, suppose that a@Q1 + bQ2 + cQ3 = 0. Applying (1 — ()
and using Lemma 1.4(1) and Lemma 1.3 shows that b — 2c = 0 in Z/rZ and, in
particular, that b is even. Using that 2Q2 = Qo — @3, we compute

0=a@Q1 +bQ2 + cQs
=cQo + aQ1 + (b—2¢)Q2

P20 - Qs)

=cQo +aQy +
= (b/2)Qo + aQ1.

By Lemma 1.3, b/2 = a = 0 in Z/rZ and therefore b = 0 in Z/2rZ. Since b—2¢ =0
in Z/rZ, we see that ¢ = 0 in Z/(r/2)Z, and this shows the map is injective, thus
an isomorphism.

This completes the proof of the Proposition. O

1.5. First main theorem

We can now state the main “explicit points” theorem of this paper.

Recall that the group ring R = Z[o, 7]/(c¢ — 1,7" — 1) acts on J(K,4) and that
V is the cyclic submodule of J(Kj) generated by Py . Recall also that I C R is
the ideal generated by

(T—l)ZO’i, (T—l)ZO’de_i, and Z’Tj.
i i j
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1.6. COMPLEMENT: OTHER CURVES 15

THEOREM 1.6.
(1) The map

R—V
ZaijUiTj — ZaijPZ—,j

induces an isomorphism R/I =2V of R-modules.
(2) As a Z-module, V has rank (r — 2)(d — 2), and its torsion subgroup has
order > and is equal to the group T defined in Proposition 1.5.

We prove Theorem 1.6 in Chapter 4 by computing the canonical height pairing
on V; see Theorem 4.19. In the case when r is an odd prime, we give a more elemen-
tary proof of part (2) in Chapter 2 using a descent calculation; see Theorem 2.1.

1.6. Complement: Other curves

The basic “trick” allowing one to write down points on C' extends to many
other curves. In this section, we briefly discuss one class of examples. A more
detailed analysis is provided in Appendix A.

Let p be an odd prime and k a field of characteristic p and cardinality ¢. Fix an
odd integer g > 1 and a polynomial h(z) € k[z] of degree g. Assume h has distinct,
nonzero roots.

Let X be the smooth, projective curve over K = k(t) defined by

y? = xh(z)zh(t/z).

Since the right hand side has degree 2g + 1 in x, the genus of X is g. Let oo be the
(K-rational) point at infinity on X.
Let J be the Jacobian of X. We embed X in J using oo as the base point.
Ifd=¢"+1and Kg = k(ug,u) with u? = t, then X has a Kg-rational point,
namely

Pu): (z,y) = (u,u(g+1)/2h(u)d/2) .

Letting the Galois group of Ky over K act on P(u) yields points P; = P(Cgu)
where (; is a primitive d-th root of unity and j = 0,...,d — 1. We consider the
subgroup V of J(K,) generated by the images of the d points P;, and the images
of the points where y = 0.

By writing down the divisors of certain functions, as in Section 1.3, we show
that the rank of the subgroup V is at most d.

It is natural to bound the rank of V' from below by computing a coboundary
map related to 2-descent. More precisely, extending k if necessary we may assume
that the roots of h lie in k. Then the Weierstrass points of X are defined over K and
the divisors of degree zero supported on them generate the full 2-torsion subgroup
of J. In particular, J[2] = 3¢ = (Z/27)%9 over K. We obtain a coboundary map

T(Ka)[20(Kg) < H'(Kg, J[2)) = (K JK;?)™.

Analyzing the image of V under this map (along the lines of [52, Section 4]) allows
one to show that the rank of V' is at least d — 2 when d is of the form ¢” + 1 (and
at least d — 1 when g > 1). This work is also closely related to the calculations in
Chapter 2 for the curve C' that is our main object of study.
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16 1. THE CURVE, EXPLICIT DIVISORS, AND RELATIONS

In the appendix, we also consider a certain surface X,; equipped with a mor-
phism X; — P! whose generic fiber is X/K4, and we prove that this surface is
dominated by a product of curves. This shows that the BSD conjecture holds for
J over F,(u) where u? =t, q is any power of p, and d is any positive integer prime
to p. All this is closely related to our work in Chapters 3 and 5 on C.

In the last part of the appendix, we obtain an upper bound on the order of
vanishing of the L-function of J/Ky at s = 1, thereby bounding the rank of J(K)
from above. This is closely related to our work in Chapter 5 on the L-function of
Jo.

We note that some of the finer analysis of this paper is unlikely to go through
without much additional work. For example, the upper and lower bounds on the
rank of J over K differ significantly, and we have not determined the exact rank.
Indeed, the degree of the L-function of J over K, is asymptotic to g2d as d — oo,
whereas the rank of V is less than d. This suggests that the leading coefficient of
L(J/Kg4,s) at s = 1 is likely to be of arithmetic nature, and that the connection
between the index of V' in J(Ky) and the order of III(J/K4) may not be as simple
as it is for the curve C studied in the rest of this paper. We would be delighted if
readers of this paper took up these questions.
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CHAPTER 2

Descent calculations

Throughout this chapter, r is an odd, positive, prime number dividing d, and
d = p” + 1 for some integer v > 0. Let K; = Fp(ug,u) where u¢ = t. In this
context, there is a fairly short and elementary proof that the visible subgroup of
J(K,) has large rank.

More precisely, let C' be the curve studied in Chapter 1, let J be its Jacobian,
and let V' be the “visible” subgroup of J(K,) defined in Section 1.2, so that V is
generated by the image of the point P = (u,u(u + 1)%") under the Abel-Jacobi
mapping C' — J and its Galois conjugates. Recall that the choices made in Chap-
ter 1 allow us to index these points as P; ; with ¢ € Z/dZ and j € Z/rZ.

Using the theory of descent, as developed in [8], we prove the following theorem.

THEOREM 2.1. The subgroup V of J(Kq) has rank (r — 1)(d — 2). Moreover,
J(Kg)[r®]) 2 V[r>®] = (Z2/rZ7).

The proof is given in Section 2.4.

2.1. The isogeny ¢

Recall that there is an action of the r-th roots of unity p, on C' and an induced
action on J. Recall also that (, = j/r € Ky is a fixed r-th root of unity. If D is

a divisor of degree 0 on C/Ky then the divisor
(L4 G-+ G7H)(D)

is easily seen to be the pullback of a divisor of degree 0 on P! under the map C' — P!
that is the projection on the 2 coordinate. Since the Jacobian of P! is trivial, the
endomorphism (1 + ¢, + -+ ¢~ 1) acts trivially on J.

We want to restate this in terms of the endomorphism ring of J. To avoid
notational confusion, write H for the cyclic group of order r and let Z[H]| be the
group ring of H. Somewhat abusively, we use (, also to denote an r-th root of
unity in characteristic zero. Then, as usual, Z[(,] will denote the ring of integers
in the cyclotomic field Q(¢.). The action of y, on J induces a homomorphism
Z[H] — End(J) where End(J) denotes the endomorphism ring of J over K.

There is a surjective ring homomorphism Z[H]| — Z[(,] sending the elements of
H to the powers of (.. The kernel is generated by ), . h. The discussion above
shows that the homomorphism Z[H] — End(J) factors through Z[(.]. The induced
map Z[¢,] — End(J) is an embedding, since End(J) is torsion-free.

Let ¢ : J — J be the endomorphism 1 — (.

PROPOSITION 2.2. The endomorphism ¢ = 1 — (. is a separable isogeny of

degree 2.

17
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18 2. DESCENT CALCULATIONS

PROOF. In Z[(,], there is an equality of ideals (1 — ¢,.)"~! = (r), i.e., the ratio
of (1 —¢,.)"~! and r is a unit. It follows that (1 —(,.)"~! and the separable isogeny
r:J — J factor through each other. Therefore 1 — (. is an isogeny, and

deg(l - Cr)r71 = degr = TQQ — 7=2(7’*1)_

Since ¢ = 1 — (., this proves that deg(¢) = r2. Since r is prime to p, it follows that
¢ is separable. O

We write J(Kg4)[¢] and V[¢] for the kernel of ¢ on J(K,) and V respectively.

COROLLARY 2.3. J(Ky)[¢] is a two-dimensional vector space over F, with basis
Qo and Q1. Moreover, V(¢ = J(Kq)[¢].

PROOF. For the first assertion, we verify that the divisor classes Qg and Q4
are contained in the kernel of ¢, and they generate a subgroup of J(Kj) of order
r2 by Lemma 1.3. Since ¢ has degree r?, it follows that @y and Q; generate the
kernel. Since Qo and @ lie in V]¢p] C J(K4)[¢p] we also have V[¢p] = J(K4)[¢]. O

For any element ¢ € End(J), let ¢V denote its Rosati dual, that is, its image
under the Rosati involution on End(J). If € is an automorphism of J coming from
an automorphism of C, then one has ¢ = e~ 1. It follows that ¢V =1 — (L.

LEMMA 2.4. We have J[¢] = J[$"], as group subschemes of J.

PROOF. Since (1 —¢.)/(1 — (1) is a unit in Z[¢,], it is clear that the endo-
morphisms ¢ = 1 — (. and ¢ = 1 — (! factor through each other and thus have

the same kernel. O

2.2. The homomorphism (z —T)

Let A = {Qo,Q1,Q+}, the set of affine ramification points of the morphism
C — P!, (z,y)  x, which lie over z = 0, z = —1, and = —t respectively. We
write Div(Cl,) for the K4-rational divisors on C' and Div®(Cl,) for those of degree
0. There is a canonical surjective homomorphism Div"(Ck,) — J(Kq).

Following ideas from [8], we define a homomorphism

(x—1T):Div(Ck,) = [] KJ/K}"
QeA
that plays a crucial role in the proof of Theorem 2.1. Its properties are described
in Proposition 2.5. For an element v € HQEA K[ /K;", we write v = (vg,v1,v;),
where v; is the coordinate corresponding to @);.
Let C° C C be the complement of A U{Qs}. We define the homomorphism

(x—T) :Div(Ck,) = [[ K /K}"
QeA
by setting
P (x(P)— z(Q))gen »
and defining (z — T')" on divisors by multiplicativity. (The individual points P in
a divisor D need not be Ky-rational, but if D is Kg-rational, then (z — T’ takes
values in [T K[ /K[".)
We now define the homomorphism
(z—1T):Div(Ck,) = [] KJ/K}"
QeA
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2.2. THE HOMOMORPHISM (z — T') 19

as follows: let D € Div(CE,) be a divisor on Ck, and choose D" € Div(Cf,) C
Div(Ck,) such that D’ is linearly equivalent to D. Then set

(x =T)(D):=(z—T)(D").

For a proof that (x — T') is well-defined, see [8, 6.2.2].

Fix a separable closure K of Ky, and let G be Gal(K ;" /K4). For any G-
module M and integer ¢ > 0, we abbreviate the usual notation H*(G, M) for the i-th
Galois cohomology group of M to H*(M). For a finite G-module M of cardinality
not divisible by p, we denote by M" the dual G-module Hom(M, K? ™).

PROPOSITION 2.5. There is a homomorphism o : H(J[¢]) — [oen Ko /KS"
such that:
(1) there is a short exact sequence of G-modules
0— H'(J[o) > T K;/K; S Ky /K =0,
QeA

where N is the map sending (vg,v1,ve) to vive/vg; and
(2) the homomorphism (x — T) restricted to Div’(Ck,) is the composition

Div’(C,) — J(Ka) /T (Ka) % H'(Jg]) S T[ Kj /K
QeA

where 9 is induced by the Galois cohomology coboundary map for ¢.

PROOF. The proof is an application of the general theory of descent as devel-
oped in [8].

Let E be (Z/rZ)”, the G-module of Z/rZ-valued functions on A. Note that
the G-action on F is trivial. We define a G-module map o : E — J[¢] defined by
h—= 3 0ea MQ) - [Q]. Note that this is well-defined since J[¢] is annihilated by r.
Proposition 2.2 shows that o is surjective. Its kernel Ry is the Z/rZ-submodule
of E generated by the map p that sends Qg — —1,Q1 — 1,Q; — 1. The resulting
short exact sequence of G-modules

(2.1) 0= Ry — E% J[¢] =0

is split-exact, since it consists of modules that are free as Z/rZ-modules and have
trivial G-action. Dualizing (2.1) and taking Galois cohomology, we obtain

(2.2) 0— H'(J[¢]Y) — HY(EY) = H'(Ry) — 0,
which is again split-exact by functoriality. Then
H'(J[g]") = H' (J[¢"]) = H'(J[g]),
where the last step follows from Lemma 2.4. Next, we compute that
HY(EY) = H (u2) = T] K; /K,
QeEA

the last step being a consequence of Hilbert’s Theorem 90. Choosing the isomor-
phism Z/rZ = Ry given by 1 — p, we identify H'(RY) with H'(u,) = K[ /K",
where the last step again follows from Hilbert’s Theorem 90. With these identi-
fications, the short exact sequence (2.2) becomes the short exact sequence in the
statement of part (1). Part (2) follows from Proposition 6.4 in [8]. O
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20 2. DESCENT CALCULATIONS

It follows from Proposition 2.5 that (x — T') induces a map
J(Ka) — ] Kj /K"
QeA

We denote this map also by (z—T'). The map (z—T') can be seen as a computation-
friendly substitute for the coboundary map § : J(K4) — H!(J[¢]), since (z —T) =
a0, where « is an injection.

The rest of this section is devoted to the computation of (x —T')(Q) for Q € A,

Q = Qooa and Q = Pi,j-
The following lemma states that (z — T') can be “evaluated on the coordinates
for which it makes sense to do so.”

LEMMA 2.6. Suppose Q € A and let D € Div(Ck,) be a divisor with support
outside of {Q,Qoc}. Then

(¢ = T)(D)q = [J(2(P) —2(@)*r®,

P
where the product is taken over all points P in the support of D.

PROOF. Choose D' € Div(C,) linearly equivalent to D and g € K4(C)* such
that D' = D + div(g). Observe that div(g) is supported outside @ and Q. Then

(I — T)(D)Q = (113 — T)’(D/)Q _ H(‘T(P) _ :E(Q))ordp(D’)
P

— H(‘T(P) _ x(Q))ordp(Deriv(g))

_ H ordp(D) H ordp(g)'

In the last expression however, the contribution of the Second product is trivial:

H(x(P) — 2 ordP(g) Hg ordp(ac—;c(Q)) = 9(Q) 9(Qu) " = 1,

P

where the first equality is due to Well reciprocity and the second one rests on the
calculation that div(z — z(Q)) =7-Q — 7 - Qoo for Q € A. O

We end this section by applying Proposition 2.5 and Lemma 2.6 to compute
the images under (x — T) of various divisors.

PROPOSITION 2.7. We have:

(z = T)(Qo) = (t,1,1),
(z =T)(@Q1) = (=1,1/(1 = 1),t = 1),
(z =T)(Q) = (=t, 1 = t,t/(t = 1)),
(z = T) Qo) = (1,1, 1),

and
(z = T)(P5) = (Cu, Cqu+ 1, Gqu + 1),

ProoF. Let (z —T)(Qo) = (vo,v1,v:). By Lemma 2.6, v; = 1 and v; = t. By
Proposition 2.5, vvy/vg = 1in K /K", so vy = t. This shows that (z—T)(Qo) =
(t,1,t). The calculations for @Q; and Q; are similar and will be left as an exercise
for the reader. Using the linear equivalence (r+1)Qo ~ (r—1)Qo + Q1 + Q; yields
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2.4. PROOF OF THE MAIN THEOREM 21

that (z — T)(Qo) = (1,1,1). Finally, the assertions for P, ; follow immediately
from the definition of (x — T). O

2.3. The image of (z —T)

Recall that V' C J(Kg) is the subgroup generated by the classes of P; ;, where
i € Z/dZ and j € Z/rZ and where we identify C' with its image in J by P —
[P — Qo] Observe that the known torsion elements Qq, @1, @Q: and Q2 (with Qs
defined as in Section 1.4) are all contained in V.

PROPOSITION 2.8. The dimension of (x —T)(V) is
dimg, ((x — T)(V)) = d.
PRrROOF. First, dimy, (x — T)(V) < d since
(x —T)(Pi; — Qo) = (z = T)(Pio — Qoo)-
To show that the dimension is precisely d, we project from HQEA K[/K]" toa
finite-dimensional quotient space of dimension d, and conclude by showing that the
projection is surjective.

For an irreducible polynomial 7 in k[u], the valuation it induces on K is
denoted val, : K — Z. We define the following map:

pr: [[ K/K;" — F}
QeA

(vo,v1,0¢) > (valu+<;1 (v1), val, -2 (v1),...,valyte, (v1), Valu+1(v1))

By Proposition 2.7, (z — T)(P;j — Qoo) = (Ciu, Ciu+ 1, u +t). We see that
pr maps the image of P; ; — Qo to the i-th basis vector. Hence pr maps (z —1')(V)
surjectively onto F?¢. This establishes the proposition. |

LEMMA 2.9. The images under (x —T) of Q1 and Q2 are linearly independent.

Proor. Since (z —T)(P;,; — Qo) = (= T)(P;0 — Qoo ), as noted in the proof
of Proposition 2.8, the image of Q2 = Zg;é St sk mod » Pij is the same as
that of Z?:_ol (d—1)(P;,0 — Qo). Using the notation of the proof of Proposition 2.8,
we find pr((z — T7)(Q2)) = (-1,-2,...,—d + 1,0) € F.

Proposition 2.7 gives (z — T)(Q1 — @) = (—1,1/(1 — ¢t),t — 1). The fac-
torization 1 — t = H?:_Ol(l — (iu) in Ky yields that pr((z — T)(Q1 — Qo)) =
(=1,—-1,-1,...,—1). The lemma now follows. |

2.4. Proof of the main theorem

We now use properties of V' as a module over S = Z[(,] to prove Theorem 2.1.
Write ¢ = 1 — (, both for the element of S and for the corresponding isogeny of .J.
Note that S/¢S = F.,.

ProproOSITION 2.10. dimg, (V/¢V) = d and dimp, (V[¢]) = 2.

PRrROOF. V is generated over S by the P; o with i € Z/dZ, so dimp, V/¢V is at
most d. On the other hand, the map

(x-T):V— [[ K;/K;"
QeA
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factors through V/¢V (Proposition 2.5 or Proposition 2.7) and its image has F,.-
dimension d (Proposition 2.8), so dimp, V/¢V > d and therefore = d. That
dimg, V[¢] = 2 was proven in Corollary 2.3. O

PROOF OF THEOREM 2.1. Let V.. be the torsion submodule of V. Then
V/Vior is torsion-free, so projective over S, so locally free of some rank p. We
use the preceding proposition to compute that p = d — 2.

Let S(4) and V(4 denote the localizations of S and V' respectively at the (prime)
ideal generated by ¢. By the structure theorem for modules over a PID, we have

t
Vig)y = S(y) © @S/Wei)
=1

for some integers t and ey, ..., e; with the e; > 0. Also,
p+it= dimFT Vi@/d)‘/(qg) = dim]pr V/QZSV =d

and

t= dim]pr Vv(qh) [QZS] = dim]pr V[¢] =2.
It follows that p = d — 2. Therefore

rankz V = (rankz S)(ranks V) = (r — 1)(d — 2).

For the torsion assertions, we note from Lemma 2.9 that ()7 and Q5 are linearly
independent in V/¢V, since their images in HQe A K[ /K;" are linearly indepen-
dent. Thus they form a basis of Vio./¢Vior. Moreover, since ¢Qq = 0, ¢Q2 = Qg
(Lemma 1.4), and ¢Qo = 0, we have that

V[r®] = V[¢™] = 5/(¢) @ S/(¢?)
as S-modules and

V[r®] = F} = (Z/rZ)®
as Z-modules. Finally, since J(K;)[¢] = V[¢] (Corollary 2.9), we have that
J(K)[r™] =V[r™] = (Z/rZ)>.
This completes the proof of the theorem. O
REMARK 2.11. With very small changes, the proof of Theorem 2.1 can be

modified to handle the case where 7 is an odd prime power. On other hand, these

methods do not suffice to treat the general case, because if r is divisible by two
distinct odd primes, then 1 — ¢, is a unit in Z[¢,].
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CHAPTER 3

Minimal regular model, local invariants, and
domination by a product of curves

In Section 3.1 of this chapter, we construct two useful models for the curve
C/Kg4 over P! ie., surfaces X and ) equipped with projective morphisms to P}
with generic fibers C/Ky. The model X is a smooth surface, whereas the model
Y is normal with mild singularities. We also work out the configuration of the
components of the singular fibers of X — P (i.e., their genera, intersections, and
self-intersections). The explicit model X and the analysis of the fibers play a key
role in the height calculations of Chapter 4 and in the monodromy calculations of
Chapter 8.

The analysis of the fibers of X — P! is used in Section 3.2 to obtain important
local invariants of the Néron model of J including its component groups and the
connected component of the identity. The local invariants of the Néron model are
used in our analysis of the L-function of J in Chapter 5.

Finally, in Section 3.3 we discuss a precise connection between the model ) and
a certain product of curves. The fact that X and ) are birationally dominated by a
product of curves, as shown in Section 3.3.1, allows us to prove the BSD conjecture
for J. The finer analysis of the geometry of the dominating map, which occupies
the rest of Section 3.3, may be of use in further study of explicit points on C, but
it is not crucial for the rest of the current paper and may be omitted by readers
not interested in the details.

3.1. Models

In this section, k is an arbitrary field. We fix positive integers r and d both
prime to the characteristic of k, and we let C' be the curve over k(u) defined as
in Section 1.1 where u? = t. In the applications later in the paper, k is a finite
extension of F,,(uq) for some prime p not dividing rd.

For convenience, in the first part of this section, we assume that d is a multiple
of r. The general case is treated in Section 3.1.5.

The model ) we construct is a suitable compactification of a blow-up of the
irreducible surface in affine 3-space over k defined by y" = 2" (z + 1)(z + u?).
The model X we construct is obtained by resolving isolated singularities of ).

3.1.1. Construction of Y. Let R = k[u], U = SpecR, R’ = k[u'], and
U’ = Spec R'. We glue U and U’ via v’ = u~! to obtain P. over k.
On P! over k define

g:OPl(d)@OPl(d—Fd/T)EBOPl

so that & is a locally free sheaf of rank 3 on P!. Its projectivization P(€) is a P?
bundle over P!. We introduce homogeneous coordinates X, Y, Z on the part of P(£)

23
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24 3. MINIMAL REGULAR MODEL

over U and homogeneous coordinates X', Y’  Z’ on the part over U’. Then P(£) is
the result of gluing Proj(R[X,Y, Z]) and Proj(R'[X’,Y", Z']) via the identifications
u=u"1 X =ulX',Y =utt"Y’ and Z = Z'.

Now define Z C P(£) as the closed subset where

Y'Z=X"HX+2Z)(X +u'Z)
in Proj(R[X,Y, Z]) and
Y/rZ/ _ X/r—l(X/ + u/dZ/)(X/ + Z/)

in Proj(R'[X’,Y’, Z']). Then Z is an irreducible, projective surface equipped with
a morphism to P!. The generic fiber is the curve denoted C’ in Section 1.1, which
is singular at [0, 0, 1].

We write Zy and Zy» for the parts of Z over U and U’ respectively. Then Z
is isomorphic to Zy; indeed, up to adding primes to coordinates, they are defined

by the same equation. (This is why it is convenient to assume that r divides d.)
We thus focus our attention on Zy, i.e., on

Proj (R[X,Y, Z]/(Y"Z — X""Y(X + Z)(X + u?2))).

We next consider the standard cover of Zy by affine opens where X, Y, or Z are
non-vanishing. These opens are

21 = Spec (Rl yi] /(4] — @] (21 + 1) (@1 +u?)
2y = Spec (R[x2, z2]/ (22 — o5 (w2 + 22) (22 + u'22)))
23 == Spec (Rlys, zs]/ (523 — (L + 23) (1 +u’z3))) -

The surface Z; is singular along the curve 1 = y; = 0, so we blow up along that
curve. (Strictly speaking, Z; is singular along this curve only if > 2. Nevertheless,
we proceed as follows even if r = 2.) More precisely, we define

Z11 = Spec (R[xll,yll]/(yll - x’{fl(xnyu + 1)(z11y11 + Ud))) )
219 1= Spec (R[xlz,yu]/(wwy{z — (w12 + 1) (212 + ud))) )

and let 21 be the glueing of le and Zlg given by (I117 yll) = (l/ylg, Ilgylg). The
morphism Z, — Z, defined by (z1,y1) = (z11¥11, ¥11) = (12, Z12Y12) is projective,
surjective, and an isomorphism away from x; = y; = 0.

We define Yy to be the glueing of Z5, Z5, and Z; by the identifications

(w2,22) = (1/y3,23/y3) and  (ys,23) = (1/211,1/(211911))-
Define Yy similarly (by glueing opens 24, 2%, Z{,, and Zi,), and let ) be the
glueing of Vi and Yy along their open sets lying over Spec k[u,u~!]. The result
of this glueing is a projective surface with a morphism to PL whose generic fiber
is the curve C'/k(u). Note that, directly from its definition, ) is a local complete
intersection.

It is easy to see that ) is already covered by the affine opens 2,1, Z5, and Z3,
and we use this cover in some calculations later in Section 6.1. On the other hand,
the coordinates of Z15 are also convenient, which is why they are included in the
discussion.

A straightforward calculation with the Jacobian criterion shows that Yy — U
and Yy — Speck are smooth except at the points

u:y11:O> x§1:17
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3.1. MODELS 25

and, when d > 1, at the points
ut =1, ys3 = 0, zg = —1.

The fibers of Yy — U are irreducible except over u = 0, where the fiber has
irreducible components y;; = 0 and 27, (z11y11 + 1) = 1, both of which are smooth
rational curves. The points of intersection of these irreducible components are the
singular points in the fiber over v = 0. Similar results hold for V.

To finish our analysis of ), we note that it satisfies Serre’s conditions S,, for all
n > 0 since it is a local complete intersection. Moreover, it has isolated singularities,
so it satisfies condition R; (regularity in codimension 1). It follows from Serre’s
criterion that ) is normal.

Summarizing, the discussion above proves the following result.

PROPOSITION 3.1. The surface ) and morphism Y — PL have the following
properties:

(1) Y is irreducible, projective, and normal.

(2) The morphism Y — PL is projective and generically smooth.

(3) The singularities of ¥ — PL consist of r points in the fiber over u = 0, one
point in each fiber over points u € pg and r points in the fiber over u = co.
When d > 1, these are also the singularities of ), whereas if d = 1, only
the singularities of Y — PL over points u € uq are singularities of Y.

(4) The fibers of Y — PL are irreducible except over u = 0,00 where they are
unions of two smooth rational curves meeting transversally in r points.

(5) The generic fiber of ¥ — PL is a smooth projective model of the curve
defined by y" = " (x + 1)(z + u?) over k(u).

REMARK 3.2. It is tempting to guess that ) is the normalization of Z, but
this is not correct. Indeed, the morphism ) — Z contracts the curve v = y;; =0
in Z11, so is not finite. It is not hard to check that the normalization of Z is in
fact the surface obtained from )’ by contracting this curve and the analogous curve
over u = 0.

3.1.2. Singularities of ). We now show that ) has mild singularities. Recall
that rational double points on surfaces are classified by Dynkin diagrams of type
ADE. (See for example [3, 3.31-32].) In particular, to say that a point y € Y is a
rational double point of type A, is to say that y is a double point and that there is
a resolution X — ) such that the intersection matrix of the fiber over y is of type
A,

ProrosiTION 3.3. The singularities ofy ;= Y xi k are all rational double
points. More precisely, the singularities in the fibers over u = 0 and u = oo are
analytically equivalent to the singularity o8 = v* and are thus double points of type
Ay 1Y The singularities over the points u € g are analytically equivalent to the
singularity af =" and are thus double points of type A,_1.

PrOOF. For notational simplicity, we assume that k is algebraically closed, so
that J = .

First consider the fiber over u = 0. We use the coordinates of the open Zi1,
that is, the hypersurface in A3 defined by y — 2" !(ay + 1)(zy + u?) = 0. (We
drop the subscripts to lighten notation.) The singularities are at the points with

1Of course, a “double point” of type Ag is in fact a smooth point.
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u=y =0, and " = 1, and we work in the completed local ring of A® at each one
of these points. Choose an 7-th root of unity ¢ and change coordinates x = z’ + ¢
so that z’, y, and u form a system of parameters at one of the points of interest.
In the completed local ring, the element

g Ny +1) = (@ + 0@ +Qy+1)

is a unit, and since d is prime to the characteristic of k, it is also a d-th power.
Defining v by u = y(z"~*(zy+1))~'/¢, then 2/, y, and ~y are a system of parameters,
and in these parameters, the defining equation becomes

y(I— @+ (@' +Qy+1) —v*=0.
Finally, note that
1=+ (@ +Qy+1) =—r¢" "2 — Cy + (deg > 2)

where “deg > 2” stands for terms of degree at least two in z’ and y. Since r is
prime to the characteristic of k, the coefficient of z’ is not zero so we may set
a=y, B=010-"+)(@"+y+1),

and have «, 3,7 as a system of parameters. In these coordinates, the defining
equation becomes o3 = v%. This proves that the singularities of J) over u = 0 are
analytically equivalent to af = <.

The argument for the points over u = oo is identical to the above.

Now consider the fiber over a point u € pg, using the coordinates of the open
Zs3, that is, the hypersurface in A defined by y"z — (1 + 2)(1 +u%2) = 0. (Again
we omit subscripts to lighten notation.) Choose a d-th root of unity ¢ and let
u = u + . The singular point over v = ¢ has coordinates v’ =y = 0, z = —1.
Setting z = a — 1, the defining equation becomes

y(a—1)—a(l+ @+ a—1)) =0.

As before, a — 1 is an r-th power in the completed local ring, and we set y =
y(a — 1)~/ Moreover,

(14 W + U —1)) = —d¢* M/ + a + (deg > 2)

so we may set 3 = (1 + (v + O — 1)) and have a, 3, as a set of parameters.
In these parameters, the defining equation becomes 7" = af.

To finish, it remains to observe that the singularity at the origin defined by
af = «™ is a rational double point of type A,_1. This is classical and due to
Jung over the complex numbers. That it continues to hold in any characteristic
not dividing n is stated in many references (for example [2, Page 15]), but we do
not know of a reference for a detailed proof of this calculation.? It is, however, a
straightforward calculation, and we leave it as an exercise for the reader. O

REMARK 3.4. This paper contains two other proofs that the singularities of
Y are rational double points. The first comes from resolving the singularity with
an explicit sequence of blow-ups; see Section 3.1.4. Doing this reveals that the
configurations of exceptional curves are those of rational double points of type A,
with n = d—1orr—1. (It also reveals that the singularities are “absolutely isolated
double points,” i.e., double points such that at every blow up the only singularities

2In connection with a related proof, Artin writes “Following tradition, we omit the rather
tedious verification of these results.”
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are isolated double points. This is one of the many characterizations of rational
double points.) The calculation in Section 3.1.4 is independent of Proposition 3.3,
so there is no circularity.

The second alternative proof (given in Section 3.3 below) uses the fact that ) is
a quotient of a smooth surface by a finite group acting with isolated fixed points and
cyclic stabilizers. This shows that the singularities of ) are cyclic quotient singu-
larities, therefore rational singularities, and it is clear from the equations that they
are double points. (The action is explicit, and we may also apply [3, Exercise 3.4].)

3.1.3. Construction of A'. With ) in hand, & is very simple to describe:
We define X — Y to be the minimal desingulariztion of ).

Let us recall how to desingularize a rational double point of type A,. The
resolution has an exceptional divisor consisting of a string of n — 1 smooth, rational
curves, each meeting its neighbors transversally and each with self-intersection —2.
If n is odd, we blow up (n — 1)/2 times, each time introducing 2 rational curves.
If n is even, the first (n — 2)/2 blow-ups each introduce 2 rational curves, and the
last introduces a single rational curve.

3.1.4. Fibers of X — PL. In this subsection, we record the structure of the
bad fibers of X — PL. More specifically, we work out the configuration of irreducible
components in the fibers: their genera, intersection numbers, and multiplicities in
the fiber.

First consider the fiber of Y — ]P’,ll over u = 0. Using the coordinates of the
chart Z1; above, this fiber is the union of two smooth rational curves y = 0 and
1—2"(zy+1) = 0 meeting at the r points y = 0, 2 = 1. These crossing points are
singularities of ) of type A4_1. In the resolution X — ), each of them is replaced
with a string of d — 1 rational curves. It is not hard to check (by inspecting the
first blow-up) that the components y = 0 and 1 — 2" (zy + 1) = 0 meet the end
components of these strings transversely and do not meet the other components.
We label the components so that those in the range j(d—1)+ ¢ with1 <¢<d-1
come from the point with x = ¢J.

Resolving the singularities thus yields the configuration of curves displayed
in Figure 1 below. (This picture is for d > 1. If d = 1, then )} does not have
singularities in the fibers over © = 0, and the fiber consists of a pair of smooth
rational curves meeting tranversally at r points.) In the figure, Cy is the strict
transform of 1 — 2" (xy + 1) = 0, C}(4—1)41 is the strict transform of y = 0, and the
other curves are the components introduced in the blow-ups.

Each component is a smooth rational curve, and all intersections are transverse.
The components introduced in the blow-up have self-intersection —2. Since the
intersection number of any component of the fiber with the total fiber is 0, the
self-intersections of the strict transforms of Cy and C,.(q—1)41 are both —r. Those
components are reduced in the fiber of ) — P! so they must also be reduced in
the fiber of X — PL. It follows that all components of the fiber of X — PL are
reduced. We note that the fiber at 0 is thus semi-stable.

As already noted, a neighborhood of v = 0 in ) is isomorphic to a neigh-
borhoood of u = oo in Y, so the the fiber at u = co of X — PL is isomorphic to
that at u = 0. (Note that r divides d in the construction of ) in Section 3.1.1. We
see in Section 3.1.5 that the fibers over u = 0 and u = oo are not isomorphic for
general d.)
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C
0 s

C Ca—1

Cla—1)+2
Cla-1)+1 T Ca(a-1)

Clr—1)(d—1)+2

Cir—1)(d-1)+1 Cr(a-1)

Cra—1)+1

FIGURE 1. Special fiber at w = 0 for d > 1. We have ¢g(C;) =0
for all 4, C§ = CZ; 1y, = —r,and Cf = =2 for 1 <i <r(d—1).
All components are reduced in the fiber.

We now turn to the fiber over a point u € pg. Since PL — P} is unramified
over t = 1, the fibers of X — P! over the points with u? = 1 are independent of
d, and we may thus assume that d = 1. We work in the chart Z3 with equation
y"z—(142)(1+tz) = 0 where the singularity has coordinatest =1, y =0, z = —1.
Replacing ¢t with t+1 and z with z—1, the equation becomes y" (z—1) —z(z—t+tz) =
0, and the singularity is at the origin and is of type A,_;. The fiber is the curve
y"(z — 1) = 22, which has geometric genus (r — 2)/2 or (r — 1)/2 as r is even or
odd, with a double point at y = z = 0.

We know that the singular point blows up into a chain of » — 1 rational curves,
and our task now is to see how the proper transform of the fiber intersects these
curves. Since the case r = 2 already appears in [52], we assume r > 2 for conve-
nience. It is also convenient to separate the cases where r is odd and where r is
even.

First consider the case where r is odd. After the first blow-up, the relevant
piece of the strict transform of J has equation y" =2 — y" 1z + 2(z — t + tyz) = 0;
the exceptional divisor is z(z —t) = 0, the union of two reduced lines meeting at the
origin; and the proper transform of the original fiber meets the exceptional divisor
at the origin. The next blow up introduces two lines meeting transversally at one
point, and they have multiplicity 2 in the fiber. The strict transform of the original
fiber passes through the intersection point and meets the components transversally.
This picture continues throughout each of the blowups, and after (r — 1)/2 steps
the strict transform of the original fiber meets the chain of r — 1 rational curves at
the intersection point of the middle two curves, and it meets each of these curves
transversally.
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The picture for r odd is as in Figure 2 below. The curves D; and E; appear at
the i-th blow up; their multiplicities in the fiber are i; and the self intersections of
each D; or E; is —2, The curve F is the proper transform of the original fiber, the
smooth projective curve of genus (r — 1)/2 associated to y” = 2"~ 1(x + 1)2. Also
F is reduced in the fiber and its self-intersection is —(r — 1). The intersections of
distinct adjacent components are transversal.

FIGURE 2. Special fiber when u? = 1 and r = 2s+1. Here g(D;) =
g(E;)) =0, g(F) = (r—1)/2, D} = E? = =2, and F? =1 —r.
Multiplicities in the fiber are m(D;) = m(E;) =i and m(F) = 1.

The case where r is even is similar until the last stage. After (r—2)/2 blow-ups,
there is a chain of r — 2 rational curves and the strict transform of the original fiber
passes through the intersection point of the middle two curves. The equation at this
point is y2 —y"t2)/2 24 2(z—t+ty("=2/2z) = 0. The tangent cone is y>+2>—tz = 0,
a smooth irreducible conic, so the last blow up introduces one smooth rational curve.
After the last blow-up, the equation becomes 1 —y"/2z + z2(z—t+ tyr/Qz) =0, and
the strict transform of the original fiber meets the last exceptional divisor in two
points namely ¢t =y =0, z = £1. (Note that r even implies p # 2, so there really
are two points of intersection.)

The picture for 7 even is given in Figure 3 below. Again D; and FE; have
multiplicity ¢ in the fiber and self-intersection —2. The curve G has multiplicity
s =r/2 in the fiber and self-intersection —2. The curve F' is the strict transform of
the original fiber and is the smooth projective curve associated to y" = z"~!(z+1)2.
It is reduced in the fiber, has genus (r — 2)/2, and has self-intersection —r-.

Note that the fibers of X — PL over points with u¢ = 1 are not semi-stable.
However, it follows from [36, Theorem 3.11] that C/ K, acquires semi-stable reduc-
tion at these places after a tamely ramified extension. All other fibers of X — PL
are semi-stable. This yields the second part of proposition below.

Summarizing this subsection:

PRrROPOSITION 3.5. The configurations of components in the singular fibers of
X — PL (genera, intersection numbers, and multiplicity in the fiber) are as de-
scribed above and pictured in Figures 1, 2, and 3. The action of Gal(K*°? /K) on
HY(C xx K,Qy) is at worst tamely ramified at every place of K.
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Ds—2

FIGURE 3. Special fiber when u? = 1 and » = 2s. We have g(D;) =
9(E:) = 9(G) = 0, g(F) = (r—2)/2 =5 —1, D = F? = G = -2,
and F? = —r. Multiplicities in the fiber are m(D;) = m(E;) = 1,
m(G) = s, and m(F) = 1.

3.1.5. General d. Until now in this section, we have worked under the hy-
pothesis that r divides d. In this subsection, we briefly sketch the construction of
a regular minimal model X — P for general d.

In fact, the only issue is near u = oo: The charts Z5, Z3, and Z;; are well
defined without assuming that r divides d, and they glue as above to give an
irreducible, normal surface }° with a projective morphism }° — Al that is a
model of C over k(u). Over u = 0 and u € pg, the same steps as before lead
to a regular, minimal model X° — Al. This model is semi-stable at v = 0 with
reduction exactly as pictured in Figure 1, and the reduction at points u € pg is as
pictured in Figures 2 and 3.

The situation over u = oo is more complicated, and the most efficient way to
proceed is to first “go up” to level d’ = lem(d, r) and then take the quotient by the
roots of unity of order d'/d = r/ged(d,r). Let H = pg /g C par-

They key point to note is that in constructing the model Xy — PL where
u? =t, we started with a completion of the affine model y = "N o+ 1) (x+ ud/),
made a change of coordinates u = v~ %, z = u¥2/, y = u?*+9/7y and then
performed a blow-up by substituting =’ — z'y’, ¥’ — y’. This yields the chart
with equation y' — 2"~ 1(2'y’ + w'?)(2'y’ + 1) = 0. The action of H on these
last coordinates is thus ¢(v/,2’,y') = (¢~ '/, (¥ /72!, ¢~%/™y'). Further blowing up
yields the regular minimal model Xy whose fiber over u' = 0 is as described in
Figure 1. The action of H lifts canonically to the model Xy .

We now consider the action of H on the special fiber over v’ = 0. This action
preserves the end components and permutes the horizontal chains with ged(d,r)
orbits. The action has 4 isolated fixed points, which are roughly speaking at the
points where z’ or y’ are 0 or oco. (Specifying them exactly requires considering
other charts, and we omit the details since they are not important for what follows.)
The exponents on the action on the tangent space are (1,1) or (1, —1) with one of
each type on each component. Resolving these quotient singularities leads to chains
of rational curves of length 1 and d'/d — 1 = r/lem(d,r) — 1 respectively. (The
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configuration of the component is computed using the “Hirzebruch-Jung continued
fraction” as in [4, I11.5-6].)

The picture is given in Figure 4 below. In that picture, all components are
smooth rational curves. The components labeled R; ; with 1 < ¢ < ged(r,d) and
1 < j < d-—1 are the images of the components Cy with 1 < ¢ < r(d' — 1)
in Figure 1. The components labeled Dy /g and Eg /q are the images of Cy and
Cir(d'—1)+1 respectively. The components C; and Cy in Figure 4 come from resolving
the singularity with local exponents (1,1), and the components D; and E; with
1 <4< d/d—1 come from resolving the singularities with local exponents (1, —1).

O
Dd//d

/

Rl,l ><gcd(d ,r),1 | Dd’/dfl o M

Ri2 Rgca(d,r),2

\Rld 1

gcd(d r | Ed’/dfl o Ey\E‘l

C

FIGURE 4. Special fiber at u = 0o, where u? = t, d not divisible
by r. All components are smooth rational curves. We have Riz)j =
-2, C? = —d'Jd, D? = E? = -2 for 1 < i < d'/d— 1 and

Dg,/d = Eg//d = —gcd(r,d) — 1. Multiplicities in the fiber are
m(E; ;) = d'/d, m(C;) =1, and m(D;) = m(E;) =ifor 1 <i<
d'/d.

Since the components of the fiber pictured in Figure 1 are reduced and the
quotient map is étale away from the isolated fixed points, the multiplicites in the
fiber of the components R; j, Dy /4, and Eg /4 are d'/d and the self-intersections
of the R; ; are all —2. The components C; and C3 are reduced in the fiber and
have self-intersection —d’/d. The components D; and D; with 1 < i < d'/d -1
have self-intersection —2 and multiplicity 7 in the fiber. The components Dy /4 and
Eg q have self intersection —ged(d, r) — 1 and multiplicity d’/d in the fiber.

REMARK 3.6. The strings of rational curves in the fiber over © = 0 correspond
to r-th roots of unity, and the components in the string corresponding to ¢ € p,
are defined over F,({). Similarly, the strings of curves R;; correspond to roots of
unity of order ged(d,r). On the other hand, over places u corresponding to a d-th
root of unity ¢’ € p4, components in the fibers are all rational over the field F,(¢’).
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Also, when r is even, the two points of intersection of the curves F' and G over a
place with u = ¢’ are defined over F,(¢’).

3.2. Local invariants of the Néron model

In this section we record the local invariants of the Néron model of J, i.e., its
component group and connected component of the identity.

3.2.1. Component groups. The results of [6] Chapter 9, Section 6 allow us
to read off the group of components of the special fiber of the Néron model of Jo
from our knowledge of the fibers of X — PL.

PROPOSITION 3.7. Suppose that r divides d and consider the group of connected
components of the Néron model of J at various places of Fp(u).

(1) Atu =0 and u = oo, the group of connected components is isomorphic to
(Z)rdZ) x (Z)dZ)"—2.

(2) At places where u® = 1, the group of connnected components is isomorphic
to Z/rZ.

PROOF. Part (1) is exactly the situation treated as an example in [6]; see 9.6
Corollary 11. Part (2) is an exercise using [6, 9.6, Theorem 1] and the well-known
fact that the determinant of the matrix of a root system of type A,_; is r. ]

REMARK 3.8. All components of all fibers of X — P}, are rational over F,,(u4).
It follows that the group of connected components of Jc at each place of Fp(pq, u)
is split, i.e., Gal(F,/F,(ua)) acts trivially on it.

3.2.2. Connected components. Recall that the connected component of a
smooth, commutative algebraic group over a perfect field has a filtration whose
subquotients are a unipotent group (itself a repeated extension of copies of the
additive group G,), a torus, and an abelian variety. For a place v of Ky, let a,,
my, and g, be the dimensions of the unipotent (additive), toral (multiplicative),
and abelian variety subquotients of the connected component of the Néron model
of Jo at v. Since C has genus r — 1, there is an equality a, +m, + g, =r — 1. At
places of good reduction, g, = r — 1.

PROPOSITION 3.9. Let Kg = Fp(pa,u).

(1) If v is the place of Ky over uw =0, then a, = g, =0 and m, =r — 1.

(2) If v is a place of Kq over u € uq and r is even, then a, = (r — 2)/2,
my, =1, and g, = (r — 2)/2.

(3) If v is a place of K4 over w € uq and r is odd, then a, = (r —1)/2,
m, =0, and g, = (r —1)/2.

(4) Ifw is the place of K4 over u = oo, then a, = r—ged(r,d), m, = ged(r,d),
and g, = 0.

ProoF. It suffices to compute m, and g,. We note that [6, Section 9.2] gives
g, and m,, in terms of the special fiber at v of a minimal regular model of C, i.e., in
terms of X. Over u = 0, where X — P! has semi-stable reduction, [6, 9.2, Example
8] shows that g, = 0 and m,, = r — 1, proving part (1).

In general, both m, and g, only depend on the reduced curve underlying the
fiber [6, 9.2, Proposition 5]. By [6, 9.2, Proposition 10], g, is the sum of the genera
of the irreducible components of the reduced special fiber. When r is even, the
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reduced fiber is semi-stable, and again [6, 9.2, Example 8] shows that m, = 1,
proving part (2). When r is odd, applying [6, 9.2, Proposition 10] (with C’ and C
the reduced special fiber, which is tree-like) shows that m, = 0, proving part (3).
Over u = o0, all components are rational curves, so g, = 0. The reduced fiber is
semistable of arithmetic genus ged(d, r) — 1, so m,, = ged(d, r) — 1, which completes
the proof of part (4). O

3.3. Domination by a product of curves

In Section 3.3.1, we show that the surface ) constructed in Section 3.1.1 is
dominated by a product of curves. In the following subsections, we upgrade this to
a precise isomorphism between ) and a quotient of a product of curves by a finite
group in the style of Berger’s construction [5] and of [50]. This casts some light on
the singularities of ), and it may prove useful later for constructing explicit points
on C over K, for values of d other than divisors of p/ + 1 as in [10, Section 10].

Throughout, k is a field of characteristic p > 0, and r and d are positive integers
prime to p such that r divides d. We assume also that & contains the d-th roots of
unity.

3.3.1. Domination of J by a product of curves. The surface ) is bira-
tional to the affine surface over k given by y" = 2"~ (z + 1)(z + u). Consider the
smooth projective curves over k given by

C=Craiz=a"—1 and D=Dua:uwi=y 1.

Then a simple calculation shows that the assignment

9" (u) = 2w,
(3.1) ¢*(x) = 2%,
¢*(y) = zy2*

defines a dominant rational map ¢ : C X D--+).
In the rest of this section, we analyze the geometry of this map more carefully.

3.3.2. Constructing C with its G action. First, we construct a convenient
model of the curve C over k with equation 2% = 2" — 1. Namely, we glue the smooth

k-schemes
Uy = Speck[z1, z1]/ (zf — ] +1)
and
Us = Spec k[, 0]/ (25(2§ + 1) — 1)
via the identifications z; = x5 'z, Y and 2 = zy ', The result is a smooth

projective curve that we call C.
There is an action of G = p, x pgq on C defined by

(s )1, 21) = (Gen, Caza)  and (G, Ca) (@, 20) = (G Y 0, (M 20).

There are three collections of points on C with non-trivial stabilizers: the r points
where z; = 0 and 2] = 1, which each have stabilizer 1 x pg4; the d points where
r1 = 0 and 2¢ = —1, which each have stabilizer u, x 1; and the 7 points where
zo = 0 and x5 = 1, which each have stabilizer

H = { (¢, ¢h)

Ogigd—l}.
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We call these fixed points of type pg, p-, and H respectively.

3.3.3. C x; D and its fixed points. We let D be the curve defined just
as C was, but with opens V; and Vs, defined with coordinates y1, y2, wi, ws in
place of z1,...,20. We let G act “anti-diagonally” on the product surface C x; D,
i.e., by the action on C defined above, and by the inverse action on D (so that
(Grs Ca) (1, w1) = (G, G M)

If (c,d) € Cxy D, then the stabilizer of (¢, d) is the intersection of the stabilizers
cand d in G. This yields the following list of points (¢, d) of C x, D with non-trivial
stabilizers:

Hd;
Hors

(i) if both ¢ and d are fixed points of type pq4, then Stab(e, d)

) if both ¢ and d are fixed points of type pu,, then Stab(c,d)
(iii) if both ¢ and d are fixed points of type H, then Stab(c,d) = H;
(iv) if ¢ is of type pq and d is of type H, then Stab(c,d) = (1 X ug) N H, a
cyclic group of order d/r;

(v) if ¢ is of type H and d is of type g, then Stab(c,d) = (1 x pg) N H.

We call the fixed points of types (i)-(iii) “unmixed” and the fixed points of types
(iv) and (v) “mixed.” Note that at an unmixed fixed point, the action on the
tangent space in suitable coordinates is of the form (¢,( ™), while at a mixed fixed
point, the action is by scalars (.

3.3.4. C/><\;;/D with its G-action. We define C/><\;;/D to be the blow up of
Cp %1, D at each of its 22 mixed fixed points. The action of G on Cp x;, D lifts

uniquely to C X D. By the remark above about the action of G on the tangent

space at the mixed fixed points, G fixes the exceptional divisor of C x; D — C x; D
pointwise. These are “divisorial” fixed points. The other fixed points of G acting

on C xp, D are the inverse images of the unmixed fixed points of C xj, D.

Now consider the quotient C X, D/G. It is smooth away from the images of
the unmixed fixed points. Those of type (i) fall into 7 orbits and their images in
the quotient are rational double points of type A4—1. Those of type (ii) fall into
d orbits and their images in the quotient are rational double points of type A,_1.
Those of type (iii) fall into r orbits and their images in the quotient are rational
double points of type Ag_1.

3.3.5. An isomorphism. The main goal of this section is the following iso-
morphism. Recall ), the model of C/K, defined in Section 3.1.1.

PRrROPOSITION 3.10. There is a unique isomorphism
p: (C/>_<\I;/Z)> /G =Y
such that the composition
CxpD-CxpyD—=CxyD/G =Y
is the rational map ¢ : C Xy D--+Y of equation (3.1) in Section 3.3.1.

Uniqueness is clear. The key point in the proof of existence is the following
lemma.

LEMMA 3.11. There exists a G-equivariant, quasi-finite morphism 1 : C XD —
Y (with G acting trivially on Y) inducing the rational map ¢ : C xj, D--»Y.
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PROOF. The rational map ¢ induces a rational map C x, D--+), and what has
to be shown is that there is a quasi-finite morphism 1 representing this rational

map. To do so, we cover C X D with affine opens and check that each is mapped
by a quasi-finite morphism (the unique one compatible with ¢) into ). The details
are tedious but straightforward calculations with coordinates.

It is helpful to have a standard representation of elements of the function field
Y. Using the coordinates of Z1, the field k()) is generated by z, y, and u with
relation y" = 2"~ }(x + 1)(z + u?). (We drop the subscripts 1 to avoid confusion

P

with coordinates on C xj D below.) Inclusion of the opens Zs, Z3, Z11, Z12, 24,
25, 214, and Z{, into ) induces isomorphisms between the function fields of the
opens and that of V. This leads to the following equalities in k()):

T2 = /Y, ys =y/z, r11 = /Yy, T1 =,
Z2:1/y’ 2321/.1?, Yy =Y, y12:y/xv

u = ut

wy=u"zly,  yy=uylz, oy =uWTafy, ahy =

2y =uttry =, yi =u Yy, =um YTy

Similarly, the function field of C/>_<\;;/D is generated by x1, 21, y1, w; with rela-
tions z{ = 27 — 1 and w{ = y7 — 1. Inclusion of the opens U; x V; leads to the
equalities:

z22 = 2;17 Wz = ’LU;I,
z2 =2y Ja1, y2 = wi" 1.
The blowing up of points in U; X Vo and Us x V; made to pass from C X D to
C xi, D leads to additional equalities stated below.

For the last key piece of data, we recall the field inclusion ¢* : k() < k(C x

D). It yields equalities

¢ (w) =2wr, () =z,  ¢"(y) =y

We now cover C X D with affine opens (many of them, unfortunately) and for each
of them check that there is a quasi-finite morphism from the open to ) that induces
the field inclusion ¢*. The compatibility with ¢* shows that these morphisms agree

on the overlaps, so this yields a global quasi-finite morphism v : C x; D — ). Since
the image of ¢* is generated by z w1, 2¢, and 2%, it lies inside the G-invariant
subfield of Ic(C/x\k/'D)7 and this shows that 1) collapses the orbits of G; this is the
claimed equivariance.

We now make the necessary coordinate calculations, starting with the open
Uy x Vy. The formulae above show that

" (u) = 2wy, ¢*(z12) = Ziia " (y12) = 2191-

This shows that there is a morphism 11 : Uy X V1 — 212 < Y inducing ¢. To see
that 11 is quasi-finite, we note that fixing the value of z15 implies at most d choices
for z1, which in turn allows for at most r choices of z;. Fixing y12 then determines
y1 and fixing v determines wy. This shows that 71 has fibers of cardinality at
most rd (and generically equal to rd).
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The rest of the proof proceeds similarly with other affine opens of C/><\k/'D.
Considering Us x Vo, we note that

0" () = zmws,  ¢*(ahy) =wy,  O(Yho) =5 ys
Since x5 and yo are units on Us X Vs, these formulae define a morphism oo :
Us X Vo — Z], — Y that is compatible with ¢. The reader may check that o
and the other morphisms defined below are quasi-finite.
These formulae define 1) away from the blow ups of the mixed fixed points.

Now we focus our attention near a particular mixed fixed point in U; X Vs,
say P;; given by 1 = (., z1 = 0, y2 = ¢/, and wo = 0. Let

(5 —1) (w5—1)
(1 =G (y2 — &)
Inverting f gives an affine open subset of U; X Vo on which the only solution of

z1 = wp = 0is P;;. We may cover the blow up at P;; of this open with two affine
opens:

f=

Elz1, 5,92, wa][1/ f]
()

(@1, 21, y2,t][1/ f]
)

T = Spec

1
and

k
2 _
17; = Spec

where z; = swy on Tilj and wy = tz1 on Tfj
Noting that

* * d — * d—d —
(W) =s, ¢ (xn) =ywd art, ¢t (yu) = arstwy Tyt

)

we define a morphism 1215, from the open of Tzlj where 1 # 0 to Z1;. Noting

that

o"(w) =5, ¢(@z) = s"wf, ¢ (gio) = wayy wy
we define a morphism 11215, from the open of Tilj where ws # 0 to Z15. Since wo
and x; do not vanish simultaneously on Tllj7 this defines a morphism 12155 : Tllj —

V.
Similarly, noting that

% _ —d
() =t, ¢ (i) =t%l, " (yho) = mys e VT

we define a morphism 122, from the open of Tfj where z; # 0 to Z],. Noting
that

* * d — * d—d —
o*(u') =t, ¢*(x11) = 9221/T951 17 " (Y1) = td$121 /TZUQ 1’
we define a morphism 12251 from the open of Tfj where 1 # 0 to Z{;. Since z; and
21 do not vanish simultaneously on Tfj, this defines a morphism )129;; : 7, ng — ).
The morphisms 112155 and 1129;; for varying ¢j patch together to give a mor-

phism 15 from the part of Cfx\ﬁ lying over Uy x Vs to V.
It remains to consider neighborhoods of the blow ups of the mixed fixed points
in Uy X V1. Let Q;; be the point where 22 = (), 220 =0, y1 = ¢}, and w; = 0. Let

@D ey
(w2 —C}) (y1 — )
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Inverting g gives an affine open subset of Us X Vi on which the only solution of
zo = w1 = 0is Q;;. We may cover the blow up at @;; of this open with two affine
opens:

k[xa, s, y1,w1][1/g]

k‘[.’[Q, Z2,ylat][1/g]
)

Tf; = Spec

and

T4

ij

= Spec

where zo = sw; on T% and w; =tz on Té
Noting that

* * — —d *
o (W) =s, () =may e, () =,
we define a morphism 213,54 from the open of T% where w; # 0 to Z}. Noting
that } e
o'W =s,  ¢"(h) =muwi Ty, 67 () = mawl Ty
we define a morphism 213;55 from the open of Tg where y; # 0 to Z5. Since w; and

y1 do not vanish simultaneously on Tg, this defines a morphism 2135 : Tf; — V.
Noting that

* * d — * d+d —
¢ (u) =t, " (z2) = $222/Ty1 h ¢*(22) = $222+ /ryl L

we define a morphism 214,54 from the open of TZ% where y; # 0 to Z5. Noting that

¢*(U) = tu ¢*(y3) = ylxglz;d/ru ¢*(23) = 237
we define a morphism 121445, from the open of T;é where zo # 0 to Z5. Since y; and

7 do not vanish simultaneously on Té, this defines a morphism 214;; : Té — V.
The morphisms 213;; and 12145 for varying ij patch together to give a mor-

phism 57 from the part of C x; D lying over Us X V; to V.

Finally, the mor@\isins Y11, Po2, P12, and Yo patch together to give a quasi-
finite morphism v : C x D — Y that collapses the orbits of G and induces ¢. This
completes the proof of the lemma. |

Proor O/F_\P/ROPOSITION 3.10. By Lemma 3.11, there is a quasi-finite mor-
phism v : C Xy D — Y of generic degree rd. By G—e(gi\viriance, this factors
through the quotient to give a quasi-finite morphism p : C xx D/G — Y. Consid-
ering degrees shows that p is birational. On the other hand, p is proper (because
C x, D is projective) and quasi-finite, so finite. But ) is normal and a birational,
finite morphism to a normal scheme is an isomorphism. This establishes that p
gives the desired isomorphism. |

REMARK 3.12. Examining the morphism above shows that the fixed points of
types (i) and (iii) map to the singular points of ) in the fibers over u = 0 and oo.
The fixed points of type (ii) map to the singular points in the fibers over points
u € pg. This gives another proof that the singularities of ) are rational double
points of type Ag_1 and A, _1.
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CHAPTER 4

Heights and the visible subgroup

In this chapter, we work over Ky = Fp(pq,u) with u? = ¢, and we assume
that d = p¥ 4+ 1 and r divides d. We have explicit points P;; defined in Chapter 1
and the subgroup V of J(K;) generated by their classes. Our first main task is
to compute the Néron-Tate canonical height pairing on V. We then compare this
with a group-theoretic pairing defined on R/I where R is the group ring Z[ug X pr]
and I is the ideal defined in Section 1.3. This allows us to show that there is an
R-module isomorphism V = R/I. We also compute the discriminant of the height
pairing on V.

4.1. Height pairing

In this section, we compute the height pairing on various points of J(Kjy).
Recall that we identify C with its image in J by P — [P — Qo). We consider
the Néron-Tate canonical height pairing divided by log|F,(¢q)|, as discussed for
example in [51, Section 4.3]. This is a Q-valued, non-degenerate, bilinear pairing
that is defined at the beginning of the next subsection.

We compute (Pij, Pyo) for 0 <i < d—1and 0 < j <r—1. This determines the
pairing, since its compatibility with the action of pg x p, implies that (P;;, Pyrj/) =
(Pi—ir,j—jr, Poo)-

THEOREM 4.1. The height pairing (P;;, Poo) is given by

—(r=1)(d=2) if(i,5) = (0,0),
r—2 Z.fl.?—'fomodr,j:()’
(P, Py = — =1 ]2 =2 Ji#0,i=0modr,j=0,
rd d—2 ifi=0,j#0,
r—2 ifi#0,7%#0,i+j=0modr,
-9 if i #0,5 #0,i+j #0mod r.

This was already proved in [52, Section 8] in the case r = 2, so to avoid
distracting special cases, we assume r > 2 for the rest of this section.

4.1.1. Basic theory. Let P and P’ be two points on C(Ky) identified as
usual with a subset of J(Kj) using Q, as a base point; we later set P = Pyy and
P’ = P;;. Then the height pairing is defined by

(P,P') = —(P — Qo — Dp) - (P' = Quo)
:_P'P/+P'Q00+PI'QOO_QZO_DP'PI>
with notation as follows: we identify a point of C' with the corresponding section

of the regular proper model 7 : X — PL and the dot indicates the intersection
pairing on X. The divisor Dp is a divisor with Q-coefficients that is supported on
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components of fibers of 7 and satisfies (P— Qo+ Dp)-Z = 0 for every component Z
of every fiber of m. We may also insist that Dp-Qs = 0 in which case Dp is uniquely
determined. The “correction term” Dp- P’ is a sum of local terms that depend only
on the components of the fiber that P and P’ meet. The other intersection pairings
can be computed as sums of local terms, except the self-intersection @ - @~ and
(when P’ = P) P - P. The latter two are computable in terms of the degree of a
conormal bundle.

4.1.2. Auxiliary results. The following results are useful for computing the
various intersection numbers.

In the first result, we focus attention on the special fiber at a place v with
components Cy, C1, ..., C, and let A;; (with indices 0 < ¢, j < n) be the intersection
matrix: A;; = C;-C;. We number the components so that Qo meets Cy. We write
(Dp - P’), for the part of the intersection multiplicity coming from intersections in
the fiber over v. With these conventions, it is easy to see that if P or P’ meets Cj,
then (Dp - P’), = 0.

LEMMA 4.2. Suppose that P intersects C},, and P’ intersects Cy, with k,£ > 0.
Let B be the matriz obtained by deleting the 0-th row and column from A. Let B’ be
the submatriz obtained by deleting the k-th row and ¢-th column from B. Finally,
let Dp denote the fibral divisor satisfying the conditions described above. Then

preprdet(B) e det(=B")

Dp-Pr=(=1) det(B) = (=D det(—B)

Proor. Write Dp = ZZ:O dpChp with d;, € Q. The conditions on Dp imply
Dp-Cp = (Qoo — P) - Cp, for all h. Also dy = 0 because Dp - Qs = 0. The
intersection number (Dp - P’), is just d,.

Writing d = (dy, ..., d,)t, the conditions on Dp are equivalent to

Bd = —eg,

where ey is the k-th standard basis vector. Since B is non-singular, the unique
solution d is given by Cramer’s rule, and thus

(Dp - P')y =d¢ = (—1)’“““—‘21‘1(5;)),

as desired. O

LEMMA 4.3. Let A,, be the m x m root matrix of type A, in other words, the
matrix whose entries are given by

~2 ifi=j
ai; =81 ifli—jl=1,
0 otherwise.

Then det(—A,,) = (m+1).

PrOOF. This is a standard exercise using induction on m. See [21, Page 63].
O
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LEMMA 4.4. Let dy,...,d, be positive integers, and let B = B(dy,...,d,) be
the block matrix

Ad1—1 €d,—1
Ad2—1 €dy—1

. . Ag.—1 eq,—1

-1 Cdy—1 7 Cd.—1 -

where A, is the m X m root matriz discussed in Lemma 4.3, and e,, is the column
vector of length m with a 1 in the last spot and O everywhere else. (If m =0, then
A, and ey, are by convention empty blocks.) Then

det(—B) = (Hdi) (Z di>

PROOF. We compute the determinant of —B by applying Laplace (cofactor)
expansion, first across the bottom row, and then down the rightmost column. Using
Lemma 4.3, the cofactor corresponding to the entry 7 is r [ [ d;. Another application
of Lemma 4.3 shows that the cofactor corresponding to removing the bottom row,
the row containing the 1 in e4, 1, the rightmost column, and the column containing
the 1 of ede_l is —(d; —1)[];4 d; if i = j and zero otherwise. This shows that the
determinant of —B is

i=1 i=1 VE

which is equal to (] d;)(>_ 1/d;) as desired. O

LEMMA 4.5. Let d > 2 and r > 2 be integers and let B = B(d,d,...,d) (with
d repeated r times, using the notation of Lemma 4.4).

(1) Let B’ be the matriz obtained from B by deleting the first row and the d-th
column. Then det(—B') = (=1)4"1d" 2.

(2) Let B” be the matriz obtained from B by deleting row d — 1 and column
2(d —1). Then det(—B") = (-1)4"1(d — 1)%d" 2.

PrROOF. (1) For 1 <n <d — 2, let R, be the matrix obtained from Ayz_; by
deleting the first n rows and the first n — 1 columns. Similarly, let S,, be the matrix
obtained from Ay 1 by deleting the first n columns and the first n — 1 rows. The
matrix B’ under discussion is thus

[ R ed—2 |
S ed—1
B_g Aa—1 ed—1
=B, =
Ag—1 eq—1
L 35—1 edT—z 65—1 edT—1 -r

where there are r — 2 blocks of A4_1. Note that if d > 3, the upper left entry of B
is 1 and the rest of the first column is zero. Expanding in cofactors down the first
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column shows that det(B}) = det(B%) where

Ry €d—3
S1 ed—1
B Agq ed—1
L=
Ag—1 eq—
L edT—z 65—2 edT—l 65—1 -

Continuing in similar fashion for another d—3 steps shows that det(B]) = det(B}_,)
where

0o S €d—1
Ag—1 ed—1
r_
Bdil_ .
Ag—1 eq—1
T T T
I eq o €y - €4y T

Now we expand across rows of the Sy, finding that det(B]) = — det(B/;) where

0 S €d—2
Ag €d—1
r_
By = :
Ag—1 eq—
T T T
1 e 3 ey - €y —T

Continuing in similar fashion for another d — 3 steps shows that det(Bj) =
(—1)?det(Bb, 5) where

0 1
Ag_1 €d—1
! _
Byy_5 = :
Ag—1 eq—1
T T
1 e, - ey —r

Expanding in cofactors across the top row and then the leftmost column shows that
det(Bj,_5) = (=1)"@=D+1g =2 Thus
det(—B}) = (~1)7 "V det(B}) = (~1)" =D+ det(By,_) = (~1)*"'d"2,

as desired.
(2) The matrix B” has the form

Ai—2 eq_o ed—2
Ay
T
€1 1
Ad—l €d—1
T T
L 1 €qg—2 €31 - 7T J

To compute the determinant, we expand in cofactors along (d — 1)t column. There
are two cofactors; the first one, corresponding the the last entry of e;_s, has the
matrix R) in the upper left corner, where R!, is defined like R, except we delete the
last n rows and the last n—1 columns. This cofactor is zero since the corresponding
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matrix visibly has less-than-maximal rank. The other term comes from the 1 in
the last row, yielding

[ Ao
A%_g
3 €q—2 1
det(—B") = (1)@~ det | — Ad-1 €d-1
I Ad-1 €d-1 |

Expanding in cofactors along (2d — 3)™ row and using similar reasoning leads to

Ag_2
Ag—s

det(—B") = (=1)“@ "V det | — Ad—1

Ag1
The claim now follows by Lemma 4.3. (Il

The next result is useful for finding the component that a section meets at
a bad fiber. To set it up, let k be a field, let R = k[u]q,) (localization of the
polynomial ring at « = 0), and let Z = Spec R[«, 8]/(a8 — u™) where n is prime
to the characteristic of k. Suppose that ) — Spec R is a proper relative curve and
that P is a point in the special fiber of ) near which ) is étale locally isomorphic
to Z. More precisely, we assume that there is a Zariski open neighborhood U of P
in Y and an étale R-morphism ¢ : U — Z sending P to the origin (u =a = =0)
in Z. Let f = ¢*(«) and g = ¢*(5). Let w: X — Y be the minimal regular model
of ) and suppose that s : Spec R — X is a section such that 7 o s passes through
P. Let ) be the closed point of Spec R.

LEMMA 4.6. With the notation above:

(1) The fiber of m over P consists of a chain of n — 1 rational curves Zy, ...,
Zp—1 that can be numbered so that Z; meets Z; if and only if |i — j| =1
and so that E1 meets the strict transform of f =0 in X.

(2) s(Q) meets E; if and only if go s € R has ord,(go s) = i.

(3) g/u’ restricted to E; induces an isomorphism E; = PL. In particular, two
sections s and s’ meeting E; intersect there if and only if gos = go s’
mod u'tt.

PRrOOF. Blowing up Z at the origin [n/2] times yields a minimal resolution
Z — Z with exceptional divisor a chain of rational curves Z; U---U Z,_1 as in
the statement, with F; meeting the strict transform of « = 0. The fiber product
of Z — Z with U — Z is isomorphic to a neighborhood of the inverse image of P
in X, and this gives the first claim. Moreover, the other two claims are reduced
to the analogous statements on Z, and these are easily checked by considering the
explicit blow-ups used to pass from Z to Z. O

4.1.3. First global intersection numbers. We abuse notation somewhat
and use P;; and Qo to denote the sections of X — P! or Y — P! induced by the
K4-rational points with those names, but we try to make clear the context in each
such case.
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The section P;; of Y — P! lies in the union of the opens Zi5 and Z], discussed
in Section 3.1.1, and it has coordinates:

(w12, 912) = (Gl GA(Chu+ 17 amd - (@ha9h) = (G~ G(Ch+u)™").

Since the section (), does not meet these opens, it follows that the global inter-
section number P;; - Qo = 0 for all 7 and j.

Examining the coordinates above, it is clear that if 4 # 0, then P;; and Py do
not meet in Y (and a fortiori in X') except possibly over u = 0 or u = co. Also,
if j # 0, then Py; and Py visibly do not meet except possibly over u = —1. Thus
to finish the height computation it suffices to compute local intersection numbers
for u € {0, g, 00}, the “correction factors” Dp,, - P;; at those same places, and the
self-intersections Pg, and Q2.

4.1.4. Pairings at u = 0. We now consider the configuration of @, and the
P;; with respect to the components of the special fiber of X — P! over u = 0, which
is pictured in Figure 1 in Chapter 3.

First, we note that the component labeled Cy is the strict transform of the
component u = yiy — x12 — 1 = 0 in the chart 212 and also of the component
u = z9 — x5 (22 + 22) = 0 in the chart Z5. The point Q extends to the section
T9 = 2z = 0 in the chart Z5, so it lies on the component Cj.

Next, we note that the section P;; of Y — P! specializes to the point z15 = 0,
y12 = (!, so the corresponding section of X — P* must meet one of the components
Cj(d—1)+k with 1 <k <d-—1.

To find the component that P;; meets, we use Lemma 4.6. To that end, let
f =9y —x12—1and g = z12/(z12 + 1). In a neighborhood of the points u =
T12 = Yy — 1 = 0, the equation defining Z5 is fg = u?. We claim that near
each of these points, f and g define an étale morphism to the scheme Z defined
just before Lemma 4.6. (Here by “near” we mean in a Zariski open neighborhood
U of the point of interest in the fiber product of Y — P! and Spec R — P!.)
The claim follows easily from the Jacobian criterion, as discussed for example in
[6, Definition 3, Page 36]. Indeed, we define

¢: U — A% = Spec R[a, 8,7, 6]/(aff — u?)

by ¢*(a) = yis — 12 — 1, ¢*(B) = z12/(712 + 1), ¢*(7) = 712, and ¢*(5) = yi2.
Then in the notation of [6], the image of ¢ is cut out by g7 = o — §" — v — 1
and go = (7 + 1)B — v, and they have independent relative differentials of A% /Z
wherever § # 1 and § # 0, which is satisfied in a neighborhood of the points of
interest.

The upshot is that the hypotheses of Lemma 4.6 are satisfied. Since g =
z12/(z12+1) = Ciu/(¢4+1) has ord,(g) = 1, it follows that P;; lands on component
Cj(a—1)+1- Note also that the value of g/u on P;; at u = 0 is ¢i, so the Pj; all land
on distinct points. In other words, their local intersection multiplicity is zero.

To finish the analysis, we need to compute the local correction factor (Dp,, -
Pij)u:(). Recall that the matrix B constructed in Lemma 4.2 is obtained by deleting
the first row and column from the intersection matrix for the special fiber. Using the
ordering given above for the components, then B = B(d,d, . ..,d) as in Lemma 4.4.
There are r copies of A4_1 in B, so that B is an m xm matrix where m = r(d—1)+1.

First suppose that 7 = 0. Let B’ be the matrix obtained by deleting the first row
and column from B; a straightforward calculation shows that B’ = B(d—1,d,...,d)
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as in Lemma 4.4. Therefore det(—B’) is equal to

1 r—1
-Dd" | — =d"2(rd — 7 +1).
(d—1)d <d_1+ 7 > d?(rd—r+1)
Since det(—B) = rd"~!, applying Lemma 4.2 yields that
d—1 1
(Dpyo = Pij)y—y = det(—B')/ det(—B) = — toa

Next we consider the case j # 0. By symmetry, it suffices to treat the case j = 1.
Letting B’ be the matrix obtained by deleting the first row and the d-th column
of B, Lemma 4.5(1) implies that det(—B’) = (—1)¢"1d"~2. Applying Lemma 4.2
yields that
1
(Dpyy - Pij),—o = (1) det(—B')/ det(—B) = —
r

Summarizing this subsection:

PROPOSITION 4.7. The local intersection numbers (Poo - Pij)u=0 are zero for
all (i,7) # (0,0). The local correction factor at u =0 is given by:

d=1 , 1 ¢,
(DPOO : Pij)u:O = { 1d T Zf] >
7d if j # 0.

4.1.5. Pairings at u = oo. The argument here is very similar to that at
u = 0. In particular, the configuration of components is again given by Figure 1 in
Chapter 3 and the section of X — P! corresponding to Q. meets the component
Co. The section P;; of Y — P! specializes to the point z, = 0, ¥}, = ¢ so the
corresponding section of X — P! meets component Clitj)(d—1)+k for some k with
1<k <d-1. (Here and below, we read i + j modulo r and take a representative
in{0,...,7—1}.)

Applying Lemma 4.6 with f = y/% — 2], — 1 and g = z/5/(x}, + 1), we find
that P;; meets component C(;;jy1)4—1) and there are no intersections among the
distinct P”

It remains to compute the correction factor Dp,, - P;; using the lemmas in
Section 4.1.2. If i + j = 0 mod r, then the matrix obtained by deleting row and
column d — 1 from B has the form:

;| A2 0
B_{ 0 B(O,d,...,d)]'

Applying Lemmas 4.3 and 4.4 shows that det(—B’) is

1

1 ~1
(d—1)d"* <1+E+”'+_> —(@—padtr=t

d d

Thus the local correction factor in this case is
d—1(r+d-1)
rd

Ifi+j #0 mod r, by symmetry we may assume that i + 7 = 1 mod r. In this
case, the matrix obtained by deleting row d — 1 and column 2(d — 1) is the matrix
B" of Lemma 4.5(2), which has det(—B") = (—=1)%"!(d — 1)2d"~2. Thus
(d—1)°

rd

(Dpyo - Pij) oo = det(—B')/det(—B) = ( .

(DPOD : Pij)uzoo = (_1)d_1det(_BH)/det(_B) =
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Summarizing this section:

PROPOSITION 4.8. The local intersection numbers (Py - P;j)u=co are zero for
all (i,7) # (0,0). The local correction factor at u = oo is given by

(d=1)(r+d—1)

fiti=0modr,
(Dpy - Pij) oo = {(d—1)2rd ifi+j mod r

g ifi+j % 0mod r.

4.1.6. Pairings at v = C(’j. We now focus attention on the fiber of X — P!
over u = {C’f. The configuration of components is given in Figures 2 (r odd) and 3
(r even) of Chapter 3. The component F' there is the strict transform of the fiber
of ¥ — P! at u = ¢, and the section Qn, of X — P! meets this component.

In the coordinates of the chart Zis, where Pi; = ({u, ¢ (Chu + 1)¥7), the
section of Y — P! corresponding to P;; passes through the singular point in the
fiber if and only if §§+k = —1, or equivalently, if and only if d is even and i+k = d/2
mod d. In this case, the section of X — P! corresponding to P;; meets one of the
components D;, F;, or G. Since Pj; is a section, it has to meet a component of
multiplicity one in the fiber, i.e., either D; or F;. Which one it meets is a matter
of labeling conventions, but we need to show that all P;; with Cé"’k = —1 land on
the same component, so we must work out a few more details.

Dropping subscripts, consider the chart Z = Z,5 defined by the equation xy" =
(z 4+ 1)(x +u?). Changing coordinates x = ' — 1 and u = v/ + (¥, the equation is
(' = 1)y" = 2/(a’ + w'v) where v is a unit in the local ring at ' = y = «’ = 0. The
section P;; of Y — P! has coordinates

(' (P),y(P)) = (G5 + 1+ o', GG + 1+ Cou) /") = (Gad', i)

where the second equality uses that Cff'k =—1.

Now we blow up the origin in z’, y, v’ space and consider the chart with coordi-
nates z”,1y’,u’ where 2’ = /2" and y = u'y’. The strict transform of Z is defined
by

(4.1) (ulx// _ 1)ulr—2y/r — IN(:L‘H —l—?)/)

where v’ is a unit near the origin. It is possible to check that v’ reduces to dﬁs(dfl) =

¢;* modulo the maximal ideal. The exceptional divisor is v’ = =" (2" 4+ (;*) = 0,
with two components that we label Dy (z” = 0) and E; (2 + ¢;* = 0). Note
that the original fiber of ) — P! does not meet the chart under consideration. The
section P;; has coordinates 2" (P;;) = ¢4, y'(Pij) = ¢ZHuw/¥"=1 and thus meets the
component F;. Moreover, when ( C’f = —1, then Py and Fp; intersect on F; with
multiplicity d/r — 1.

Recapping the geometry, the section F;; of X — P' meets the component E;
over u = (le if and only if (;Jrk = —1, otherwise it meets F'. The sections Pyy and
Pi; ((i,7) # (0,0)) meet over u = ¢% if and only if ¢¥ = —1, i =0, and d/r > 1, in
which case their intersection multiplicity is d/r — 1.

It remains to compute the correction factor Dp,, - P;;. It is zero except when
C!; = —1 and ¢ = 0, in which case both Fy and F;; meet component E;. The
intersection matrix of the fiber omitting the component F' is B = A,_1, and B’
the matrix obtained by deleting the last row and column of B is A,_5. Lemma 4.2
implies that

Dp,, - Poj = det(—B')/det(—B) = (r — 1) /r.
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Summarizing this section:
PROPOSITION 4.9. The local intersection numbers at u = Cg are given by
d/r—1 ifi=0,37#0, and (¥ = -1,
0 ifi #0 or ¢k # —1.
The local correction factor at u = C¥ is given by
(r=1)/r if¢k=-1andi=0,
0 if ¢8 £ —1 ori#0.

REMARK 4.10. Recall that d = p¥ + 1. If p is odd, then d is even, and there
is exactly one value of k£ modulo d, namely d/2, such that (fj = —1. If p =2, then
—1=1and ¢}¥ = —1 again for exactly one value of k modulo d, namely k = 0. Thus
for a fixed P;; with ¢ = 0, there is exactly one value of k such that the intersection
number is non-zero and the correction factor is non-zero at u = ¢%.

(Poo - Pij)y—c = {

(Droy + Pig) =g = {

4.1.7. Self-intersections. We now compute the self-intersections of Pyg and
@, proceeding as follows. For a point P € C(K,), we continue to identify P with
the corresponding section of X — P'. Let Z be the ideal sheaf of P, considered
as a divisor on X. Recall that the conormal sheaf to P is the sheaf Z/Z? on P.
By [20, V, 1.4.1], P? = —degZ/Z*. Thus the method is to compute the divisor of
a global section of this sheaf.

It is convenient to rephrase this in terms of differentials. Because P is both a
smooth subvariety of X and a section of X — P!, the exact sequence

0—Z/I* — (Q)

‘P—>Q}3—>O

splits canonically, and we obtain an identification Z/7? 2 (Q% p1)jp. In other
words, Z/Z? is identified with the sheaf of relative differentials restricted to P. For
typographical convenience, we write wp for (Q% /Pl)\ p.

Consider Qu.. As a section of Y — P!, it is given by x5 in the chart Z; and z4
in Z}; these are related by a5, = u%/"z5 on the overlap. It follows that dzy defines
a global section of wg__ that generates it away from u = oo and has a zero of order
d/r there. We conclude that Q% = —d/r in Y. Since X — ) is an isomorphism in
a neighborhood of @), the same equality holds in X.

Now consider Pyg. In the chart Z15, which is defined (dropping subscripts) by
zy" — (x4 1)(z + u?), there is an equality

0=(y" -2z —u —1)de +ray"'dy
in Q spr- It follows that dz generates QL sz Wherever zy # 0. In particular,
restricted to Ppo, it generates wp,, away from v = 0, v = —1, and u = co. We
extend dx to a global section s of wp,, and compute its divisor.

Near u = 0, passing from ) to X requires several blow ups. We have already
seen that after the first blow up, the strict transform of Py lies in the smooth locus,
so the rest of the blow ups are irrelevant for the current calculation. We make the
first blow up more explicit. First, let y = 9’ + 1, so the equation defining 25 is

(Y +1)" 1) —2? —u? —zu? = 0.
Blowing up the origin, the equation becomes

(:v/(ry” N u’r—lyllr) 22— ud_2 _ x/ud—l
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and the section Py becomes 2’ = 1, ¥ = ((u+ 1)%" — 1) /u. Differentiating the
equation, one checks that dz’ generates w near u = 0, and since x = ux’, it follows
that dx extends to a section with a simple zero at u = 0.

Near u = —1, several blow ups are required to pass from ) to X. After the first
blow up, Py lies in the smooth locus and the later blow ups are irrelevant for the
current calculation. The relevant chart after the first blow up was given in (4.1);
for reference, we copy it here:

(’U/l’” _ 1)u/r72y/r _ x//(x// 4 ’Ul).

Differentiating this relation, one finds that the coefficient of dz” is non-zero near
u' = 0,2"” = 1, and this shows that shows that dy’ generates wp,, there. Considering
the valuation of the coefficient of dy’ shows that da” vanishes to order d — d/r — 1.
Since dx = da’ = v'dz”, it follows that dz vanishes to order d — d/r.

Finally, near v = oo, a calculation very similar to that near v = 0 shows that
dx has a simple pole there. In all, the divisor of dx has degree d — d/r and so
P3 =d/r—d.

Summarizing this subsection:

PROPOSITION 4.11. The self-intersections of Py and Qo are

2 d 2 d
Py = d+r and Qi = o
4.1.8. Proof of Theorem 4.1. We now put all the calculations together.
The local contributions to Dp,, - P;; were computed in Propositions 4.7, 4.8, and
4.9; the results of these propositions are summarized in Table 1. In that table, all
congruences are mod 7. In the third column, we sum all local contributions over
the places u = (¥ with k =0,...,d — 1.

(4,7) u=0 U =00 ud =1
rd—r+1 (d-1)(r+d-1) r-1
(0,0) rd rd ) r
) . rd—r+1 (d-1)
1#£0,j=0 > 7 0
d— 1 d—1 d—1
i £0i=0j=0 rd—r+1 )(r + ) 0
rd rd )
P 1 (d-1) r—1
=070 rd T -
1 -1 -1
i£0,j#£0i+j=0  — @-Derrd=1)
rd rd )
1 d—1
i 40,54 0,i+5#0 ~ =1 0
rd rd

TABLE 1. Local contributions to Dp,, - FP;;

By summing the local contributions to the intersection numbers Py - P;; given
in Propositions 4.7, 4.8, and 4.9, noting that P;; - Qo = 0 for all 7 and j as in Sec-
tion 4.1.3, and recalling the self-intersection numbers in the preceding subsection,
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we deduce that:

Pij-Pyo =%~ i=0,j#0,
0 if i £ 0,
Pij'Qoo:Oa
d
2 —
Qoo_ T.

Finally, recalling that
(Poo, Pij) = —Poo - Pij + Poo - Qoo + Pj - Qoo — Q% — Dpyy - Py
and summing the contributions above yields the theorem. ([l

REMARK 4.12. At this point, it would be possible to deduce from Theorem 4.1
and an elaborate exercise in row reduction that the rank of V' is equal to (r—1)(d—2).
We take a slightly more indirect approach in the next two sections that yields more
information about V, ultimately allowing us to determine V precisely as a module
over the group ring R = Z[uq X fir)-

4.2. A group-theoretic pairing

Recall the group ring

Zlo, 7]
(c¢d—1,77—1)
introduced in Section 1.2.3 of Chapter 1 and the ideal I C R introduced in Sec-
tion 1.3. In this section, we define a positive definite bilinear form on R/I and
compare it with the height pairing on V' via the map R/I — V. This comparison

plays a key role in showing that the map R/I — V is an isomorphism and thus
that J(K,4) has large rank.

R=Z[pa x pir] =

4.2.1. A rational splitting. For notational simplicity, in this and the follow-
ing subsection we write G for pig x p1,. Let R® = R®Q = Q[G] be the rational group
ring. Because G is abelian, the regular representation of R on itself breaks up into
Q-irreducibles each appearing with multiplicity one. As a result of the multiplicity
condition, if IV is any ideal of R and 7 : R® — RY/I° is the projection, then there
is a unique G-equivariant splitting p : R°/I° — RY.

We work this out explicitly in the case where I is as in Section 1.3 and I° =
I ® Q. We write

i=7 mod r

so that
d—1 r—1
i_d—i _ r—j
o't = s;7 .
i=0 =0

Recall that I is the ideal of R generated by

d—1 r—1 r—1
(r—1) Zai, (r—1) Zsjrr_j, and ZTj.
=0 §=0 §=0
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50 4. HEIGHTS AND THE VISIBLE SUBGROUP

LEMMA 4.13. The unique G-equivariant splitting p : R°/I° — R° is determined
by
d—1  r—1 d—1

p(0?1%) = o%7° 1—1—%2&2# - %iai
j =0

=0 Jj=

1 r—1 ) 1 r—1 )
PO =D Dty
j=0 j=0

PROOF. The formula defines a G-equivariant map R — R. We have to check
that it kills the ideal I°, so that it descends to p : R%/I® — R°, and that it is a
splitting.

The fact that p kills I° follows from the following easily checked identities in
R:

1=0 =0
d—1 ) r—1 d d—1 ) r—1
(Zaz> ZSJTT J = (ZO’Z> ZT] )
=0 7=0 =0 7=0

j=0
r—1 r—1 d—1 r—1
S o) (S ) - (S0) (£
§=0 j=0 i=0 j=0
Using these, it is a straightforward computation to check that p(1°) = 0.

To see that p is a splitting, it suffices to check that the expression in parentheses
on the right hand side of Lemma 4.13 has the form 1 + ¢ where + € I°. But

rZai = (1+T+---+T7"_1)(1—T)(Zoi) el
and ' .
TZS]‘TT_J =(+7+--+7H(1 - T)(ZSJ‘TT_]) el,
so > o' and Y s;7777 lie in I°. Since Y 77 also lies in I, it follows that p has the
form p(r) = r(1 +¢) with ¢ € I°, so p: R°/I° — RO is a splitting. O

4.2.2. A pairing. Now we introduce an inner product on R° by declaring

that
<Zagg,2bgg> = Zagbg.
g g RO g

In other words (g, h) go = dgp. Crucially, this inner product is positive definite.
The splitting p produces an inner product on R°/I° that is also positive definite.
Namely, we set
<avb>R0/10 = (p(a), p(b)) go -
The values of this pairing are determined by the following proposition and G-
equivariance.
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PRrROPOSITION 4.14. With notation as above,

(42) (o'77,1)

RO/IO —
(r—1)(d-2) ifi=j=0,
2—r ifitZ0modr, j =0,
1 )2-2r ifi=0modr,i#0modd, j =0,
rd 12—d ifi=0,j%0modr,
2—r ifitZ0modr, i+ j=0modr,
2 ifitZ0modd, j Z0modr, i+ j % 0 mod r.

We leave the proof as an exercise for the reader. It is convenient for the calcu-
lation to note that if a and b are in R°/I° and if b is any lift of b to R°, then

{p(a), p(b)) ro = (p(a), b) o

This follows from the fact that the pairing is G-equivariant, plus the fact that the
irreducible subrepresentations of R appear with multiplicity one. Using this obser-
vation and G-equivariance shows that computing the pairing on R°/I° amounts to
reading off the coefficients of p(1).

4.2.3. Comparison of pairings. We now compare the group-theoretic pair-
ing of the preceding subsections to the height pairing.

More precisely, there is a well-defined map R°/I° — J(K4) ® Q given by
r — r(Py) whose image is by definition V' ® Q. There is a pairing on R°/I°
obtained by using the map to V' ® Q and the height pairing on J(K,) ® Q.

Comparing the height pairing (computed in Theorem 4.1) with the group-
theoretic pairing (computed in Proposition 4.14) shows that they are the same up
to a scalar: the height pairing is (d — 1) times the group theoretic pairing. More
formally, we have shown the following.

PROPOSITION 4.15. For all a,b € R, there is an equality
(a(Poo),b(Poo)) = (d — 1) (a, b>RO/10 .
Here, the left hand pairing is the height pairing on J.(Kg).

COROLLARY 4.16. The map (R/I)/tor — V/tor is injective and therefore an
isomorphism. The rank of V is thus (r — 1)(d — 2).

PROOF. Proposition 4.15 shows that the pairing on (R/I)/tor induced by the
homomorphism (R/I)/tor — R°/I° — V ® Q is positive definite. It follows imme-
diately that the homomorphism (R/I)/tor — V/tor is injective, and it is surjective
by the definition of V', so it is an isomorphism. O

4.3. Structure of the visible subgroup

In this section, we complete our analysis of V' by showing that it is isomorphic
to R/I as an R-module and by analyzing the torsion in R/I as an abelian group.
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4.3.1. R/I as a group. We noted in Section 1.3 that I is a free Z-module of
rank d+2(r — 1), so R/I has rank (r —1)(d —2). With more work we can compute
the torsion subgroup of R/I.

PROPOSITION 4.17. There is an isomorphism of Z-modules
R/I o Z(T’*l)(d*Q) e T

where
T — (z/rz)? if v is odd,
\z/r/)Z2eZ/rL e L) (2r)T  if T is even.

Thus the torsion subgroup of R/I has order r3.

PROOF. The plan for the proof is to choose bases of R and I as Z-modules,
use them to write down the matrix of the inclusion of Z-modules I — R, and use
row operations to compute the invariant factors of this matrix.

Here is some useful notation. Let ¢ : Z" — Z¢ be the homomorphism

¢(a17"'7a7‘):(alv"'vaTaala'"aaT7"'7a17"'aa7‘)'

In words, ¢ simply repeats its argument d/r times. Let @ : Z" — Z% be the
homomorphism

1Z)(al, .. -;ar) = (¢(a1a .. 'aar)a¢(a27a3v cee ,ar,al)v ceey ¢(araala <. '7GJT71))~

In words, 1 rotates its argument r times and repeats each result d/r times. It is

convenient to apply ¥ to an s X r matrix, by applying it to each row, thus obtaining

a map from s X r matrices to s x dr matrices. Let I; denote the d x d identity matrix;

let 0, denote the zero vector in Z", and let 1, denote the vector (1,1,...,1) € Z".
As an ordered basis of R we choose

O’d_l, d—1 2 O'd_lTT_l.

1,0,..., T,0T,..., 0" "T, T, ...,

As an ordered basis of I we choose
vafla .. 'afd—hdla .. 'adr—1a617' cey€p_1,

defined as in Section 1.3.
With respect to these bases, the first d+r—1 rows of the matrix of the inclusion
I — R have the form

Id Id Id Id Id
(b(_]-r) ¢(1r) ¢(0r) (b(or; ¢(Or;

¢(0r) ¢(_1T) ¢(1r) ¢(07”

60, 6(0) 6(0) - 6(-1) (1)

The last r — 1 rows are ¢ applied to the (r — 1) x r matrix:

0 -1 1 -+ 0
0 -~ 0 -1 1

We refer to the rows by the names of the corresponding generators of I. Thus
fifori=0,...,d — 1 refers to the first d rows, d; for j =1,...,r — 1 refers to the
next r — 1 rows, and e; for j =1,...,r — 1 refers to the last 7 — 1 rows.
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We now perform row operations on this matrix as follows. First, we replace

row d; with
r—1
j=1 i
which has the effect of replacing row d; with
¢(Or) ¢(Or) ¢(0r) e ¢(OT) ¢(T1r)'

Next, we replace row e; with
r—1

> des,
j=1
which has the effect of replacing row e; with

W(=1,-1,...,—1,r —1).

Now we replace row es with
-1 ,.
< (J
Z 9 )€

j=2
which has the effect of replacing row e; with

1/)(0,—1,—2,...,—(7"—2),(r;1>).

Now we subtract a suitable combination of the f; rows from the last » — 1 rows so
as to make the lower left (r — 1) x d block identically zero. The last r — 1 rows
€1,...,e._1 then take the form

#(0)  ¢(0,...,0,7,—1) ¢(0,...,0,7,0,—7r)
¢(r,0,...,0,—r)
¢(0) ¢(_1’_1”(;)_1’72+<T73>) ¢(_277(;)_277’_2774+(7‘73))
p(1—r+(5),1,...,1, 20=0rr=3)y
¢(0) ¢(07_1727_17070)
¢(0) #(0,0,-1,2,-1,0...,0)

»(0) ¢(0,...,-1,2,-1)

Now we replace row es with es — Z;;; (%) dj, which yields

$(0)  (0,..., (1), ") $(0,..., (5),m, "E) ...
B0, (5), 7y, Y (0, T B 2 ),

We now divide into two cases according to the parity of r. If r is odd, we
replace ey with

r—1 +r—1
e
g ! 2

€y —

d17
which yields
#(0) ¢(0,...,0,7) &0,....,7m,7) ... &O0,r,... 7).

Note that every entry in this vector is divisible by r. Arranging the rows in the
order

fOu' "7fd717d27€37" '76T717617627d37~-wdeludl
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54 4. HEIGHTS AND THE VISIBLE SUBGROUP

yields a matrix in row-echelon form and with the property that the leading entry
of each row divides every entry to the right. Looking at the leading terms then
reveals that the invariant factors are 1 repeated d 4+ 2r — 5 times and r repeated 3
times.

Now we turn to the case when 7 is even. Replacing row e; with

,
€y — 561
yields
$(0) ¢(0,...,0,—%,3) ¢(0,...,—5,7,3)
T - U R G R U
2 2 Yty 2 ) 2 .

Note that every entry in this vector is divisible by /2.
Now we replace e; with

e1 + 2es + (’I“ — 1)d1,
which yields
#(0) (0,...,0,2r) #(0,...,0,2r,2r) e @(0,2r,2r,...,2r).
Note that every entry in this vector is divisible by 2r. Arranging the rows in the
order
fO; .. 'afd—17d25637 s '76T—1a62761ad37 .. '5d7'—1;d1

yields a matrix in row-echelon form and with the property that the leading entry
of each row divides every entry to the right. Looking at the leading terms then
reveals that the invariant factors are 1 repeated d + 2r — 5 times and r/2, r, and

2r each appearing once.
This completes the proof of the theorem. O

We record the torsion classes provided by the proof. They are not used later in
the paper, but they help explain the definition of the elements Q2 and Q3 € J(Ky )
introduced in Section 1.4.

PROPOSITION 4.18. If r is odd, the classes of

r—lr—1—j
E o', g o' and E E g o'r!
7 7 j=0 k=0 <=k modr

3

in R/I are torsion of order r and generate a group of order r>. If r is even, the

classes of

r—1r—1—j

Zai, ZZ Z olrd,  and

j=0 k=0 i=k mod r

r—2 r—1 r—1
— g g o'm! + E olr" 42 g E g o'r?
j=0i=r—1—j mod r 120 mod r j=1k=r—ji=k mod r

in R/I are torsion of orders r, 2r, and r/2 respectively, and they generate a group
of order r3.
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ProoF. Considering the row dj, after row reduction as above, we find that
>, 0t~ is r torsion, and this element is equivalent in R/I to Y, o*.
Assume r is odd. Considering the row e;, we see that

E ot — E o' | 7

j=1 \i=r—1—j modr i=r—1 mod r

r—1

is r-torsion. Adding > ,_. ., fi, one checks that this is equivalent in R/I to

r—1
2 2. a7
j=0¢=r—1—j mod r
which in turn is equivalent to Y, o’r?~%. Also, from the row es, we can see that

r—1 r—1

2.2 > a7

j=1k=r—ji=k mod r
is r-torsion. The negative of this element is equivalent in R/I to

J

i Z o'l

k=0 i=k modr

|
—

T T

<.
Il
o

Since the three r-torsion elements just exhibited are associated to distinct rows of
a matrix in row-echelon form, they are independent, i.e., they generate a subgroup
of order 3. This completes the proof in the case that = is odd.

When r is even, the proof for the first class is as in the case for r odd. From
the relation from row ey, we can conclude that

g o'r?

j=li=r—ji=k mod r

,_.

<
|

—

r—

is 2r-torsion. Since ) j 79 = 0 in R/I, the negative of this is equivalent to

Combining the relation from row ep with the fact that ), o' is r-torsion, we can
check that

2 Z ol + Z o'+ Z olrmt — Z olrd

1<j<r-1 i=r—1 mod r 120 mod r 0<5j<r—-2
r—j<k<r—1 0<j<r—1 i=r—1—7 mod r
i=k mod r

is -torsion. Since ) y 79 = 0in R/I, the second term is zero, and the result follows
as above. g

4.3.2. R/I and V. We can now finish the proof that V' is isomorphic as an
R-module to R/I.

THEOREM 4.19. The projection R/I — V defined by r — r(Py) is an isomor-
phism.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



56 4. HEIGHTS AND THE VISIBLE SUBGROUP

Proor. Write W for R/I. We have a commutative diagram with exact rows:

0 Wior w W/Wtor —0
0 Vior \%4 V/Vior —— 0.

By definition, the middle vertical arrow is surjective, thus so is the right vertical ar-
row. By Corollary 4.16, the right vertical arrow is injective, so it is an isomorphism.
The snake lemma then shows that the left vertical arrow is surjective. But Propo-
sition 4.17 shows that Wi, has order 73, whereas Proposition 1.5 shows that Vo
has order at least 3. It follows that the left vertical arrow is also an isomorphism.
Now another application of the snake lemma shows the middle vertical arrow is an
isomorphism as well, and this is our claim. O

COROLLARY 4.20. The subgroup V' of J(K4), generated by Pyo and its conju-
gates under Gal(K4/K), is isomorphic as a Z-module to

Z—1(d-2) g (z/rz)? if v is odd,
Z/(r/2)ZDL/rZDZ/(2r)Z if r is even.

REMARK 4.21. It would be possible at this point to give lower bounds on the
rank of J over various subfields of F,(t}/), along the lines of [52, Corollary 4.4].
However, we delay the discussion of ranks until the end of the following chapter,
where it is possible to give exact values for the rank.

4.4. Discriminants

In this section we work out the discriminant of the height pairing on V/tor.
This is used in Chapter 7 to obtain information on the index of V' in J(K,) and on
the Tate-Shafarevich group of J/Kj.

With notation as in the previous subsection, let W = R/I. Recall that there
is a canonical G-equivariant splitting p : W — R and a pairing on W given by
(a,b)rosro = (p(a), p(b)) g0 where the second pairing is the Euclidean pairing on
RY. Recall that, up to a scalar (d — 1), the pairing on W is the canonical height
pairing on V.

Write det(W/tor) for the discriminant of this pairing on W modulo torsion and
det(I) for the discriminant of the pairing on I induced by that on R.

We would like to relate these discriminants to each other. To that end, we
consider a slightly more general situation: let H be an arbitrary ideal of R, and
U = R°/H". One still has a G-equivariant splitting ¢ : U — R° and an induced
pairing on U.

PROPOSITION 4.22. With notation as above,

det(H) = —Zeerl”

det(U/tor)
ProOF. First suppose that H is saturated, i.e., that U is torsion-free. Let
e1,...,ex be a Z-basis of H and extend it to a Z-basis eq,...,e, of R. Write €; for
the image of e; in U, so that €gy1,...,€, is a Z-basis of U. Because the pairing on

R is the Euclidean pairing, the discriminant
|det ({ei, €;))] = 1.
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Now let

) ole) ifi> k.

This is a Q-basis of R®. The change of basis matrix is upper triangular with 1’s on
the diagonal, so it has determinant 1 and

det ({fi, f;))] = |det ({e;,e;))| = 1.

Now o(U) is orthogonal to H, so the new Gram matrix ({f;, f;)) is block diagonal.
Its upper left & x k block is just ({e;,e;)) and the determinant of this block is
+det(H). The lower right (n — k) x (n — k) block is just ({o(€;), 0(€;))) and the
determinant of this block is + det(U) = £ det(U/tor). Thus these two discriminants
are reciprocal and this proves the claim in the case when H is saturated.

For general H, let H' be the saturation, so that |H'/H| = |Us,| and R/H' =
U/tor. Then

|Ut0r | 2
det(U/tor)’
as desired. O

det(H) = |H'/H|? det(H') = |Usor|* det(H') =

ProPOSITION 4.23. We have
det(I) = r@+2q%r =2,
PRrROOF. It is not hard to check that the following is a Z-basis for I:
aizoiZTj i=0,....,d—1,
==Y o  j=1...r-1,
=7 =1 o =11

The values of the pairing are

(0, ovir)
(s, Bj)
(@i,
wjaﬁj’
<5J7 ey
(vi> Vs (6550 + 1),

so the Gram matrix for this basis of I is block diagonal. An inductive argument
shows that if A is the sum of an identity matrix of size a X ¢ and a matrix of the
same size with all entries 1, then det(A) = a + 1. Thus det(I) = 7924?72 as
desired. |

ZZ?

0,
) =0,
) d((sjj’ +1),
) =0,
y=d

COROLLARY 4.24. If W = R/I, then
det(W/tor) = r4=4d?=2,

Also
det(V/tor) = (d — 1)(r=D(d=2)pd=dg2=2r,
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PrOOF. The first claim follows from Proposition 4.17. The second follows from

Theorem 4.19 and Corollary 4.24, keeping in mind the scalar (d — 1) relating the
group-theoretic and height pairings as in Proposition 4.15. ([l
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CHAPTER 5

The L-function and the BSD conjecture

In this chapter, we compute the Hasse-Weil L-function of the Jacobian J of C'
over certain extensions of I, () and prove the conjecture of Birch and Swinnerton-
Dyer for J. This leads to a combinatorial calculation of the rank of J. We use the
refined BSD conjecture in Chapter 7 to relate the Tate-Shafarevich group of J to
the visible subgroup V defined in Section 1.2.4.

We work in the context of general r and d in this chapter; namely, & =
is any finite field of characteristic p, d is any integer prime to p, K = k(u) with
u = t'/4 r is any integer prime to p, C is the curve of genus r — 1 over K defined
as in Section 1.1 of Chapter 1, and J is the Jacobian of C. Unless stated otherwise
we do not assume that r divides d nor that d divides ¢ — 1.

5.1. The L-function

5.1.1. Definition and first properties. We fix a prime £ # p and consider
HY(C xK,Q) = H'(J x K,Qy)

as a representation of Gal(K°°?/K) where K = Fy(u).
The corresponding L-function L(J/K,s) = L(C/K, s) is defined by the Euler
product
L(J/K,s) = [[ det (1 - Fr, ¢, ° |H'(J x K, Qo)) .
v

Here v runs through the places of K, Fr, is the (geometric) Frobenius element at
v, ¢y is the cardinality of the residue field at v, I, is the inertia group at v, and
H'(J x K,Qg)! is the subspace of H'(J x K,Q,) invariant under I,,.

It is known that L(J/K, s) is a rational function in ¢~* (where ¢ = #k = #F,).
Proposition 6.31 in the next chapter shows that the K /k-trace of J vanishes. This
implies that L(J/K,s) is in fact a polynomial in ¢~*.

The Grothendieck-Ogg-Shafarevich formula gives the degree of L(J/K,s) as a
rational function in ¢—° (and therefore as a polynomial in our case) in terms of the
conductor of the representation H'(J x K, Q). We review this in Section 5.1.3
below.

See [51, Section 6.2] for more details and references about the preceding two
paragraphs. We do not need to go into details about these assertions here, because
we give an elementary calculation of L(J/K,s) from its definition in Section 5.3
below that shows that it is a polynomial of known degree.

5.1.2. Analysis of local factors. In this subsection, we make the local factor
L, :=det (1—TFr, ¢, [H'(J x K,Q)™)

more explicit using the regular proper model X constructed in Section 3.1. Roughly
speaking, the familiar fact that we may calculate the local L-factor at places of good

59
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reduction by counting points continues to hold at all places. Some care is required
because the genus is greater than 1 and the result ultimately depends on delicate
properties of the Néron model.

PROPOSITION 5.1. For a place v of K = k(u), let D, be a decomposition group
at v and let I, C D, be the corresponding inertia group. Let X, be the fiber of
X — PL over the corresponding point of PL. Then there is a canonical isomorphism

HY(J x K, Q)" = HY (X, x &, Q)
that is compatible with the actions of D, /I, = Gal(k/k).

PROOF. This seems to be well-known to experts, but it is hard to find an early
reference. A recent preprint of Bouw and Wewers [7] has a nice exposition that we
include here for the convenience of the reader.!

First, we have the standard fact that H' is closely connected to the Picard
group: Writing V; for the Tate module, then

HY(J x K,Qy) = V,Pic®(C) and H(X, x k, Q) = V;Pic’(X,).

Second, let J — PL be the Néron model of the Jacobian J, and let J be the
connected component of the identity of the fiber at v. Then by [41, Lemma 2],

(ViPic(C) " = v, 7°.

Finally, and this is the delicate point, the hypotheses of [6, 9.5, Theorem 4b] are
satisfied and this implies that

T = Pic(Xx,).

(Roughly speaking, this result says that the Néron model represents the relative
Picard functor. In order to apply it, we need to know that X" is a regular proper
model and that the ged of the multiplicites of the components of &), is one. This
last point was shown directly in Section 3.1, and it also follows from the fact that
C/K has a rational point so X — P! has a section.)

Combining the displayed isomorphisms completes the proof. (Il

Next we make the connection with point counting. Write k, for the residue field
at v and k, ,, for the extension of k, of degree n. Then the Grothendieck-Lefschetz
trace formula applied to X, says:

2
(5.1) X, (ko) = Y (=1)'tr (Fr) [H' (X, x ,Qy)) .
i=0

The fibers X, are connected, so H°(X, x k,Q;) = Q, with trivial Frobenius
action. On the other hand, H?(X, x k,Q,) has dimension equal to the number
of irreducible components of X, x k and is isomorphic to Qy(—1) tensored with
a permutation representation keeping track of the action of Frobenius on the set
of irreducible components. In particular, the trace of Fr” on H?(X, x k,Qy) is
equal to ¢y |ky n| where ¢, is the number of irreducible components of X, x k
that are rational over k,, and |k, | is the cardinality of k, ,. Thus, computing

1The main point of [7] is that local L-factors can be computed efficiently from semi-stable
models rather than regular models, especially for superelliptic curves. This is relevant for our
work, but we need the regular proper model X for other reasons, e.g., computing heights, so the
approach of [7] would not in the end save us anything.
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H'(X, x k,Q,) with its Frobenius action is reduced to counting points. The end
result is recorded in Proposition 5.6 below once we establish the necessary notation
for characters.

5.1.3. Conductors and degree of the L-function. We write ¢, for the
exponent of the conductor of the representation H'(J x K,Q,) at v. Since the
latter is tamely ramified (by Proposition 3.5), the conductor at v is simply the
codimension of H'(J x K,Q)% in H*(J x K,Q). Using Proposition 5.1, ¢, is
the difference between the Qp-dimension of the Tate module of the generic fiber
and that of the special fiber. In terms of the notation in Proposition 3.9, the
dimension of the Tate module of the special fiber is 2g, + m,. It follows that
¢y, = 2(r — 1) — 2g, — m,, and using Proposition 3.9, we find that

r—1 ifvliesovert=0ort=1,
(5.2) cy =1 2r —ged(d,r) — 1 if v lies over t = oo,
0 otherwise.

Assuming Proposition 6.31 below, we know that the L-function is a polynomial
inT = ¢~*°. In this case, the Grothendieck-Ogg-Shafarevich formula gives its degree
as

(5.3)  degL(J/K,T)=—4(r—1)+ Y ¢, = (d—1)(r — 1) — (ged(d, 7) — 1).

We confirm this below with a more elementary proof that avoids the forward
reference to Proposition 6.31.

5.2. The conjecture of Birch and Swinnerton-Dyer for J

In this section we continue studying the arithmetic of J in the case of general r
and d, so K = k(u) with u? = ¢, and k is finite of characteristic p not dividing rd.
As above, let L(J/K,s) be the Hasse-Weil L-function of J. We write L*(J/K,1)
for the leading coefficient in the Taylor expansion of L(J/K,s) near s = 1. (This
is defined because we know that L(J/K, s) is a rational function that is regular in
a neighborhood of s = 1.)

We let III(J/K) be the Tate-Shafarevich group of J. This is not yet known
a priori to be finite, but we show that it is finite in our case. We let R be the
determinant of the canonical height pairing on J(K) modulo torsion. (This is
(log )"k /(K) times the determinant of the Q-valued pairing discussed in Chap-
ter 4.) Finally, we let 7 = 7(J/K) be the Tamagawa number associated to J. This
is defined precisely and computed explicitly in Section 7.2.

THEOREM 5.2. The conjecture of Birch and Swinnerton-Dyer holds for J over
K =TF,(t*/?). More precisely, we have
ords—1 L(J/K, s) = rank J(K),
and (J/K) is finite, and
[HI(J/K)| RT
L*(J/K,1) = =T
VD = 10000,

PrOOF. We saw in Section 3.3 that the surface &' is dominated by a product
of curves. This implies the Tate conjecture for X and therefore the BSD conjecture
for J. See [51, Sections 8.2 and 6.3] for more details on these implications. O
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REMARK 5.3. The most complete reference for the leading term part of the
BSD conjecture (i.e., the second displayed equation in the Theorem) is [22]. The
formulation in [22] differs slightly from that above. We compare the two formula-
tions and show they are equivalent in Section 7.3.1 below.

5.3. Elementary calculation of the L-function

In this section we calculate the Hasse-Weil L-function of J in terms of Jacobi
sums. The arguments here are quite parallel to those in Section 3 of [10], so we
use some of the definitions and notations of that paper, and we omit some of the
details.

5.3.1. Characters and Jacobi sums. Let Q be an algebraic closure of Q,
and let Og be the ring of integers of Q. Choose a prime p C Og over p and define

F, := Og/p, so that F, is an algebraic closure of F,. All finite fields in this section
are considered as subfields of F,. Reduction modulo p defines an isomorphism

between the roots of unity with order prime to p in (96 and F; . The Teichmiiller

character 7 : F; — (96 is the unique homomorphism that gives a right inverse to
the reduction map.

Consider a multiplicative character y : k* — @X for the finite field k. We
employ the usual convention that x(0) = 0 if x is non-trivial, and x4, (0) = 1.

If x1 and x2 are multiplicative characters kX — @X, we define a Jacobi sum
J(x1,x2) = Z X1 (u)x2(v)
u+v+1=0
where the sum is over u,v € k. If we need to emphasize the underlying field, we
write Jk(Xla XQ).

5.3.2. Orbits and Jacobi sums. We write (a) for the fractional part of a
rational number a, so that (a) € [0,1) and a — (a) € Z. If i € Z/nZ, and if 7 and
i’ € Z are representatives of 7, then (i/n) = (7' /n), so we may unambiguously define

(i/n) as (i/n).
eoizo () (2 ez}

Define
(5.4) S = {(i,j) €Z/dZ x Z]rZ
Then (Z/lem(d,r)Z)* acts on S diagonally by
t-(i,j) = (ti,jj) for t¢e€ (Z/lem(d,r)Z)*.

We write O for the set of orbits of S under the diagonal action of the cyclic subgroup
of (Z/lem(d,r)Z)* generated by q.

If o € O is an orbit, we write |o| for the cardinality of 0. Define a Jacobi sum
by
(55) JO = J(X?Aﬂ])a
where (i, j) € o, where the sum is over F o, and where

(¢! -1)/d pj = i@ =0/r,

Xi =T
Well-known properties of Jacobi sums show that J, is independent of the choice of
(i,7) and that it is a Weil integer of size ¢'/2.
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5.3.3. The L-function in terms of Jacobi sums.

THEOREM 5.4. With notations as above, the Hasse-Weil L-function of J/K is

LJ/K,s) = ]| (1 — ng*‘f"S) .

0€O

The proof of Theorem 5.4 is given in Section 5.3.5 after some preliminaries in
the next subsection.

REMARK 5.5. Note that the degree of L(J/K,s) as a polynomial in ¢~ is the
cardinality of .S, namely (d—1)(r—1)—(ged(d,r)—1). This confirms the calculation
of the degree in Section 5.1.3.

5.3.4. Explicit local L-factors. We now turn to some preliminaries toward
the proof of Theorem 5.4.

If 8 is an Fn-rational point of P! and v is the place of k = F,(u) under §,
we write ag g for the trace of the g"-power Frobenius on H'(J x K,Q)l, or
equivalently (by Proposition 5.1) on H'(X, x k,Q;). We may compute this trace
using Equation (5.1) and the remarks in the paragraph following it.

PROPOSITION 5.6. Let s = ged(r, ¢" — 1) and ¢ = 74" =D/s. For all B € Fyn,
we have

arg =3 Y (D + )

J=1€EFyn
where o = B¢, If B = o0, then
agqn = ged(d,s) — 1 =ged(d,r,¢" — 1) — 1.

ProOOF. If 8 & {0, piq, o0}, then the fiber X, is the smooth projective model of
the affine curve y" = 2"~ (z + 1)(z + 8¢) with one point at infinity. A standard
exercise gives the number of points as an exponential sum:

s—1
X (Fer) =143 > ¢ (v (v + Dy +a))

J=0~EF n
s—1
=¢"+1+> Y ¢ (v v+ D(r+0).
j:1 ’YE]Fqn

Since X, x k is irreducible, using Equation (5.1) and the remarks in the paragraph
following it shows that

s—1
aggr=—3 Y. ¥ (T v+ D(r+a),
J=1~y€Fyn

as claimed.
If 8 =0, then the calculations in Section 3.1.4 (see Figure 1) show that

| X (Fgn)| = (s(d—1)+2)¢" +2 —s.
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On the other hand, the number ¢, , of rational components is s(d — 1) + 2, so the
trace is s — 1. The displayed formula in the Proposition simplifies:

—ZZW (Y 'y +D(v+a) = Z Z ¢ (y+1)

J=1~€F¢n J=1~y€e(Fgn)*
=s—1,
so the exponential sum is the trace, as desired.

If p¢ = 1, we consider the cases r odd (§3.1.4, Figure 2) and r even (§3.1.4,
Figure 3) separately. Let F' be the smooth projective model of the curve y" =
2"~ 1(z +1)2. In both cases, the number Cy,n of irreducible components is 7. When
r is odd, the number of Fy»-rational points is (r —1)¢"™ + | F(F¢»)|, and the curve F'
has unibranch singularities at (0,0) and (—1,0) and one point at infinity. We see
that

s—1
"+ 1l-agg =|FFp)=q"+1+> > ¢ (¥ (y+1)?),

j=1~€F n
and this gives the desired result. If r is even, we have
X (Fgn)| = (r = 1)¢" = 1+ [F(Fgn)l,

and the curve F has a unibranch singularity at (0,0), a singularity with two
branches at (—1,0), and one point at infinity. We see that

s—1
" +1l—apgn = [FFp) —1=¢"+1+> > ¢ (Y '(v+1)?)
j=1€EFyn
and this gives the desired result.
Finally, at 8 = oo (§3.1.4, Figure 4), we have that ¢, , = 2d'/d+2+gcd(d, r, ¢"—
1) and | X, (Fyn )| = cung™+2—ged(d, r, ¢" —1), so we find that ag 4 = ged(d, r, ¢" —
1) — 1, as desired.
This completes the proof of the Proposition. O

5.3.5. Proof of Theorem 5.4. The proof is very similar to that of [10,
Theorem 3.2.1], so we omit many details. We keep the notation of Proposition 5.6.
By a standard unwinding, we have

(5.6) log L(J/K,T) Z > apgn
n>1 E]P’l(]F n)

where, as in the previous subsection, ag 4~ is the trace of the ¢”-power Frobenius
on HY(C, Q)" with v the place of K = F,(u) under 3.

Now let e = ged(d, ¢" — 1) and ¢ = 7(@"~1D/¢_ Grouping points 8 € P* (Fyn) by
their images under 3 — o = 3% and using Proposition 5.6, we have

Y g =g — Y Z_:W(a)i (T v+ (v + ).

BEPL(Fgn) a€Fgn i=0 j=1~€Fyn

Changing the order of summation and replacing a with a<y, the last displayed

quantity is equal to
e—1s—1

Aoo gn — Z Z o (0, )2

i=0 j=1
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Note that aoeqn = ged(e,s) — 1; J(¥°,¢7) =0 for 0 < j < s; J(¢%,¢7) = £1 when
0<i<e 0<j<s;and (i/e)+ (j/s) € Z. We find that

(5.7) > @ == > e W)
BEP (Fgn) 0<i<e
0<j<s
(i/e)+(i/s) €L

On the other hand,

(58) log H (1 — JgTM) = — Z % Z Jgn/\o||0|.

oe0 n>1 o such that
lo| divides n

The coefficient of T™/n can be rewritten as

J Lild?=1/d j(ql=1)/r
Z F lol )

(1,7)€8
(¢ —1)(4,5)=(0,0)

Using the Hasse-Davenport relation, we have

S (qu“fl)/d’ Tj(qu)/rf

2n/|o|

(i,7)€8
(¢"—1)(4,5)=(0,0)
- Y (Tz(q"fl)/e,Tj(q”—l)/s)Q,
1€(0,e), j€(0,s)
(i/e)+(i/s)¢L
Therefore
(59) Sl = ST (e a0
o such that 1€(0,e), 7€(0,s)
lo| divides n (i/e)+(j/s)¢Z

Comparing (5.9) and (5.8) with (5.7) and (5.6) gives the desired equality. O

5.4. Ranks

We give a combinatorial formula for the rank of J(K) where K = F,(t'/?) for
general d when ¢ is sufficiently large. We also consider special values of d where we
have better control on the variation of the rank with ¢. Recall that K = F,(u) and
K4 =TF,(u, 1q) where u = t1/4.

5.4.1. The case when r divides d and d = p” + 1.
COROLLARY 5.7. Ifr divides d, d = p” + 1, and d divides q — 1, then
ranky, V' = ranky J(F,(u)) = ords=1 L(J/Fy(u),s) = (r — 1)(d — 2).
In particular, the index of V in J(Ky) is finite. Moreover, the leading term of the
L-function satisfies
L*(J/F,(u),1) = (log ) "= H(d=2),
PrROOF. When 7 | d, then ords—1 L(J/Fy(u),s) < (r —1)(d — 2) by the calcu-
lation of the degree of the L-function in (5.3). Note that K; C K since d | (¢ — 1).
Thus we have a priori inequalities

rankz V' < rankg J(K;) < rankz J(K) < ords—1 L(J/K, s),
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where the right hand inequality relies on the known part of the BSD conjecture for
abelian varieties over function fields, see [51, Proposition 6.7] for example. We saw
in Corollary 4.16 that V has rank (r —1)(d—2), so the inequalities are all equalities.

For the assertion on the leading coefficient, we simply note that the equalities
in the preceding paragraph show that

_s\ (r=1)(d—2)
L(J/Fq(u)),s) = (1 —¢" %) .
One then computes the leading term by taking the (r — 1)(d — 2)-th derivative. O

5.4.2. The case when r and d divide p” + 1. We have seen that the rank
of J(K,) is large when r divides d and d has the form p” 4 1. In this subsection,
we show that the rank is also large over various subfields of K, along the lines of
[52, Corollary 4.4]. The case of F,,(t'/9) is of particular interest.

We write ¢(e) for Euler’s ¢ function, i.e., for the cardinality of (Z/eZ)*. If
g and e are relatively prime positive integers, let o4(e) denote the order of ¢ in
(Z)eZ)*.

COROLLARY 5.8. Suppose that r and d divide p” 4+ 1 for some v. Then the rank
of J over By (t'/9) is equal to

ple)e @(5)
o oq(lcm e, s) 04(s)

1<s|r

1<s|r

In particular, for every p, and every genus g = r — 1 with r dividing p* + 1, the
rank over Fy(u) of Jacobians of curves of genus g is unbounded.

The conclusion in the last sentence is known for every p and every genus g by
[49], but the ideas of this paper give a new, constructive, and relatively elementary
proof.

PROOF. Choose an integer v such that d and r divide d’ = p” + 1. Let u¢ =
(u')¥ =t. We have field containments F,(u) C Fy(par,u') and Kg = Fp(puar, ') C
Fq(par,v'), and an equality

T(Fy(u)) ® Q 2 (J(Fy(par,u')) @ Q)F

where G = Gal(F,(pa,v')/Fy(w)). To bound rank J(F,(u)) = dimg J(Fy(u)) @ Q
we just need to compute the dimension of a space of invariants. Moreover, by
Corollary 5.7,

J(Fq(par,u') @ Q= J(Ke) © Q.
Thus, without loss we may replace ¢ with ged(q, |Fp(¢ar)|), so that Fy(u) is a subfield
of Kd/ .
Our task then is to compute

dimg (J(Kq) © Q)¢ = dimg (Vo ® Q)¢

where G = Gal(Ky /F,(u)) and Vi C J(Ky) is the explicit subgroup. We have
that Vo @ Q = RY, /19, where R, and I, are as in Sections 1.3 and 4.2.1, with d
replaced by d'.

Now @ is the semi-direct product of the normal subgroup dZ/d'Z by (q), the
cyclic subgroup of (Z/d'Z)* generated by g. The action of d sends P;; to P4 ; and
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the action of ¢ sends Pi; to Py; 4;. Transfering this action to RY /I3, and noting
that
dz/d'z,
(RG) ™" = Ry,

. . G . . .
we see that the dimension of (RY /I9)" is equal to the dimension of the Fr,-
invariants on

Q[:U'd X ,Ufr]/I:(i)

where 7 is the Q-subspace of the group ring Q[uq x p,] = Qlo, 7]/(0¢ — 1,77 — 1)
generated by the elements

(=Y o G=1...,r=1), (=D o (G=1,...,r=1),
and aiZTj (i=0,...,d—1),

as in Section 1.3.
Now both Q[uq X it,] and Iy have bases that are permuted by Fr,, so to compute
the dimension of the space of invariants, we just need to count the number of orbits
of Fr, on the basis. One sees easily that the space of Fr, invariants on Q[uq X )
has dimension
p(e)e(s)
o og(lem(e, s))’

s|r
and the space of Fr, invariants on I} has dimension
e S
S ATy 2
eld q 1<s|r q
Subtracting the last displayed quantity from the previous gives the desired dimen-
sion as stated in the Corollary.
To establish the last sentence of the statement, it suffices to note that for a
fixed ¢ = p and 7, the dimension computed above is unbounded as d varies through

numbers of the form p” + 1 divisible by r. Indeed, the negative terms depend only
on p and r and the “main” term in the first sum is

P(p” + 1)o(r)/op(p” +1) = d(p” + 1)o(r)/(2v),

and this is clearly unbounded as v varies. O

5.4.3. General r, d, q. Now we treat the most general case, but with slightly
less control on the rank as a function of gq.

Recall the set S C Z/dZ x Z/rZ from (5.4) in Section 5.3.2. We decompose S
into two disjoint pieces, S = AU B where

A={(i,5) € S|(i/d)+ (j/r) > 1},
B=A{(,j) € S| {i/d) + (G/r) <1}.
Consider (p) C (Z/lcm(d,r)Z)*. We say that an element (¢,5) € S is balanced if,
for every t € (Z/lem(d, r)Z)*, the set (p)t(i, j) is evenly divided between A and B,
ie.,
[(p)t(i,5) N Al = [{p)t(i, j) N B.
Recall that O is the set of orbits of S under (g). Note that (7, j) is balanced if

and only if (gi,qj) is balanced. We say that o € O is balanced if each (i,5) € o is
balanced and not balanced otherwise.
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PROPOSITION 5.9. Let K = F,(t'/). The order of vanishing ords—1 L(J/K, s)
(and therefore the rank of J(K)) is at most the number of orbits o € O that are
balanced in the sense above. If Fy is a sufficiently large extension of Fp, (depending
only on d and ), then the rank is equal to the number of balanced orbits.

This generalizes [10, Theorem 2.2] except that we have less control on how
large ¢ should be to have equality.

PROOF. We use the notations of the earlier parts of this chapter, in particular
the Jacobi sums J, from (5.5) in Section 5.3. By Theorem 5.4, the order of vanishing
of L(J/K,s) at s = 1 is equal to the number of orbits 0 € O such that J2 = gl°.
The proposition follows from the claim that J, is a root of unity times ¢l°l/2 if
and only if the orbit o is balanced. Indeed, the number of o such that J? = glolis
certainly at most the number of o where .J, is a root of unity times ¢/°//2, and this
gives the asserted inequality. Moreover, if we replace g with ¢", each J, is replaced
with JJ', so if ¢ is a sufficiently large power of p, any J, that is a root of unity
times ¢/°/2 satisfies J? = ql°l. Here “sufficiently large” is certainly bounded by the
degree of the L-function as a polynomial in 7', and this is a function only of r and
d.

We finish by proving the claim that .J, is a root of unity times ¢l°/? if and
only if o is balanced. If |o| is odd, then the orbit cannot be balanced and the proof
below will show it is also impossible for .J, to be a root of unity times ¢!°//2. For
this reason, we focus on the case that |o| is even.

The argument generalizes that of [10, Proposition 4.1], which is the special case
r = 2. Recall the set S C Z/dZ x Z/rZ from (5.4) and its decomposition S = AUB
as in Section 5.4.3, where

A={(i,j) € S|{i/d) + (j/r) > 1}, B={(i,5) € S (i/d) + (j/r) <1}.
Given (i,7) € S, let ¢/ = i/ged(d,4) and j' = j/ged(r, j). Let d' = d/ged(d, 1)
and ' = r/ged(r, j). Let e =lem(d’,r’). Recall that
Jo = J(qu p]) = J(Ti(q‘o‘—l)/d7Tj(q“"—l)/?")'

Thus J, € Q(pe). For a € (Z/eZ)*, let 0, € Gal(Q(ue)/Q) be the automorphism
with o4(¢) = 2.

Let v be such that ¢l°l = p”. Write p for the prime of Q(u.) induced by the
fixed prime p of Q. By Stickelberger’s Theorem (e.g., [9, Thm. 3.6.6 and Prop.
2.5.14]), if the valuation of p is 1, then the valuation of J, at the prime o, (p) is

a/(_ilr/ _ j/d/)pf
r'd

v—1 aj/pf al‘/pf
(5.10) —v Y (S )
£=0
Since J2/q!°l is a unit away from primes over p, it is a root of unity if and only if
its valuation at every prime over p is 0. This is equivalent to the property that the
quantity in (5.10) equals v/2 for each a € (Z/eZ)*.
Fix @ and ¢. The sum of the three fractional parts in (5.10) is either 1 or 2 since

the three fractions add up to 0. The sum is 1 if and only if (“J;?E> + <°”;,pe> < 1.
Choose a representative t € Z/ged(d, r)Z for a and note that the fractional terms
in the last inequality do not depend on this choice. Thus the sum is 1 if and only

if tp? - (i,4) is in B.
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For fixed a, it follows that the quantity in (5.10) equals v/2 if and only if exactly
half of the values of £ € {0,...,v — 1} have the property that tp* - (i,4) is in B,
which is the definition of (i, j) being balanced. Thus the quantity in (5.10) equals
v/2 for all a € (Z/eZ)* if and only if o is balanced. O

REMARKS 5.10.

(1) When r = 2, it is proved in [52, Proposition 4.1] that the order of vanishing
is always the number of balanced orbits, i.e., there is no need to enlarge
q. Numerical experiments show that this is no longer the case for r > 2.
It would be interesting to have a sharp bound on the value of ¢ needed to
obtain the maximal rank for a given r and d.

(2) If r divides d and d divides p” + 1, then it is easy to see that every orbit
o is balanced, and the argument in [48, Section 8] shows that J2 = ¢ for
all 0 and any ¢. Thus in this case we get an exact calculation of the rank,
which the reader may check agrees with Corollary 5.8.
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CHAPTER 6

Analysis of J[p| and NS(X})or

In this chapter, we investigate more deeply the arithmetic and geometry of the
smooth projective curve C : y" = 2" (z + 1)(z + t) of genus g = r — 1 and its
Jacobian J. We prove several technical results about the minimal regular model
X and the Néron model J — P'. Specifically, in Section 6.1, we analyze the
Kodaira-Spencer map to show that the Jacobian J of C has no p-torsion over any
separable extension of K = F,(t) (see Corollary 6.1). In Section 6.2, we prove that
the Néron-Severi group of X is torsion-free (see Theorem 6.13). These results will
be used in Chapter 7 to understand the index of the visible subgroup V in J(Kj).

6.1. Kodaira-Spencer and p-torsion

Our goal in this section is to show that the Jacobian J of C has no p-torsion
over any separable extension of K = Fy(t), a result stated more formally as follows:

COROLLARY 6.1. The p-torsion of J satisfies J(K)[p] = J(K*°P)[p] = 0.

To prove Corollary 6.1, we apply a result of Voloch after showing that the
Kodaira-Spencer map of the Néron model J — P} is generically an isomorphism
and that J is ordinary.

6.1.1. Background on the Kodaira-Spencer map and p-torsion. Be-
fore launching into the technicalities of the proof of Corollary 6.1, we provide some
background on the Kodaira-Spencer map and its connection to p-torsion of abelian
varieties. This subsection is purely motivational and nothing in it will be used later
in the paper. Thus the expert or impatient reader may skip directly to Subsec-
tion 6.1.2.

Consider a non-isotrivial elliptic curve E over a function field K = Fy(C) of
characteristic p. It is known [47, Prop. 1.7.3] that if E(K)[p] is non-trivial, then
the j-invariant of E is a p-th power, i.e., j(F) € KP. Since E is non-isotrivial,
the j-invariant is non-constant, and it is a p-th power if and only if the morphism
j : C — P! is inseparable, if and only if its derivative vanishes identically. Passing
to the contrapositive, we see that if the derivative of j : C — P! does not vanish
identically, then E(K) has no non-trivial p-torsion. In [57], Voloch extends this
result to higher-dimensional abelian varieties, where “derivative of j” is replaced
with a suitable Kodaira-Spencer map.

Next, we give a brief overview of the Kodaira-Spencer map for a family of
abelian varieties. More precisely, let B be a smooth (possibly non-projective) curve
over an algebraically closed field k£ and let 7w : A — B be an abelian scheme over B.
Fix a closed point b € B and let A be the fiber 771(b). There is an exact sequence
of tangent sheaves on A:

0—=Ta— (Ta)|y = (7*(T))|4 — 0.

71
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Taking cohomology, we see that H°(A, (7*(Tg))|,) = T, as k-vector spaces, and
the coboundary map is a homomorphism

(6.1) Tpp — HY (A, Ty).

This should be thought of as the derivative at the point b of the map from B to
the moduli space of abelian varieties. Indeed, H'(A,T4) is the space of first-order
deformations of A, i.e., the tangent space to the moduli space at A, and the map
(6.1) measures the variation of the family 7 : A — B at the point b. (For more
details, we suggest the following references: In [26, Ch. 4], one of the originators of
the theory explains the interpretation of the H' and the map above in the context
of complex varieties; [56, I11.9.1] gives a compact but clear presentation of the same
material; and [20, I11.9.13.2] gives the interpretation of the H! in the context of
schemes.)

We now reformulate (6.1). The tangent bundle to an abelian variety is trivial,
SO

H' (A, Ta) = H'(A,Tao @k Oa) = Tao @1 H'(A,04).
Thus the map (6.1) can be rewritten as an element of
Homy, (TB,b7 TA,O Rk Hl(A, OA)) = Homy, (9114)0, QlBJ) Rk I’Il(A7 OA)) .

Next, we note that (211470 is canonically isomorphic to the stalk of W*Qi‘ /B at b, and

H'Y(A,04,) is the stalk at b of R'm,O4. If we now let the point b vary, the last
description of the derivative (6.1) globalizes to a morphism

KS:mQy 5 = Qp @0, R'm.04

of Op-modules.

Voloch’s theorem then states that if the Kodaira-Spencer map K S is generically
an isomorphism (i.e., an isomorphism over a dense open subset of B), then the
generic fiber of A over B has no p-torsion points over the field k(B).

In the next subsection, we restart from the beginning, defining the Kodaira-
Spencer map for our context, and in the following subsections we prove that it is
generically an isomorphism.

6.1.2. The Kodaira-Spencer map for J and ). In this subsection we
work over F,(u) where u? =t and r and d are relatively prime to p. We make no
further assumptions on r, d, or q.

Let U C P. be the open subset where u? ¢ {0,1,00}. In Section 3.1.1 we
constructed a proper smooth model 7 : Y — U of C/F,(u), i.e., a scheme with a
proper smooth morphism to U whose generic fiber is C. The Néron model o : J —
U is an abelian scheme whose fiber over a point of U is just the Jacobian of the
fiber of 7 over that point.

Consider the sheaves of relative differentials (of 1-forms)

Qp, 0L, Qlj/U

on the schemes U/F,, J/F,, and J /U respectively (see [27, §6.1.2]). The following
lemma, applied with S = Spec(F,) and f = o, implies there is an exact sequence
of locally free O 7-modules

(6.2) 0—=0*Qp = QF = Q% )y =0

since J/F,, U/F,, and o are smooth and of finite type.
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LEMMA 6.2. Let X, Y, and S be locally Noetherian schemes and let f: X —Y
and g: Y — S be smooth morphisms of finite type. Then there is an exact sequence
0— f*Qy)g = Qs = Uy)y =0
of locally free Ox-modules.
PROOF. First, there is an exact sequence
(6.3) FQy s = Qs = Uy =0

of Ox-modules since X,Y, S are all schemes (see [27, 6.1.24]). We must show that
the terms of this sequence are all locally free as O x-modules and that the first map
is injective.

Let x € X be a geometric point, and let y = f(z) and s = g(y). Then the
fibers

Q?X/S,x’ Q%’/S’,y7 Qi(/Y,z
are smooth of ranks
dim, X,, dim,Y;, dim, X,

respectively, since gf, g, f are smooth (see [27, 6.2.5]). Hence QE(/S and Qk/y
are locally free O x-modules and f *Q%, /s is a locally free f*Oy-module (and thus
a locally free Ox-module). Finally,

dim, X, = dim, X, + dim, Y
so the first map of (6.3) is injective as claimed. O

Taking the direct image of (6.2) under o and applying the projection formula
(see [27, 5.2.32]) leads to a morphism

KSJ : 0*9}7/[] — Qllj Koy RIU*OJ

which is the “Kodaira-Spencer map” of the family o : 7 — U. Similarly, Lemma 6.2
implies there is an exact sequence of Oy-modules

(6.4) 0— "0y — Q3 — Qi,/U -0
and a morphism

KSy : W*Qij/U — QL ®0, R'7m.0y.
The main technical point of this section is the following.

THEOREM 6.3. The maps KS7 and KSy are isomorphisms of locally free Oy -
modules of rank r — 1.

The proof is given in the remaining part of this section. The key point is to
explicitly calculate the “Kodaira-Spencer pairing” on

HO(U, Q3 ) x H(U,Q5,17)

and to show that it is non-degenerate.
Our motivation for considering the Kodaira-Spencer map KS 7 is that we use
Theorem 6.3 to prove Corollary 6.1.
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PROOF THAT THEOREM 6.3 IMPLIES COROLLARY 6.1. The statement over K
follows from that over K*°?. The latter follows from [57, Page 1093, Proposition],
which says that if an abelian variety over a global function field is ordinary and
its Kodaira-Spencer map is generically an isomorphism, then it has no p-torsion
over any separable extension. Proposition 6.12 (see Section 6.1.8) states that J is
ordinary, and Theorem 6.3 states that the Kodaira-Spencer map is generically an
isomorphism. O

REMARK 6.4. The proof that J has no p-torsion over K*°P via Kodaira-Spencer
is not so simple. The ideas of [53, 9.4], also not so simple, yield a proof that J has
no p-torsion over F,(u) where u? =t and d = p” + 1. The more straightforward
idea of using p-descent (i.e., calculating the p-Selmer group and comparing with
the rank) is simpler, but yields a much weaker result, namely that .J has no torsion
over F,(u) where u? =t and d = p* + 1 with v < 2. As soon as v > 2, the p-part
of the Tate-Shafarevich group is non-trivial and the p-descent strategy fails.

6.1.3. Reductions to ). The following statement is probably well-known,
but we have not found a suitable reference.

PROPOSITION 6.5. There are isomorphisms
U*QB/U = W*Qi,/U and Rla*(’)j = R17r*(9y

of locally free Oy -modules of rank g such that the following diagram commutes:

KS
7. —L 0L ®o, R'0.05

| |

KS
W*Qii/U — QO ®o, R'm.0y.
In particular, KS 7 is an isomorphism of Oy -modules if and only if KSy is.

PROOF. The map 7w : ) — U admits a section U — ) since it is proper and
its generic fiber C' has a rational point. The section can be used to construct
a map AJ : Y — 7, the so-called Abel-Jacobi map. It is a closed immersion
(cf. [31, Proposition 2.3]), and thus AJ, is exact. Therefore there are isomorphisms
of Oy-modules

RiO'*(AJ*Oy) =~ Riw*(’)y, 0*(AJ*Q§,/U) = W*Q;i,/U,
isomorphisms of O 7-modules

AT (7*Qp) 2 AT (AT (0*Q)) 2 0* Q) ®o, AT Oy,
and an exact sequence of O s-modules

0= 0"y ®o, AJ.Oy = AJLQy, — AJLQY, ; — 0.

The structure map Oy — AJ.Oy associated to AJ : Y — J induces a mor-
phism R'0.0s — R'o, (AJ,Oy) and thus a morphism

R'0.07 — R'm,0y.
Similarly, the pull-back map on 1-forms Q} v Al *Qi, U induces a morphism
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Both displayed morphisms are isomorphisms of locally free Op-modules of rank g
since the respective fibers at each x € U are isomorphisms of g-dimensional vector
spaces (cf. [31, Proposition 2.1 and Proposition 2.2]).

The displayed exact sequence lies in a commutative diagram

00— 0" Q) QY Qb

| L]

0 ——0*Qp ®o, AJ.Oy —— AJQj —— AJ*Qi,/U —0

of O -modules whose first row is exact and where the right two vertical maps are
pull-back maps on 1-forms. Applying o,, the projection formula, and the isomor-
phisms displayed above yields a commutative diagram whose rows are long exact
sequences of Oy-modules and a portion of which is the desired diagram

J*Q}Y/U E— Q%] Koy RIU*OJ

| |

W*Qii/U —— QO ®o, R'7.0y.
O

6.1.4. Reduction to the Kodaira-Spencer pairing. For the rest of this
section, we suppose that d = 1. This suffices to prove Theorem 6.3 since U is an
étale cover of P} \ {0, 1,00}.

Rather than showing that KSy is an isomorphism directly, it is more convenient
for us to consider the “Kodaira-Spencer pairing” on global 1-forms

HO(U, W*Qﬁ,/U) x HO(U, W*Q;ly/U) — HO(U,Q%]) = Rdt
Wi X Wj — (wi, w;)

where R = H°(U, Oy). The pairing is defined by taking the cup product
KSy(wi) Uw; € HO(U, Q%] Koy Rlﬂ*Qij/U)
followed by the map
HO(U,Qp @0, RmQy,) = H(U,Qp ©o, Ov) = H(U, Q)
induced by the relative trace
R'm. M = 0
*iy/U v
In particular, to show that KSy is an isomorphism is the same as to show that
the Kodaira-Spencer pairing is a perfect pairing of free R-modules. Proposition 6.5
then implies that KS7 is an isomorphism, completing the proof of Theorem 6.3.

After some preparatory material, a proof that the pairing is perfect is given in
Section 6.1.7.
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6.1.5. Relative 1-forms. Recall that d = 1 and thus R = H°(U,Oy) =
F,[t][1/(¢(t —1))]. Recall also that C' is the smooth proper curve over K associated
to the affine curve y" = 2"~ (z + 1)(x + t), that ) — U is a proper smooth map
with generic fiber C, and that ) is covered by the sets

V1 == Spec (R[z11,y11)/(y11 — 251 H(zuyan + 1) (zyn +1))),
Vs := Spec (R[z2, 22] /(22 — 25" (22 + 22) (2 + t22)))
V3 := Spec (R[ys, 23]/ (y323 — (1 + 23)(1 + t23)))

(cf. Section 3.1.1). These coordinates are related by the identities

(z,y) = (11911, 911) = (T2/22,1/22) = (1/23,Y3/23).

For 1 <i <7 —1, the expression '~ !dz/y® corresponds to a unique meromor-
phic 1-form w; on Y. The restrictions of w; to the open sets Vi, Vo, V3 are

:ci dy . . dx dZ dz

11 11 1—1 7 2 2 3

——— 4z dzyy, | ——— |, ——
Y11 Z2 22 Y323

respectively. These are clearly non-zero forms.
LEMMA 6.6. w; is everywhere reqular, i.e., is an element of Ho(y,Qi,/U).

PrROOF. On the one hand, w; is clearly regular on Y; away from y;; = 0. On
the other hand, if y17 = 0, then dyi1/y11 has a pole of order one and l’lﬁ vanishes
to order i, so w; is regular on ). For use just below, we record that w; vanishes to
order exactly ¢ — 1 along the divisor z1; = 0.

Similarly, if x5 or zy vanish, then both vanish and w; is regular on )s.

Finally, z3 never vanishes, and if y3 = 0, then the identity

rys zadys + (45 — (14 tzs) — t(1+ 23))dzs = 0

on Y3 shows that dz3 has a zero of order at least r—1. More precisely, the coefficient
of dz3 is a unit in a neighborhood of y3 = 0 while the coefficient of dys has a zero
of order at least r — 1. Hence w; is regular on )s. O

LEMMA 6.7. The relative 1-forms w; form an R-basis of Ho(y,Qi,/U).

PROOF. There is an isomorphism H%(Y,Qy, ;) = HO(U, .8y, ;). Since 7 is
a family of smooth projective curves of genus g = r — 1, the sheaf W*Qi;/U is a
locally free sheaf of Op-modules of rank r — 1 whose fiber at a closed point v € U
is HO(m (), QL -1, /() This last is a vector space of dimension 7 — 1 over the
residue field k(u), and to prove the lemma it suffices to show that the images of the
wi in HO(m™H(w), Q1) /() form a s(u) basis for all u € U. But, as mentioned
above, w; has a zero of order 7 — 1 at the point 17 = y1; = 0 in each fiber, so the
restrictions of the w; to the fibers are linearly independent. Since there are r — 1 of
them, they form a basis. O

Let@ZCXKF.

COROLLARY 6.8. The relative 1-forms wi,...,wr—1 form a K-basis of
HO(C, QE/K) and a K-basis of HO(C,Q%/?),
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PRrOOF. This is immediate from Lemma 6.7 since
HO(C, 0 x) = BV, Q3 1)) ©r K
and o
H°(C, Q% ) = H' (Y, Q) ©r K.
O
6.1.6. Lifting 1-forms. Recall that there is an exact sequence of Oy-modules
0— 7" Qp = Q) = Q) =0
and that Y; U ) U Y3 is an open affine cover of ) — U. In this subsection, we
regard w; as a section in H°(Y, Qi,/U) and find, for each j = 1,2,3, a lift of w; to
a section in H°(Y;,Q3,) so that we can calculate KSy (w;).
PROPOSITION 6.9. The 1-forms
xtd . - (dzx dz dz 1423 dt
A Y1l +J?1111d$11, xz2 ( 2 2) E—— 3 — 7 3 .
Y11 Y523 yy t—1

are sections in H°(Y;, Qi,) for j =1,2,3 respectively, and each lifts w;.

T2 Z2

The proof occupies the remainder of this subsection.
First consider Yy, where (dropping subscripts) there is an equality
(6.5) 0=y —a" oy +1)(zy + 1),
the differential of which leads to the relation
(66) 0=(1—a"(zy+t)—a"(xy+1))dy — 2" (ay +1)dt
—a" 2 ((r = D(@y + D(zy + 1) + zy(zy + 1) + (zy + )ay) da.
Now consider the naive lift of w; to a 1-form on ),

i—1 i
'~ d(xy) _ 'dy n

Yy Y
This is obviously regular away from y = 0. The equality (6.5) shows that, in an open
neighborhood of y = 0, the function y is a unit times 2" ~!. Also, the coefficients
of dz and dt in (6.6) are divisible by 2”2 and, near y = 0, the coefficient of dy is a
unit. Therefore, we may rewrite x’dy (with i > 1) as a regular 1-form times z"~?,
and thus 2’dy/y is everywhere regular on );. This shows that the naive lift of w;

is a section in H°()1,93,).
Next we turn to Vs, where (dropping subscripts) there is an equality

(6.7) 0=2z—a" Yo+ 2)(z+ 2t),
the differential of which leads to the relation

2 dx.

(6.8) 0= (1—z" '(z+at)—a" Ho+2)t)dz—a2" 'z +2)zdt
—2" 2 ((r = 1) (x4 2)(x + 2t) + x(z + 2t) + 2(x + 2)) da.

Now consider the naive lift of w; to a 1-form on Ys:

This is obviously regular away from z = 0. Near z = 0, the equality (6.7) shows
that z is a unit times 2" 1. Also, near z = 0, the coefficient of dz in (6.8) is a unit
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and the coefficients of dx and dt are divisible by x". Therefore, we may rewrite

ridz (with i > 1) as a regular 1-form times "1, and thus 2dz/z is everywhere

regular on ). This shows that the naive lift of w; is a section in HO()s, Q%;)
Finally, we turn to )5, where (dropping subscripts) there is an equality

(6.9) 0=y"z— (14 2)(1+tz),
the differential of which leads to the relation
(6.10) 0= (ry"'2)dy+ (y" — (1 +tz) — (L4 2)t)dz — (1 + 2)2) dt.

This time it is necessary to work harder since the naive lift of w; turns out not to
be regular on all of V5. Instead of it, we add a term involving dt and consider

—dz 142z dt
yiz yiot—1"

This is regular where y # 0 since t — 1 and z are units on all of )3, so it remains to
show it is regular in a neighborhood of y = 0. The equations (6.9) and (6.10) and
some algebra allow us to rewrite this lift as

r—i—1 1 1 1 r—1—i

Y dy — +Z + — dt =4 rdy +gdt
f v \f -1 f t—1

where f = " — (1 + tz) — (1 + 2)t. The right side is regular in a neighborhood

of y = 0 since then t — 1 and f are units. Therefore this lift of w; is a section in
H(Y5,Q3).

6.1.7. Computing the Kodaira-Spencer pairing. In this section we cal-
culate the pairing

HO(U,W*Qi,/U) X HO(U,TF*Q;/U) — HY(U,Q)
Wi X W — (wi,wj).
The proof of the following proposition occupies the remainder of this subsection:

PROPOSITION 6.10. (w;,w;) = if i+ j =r, and otherwise (w;,w;) = 0.

t(t 1)

In particular, Proposition 6.10 and Corollary 6.7 together imply that the pairing
is a perfect pairing of free R-modules since r/t(t — 1) is a unit in R.

Recall that H (Y, F) = H°(U, R'7,.F) for any coherent sheaf F on ) since U
is affine. Recall also that there is a long exact sequence of Oy-modules

- — Rim, QY — Rimﬂi; — Riw*Qi,/U — e
obtained by applying 7, and its right derived functors to (6.4). Therefore the
corresponding sequence of global sections
- = H(U, R'm,m* Q) — H(U, R'm,Qy) — H(U, R'm.8, ;) —
is equal to the long exact cohomology sequence
c—= HY(Y, 7 Q) — HY(Y,Q)) — H' (Y, Qy/U)
In particular, KSy induces a map
HO(U, w0 ) = H (U, R'm.m*Qyy),
which is the boundary map of cohomology
HY (Y, Q%) = H' (Y, 7 Q).
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Fixing ¢ and taking differences, on Y; N Vg, for j,k € {1,2,3}, of the lifts
in Proposition 6.9 yields the following Cech cocycle in HY (Y, 7*Q};) representing
KSy(wi):
1+ z3 dt

vy t—1

g12 = g21 =0, 923 = —g32 = 13 = —g31 =
where g, is a section in H(Y; N Vi, 7 Q).
Taking the cup product of KSy (w;) with w; yields a class in
HY (Y, 7 ®0, Q1) = H (U, @0, R'7.0Y 1)
=~ H(U, Q) ®r HO(U, R'7.9y, 17)
given by the product of t‘f—tl and the class h in H°(U, Rl’ﬂ'*Qi}/U) represented by
the Cech cocycle

1+ z3dz
hi2 = ha1 =0, haos = —h3ga = h1z3 = —hg1 = TJB—B
Ys <3

It remains to calculate the image of h via the relative trace map
HO(U, R'1.3, ;) = H°(U, Op).

Consider, for j = 1,2, 3, the meromorphic relative 1-forms o; on Y; given by

1+ z3dz3
01:(72:0, 03 = — its I
Ys <3

On Y; N Vi, they satisfy hji, = o — 0. Therefore, for z € U and P € ).,
the residue rp = Resp(o;) satisfies rp = Resp (o) if P € Yy .. In particular, the
relative trace of h is the global section of Oy whose restriction to Oy, is D pey, TP-

It is clear that rp = 0 except possibly at the points (ys3,23) = (0,—1) and
(0,—1/¢t) in Y5 ,. The identities

ys23 — (1 + 23)(1 +tz3) =0 and rygflzg dys = (y5 — (1 +tz3) —t(1 + 23)) dzs
allow us to rewrite o3 as

_rz3(l423)  dys rz3 dys

1— 232t yéﬂ'“*’” o (T+t3)(1 = 221) yéﬂ'ﬂ'*z’”'
The specializations of the left and right at z3 = —1/t and z3 = —1 are

Cr(=/)A+ (1)) dys
L= (/@) g

dys
1+itj—r
3

.
ty

and
T dys

— — T+itj—2
(1 t)(l t) y3+z J—2r
respectively. In particular, if P € )5, then
PP = (0,~1/t) and i+ =,
rp = .
0 otherwise,

since 1 + i+ j — 2r < —2. Therefore

dt r . . .

=L ifi4j=r
Wi, w;) =4 1t J
(wirwj) {0 otherwise,

as claimed.
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REMARK 6.11. Variants of this calculation for » = 2, i.e., for the Legendre
curve, go back to the origins of hypergeometric functions and appear in many places
in the literature, sometimes lifted to the level of the Gauss-Manin connection, and
with varying conventions, bases, and signs.

6.1.8. J is ordinary. We recall that “J is ordinary” means that J(K)[p] has
cardinality p? where g = r — 1 is the dimension of J. This property is obviously
preserved under change of ground field.

Recall (e.g., [37, Section 2]) that the Cartier operator

Car : H(C, Qla/?) — H°(C, Qla/?)
is a semi-linear operator satisfying

Car(w + ') = Car(w) + Car(w’) and Car(fPw) = f Car(w)
for all f in the function field K(C). Also, for z € K(C),

Car (w dw) =0if pfiand Car (d_x) = d_a:
x x

It is known that J being ordinary is equivalent to the Cartier operator of C' being
an isomorphism. (This can be deduced from [37, Proposition 10, page 41].)

PROPOSITION 6.12. The operator Car : H°(C, Qla/?) — HY(C, Q%/f) is an

isomorphism. In particular, the Jacobian J of C' is ordinary.

PROOF. Corollary 6.8 says that wy,...,w,_; form a K-basis of H°(C, Q%/?).
We show, for all 1 <4 < r — 1, that Car(w;) is a non-zero multiple of w, where
pa =i mod r. This implies that Car is an isomorphism, as required.

Since p {r, given ¢ with 1 <i < r —1, we may solve ap — br = i in integers a, b.
Moreover, adjusting a,b by mr, mp, for some m, we may assume that 0 < b < p,
and having done this, it follows that 0 < a < r. We then have

<x)l dr 2% dr  h(z)dz
Wz' = _ _—= _—= _—
y) = y® oz yw g

where h(x) = 2T ("=D8(z + 1)®(x + t)°. Thus

Car(w;) = y~° Car (h(x)di) .

T

Now the exponents of z appearing in h are in the range
[i + (r = 1)b,i+ (r + 1)b] = [ap — b, ap + 1],
and the only multiple of p in this range is ap. Letting ¢ be the coefficient of " in
h(z), then Car(h(x)dx/z) = c*/P2®dx/x and
Car(w;) = /P (z/y)%dx/z = ¢/ Puw,.
Thus it remains to prove that ¢ # 0.

It is clear that c is the coefficient of 2 in (z + 1)*(z +¢)®, and so
b

AN
c:§ () =14+ 4+t ¢
— \ j
Jj=0

Since ¢ is transcendental over I, this expression is not zero in K, and this completes
the proof. O
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6.2. Néron-Severi of X, is torsion-free

In this section, we assume that k is a perfect field of characteristic p > 0 not
dividing d and containing y4 and that r divides d. Let X; — PL be the minimal
regular model of C'/ Ky constructed in Section 3.1. We regard X, as a surface over
k. Our aim in this section is to prove the following result.

THEOREM 6.13. The Néron-Severi group of Xy is torsion-free.

Along the way we work in more generality so that the same result may be
deduced for most surfaces related to the Berger construction. It would be possible
to remove the restrictions that r divides d and that k contains p4, but we leave this
as an exercise for the reader.

We occasionally refer to the Néron-Severi and Picard groups of certain singular
surfaces. We recall here three familiar facts that continue to hold for singular but
normal surfaces. Namely, if S is a projective, normal, geometrically irreducible
surface over a perfect field k, then the Picard functor Pics/; is represented by
a scheme locally of finite type over k, the identity component is represented by
a projective algebraic group, and the tangent space at the identity is canonically
isomorphic to H'(S,0s). See 9.4.8, 9.5.4, and 9.5.11 in [24] and recall that S is
integral and normal over k since it is integral and normal over the perfect field k.

By definition, the Néron-Severi group of a projective, normal, irreducible sur-
face S over a field k is the image NS(S) of Pic(S) in

NS(S xp k) := Pic(S x; k)/Pic®(S x; k).

Thus NS(S) is a subgroup of NS(S xj k). Therefore, to prove Theorem 6.13 it
suffices to treat the case where k is algebraically closed; in this section, we assume
k = k when convenient, but in some places we consider more general fields k.

6.2.1. Shioda-Tate isomorphism. Let k& be a perfect field, let B be a
smooth, projective, geometrically irreducible curve over k, and let S be a smooth,
projective, geometrically irreducible surface over k equipped with a generically
smooth and surjective morphism 7 : § — B. Let K = k(B) be the function
field of B, let J/K be the Jacobian of the generic fiber of 7, and let (A, 7) be the
K /k-trace of J.

Recall that L'Pic(8S) is the subgroup of Pic(S) consisting of classes of divisors
orthogonal to a fiber of 7, that L2Pic(S) is the subgroup of L'Pic(S) consisting of
classes of divisors supported in the fibers of 7, and that L’ NS(S), for i = 1,2 is
the corresponding subgroup of NS(S).

PROPOSITION 6.14. There is a homomorphism

L'NS(S)

I2NS(S) MW(7) =7

with finite kernel and cokernel. It is an isomorphism if m has a section and if k is
either finite or algebraically closed.

See [51, Proposition 4.1].

6.2.2. NSi,; and Ji,,. We continue the notation of the previous section. We
further assume that & is finite or algebraically closed.
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82 6. ANALYSIS OF J[p] AND NS(Xy)tor

If Pic’(S) = 0, then NS(S) = Pic(S) and the K /k-trace of .J vanishes. There-
fore Proposition 6.14 implies that there is an isomorphism

L'Pic(S)
———— = J(K).

L?Pic(S) ()

If, moreover, 7 admits a section, then L?Pic(S) is torsion-free. (See, for example,
Section 4.1 in [51].) Finally, NS(S)or is contained in L'Pic(S) since its elements
are numerically equivalent to zero. Therefore we conclude the following:

PROPOSITION 6.15. If Pic’(S) = 0 and if = admits a section, then the Shioda-
Tate isomorphism induces an injection NS(S)tor = J(K)tor-

Later in the paper, we use Proposition 6.15 and bounds on NS(&X)to, to bound
J(K)tor- The reverse is also possible: good control on J(K )i, suffices to bound
NS(X)tor-

6.2.3. Birational invariance.

PROPOSITION 6.16. Suppose S1 and Sy are projective, normal surfaces over k
and f: Sy — Ss is a birational map. Then NS(S)tor =2 NS(S2)tor and PiCO(S1) =
Pic’(S,).

PROOF. By resolution of singularities and [20, V.5.5], there is a smooth pro-
jective surface & with birational maps f; : S — & and fy : § — Ss satisfying
f = fao fit. Tt suffices to prove the proposition with (S, Sy, f1) and (S, Sz, f2) in
lieu of (81,82, f). Therefore we may suppose, without loss of generality, that S is
smooth and projective and that f is a birational morphism, in other words, that f
is a morphism and induces a birational isomorphism.

If s € Sy is a point over which f is not an isomorphism, then since S is smooth,
it is known (e.g., Corollary 2.7 in [3]) that

n

FHs) =) riEs

i=1

where the E; are pairwise distinct integral curves on S; and the r; are positive
integers. Moreover, the restriction of the intersection pairing on &3 to the subgroup
of NS(S;) generated by the classes of the F; is negative definite.

Let {s1,...,5m} be the set of points over which f is not an isomorphism, let n;
be the number of components of f~1(s;), let Ej1,..., E,, denote the components
of f71(s;), and let N = """ | n; so that N is the total number of exceptional curves
introduced in passing from S, to Sj.

There is a homomorphism Z — Pic(S;) given by sending (ai1, ..., amn,,) to
the class of >3i% ) 377 a;; Eyj. We also have f* : Pic(S) — Pic(S1). Trivial modi-
fications of the proof of V.3.2 in [20], show that these maps induce an isomorphism

Pic(S)) = Pic(S,) @ ZV.

It follows that Pic®(S;) = Pic’(Ss) as claimed. It also follows that NS(S;) =
NS(Ss) @ ZN and thus that NS(S;)ior = NS(S2)tor as claimed. a
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6.2.4. Geometric method. In this subsection, we use a geometric method
to kill torsion in Néron-Severi under suitable hypotheses. In the application to
Xy, this method suffices to kill torsion of order coprime to r and not divisible by
p = Char(k); however, by itself, it does not seem to handle primes dividing 7.

Let S be a smooth, irreducible, projective surface over k, and let G C Autg(S)
be a finite subgroup.

LEMMA 6.17. The quotient S/G is normal, irreducible, and projective.

PROOF. Tt is clear that S/G is irreducible. It follows from [39, Chapter III,
Section 12, Corollary] that it is normal and from [19, Lecture 10] that it is projec-
tive. (]

Therefore Pic(S/G) has the properties detailed in the second paragraph after
the statement of Theorem 6.13.

PROPOSITION 6.18. Suppose some fiber of S — S/G contains exactly one
point. If £ # p is a prime number such that Pic(S)[(]¢ = 0, then NS(S/G)[(] =
Pic(S/G)[] = 0.

PROOF. Every element of NS(S/G)[(] lifts to Pic(S/G)[f] since Pic’(S/G) is
divisible, and thus it suffices to show that Pic(S/G)[£]=0. Suppose that L is a line
bundle on §/G whose class in Pic(S/G) is ¢-torsion. We must show that it is trivial
in Pic(S§/G).

If we choose an isomorphism £ 2 Og /G, then the Ogs/g-module

A=0sjc® L Lo L
inherits the structure of a sheaf of Og,;-algebras. Let
T = SpecOS/G.A

(global Spec) so that there is a finite étale morphism 7 — S/G of degree £. This
morphism has a section if and only if £ is trivial, i.e., L= Og/g.

The pull back of £ to S is trivial since Pic(S)[(]¢ = 0. Therefore, the fiber
product § X s/ T is trivial as an étale cover of S; in other words, there is a section
of the projection

SXS/GT%S.

This yields a commutative diagram

<

S/G.

On one hand, by hypothesis some fiber of the quotient map § — §/G contains
exactly one point. On the other hand, 7 — S/G is finite étale of degree ¢. It
follows that the image of S in 7 has degree 1 over S/G and that T — S/G is
not connected. Hence the covering T — S/G is trivial, i.e.,, T = (S/G) x (Z/{Z).
Therefore L is trivial in Pic(S/G) as claimed. O
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6.2.5. Some group cohomology. In this subsection, we collect some facts
about the group cohomology of G = p,..

Let g be a generator of G. Recall that for an Fy[G]-module M, the elements
D=1-gand N =1+g+---+g"! of Fy[G] act on M and there are isomorphisms

ker(D) ifi=0,
HY(G,M) = { ker(N)/im(D) ifi>1is odd,
ker(D)/im(N) if i > 2 is even.

Let R = Fy[G] be the regular representation of G, and let W be the quotient
of R by the subspace of G-invariants RC.

LEMMA 6.19.
. F ifi =0
W) G m = 0
0 ifi>0;
F, ifi=0orl|r,
0 ifi>0andlfr;
(3) HY(G,W) = H*(G,F,) fori>0;
(4) H(G,W @ W) = H*L(G,W) fori> 0.
PrROOF. We may identity R with the trivial F,[G]-module F,, which is the
i = 0 part of (1). The rest of part (1) follows from [40, page 112, Proposition 1]
since Fy[G] is co-induced. Part (2) is a simple exercise using the isomorphisms
displayed just before the lemma. For part (3), by the definition of W, there is an
exact sequence

(6.11) 0—-F,—-R—>W—0.

(2) HY(G,Fy) =

Taking cohomology yields an exact sequence
0— H°(G,F;) - H*(G,R) — H°(G,W) — H'(G,F;) = 0

and identities H*(G, W) = H'(G,F,), for i > 0.

Since R ® W is co-induced, applying [40, p. 112, Proposition 1] implies that
H{(G,R@ W) = 0 for i > 0. Tensoring (6.11) with W and taking cohomology
produces an exact sequence

0— H(G,W)— H°(G,RW) - H(G,W W) = H'(G,W) = 0
and identities H(G,W @ W) = H'™Y(G,W) for i > 0. 0
Consider an exact sequence of Fy[G]-modules
0—F,— W —W —0.
LEMMA 6.20. W 2 F, & W or W = R as F¢[G]-modules.

PRrROOF. Thereis an element w € W that generates W as an Fy[G]-module, that
is, W is cyclic as an F;[G]-module. Let @& € W be a lift of w. The Fy[G]-submodule
of W generated by @ maps surjectively to W. If this map is an isomorphism, the
above sequence is split and W = F, & W. Otherwise the submodule must be all of
W, in which case W is cyclic and has Fy-dimension r, so is isomorphic to R. |

Note that R =F, @ W if £{r.
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6.2.6. Cohomological method. Recall that » > 1 is an integer not divisible
by p. In this subsection, we develop a more elaborate, cohomological method to kill
torsion in Néron-Severi. We need it to kill ¢-torsion in NS(Xy) when ¢ is a prime
dividing 7.

To state the result, let C — P! (resp., D — P!) be a Galois branched cover
with group G = p, that is totally ramified over b; > 0 (resp., by > 0) points of P!
and unramified elsewhere. Let G act diagonally on & = C x D.

PROPOSITION 6.21. NS(S/G)[¢] = Pic(S/G)[¢] = 0 for any prime number
{#p.

The proof occupies the remainder of this subsection. It suffices to treat the
case where k is algebraically closed, so we make this assumption for the rest of this
section.

To lighten notation, for a scheme ) over k we write H Z(y) for the étale coho-
mology group H*(V.,Fy) and H:(Y) for the étale cohomology group with compact
supports.

LEMMA 6.22. The following G-modules are isomorphic:
(1) H°(C) = H*(C) = H°(D) = H?*(D) = Fy;
(2) HY(C) =W =2 and HY(D) = W22,

PROOF. The first part is well known since C, D are irreducible projective curves,
and it suffices to prove the second part for C since the argument for D is identical.

Let C° denote the maximal open subset of C where C — P! is unramified and
let P° be the image of C° in P!. Then P° is P! minus b; points and f : C° — P° is
an étale Galois cover with group G. We first check that there is an isomorphism

HY(C°) =T, ® R" 2.

Indeed, H'(C?) = H'(P°, f.FF) since f is finite. The stalk of f.F, at the generic
point of P° may be identified as a G-module with R, and it has an action of ’R’ip ),
the prime-to-p fundamental group of P°. Moreover [30, V.2.17], H*(P°, f.F,) is

isomorphic to the Galois cohomology group H* (ﬂp ), R). Using the fact that 7r§p )
is the free pro-prime-to-p group on b; — 1 generators o1,...,0p,-1, it is an easy

exercise to check that H'! (W%p ), R) is isomorphic to the cokernel of the map
R—R1L A (oA = )\ ... ,0h 1A= \).

Since each generator o; acts on R as multiplication by some generator of G (by our
hypothesis that C — P! is totally ramified at each branch point), the cokernel is
isomorphic to Fy @ R*~2, as desired.

To finish, we note that H'(C°) = H!(C°)* by Poincaré duality and that, by
excision, there is an exact sequence

0— H°(C) — H°(C\C°) — H}(C°) — H'(C) — 0.
Since H(C \ C°) 2 F¢ as a G-module, the result follows easily. O

LEMMA 6.23. Let X be a variety over k. Let G be a finite group of order prime
to p which acts on X, and let Y = X/G. Then fori > 1,

H{(Y,0) = H'(X,0)Y.
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PrOOF. Recall that by a variety over k, we mean a separated scheme of finite
type over k. Let (V;) be a cover of Y by open affines. Let U; C X be the preimage
of V;; the V; are G-invariant and, since X — Y is finite, are also affine. Separability
implies that intersections of the V; (resp. U;) are also affine. If H denotes Cech
cohomology, by [20, 111.4.5], then

H'((V;),0) = H'(Y,0)
and similarly for X. For i > 1, consider the Cech complex
= CTH(U), 0) — C((U3), 0) — CTHH((U), 0) — -+

If we take G-invariants, we obtain the corresponding Cech complex for Y. All of
the groups above are k-vector spaces and the order of G is prime to p, so taking
G-invariants commutes with taking homology. The claim follows. (Il

Recall G = u,, and let T = S/G.
LEMMA 6.24. Pic’(T) = 0.
ProOOF. Lemma 6.23 and the Kiinneth formula imply
HY(T,0) = H'(S,0)¢ = (H'(C,0) ® H'(D,0))" = 0.

In particular, Pic’(7) = 0 since its tangent space space is H'(7,©) and thus is
trivial. (]

Therefore, NS(7) = Pic(T) and

NS(T)[€] = Pic(T)[l] = H'(T, pe) = H'(T),

since k is algebraically closed. The rest of the proof of Proposition 6.21 is a some-
what elaborate calculation of H(T); in particular, we show it vanishes.

Let Z C S be the reduced subscheme of fixed points, which by our hypotheses
consists simply of b1bs distinct points. We identify Z with its image in 7 as well.

Let §° =8\ Z and 7° = T \ Z and note that §° — T° is an étale Galois cover
with group G and that 7° is smooth.

LEMMA 6.25. We have the following isomorphisms of F;[G]-modules:
Fy if i1 =0 or 4,
HY(S) = { Whitba—1 ifi=1 or3,
F2 @ (WeW)bi=202=2) jfj =2
Proor. This follows from the Kiinneth formula
H'(S)=a\_, (H'(C)® H/ (D))
and Lemma 6.22. ]

By excision, there is an exact sequence
0— HYT)— H°(Z) = HYT°) - HY(T) =0
and an isomorphism ' .
HY(T?) = H/(T),
for j > 2, since Z is zero dimensional. We also have the Poincaré duality isomor-
phism ‘ ‘
HY(T*) = H*(T*)
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for 0 < j < 4. Therefore, to show that H(7) = 0 we must show that H?(7°) has
dimension b1bs — 1 as an Fy-vector space; its dimension is at least this. To show
equality we use the Hochschild-Serre spectral sequence

(6.12) Ey) = HY(G, H(8°)) = H'I(T?).
To compute the Ey term, we begin by computing H7(S°).

LEMMA 6.26. We have the following isomorphisms of F;[G]-modules:

Fy' & R & W ifj=1,
F2 (W@ W)bi=2C2=2)  jf j =2
HI(S%) = § Whitha—d ifj=3,
F, if j =4,
0 otherwise

where a1 + as = bibs — 1 and as + ag = by + by — 4.
PRrROOF. By excision, there is an exact sequence
0— H*S)— H°(Z) — HYS°) — H'(S) =0

and isomorphisms
HJ(S°) = H(S)
for j > 2, since Z is zero dimensional and non-empty. Therefore, Lemmas 6.20

and 6.25 imply that H277(S°) has the desired form. (Roughly speaking, as is the
number of copies of W in H!(C) over which the extension H}(S°) is split.) O

COROLLARY 6.27. We have the following isomorphisms of Fe[G]-modules:

[Fy if j =0,
Jhaba ifj=1,
HI(8?) = {F; @ (W e W)=20222f j = 2,
F{' @ R @ We ifj =3,
0 otherwise,

where a1 + as = bibs — 1 and as + az = by + by — 4.
PROOF. The Poincaré duality isomorphism states that
HY(8°)" = H.;7(S°)

for 0 < j < 4. In particular, Fy, R, W are self-dual as F,;[G]-modules, so H7(S°)*
is also self-dual, and thus H’(S°) has the desired form. O

Applying Lemma 6.19 and Corollary 6.27, we find that if £ 1 r, then

bibo —1 ifi=0,j=3,

6.13 dim B3 = dim(HY (G, H? (8°%))) =
(6.13) im E, im(H*(G, H’(S°))) {0 i£i>1.5>0.

One can deduce more, but when ¢ 1 r this already suffices to show that (6.12)
degenerates and

dim H3(7°) = dim ES® = byby — 1
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as claimed. Therefore, we suppose for the remainder of this subsection that ¢ | r
and apply Lemma 6.19 and Corollary 6.27 to deduce

1 ifi>0,j=0,
by + by — 4 ifi>0,7=1,
(6.14) dim B = { byby — 2b; — 2bs + 6 ifi>0,j=2,
bibs — 1+ as ifi=0,j=3,

biby — by —ba +3+2a3 ifi>0,j5=3.

One can also deduce more in this case, but these suffice for our purposes. More
precisely, to show dim H3(7°) = byby — 1, it suffices to show that a3 = 0 and
dim H3(7°) < dim Ey”°.

The spectral sequence (6.12) has non-zero groups only in the first quadrant
and has only four non-trivial rows, i.e., E,’LJ =0unlesst>0and 0 < j < 3. It
follows immediately that dﬁl’j =0ifh>4orif j>3orif h>j+1, and also that
EL =B,

LEMMA 6.28. The differentials dﬁl’j in the spectral sequence (6.12) satisfy the
following: For h > 2 and i > 1, rank dﬁl’g = dim E§+h’4_h. Moreover, with notation
as in Corollary 6.27, az = 0.

PROOF. Since 7 is not complete and dim(7°) = 2, it follows that H**/(7°)
vanishes for i > 1 and j = 3. Thus E.” vanishes, and the definitions of E;L’3 for
h =1,2,3 imply that

dim Ey® = rank dj” 4 rank d3° + rank dy*
for ¢+ > 1. Moreover,
rank dé’3 -+ rank dé’?’ + rank di’?’ < dim E;+2’2 + dim E;"H)”l + dim E;+4’0
and so
dim EY? < dim E;t?? 4 dim EL™! 4+ dim ELH°
for i > 1. Comparing dimensions using (6.14), we see that az = 0 and that

(6.15) rank d® = dim £ 4"

for i > 1 and h = 2,3,4. Trivially, rankd}® = 0 for h > 5 since E3™"*™" =0 for
h > 5. This establishes the claims of the lemma. O

LEMMA 6.29. The differentials dz’j in the spectral sequence (6.12) satisfy
2,2 3,1 4,0
dpy" =dy =dy =0
for h > 2.

PRrROOF. By Lemma 6.28, rank d§’3 = dim E;L’l. Therefore, dim Eg’l = dim E;L’l
and d§’2 = 0. Similarly, Lemma 6.28 says that rank d41173 = dim ES’O which implies
that dy' = d3* = 0. Trivially, d,”> vanishes for h > 3, d’" vanishes for h > 2, and
di’o vanishes for h > 1. This completes the proof of the lemma. O

LEMMA 6.30. With notation as above, dim H3(7°) < dim ES’B =b1by — 1.
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PrROOF. On one hand, the previous lemma says that all the differentials dz’j
with domain FE}” vanish when ¢ + j = 4, ¢ > 2, and h > 2. On the other hand,
H*(T°)=0,s0 E%J =0 for i + j = 4. It follows that

dim H*(T°) = Y dimEY < Y dimEy’ - > dim By’
i+5=3 i+j=3 i+j=4
i>2
Applying Equation (6.14), this last difference is dim Eg 3 and (6.14) together with
Lemma 6.28 shows that dim Eg’g = b1by — 1. This completes the proof of the
lemma. ]

As noted after Lemma 6.25, the inequality dim H3(7°) < b1by — 1 completes
the proof that H!(7) = 0 and that of Proposition 6.21.

6.2.7. Proof of Theorem 6.13. The statement of Theorem 6.13 is that
NS(Xy)tor = 0. By Proposition 6.15, there is an injection NS(Xy)tor = J(K)tor-
Moreover, we proved in Corollary 6.1 that J(K) has no p-torsion, thus neither does
NS(Xy). It thus suffices to prove that NS(Xy)[¢] = 0 for every prime £ # p.

For the rest of the proof, suppose ¢ # p. By Proposition 6.16, it suffices to
prove NS(71)[¢] = 0 for some 77 that is birational to X;. Recall from Section 3.3
that Xy is birational to the quotient S/(u, X pg) constructed as follows:

Let C4 and Dy be the smooth, projective curves over k with affine models

Cp:2%=2"-1 and Dd:wd:yT—l
respectively, and let S = Cyq x; Dy. The action of p, x g on A% x;, A? given by

(z,y, z,w) = (2,0~ 'y, ¢z, ¢ w)
induces an action on S.

Let T = S/p-. Observe that Proposition 6.21 implies NS(7)[¢] = 0 and that
Lemma 6.24 implies Pic’(7) = 0. Now let S; — T be a resolution of singularities
of T that is an isomorphism away from the singular points. The action of ug on S
has isolated fixed points that are disjoint from the fixed points of the action of u,..
It also descends to an action on 7 and then lifts (uniquely) to an action on Sy with
isolated fixed points (cf. [20, 11.7.15]). Proposition 6.16 implies that Pic’(S;) =
Pic’(T) = 0, and so Pic(S1)[(] = NS(S81)[(] = 0. A fortiori, Pic(S1)[¢]¢ = 0, and
thus we may apply Proposition 6.18 to deduce that NS(77)[¢] = 0 for 71 = 81/ 4
and ¢ # p. This completes the proof since 77 is birational to S/(u, X q) and thus
to Xd. O

For future use, we record one other byproduct of our analysis.

PROPOSITION 6.31. Pic®(X,;) = 0 and thus the K/k-trace of J is trivial.

PROOF. As observed in the proof of Theorem 6.13, Lemma 6.24 implies that
Pic’(S/u,) = 0. Using the fact that H*(S/p,., ©) is the tangent space of Pic’(S/u,)
(and similarly for S/(u, x pq)) along with Lemma 6.23, we see that

Pic’(S/(pr x pa)) = 0.
Therefore Pic’(X,;) = 0 since Xz and S/(p, X p1q) are birational. Finally, the K /k-

trace of J vanishes since it is inseparably isogenous to Pic’(Xy)/Pic’(P!)—see [11]
or [43]—and since Pic’(X}) vanishes. O
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CHAPTER 7

Index of the visible subgroup and the
Tate-Shafarevich group

In this chapter, we work under the hypotheses that r divides d, d = p* + 1, and
d divides ¢ — 1. The first goal is to understand the index of the visible subgroup
V in J(Kg4). Ultimately, we find that the index is a power of p and equal to the
square root of the order of the Tate-Shafarevich group HI(J/K,). Specifically,
in Section 7.1, we determine the torsion subgroup J(F,(u))ior and prove that the
index of V' in J,(F4(u)) is a power of p, Theorem 7.1. In Section 7.2, we find the
Tamagawa number 7(J/F4(u)) of the Jacobian J of C over F,(u), Proposition 7.5.
Finally, in Section 7.3, we prove an analytic class number formula relating the
Tate-Shafarevich group II(J/F,(u)) and the index [J(F4(u)) : V], Theorem 7.7.

7.1. Visible versus Mordell-Weil
Let V' be the visible subgroup of J(Fq(u)), that is, the subgroup generated by
P = (u,u(u+1)Y7) € C(Fy(u)) = J(Fy(u))
and its Galois conjugates. By Corollary 5.7, we know that
rank V' = rank J(F,(u)) = (r — 1)(d — 2).

In particular, V has finite index in J(F4(u)). In this section, we show that this
index is a power of p thus completing our knowledge of J(F,(u)). More precisely:

THEOREM 7.1. Suppose that r divides d, that d = p¥ + 1, and that d divides
q—1. The torsion subgroup J(Fy(u))tor equals Vior and has order r®. The index of
Vin J.(Fq(u)) is a power of p.

The proof is given later in this section. Before giving it, we prove a general
integrality result for regulators of Jacobians over function fields.

7.1.1. Integrality. Let B (resp. S) be a curve (resp. surface) over k =F,. We
assume that B and S are smooth, projective, and geometrically irreducible, that
S is equipped with a surjective and generically smooth morphism = : S — B, and
that 7 has a section whose image we denote O. Let NS(S) be the Néron-Severi
group of S, and let L' NS(S) and L?NS(S) be the subgroups of NS(S) defined in
Section 6.2.1.

Let K = k(B) be the function field of B, let J/K be the Jacobian of the generic
fiber of , let (A,7) be the K/k-trace of J, and let MW(J) be the Mordell-Weil
group J(K)/TA(k). By Proposition 6.14 there is an isomorphism

L'NS(S)
L2NS(S)

since m has a section and since k is finite.

— MW(J),

91
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92 7. INDEX OF THE VISIBLE SUBGROUP AND THE TATE-SHAFAREVICH GROUP

We write det(MW (J)/tor) for the discriminant of the height pairing on MW (.J)
modulo torsion. Also, for each place v of K, we write N,, for the subgroup of NS(S)
generated by non-identity components of 7~ !(v) and d,, for the discriminant of the
intersection pairing of S restricted to N, ; by convention, we set d,, = 1 if N, = 0. If
J — B is the Néron model of J/K, then it follows from [6, Section 9.6, Theorem 1]
that d,, is also the order of the group of connected components of the fiber of 7 — B
over v.

With these notations, our integrality result is as follows.

PROPOSITION 7.2. The rational number

2 det(MW(.J)/tor)
INS(S)tor| (1:[ dv) | MW (J)tor |2

18 an integer.

This generalizes [52, Proposition 9.1], which is the case where dim(.J) = 1 and
A =0. (In that case, NS(S)tor is known to be trivial.) The general case is closely
related to, but apparently not contained in, the discussion in [13, Section 5].

PROOF. Let F be the class in NS(S) of a fiber of m. Then L!NS(S) is the
subgroup of NS(S) consisting of classes orthogonal to F.

The intersection form on S is degenerate when restricted to L' NS(S); indeed
its radical is ZF. We write L' NS(S) and L? NS(S) for the respective quotients of
L' NS(S) and L? NS(S) by ZF so that the intersection pairing on S then defines a
non-degenerate pairing on L' NS(S). For any torsion-free subgroup L C L' NS(S),
we write Disc(L) for the discriminant of the intersection form restricted to L (i.e.,
the absolute value of the determinant of the matrix of pairings on a basis); by
convention, we set Disc(0) = 1.

We identify N, with its image in L2 NS(S) so that Disc(N,) = d, and so that
there is an orthogonal direct sum decomposition

L’NS(S) = P N..

We also let d =[], d, so that d = Disc(L? NS(9)).

Choose elements Q1, . .., Q, € MW(J) that map to a basis of MW (J)/tor and
thus a basis of B
LINS(S)®Q
L2NS(S)® Q°
Each Q; has a naive lift Q; to L' NS(S) ® Q represented by a Z-linear combination
of “horizontal” divisors. The projection of Ql onto the orthogonal complement of
L?NS(S) ® Q is represented by a Q-linear combination of divisors. It follows from
Cramer’s rule that the denominator appearing in the coefficient of a component of
7~ 1(v) divides d,. In particular, the multiple R; = dQ; has a lift R; to L' NS(S)
(i.e., with integral coefficients) that is orthogonal to L2 NS(S).

By the definition of the height pairing,

(Ri, Rj) = —(Ri) - (R)
where the dot on the right hand side signifies the intersection pairing on L' NS(.S).
It follows that

Disc (ZRl T ZRm) = d2™ det(MW(J) /tor),

MW(J)®Q =
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since the R; map to a basis of d - (MW(J)/tor). Now let N be the subgroup of
L' NS(S) generated by the R; and by L2 NS(S).
On the one hand, there is an orthogonal direct sum decomposition

N= (ZR1 +-~-+ZRm) @ L2NS(S)

and so

Disc(N) = d*™ ! det(MW(.J) /tor).
Moreover, the assumption that 7 has a section implies that L? NS(S) is torsion-free
and that F is indivisible in L? NS(S), and thus L2NS(S) and N are also torsion-
free.

On the other hand, the index of N in L' NS(S) is d™| MW (J)ior|. It follows
that
Disc(L! NS(S)/tor) Disc(N/tor) ~det(MW(J)/tor)
ILENS(S)or? @[ MW(ior 2 [Nion|* —  [MW()ior|*
since N is torsion-free. Finally, if we note that

L' NS(8)tor = L' NS()tor = NS(S)tor,

then we find that

Disc(L! NS(S)/tor) = | NS(S)tor|? <H dv> det(MW(J)/tor)

|MW(J)tor‘2

In particular, the left side is an integer since the intersection pairing on S is integer
valued, and thus the right side is an integer as claimed. O

7.1.2. Proof of Theorem 7.1. We apply the integrality result Propo-
sition 7.2 to Xy and J.
On the one hand, NS(X}) is torsion-free by Theorem 6.13. Moreover,

Hdv _ d2r727"d+2
v

by Proposition 3.7.
On the other hand, the F,(u)/F,-trace of J vanishes by Proposition 6.31, and
thus MW(J) = J(F,(u)). Moreover,

det(J(Fq(u))/tor)

_odet(V/tor)
| (Fq(u))tor|? .

[Vior|*

= [J(Fq(u)) : V]
We also have
det(V/tor)
[Vior |2

by Corollaries 4.20 and 4.24.
Applying Proposition 7.2 gives that

= (d —1)r—Dd=2)p—d=2g2-2r

(d — 1)(r—1)(d—2)
[J(Fq(u)) : V]?

is an integer. Since d = p” + 1, this shows that the index is a power of p. By
Corollary 6.1, J(Fq(u)) has no p-torsion, so J(Fq(«))tor = Vior. This completes the
proof of the theorem. O
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7.2. Tamagawa number

In this section we compute the Tamagawa number 7(J/F,(u)) of the Jacobian
J of C over F,(u). First, we review the definition for a general abelian variety over
a function field and show how to calculate 7 in terms of more familiar invariants.
Next, we specialize to the case of a Jacobian and relate 7 to invariants of the curve.
Finally, we specialize to the Jacobian J over Fy(u) studied in the rest of this paper.

7.2.1. Tamagawa numbers of abelian varieties over function fields.
Let B be a curve of genus gg over k = F,. Let F = F,(B) be the function field
of B, and let Ar be the adeles of F. There is a natural measure = [[ py, on Ap
where p, is the Haar measure that assigns measure 1 to the ring of integers O, in
the completion F, for each place v of F. The quotient Ap/F is compact and we
set Dp = p(Ap/F). By [59, 2.1.3],

(7.1) Dp =971,

Let A be an abelian variety of dimension g over F' and w a top-degree differential
on A. For each v, the differential w induces a differential w, on the base change
A, of A to F,. Using p,, this produces a measure |w,|ud on A,(F,). When the
differential w, is a Néron differential, then Tate has shown (cf. [45, 1.4]) that

(72) [ el = 220
Ay (0y) Qv

where F, is the residue field at v, g, = ¢%°8(") is its cardinality, and #A(F,) is the
number of points on the special fiber of the Néron model of A. Thus if #A(F,)° is
the number of points on the identity component of the special fiber of the Néron
model of A and we set

F,)°

- \_ HAE)
qu

then {\,} is a set of convergence factors in the sense of Weil [59, 2.3]. In this

situation, we may form the product measure

Q= Q(F,w, (\)) = D [] A fwoluf-

By the product formula, 2 is independent of the choice of w. Finally, we define the
Tamagawa number 7(A/F) to be the measure of the set of Ar points of A with
respect to €.

Since A is a projective variety, A(Ar) = [[, A(O,) and the measure can be
computed as a product of local factors:

~(4/F) = Do ] A /A o, el

Using (7.2) and (7.3), the local factor \;* fAv(Ov) |wy|1d is equal to gjvd, where
d, is the order of the group of components on the Néron model at v and f, is the
integer such that mf*w, is a Néron differential at v. (Here 7, is a uniformiser at v.)
Thus the product of local terms is

[ 4/ do = g= 220 ] .
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We want to write ), deg(v)f, as a global invariant. Let o : A — B be the Néron
model of A/L, let z: B — A be the zero section, and let

9x 9x
w=2z" (/\9‘17/5> = /\ (z*Q}/B) .

This is an invertible sheaf on B whose degree we denote degw. It is then clear from
the definition above of f, that > deg(v)f, = —degw. Combined with the local
calculation in the preceding paragraph, this yields

(7.4) T(A/F) = g/ -o0) = [ d,.

7.2.2. Tamagawa numbers of Jacobians. Let 5 be a smooth, projective,
geometrically irreducible curve of genus gg over k = F,. Let F = k(B) be its
function field, and let X/F be a smooth, projective, and geometrically irreducible
curve of genus gx.

We give ourselves two sorts of models of X. First, let S’ be a normal, projective,
geometrically irreducible surface over k = I, equipped with a surjective morphism
7'+ 8" — B whose generic fiber is X/F. We assume that 7’ is smooth away from
a finite set of points. We also assume that 7’ admits a section s : B — &’ whose
image lies in the smooth locus of &’. Furthermore, assume that S’ has at worst
rational double point singularities (cf. [3, Ch. 3]). Note that the singularities of S’
lie in the singularities of 7', since B is smooth.

Second, let 0 : S — &’ be a minimal resolution of singularities, so that the
composition 7 = 7’ oo : § = &’ — B is a minimal regular model of X/F. In the
applications, S’ is the model ) constructed in Chapter 3 and S is X.

Now let A/F be the Jacobian of X/F, and let 7 : A — B be the Néron model
of A/F, with zero section z : B — A. Our goal in this subsection is to describe the
invariants entering into the Tamagawa number of A in terms of the surfaces S or
S'.

We first consider the local term d,, the order of the group of connected com-
ponents of the fiber of the Néron model at v. The next proposition is not strictly
necessary for our purposes (because we were able to determine the d,, from examples
treated in [6, Section 9.6]), but we include it for completeness.

Let Xo, ..., X, be the reduced irreducible components of 7=1(v). We number
them so that the section s passes through X,. Let M be the n x n matrix of
intersection numbers:

Mi’j:(Xi~Xj), 1§Z,]§’I’L
(Note that we do not include intersections with Xj.)
PropPoOSITION 7.3. d, = det M.

ProOOF. This follows from [6, Theorem 9.6.1]. Indeed, let T = {0,...,n}, and
for i € I, let §; be the multiplicity of X; in #=*(v) and e; the geometric multiplicity
of X;. (These integers are defined more precisely in [6, Definition 9.1.3].) Since
the section s passes through X, we have §o = 1. Since the residue field F, is a
finite extension of [y, and is therefore perfect, we have e; = 1 for all ¢. (A reduced
scheme over F, remains reduced after base change to the algebraic closure of F,,.)
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Let Z! be the free abelian group on I. Let 3 : Z! —Z be given by B(ag, . . ., an) =
3 a;d;, and let a : ZI — Z! be given by the intersection matrix

(ei_l(Xi . Xj))i,jel = (X’L . Xj)i,je[ .

Then [6, Theorem 9.6.1] says that the group of connected components of A at v is
canonically isomorphic to ker 8/im a.. Because §p = 1, we may identify ker 8 with

the free abelian group on Xy, ..., X,,, and the result then follows immediately from
the definition of M. O

Next we turn to the global invariant deg(w).

PROPOSITION 7.4. Let 8° C 8’ be the smooth locus, and let m° : S° — B the
restriction of ' to §°. Then there is an isomorphism

* )1 ~ o0l
z Q.A/B:TF*QS"/B'

In particular,

g9x
w = /\ (7’(’39‘190/3) .

PrOOF. Let Lie(G) — B be the Lie algebra of a group scheme G — B (see
[12, I1.2]). By [6, 9.7/1], the Néron model A — B represents the relative Picard
functor Pick /B since S is smooth and 7 admits a section. Therefore

(*Qlyp)" = Lie(A/B) = Lie(Pic’(§/B)) = Lie(Pic(S/B)) = R'm.Os
by [28, 1.1 and 1.3].

By [23, Corollary 24] (with X = S, Y = B, and S = Speck), the relative

dualizing sheaf ws/p exists and satisfies
(RIW*OS)V =~ W*WS/B

and

ws/B = Q?S‘/k ® W*(Q%/k)v'
Combining these facts and using the projection formula, we have

Z*Qil/B = 7T*Q?S/k & (Qia/k)v-

To finish the proof, we show that

T‘—*Q?S/k: = 7-‘—29}90/5 ® QlB/k

To that end, let ws /i, ws/ /i, and wso, be the dualizing sheaves of S, §’, and S°
respectively. Since these surfaces have at worst rational double points, their dualiz-
ing sheaves are invertible [3, §3.11, Corollary 4.19], and since S and S° are smooth,
ws/k = Qi‘/k and wgo/, = Q?So/k = ws//klse. Moreover, by [3, Corollary 4.19],
oxws = wgr. Thus
T & Tws 2 T ),

where the second isomorphism holds because the complement of S° in &’ has codi-
mension 2. Finally, since 7° : §° — B is smooth, there is an exact sequence of
locally free sheaves

O — WO*QIB/’C — Q}S"/k — Q}S"/B — O;
and so, taking the second exterior power,

Q5o = 7 Q) ® Qo - 0
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7.2.3. The Tamagawa number of J. We now specialize to the Jacobian J
that is the subject of this paper. The main result of this section is the following
calculation of the Tamagawa number of J.

PRrRoPOSITION 7.5. If r divides d and if d divides ¢ — 1, then
T(J[Fy(u)) = ¢~ =D =1/2g2r=2pd+2

The proof occupies the rest of this subsection.

Suppose that r divides d and that d divides ¢ — 1. Recall that in Section 3.1.1
we constructed proper models 7’ : Y — B and m: X — B of C/F,(u) over B=P.,
i.e., schemes with proper morphisms to B whose generic fibers are C. The models
X — B and Y — B have the properties required of S and S’ in the preceding
section, so Propositions 7.3 and 7.4 apply.

However, rather than applying Proposition 7.3, we simply refer to Proposi-
tion 3.7 to obtain:

Hdv _ (Tdr71)27'd _ d2r727"d+2.
v

To finish the proof, we must compute g9c(1—98)—deg(w) — gr—1—deg(w)
Recall from Lemma 6.7 the relative 1-forms w; which form a basis of the R-

module HY(U, WiQ%,/B).

LEMMA 7.6. Each w; extends to a section in HO(Bm*Q%,/B) that has order of
vanishing di/r at uw = oo and is non-vanishing everywhere else.

PROOF. The proof of Lemma 6.6 shows that w; extends to a nowhere vanishing
section of 7,0}, /5 over B {oo}. There is an involution

(2, y,u) = (x/u,y /a1 ),

since r divides d. The pullback of x*~1dx/y® via this involution is udi/ra?i_ldx/yi
and thus it takes the non-zero regular 1-form of ) to a regular 1-form on Y., with
order of vanishing di/r. O

Clearly the sections w; € H°(B, W*Qlly/B) restrict to elements of H°(13, 71':?9%;0/8)
where )° is the complement in ) of the finitely many singularities of Y — B
(which, since d > 1, also happen to be the finitely many singular points of Y, see
Proposition 3.1).

We conclude that

w1 A Awp_q
yields a global section of /\7"_17T;’Q§,O 5- Moreover, the proof of Lemma 6.7 shows
that the w; are linearly independent on each fiber of ) — B where w is finite, and
over u = 0o, the sections u%/"w; are (non-vanishing and) linearly independent. It
follows that wy A« -+ Aw,._1 is everywhere regular, non-vanishing away from u = oo,

and has a zero of order

r—1

di_dir—1)
‘ 2
i=1
at u = co. We conclude that deg(w) = d(r — 1)/2 and
7(J/K) = g(rD—d(r=1)/2 Hdv = ¢~ (@d-2)(r=1)/22r-2, d+2

as desired. This completes the proof of Proposition 7.5. ([l
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7.3. Application of the BSD formula

We saw in Theorem 5.2 that the Birch and Swinnerton-Dyer conjecture holds
for J/F,(u). Moreover, under the assumptions that r divides d, that d = p” + 1,
and that d divides ¢ — 1, we have calculated most of the terms appearing in the
leading coefficient formula of this conjecture. Synthesizing this leads to a beautiful
analytic class number formula relating the Tate-Shafarevich group II(J/Fq(u)) and
the index [J(F,(u)) : V].

Before deriving this result, we compare the formulation of the BSD conjecture
in Theorem 5.2 to that in [22].

7.3.1. Two variants of the refined BSD conjecture. At the time that
Tate stated the BSD conjecture in its most general form in [45], there was uncer-
tainty as to the right local factors of the L-function at places of bad reduction.
Tate therefore used the Tamagawa principle to state the leading coefficient part of
the BSD conjecture. The correct local factors were defined later by Serre in [38],
and using them we formulate the leading coefficient conjecture (as Theorem 5.2)
in what we feel is its most natural form. However, the best reference for the proof
of the leading coefficient conjecture, namely [22], uses Tate’s formulation. In this
subsection, we compare the two formulations and show that they are equivalent for
Jacobians of curves with a rational point.

To that end, let F' be the function field of a curve over Fg, let Y/F be a smooth
projective curve of genus g with an F-rational point, and let A be the Jacobian of
Y. Define local L-factors for each place v of F' by

L,(q,?) :=det (1 —Fr, q,° ‘HI(A x F, Qg)lv) .

Let u =[] v and Dy, be as in Section 7.2. Choose a top-degree differential w on
A and form the local integrals
J
A(Fy)

#A,(F,)°
@
as in Section 7.2. Finally, choose a finite set .S of places of F' containing all places
where Y has bad reduction.
Tate’s formulation of the leading term conjecture is that the leading term as
s —1of

and the convergence factors

Ay =

D
(H'UGS fA(Fq,) |wv|uﬂ> (Hv€5 L”(qv_s))

is |I(A/F)|R/|A(F)tor|>. On the other hand, our formulation asserts that the
latter quantity (i.e., [II(A/F)|R/|A(F)ior|?) is the leading coefficient as s — 1 of

L(A/F,s) 9
S (e ) o (I )

where both products are over all places of F. The factor on the right is 1 if v & S,
so to see that the two formulations are equivalent, it will suffice to show that

Lv(qgl) =X\

forallv e S.
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In fact this equality holds for all v. Indeed, [29, Lemma, page 182] implies that
Ly(q;") is equal to #Pic’(Y,)/q? where Y, is the fiber at v of a regular minimal
model of Y. But as we noted in the proof of Proposition 5.1, the assumption that
Y has a rational point implies that PicO(Yv) is the group of I, rational points on
A% the identity component of the Néron model of A at v. Thus

_ #Pic’(Y,)  #AY(F,)
¢ 4
This completes the verification that the two formulations of the BSD conjecture
are equivalent.

Lv(q_l)

v

= Ay

7.3.2. An analytic class number formula. Now we turn to the application
of the BSD conjecture to a formula for the order of III(J/Fq(u)).

THEOREM 7.7. Assume that r divides d, that d = p” + 1, and that d divides

g — 1. Then the Tate-Shafarevich group II(J/F,(u)) has order
) q (r—1)(d—2)/2
(I /E )] = ) VE () .

In particular, its order is a power of p. In the special case Fq(u) = Kq, then
[II(J/Ka)| = [J(Ka) : V]*.
PRrOOF. By Corollary 5.7 the leading coefficient of the L-function is
L*(J/Fg(u),1) = (log g) " D=2,

Taking into account the factor of log ¢ relating the Q-valued height pairing of Chap-
ter 4 and the Néron-Tate canonical height, the BSD formula for the leading coeffi-
cient says
| IRy ()] det(T(Fy(w)) 50r) 7(T/Fy ()
| (Fg(w)))tor|?

Using that
~ det(V/tor)
det(J(Eq(w)/tor) = gy VE

and our calculations
det(V/tor) = (d — 1)(T—1)(d—2)r4—dd2—2r
(Corollary 4.24),
T(J/Fq(u)) — q*(d72)(r71)/2d27«,27ﬂd+2
(Proposition 7.5), and
|J(Fyg(u))tor] = 7°
(Theorem 7.1), we find

(r—1)(d—2)/2
ILL(J/F, (w)] = [J(Fy(u)) : V]2 (i)

p2u
as desired.
We showed in Theorem 7.1 that [J(F,(u)) : V] is a power of p, so the same is
true of |III(J/Fq(u))|.
The assertion for the special case Fy(u) = Ky follows from the fact that the
field of constants of Kg is Fy(pq) = Fpev. O
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REMARK 7.8. Under the hypotheses of this section, it is possible to describe
I(J/F,(u)) and J(F,(u))/V as modules over the group ring Z,[Gal(F,(u)/F,(¢))]
in terms of the combinatorics of the action by multiplication of the cyclic group
(p) C (Z/dZ)* on the set Z/dZ x p.. See [53, Section 9.4] for details.
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CHAPTER 8

Monodromy of /-torsion and decomposition of the
Jacobian

In this chapter, we consider the action of Galois on torsion points of the Ja-
cobian J and use the results to understand the decomposition of J up to isogeny
into a sum of simple abelian varieties. Our results depend heavily on knowledge
of the regular proper model X — P! constructed in Chapter 3. Interested readers
are referred to [18], where a general technique for computing monodromy groups of
certain superelliptic curves is developed. The methods of [18] yield results similar
to those in this chapter in a more general context without the need to construct
regular models.

8.1. Statement of results

Let k£ be an algebraically closed field of characteristic p > 0, let » > 2 be an
integer not divisible by p, and let £ be a prime satisfying ¢ # p and £t r. As in
the rest of this paper, let C' = C,. be the smooth, projective curve over K = k(t)
birational to the affine curve given by

(8.1) yr=a" e+ (@ + 1),

let J be its Jacobian, and let J[¢] be the Galois module of ¢-torsion.

In this chapter, we study the structure of a monodromy group, namely the
Galois group of K (J[¢]) over K. We use the results about the monodromy group to
bound ¢-torsion over solvable extensions of K and to determine how J decomposes
up to isogeny into a sum of simple abelian varieties, both over K and over K.

We first state the consequences of the monodromy result that motivated its
study, then discuss the monodromy result itself.

THEOREM 8.1. If L/K is an abelian extension, then J[¢|(L) = {0}. If ¢ > 3
or r is odd, then the same holds for any solvable extension L/K.

In the following section we define the “new part” of J, denoted J**“, and we
show that there is an isogeny

(8.2) P e —
s|r

over K, where the sum runs over positive divisors s of r and J'*" is the new
part of the Jacobian of Cs. It turns out that J{** = J; = 0 and that J*“ has
dimension ¢(s) where ¢(s) is the cardinality of (Z/sZ)* when s > 1. Moreover, the
action of u, on C, induces an action of the ring of integers Z[(.] C Q(¢,) on Jev.
Our second main result says that J'" does not decompose further over certain
extensions of K:

101
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THEOREM 8.2. The new part J°" is simple over K, and End g (J7°") =2 Z[(,].
The same conclusions hold over K(u) where u® =t for any positive integer d not
divisible by p.

If r =2, J°" is an elliptic curve, so is obviously absolutely simple. Moreover,
it is non-isotrivial, so Endg(J**") = Z. For r > 2, although J** is simple over
many extensions of K, we see below it is not absolutely simple.

Write Z[¢,]T = Z[¢, + (1] for the ring of integers in the real cyclotomic field

Q(¢)™

THEOREM 8.3. Suppose that r > 2, and let K' = K((1 —t)*/7). Then there is
an abelian variety B defined over K such that:

(1) There is an isogeny J"¢% — B? defined over K' whose kernel is killed by
multiplication by 2r.
(2) Endg(B) = Endg(B) = Z[¢,|T, and B is absolutely simple.

In particular, Endz(J[") is isomorphic to an order in My(Z[(]T).

In Section 8.5.2 below, we introduce a twist Cy of C (closely related to the
extension K'/K) with Jacobian J, and new part A, := J7*“. The curve C) has
an involution o that allows us to show that A, is isogenous to B x B over K.
Since A, becomes isomorphic to J/** over K’, this explains the factorization in
Theorem 8.3.

The theorems above are applications of results on the monodromy groups of
JI€] and J,[¢], in other words on the image of the natural homomorphisms from
Gal(K*°?/K) to Autg,(J[¢]) and Autg,(J,[¢]). Our detailed knowledge of the regu-
lar proper model X — P! of C and of the Néron model of J (in Chapter 3) together
with some group theory allow us to determine the monodromy groups.

To define the group-theoretic structure of the monodromy group, consider A =
Fylz]/(2"~1 + .-+ + 1), which is a quotient of the group ring of u, over Fy. The
torsion points J[¢] and J, [¢] have natural structures of free, rank 2 modules over
A, and J, [¢{] admits an action of o that “anti-commutes” with the u, action. We
ultimately find that for £ > 3, the monodromy group of J, [¢] is

SL2 (A+) C GL2 (A)

where AT is the subring of A generated by ¢ +¢ ' and ¢ is the class of z in A. This
is very natural, because SLa(A™) is the commutator subgroup of the centralizer
in GLa(A) of the semi-direct product p,x(c). The results of [18] extend this
conclusion to a broad class of superelliptic Jacobians.

8.2. New and old

In this section, we establish the decomposition of J into new and old parts,
leading to the isogeny (8.2).

It is convenient to work with coordinates on C' different than those in (8.1).
Namely, for s a positive divisor of r, let Cs be the smooth, projective curve birational
to the affine curve

(8.3) zoys = (x5 + 1)(zs + 1)

(For s = r, the coordinates here are related to those in (8.1) by (z,y) = (z,, 2, yr).)
For positive divisors s and s’ of r with s’ dividing s, there is a morphism g ¢ :

CS - CS/ deﬁned by Ws,s’ : (xsuys) = (:ESUyS’) = (xsuyg/S/).
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Let Jg be the Jacobian of Cf; it is a principally polarized abelian variety of
dimension s — 1. By Albanese functoriality (push forward of divisors), 7, s induces
a map J; — Jy, which we denote again by 7, . Picard functoriality (pull back of
divisors) induces another map 77, : Jy — Js. Considering 7, s and 77, at the
level of divisors shows that the endomorphism 7 s o 7 , of Jy is multiplication
by s/s’.

The group u, C k* acts on Cy by (-(zr,yr) = (r, Gyr). We let u,. act on
Cs via the quotient map p, — ps, so that (.(zs,ys) = (wS,C;/SyS). With these
definitions, the induced maps 7, s : Js = Jy and Ty ¢+ Js — Js are equivariant
for the u, actions.

Let R be the group ring Z[u,]. (This agrees with the definition of R in Sec-
tion 1.2.3 since d = 1.) Then 7, » and 7";3/ are homomorphisms of R-modules.

Now we define J'°? as the identity component of the intersection of the kernels
of s ¢ where s’ runs through positive divisors of s strictly less than s:

0
Jnew = (ﬂ ker (75,5 Js — JS/)> :

s'<s

Note that J**" is preserved by the action of y, on Js.
The main result of this section is a decomposition of J,. up to isogeny.

PROPOSITION 8.4. For s > 1, the dimension of JI'*" is ¢(s) and Jpe* = J; =
0. The homomorphism
- g

s|r

(25) = ZW:,s(ZS)

s|r
is an isogeny whose kernel is killed by multiplication by r.

ProOOF. The cotangent space at the origin of J; is canonically isomorphic to
the space of 1-forms H°(Cj, QICS/k)’ so we may compute the differential of 77 , :
Jsr — Js by examining its effect on 1-forms.

We computed the space of 1-forms on Cy in the proof of Lemma 6.7. In terms
of the coordinates used here, H%(Cs, Qlc / «) has a basis consisting of eigenforms for
the action of ., namely ws; = y; ‘dzs/zs for i = 1,...,5 — 1. It is then evident
that 75 ., induces the inclusion on 1-forms

H(Cy, Qlcsx/kr) — H°(Cs, Qa/k)

that sends wy ; t0 Wy, (s/47)i-

It follows that the cotangent space of J*** is spanned by the 1-forms w, ; where
i is relatively prime to s. In particular, for s > 1, the dimension of J’¥ is ¢(s).
For s =1, Cs has genus 0, so J{**¥ = J; = 0.

It is also clear that the map displayed in the statement of the proposition
induces an isomorphism on the cotangent spaces, so it is a separable isogeny. It
remains to prove that the kernel is killed by 7.

Write r as a product of primes r = ¢; - --£,,. We proceed by induction on m.

If r = ¢, is prime, the result is obvious, since J; = 0 and Jpe = Jo,
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Before giving the proof for general r, we note that if ¢; divides r, considering
the action of the maps 75 s on divisors yields the formula:

ST if s divides r /¢,

(84) 71-7",7‘/[1 o 7T:S = . .
7 T /ey,s/0, © Ts,s/tn otherwise.

Now suppose that (z,)s- is in the kernel, i.e.,

0=> m.(z)

s|r

in J,. Applying 7, /¢, and using the formula (8.4), we have

0= Z T /0y Tp s (2s)

s|r

=4 Z Tr/y,5(2s) + Z W:/zl,s/zﬂs,s/zl(zs)
s|(r/€1) sf(r/1)

=1 Z ﬂ-r/fl,s(zs)
s|(r/t1)
where the last equality holds because zs is in Jg“, so is killed by 7, s/, . By
induction, each ¢; z is killed by r/¢1, so each z, with s|(r/¢;) is r-torsion. Repeating
the argument with ¢; replaced by the other ¢; implies that all the z5 with s < r are
r-torsion. Finally, the equality 0 = ZS‘T 7y s(2s) in J,. implies that z, is r-torsion
as well. |

REMARKS 8.5.
(1) We used that J; = 0, but this is not necessary. A slight variant of the
argument works for the new part of any cyclic cover C,, — C7 even when
(' is not assumed to be rational.
(2) Temporarily write J¢w»sub for Jm¢¥ as defined above. We could also
consider a new quotient:
Iy
Zs<r W:,SJS
Arguments similar to those in the proof above show that the natural map
Jrewssub _y J oy Jrewsquot ig an isogeny whose kernel is killed by 7.

Jnew,quot —
r

COROLLARY 8.6. Suppose that ¢ is a prime not dividing r. Then there is an
isomorphism of Fy-vector spaces

@it = g1

s|r
compatible with the action of p, and the action of the Galois group Gal(K*¢?/K).

PROOF. The isomorphism is immediate from Proposition 8.4, since £ does not
divide r. O

8.3. Endomorphism rings

In this section we define a ring A that acts naturally on J[¢] and record some
auxiliary results about it. As always, » > 1 is an integer and ¢ is a prime not
dividing 7.
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8.3.1. Definition of A. For each positive divisor s of r, let ®5(z) be the s-th
cyclotomic polynomial, and let W (2) = 25~ + ... + 1. Then

H‘Ps(z):zr—l and H D, (z) = T,.(2).
s|r 1<s|r

Consider the group ring of u, over Fy:

F, [NT] =

and its quotient
Ao el Fy[z]
T T
We often write ¢ for the class of z in Fy[u,] or A.
Since ¢ does not divide r, the r-th roots of unity are distinct in F,, so the
polynomials @, are pairwise relatively prime in Fy[z]. By the Chinese Remainder

Theorem,

Felz]
(T,(2)

]Fg [Z]

A= (@.(2))

1<s|r
and
Felpr] = Fp A
where (1+ ¢+ -+ ¢"71)/r on the left corresponds to (1,0) on the right.
Note that Oy := Z[z]/(®s(z)) is isomorphic to the ring of integers Z[(] in the
cyclotomic field Q(¢;) and that O, /¢ = Fy[z]/(Ps(z)). Therefore

Az ] o./¢
1<s|r
and ¢ on the left maps to an s-th root of unity (s in the factor O,/¢ on the right,
justifying the notational use of ¢ on the left. This isomorphism is convenient as it
allows us to use certain well-known results from the theory of cyclotomic fields.

8.3.2. The subring A". Consider the involution of F,[u,] that sends ¢ to
¢~1. We write Fy[u,]t for the subring of invariant elements. The factors in the
decomposition Fy[u,] = F, & A are preserved by the involution, and we write A
for the invariant subring Fy[u,]" N A.

LEMMA 8.7.
(1) A* is the subring of A generated by ¢ + (1.
(2) Let OF be the ring of integers in the real cyclotomic field Q(Cs + (V).

Then
At T ofye

1<s|r

PROOF. (1) The group ring Fy[u,] has Fy-basis 1,¢,...,¢""1, and A is the
quotient by the line generated by 14 --- 4+ ("1 Let 7; = ¢* + (7% If r is odd,
it is clear that Fy[u,]™ has basis 1,71,...,7(_1)/2. If r is even, a basis of Fy[su,]"
is given by 1,71,...,7'(T_2)/2,<’"/2. Since £ # 2 when 7 is even, 7,/ = 2("/? and
another basis is 1,71,...,7,/2. Projecting to A, we see that 1,...,7, is a basis of
A*, where u is (r —3)/2 or (r —2)/2 as r is odd or even. Since 7} = 7; plus a linear
combination of 1 and the 7; with j < i, it follows that A is generated as a ring by
T1.-
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(2) Under the isomorphism A = [T, |, Os/¢, the involution on the left core-
sponds to complex conjugation on the right. Taking invariants yields

A= T ©o./0*

1<s|r

By part (1), (Os/f)T is generated as a ring by the image of ¢ + (1. Since O is
generated as a ring by (s + (! [58, Proposition 2.16], the reduction map OF —
(Os/0)" is surjective, so (O4/€)T = OF /¢, and this completes the proof. O

8.3.3. Primes of A and A™. Since ¢ does not divide r, the roots of ¥,.(z)
are distinct modulo ¢, and so A and AT are semi-simple algebras over F,.

We write A for a prime ideal of A and F) for the quotient A/A. This is a finite
extension field of Fy. We say that A has level s if the quotient map A — A/ factors
through A — O,/¢, or equivalently, if ®4(z) € A. Clearly each A has a well-defined
level s > 1 that is a divisor of r, and we may identify the primes of A of level s
with the primes of Oy over /.

Similarly, for a prime AT C AT, we define Fy+ := AT /AT, and we define the
level of AT to be the divisor s of r such that the quotient AT — AT /AT factors
through A*™ — OF /¢. Thus the primes of AT of level s are naturally identified with
the primes of O over /.

We say that A C A lies over A* € AT if A\N AT = AT. In this case, if A has
level s then so does AT, and the prime of O, corresponding to A lies over the prime
of OF corresponding to A*.

8.3.4. Splitting of primes. In this subsection, we focus on the “new” quo-
tients O,./¢ and O;f /¢ of A and AT. For typographical convenience, we omit the
subscript and write O and O for O, and O;f.

We review the structure of O /¢ and O/¢, dividing into three cases: First, if
r =2, then O =0"=Zand O/l = O/l =T,.

Before defining the second and third cases, we introduce some notation. Let
or(£) be the order of ¢ in (Z/rZ)*. Let o, (¢) be the order of £ in (Z/rZ)* /(£1).
Standard results in cyclotomic fields (see, e.g., [58], Chapter 2) indicate that ¢ splits
into h = ¢(r)/(20;} (¢)) primes in OF. Write AT ..., A} for the primes of O over
(. Let Fy, := O/\; and F+ := OF/A] be the residue fields.

The second case, which we call the inert case, is when r > 2 and —1 is congruent
to a power of £ modulo r. In this case, 0.(f) = 20;(£). Each \; remains prime
in O, i.e, \i = A\ O is a prime ideal of O. The residue field Fy, is a quadratic
extension of F,+.

The third Ease, which we call the split case, is when r > 2 and —1 is not
congruent to a power of ¢ modulo r. In this case, o} (¢) = 0,.(¢) and the h primes
)\;r of OF over ¢ each split into two primes, call them \; and A\;_;, in O, where
g = 2h. The residue fields satisfy Fy, = F\ , = F,+ and O/ is a semi-simple
quadratic algebra over ]F)\:r, namely Fy, & Fy _,. '

Via the identification of primes of © and O over £ with primes of A and AT of
level r, the discussion in the second and third cases applies to the splitting behavior
of primes At C AT in A.

One of the reasons it is convenient to focus on the new part O = O, is the
possibility that the primes of O;F over £ may be inert in O, while the primes of OF
over { may be split in O, for a divisor s of r.
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8.3.5. Auxiliary results. We record two lemmas to be used later.

Note that A is a direct sum of fields F and that Fy = F.,.« for all A of level r.
However, the various F) are non-isomorphic as A-modules. Similarly, the various
F,+ are non-isomorphic as AT-modules. We state this more formally for later use:

LEMMA 8.8. Suppose that )\1" and )\3' are distinct primes of A*. Then there
does not exist an isomorphism of fields IF)\T = IF)\; carrying the class of (+ ¢~ in
]F)\T to its class in IF/\;,

PROOF. Since AT is generated over F; by ¢ + ¢!, a field isomorphism ]FAT =
F Ap 8S in the statement would induce an isomorphism of A*-modules. But the A™-
modules F A and F Af are not isomorphic since they have distinct annihilators. [

LEMMA 8.9. Suppose that £ = 3. Then the number of primes \™ C AT such
that F)\+ = Fg 18
0 ifr is odd,
1 ifr=2 (mod4),
2 ifr=0 (mod 4).
If r = 2 (mod 4), the prime has level 2, and if r = 0 (mod 4) one of the primes
has level 2 and the other has level 4.

PROOF. Suppose there is a prime AT C AT with F,+ = F3 and choose a prime
A C A over it. Then F) is a subfield of Fg, so the multiplicative order of ¢ in Fy
must divide 8 and the level of A must divide 8. (In particular, AT does not exist if
r is odd.) To finish, we note that the unique prime of Oé|r over ¢ = 3 has residue
field Fg, while OI and (9;|r , both being isomorphic to Z, have unique primes over
3, each with residue field Fs. |

8.4. The A-module structure of J[/]
Recall that A is Fy[z]/(2"7! +---+1) and that J[{] denotes the {-torsion in J.

PROPOSITION 8.10. The action of u, on J gives J[€] the structure of a free A-
module of rank 2. For every prime X\ of A, the submodule J[\| C J[{] of A\-torsion
has the structure of a free Fyx = A/A-module of rank 2.

ProoF. The action of p,. on C'= C,. and J = J,. gives the Tate module
WJ = Hl (Cv QZ)
the structure of a module over

Qelpr] = [] Qel2l/®s(2).

s|r

The map C, — C; = P! presents C, as a Galois branched cover of P! with Galois
group g,. In this context, a formula of Artin gives the character of H'(C,,Qy)
as a representation of u, in terms of the ramification data of C,. — Cj. See
(30, Corollary 2.8] for the precise statement. One finds that the character is 2(xyeg—
Xtriv) Where Xreg and xiriv are the characters of regular and trivial representations

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



108 8. MONODROMY OF ¢-TORSION AND DECOMPOSITION OF THE JACOBIAN

respectively. Thus V,J is isomorphic to the direct sum of two copies of the regular
representation modulo the trivial representation. Equivalently,
2

Ved 2= | ] Qlzl/@s(2)
1<s|r

where the product is over divisors of r that are > 1.
Since T,;J C V,J is preserved by the action of u, and ¢ is prime to r, we have

that
2

T = | ] Zel2l/2s(2)

1<s|r
and
2
I = (] Felzl/24(2)
1<s|r
>~ A2,

This is the first assertion of the proposition. The second follows immediately from
the equality
AN = A/
O

A slight elaboration of this argument shows that J**[{] is a free module of
rank 2 over Og /¢ for each divisor s of r.

8.5. Monodromy of J[}]

Our next task is to study the action of Gal(K*?/K) on J[\] where X is a prime
of A.

8.5.1. Fundamental groups. Let IP’,lﬁ be the projective line over k with co-
ordinate ¢, so that the function field of P}, is K = k(t). Let U be the Zariski open
subset P} \ {0,1,00}. We saw in Chapter 3 that J has good reduction at every
place of U. Proposition 3.5 and the discussion in Section 3.1.5 show that the action
of Gal(K**?/K) on H'(C,Qy) is at worst tamely ramified at places in P} \ U. It
follows that the actions of Gal(K**?/K) on J[¢] and on J[A] C J[{] factor through
the quotient Gal(K*?/K) — m}(U) where 7} (U) is the tame fundamental group
(with base point the geometric generic point given by the choice of K*¢P| which we
omit from the notation).

It is known ([16, Corollary to Theorem 14] or [17, XII1.2.12]) that =} (U)
is topologically generated by elements g, V1, Yoo With Y9717 = 1 and with v,
topologically generating the inertia group at x.

Choose a basis of the free, rank 2 A-module J[/], and fix the corresponding
isomorphism

Auty (J[]) = GLy(A).
Let p: 71 (U) — GLa(A) be the representation giving the action of 7} (U) on J[].
Also, let py : 7t (U) — GLa(Fy) be the composition

W%(U) — GLQ(A) — GLQ(F)\),
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giving the action of 7} (U) on J[\]. Later in this section, we determine the image
of px.

8.5.2. Twisting. It is convenient to consider a twist of C' and of its Jacobian.
Let Cy be the smooth projective curve over K associated to the affine curve

(1=t)zy" = (x + 1)(z +1).

It is evident that C, becomes isomorphic to C' over the Kummer extension K (v)
where v =1 —¢.

The extension K (v)/K is unramified over U, so the action of Gal(K*?/K)
on K(v) factors through 7t (U), and Kummer theory shows that the character
X : m(U) = pr with x(g) = g(v)/v satisfies x(70) = 1, x(71) = ¢~ and x(7c) = ¢
for some primitive r-th root of unity ¢ € k.

Now consider the Jacobian J, of C). It admits an action of Z[u,| and we may
define A, := J** and J,[)\] in the same manner we defined A = J"* and J[)].
Over K (v), since .J, and J are isomorphic, it follows that J,[¢] = J[¢] = A? and
Jy [\ =2 T[N\ 2 F3.

Since the action of p, on C' and C), is via the y coordinate, we may identify ¢
above with an element of u, C A — Fy. Let

Pyt M (U) — Aut(J, [f]) = GL2(A)

be the representation giving the action of 7 (U) on J,[¢], and let py » : 7i(U) —
GL2(F») be the quotient giving the action on J,[A]. Then the discussion above
shows that there are isomorphisms p, = p ® x and py,,x» = p) ® x. We use this
“twisting” to deduce information about py and p.

8.5.3. Local monodromy. Our next goal is to record the Jordan forms of
the matrices px(vz) and py A (7z)-

PRrROPOSITION 8.11. Suppose that X C A is a prime of level r > 2. For x €
{0,1,00}, let g» = pa(72) and gy.o = px.a(Vz). Let ¢ € Fy be the primitive r-th
root of unity ¢ = x(Yoo). Then:

(1) go is unipotent and non-trivial, g; is semi-simple with eigenvalues 1 and
C?, and goo is non-semi-simple with eigenvalue (~' repeated twice. Equiv-
alently, writing ~ for conjugacy in GLa(F)),

-1
go ~ <(1) }) ) g1~ <(1) 5)2> s and Joo ™~ (CO C£1> .

(2) gx.0 and gy o are unipotent and non-trivial, and gy is semi-simple with
eigenvalues (~' and . Equivalently,

11 ¢l 11
gx,0 ~ 0 1)’ gx1 ~ 0 C ) and 9x,00 ™~ 0o 1/

Note that parts (1) and (2) are equivalent via the isomorphism py x = p\ ® ¥,
but we use both py and p,, in the proof.

PrROOF OF PROPOSITION 8.11. By Proposition 3.9, the minimal regular model
X of C has semi-stable reduction at ¢ = 0. Indeed, the fiber at 0 of X, call it Ap, is
a pair of smooth rational curves crossing transversally at r points. It follows that
the action of vy on J[¢] is unipotent (see [1, Theorem 1.4] for a modern account)
and therefore that the action of 7y on J[A] is unipotent. It remains to see that it
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is non-trivial. To that end, let Jy be the fiber at 0 of the Néron model of J. If
Iy C 7 (U) denotes the inertia subgroup at 0, we have

J[0) = Jo[4).

By [6, 9.5, Corollary 11], the group of connected components of Jy has order r,
so is prime to ¢. By Proposition 3.9, the identity component of Jj is a torus of
dimension r — 1. It follows that

Jold) = (z/tz) .

We need to understand the action of p, on this group. Since X — P! admits a
section, [6, 9.5, Theorem 4] shows that Jy = Pic’(Xy). Noting that u, acts on Xy
by cyclically permuting the points where the two components cross, we see that
there is an isomorphism of A-modules

Joll]

1

A.

It follows that
J[/\]IO = F,.

Since this has dimension 1 over F), we deduce that gy is not the identity. This
proves our claim for gg.

Our claim for g, o follows from the isomorphism p, = py ® x. Alternatively,
it also follows from the fact that 1 — ¢ is an r-th power in the completed local ring
E[[t]], so the regular minimal models of C' and C, are isomorphic over k[[t]] and the
action of inertia is the same.

Now we turn to C), in a neighborhood of ¢t = co. Changing coordinates (z,y) —
(tz,y), the defining equation of C,, becomes

%xzf =(x+1)(z+t7h).
But (1 — t)/t is a unit, and thus an 7-th power, in k[[t!]] so we may change
coordinates (z,y) — (z, (t/(1 —t))/y), yielding

xy" = (x4 1)(z+t71).

Up to substituting ¢! for ¢, this is exactly the defining equation of C'. We conclude
that the action of 7o, on J, [¢] is the same as the action of v on J[¢] and similarly
for the submodules J, [A] and J[A]. In particular, g,  is unipotent and non-trivial,
as claimed.

The claim for g, follows from that for g, o, and the isomorphism p, » = pr®x.

Now we turn to a consideration of g;. Letting I; C «t(U) be the inertia group
at t = 1, our first claim is that J[\]’* is a one-dimensional Fy-vector space. The
proof is very similar to the proof above that J[\]{0 is 1-dimensional. First we note
that

J[O" = 7l

where J; is the fiber of the Néron model of J at ¢ = 1. By Proposition 3.7, the
component group of J; has order r (the hypothesis that r divides d is not needed
at ¢ = 1), and by Proposition 3.9, the identity component is an extension of a
1-dimensional torus by an abelian variety of dimension (r — 2)/2 if r is even, and
is an abelian variety of dimension (r — 1)/2 if r is odd. In both cases, this abelian
variety is the Jacobian of the smooth model of the curve zy" = (1 + 2)2. Viewing
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this curve as a u,-Galois cover of the line allows us to compute the structure of the
f-torsion of its Jacobian as a A-module, and we find that

J10] = A.
It follows that
J [Z]I T A
and that
J[)\]Il = F,.

Since this has dimension 1 over Fy, we deduce that g; has 1 as an eigenvalue. Our
second claim is that det(g;) = ¢?, which follows from the equality g1 = gy ! g} and
from previous computations for gy and go.. Thus the eigenvalues of g; are 1 and
(2, and since r > 2, these are distinct and g; is semi-simple as claimed.

Finally, our claim about g, 1 follows from the isomorphism py x = py ® x. O

PROPOSITION 8.12. Suppose r = 2. For x € {0,1,00}, let g. = pa(v2) and let
Ix.z = PxA(Vz). Then gy and g1 are unipotent and non-trivial, and goo is non-semi-
simple with eigenvalue —1 repeated twice. Equivalently, writing ~ for conjugacy in

GLy(Fy),
11 d -1 1
gO gl 0 1 i an gOO 0 _1 )
and
1 1 -1 1
90~ 9o~ g 1) and 1~ g 1)
PROOF. The same proof as in the case r > 2 works up until the penultimate
paragraph, where ¢g; has eigenvalues 1 and ¢? = 1, and thus we can no longer

deduce that g is semi-simple. If it were semi-simple, g; would be the identity,
contradicting the fact that C' = J has bad reduction at ¢ = 1. Thus g; is unipotent
and non-semi-simple in this case. O

8.5.4. Group theory. We write G, for py (7t (U)) and G, for py (7 (U)).
The main result of this section is a calculation of these groups.

PROPOSITION 8.13. Let A C A be a prime of level r.

(1) If £ =2, then Gy, is isomorphic to the dihedral group Da, of order 2r.
(2) If £ = 3 and v = 10, then Gy n € SLo(Fy+) = SL2(Fg) and Gy x is

isomorphic to As, a double cover of the alternating group As.
(3) If £ >3 or £ =3 and r # 10, then

Gy = SLa(Fy+) € GLo(Fy)
where At is the prime of AT under ).

(4) For all £ and r,
G)\ = oy - Gx,/\-

PRrROOF. We first prove part (4): To see that Gy = p, - Gy x, note that G\ C
tr - Gy x, since the values of x lie in p,. For the opposite containment, we observe
that if m is an integer such that #m = 1 (mod r), then g™ is the scalar matrix
¢~! and it follows that p, and G, are contained in G.

Next we claim that the lines fixed by g,,0 and g, o are distinct. Indeed, if they
were not, then g, 1 = g;)})g;éo would fix the same line, but by Proposition 8.11, 1
is not an eigenvalue of g, 1. Thus there is a basis e1, ea of J[A] such that g, o fixes
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e1 and gy o fixes es. Scaling ep if necessary, the matrices of g, o and gy oo in the
new basis have the form

11 10
go=\p 1) M g ={c

for some uniquely determined ¢ € Fy with ¢ # 0. Proposition 8.11 implies that g, 1
has trace ¢ + ¢! Since g, 1 = g;})g;)})o, we calculate that ¢ = ¢ + ¢! — 2.

If £ = 2, setting
1 1
()
the reader may check that

-1 _ (0 1 111, (CTH 0
h gx,ooh—<1 O) and h gx,ng,ooh_<0 ¢

It follows that G, x is dihedral of order 2r, and this proves part (1).
To prove parts (2) and (3), we assume that £ > 2, and we apply Dickson’s
theorem [14, page 44]. It says that if £ > 2, then the subgroup of SLo(F,) generated

by
11 10
(01) = ()

is SLo(F¢(c)) except for one exceptional case, namely where £ = 3 and ¢? = —1, in
which case the group is a double cover of As.! For our ¢, Fy(c) = Fy+ so, apart
from the possible exceptional case, we have G, = SLy(Fy+). Equality holds here
in particular when ¢ > 3.

Note that in the exceptional case Fy+ = Fs(c) = Fg since [F3(c) : F3] < 2 and
since —1 is not a square in F3. If Fy+ = Fg, then ( € Fy C Fg1, so r divides
80 = 16-5. We cannot be in the exceptional case if 20|r or 8|r, because the order of
gy,1 in PSLy is r or r/2 as r is odd or even, and As has no elements of order 10 or
4. Also, ¢ does not generate Fg if r = 4 or » = 2, so the only possible exceptional
cases are when r =5 and r = 10.

Recalling that ¢ = ¢, + (! — 2 and ¢ = 3, we have

2 2 -2 -1
C:Cr—i_gr _CT_C’I" .
When r = 5, we have (c?)3 = —c2, so ¢? ¢ F3 and we are not in the exceptional

case. When r = 10, —(30 = (5 and we see that
=l + Got = G0 — G
=GEHG GG
= —17

O

so we are in the exceptional case, i.e., Gy, is a double cover of As.

REMARK 8.14. Note that if A C A is a prime of level s > 2, then J[A] = J5[A]
as a module over 7! (U), so Proposition 8.13 determines the monodromy of J[\] for

all primes .

LGorenstein does not state explicitly which ¢ give rise to the exceptional case, but the para-
graph containing the first display on page 45 of [14] shows that we are in the exceptional case
exactly when ¢ = 3 and ¢ = —1.
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8.6. Independence

8.6.1. Statement. In the previous section, we determined G and Gy, the
images of 7 (U) in Autg, (J[\]) and Autg, (J[\]). Our goal in this section is to
determine G and G, the images of 7} (U) in Auta(J[¢]) and Auty(J,[]), i.e., the
image of the representations

pe: T (U) — Autp(J[f]) = GLa(A)
and
Px,b - W%(U) — AutA(JX[f]) = GLQ(A)
where A is the ring of endomorphisms discussed in Section 8.3. Since py ¢ = p; ® X,
it suffices to determine G,. It turns out that G, is the product over a suitable
set of A of the Gy x; the set in question is not all A, because there is one obvious
dependency among the G, ».

To motivate the main result, consider a prime AT of AT that splits in A into
primes A; and As. The proof of Proposition 8.13 shows that after choosing suitable
bases, the image of

7 (U) — Autr, (A[A1]) x Autr,, (A[A2]) = GLa(Fy, ) x GLa(F»,)

is generated by the elements

(26 2) e (L9 9)

where ¢; and ¢y are the images of ( + (! — 2 in Fy, and Fy,. Since A\; and ),
lie over the same prime AT of AT, and since ¢; and ¢y lie in Fy+, there is a field
isomorphism Fy, = [y, that carries ¢; to ca. This shows that the image of the map
under consideration is “small”: it is the graph of an isomorphism G, x, = Gy »,.
The main result of this section shows that when ¢ > 2 this is the only relation
among the Gy .

THEOREM 8.15. Let S be a set of primes of A such that for every prime A* of
AT there is a unique prime in S over \*. Let G, be the image of

Py T(U) — Autp (S, [0]) = GLa(A)
and let G be the image of
pe: T (U) — Auta(J[0)) = GLa(A).
(1) If £ > 2, then there is an isomorphism

eN= H G-

AeS
In particular, if ¢ >3 or £ =3 and 101, then
Gy = SLy(AT) C GL2(A).
(2) If £ =2, then
Gy = Do,
(3) G = pr - Gy.
The proof of the theorem occupies the rest of this section. In the next subsec-

tion, we dispose of the easy parts of the proof. The remaining sections deal with
the main issue, namely the isomorphism G, = [[ g Gy, for £> 2.
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8.6.2. First part of the proof of Theorem 8.15. The proof of part (3) is
essentially identical to that of part (4) of Proposition 8.13 and is left to the reader.

Now consider part (2), the case £ = 2. In view of part (1) of Proposition 8.13,
the conclusion here is exactly the opposite of that in part (1): the G, » are highly
dependent. To prove it, we note that C' is hyperelliptic, as we see from the defining
equation (1 —t)axy” = (x + 1)(z + t) via projection to the x-line. Rewriting the
equation as

2 (t+1+ -1y )z +t=0

and completing the square (as we may do since p # ¢ = 2), the equation takes the

form
t+1
Z2zy2r+2<m> yr+1

The 2-torsion points on the Jacobian of a hyperelliptic curve 22 = f(y) are repre-
sented by divisors of degree zero supported on the points (y,0) where y is a zero
of f. It follows that the monodromy group of the 2-torsion is equal to the Ga-
lois group of f. In our case, the Galois group is Ds,.. Indeed, the roots of f are
the solutions of y" = w; and y" = wy where wy; and we = 1/w; are the roots
of w? + (t +1)/(t — 1)w + 1. The discriminant of this quadratic polynomial is
16t/(t — 1)2, so its roots lie in K (t'/2). The splitting field K of f is thus a degree
r Kummer extension of K (t1/2), and Gal(K (t/2)/K) acts on Gal(K,/K (t'/?)) by
inversion, so Gy, = Gal(Ky/K) = D,,. This proves part (2).

For use in the next section, we note that the fixed field of the cyclic group
C, C Dy, is the quadratic extension K (t1/2) of K = k(t).

To end this subsection, we prove the “in particular” part of (1). Recall that we
have shown that if £ > 3 or £ = 3 and the level of A is not 10, then G, » = SLa(Fy+).
Let ST be the set of all primes of AT and let S be as in the statement of the theorem,
so that there is a bijection S — ST that sends a prime X to the prime A* under it.
Then the image of SLy(A™) C SLy(A) under the projection

SLy(A) = [ SL2(Fx) — [ SL2(Fx)
A Aes
is the product [],;cg+ SL2(Fy+). Since

[[Gw= 1] Ste@®),

AES Atest

this establishes the desired isomorphism G, = SLa(A™).
To finish the proof of the theorem, it remains to establish the first sentence of
part (1). We do this in Section 8.6.5 below.

8.6.3. Several lemmas. We collect together several group-theoretic lemmas
to be used below. Recall that a group is said to be perfect if it is its own commutator
subgroup, or equivalently, if it has no non-trivial abelian quotients, and it is said
to be solvable if its Jordan-Holder factors are all abelian.

LEMMA 8.16.

(1) SLy(F,) is perfect unless ¢ = 2,3, in which case it is solvable.
(2) The group As of Proposition 8.13(2) is perfect.
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(3) If g > 3, the non-trivial quotients of SLo(Fy) are SLa(Fy) and PSLo(Fy).
The non-trivial quotients of SLy(F3) are SLy(F3), PSLo(F3), and Z/37.
The non-trivial quotients of As are As and As.

(4) Suppose £ > 3 and let H, = SLy(Fpa) for a > 1. If H is a non-trivial
quotient of both H, and Hy, then a = b. If £ = 3, then for all a, As and
H, have no common non-trivial quotients.

PROOF. The assertions in (1) and (3) related to SLy(F,) are well known, see
[60, Section 3.3.2]

The group As C SLy(Fy) is generated by hg = (31) and hoo = (1) where
i2 = —1. If A; — H is a non-trivial quotient with kernel N, then N projects to
a normal subgroup of As, i.e., to the trivial group or all of A5 since Ag is simple
[60, Section 2.3.3]. In the former case, N is either As or As. In the latter case,
since H is non-trivial, N # As, so projects isomorphically to As. We claim no such
N exists. Indeed, if it did, A5 would be the product of As and 1. On the other
hand, the reader may check that (hoohoh;olho)2 = —1, which shows that 215 is not
the product As x {£1}. This shows that the quotients of A5 are as stated in part
(3).

Since Ay is non-abelian and simple, and thus perfect, the commutator subgroup
of A5 projects onto As. The analysis of the preceding paragraph shows it is all of
A, ie., A is perfect. This establishes part (2).

Part (3) gives us a list of quotients of SLo(F,) and As, and part (4) is then
reduced to an easy exercise by considering the orders of the quotients. Indeed, if
¢ > 3, the non-trivial quotients of SLy(FFsa) have order £4(¢2% — 1) or £2(£?* —1)/2
and these numbers are all distinct for distinct values of a. If ¢ = 3, the non-trivial
quotients have order ¢2(£?* —1) or £*(¢?>¢ —1)/2 or 3, with 3 occuring only if a = 1.
Again, there are no coincidences, and this establishes the part of (4) related to H,
and Hp. To establish the last sentence, note that the non-trivial quotients of [15
have order 120 or 60. These numbers are divisble by 3 and not by 9, and they are
not 3(32 — 1) = 24 nor 3(3% — 1)/2 = 12, so A5 and SLy(F3.) have no common
non-trivial quotients. (Il

Given a field automorphism ¢ : F; —F,, we define an automorphism SLy(F,) —
SLy(F,) by applying ¢ to the matrix entries. Similarly, ¢ gives a well-defined
automorphism of PSLy(F,).

LEMMA 8.17. Assume that q is odd.

(1) Every automorphism of PSLo(F) is given by congugation by an element
of GLa2(Fy) composed with a field automorphism as above.
(2) Every automorphism of PSLo(F,) lifts (uniquely) to SLa(F,).

PRrROOF. For (1), see [35, p. 795]. It follows immediately that an automorphism
of PSLy(F,) lifts to SLo(FF,) since conjugation and field automorphisms both pre-
serve the kernel {£1} of SLy(F,) — PSL2(F,). Since the kernel is central, any two
lifts would differ by a homomorphism PSLs(F,) — {£1}, and there are no non-
trivial such homomorphisms by Lemma 8.16 part (3). This establishes part (2). O

LEMMA 8.18.

(1) (“Goursat’s lemma”) Let Hy and Hs be groups, and let H C Hy x Ho
be a subgroup that projects surjectively onto Hy, and Ho. Identify the
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kernel N; of H — Hs_; with a subgroup of H;. Then the image of H in
H/N, x H/Ny is the graph of an isomorphism H/Ny — H/Ns.

(2) With assumptions as in part (1), assume that Hy and Hy have no common
non-trivial quotients. Then H = Hy x Hs.

(3) Suppose that Hy, ..., H, are groups with each H; perfect, and suppose that
H C Hy x--- x Hy, is a subgroup such that for all 1 < i < j < n, the
projection H — H; x Hj is surjective. Then H = Hy x --- x Hy.

PRrROOF. Part (1) is proved in [35, Lemma 5.2.1]. Part (2) is immediate from
part (1). Part (3) is [35, Lemma 5.2.2]. O

8.6.4. Pairwise independence. Our aim in this section is to prove the fol-
lowing pairwise independence result.

PROPOSITION 8.19. If A1 # Ay are distinct primes in S, then
ﬂi(U) = Gy X Gy,
18 surjective.

PRrROOF. Note that if r = 2 then S is a single prime, so the proposition is
vacuous. Thus we assume r > 2.

We write G125 for the image in the proposition, and we note that by the definition
of the Gy, G12 projects surjectively onto each factor Gy »,.

We first treat the case £ > 3. Fix isomorphisms G, », = SLy (FAT) fori=1,2.

Here and below, we write )\Zr for the prime of A" under X; . Let g;o and g; oo
be the images of vy and Yo € 7}(U) in SLy(F,+). By Proposition 8.11, these are
unipotent matrices. '

By Lemma 8.18(2) we may assume that G, 5, and Gy, have common non-
trivial quotients. By Lemma 8.16(3) this occurs if and only if ]F)\1+ and ]F)\; have
the same cardinality.

If G2 is not all of the product, the Lemma 8.18(1) yields either an isomorphism
SLo (FAT) — SLo (FA;) or an isomorphism PSLQ(]F)\T) — PSLQ(F/\;). In the former
case, since this isomorphism is induced by the image of 7t (U) in Gia, it sends
91,0 t0 g2,0 and g1, t0 g2,0c. In the latter case, the isomorphism lifts to SLo by
Lemma 8.17(2). Moreover, the lifted isomorphism sends g1 9 to +¢2,. In fact, by
Lemma 8.17(3) the image must be +g2 ¢ because g1 ¢ is unipotent and —gs o is not.
Similarly, the lifted automorphism must send g1 o t0 §2,00-

Summarizing, if G2 is not all of the product, we have an isomorphism

’Q/J : SLQ(F/\T) — SLQ(F/\;»)

such that ¥(g1,0) = g2,0 and ¥(g1,00) = g2,00- But such an isomorphism is impos-
sible. Indeed, by Lemma 8.17(1), ® is the composition of conjugation and a field
automorphism ¢ : IFA;r — FA;. Since w(giégiio) = giégiio, ¢ must send the trace
of giégiio to the trace of giégiio. By Proposition 8.11(2), these traces are the
images of ¢ + (! € At in F/\T and IF/\;. But Lemma 8.8 shows that no such ¢
exists, so no such 1 exists either. We conclude that G15 is all of the product, as
desired.

Now assume ¢ = 3. If G, 5, are both SLy(Fs) with @ > 1, then the argument
above applies verbatim. Thus it remains to treat the possibilities that Gy, x, = A
or SLy(F3). The As case does not in fact occur. Indeed, Gy » = As if and only of
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r = 10, and O{FO has a unique prime over £ = 3, so there do not exist two distinct
primes \; € S with Gy, = As.

The last case to discuss is when G, », = SLs(F3), and by Lemma 8.9 this does
indeed occur exactly when 4|r, the two primes being the unique primes over £ = 3
of levels 2 and 4. The argument above is not sufficient in this case, because SLy(F3)
has an additional quotient, namely Z/3Z. But we may argue directly as follows:
By Proposition 8.11, in this case G152 is generated by

o= (o 1) (0 1)) e = ((G2)60)

Then we compute directly that

( o 12 _ 1 0\ /1 0

gOgOOgO googogoo - _1 1 I O 1

( . 12 _ 1 1\ /1 0
googogoo gOgOO.gO - 0 1 ’ O 1 .

It follows immediately that G1o = SLa(FF3) X SLy(F3). This completes the proof of
the proposition. O

and

8.6.5. End of the proof of Theorem 8.15. We divide S into the disjoint
union of
S1={A € 5|Gy 2 SLa(Fs3) }
and
Sy ={A € S5|Gy,\ = SLy(F3) }.

If X € 51, then by Lemma 8.16, G » is perfect. Applying Proposition 8.19 and
Lemma 8.18(3), we conclude that

(U) — H Gy = Hy
AEST

is surjective.

Note that by Lemma 8.9, Sy has at most two elements, so Proposition 8.19
shows that

r(U) — H Gy =: Hy
AESs

is surjective.

Now H; is a product of perfect groups, so is perfect, whereas Hs is a product of
solvable groups, so is solvable. Therefore H; and Hs have no common non-trivial
quotients. It follows from Lemma 8.18(2) that

’R’i(U) — Hi x Hy

is surjective. Since

Hl X HQ = H GX,)\,
Py
this completes the proof of the theorem. O

8.7. Conclusion

We are now in position to prove the results stated in Section 8.1.
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8.7.1. Torsion. In view of Corollary 8.6, the following is a slight strengthening
of Theorem 8.1.

THEOREM 8.20. If L/K is an abelian extension, then JM"[¢](L) = 0. If r #
2,4 or £ > 3, then the same conclusion holds for any solvable extension L/K.

PROOF. Let L/K be a finite extension and write A for J™. Noting that
A[l)(L) = A[¢](L N K(A[f])) and that the intersection of a Galois extension with a
solvable or abelian extension is again solvable or abelian, we may replace L with
LN K(A[).

If L/K is abelian, we have Gal(K (A[¢])/L) D |G, G] where |G, G] is the com-
mutator subgroup of G = Gal(K (A[¢]/K)). Thus A[¢](L) C A[f](F) where F is the
subfield of K (A[{]) fixed by [G, G], and it suffices to show that A[¢](F) = 0.

If r # 2,4 or £ > 3, then by Theorem 8.15, G = Gal(K (A[{]/K)) is isomorphic
to pi,- - SLa (O /¢) and SLy(OT /{) is a product of groups SLo(Fy) with |[Fy| > 3. It
follows that the commutator subgroup [G, G] satisfies

(G, G = [ [ SL2(Fy).
A

The invariants of this group acting on A[f] = [T, F3 are trivial, so A[{](F) =0 as
desired.

If £ =3and r = 2 or 4, then G = pu, - SLy(F3) and [G, G| is the subgroup
of SLy(F3) generated by (% §) and (Z] 7'). (This is the 2-Sylow subgroup of
SL(Fs).) Since the eigenvalues of (% §) are £1/—1, already this matrix has no
invariants on F%, so a fortiori [G,G] has no invariants, and again A[¢](F) = 0 as
desired.

If £ = 2, then G = Dy, and [G,G] = C,., the cyclic group of order r. This
groups acts on A[{] by characters of order r, so has no non-zero invariants, and we
again have A[{|(F) = 0.

If L is only assumed to be solvable, the same argument works provided that
{ > 3 or r # 2,4, because in these cases the derived series of G stabilizes at

[1, SLa(Fy). ]

8.7.2. Decomposition of A,. In this section, we prove a slight refinement
of Theorem 8.3. Throughout, we assume r > 2.
Recall that C was defined by
(1—t)zy" = (x+ 1)(z+1).

We observe that there is an involution o : Cy, — C defined by

—z—t 1
O'(IE, y) =\
r+1 vy
and that we have the equality 0¢, = (;'o of automorphisms of C,. There is an
induced action of o on Jy that preserves A, = J7, and the equality o(, = ¢ lo
holds in the endomorphism ring of A, as well.
Let K’ = K((1—1)'/"), so that A, and A become isomorphic over K’. In view
of this isomorphism, Theorem 8.3 is implied by the following.

THEOREM 8.21. Let B be the abelian subvariety (1 + o)A, C A,.

(1) There is an isogeny A, — B? over K whose kernel is killed by multipli-
cation by 2r.

2) Endg(B) = End=(B) = Z[(.|", and B is absolutely simple.

(2) K Y
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PROOF. Define morphisms
Ay, = (1+0)A, x (1—0)A,
P— ((140)P,(1-0)P)
and
(14+0)A, x (1—0)A, = A,
(P, P3) — P, + Ps.

Using that 02 = 1, we find that the compositions are both multiplication by 2. This
proves that A, is isogenous to (14 o)A, x (1 — o)A, by an isogeny whose kernel
is killed by 2.

Now consider the element § = ¢, — (! of End(A,). Using that r > 2 and
considering the action on differentials we see that § is an isogeny, and since the
norm of § as an element of Z[(,] divides r, the kernel of ¢ is killed by r.

We compute that (1+0)d =6(1 — o) and (1 — 0)d = §(1 + o), so the isogeny
0: A, — A, exchanges the subvarieties (1 + 0)A, and (1 — 0)A,. In particular,
(1—-0)A, is isogenous to B = (1 + o)A, by an isogeny whose kernel is killed by .

Combining this with the isogeny A, — (1+0)A, X (1 —0)A,, we see that A,
is isogenous to B x B by an isogeny with kernel killed by 2r. This proves the first
part of the theorem.

For the second part, since

1+0)&+ G =(G+G D0 +0),

we have that Ot = Z[(,]* C Endg(B). Thus it suffices to prove that Endz(B) =
ot.

Let F be a finite extension of K such that all elements of End(B) are defined
over F'. Let £ be a prime # p and not dividing 2r such that ¢ > [F': K]. We claim
that restriction induces an isomorphism Gal(F(A,[{])/F) = Gal(K(A\[{])/K).
Clearly it is injective, so it suffice to show it is onto. Let H be the image, a
subgroup of G, = Gal(K (A, [{])/K) and note that the index of H in G, is at most
[F: K]. If g € Gy has order ¢, then the orbits of g on the coset space G, /H
have size 1 or £. Since |G, /H| < [F : K] < ¢, they must have order 1, so g € H.
But Theorem 8.15 and the proof of Proposition 8.13 show that G, is generated by
elements of order ¢, so H = Gy, establishing our claim.

Next we note that the existence of the isogeny A, — B x B and the isogeny
0: A, — A, switching the two factors shows that F(B[(]) = F(A,[¢]). Thus we
have

Gal(F(B[f])/F) = Gal(F(A,[f])/F) = Gal(K (A,[(])/K) = SLy(O* /£)

where the last isomorphism is Theorem 8.15.

Now we assume for convenience that ¢ splits completely in Q(¢.)7, i.e., that
¢ = +1 € (Z/rZ)*. In this case OF /¢ is the product of ¢(r)/2 copies of Fy
and SLy(OT/f) is the product of ¢(r)/2 copies of SLa(Fy). The Fy-subalgebra
of Autg,(B[(]) = My)(F¢) generated by SLy(O%/¢) is then isomorphic to the
product of ¢(r)/2 copies of My(F,) and thus has dimension 2¢(r). By the double
centralizer theorem [25, Theorem. 2.43], the centralizer of SLy(O7) in Autg, (B[/])
has dimension ¢(r)/2 over Fy. Since Endp(B)/¢ lies in this centralizer, it has
dimension at most ¢(r)/2, and thus Endp(B) has Z-rank at most ¢(r)/2. But
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O*1 C Endp(B) has Z-rank ¢(r)/2 and is a maximal order in its fraction field, so
we have O" = Endp(B) = Endg(B), as desired.
Finally, we note that since Endy(B) is a domain, B is absolutely simple.
This completes the proof. O

8.7.3. Simplicity of A. Note that k(¢'/?) is linearly disjoint from k((1—t)'/")
for any value of d. Thus the following implies Theorem 8.2.

THEOREM 8.22. Suppose that F is a finite extension of K that is linearly
disjoint from k((1 — t)V/7). Then A = J*" is simple over F, and we have
Endg(A) = Z[¢].

ProoOF. O = Z[(,] is a domain, so if Endp(A) = O, then A is simple over F'.
It thus suffices to show that Endp(A4) = O.

Noting that Endz(A4) ® Q = M2(Q(¢,)") is a central simple algebra of dimen-
sion 4 over Q(¢,) ", the double centralizer theorem implies that

dimg,) (Endp(4) ® Q) < 2.

But Endz(A) ® Q is generated over Q(¢,) by 1 and o. Our hypothesis on F' and
Proposition 8.15 imply that there is an element of Gal(F(A[¢])/F) acting on A[(]
as (r. Since o does not commute with (., we conclude that ¢ ¢ Endpr(A) and
therefore Endz(A4) ® Q = Q(¢). Since O is the maximal order in Q((,), we have
Endp(A) 2 O, as desired. O

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



APPENDIX A

An additional hyperelliptic family

A.1. Introduction

In Section 1.6, we write that the methods used in this paper may be applied
to the study of the arithmetic of Jacobians of other generalizations of the Legendre
curve. In this appendix, we give more details on a family of curves mentioned in
that section.

Let g denote an odd positive integer, p an odd prime, and k a finite field of
characteristic p and cardinality ¢. Let a1,...,a4 € k be distinct and non-zero, and
let X be the smooth, projective, hyperelliptic curve over K = k(t) with affine model

(A1) y? ZxH(:E—i—ai)(ai:v—i—t).
i=1

Note that X has genus g. When g = 1, X is essentially the Legendre curve, and
there are differences between the cases g = 1 and g > 1, so from now on we assume
that g > 1.

Write Jx for the Jacobian of X. Let v be a nonnegative integer, d = ¢* + 1,
and set Ky = k(uq,u) where u? = t. Our main object of study is the Mordell-Weil
group Jx (Kg4) and a certain subgroup of it generated by explicit divisors on X.

The principal results of this appendix are:

THEOREM A.l.

(1) Jx satisfies the conjecture of Birch and Swinnerton-Dyer over each of the
fields Kg4.
(2) The 2-power torsion subgroup of J(Kg) has the form

(Z.)2°7) x (Z)27)*9 1

for some integer a > 1.
(3) The rank of Jx(Kg4) is at least d — 1.
(4) The rank of Jx(Kg4) is at most g*d.

The proof of the theorem will occupy the rest of the appendix. For point (3),
we will exhibit explicit divisors generating a subgroup of Jx (K,) of rank at least
d—1.

A.2. The BSD conjecture

In this section, we prove part (1) of Theorem A.1.
Consider the curve X over Ky and let X; be a smooth, projective surface over
k(pq) equipped with a morphism X; — P! whose generic fiber is X/K4. One may
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122 A. AN ADDITIONAL HYPERELLIPTIC FAMILY

construct Xy starting from the affine surface over k(u4) defined by
g
v ==z H(z + a;)(a;x + u?)
i=1

together with its projection to the affine line with coordinate w.
As reviewed in [51] (and already used in Theorem 5.2), in order to show that
X, satisfies the Tate conjecture and Jx satisfies the BSD conjecture, it suffices to
show that X, is dominated by a product of curves.
To show that the surface X; admits a dominant rational map from a product
of curves, we consider the affine surface )); defined by the equation
g
z9y? = H(,’E + a;)(asz + u?).
i=1
Observe that since g is odd, ), is birational to Xy.
Let C4 denote the smooth, affine curve defined by the equation
g
w? = H(zd + a;).
i=1
Define a morphism
©: Cd X Cd — Vi

by (wy, 21, ws, 22) = (z,y,u) = (2%, wiws, 2122). It is easy to see that ¢ is gener-
ically finite of degree 2d. This proves that ), and thus Xy, is dominated by a
product of curves, and it completes the proof of part (1) of Theorem A.1.

Since it is easy to do so, we add some further details on ¢. First, note that Cy4
admits an action of the group G = ps X pg. Let G act on Cyq x C4 “anti-diagonally”;
that is, for g € G and P, Q € Cy(K), we define

(P,Q)7 = (P9,Q7 ).

We claim that ¢ induces a birational isomorphism from the quotient (C4 x Cq)/G
to the surface Xy. Indeed, it is clear from the expression defining ¢ that ¢ factors
through the quotient, and therefore induces a dominant rational map of degree 1,
in other words, a birational isomorphism.

We note that the arguments of this section prove more generally that the BSD
conjecture holds for X over the fields Fy» (t*/®) for any n and any d prime to p.

A.3. Descent

In this section, we prove parts (2) and (3) of Theorem A.1.
Let Qo be the unique point at infinity with respect to the model (A.1). We
embed X in Jx using QQ» as a base point:
X — Jx
P~ P — Qu,
and we identify points of X with their images in Jx.
Let Qo denote the point (0,0). For 1 < j < g, let Q; denote the point (—a;,0),
and let @ denote the point (—t/a;,0). These (together with Q) are the Weier-
strass points of X, they are K-rational, and it is well known that their images in
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Jx generate its 2-torsion subgroup. The divisor of the function y is

g
Qo+ > (Q+Q)) — (29 +1)Qu,

j=1
SO
g g
Jj= 1 j=1

in Jx. Thus the points ¢); and Q;- for 1 < j < g form a basis of the Fy-vector space

Ix (K)[2].

Fix a primitive d-th root of unity (4 in Ky4. For 0 < j <d —1, let

PJ_<Cd  (GJu) gH/QH U+a)d/2>

i=1
Recall that g is odd, and that g is odd, so d = ¢” 41 is even. Observe that the P;

are in X (Ky). Indeed, substituting ¢Ju for z in the right hand side of (A.1), we
find

9 g
Cul[(Gu+a)aiu+u?) = Gu][(Gu+ a)Gu(C ut + a;)

i=1 i=1

g
= (Gu [T(CGu+a)™
i=1
since a? = a; and ¢4 = ¢t

Let T be the subgroup of Jx (K,) generated by the Q; and @}, and let V' be the
subgroup of Jx (Kg) generated by T" and the P;. Using a map related to 2-descent,
we are going to prove that the image of T in Jx (K4)/2Jx (K4) has dimension 2g—1
and that the image of V' in Jx (Kg4)/2Jx(K4) has dimension d + 2g — 1.

These assertions imply parts (2) and (3) of Theorem A.1 by a standard descent
argument which we now review. We have already seen that T', the subgroup gener-
ated by the Q; and Q7, is equal to Jx (Kg)[2]. By the structure theorem for finitely
generated abelian groups, the 2-power torsion subgroup Jx (K4)[2°°] satisfies

t
x (K 4)[2°°] = @ 7./2¢7)
=1

for uniquely determined integers ¢ and e, with e; > es > --- > ¢; > 0. Since
Jx (K4)[2] has dimension 2g over Fo, we have that ¢ = 2¢g. Once we know that
the image of Jx(K,4)[2] in Jx(Kp)/2Jx(K4) has dimension 2g — 1, we find that
exactly one of the e, is > 1. This reduces part (2) of Theorem A.1 to our claim
that the image of T in Jx (K4)/2Jx(K4) has dimension 2g — 1.

For part (3), we note that the structure theorem for finitely generated abelian
groups plus the calculation that Jx (K4)[2] has dimension 2g over Fy implies that

dimg, (Jx (Kq)/2Jx(Kaq)) = p+2g

where p is the rank of Jyx (K;). Once we know that the dimension of the image of
Vin Jx(K4)/2Jx(Kg) is d+2g — 1, we may conclude that p > d — 1. This reduces
part (3) of Theorem A.1 to our claim that the image of V' in Jx (Kg4)/2Jx (K4) has
dimension d 4 2g — 1.
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We now turn to calculating the dimensions of the images of T' and V in
Jx(Kq)/2Jx(Kg). In parallel with the discussion in Section 2.2, we define a 2-
descent map

: X x2)29+1
(z—T): DivX(Kq) — (K /K}?)
to serve as a substitute for the coboundary map from Jx(K4)/2Jx(K4) to the
cohomology group H'(Kg4, Jx|[2]). We start by defining a map
(x—T): X(Kq) — (KJ/K;2)*
and then extend by Z-linearity to Div X (Kj).
To lighten notation, write W for (K /K ?)?9*! and

/ ’
W= (W, Wi, -+ -y Wy, Wy -+ oy W)

for an element of W. If P € X(K;) and P # Qj, Q’;, Qw, then the map is defined
by

(x = T)(P) = (wo, w1, ..., wg,wy,...,w,)
where

wo = z(P),
w; = z(P) + a; for 1 <i <y,
w, =ax(P)+t for1<i<g.

When P = Q; or Q;, this expression needs further clarification, since it gives zero

for one coordinate. Instead, we set the value at that coordinate to be the product of

the other coordinates (cf. Prop 2.7). Finally, we define (x — T)(Qw) = (1,1,...,1).
An analysis parallel to that in Chapter 2 and [8] shows that the composition

Div' X(Ky) — Jx (Kq) = Jx (Kq)/2Jx (Kq)
— H'(Kq, Jx[2]) C (K} /K;2)%

is equal to the restriction of (z — T') to Div® X (K4). In particular, to compute the
images of T and V' in Jx (K4)/2Jx (Kq4), it will suffice to compute their images in
W, i.e., their images under (z —T).

Note that ¢ and the elements of k = F, are squares in K, ie., trivial in
K /K;*. From this it follows that (z —T)(Qo) is trivial, and in view of (A.2), we
have

g

@-T)[ > (@+@Q) | =(,....1).
j=1
(This can also of course be checked directly.) It follows that the dimension of the
image of T in W is at most 2g—1 and the dimension of V in W is at most d+2¢g—1.
To complete the proof, we must show that these inequalities are in fact equalities.
Observe that the field of constants in Ky is isomorphic to Fg2». The norm map

X X

Flow — Fou
is given by a +— a? and is surjective. It follows that any a € k = F, has a d-th root
in Ky, and the place of K = k(t) where ¢ — a vanishes splits into d places in K.

These are the places where u — Céa vanishes with 0 < j < d—1 and « a fixed d-th
root of a.
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Now fix a d-th root «; of a1a; for 1 < i < g. It will be convenient later to assume
that a; = —a;. (This is legitimate, since a; € F, so (—a;)? = (—a1)9™! = a?.) Let
m; be the place of K; where u — «; vanishes, and let ord,, be the corresponding
valuation.

In parallel with the proof of Prop. 2.8, define a linear map pry : W — Fgg by

pri(w) = (ordy, (wy),...,ordy, (w1),ordy, (w)),...,ordy, (w))).

Let I be the gx g identity matrix over I, and let B be the g x g matrix over Fo whose
first row entries are all 1 and whose other entries are 0. Then a straightforward
application of the definitions shows that the matrix whose rows are pr, o(z—1)(Q;)
(for 1 < j < g) followed by pry o(x — T)(Qj) (for 1 < j < g) has the form

B I
» an
This matrix has rank 2¢g — 1 which implies that the dimension of the image of T in
W is 2g — 1. This completes the proof of part (2) of Theorem A.1.

Working toward part (3) of the theorem, we next consider the images of the
points P; under pri o (z —T'). Keeping in mind our choice of o above, we find that

(1,0,...,0,1,0,...,0) ifj=0
(0,...,0) if § #£0

where the entries 1 appear in columns 1 and g + 1. In particular, using equa-
tions (A.3) and (A.4), we have

(A.4) prio(z—T)(P;) =

g
(A.5) prio(@—T)Po) =prio@—T) [Qi+3 @,
j=2
(A.6) —prio(@-1) [ +>0,
j=2

It follows that the image of V' in Fgg is the same as the image of T' in Fgg , and this
image has dimension 2¢g — 1. Let V; denote the kernel of the map
prio(x—T):V = F7.

We have that Vi contains 2V, P; for 1 < j < d — 1, and (by equations (A.5) and
(A.6)) the elements

g g
P()‘FQl‘FZQ; and P0+Q/1+ZQj.
j=2

Jj=2

A dimension count then shows that these elements generate V;.
Now we introduce a second projection pry : W — F4. Namely, let pj be the

place of K4 where u+¢, I a1 vanishes, and let ord,; be the corresponding valuation.
Then define

pro(w) = (ordpo(wl), ..ord,, (wl)) .

Let eg,...,eq_1 be the standard basis of F¢ with a shift of one in the indexing
(so eg = (1,0,...,0) and eq_1 = (0,...,0,1)). Then a straightforward calculation
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reveals that

pryo (x =T)(F;) = ej,

d—1
prao (@ —T)(Q1) =Y e
=0

prao(z—T)(Q;) =0 for2<j<y,

d—1
proo (@ -T)Q) = er,
£=0

and
prao(z—T)(Q) =0 for2<j<g.

It follows easily that pro o (x — T') sends V; surjectively onto the codimension
1 subspace of F¢ where the first entry vanishes. Denoting by V5 the kernel of
prao(x —T) on Vi, we also see that V5 is generated by 2V and the element

d—1 g
ZP]’ +Q1+ ZQ;
=0 j=2

To finish the proof, we note that

d—1 g
(x—T) ZPjﬂLQH—ZQ; #£0.
§j=0 j=2

For example, its component ws is

g

H(t — asay),

=3

and this is not a square in K4 since the a; are distinct.

In summary, we have shown that V/V; has dimension 2g — 1, V7 /V5 has di-
mension d — 1 and V5 has a 1-dimensional image in W. This shows that the image
of V in W has dimension d 4+ 2g — 1, and this completes the proof of part (3) of
Theorem A.1.

A.4. Degree of the L-function

In this section, we sketch a proof of part (4) of Theorem A.1.

Since the BSD conjecture holds for Jx, the rank of Jx (K ) is equal to the
order of vanishing of L(Jx/K4,s) at s = 1. We will show that the L-function is
a polynomial in ¢~° and estimate its degree, thus giving an upper bound on the
order of vanishing and the rank.

It is known that L(Jx /Ky, s) is a rational function in ¢~* and that it is a poly-
nomial in ¢~ if and only if the K/k-trace of Jx (or more precisely, the Kq/k(paq)-
trace) vanishes; see [51, Chap. 5, Lemma 6.5]. Arguing as in Proposition 6.31 and
using the explicit domination of X; by a product of curves given in Section A.2, we
see that the trace vanishes and the L-function is a polynomial.
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To complete this sketch we estimate the degree of the L-function of the Jaco-
bian, and thus determine the upper bound on the rank. By the Grothendieck-Ogg-
Shafarevich formula, the degree of the L-function is

—4gx + deg(n)

where n denotes conductor of Jx over Ky and deg(n) denotes its degree.

We start by considering the case d = 1.

For 1 <i<j <y, let S be the set of places corresponding to the polynomials
t — a;a;. Letting ¢, be as in Section 5.1.3, one checks that &) has semistable
reduction at each such place and that

ZCU _g+2<£2]) =g

veES

More precisely, for each pair ¢ < j, the reduction of X at ¢ — a;a; has ordinary
double points at (z,y) = (a;,0) and (z,y) = (a;,0), and their contribution to the
conductor is 1 when ¢ = j and 2 when ¢ < j. Moreover, the reduction of X is
smooth away from such double points, so it suffices to count the number of pairs
(i,7) with 1 < 4,5 <g.

The only other places of (possibly) bad reduction are at ¢t = 0,00. We claim
the Tate module of Jx has tame reduction there and thus the corresponding con-
tribution to the conductor equals the drop of the degree of the corresponding Euler
factor (which is between 0 and 2g). Indeed, the extension K (Jx[4]) is Galois over
K of degree a power of two, so it is a tamely ramified extension of K. Moreover, Jx
acquires semiabelian reduction over it. In particular, this implies the Tate module
of Jx is everywhere tamely ramified over the extension K(Jx[4]) and hence over
K.

Now we consider the case d > 1.

For each of the d places of K4 over t — a;a;, the contribution to the conductor
remains unchanged, so is 1 when ¢ = j and 2 when ¢ < j. Moreover, the contribution
to the conductor is between 0 and 2¢g for u = 0, 00. Therefore we have

deg(n) < d-ch+2-2g:d92+4g
veS
which implies that the degree of the L-function is < dg?. It follows that the rank of

the Mordell-Weil group of Jx (Ky) is also at most g?d. This completes our sketch
of the proof of part (4) of Theorem A.1.

A.5. Additional remarks

REMARK A.2. It is interesting to note the differences between the Jacobian
studied in this appendix and the Legendre curve E studied in [52]. In particular,
the rank of Jx (K,) is either d — 1 or d, whereas the rank of F(Ky) is d — 2. There
are two relations among the analogues of the P; on E which seem not to generalize
readily to X, although it is possible that there is one relation.

REMARK A.3. There is an interesting involution of X, given in the coordinates
above by

Wz, y) = (t/x,yt(9+1)/2/x9+l) .
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(An analogous involution exists for E, where it is translation by Qg.) On X, we
have +(Qo) = Qo, 1(Qi) = Q} for 1 <i < g, and «(P;) = P; where the P/ are new
points with coordinates
g
Pj{ _ (Cdjuq ,(C;juq )(9-‘1-1)/2 H(Céu + ai)d/2> .
i=1
We do not know whether these points are independent of the P;.

It would be interesting to investigate the consequences for the monodromy of
Jx[€] of the existence of ¢, along the lines of Chapter 8.
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