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Gambler’s ruin estimates can be viewed as harmonic measure estimates
for finite Markov chains which are absorbed (or killed) at boundary points.
We relate such estimates to properties of the underlying chain and its Doob
transform. Precisely, we show that gambler’s ruin estimates reduce to a good
understanding of the Perron—Frobenius eigenfunction and eigenvalue when-
ever the underlying chain and its Doob transform are Harnack Markov chains.
Finite inner-uniform domains (say, in the square grid Z™) provide a large
class of examples where these ideas apply and lead to detailed estimates. In
general, understanding the behavior of the Perron-Frobenius eigenfunction
remains a challenge.

1. Introduction. Two players are involved in a simple fair game that is repeated, inde-
pendently, many times. Assume that the total amount of money involved is N and that we
follow X, the amount of money that player A holds at time . We can view X; as performing
a simple random walk on {0, 1, ..., N} with absorbing boundary condition at both ends. The
classical gambler’s ruin problem asks for the computation of the probability that A wins (i.e.,
there is a ¢ such that X; = N and Xy # 0 for 0 < k <) given that Xo = x. Call this proba-
bility u#(x). Then, u(0) =0, u(N) =1, and, for 0 <x < N, u(x) = %(u(x — D +4ulx+1)).
In a different language, u is the solution of the discrete Dirichlet problem on {0, ..., N}

Au=0 onU={1,...,N —1},
u=q¢ onoU = {0, N},

with boundary function ¢ (0) =0 and ¢ (N) = 1, and Laplacian

Au(x) =u(x) — %(u(x —D4u@x+1).

Because the only harmonic functions on the discrete line are the affine functions it follows
immediately that u(x) = x/N. For example, if you have $1 and your opponent has $99, the
chance that you eventually win all the money is 1/100 (see [9], Chapter 14, for an inspirational
development). This naturally leads to the question: how should the gambler’s ruin problem
be developed with more players?

Thomas Cover in [5] gives a multiplayer version of the gambler’s ruin problem using
Brownian motion. It is solved using conformal maps in the 3-player (i.e., 2-dimensional)
case in a short note of Bruce Hajek [14] that appears in the same volume as Cover’s article.
(For another description of 3-player gambler’s ruin, see [10].) The discrete 3-player version
can be described as follows. (See Figure 1.) Call the players A, B, C. Let N be the total
amount of money in the game and X, be the amount of money that player * has at a given
time so that X4 + Xp + Xc = N. At each stage, a pair of players is chosen uniformly at
random; then these two players play a fair game and exchange one dollar according to the
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F1G. 1. The gambler’s ruin problem with 3 players.

outcome of the game. Standard martingale arguments show that the chance that player A, B
or C winds up with all the money (given that they start out at x1, x and x3) is, respectively,
x1/N,x>/N and x3/N. Starting at N /4, N /4, N /2, Ferguson [10] shows that the chance that
C is the first eliminated is asymptotically 0.1421. ... We consider what happens the first time
one of the players is eliminated. How does the money divide up among the remaining two
players and how does this depend on the starting position?

From this description it follows that the pair (X4, Xp) evolves on

U={(x1,x2):0<x1,0<x2,x1 +x2 <N},
with
U ={(x1,x2) :x1=0,0 < x2 < N}
U{(x1,x2):x2=0,0 <x; < N}
U{(x1,x2):0 <x1,0 <x2,x1 + x2= N},

according to a Markov kernel given by

1/6 if [x1 — yi| + |x2 — y2| =1,
K((x1,x2), (y1,y2)) =11/6 ifx; —y1 =y2 —xp = £1,
0 otherwise,

for pairs (x1,x2) € U, (y1,y2) € U U dU. Here, we imagine that this Markov chain starts
somewhere in U, say at (x4, xp), and runs until it first reaches a point on dU. We are inter-
ested in the probability that the exit pointis (y4, yp) given the starting point (x4, xg). Unlike
the 1-dimensional case, there is no easy closed form formula for this problem in dimension 2
(much less in dimension higher than 2 and other variants). Our results, which give two-sided
estimates for this problem, are developed in Example 5.16 and summarized in formula (6.3).

Let us illustrate the general result obtained in this work with an example. We will look
at the probability that the game ends with B losing all her money, while A has y dollars in
her possession (and hence C has N — y dollars) under three extreme initial conditions pic-
tured on Figure 2: (X4, Xp) =[N/3,N/3]), (X4, Xp)=(1,1) and (X4, Xp) =1, N —2).
Geometrically, this corresponds to the probability of exiting at (y, 0).

ILLUSTRATIVE RESULT. Using the setup for 3-player gambler’s ruin outlined above,
forye{l,...,N — 1}, let

Py((xa,xB), (y,0))
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FIG. 2. Three extreme starting points: balanced, C has it all, B has it all.

be the probability that B is first to lose all their money and that A has y dollars when that
happens, given that the game started with A having x4 dollars and B having xp dollars.
Then, as explained in Section 6.4,

2N —y)?
N3 ’
(N —y)?
N2y4 ’

Py((IN/31,[N/31), (v,0)) ~

PU((17 1)’ (y’ 0)) ~

and

YN —y)?

PU((laN_z)’(y’O)) N8

We develop these estimates for a class of finite Markov chains which are absorbed at
boundary points. Even the simple case of the first exit from {—N, ..., N}* C Z?, which is
treated in Example 3.1,4.2 and 5.14 is instructive.

These gambler’s ruin examples are part of a much larger theory known under the comple-
mentary names of first passage probabilities, survival probabilities and absorption problems.
In the context of classical diffusion processes, this is also related to the study of harmonic
measure (see Definition 1.1). See [4, 22, 23] among other basic relevant references. Two fur-
ther references: For gambler’s ruin with three players starting at x, y, z, let S be the first time
that one of the players is eliminated and T the first time two players have been eliminated;
[24] shows that E(S) =3xyz/(x +y+2z) and E(T) = (x + y 4+ 2)> — (x> + y* + z2) /2; for
more general absorption problems [3] develops a surprising algorithm of Aldous to effec-
tively approximate the quasi-stationary distribution.

Let us now abstract the original problem as follows. Instead of a discrete line or triangle,
our new setting will be a weighted graph (X, &, 7, u) where:

e the set X of vertices is finite or countable,

e the set & of edges consists of pairs of vertices, (i.e., subsets of X containing exactly two
elements) such that each vertex has finite degree (i.e., it belongs to only finitely many pairs
in &) and the graph is connected (i.e., there is a path in & connecting any two pairs of
vertices),

e the function 7 : X — (0, 00) is a positive weight on vertices and

e the function i : € — (0, 00) is a positive weight on edges, {x, y} = uyy, with the property
that

(1.1) D by <7(x).
y
It is useful to extend p to the set of all pairs of vertices by setting iy, = 0 when {x, y} ¢ €.

Two vertices x, y satisfying {x, y} € € are called neighbors, which we denote x ~ y. The
edge set € induces a distance function (x, y) — d(x, y) on X. The distance d(x, y) between
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x and y is the minimal number of edges that have to be crossed to go from x to y. We assume
throughout that d (x, y) is finite for all pairs of points x, y € &.
This data also induces a Markov kernel K = K, ;, defined as follows:

Mxy/ﬂ(x) fOI‘y # X,
(12) K(Xs)’)= 1_<Zﬂxy/jf(x)) fory:x.
y

Note that the pair (K, ) is reversible. Although our graph does not have loops, the definition
of K (x, y) above allows for K (x, x) > 0. The associated Laplacian is the operator A = I — K
so that

Au(x) =u(x) — Y K(x, yu(y).
y

Let U be a finite subset of X with the property that any two points x, y in U can be
connected in U by a discrete path, that is, a finite sequence (xg, ..., x;) € U k with X0 = X,
xr =7y and {x;,x;11} € € 0<i <k — 1. We call such a subset a finite domain in (X, €).
Let oU (the exterior boundary of U) be the set of vertices in X \ U which have at least one
neighborin U.

Let (X;);>0 denote the Markov chain driven by the Markov kernel K, starting from an
initial random position Xg in U. This is often called a weighted random walk on the graph
(X, €) because, at each step, the walker either stays put or moves from its current position to
one of the neighbors according to the kernel K.

Let 7y be the stopping time

ty =inf{t : X; ¢ U}.
Because the chain takes steps of distance at most 1, it must exit U on the boundary, that is,
Xy, €0U.
DEFINITION 1.1 (Harmonic measure). Because X, € dU, it make sense to ask for the
computation of
Py (x,y) =P(Xg, = y|Xo = x),
for x e U, y € dU. As a function of y, Py (x, y) is called the harmonic measure (and as a

function of (x, y), it is also known as the Poisson kernel).

The notation P is used here in reference to the classical Poisson kernel in the ball of radius
r around the origin in R",

2 iyl2
Po )= — P e (el <) e s = {2zl =,
wp—1r|lx = &I"

where ||z]|Z = ||(z1, ..., z0)|*> = > zl-z and w,—1 is (n — 1)-surface area of S,. In Euclidean
space, the Poisson kernel solves the Dirichlet problem (A = — >} %22)

Au=0 1in B,,

u= ¢ on Sr = 8Br;
in the form

u(x) =/S Py, (x. )b (¢) .

where d¢ is the (n — 1)-surface measure on S,.
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Similarly, the kernel Py on a general U x dU yields the solution of the discrete Dirichlet
problem

Au=0 inU,
u=7qo on U,
in the form
u(x)= Y Py(x,))¢() = Ex(¢p(Xs,)).
yedlU
Observing that

Py(x,y) = Ex(l{y}(XtU)) = P(X'[U =y|Xo=1x),
we are also interested in understanding the quantity
Py(t,x,y)=P(Xy, =yand ty <t|Xo=1x).

The goal of this work is to obtain meaningful quantitative estimates for the Poisson kernel
and related quantities in the weighted graph context described earlier and under strong hy-
potheses on (a) the underlying weighted graph (X, &, r, 1) and (b) the finite domain U C X.
The hypotheses we require are satisfied for a rich variety of interesting cases. As a test ques-
tion, consider the problem of giving two-sided estimates (with upper and lower bounds dif-
fering only by a multiplicative constant) which hold uniformly for (x, y) € U x dU for the
discrete Poisson kernel of a lazy simple random walk on Z", n > 1, when U = B(o,r) is
the graph ball of radius r centered at the origin o in Z". For n = 1, this is essentially the
gambler’s ruin problem.

Various other gambling schemes can be interpreted as random walks on polytopes with
different boundaries. For example, [15] treats two gamblers with n kinds of currency as a
n-dimensional random walk—at each stage, a type of currency is chosen uniformly and then
a flipped coin determines the transfer of one unit of currency.

We now give a brief summary of the structure of this article. Section 2 introduces ba-
sic computations, including Poisson kernels and Green’s functions. Section 3 discusses the
difficulty of trying to solve these types of problems using spectral methods, even when all
eigenfunctions are available. Section 4 introduces the Doob transform which changes ab-
sorbtion problems into ergodic problems. Section 5 gives the main new results. We introduce
the notions of Harnack Markov chains and graphs, which allow us to treat the 3-dimensional
gambler’s ruin starting in “the middle” in Example 5.16. Section 6 specializes to nice do-
mains (inner-uniform domains) where the results of the authors’ previous paper, Analytic-
geometric methods for finite Markov chains with applications to quasi-stationarity [7], can
be harnessed. This allows uniform estimates for all starting states, in particular for the three-
player gambler’s ruin problem.

2. Basic computations. Let us fix a weighted graph (X, €, 7, ) satisfying (1.1) and the
associated Markov kernel K defined at (1.2) as described in the Introduction. Let us also fix
a finite domain U and set

Ky(x,y) =K, y)1lyx)1y(y).

Assuming that dU is not empty, this is a sub-Markovian kernel in the sense that
2yy~x Ku(x,y) <1 forall x € U and ., Ky(x,y) <1 at any point x € U which
has a neighbor in dU. For any point y € dU, define

vy(y)={x eU:{x,y} e €},
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to be the set of neighbors of y in U. For any x, z € X, set

(2.1) Gu(x,2)=)Y Ki(x,2).
=0

THEOREM 2.1. Forx € U and y € dU, the Poisson kernel Py (x, y) is given by
Py(x,y)= Y Gux.2K(. ).
zevy (y)

Moreover, we have

t—1
Py(t,x, )= Y Y Kj(x. 2K y).

zevy (y) £=0

PROOF. If we start at x € U, in order to exit U at y at time ty = £ + 1, we need to reach
a neighbor z of y at time £ while staying in U at all earlier times and then take a last step
to y. The probability for that is

Y K{(x, D)K(z ).
zevy (y) [

For later purposes, it is useful to restate the theorem above using slightly different notation.
First, we equip U with the measure 7|y, the restriction of the measure 7 to U. Note that 7|y
is not normalized. The kernel K; satisfies the (so-called detailed balance) condition

ky(x,y):=Kyx,y)/mlu(y) =Ky (y,x)/m|yx).

The kernel ky (x, y) is the kernel of the sub-Markovian operator Ky (x, y) in L*(U,7|y).
The iterated kernel k7, is the kernel of the sub-Markovian operator

Ky f)=Y Ky ) fy) =Y kyx.y)fOMrlu(y)
y y

with respect to the measure 7|y . In particular,

kg™ () = D0 ky (. 9k G )7y 2).

Similarly, we set

gux,y):=Gy(x,y)/m(y).

The detailed balance condition captures the fact that K/, is a discrete semigroup of selfadjoint
operators on LZ(U, Tly).

Next we introduce the natural measure on the boundary 0U, sy, the restriction of &
to oU. It simplifies notation greatly to drop the reference to U and U and write 7|y = 7,
7 |ay = 7 unless the context requires the use of the subscripts. For any function f in U U9oU
and point y € dU, we define the interior normal derivative of f at y by

V= T (0 - o)

8\)[] xeU:x~y

Hxy

2.2 .
(22 7(y)

Now, for each x € U, we view Py(x,-) as a probability measure on dU and express
the density py(x,-) of this probability measure with respect to the reference measure
7 on the boundary, so that py(x,y) = Py(x,y)/m(y). Similarly, we set py(t,x,y) =
Py (t,x,y)/m(y).



GAMBLER'’S RUIN ON INNER UNIFORM DOMAINS 871

THEOREM 2.2. For x € U and y € 0U, the Poisson kernel Py(x,y) is given by
Py(x,y) = pu(x, y)m(y) with

00 t

dygu dyk
pu(x,y) = §DU =Y =L, y.

=0 31)(]

Similarly, Py (t,x,y) = pu(t, x, y)mw(y) with
-1 ]

ovk
pult,x,y) = Zg;]]( »).

A key reason that these formulas are useful is the fact that, because the functions

5 )gU

gu(x,-) and kt (x, -) vanish at the boundary, the “normal interior derivatives (x y) and

ke
vy
gy (x,-) and k{] (x, -), over those neighbors of y that are in U, that is,

—=%(x, y) are actually (weighted) finite sums of the positive values of the relevant functions,

Y
y )= Zgu(n()
zeU:z~y
and similarly for (x y). This means that any two-sided estimates on the functions gy, kJ,

themselves automatlcally induce two-sided estimates for these “normal interior derlvatlves
for the Poisson kernel.

3. Spectral theory. Unfortunately, it not easy to estimate the functions k{] and gy. It
is tempting to appeal to spectral theory in this context. The sub-Markovian operator Ky is
selfadjoint on L2(U, ) with finite spectrum By ; and associated real eigenfunctions ¢y ;.
For simplicity, when the domain U is obvious, we write

Bi = Bu.i» ¢i=¢y; (for0<i<|U|-1).
We can assume the eigenvalues are ordered
—1=<Bu-1=Bu—2=---<B1=p=1
When 0U # &, the Perron—Frobenius theorem asserts that
0<pBo<l,  Bu-1=—Po, 1Bil <Bo (fori=1,...,|UI=2),

and we can choose ¢¢ > 0. Moreover, By = —Bjy|—1 if and only if the subgraph (U, &) of
(X, €) is bipartite and }_ ., ;txy = 7 (x) for all x € U. We will normalize all the eigenfunc-
tions by 7|y (¢ 1) =1, making them unit vectors in L?*(U, 7). Note that, by convention,
¢;i =01in X\ U, so we can equivalently write that 7 (|¢; %) =1.

This gives
Ul—1
3.1) ky e, y) =Y Blei(x)ei (),
i=0
and
U|-1
(3.2) gux,y) =Y (1=B) "¢ ()i ().
i=0

Assuming for simplicity that By > |Bjy|—1l, the first formula yields the familiar asymptotic
for large ¢,

ki (x, y) ~ Bido(x)do(y).
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The second formula yields almost nothing. The easy fact that gy (x, y) is positive is not
visible from it, even in cases when the eigenvalues and eigenfunctions are known explicitly.

EXAMPLE 3.1. In Z2, let = be a uniform vertex weight (i.e., m(x) = 1) and set edge
weights iy =1/8 when x ~y, x,y € Z2. Tt follows that K (x, y) at (1.2) is the Markov
kernel of the lazy random walk on Z? (this walk stays put with probability 1/2 or moves to
one of the four neighbors chosen uniformly at random with probability 1/8). Let U C Z? be
the box {—N, ..., N}2. Because of the product structure of both the set U and the kernel K/,
we can write down explicitly the spectrum and eigenfunctions. The eigenfunctions are the
products

1
Ga,p(x1,x2) = N—HWa(xl)Wb(xz),

where

akm .
Cosm 1fa=1,3,...,2N+1,
Yoty =1 HNFD
sin——— ifa=2,4,...,2N
2(N + 1)

with associated eigenvalues

1 <2+ arw n b )
w, = — COS COS
@b =y 2(N +1) 2(N + 1)

when a, b run over {1,2,...,2N + 1}.
Applying (3.2) and (2.2), we have

dygu 0yPa.p
vy

3.3 S
(3.3) T

(x,y)= > (1 — @a,p) " Gap(x) ).

(a,b)el{l,...,2N+1}2

To be more explicit, using the obvious symmetries of U, let’s focus on the case when the
boundary point y = (y1, y2) is on the vertical, right side of U, that is, y = (N + 1, y;) for
y2 € {—N, ..., N}. For such point, the neighbor of y in U is the point y = (N, y;) and so
(3.3) becomes,

dygu 1 —1
(X, y) = ———— > (1 — @a.) ™ a.b () Yp(y2) Va(N).
vy 8N +1D) (@.b)e(l,...2N+1)2

Writing this in a more explicit form, we have

Py ((x1,x2), (N + 1, y2))

(3.4) B 1 Z Ya(x )Y (x2) Vb (¥2)Ya(N)
= p T bt N
AN+ 1D @hell.ansp 1= 2(C08 ey + €08 5yTy)

There are several problems with formulas of the type (3.4). The first is that it is rare we can
compute all eigenvalues and eigenfunctions as in the above example. The second is that all
the terms in the formula have roughly similar size and most are oscillating terms that change
sign multiple times. The terms that oscillate most are actually given somewhat higher weights
in (3.4). So, even in the case of the square domain treated above, it is not clear how much
information one can extract from (3.4) except, perhaps, numerically. In [8], L. Miclo and the
first author apply spectral techniques to some very basic examples and their results illustrate
the difficulties mentioned here.
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4. General results based on the Doob transform. It is well known that the Doob-
transform technique is a useful tool to study problems involving Markov processes with
killing. We follow closely the notation used in our previous article [7] which will be used
extensively in what follows. For a discussion of the Doob transform adapted to our purpose,
see [7], Section 7.1.

We work in the weighted graph setting introduced in Section 2 and fix a finite domain
U C X. The operator associated to the sub-Markovian kernel Ky,

feKuf=> KuC.»fO),
y

acting on L?(U, ) admits a Perron—Frobenius eigenvalue Bu.o = Po and eigenfunction
du.0 = ¢o (because Ky is selfadjoint on L2(U , ), right and left eigenfunctions are the
same, up to multiplication or division by ). Here, we normalize ¢ by requiring that
n(q&%) =n |U(¢§) =1 (recall that the measure 7|y is not normalized).

The Doob-transform technique amounts to considering the Markov kernel

(4.1) Ko (x, ) = By ' ¢0(0) ™ Ky (x, 1o (y)
which is reversible with respect to the measure 4,, where we define
gy = b5 |-
Just as kj, (x, y) = K[, (x, y)/m(y), we set
Ky, (x, )
T (y)

This is the kernel of the operator K éo with respect to its reversible measure 7g,. It is also
clear that

kg (X, ¥) =

Ky (x, ¥) = Bibo(¥)do(y)kly (x, ¥).

Our basic assumptions imply that Ky and Ky, are irreducible kernels, that is, for any
pair x, y, there is a t = r(x, y) such that K[,(x, y) > 0. If we additionally assume that K¢,
is aperiodic, this implies that the chain is ergodlc Hence, using these manipulations, we
have reduced the study of K|, to that of K éﬁo’ the iterated kernel of an ergodic reversible
finite Markov chain. In what follows, we do not assume aperiodicity, but it is often better to
assume aperiodicity on the first reading in order to focus on the most interesting aspects of
the computations and arguments involved. This gives the following version of Theorem 2.2.

THEOREM 4.1. For x € U and y € 0U, the Poisson kernel Py(x,y) is given by
Py(x,y) = pu(x, y)m(y) with

s 0
pu.y) =¢o(x) ) ﬂéﬁ [bo (ki (x. y)]
=0

Mzy

—¢o(x>2ﬂo > o)kl (x,2)

t=0 zev(y) ( )
Similarly, Py (t,x,y) = py(t,x,y)m(y) with
t—1

dy
put.x,y)= ¢0(X)Z/308

5]

—¢o(x>2ﬂo 3 po(2kG, (x, )2

=0 zev(y) ( )
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Fi1G. 3. The box U ={—N, ..., N}2 and its boundary. Each point on the boundary has exactly one neighbor
inU.

EXAMPLE 4.2 (Example 3.1, continued). Let us spell out what Theorem 4.1 says in the
case of the Euclidean box U = {—N, ..., N}?> C Z? depicted in Figure 3. The setting is as in
Example 3.1. First, note that the Perron—Frobenius eigenfunction ¢q is given by

1 TX] TX)
= cos cos ,
(N+1) 2(N+1) 2(N+1)

Po(x) = ¢o((x1, x2))

with associated eigenvalue

72

T
= (14cos— " V1T
Po 2( +C0S2(N+1)) 16(N + 1)2

where the asymptotic is when N tends to infinity. Using (4.1), the associated Doob transform
Markov chain has kernel

0 forx,yeU,|xi —yi| + |x2 — y2| > 1,
1
- forx,yeU,x=y,

Kgo(x.y) = { 28, Y Y
I ¢o(y)
— forx,yeU,|x; —yil +|x2—y2=1.
8Bo Po(x)

By construction this kernel (which resembles closely a Metropolis—Hastings kernel) is re-
versible with respect to the probability measure 7g,. It is also irreducible and aperiodic and
thus, for any x, y € U,

K, (x, ) = 1)

as ¢ tends to infinity. Equivalently, kéﬁo (x,y) — 1 ast tends to infinity. Recall that each bound-
ary point y € dU has exactly one neighbor y* in U. Using this information, the Poisson kernel
formula provided by Theorem 4.1 reads

1 o
pux,y) = §¢0(x)¢o(y*) > Bokiy, (x.¥%)., xeU,yedU.
t=0

This makes it clear that a two-sided bound for py(x, y), valid for all x € U and y € dU,
would follow from a two-sided bound on ké,o (x, y*) that holds uniformly in ¢, x and y*. Such
a bound is provided in the next two sections.

5. Harnack Markov chains and Harnack weighted graphs. In this section, we dis-
cuss the highly nontrivial notion of a Harnack Markov chain or, equivalently, of a Harnack
weighted graph. Consider a weighted graph (X, &, 7, ) satisfying (1.1) and its associated
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Markov kernel K defined in (1.2). For x, y € X, let d(x, y) be the minimal number of edges
in € one must cross to join x to y by a discrete path. Let

B(x,r)={yeX:d(x,y)<r),

be the ball of radius r around x € X. Note that B(x,r)UdB(x,r) = B(x,r + 1).

Fix a parameter 6 > 2 (it turns out that the assumption that & > 2 is not restrictive for what
follows). The key point in the following definition is that the constant Cy is required to be
independent of scale and location (i.e., R > 1, o € N and xg € X) and also independent of
the nonnegative function u, the solution of (5.1). The following definition is inspired by [2],
Theorem 1.5. See also [13].

DEFINITION 5.1.  We say that (K, 7) is a #-Harnack Markov chain (equivalently, that
(X, &, m, u) is a 6-Harnack weighted graph), if there exists a constant Cy > 0 such that for
any R > 0, #p € N, and x¢ € X, and nonnegative function # : N x X — Rx( defined on a
time-space cylinder

O(R, 10, x0) = [to, to + 4[R?] + 1] x B(x0,2R + 1)
such that

(5.1 u(t+1,x)=> ut,y)K(x,y)
y
in
0'(R, 10, x0) = [to, to +4[R%]] x B(xo,2R),
it holds that, for all (¢, x) € Q_(R, ty, x0) = [to + [R?7, to + 2[R?1] x B(xo, R),

u(t,x)<C min ulk,y) +ulk+1, ,
¢, %) H(k,y)eQ+<R,ro,xo>{ (k. )+ ut )

where

0+ (R, to, x0) = [to + 3[R?], to +4[R?]] x B(xo, R).

Equation (5.1) can also be written using the graph Laplacian A =1 — K (i.e., Au(t,x) =
u(t,x)— Zy K (x, y)u(t, y)) and the time difference operator d,u(t, x) = u(t+1, x) —u(t, x)
in the form

(5.2) oru + Au =0.

This is the discrete-time heat equation on (X, &, u, w) and the property required in Defini-
tion 5.1 is the validity, at all scales and locations, of the discrete time 6-parabolic Harnack
inequality.

EXAMPLE 5.2. The square lattice Z", equipped with the vertex weight 7 = 1 and the
edge weight u = ﬁ, on € is a 2-Harnack weighted graph. See [1, 6, 11].

EXAMPLE 5.3. The Sierpinski gasket graph is a -Harnack weighted graph with 6 =
log5/log2. See, for example, [1], Section 2.9 and Corollary 6.11, and [2].

These two examples illustrate the fact that & = 2 corresponds to the more classical situation
of Z"* when the random walk has a diffusive behavior in the sense that it travels approximately
a distance /7 in time ¢ whereas the case 6 > 2 corresponds to sub-diffusive behaviors when
the random walk travel approximately a distance #!/? < /7 in time ¢. This second type of
behavior is typical of fractal-type spaces. The following theorem make these statement more
precise.
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THEOREM 5.4 (See [12], Theorem 3.1, and also [2], Theorem 1.2). Assume that the
weighted graph (X, €, w, u) satisfies the ellipticity condition
(5.3) Vix,yl €€ m(x) <duxy

for some fixed constant §. Under this assumption, (X, €, 7, u) is a 0-Harnack graph if and
only if the iterated transition kernel k' (x, y) = K'(x, y) /7 (y) of the chain (K, i) satisfies

ci d(x, )"\ /=D
(54) kz(x,y) S Wexp(—q( p ) >

when d(x,y) <t, and

d(x, y)"\ V0D
55 K R ) 2 e~ T )
(5.5) (D K @) 2 s e O =
where c1, ¢z, C1, C2 > 0.

Theorem 5.4 established the equivalence of two properties, each of which seems (and is)
very hard to verify. The following theorem offers a third equivalent condition which, at least
in the case 6 = 2, can sometimes be checked using elementary arguments.

THEOREM 5.5 (See [2], Theorem 1.5). Assume that the weighted graph (X, &, , 1)
satisfies the ellipticity condition (5.3) for some fixed constant §. Under this assumption,
(X, €, m, ) is a O-Harnack graph if and only if the following three conditions are satisfied:

1. There is a constant Cp > 0 such that, for all x € X and all r > 0,
7(B(x,2r)) < Cpw(B(x,r)).

In words, the volume doubling condition is satisfied.
2. There is a constant Cp > 0 such that, for all x € X and all r > 0, the Poincaré inequal-
ity with constant C pre holds on the ball B = B(x,r), that is,

VY@ felfr@=cer’ Y |f @) = F©O uec,

Z€B £.eB.(§.0)eC

where fg =m(B)™' Y5 fr.
3. The cut-off function existence property CS(0) is satisfied. (See Definition 5.6 below.)

When 0 = 2, the cut-off function existence property CS(0) is always satisfied.

DEFINITION 5.6 ([2], Definition 1.4). Fix 6 € [2, 0o). The weighted graph (X, &, 7, 1)
satisfies the cut-off function existence property CS(0) if there are constants Cy, Ca, C3 and
€ > 0 such that, for any x € X and r > 0, there exists a function ¢ = o, , satisfying the
following four properties:

(@ o>=1on B(x,r/2)

() o=0o0n X\ B(x,r)

(c) Forall y,ze X, |o(z) —o(y)| < Ci1(d(z, y)/r)¢
(d) For any s € (0, ] and any function f on B(x, 2r),

o fE Y Je@ - oy

z€B(x,s) yi{z,y}le€

s@(s/r)zf{ Y 1@ = FO Py s Y |f|2n}.
z,yeB(x,2s) B(x,2s)
{z,y}e€
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REMARK 5.7. Given the rather unwieldy nature of this definition, some comments are in
order. When 6 = 2, the function o (z) = min{1, 2(1 — d(x, z)/r)+} provides the desired cut-
off function. In that case, the inequality in (d) contains no particularly interesting information
(it does say, for s near 1/2, that ), pyy <47 (x), which is weaker than our basic assumption
>y Mxy S TT(X)).

For 6 > 2, the inequality in (d) becomes the carrier of some (somewhat mysterious) useful
information. One of its simplest consequences is a lower estimate for the Perron—Frobenius
eigenvalue By = By.o when U = B(x, r). Namely, the cut-off function o for the ball B(x, r)
must satisfy

n(lo|?) = n(B(x,r/2))
by (a) in Definition 5.6 and
Y 0@ — otz < Corn(B(z,2r))

z,yEB(x,r)
{z,y}e€

by (d) in Defintion 5.6, taking f = 1 and s = r. Together with the doubling property, this
implies that the Perron—-Frobenius eigenvalue of the ball B(x, r) satisfies

C2C}
(5.6) 1= BBx,rn,0 = 7 =3

The aim of the next theorem is to illustrate the simplest possible way to use the notion
of a Harnack Markov chain in obtaining two-sided estimates on py (x, y). We introduce the
following definitions and notation.

DEFINITION 5.8 (Inner distance). The smallest integer k for which such a path exists for
given x,y € U is denoted by dy (x, y). It is the inner distance between x and y in U. For
xeUandyedU, we set

dy(x,y)=min{l +dy(x,z) :z€ U, {z,y} € €}.

DEFINITION 5.9. For any finite domain U in X, let (U, €r7) be the associated subgraph
with edge set €y = {(x,y) € €:x,y € U}. Let dy be the associated graph distance and
By the corresponding graph balls. If 817 0 = Bo, ¢u.0 = ¢o are the Perron-Frobenius eigen-
value and eigenfunction for U on (X, &, 7, ), then the Markov chain (K, , 7, ) is the chain
associated with the weighted graph

(U, €y, 4y, 1™),
where pcfg =B, 1¢0 (x)¢0(y) txy. Notice that this is consistent with the alternative definition
of Kg,(x, y) provided in the beginning of Section 4.

REMARK 5.10. Weuse A(t, x, y) =~ B(t, x, y) when there exists ¢, C > 0 such that

L Alxy)
~ B(t,x,y) —

where ¢, C depend only on the key parameters (e.g., dimension, and the constants from
volume doubling, the Harnack condition, and the Poincaré inequality) and not on the specific
time ¢, positions x, y, or any size parameters (e.g., r where x, y € B(z,r)). When there is a
subscript on = (such as ~, or &) the constants ¢, C additionally depend on the parameter
in the subscript.

’
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THEOREM 5.11. Let U be a finite domain in (X, &, w, u) with Perron—Frobenius eigen-
value and eigenfunction By, ¢g. Let Ty = (1 — Bo) L. Assume that:

1. There exists C > 1/2, R € Z4 and a point o € U such that
B(o,R/2)ycU and U C By(o,CR);

2. The weighted graph (X, €, w, u) is a 0-Harnack weighted graph which satisfies the
ellipticity condition w(x) < Suxy for some fixed constant §.
3. The Markov chain (K, , 7g,) is a 0-Harnack chain on (U, €y ).

Under these assumptions, for any point y on the boundary U ,

T,
Py(o,y) = Tygo(o) Z B0(2) phzy ~ v

zev(y) ) > (@) phzy-

zev(y)

DEFINITION 5.12. We will refer to any point o satisfying the first assumption in Theo-
rem 5.11 as a central point in U.

PROOF. First, we start with remarks regarding ¢ (o). By assumption, the measure 7y, is
doubling and n(qb(%) = 1. It follows that, for any fixed € € (0, 1/2),

Y g e L.
B(0,eR)

Because (X, €, u, ) is a -Harnack weighted graph, ¢o(0) ~¢ ¢o(z) for any z € B(o, €R).
(This follows easily from the parabolic Harnack inequality of Definition 5.1. See the proof of
Lemma 7.10 and Lemma 7.11 in [7].) Using this and the doubling property of my,,

(5.7) $0(0)* e m(B(o.€R) ™ > gfm~em(U)".
B(0,eR)
Using (5.7) and the doubling property of 7,
T (U)'? xc goo)mU) e Y ¢om <7 (o).

B(o,eR)
Also, 7 (¢p)? < n(U)n(qﬁ%) = (U). It follows that
7 (U)po(0)* ~1 and 7 (o) ~m(U)'/%.

We need to estimate (see Theorem 4.1)

Py(0,y) = py(o, )7 (y) =¢o(0) ) sz¢o(2)< > ﬂékgo(o,z))-

zev(y) t=dy (0,2)

Because of the first and second hypothesis, Bo=1—1/Ty > 1 —CR % and R? < CTy
(see Remark 5.7). It follows that (Kg,, 7g,) also satisfies the ellipticity condition and thus
(Kgy» mg,) s a 0-Harnack Markov chain satisfying the ellipticity condition and we can use
the heat kernel estimates of Theorem 5.4. In the bounds in (5.4)—(5.5), the distance d is now
dy . We observe that, for z € v(y), R/2 <dy(0, z) < CR and (using the doubling property of
¢, and the normalization n(qﬁ%) =1),

R? 1

2 (By (o, 11/%))

t=dy (0,2) "0

(RO 1/ 6=D)
o—C(RY/D) ~ RY
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It follows that

00 RY
Y Bhkgo.)~ Y Ky 0.0+ Y. By~Ty
t=dy (0,z) t=dy (0,7) t>RY

because, for t > R?, we have ké()(O, 2) + ké;)rl(o, z)~ 1, and, for r < R?, By~ 1. Also By €
0
O, D) and ¥ po By~ 125 B8 ~Tu. O

REMARK 5.13. By definition, the quantity Py (o, -) defines a probability measure on
aU. This means that it must be the case that, under the hypotheses of Theorem 5.11,

(5.8) Tudo(0) Y D do(D)pzy ~ 1.

yedU zev(y)

To verify that this is indeed the case, observe (extending ¢ by 0 outside of U and using the
scalar product on L*(X, 7))

(lu, I = K)go), = > (lu(x) —1y(3)(do(x) — do(3)) thxy

{x,y}e€

= Z Z $0(2)hzy-

yeadU zev(y)

It follows that
(5.9) Y > po@uzy =Y (I — Kp)gom = (1— o) Y porr = Ty ' m(gho).
U

yedU zev(y) U

The estimate (5.8) now follows from (5.9) and

do0) ~(U) V2, 7o) ~m(U)'/2.

EXAMPLE 5.14 (Example 4.2, continued). Theorem 5.11 can be applied to the Euclidean
box U = {—N, ..., N}*> C Z? depicted in Figure 3. The explicit Perron—Frobenius eigenvalue
and eigenfunction o, ¢ are given above in Examples 3.1 and 4.2. The square grid Z? is one
of the basic examples of a 2-Harnack graph. It also turns out that (Kg,, 7¢,) is a 2-Harnack
Markov chain on U, which can be proved using Theorem 5.5 with 8 = 2. (This is a theorem
due to Thierry Delmotte [6] in the case 6 = 2.) See, for example, [7], Section 7.2. This gives,
forne{—N,...,N},

N (N+ 1)2 N mn
Pu((0,0), (N +1,m) & 15 008 5 5 00 v Dy
) T mn
= Sin Ccos
2N+ 2(N+1)

1 Tn
~ COS .
(N+1)  2(N+1)

EXAMPLE 5.15. We spell out how the preceding example generalizes in dimension n
when U = {—N, ..., N}". Here the graph Z" is equipped with the edge weight 11, = 1/4n
if 31 |x; — yi| = 1 and 0 otherwise and the vertex weight 7 = 1. As in dimension 2, one can
compute exactly

1
ﬂ0=—<1+cos

(1 eoswm)
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FIG. 4. The gambler’s ruin problem with 3 players: extending the Perron—Frobenius eigenfunction ¢q into a
global N 72 periodic eigenfunction. The function ¢ vanishes at the blue dots.

and
1 TX] TXp
cos £+ COS ————.
(N+1Dn/2 77" 2(N +1) 2(N +1)
Observe that a point y = (y1, ..., y») is on the boundary dU of U if and only if there is a

Jj C{l,...,n} such that y; = N + I and all other coordinates of y are in {—N, ..., N}. For
such a y,

do(x1, ..., xp) =

(N +1)? . T i
Sin 1_[ COS —MMM
(N+1)n MN+Di. 2(N+1)

Py(0,y) =

m+D"JT 2w+n

We end this section with the treatment of the (2-dimensional) 3-player gambler’s ruin
problem depicted in Figure 1.

EXAMPLE 5.16 (The 3-player gambler’s ruin problem). The notation is described in
the Introduction. Theorem 5.11 applies to the 3-player gambler’s ruin problem (see Sec-
tion 6.4). In this case, as in the other examples discussed above, it is possible to compute the
Perron—Frobenius eigenfunction exactly. This is related to the fact that the eigenfunctions of
(Euclidean) equilateral triangles can be computed in closed trigonometric form, a fact first
observed by Lamé. See the related history in [21] and the treatment in [18-20]. We explain
the computation in detail in the square lattice coordinate system for the convenience of the
reader.

First, we compute ¢y o = ¢o and By,o = Bo where U is the domain of the 3-player gam-
bler’s ruin problem described in the Introduction (this is possible in closed form only in
dimension 2). Note that ¢g, being the unique Perron—Frobenius eigenfunction (up to a mul-
tiplicative constant), must be symmetric with respect to swapping the two coordinates. We
extend ¢y into a function defined in the entire square {0, ..., N}? so that the symmetry with
respect to x; + xp = N changes the extended ¢ into —¢g (and we still call this extension
$0). We then extend this function to the entire grid Z? by using translations by NZ?. (See
Figure 4.) We now have a function defined on all of Z? and, by construction, this function is
a NZ? periodic solution of K ¢y = Bogo where K is given for all pairs (x1, x2), (y1, ¥2) € 7?2
by

1/6 if [x; — yi| +|x2 — | =1,
K((x1,x2), (1, y2)) =11/6 ifx; —y1 = y2 —xp = £1,
0 otherwise.
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Global periodic solutions of the equation K¢ = ¢ must be linear compositions of func-
tions of the type ¢'Y* with

1 21,5
B = g(cosa +cosb +2+cos(a — b)), (a,b) € WZ :

Constant functions correspond to a = b = 0. The second smallest eigenvalue for this problem
is

B = l(1 +20052—n>
3 N
with a 6-dimensional real eigenspace spanned by
2wxy . 2mxy . 2m(x1 + xp)
sin

sin , sin ,
N N N

and their cosine counterparts (which we will not use). In this eigenspace, consider the func-
tion

2 2 )
#((x1.x2)) = sin =+ 4 sin 2 _gin 1 4 x2)

. 2mx 2T X2 . 2mxp 2T X1
=sin 1 —cos + sin 1 —cos
N N N N

. 2mxy . 27Xy . 2n(N — (x1 4+ x2))
=sin 4+ sin —+ sin .
N N N

This function vanishes when x; = 0, when x, = 0 and also when x| + x» = N. Furthermore,
by careful inspection, ¢ > 0 in the triangle

UUU = {(x1,x2) :0<x1,0 <xp,x; +x2 < N}.
It follows that it must be the case that

B 1<1+2 2”)
= — COS —
0= 3 N

and

2 . 2mx . 2mx 2 (x1 +x
¢0((x1vx2))=\/§N<sm N1+Sm N2_Sm (x1 2)).

The following uniform two-sided estimate captures some of the essential information re-
garding the behavior of ¢, namely,

1
(5.10) do((x1, x2)) ~ mxwz(m +x2)(N — x1)(N — x2)(N — (x1 + x2)).

This captures all the symmetries of the problem. The value of ¢y at the central point
(IN/4],[N/4]) is roughly % as expected (i.e., 1/+/7(U)). If one approaches any of the three
corners along its median, ¢ vanishes as the cube of the distance to the corner. For the vertical
part of the boundary, {(0, y) : 1 <y < N}, Theorem 5.11 gives,

VPN -y PV —y)?
Of course a similar formula holds for the other two sides of the triangle. Along the diagonal
side {(x, N —x) : 1 < x < N}, the formula reads

x2(N —x)?

N> '
In Section 6.4 we complete the description of harmonic measure, giving approximations valid
for all starting positions.

Py ((IN/41,[N/4]), (x, N = x)) ~
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6. Inner-uniform domains and global two-sided estimates.

6.1. Inner-uniform domains. We now describe a large class of domains for which the
hypotheses of Theorem 5.11 can be verified thanks to the results obtained by the authors in
[7], Section 8. For an inner-uniform domain (described below), we amplify Theorem 5.11 by
giving two-sided estimates of Py (x, y) which are uniformin x € U and y € 9U.

The following definition is well known in the context of Riemannian and conformal ge-
ometry. See [7], Section 8, for a more complete discussion and pointers to the literature. All
the domains discussed in Examples 5.14-5.16 in the previous section are inner-uniform (in a
rather trivial way).

DEFINITION 6.1. A domain U C X is an inner (¢, A)-uniform domain (with respect to
the graph structure (X, €)) if for any two points x, y € U there exists a path y,, = (xg =
X,X1,...,Xx =y) joining x to y in (U, €y ) with the properties that:

1. k< Ady(x,y);
2. Forany j €{0,...,k},d(x;, X\ U) > a(l +min{j, k — j}).

Intuitively, U is an inner-uniform domain if, given any two points x, y € U, one can form
a banana-shaped region between x and y which is entirely contained in U. (See Figure 5
for an illustration.) The following is a simple geometric consequence of the definition of
inner-uniform domains.

LEMMA 6.2. Let U be a finite inner (o, A)-uniform domain. Set
R=max{x e U :d(x,X\U)}.

There are constants ay, A1 depending only on o, A such that, for any central point o such
that d(o, X\ U) = R/2, we have

B(o,a1R) CU C By(o, A1R).
Furthermore, for any point x € U and any r > 0, there is a point x, € U such that
dy(x,x;) < Aymin{r, R} and d(x,, X\ U}) > a;min{r, R}.
REMARK 6.3. In what follows, for each x € U and r > 0, we fix a point x,, with the
properties stated above. The exact choice of these x, among all points with the desired prop-

erties is unimportant. Typically, for » > R, we pick x, = 0. See [7], Definition 8.8, for a proof
of the existence of such a point.

FI1G. 5. An illustration of the inner-uniform condition. Note the banana-shaped region between any two points
inU.
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THEOREM 6.4 ([7], Theorem 8.9 and Corollaries 8.10, 8.23). Fixa € (0, 1] and A > 1.
Assume that (X, €, w, u) is a 2-Harnack graph satisfying the ellipticity condition (5.3) and
that U is a finite inner (a, A)-uniform domain with Perron—Frobenius eigenvalue and eigen-
Sunction By o = Bo, d¢u,0 = ¢o. Then the chain (Ky,, wg,) on (U, €y) is a 2-Harnack chain
with Harnack constant depending only on Cg, the Harnack constant of (X, €, w, ), the
ellipticity constant § and the inner-uniformity constants o, A.

OUTLINE OF THE PROOF. The proof consists in showing that the weighted graph on
(U, €y ) associated with (K, , 74, ) satisfies the doubling condition and the Poincaré inequal-
ity on balls with constant C r%, where C depends only on Cg, 8, o and A. Once this is done,
the result follows from Theorem 5.5 (in the case & = 2 used here, the result is due to Del-
motte). One of the keys to proving the desired doubling and Poincaré inequality on balls is
the following Carleson-type estimate for ¢g. We state this result because of its importance
and also because it allows us to compute the volume for 7, in a more explicit way. [

THEOREM 6.5 ([7], Theorem 8.9). Assume that (X, €, , i) is a 2-Harnack graph sat-
isfying the ellipticity condition (5.3) and that U is a finite inner (o, A)-uniform domain with
Perron—Frobenius eigenfunction ¢o. Then there is a constant Cy depending only on Cy, the
Harnack constant of (X, &, w, 1), the ellipticity constant § and the inner-uniformity constants
o, A such that, for any R > 0, x € U, and x, (defined in Definition 5.12),

max {¢o(»)} < Cueo(x,).
yeBy (x,r)
Moreover, there exists Ay > 0 such that, for any x € U and r € (0,2A1R), the g, volume of
By (x, r) satisfies

> ey X (BGn)ole)

Y€By (x,r)

The following estimates are derived from the properties of ¢g stated above and the ge-
ometry of inner-uniform domains. They will be useful in extracting usable formulas for
P U (t £ X ) y ) M

REMARK 6.6. Theorems 6.5 and 6.4 are stated for 2-Harnack graphs but versions of
these theorems are expected to hold for 6-Harnack graphs as well. Such extensions follow
from the same general line of reasoning used in the 2-Harnack case but also require rather
nontrivial adaptations because they require the use of a cut-off Sobolev inequality (see Def-
inition 5.6). The technical results needed are provided by J. Lierl’s papers, [16, 17]. A good
example in this direction is the Sierpinski gasket with the bottom line removed.

COROLLARY 6.7. There are constants ay, A1, Ay, which depend only on the Harnack
constant of (X, €, , u) and on (a, A), such that for all x,z € U and r > 0,

¢o(x)

al(l+dU(x,Z))_Al < — (p ( ) §A1(1+dU(~x Z))
and, whenever dy(x,z) < Ayrand 0 <s <r,
A
a) < ¢0(xr) A1<—> ! and ay < do(x,) <Al
¢o(xs) — s ¢o(zr)
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REMARK 6.8. The following useful estimate can be derived from this corollary. There
is a constant A/1 > 0 such that, for any x,z € U and 0 < r <dy(x, z),

doxr) _ A <dU(x,Z)>A,1.
¢0(Zr) r

These statements are proved using the properties of ¢p, the inner-uniformity of U and
chains of Harnack balls for ¢pg in U.

6.2. The tale of three boundaries. Before providing a deeper exploration of the exit
positions, it is useful to take a look at the intrinsic boundary of a finite domain U. So
far we have taken the point of view that the boundary of U, dU, is defined as the set of
those points y in the ambient space X such that there is at least one edge {x, y} € € with
x € U. We also extended the intrinsic distance dy so as to define dyy(x, y) when x € U and
y € 90U by setting dy (x, y) =min{l +dy (x,z) : z € U, {z, y} € €}. The attentive reader will
have noticed that this does not define a distance on U U dU, in general, even after setting
dy(x,y)=min{l +d(z,y):z€ U} for x, y € dU. This is because a given point on dU may
be approachable from within U through several very distinct directions. See Figure 6.

It is useful to introduce the extended boundary, 3*U of U. See Figure 7. To justify
this definition, think of the cable graph, which is a continuous analog of (X, ) where
the edges from € are replaced by unit segments. Now, when considering the domain U,
keep all the edges between any two points in U (i.e., the set €y = &N (U x U)) but
keep also the dangling half-edges {x,y}, x € U, y € X \ U each of which carry a edge
weight wyy. Each of these so-called dangling half-edges defines a distinct boundary point
in0*U ={y; ={x,y}:x €U,y € X\ U}. In some sense, this is the largest natural boundary
we can associate to U viewed as a domain in (X, ). By using this boundary we can record
not only the exit point y but also the point x representing the position in U from which the
exit occurred. Now, it is clear that the space U* = U U 9*U can be equipped with a metric
dy that extends the inner metric defined on U in a natural way. Here we think of each dan-
gling edge as a unit interval open on one end and we close that interval by adding the missing
boundary point named y} = {x, y}.

FI1G. 6. A domain U, where the blue dots indicate absorbing boundary points. Consider the central point, where
the three interior absorbing lines meet. To study the probability that a random walk is absorbed at the central
point, we need to consider the three very different types of paths it could have taken: from above, below or the
right. Can we define an alternative notion of the boundary of U that resolves this problem?
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FIG. 7. The extended boundary 3*U defined by dangling edges. Note that the central point has three dangling
edges pointing toward it, indicating the three steps that a random walk could take at the time it’s absorbed.

Each extended boundary point is attached to exactly one vertex x € U and each original
boundary point y € dU corresponds to a finite collection of extended boundary points {y} :
x € v(y)} parametrized by v(y), the set of neighboring points to y in U (see Section 2).

Here, we are mostly interested in the original boundary and the extended boundary serves
as a useful tool in studying the harmonic measure and Poisson kernel for U. Neverthe-
less, we should also mention the intrinsic boundary 0*U which is associated with the data
(U, ¢y, 7|y, uley,, Ku). See Figure 8. This data suffices to tell which points in U have at
least one neighbor in X \ U, because at such a point x, >, Ky(x, y) < 1. But it retains no
information about the individual dangling edges and their respective weights. For any point
x € U such that }°, Ky (x, y) < 1, we introduce an abstract boundary point x* which we
may think of as a cemetery point attached to x. Each of the abstract boundary points x* is
attached to x by an abstract boundary edge {x, x*} so that the new graph

(UUaU, €p), € =¢yU{{x,x*}:x*€d*U},

FI1G. 8. The intrinsic boundary 9*U. The marked dots correspond to those points x € U to which an abstract
boundary point x® is attached. The attached abstract boundary points x® are not shown explicitly. In this case,
the central point is gone.
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is a connected graph with subgraph (U, ). It is possible to construct the intrinsic boundary
d°U from the extended boundary 9*U. Namely, each point x* € 3°U corresponds to the
collection {y; = {x, y} : y € 90U} of extended boundary points. The edge (x, x*) in €}, can
be given the weight Zy:ng:{x’y} Mxy.

Finally, we note that, in general, there is no good direct relation between the natural bound-
ary dU and the intrinsic boundary 9°U. Each of them can be seen as a different contraction
of the extended boundary 0*U. In some applications, a finite set U is given equipped with
a sub-Markovian kernel Ky without reference to a larger, ambient graph X. Introducing the
intrinsic boundary allows us to put such examples in the framework of this paper.

6.3. Hitting probabilities for the extended boundary 3*U. We now explain some of the
consequences of the theorems of Section 6.1 on Py (¢, x, y) within an inner-uniform do-
main U. The first thing to note is that Theorem 5.11 applies, uniformly, to all finite inner
(o, A)-uniform domains in a given underlying structure (X, &, w, u) that is a 2-Harnack
graph. In order to get a more complete result which allows for varying a starting point and a
fixed time horizon ¢ (Theorem 5.11 gives a two-sided estimate only for Py (o, y)), we need
to estimate (see Theorem 4.1)

t—1
Py(t,x,y) =do(x) D _B5 Y do(@kl (x, ) zy.

=0 zev(y)

It is easier and more informative to first consider this question in terms of the extended
boundary 0*U and that is how we now proceed. Any point y’ = {z, y} € €NU x U =93*U
can be reached only from the point z = z,,. We set

t—1 1—1
pult.x. y5) =D ki (x, D zy /() = do(x)po(2) Y Bk, (¢, D tzy /7 (¥)
1=0 =0

so that

put.x,y)= > pult.x.y}).
zev(y)

The quantity py (¢, x, y) is equal to O unless ¢ > 1 + dy (x, z) and we write

t—1

pult.x.y}) =do)do() D Bokl (X, iy /7 (Y).

f=dy (x,y)—1

For clarity, we split the problem into several cases (represented in the next four lemmas)
even though these different cases can be captured by one final estimate, Theorem 6.15. The
exponential term in the estimate on Py (¢, x, y}) depends on ¢ and dy (x, z). The lemmas
distinguish between four different domains (depending on ¢t and dy (x, z) and with some
nonempty intersections), and highlight the different behavior of the exponential term in the
estimate for Py (z, x, y;" ) within each of these domains. In Lemma 6.9, the exponential term
plays an important role in the estimate; in Lemma 6.10, the exponential term is still there, but
less important; and in Lemmas 6.11 and 6.13, the exponential term disappears.

All four of the following lemmas (Lemmas 6.9, 6.10, 6.11 and 6.13) take place under
the assumptions of Theorem 6.5: (X, €, 7, u) is a 2-Harnack graph satisfying the ellipticity
condition (5.3) and U C X is a finite inner («, A)-uniform domain with Perron—Frobenius
eigenfunction ¢g. Observe that, by construction and because of the ellipticity assumption,

s < Muv <1
) T
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LEMMA 6.9 (1 +dy(x,zy) <t < (1 +dy(x, zy))z_e). Under the assumptions of Theo-
rem 6.5, fix € > 0 and assume that x € U, y} € *U and t are such that 1 +dy (x,z) <t <

(1 + dU (xs Z))z_éa 7= Zy Then

2 2
e—Crdu(x.2) /tﬂzy e—C1du(x,2) /tﬂzy

7 (B(x, /1) 7(B(x, /1))
PrROOF. Ift =1, we must have x = z and it follows that

Py(Lx,yi) = K(x,y) = pxy/m(x) ® L & 7w (y) /7 (x)

by the ellipticity assumption. In what follows, we assume that # > 1.
Recall that the hypotheses imply that So > 1 — C/R?. Because

t <d*(x,y) < (A1R)?,

we can ignore the factors ﬁg for £ <t because they are roughly constant. It now suffices to
bound

< Py(r,x,y}) <

t—1
> kg (x,2).

t=dy (x,2)

For the upper bound, Theorem 5.4 gives (with constants ¢, C changing from line to line
and the point x, defined in Lemma 6.2)

t—1
$o@) Y kg (x,2)

L=dy (x,2)
-1 2
Coo@) 5 T@BLnywd) ey
= P 2
m(pylg, (x,ﬁ)) e=dy (x,2) ”(¢013U(x,ﬁ))

C¢o(2) S Teduee
< t/€) e UL
- ¢0(xw)2ﬂ(3(x,\/;)) e:dg(xﬂ( e

B Coo@dy (¥, 2?  _ayir.0/i
do(x ;)2 (B(x, /1))

< Coo(x) efch (x,2)%/t
~ ¢o(x )2 (B(x, V1))

< c efcdy(x,z)2/t'
~ w(B(x, V1)
The lower bound follows by similar computations and estimates. The only tricky part is
that we only have a heat kernel lower bound on the sum kéo + kéoﬂ . This is perfectly suited for

the desired result, except when t = 1 + dy (x, z), in which case the sum ZE;ZU 0.2) kéo (x,2)
contains exactly one term. This case is handled by direct inspection and using the ellipticity
hypothesis. [

LEMMA 6.10 (1 +dy(x,zy) <t < A2(1 +dy(x, zy))z). Under the assumptions of The-
orem 6.5, fix Ay and assume that x € U, y;‘ € dU and t are such that 1 +dy(x,z) <t <

Ay(14+dy(x,2))%, z=zy. Then

—Cydy (x,2)*/t
t 1au
C1 ¢0(x)¢0(z)e Mzy < PU(Z,X y*)

< Crtdo(x)o(2)e 10D 1y
do(x /) (B(x, /1)) = 'Yz

T g0l )P (B(x, VD)
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PROOF. Write (with constants ¢, C changing from line to line)

t—1
P02 Y,k (x.2)

t=dy(x,7)
- 2
C¢o(2) = 7T(¢013U(x,ﬁ))efch(x,z)z/z

= 2 2

”(¢013U(x,¢?)) L=dy (x,z) ”(¢013u(x,ﬁ))

t—1

- C2¢0(Z) Z (I/Z)Ke—cd[/(x,z)z/(

¢0(Xﬁ) m(B(x, \/;)) t=dy (x,2)

Coo(2)t efcdu(x,z)z/t.

= G0 )2 (B, V1)

A matching lower bound follows similarly. [J

LEMMA 6.11 ((1 +dy(x, zy))2 <t < A3R?). Under the assumptions of Theorem 6.5,
fix Az and assume that x € U, y} € 0U and t are such that (1 + dy(x, 2))% <t < A3R?,
7 =2zy. Then, setting d = dy (x, z),

Pyt x. )~ LHI0OG@us [ 1 s doba’n (B, d)
ST a2 (B(x, d)) (I+d?) =, gox 2n (B, VO |

PROOF. This is clear based on the proof of the previous estimate. [J

DEFINITION 6.12. Let Ty be such that o =1—1/Ty. For x e U, y; € 90U and t >
d(x,z)%, setd =dy(x,z), V(x,d) =n(B(x,d)) and

0 forl+d<rt<d>
2V(x,d) < 1
¢o(xa) (zx, ) ford® <1 < R,
H(t,x,2) =1+ L+d> = go(x p2m(B(x, VO))
$o0(xa)*V (x,d) (min{r, Ty} — R*)+ >
H(R?, x, for R? < 1.
(R*,x,2) + T $0(0)2n (0) or R* <

LEMMA 6.13 (1 +d(x, zy)2 <t). Under the assumptions of Theorem 6.5, let Ty be such
that Bpo=1—1/Ty. Forallx e U, y¥ € U and t > dy (x, 2%,z =2Zy,
L U +dux, 2)?)o(xX)0(2) 14y
$0(Xay (x,2)) > (B(x, dy (x,2)))

Py(t,x,yY)

4

H(t,x,z).

The proof is a repetition of previous arguments.

REMARK 6.14. In many cases (e.g., for any finite inner-uniform domain U in Z", n # 2,
and many particular examples in Z2), we automatically have

Z’: 1 N 1+ d>
72 Pox )2 (B(x, V)  do(xa)?m(B(x,d))’
where d = dy (x, z). In such cases, the function H (x, t) satisfies

1 ford*> <t < R?,
Hit.x,2)~ +¢o(xd>2V(x,d) (min{r, Ty} — R?) 4
1+d? ¢0(0)?m(U)

vt € [2d°, R?],

for R> <t,
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and Lemma 6.11 simplifies to give

o (L+du(x, 9°)do)do @)y
$0(Xay (x.0)* T (B(x, dy (x, 2))

Py(t,x,y)
for dy (x,z)? <t < A3R>.

The following theorem is proved by inspection of the different cases described above. We
also use the fact that, for any ¥ € R and w > 0 there exists 0 < ¢ < C < 400 such that, for
all0 <t < d?,

2
ce 2081t (dT)Ke—wdz/t < Ce— @1,

THEOREM 6.15 (Global estimate of Py (t,x,y)). Under the assumptions of Theo-
rem 6.5, forall x e U, y; € 0*U,z=zy€U,d =dy(x,z) and t > 1 +d, with H(t,x, 7)
from Definition 6.12, the hitting probability of y before time t for the chain started at x,
P(t,x,y}), is bounded above and below by expressions of the form

o (L4 )b ()o@ ey
¢o(xq)?*m(B(x,d))
where the constants c1, ca differ in the lower bound and in the upper bound and x4 is defined

in Lemma 6.2. These constants depend only on the Harnack constant of (X, €, , u), the
ellipticity constant § and the inner-uniformity constants o, A of U.

2
H(t,x,z)e 24/,

We conclude this section with two more statements. The first concerns the central point
o and gives a two-sided estimate for Py (¢, o, y;") that holds for all ¢t > dy; (o, yj) and all ex-
tended boundary points y*. The second gives a two-sided estimate for the harmonic measure
Py (x, y}) that holds for all x € U, y} € 9;;.

THEOREM 6.16 (Hitting probabilities from the central point o). Fix o € (0, 1] and
A > 1. Assume that (X, €, , u) is a 2-Harnack graph satisfying the ellipticity condition (5.3)
and that U is a finite inner («, A)-uniform domain with Perron—Frobenius eigenvalue and
eigenfunction Bo, ¢o with n(qﬁ%) =1 and recall that Ty = (1 — ,Bo)_l. There are constants
¢, C € (0, o0) depending only on the Harnack constant of (X, €, i, ), the ellipticity constant
8, and the inner-uniformity constants a, A of U such that, for all t > 0 and y} € 9*U,

sz¢0(Z) e_CR2/,
Jr(U)

where o is a central point as defined in Definition 5.12.

sz¢0(z)e—cR2/z

NZAUD) ’

cmin{t, Ty} < Py(t,0,y}) < Cmin{t, Ty}

THEOREM 6.17 (Harmonic measure from an arbitrary starting point). Fix « € (0, 1] and
A > 1. Assume that (X, €, , ) is a 2-Harnack graph satisfying the ellipticity condition
(5.3) and that U is a finite inner (o, A)-uniform domain with Perron—Frobenius eigenvalue
and eigenfunction Po, ¢o with n((l)g) =1 and set Ty = (1 — Bo)~'. There are constants
¢, C € (0, o0) depending only on the Harnack constant of (X, €, i, ), the ellipticity constant
8 and the inner-uniformity constants o, A of U such that, for all x € U and y} € 9*U,

R? 1
Py (x, y7) ~ ¢o(x)do(2) ey Tu + :
U(X )’,) ¢o(x)Po(z)u y: U l:d%,zﬂ ¢0(Xﬁ)2ﬂ(3(x, ﬂ))]
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LEMMA 6.18. Assume that the function V : (0, N] — (0, 0o) satisfies volume doubling,
V(Q2r)<CV(r),
quasi-monotonicity,
V(is) <CV(r)
and
ety

for some C > 0 and for all 1 <s <r < N. Then we have

N? 2

1 1+d
Vde(1,N/2), ~ :
<A VWY V@)

PROOF. Write

Mo 1 M v
ZVM) V(d)ZV(f)

{=d? {=d?
2logy(N/d) 2\ 2+€
C d
V@ L X (55)
V(d) o a2k
C'd?
V)

The matching lower bound follows from the quasi-monotonicity of V with d < N /2 because
it implies that the sum contains at least d? terms of size at least C /V(d). O

REMARK 6.19. Lemma 6.18 is often useful in applying Theorem 6.17 because it sim-
plifies the conclusion of the theorem. Specifically, we want to apply Lemma 6.18 to the func-
tion r ¢0(xr)2V(x, r), where V(x,r) = n(B(x,r)). Remember that ¢o(xk)2V(x, k) ~
n(qbgl B(x,k)) and Theorems 6.4 and 6.5 state that this function is doubling (it is also clearly
quasi-monotone). In fact, this function is the product of two functions r (/50(xr)2 and
r — V(x,r), each of which is quasi-monotone and doubling. If any one of these two func-
tions, by itself, satisfies (6.1), the product does also. If say, V(x,r) = r2, then it suffices to
establish that ¢g(x;)/¢o(xs) > c(r/s)" for some 1 > 0. In any such situation, the conclusion
of Theorem 6.17 simplifies to read

1 +dy(x,2)? }

62 Py(x, )~ Sk '
6.2) U (x, yF) & do(x)do(2) y{ U+¢O(Xdu(xﬁz))2n(3(x,dU(X,Z)))

6.4. Examples.
Three-player gambler’s ruin problem. We return to Example 5.16, the three-player gam-
bler’s ruin problem which evolves in the triangle
={(x1,x2):0<x1,0 <x2,x1 +x2 < N}.

In Example 5.16 we gave approximations to the harmonic measure starting from N /4, N /4.
We here complete this, giving uniform estimates from any start. The natural symmetries of the
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FI1G. 9.  The gambler’s ruin problem with 3 players, with starting points x in yellow and exit points y in blue. If
we know Py (x, y) for all yellow x and blue y, then all other possibilities Py (x', y') can be obtained by symmetry.

problem imply that each of the three corners of the triangle are equivalent (under appropriate
transformations) so we can focus on the the corner at the origin. We will describe two-sided
bounds on the harmonic measure Py (x, y) when x = (x, x2) with 0 < x1,0 < x2, 2x1 4+ x3 <
N, and y = (y1,0), 0 < y; < N. See Figure 9. In this example, R ~ N, Ty ~ N2, Mzy A1,
7 (B(x, r)) ~ r2. Each boundary point y corresponds to either one or two extended boundary
points. For any y which has two extended boundary points {z, y} and {z’, y}, the internal
points z, 7’ are neighbors in U. This means there is no real need to distinguish them when
estimating Py (x, y). For each y = (y1,0), 0 < y; < N, we set zy, = (y1, 1) and 2’ = (y; —
1, 1) with the convention that z(j o) = Z/(I,O) =(1,1) and z(n—1,0) = Z/(N—I,O) =(N-2,1).
Next, we appeal to estimate (5.10) to control ¢g. For z =(z1,1),0<z1 <N — 1,

$0(2) & N 021 (N — z1)*.
For x = (x1, x2) withO < x1,0 < x2,2x1 +x2 <N,
$0(x) & N Ox1x2(x1 +x2)(N — (x1 +x2)) (N — x2).

Remark 6.19 applies to this example and we can use (6.2). Assume first that d = dy (x, zy) >
N /8. In this case, we have

Py (x, y) ~ N*¢o(x)o(zy)
~ N7 0% xa (1 4 x2) (N — (x1 4+ x2)) (N — x2)yi (N — y1)*.
Assume instead that d = dy (x, zy) < N /8. In that case |x; —z1| + [x2 — 1| <2d < N/4 and
do(xq) ~ ¢o((x1 +d, x2 +d)). It follows that
(1+d%
$o(xq)>(1 +d?)
~ x1x2(x1 + X2)y?
(x1 +d)2 (2 + d)2(x1 + x2 +2d)?°

It is possible to summarize the two cases via one formula. Namely, for all x = (x1, xp) with
0<x,0<x2,2x1+x2<Nandy=(y1,0),0 <y <N,d=dy(x,zy),

Py (x, y) ~ ¢o(x)do(zy)

x122(x1 +x2) (N — (x1 + x2))(N — x2)y? (N — y1)?

6.3 Py(x,y)~
6.3) U, y) N4+ d)2 (2 + d)2(x1 + x2 + 2d)?




892 P. DIACONIS, K. HOUSTON-EDWARDS AND L. SALOFF-COSTE

Note that, despite appearances, y appears in both the numerator and the denominator of
(6.3). For example, if x = (x1,x2) = (1, 1) (i.e., the random walk starts in the lower left
corner), then

(N —y1)?

Py(x,y)~
N2yit

where y = (y1, 0). Thus, absorption is most likely for small y; and falls off like y‘f when yj
is of order N. Similarly, if x = (x1, x2) = (1, N —2) (i.e., the random walk starts in the upper
left corner), then

2 2
YitN —y1)
Py(x,y)~ IT,
where y = (y, 0). Recall from Example 5.16 that
2 2
YViWN = y1)
Py(x,y)~ ==

NS
when x = (x1, x2) = ([N /4], [N/4]) and y = (y1, 0), which aligns with (6.3).

6.4.1. The square and cube with the center removed. Consider the cube with the center
removed,

U={-N....,N"\{,....0)}

in dimension n > 2. The boundary is

8U={(0,...,O)}U<L}:JE>,

Fii={x=;)]:xj€{=N,...,N}for j #i;x; =+(N + D}.

Here, X = Z" is equipped with its natural edge set € = {{x, y}: > 7 |x; — yi| = 1}. The
measure 7 is the counting measure and we can take either p,, = % (in which case the chain
is periodic of period 2) or an aperiodic version with iy, = %, k € (2,4), say. In any of
these cases, (X, &, m, u) is a 2-Harnack graph and the Perron—Frobenius eigenvalue Sy of U
satisfies

1
l—ﬂ()%m

This translates into Ty &~ N2. It is a bit more challenging to describe a good global two-sided
estimate for the Perron—Frobenius eigenfunction ¢q. The estimates differ in dimension n > 2.
When n > 3 (recall the normalization JT((]%) = 1), we have the following estimate. (See [7],
Section 9.3, for the treatment of a similar example.)

~ ! 1 - |xi |
w00 s (1= G |x|>"2)U<1 i)

1 £ |xi|
~n L0y () 17 ]:[(1 bt 1).

In this two-sided bound, |x| = >_7 |x;| and the implied constant depends on the dimension n.
Similarly, for n = 2,

|x1] ><1 |x2] )10g(1+|x|)

1
~—(1- - .
do(x) N( N+1 N+1)Tog(1+N)
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We now use these estimates to state two-sided bounds for Py (x, y) for x e U, y € dy.
We can let x be arbitrary in U and assume that y belongs either to the top face F,, = {y =
bV, N+1):ye{—N,..., N1 oris equal to the central point 0 = (0, ..., 0).

When n > 3, Remark 6.19 applies and Theorem 6.17 gives (see (6.2)

1+ |x —z)? }
Po(xXjx—z)>(L+|x =z |

At y =0 and for each of its 2n neighbors z with all coordinates zero except one equal to £1
(recall that the point x isin U = {—N, ..., N}"\ {0}),

Py(x,y}) ~ <l>o(x)<l>0(z){N2 4

n

_ | | 2—
Pu(x,02) & ooV 21 & T (1= 0 e
1 N+1

At a point y on the top face F,, there is a unique neighbor z of y lying in U and

i -1 i
U el U ==
(N + DT = B2

Py(x,y)~

As an illustrative example, consider the case when k of the coordinates of x are equal to
N + 1 —r, £ of the first n — 1 coordinates of y are equal to N (by assumption y, = N + 1),
the remaining coordinates of x and y are less than N /2 and |x — y| is greater than N /2. For

such a configuration,
1 n—14¢ r k
Pyx,y)~|—— )
b ) (N+1) (N+1>

In the case n = 2, we need to understand the quantity

8N? 1
Sx,d) = )
&=L D

where d =dy(x,z). Whend > N/4, S(x,d) =~ N2.Whend < N /4 and z is a neighbor of 0,

8V 1+ log(1 + 2N/d)

S(x,d)~ (NlogN)* > ———— ~ (NlogN)* '
(x,d) ~ (N log )%E(log@z (Nlog )(1+logN)(l+10g(1+d))

When 0 <d < N /4 and y is on one of the four faces F;,i =1, 2, we have |x; — y|| < N/4,
|x2 — y2| < N/4 and this implies |x| > N /2. Since one of y;, y» equals =(N + 1), it follows
that one of |x; — y;| equals N + 1 — |x;| which must be less than d + 1. Now, for £ > d?, we
have

$oCryp)  (N+1- x|+ VON+1-|nl+vO 11+
o (xq) (N+1—|x1|+dD(N+1—|x2|+d) ~—2 14d°

Indeed, assume for instance that fori =1, N+ 1—|x{| <d+1. Then, for/€>d > N —|x1],
(N+1—|xi]+ VO +1— |x2] +/0) - N+1— x|+~
(N+1—-|x1|+d)(N+1—|x2]+d) — N+1—|x1|+d

N 14+t
=201 +d)
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Now write

do(xa)*(1 +d)?

S(x,d
()= (l—i-d)2<z5o(xgz)2 Z = po(x p)*(1+0)

C 1+d
= U+ d)2po(xa)2 Z(l + f)
. C
T doa)?’
The conclusion is that, when y = 0,

1+ log(1 +2N/d)

S(x,d)~ N*log N
(x.d) & T Y log(1 + d)

and

PU(x,O)%(l— 1] )(1_ |le) 1+ log(1 4+ 2N/|x)

N+1 N+1/1+1logN)(1+1log(l+ |x])
When y is on Fi;,i =1, 2, whereas for y on one of the faces Fi;,i =1, 2,

N2

P = B

S(x,d)~ =d
( N+1T

and

(1 — (1 — g2bya = Wby - Bal=ly jog (1 + 1x))

(- %W)Z(l — %)zlog(l +N)

Py(x,y)~

6.5. Conclusion. For reversible Markov chains killed at the boundary of a finite subdo-
main U, the Doob-transform technique reduces estimates of the Poisson kernel (harmonic
measure) and its time-dependent versions to estimates of a reversible ergodic (except per-
haps for periodicity) Markov chain, where the estimates are determined explicitly in terms of
the Perron—Frobenius eigenfunction ¢g. In general, neither the Perron—Frobenius eigenfunc-
tion nor the resulting ergodic Markov chain are easily studied. However, when the original
Markov chain (or, equivalently, its underlying graph) satisfies a parabolic Harnack inequality,
uniformly at all locations and scales, and the finite domain U is an inner-uniform domain,
it become possible to reduce all estimates solely to a good understanding of the Perron—
Frobenius eigenfunction ¢g. See, Theorems 5.11 and 6.17. When the finite domain U has a
reasonably simple geometry, a variety of relatively sophisticated tools are available to deter-
mine the behavior of ¢g and this leads to sharp two-sided estimates for the Poisson kernel
and its time dependent variants.

In many cases of interest, global estimates of the Perron—-Frobenius eigenfunction ¢q re-
main a difficult challenge. The results proved here provide further justifications for attempting
to tackle this challenge. The gambler’s ruin problem with four (or more) players is a good
example of such a problem. It is amenable to the techniques developed above and it is pos-
sible to show that the function ¢¢ vanishes in a manner similar to different power functions
near distinct parts of the boundary. In this and other similar examples, computing the various
exponents and putting together these bits of information to get a global two-sided estimate of
¢ is a challenging problem.



GAMBLER'’S RUIN ON INNER UNIFORM DOMAINS 895

Acknowledgments. We thank Mackenzie Simper for helpful comments on a draft of this
article.

The first author was partially supported by NSF Grant DMS-1954042.

The second author was partially supported by NSF Grants DMS-0739164 and DMS-
1645643.

The third author was partially supported by NSF Grant DMS-1707589.

(1]

(2]
(3]
(4]

(5]

(6]
(7]
(8]
(9]

(10]
(11]

[12]
[13]

[14]

(15]
(16]
(17]
(18]
[19]
(20]
(21]

(22]

(23]

(24]

REFERENCES

BArRLOW, M. T. (2017). Random Walks and Heat Kernels on Graphs. London Mathematical Society
Lecture Note Series 438. Cambridge Univ. Press, Cambridge. MR3616731 https://doi.org/10.1017/
9781107415690

BARLOW, M. T. and BASS, R. F. (2004). Stability of parabolic Harnack inequalities. Trans. Amer. Math.
Soc. 356 1501-1533. MR2034316 https://doi.org/10.1090/S0002-9947-03-03414-7

BENAIM, M. and CLOEZ, B. (2015). A stochastic approximation approach to quasi-stationary distributions
on finite spaces. Electron. Commun. Probab. 20 1-14.

COLLET, P., MARTINEZ, S. and SAN MARTIN, J. (2013). Quasi-Stationary Distributions: Markov Chains,
Diffusions and Dynamical Systems. Probability and Its Applications (New York). Springer, Heidelberg.
MR2986807 https://doi.org/10.1007/978-3-642-33131-2

COVER, T. M. (1987). Gambler’s ruin: A random walk on the simplex. In Open Problems in Commu-
nication and Computation (T. M. Cover and B. Gopinath, eds.) 155-155. Springer, New York, NY.
https://doi.org/10.1007/978-1-4612-4808-8_46

DELMOTTE, T. (1999). Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat.
Iberoam. 15 181-232. MR1681641 https://doi.org/10.4171/RM1/254

Di1AcoNIs, P., HOUSTON-EDWARDS, K. and SALOFF-COSTE, L. (2019). Analytic-geometric methods for
finite Markov chains with applications to quasi-stationarity. Available at arXiv:1906.04877.

DIACONIS, P. and MICLO, L. (2015). On quantitative convergence to quasi-stationarity. Ann. Fac. Sci.
Toulouse Math. (6) 24 973—-1016. MR3434264 https://doi.org/10.5802/afst. 1472

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications. Wiley Series in Probability
and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York.

FERGUSON, T. (1995). Gambler’s ruin in three dimensions. Unpublished manuscript.

GRIGOR’YAN, A. (2018). Introduction to Analysis on Graphs. University Lecture Series 71. Amer. Math.
Soc., Providence, RI. MR3822363 https://doi.org/10.1090/ulect/071

GRIGOR’YAN, A. and TELCS, A. (2002). Harnack inequalities and sub-Gaussian estimates for random
walks. Math. Ann. 324 521-556. MR1938457 https://doi.org/10.1007/s00208-002-0351-3

GYRYA, P. and SALOFF-COSTE, L. (2011). Neumann and Dirichlet heat kernels in inner uniform domains.
Astérisque 336 viii+144. MR2807275

HAJEK, B. (1987). Gambler’s ruin: A random walk on the simplex. In Open Problems in Communi-
cation and Computation (T. M. Cover and B. Gopinath, eds.) 204-207. Springer, New York, NY.
https://doi.org/10.1007/978-1-4612-4808-8_56

KMET, A. and PETKOVSEK, M. (2002). Gambler’s ruin problem in several dimensions. Adv. in Appl. Math.
28 107-118. MR1888839 https://doi.org/10.1006/aama.2001.0769

LIERL, J. The Dirichlet heat kernel in inner uniform domains in fractal-type spaces. Potential Anal. To
appear.

LIERL, J. (2015). Scale-invariant boundary Harnack principle on inner uniform domains in fractal-type
spaces. Potential Anal. 43 717-747. MR3432457 https://doi.org/10.1007/s11118-015-9494-1

MCcCARTIN, B. J. (2003). Eigenstructure of the equilateral triangle. I. The Dirichlet problem. SIAM Rev. 45
267-287. MR2010379 https://doi.org/10.1137/S003614450238720

MCCARTIN, B. J. (2007). Eigenstructure of the equilateral triangle. IV. The absorbing boundary. Int. J.
Pure Appl. Math. 37 395-422. MR2335589

MCCARTIN, B. J. (2010). Eigenstructure of the discrete Laplacian on the equilateral triangle: The Dirichlet
& Neumann problems. Appl. Math. Sci. (Ruse) 4 2633-2646. MR2729561

MCCARTIN, B. J. (2011). Laplacian Eigenstructure of the Equilateral Triangle. Hikari Ltd., Ruse.
MR2918422

PINSKY, R. G. (1995). Positive Harmonic Functions and Diffusion. Cambridge Studies in Ad-
vanced Mathematics 45. Cambridge Univ. Press, Cambridge. MR1326606 https://doi.org/10.1017/
CBO09780511526244

REDNER, S. (2001). A Guide to First-Passage Processes. Cambridge Univ. Press, Cambridge. MR1851867
https://doi.org/10.1017/CB0O9780511606014

STIRZAKER, D. (2004). Tower problems and martingales. Math. Sci. 19 52-59.


http://www.ams.org/mathscinet-getitem?mr=3616731
https://doi.org/10.1017/9781107415690
http://www.ams.org/mathscinet-getitem?mr=2034316
https://doi.org/10.1090/S0002-9947-03-03414-7
http://www.ams.org/mathscinet-getitem?mr=2986807
https://doi.org/10.1007/978-3-642-33131-2
https://doi.org/10.1007/978-1-4612-4808-8_46
http://www.ams.org/mathscinet-getitem?mr=1681641
https://doi.org/10.4171/RMI/254
http://arxiv.org/abs/arXiv:1906.04877
http://www.ams.org/mathscinet-getitem?mr=3434264
https://doi.org/10.5802/afst.1472
http://www.ams.org/mathscinet-getitem?mr=3822363
https://doi.org/10.1090/ulect/071
http://www.ams.org/mathscinet-getitem?mr=1938457
https://doi.org/10.1007/s00208-002-0351-3
http://www.ams.org/mathscinet-getitem?mr=2807275
https://doi.org/10.1007/978-1-4612-4808-8_56
http://www.ams.org/mathscinet-getitem?mr=1888839
https://doi.org/10.1006/aama.2001.0769
http://www.ams.org/mathscinet-getitem?mr=3432457
https://doi.org/10.1007/s11118-015-9494-1
http://www.ams.org/mathscinet-getitem?mr=2010379
https://doi.org/10.1137/S003614450238720
http://www.ams.org/mathscinet-getitem?mr=2335589
http://www.ams.org/mathscinet-getitem?mr=2729561
http://www.ams.org/mathscinet-getitem?mr=2918422
http://www.ams.org/mathscinet-getitem?mr=1326606
https://doi.org/10.1017/CBO9780511526244
http://www.ams.org/mathscinet-getitem?mr=1851867
https://doi.org/10.1017/CBO9780511606014
https://doi.org/10.1017/9781107415690
https://doi.org/10.1017/CBO9780511526244

	Introduction
	Basic computations
	Spectral theory
	General results based on the Doob transform
	Harnack Markov chains and Harnack weighted graphs
	Inner-uniform domains and global two-sided estimates
	Inner-uniform domains
	The tale of three boundaries
	Hitting probabilities for the extended boundary *U
	Examples
	Three-player gambler's ruin problem
	The square and cube with the center removed

	Conclusion

	Acknowledgments
	References

