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Gambler’s ruin estimates can be viewed as harmonic measure estimates
for finite Markov chains which are absorbed (or killed) at boundary points.
We relate such estimates to properties of the underlying chain and its Doob
transform. Precisely, we show that gambler’s ruin estimates reduce to a good
understanding of the Perron–Frobenius eigenfunction and eigenvalue when-
ever the underlying chain and its Doob transform are Harnack Markov chains.
Finite inner-uniform domains (say, in the square grid Z

n) provide a large
class of examples where these ideas apply and lead to detailed estimates. In
general, understanding the behavior of the Perron–Frobenius eigenfunction
remains a challenge.

1. Introduction. Two players are involved in a simple fair game that is repeated, inde-
pendently, many times. Assume that the total amount of money involved is N and that we
follow Xt , the amount of money that player A holds at time t . We can view Xt as performing
a simple random walk on {0,1, . . . ,N} with absorbing boundary condition at both ends. The
classical gambler’s ruin problem asks for the computation of the probability that A wins (i.e.,
there is a t such that Xt = N and Xk �= 0 for 0 ≤ k ≤ t) given that X0 = x. Call this proba-
bility u(x). Then, u(0) = 0, u(N) = 1, and, for 0 < x < N , u(x) = 1

2(u(x − 1) + u(x + 1)).
In a different language, u is the solution of the discrete Dirichlet problem on {0, . . . ,N}{

�u = 0 on U = {1, . . . ,N − 1},
u = φ on ∂U = {0,N},

with boundary function φ(0) = 0 and φ(N) = 1, and Laplacian

�u(x) = u(x) − 1

2

(
u(x − 1) + u(x + 1)

)
.

Because the only harmonic functions on the discrete line are the affine functions it follows
immediately that u(x) = x/N . For example, if you have $1 and your opponent has $99, the
chance that you eventually win all the money is 1/100 (see [9], Chapter 14, for an inspirational
development). This naturally leads to the question: how should the gambler’s ruin problem
be developed with more players?

Thomas Cover in [5] gives a multiplayer version of the gambler’s ruin problem using
Brownian motion. It is solved using conformal maps in the 3-player (i.e., 2-dimensional)
case in a short note of Bruce Hajek [14] that appears in the same volume as Cover’s article.
(For another description of 3-player gambler’s ruin, see [10].) The discrete 3-player version
can be described as follows. (See Figure 1.) Call the players A, B , C. Let N be the total
amount of money in the game and X∗ be the amount of money that player ∗ has at a given
time so that XA + XB + XC = N . At each stage, a pair of players is chosen uniformly at
random; then these two players play a fair game and exchange one dollar according to the
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FIG. 1. The gambler’s ruin problem with 3 players.

outcome of the game. Standard martingale arguments show that the chance that player A, B

or C winds up with all the money (given that they start out at x1, x2 and x3) is, respectively,
x1/N , x2/N and x3/N . Starting at N/4, N/4, N/2, Ferguson [10] shows that the chance that
C is the first eliminated is asymptotically 0.1421. . . . We consider what happens the first time
one of the players is eliminated. How does the money divide up among the remaining two
players and how does this depend on the starting position?

From this description it follows that the pair (XA,XB) evolves on

U = {
(x1, x2) : 0 < x1,0 < x2, x1 + x2 < N

}
,

with

∂U = {
(x1, x2) : x1 = 0,0 < x2 < N

}
∪ {

(x1, x2) : x2 = 0,0 < x1 < N
}

∪ {
(x1, x2) : 0 < x1,0 < x2, x1 + x2 = N

}
,

according to a Markov kernel given by

K
(
(x1, x2), (y1, y2)

) =

⎧⎪⎪⎨
⎪⎪⎩

1/6 if |x1 − y1| + |x2 − y2| = 1,

1/6 if x1 − y1 = y2 − x2 = ±1,

0 otherwise,

for pairs (x1, x2) ∈ U , (y1, y2) ∈ U ∪ ∂U . Here, we imagine that this Markov chain starts
somewhere in U , say at (xA, xB), and runs until it first reaches a point on ∂U . We are inter-
ested in the probability that the exit point is (yA, yB) given the starting point (xA, xB). Unlike
the 1-dimensional case, there is no easy closed form formula for this problem in dimension 2
(much less in dimension higher than 2 and other variants). Our results, which give two-sided
estimates for this problem, are developed in Example 5.16 and summarized in formula (6.3).

Let us illustrate the general result obtained in this work with an example. We will look
at the probability that the game ends with B losing all her money, while A has y dollars in
her possession (and hence C has N − y dollars) under three extreme initial conditions pic-
tured on Figure 2: (XA,XB) = [N/3,N/3]), (XA,XB) = (1,1) and (XA,XB) = (1,N − 2).
Geometrically, this corresponds to the probability of exiting at (y,0).

ILLUSTRATIVE RESULT. Using the setup for 3-player gambler’s ruin outlined above,
for y ∈ {1, . . . ,N − 1}, let

PU

(
(xA, xB), (y,0)

)
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FIG. 2. Three extreme starting points: balanced, C has it all, B has it all.

be the probability that B is first to lose all their money and that A has y dollars when that
happens, given that the game started with A having xA dollars and B having xB dollars.
Then, as explained in Section 6.4,

PU

(([N/3], [N/3]), (y,0)
) ≈ y2(N − y)2

N5 ,

PU

(
(1,1), (y,0)

) ≈ (N − y)2

N2y4 ,

and

PU

(
(1,N − 2), (y,0)

) ≈ y2(N − y)2

N8 .

We develop these estimates for a class of finite Markov chains which are absorbed at
boundary points. Even the simple case of the first exit from {−N, . . . ,N}2 ⊆ Z

2, which is
treated in Example 3.1,4.2 and 5.14 is instructive.

These gambler’s ruin examples are part of a much larger theory known under the comple-
mentary names of first passage probabilities, survival probabilities and absorption problems.
In the context of classical diffusion processes, this is also related to the study of harmonic
measure (see Definition 1.1). See [4, 22, 23] among other basic relevant references. Two fur-
ther references: For gambler’s ruin with three players starting at x, y, z, let S be the first time
that one of the players is eliminated and T the first time two players have been eliminated;
[24] shows that E(S) = 3xyz/(x + y + z) and E(T ) = (x + y + z)2 − (x2 + y2 + z2)/2; for
more general absorption problems [3] develops a surprising algorithm of Aldous to effec-
tively approximate the quasi-stationary distribution.

Let us now abstract the original problem as follows. Instead of a discrete line or triangle,
our new setting will be a weighted graph (X,E, π,μ) where:

• the set X of vertices is finite or countable,
• the set E of edges consists of pairs of vertices, (i.e., subsets of X containing exactly two

elements) such that each vertex has finite degree (i.e., it belongs to only finitely many pairs
in E) and the graph is connected (i.e., there is a path in E connecting any two pairs of
vertices),

• the function π :X → (0,∞) is a positive weight on vertices and
• the function μ : E → (0,∞) is a positive weight on edges, {x, y} �→ μxy , with the property

that

(1.1)
∑
y

μxy ≤ π(x).

It is useful to extend μ to the set of all pairs of vertices by setting μxy = 0 when {x, y} /∈ E.
Two vertices x, y satisfying {x, y} ∈ E are called neighbors, which we denote x ∼ y. The
edge set E induces a distance function (x, y) �→ d(x, y) on X. The distance d(x, y) between
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x and y is the minimal number of edges that have to be crossed to go from x to y. We assume
throughout that d(x, y) is finite for all pairs of points x, y ∈ E.

This data also induces a Markov kernel K = Kπ,μ defined as follows:

(1.2) K(x, y) =
⎧⎪⎨
⎪⎩

μxy/π(x) for y �= x,

1 −
(∑

y

μxy/π(x)

)
for y = x.

Note that the pair (K,π) is reversible. Although our graph does not have loops, the definition
of K(x, y) above allows for K(x, x) > 0. The associated Laplacian is the operator � = I −K

so that

�u(x) = u(x) − ∑
y

K(x, y)u(y).

Let U be a finite subset of X with the property that any two points x, y in U can be
connected in U by a discrete path, that is, a finite sequence (x0, . . . , xk) ∈ Uk with x0 = x,
xk = y and {xi, xi+1} ∈ E, 0 ≤ i ≤ k − 1. We call such a subset a finite domain in (X,E).
Let ∂U (the exterior boundary of U ) be the set of vertices in X \ U which have at least one
neighbor in U .

Let (Xt)t≥0 denote the Markov chain driven by the Markov kernel K , starting from an
initial random position X0 in U . This is often called a weighted random walk on the graph
(X,E) because, at each step, the walker either stays put or moves from its current position to
one of the neighbors according to the kernel K .

Let τU be the stopping time

τU = inf{t : Xt /∈ U}.
Because the chain takes steps of distance at most 1, it must exit U on the boundary, that is,
XτU

∈ ∂U .

DEFINITION 1.1 (Harmonic measure). Because XτU
∈ ∂U , it make sense to ask for the

computation of

PU(x, y) = P(XτU
= y|X0 = x),

for x ∈ U , y ∈ ∂U . As a function of y, PU(x, y) is called the harmonic measure (and as a
function of (x, y), it is also known as the Poisson kernel).

The notation P is used here in reference to the classical Poisson kernel in the ball of radius
r around the origin in R

n,

PBr (x, ζ ) = r2 − ‖x‖2

ωn−1r‖x − ζ‖n
, x ∈ Br = {

z : ‖z‖ < r
}
, ζ ∈ Sr = {

z : ‖z‖ = r
}
,

where ‖z‖2 = ‖(z1, . . . , zn)‖2 = ∑n
1 z2

i and ωn−1 is (n − 1)-surface area of Sr . In Euclidean

space, the Poisson kernel solves the Dirichlet problem (� = −∑n
1

∂2

∂x2
i

)

{
�u = 0 in Br,

u = φ on Sr = ∂Br,

in the form

u(x) =
∫
Sr

PBr (x, ζ )φ(ζ ) dζ,

where dζ is the (n − 1)-surface measure on Sr .
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Similarly, the kernel PU on a general U × ∂U yields the solution of the discrete Dirichlet
problem {

�u = 0 in U,

u = φ on ∂U,

in the form

u(x) = ∑
y∈∂U

PU(x, y)φ(y) = Ex

(
φ(XτU

)
)
.

Observing that

PU(x, y) = Ex

(
1{y}(XτU

)
) = P(XτU

= y|X0 = x),

we are also interested in understanding the quantity

PU(t, x, y) = P(XτU
= y and τU ≤ t |X0 = x).

The goal of this work is to obtain meaningful quantitative estimates for the Poisson kernel
and related quantities in the weighted graph context described earlier and under strong hy-
potheses on (a) the underlying weighted graph (X,E, π,μ) and (b) the finite domain U ⊂X.
The hypotheses we require are satisfied for a rich variety of interesting cases. As a test ques-
tion, consider the problem of giving two-sided estimates (with upper and lower bounds dif-
fering only by a multiplicative constant) which hold uniformly for (x, y) ∈ U × ∂U for the
discrete Poisson kernel of a lazy simple random walk on Z

n, n ≥ 1, when U = B(o, r) is
the graph ball of radius r centered at the origin o in Z

n. For n = 1, this is essentially the
gambler’s ruin problem.

Various other gambling schemes can be interpreted as random walks on polytopes with
different boundaries. For example, [15] treats two gamblers with n kinds of currency as a
n-dimensional random walk—at each stage, a type of currency is chosen uniformly and then
a flipped coin determines the transfer of one unit of currency.

We now give a brief summary of the structure of this article. Section 2 introduces ba-
sic computations, including Poisson kernels and Green’s functions. Section 3 discusses the
difficulty of trying to solve these types of problems using spectral methods, even when all
eigenfunctions are available. Section 4 introduces the Doob transform which changes ab-
sorbtion problems into ergodic problems. Section 5 gives the main new results. We introduce
the notions of Harnack Markov chains and graphs, which allow us to treat the 3-dimensional
gambler’s ruin starting in “the middle” in Example 5.16. Section 6 specializes to nice do-
mains (inner-uniform domains) where the results of the authors’ previous paper, Analytic-
geometric methods for finite Markov chains with applications to quasi-stationarity [7], can
be harnessed. This allows uniform estimates for all starting states, in particular for the three-
player gambler’s ruin problem.

2. Basic computations. Let us fix a weighted graph (X,E, π,μ) satisfying (1.1) and the
associated Markov kernel K defined at (1.2) as described in the Introduction. Let us also fix
a finite domain U and set

KU(x, y) = K(x,y)1U(x)1U(y).

Assuming that ∂U is not empty, this is a sub-Markovian kernel in the sense that∑
y:y∼x KU(x, y) ≤ 1 for all x ∈ U and

∑
y:y∼x KU(x, y) < 1 at any point x ∈ U which

has a neighbor in ∂U . For any point y ∈ ∂U , define

νU(y) = {
x ∈ U : {x, y} ∈ E

}
,
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to be the set of neighbors of y in U . For any x, z ∈ X, set

(2.1) GU(x, z) =
∞∑
l=0

Kl
U(x, z).

THEOREM 2.1. For x ∈ U and y ∈ ∂U , the Poisson kernel PU(x, y) is given by

PU(x, y) = ∑
z∈νU (y)

GU(x, z)K(z, y).

Moreover, we have

PU(t, x, y) = ∑
z∈νU (y)

t−1∑

=0

K

U(x, z)K(z, y).

PROOF. If we start at x ∈ U , in order to exit U at y at time τU = 
 + 1, we need to reach
a neighbor z of y at time 
 while staying in U at all earlier times and then take a last step
to y. The probability for that is ∑

z∈νU (y)

K

U(x, z)K(z, y).

�

For later purposes, it is useful to restate the theorem above using slightly different notation.
First, we equip U with the measure π |U , the restriction of the measure π to U . Note that π |U
is not normalized. The kernel KU satisfies the (so-called detailed balance) condition

kU(x, y) := KU(x, y)/π |U(y) = KU(y, x)/π |U(x).

The kernel kU(x, y) is the kernel of the sub-Markovian operator KU(x, y) in L2(U,π |U).
The iterated kernel kt

U is the kernel of the sub-Markovian operator

Kt
Uf (x) = ∑

y

Kt
U (x, y)f (y) = ∑

y

kt
U (x, y)f (y)π |U(y)

with respect to the measure π |U . In particular,

kt+s
U (x, y) = ∑

z

ks
U (x, z)kt

U (z, y)π |U(z).

Similarly, we set

gU(x, y) := GU(x, y)/π(y).

The detailed balance condition captures the fact that Kt
U is a discrete semigroup of selfadjoint

operators on L2(U,π |U).
Next we introduce the natural measure on the boundary ∂U , π |∂U , the restriction of π

to ∂U . It simplifies notation greatly to drop the reference to U and ∂U and write π |U = π ,
π |∂U = π unless the context requires the use of the subscripts. For any function f in U ∪ ∂U

and point y ∈ ∂U , we define the interior normal derivative of f at y by

(2.2)
∂f

∂�νU

(y) = ∑
x∈U :x∼y

(
f (x) − f (y)

) μxy

π(y)
.

Now, for each x ∈ U , we view PU(x, ·) as a probability measure on ∂U and express
the density pU(x, ·) of this probability measure with respect to the reference measure
π on the boundary, so that pU(x, y) = PU(x, y)/π(y). Similarly, we set pU(t, x, y) =
PU(t, x, y)/π(y).
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THEOREM 2.2. For x ∈ U and y ∈ ∂U , the Poisson kernel PU(x, y) is given by
PU(x, y) = pU(x, y)π(y) with

pU(x, y) = ∂ygU

∂�νU

(x, y) =
∞∑
t=0

∂yk
t
U

∂�νU

(x, y).

Similarly, PU(t, x, y) = pU(t, x, y)π(y) with

pU(t, x, y) =
t−1∑

=0

∂yk


U

∂�νU

(x, y).

A key reason that these formulas are useful is the fact that, because the functions
gU(x, ·) and kt

U (x, ·) vanish at the boundary, the “normal interior derivatives” ∂ygU

∂�νU
(x, y) and

∂ykt
U

∂�νU
(x, y) are actually (weighted) finite sums of the positive values of the relevant functions,

gU(x, ·) and kt
U (x, ·), over those neighbors of y that are in U , that is,

∂ygU

∂�νU

(x, y) = ∑
z∈U :z∼y

gU(x, z)
μyz

π(y)

and similarly for
∂ykt

U

∂�νU
(x, y). This means that any two-sided estimates on the functions gU , kt

U

themselves automatically induce two-sided estimates for these “normal interior derivatives”
for the Poisson kernel.

3. Spectral theory. Unfortunately, it not easy to estimate the functions kt
U and gU . It

is tempting to appeal to spectral theory in this context. The sub-Markovian operator KU is
selfadjoint on L2(U,π) with finite spectrum βU,i and associated real eigenfunctions φU,i .
For simplicity, when the domain U is obvious, we write

βi = βU,i, φi = φU,i

(
for 0 ≤ i ≤ |U | − 1

)
.

We can assume the eigenvalues are ordered

−1 ≤ β|U |−1 ≤ β|U |−2 ≤ · · · ≤ β1 ≤ β0 ≤ 1.

When ∂U �= ∅, the Perron–Frobenius theorem asserts that

0 < β0 < 1, β|U |−1 ≥ −β0, |βi | < β0
(
for i = 1, . . . , |U | − 2

)
,

and we can choose φ0 > 0. Moreover, β0 = −β|U |−1 if and only if the subgraph (U,EU) of
(X,E) is bipartite and

∑
y∼x μxy = π(x) for all x ∈ U . We will normalize all the eigenfunc-

tions by π |U(|φi |2) = 1, making them unit vectors in L2(U,π). Note that, by convention,
φi ≡ 0 in X \ U , so we can equivalently write that π(|φi |2) = 1.

This gives

(3.1) kt
U (x, y) =

|U |−1∑
i=0

βt
i φi(x)φi(y),

and

(3.2) gU(x, y) =
|U |−1∑
i=0

(1 − βi)
−1φi(x)φi(y).

Assuming for simplicity that β0 > |β|U |−1|, the first formula yields the familiar asymptotic
for large t ,

kt
U (x, y) ∼ βt

0φ0(x)φ0(y).
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The second formula yields almost nothing. The easy fact that gU(x, y) is positive is not
visible from it, even in cases when the eigenvalues and eigenfunctions are known explicitly.

EXAMPLE 3.1. In Z
2, let π be a uniform vertex weight (i.e., π(x) ≡ 1) and set edge

weights μxy = 1/8 when x ∼ y, x, y ∈ Z
2. It follows that K(x,y) at (1.2) is the Markov

kernel of the lazy random walk on Z
2 (this walk stays put with probability 1/2 or moves to

one of the four neighbors chosen uniformly at random with probability 1/8). Let U ⊆ Z
2 be

the box {−N, . . . ,N}2. Because of the product structure of both the set U and the kernel KU ,
we can write down explicitly the spectrum and eigenfunctions. The eigenfunctions are the
products

φa,b(x1, x2) = 1

N + 1
ψa(x1)ψb(x2),

where

ψa(k) =

⎧⎪⎪⎨
⎪⎪⎩

cos
akπ

2(N + 1)
if a = 1,3, . . . ,2N + 1,

sin
akπ

2(N + 1)
if a = 2,4, . . . ,2N

with associated eigenvalues

ωa,b = 1

4

(
2 + cos

aπ

2(N + 1)
+ cos

bπ

2(N + 1)

)

when a, b run over {1,2, . . . ,2N + 1}.
Applying (3.2) and (2.2), we have

(3.3)
∂ygU

∂�νU

(x, y) = ∑
(a,b)∈{1,...,2N+1}2

(1 − ωa,b)
−1φa,b(x)

∂yφa,b

∂�νU

(y).

To be more explicit, using the obvious symmetries of U , let’s focus on the case when the
boundary point y = (y1, y2) is on the vertical, right side of U , that is, y = (N + 1, y2) for
y2 ∈ {−N, . . . ,N}. For such point, the neighbor of y in U is the point ỹ = (N,y2) and so
(3.3) becomes,

∂ygU

∂�νU

(x, y) = 1

8(N + 1)

∑
(a,b)∈{1,...,2N+1}2

(1 − ωa,b)
−1φa,b(x)ψb(y2)ψa(N).

Writing this in a more explicit form, we have

PU

(
(x1, x2), (N + 1, y2)

)
= 1

4(N + 1)2

∑
(a,b)∈{1,...,2N+1}2

ψa(x1)ψb(x2)ψb(y2)ψa(N)

1 − 1
2(cos aπ

2(N+1)
+ cos bπ

2(N+1)
)
.

(3.4)

There are several problems with formulas of the type (3.4). The first is that it is rare we can
compute all eigenvalues and eigenfunctions as in the above example. The second is that all
the terms in the formula have roughly similar size and most are oscillating terms that change
sign multiple times. The terms that oscillate most are actually given somewhat higher weights
in (3.4). So, even in the case of the square domain treated above, it is not clear how much
information one can extract from (3.4) except, perhaps, numerically. In [8], L. Miclo and the
first author apply spectral techniques to some very basic examples and their results illustrate
the difficulties mentioned here.
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4. General results based on the Doob transform. It is well known that the Doob-
transform technique is a useful tool to study problems involving Markov processes with
killing. We follow closely the notation used in our previous article [7] which will be used
extensively in what follows. For a discussion of the Doob transform adapted to our purpose,
see [7], Section 7.1.

We work in the weighted graph setting introduced in Section 2 and fix a finite domain
U ⊂ X. The operator associated to the sub-Markovian kernel KU ,

f �→ KUf = ∑
y

KU(·, y)f (y),

acting on L2(U,π) admits a Perron–Frobenius eigenvalue βU,0 = β0 and eigenfunction
φU,0 = φ0 (because KU is selfadjoint on L2(U,π), right and left eigenfunctions are the
same, up to multiplication or division by π ). Here, we normalize φ0 by requiring that
π(φ2

0) = π |U(φ2
0) = 1 (recall that the measure π |U is not normalized).

The Doob-transform technique amounts to considering the Markov kernel

(4.1) Kφ0(x, y) = β−1
0 φ0(x)−1KU(x, y)φ0(y)

which is reversible with respect to the measure πφ0 , where we define

πφ0 = φ2
0π |U .

Just as kt
U (x, y) = Kt

U(x, y)/π(y), we set

kt
φ0

(x, y) = Kt
φ0

(x, y)

πφ0(y)
.

This is the kernel of the operator Kt
φ0

with respect to its reversible measure πφ0 . It is also
clear that

kt
U (x, y) = βt

0φ0(x)φ0(y)kt
φ0

(x, y).

Our basic assumptions imply that KU and Kφ0 are irreducible kernels, that is, for any
pair x, y, there is a t = t (x, y) such that Kt

U(x, y) > 0. If we additionally assume that Kφ0

is aperiodic, this implies that the chain is ergodic. Hence, using these manipulations, we
have reduced the study of Kt

U to that of Kt
φ0

, the iterated kernel of an ergodic reversible
finite Markov chain. In what follows, we do not assume aperiodicity, but it is often better to
assume aperiodicity on the first reading in order to focus on the most interesting aspects of
the computations and arguments involved. This gives the following version of Theorem 2.2.

THEOREM 4.1. For x ∈ U and y ∈ ∂U , the Poisson kernel PU(x, y) is given by
PU(x, y) = pU(x, y)π(y) with

pU(x, y) = φ0(x)

∞∑
t=0

βt
0

∂y

∂�νU

[
φ0(y)kt

φ0
(x, y)

]

= φ0(x)

∞∑
t=0

βt
0

∑
z∈ν(y)

φ0(z)k
t
φ0

(x, z)
μzy

π(y)
.

Similarly, PU(t, x, y) = pU(t, x, y)π(y) with

pU(t, x, y) = φ0(x)

t−1∑

=0

β

0

∂y

∂�νU

[
φ0(y)k


φ0
(x, y)

]

= φ0(x)

t−1∑

=0

β

0

∑
z∈ν(y)

φ0(z)k


φ0

(x, z)
μzy

π(y)
.
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FIG. 3. The box U = {−N, . . . ,N}2 and its boundary. Each point on the boundary has exactly one neighbor
in U .

EXAMPLE 4.2 (Example 3.1, continued). Let us spell out what Theorem 4.1 says in the
case of the Euclidean box U = {−N, . . . ,N}2 ⊂ Z

2 depicted in Figure 3. The setting is as in
Example 3.1. First, note that the Perron–Frobenius eigenfunction φ0 is given by

φ0(x) = φ0
(
(x1, x2)

) = 1

(N + 1)
cos

πx1

2(N + 1)
cos

πx2

2(N + 1)
,

with associated eigenvalue

β0 = 1

2

(
1 + cos

π

2(N + 1)

)
∼ 1 − π2

16(N + 1)2 ,

where the asymptotic is when N tends to infinity. Using (4.1), the associated Doob transform
Markov chain has kernel

Kφ0(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for x, y ∈ U, |x1 − y1| + |x2 − y2| > 1,
1

2β0
for x, y ∈ U,x = y,

1

8β0

φ0(y)

φ0(x)
for x, y ∈ U, |x1 − y1| + |x2 − y2| = 1.

By construction this kernel (which resembles closely a Metropolis–Hastings kernel) is re-
versible with respect to the probability measure πφ0 . It is also irreducible and aperiodic and
thus, for any x, y ∈ U ,

Kt
φ0

(x, y) → πφ0(y)

as t tends to infinity. Equivalently, kt
φ0

(x, y) → 1 as t tends to infinity. Recall that each bound-
ary point y ∈ ∂U has exactly one neighbor y∗ in U . Using this information, the Poisson kernel
formula provided by Theorem 4.1 reads

pU(x, y) = 1

8
φ0(x)φ0

(
y∗) ∞∑

t=0

βt
0k

t
φ0

(
x, y∗)

, x ∈ U,y ∈ ∂U.

This makes it clear that a two-sided bound for pU(x, y), valid for all x ∈ U and y ∈ ∂U ,
would follow from a two-sided bound on kt

φ0
(x, y∗) that holds uniformly in t , x and y∗. Such

a bound is provided in the next two sections.

5. Harnack Markov chains and Harnack weighted graphs. In this section, we dis-
cuss the highly nontrivial notion of a Harnack Markov chain or, equivalently, of a Harnack
weighted graph. Consider a weighted graph (X,E, π,μ) satisfying (1.1) and its associated
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Markov kernel K defined in (1.2). For x, y ∈ X, let d(x, y) be the minimal number of edges
in E one must cross to join x to y by a discrete path. Let

B(x, r) = {y ∈ X : d(x, y) ≤ r),

be the ball of radius r around x ∈ X. Note that B(x, r) ∪ ∂B(x, r) = B(x, r + 1).
Fix a parameter θ ≥ 2 (it turns out that the assumption that θ ≥ 2 is not restrictive for what

follows). The key point in the following definition is that the constant CH is required to be
independent of scale and location (i.e., R ≥ 1, t0 ∈ N and x0 ∈ X) and also independent of
the nonnegative function u, the solution of (5.1). The following definition is inspired by [2],
Theorem 1.5. See also [13].

DEFINITION 5.1. We say that (K,π) is a θ -Harnack Markov chain (equivalently, that
(X,E, π,μ) is a θ -Harnack weighted graph), if there exists a constant CH > 0 such that for
any R > 0, t0 ∈ N, and x0 ∈ X, and nonnegative function u : N × X → R≥0 defined on a
time-space cylinder

Q(R, t0, x0) = [
t0, t0 + 4

⌈
Rθ⌉ + 1

] × B(x0,2R + 1)

such that

(5.1) u(t + 1, x) = ∑
y

u(t, y)K(x, y)

in

Q′(R, t0, x0) = [
t0, t0 + 4

⌈
Rθ⌉] × B(x0,2R),

it holds that, for all (t, x) ∈ Q−(R, t0, x0) = [t0 + �Rθ�, t0 + 2�Rθ�] × B(x0,R),

u(t, x) ≤ CH min
(k,y)∈Q+(R,t0,x0)

{
u(k, y) + u(k + 1, y)

}
,

where

Q+(R, t0, x0) = [
t0 + 3

⌈
Rθ⌉

, t0 + 4
⌈
Rθ⌉] × B(x0,R).

Equation (5.1) can also be written using the graph Laplacian � = I − K (i.e., �u(t, x) =
u(t, x)−∑

y K(x, y)u(t, y)) and the time difference operator ∂tu(t, x) = u(t +1, x)−u(t, x)

in the form

(5.2) ∂tu + �u = 0.

This is the discrete-time heat equation on (X,E,μ,π) and the property required in Defini-
tion 5.1 is the validity, at all scales and locations, of the discrete time θ -parabolic Harnack
inequality.

EXAMPLE 5.2. The square lattice Z
n, equipped with the vertex weight π ≡ 1 and the

edge weight μ ≡ 1
2n

, on E is a 2-Harnack weighted graph. See [1, 6, 11].

EXAMPLE 5.3. The Sierpinski gasket graph is a θ -Harnack weighted graph with θ =
log 5/ log 2. See, for example, [1], Section 2.9 and Corollary 6.11, and [2].

These two examples illustrate the fact that θ = 2 corresponds to the more classical situation
of Zn when the random walk has a diffusive behavior in the sense that it travels approximately
a distance

√
t in time t whereas the case θ > 2 corresponds to sub-diffusive behaviors when

the random walk travel approximately a distance t1/θ <
√

t in time t . This second type of
behavior is typical of fractal-type spaces. The following theorem make these statement more
precise.
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THEOREM 5.4 (See [12], Theorem 3.1, and also [2], Theorem 1.2). Assume that the
weighted graph (X,E, π,μ) satisfies the ellipticity condition

(5.3) ∀{x, y} ∈ E, π(x) ≤ δμxy

for some fixed constant δ. Under this assumption, (X,E, π,μ) is a θ -Harnack graph if and
only if the iterated transition kernel kt (x, y) = Kt(x, y)/π(y) of the chain (K,π) satisfies

(5.4) kt (x, y) ≤ C1

π(B(x, t1/θ ))
exp

(
−c1

(
d(x, y)θ

t

)1/(θ−1))

when d(x, y) ≤ t , and

(5.5) kt+1(x, y) + kt (x, y) ≥ c2

π(B(x, t1/θ ))
exp

(
−C2

(
d(x, y)θ

t

)1/(θ−1))
,

where c1, c2,C1,C2 > 0.

Theorem 5.4 established the equivalence of two properties, each of which seems (and is)
very hard to verify. The following theorem offers a third equivalent condition which, at least
in the case θ = 2, can sometimes be checked using elementary arguments.

THEOREM 5.5 (See [2], Theorem 1.5). Assume that the weighted graph (X,E, π,μ)

satisfies the ellipticity condition (5.3) for some fixed constant δ. Under this assumption,
(X,E, π,μ) is a θ -Harnack graph if and only if the following three conditions are satisfied:

1. There is a constant CD > 0 such that, for all x ∈ X and all r > 0,

π
(
B(x,2r)

) ≤ CDπ
(
B(x, r)

)
.

In words, the volume doubling condition is satisfied.
2. There is a constant CP > 0 such that, for all x ∈X and all r > 0, the Poincaré inequal-

ity with constant CP rθ holds on the ball B = B(x, r), that is,

∀f,
∑
z∈B

∣∣f (z) − fB

∣∣2π(z) ≤ CP rθ
∑

ξ,ζ∈B,(ξ,ζ )∈E

∣∣f (ξ) − f (ζ )
∣∣2μξζ ,

where fB = π(B)−1 ∑
B f π .

3. The cut-off function existence property CS(θ) is satisfied. (See Definition 5.6 below.)

When θ = 2, the cut-off function existence property CS(θ) is always satisfied.

DEFINITION 5.6 ([2], Definition 1.4). Fix θ ∈ [2,∞). The weighted graph (X,E, π,μ)

satisfies the cut-off function existence property CS(θ) if there are constants C1, C2, C3 and
ε > 0 such that, for any x ∈ X and r > 0, there exists a function σ = σx,r satisfying the
following four properties:

(a) σ ≥ 1 on B(x, r/2)

(b) σ ≡ 0 on X \ B(x, r)

(c) For all y, z ∈X, |σ(z) − σ(y)| ≤ C1(d(z, y)/r)ε

(d) For any s ∈ (0, r] and any function f on B(x,2r),∑
z∈B(x,s)

|f |2 ∑
y:{z,y}∈E

∣∣σ(z) − σ(y)
∣∣2μzy

≤ C2(s/r)2ε

{ ∑
z,y∈B(x,2s)

{z,y}∈E

∣∣f (z) − f (y)
∣∣2μzy + s−θ

∑
B(x,2s)

|f |2π
}
.
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REMARK 5.7. Given the rather unwieldy nature of this definition, some comments are in
order. When θ = 2, the function σ(z) = min{1,2(1 − d(x, z)/r)+} provides the desired cut-
off function. In that case, the inequality in (d) contains no particularly interesting information
(it does say, for s near 1/2, that

∑
y μxy ≤ 4π(x), which is weaker than our basic assumption∑

y μxy ≤ π(x)).
For θ > 2, the inequality in (d) becomes the carrier of some (somewhat mysterious) useful

information. One of its simplest consequences is a lower estimate for the Perron–Frobenius
eigenvalue β0 = βU,0 when U = B(x, r). Namely, the cut-off function σ for the ball B(x, r)

must satisfy

π
(|σ |2) ≥ π

(
B(x, r/2)

)
by (a) in Definition 5.6 and∑

z,y∈B(x,r)
{z,y}∈E

∣∣σ(z) − σ(y)
∣∣2μzy ≤ C2r

−θπ
(
B(z,2r)

)

by (d) in Defintion 5.6, taking f ≡ 1 and s = r . Together with the doubling property, this
implies that the Perron–Frobenius eigenvalue of the ball B(x, r) satisfies

(5.6) 1 − βB(x,r),0 ≤ C2C
2
D

rθ
.

The aim of the next theorem is to illustrate the simplest possible way to use the notion
of a Harnack Markov chain in obtaining two-sided estimates on pU(x, y). We introduce the
following definitions and notation.

DEFINITION 5.8 (Inner distance). The smallest integer k for which such a path exists for
given x, y ∈ U is denoted by dU(x, y). It is the inner distance between x and y in U . For
x ∈ U and y ∈ ∂U , we set

dU(x, y) = min
{
1 + dU(x, z) : z ∈ U, {z, y} ∈ E

}
.

DEFINITION 5.9. For any finite domain U in X, let (U,EU) be the associated subgraph
with edge set EU = {(x, y) ∈ E : x, y ∈ U}. Let dU be the associated graph distance and
BU the corresponding graph balls. If βU,0 = β0, φU,0 = φ0 are the Perron–Frobenius eigen-
value and eigenfunction for U on (X,E, π,μ), then the Markov chain (Kφ0, πφ0) is the chain
associated with the weighted graph (

U,EU,πφ0,μ
φ0

)
,

where μ
φ0
xy = β−1

0 φ0(x)φ0(y)μxy . Notice that this is consistent with the alternative definition
of Kφ0(x, y) provided in the beginning of Section 4.

REMARK 5.10. We use A(t, x, y) ≈ B(t, x, y) when there exists c,C > 0 such that

c ≤ A(t, x, y)

B(t, x, y)
≤ C,

where c, C depend only on the key parameters (e.g., dimension, and the constants from
volume doubling, the Harnack condition, and the Poincaré inequality) and not on the specific
time t , positions x, y, or any size parameters (e.g., r where x, y ∈ B(z, r)). When there is a
subscript on ≈ (such as ≈ε or ≈n) the constants c, C additionally depend on the parameter
in the subscript.
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THEOREM 5.11. Let U be a finite domain in (X,E, π,μ) with Perron–Frobenius eigen-
value and eigenfunction β0, φ0. Let TU = (1 − β0)

−1. Assume that:

1. There exists C ≥ 1/2, R ∈ Z+ and a point o ∈ U such that

B(o,R/2) ⊂ U and U ⊂ BU(o,CR);
2. The weighted graph (X,E, π,μ) is a θ -Harnack weighted graph which satisfies the

ellipticity condition π(x) ≤ δμxy for some fixed constant δ.
3. The Markov chain (Kφ0, πφ0) is a θ -Harnack chain on (U,EU).

Under these assumptions, for any point y on the boundary ∂U ,

PU(o, y) ≈ TUφ0(o)
∑

z∈ν(y)

φ0(z)μzy ≈ TU√
π(U)

∑
z∈ν(y)

φ0(z)μzy.

DEFINITION 5.12. We will refer to any point o satisfying the first assumption in Theo-
rem 5.11 as a central point in U .

PROOF. First, we start with remarks regarding φ0(o). By assumption, the measure πφ0 is
doubling and π(φ2

0) = 1. It follows that, for any fixed ε ∈ (0,1/2),∑
B(o,εR)

φ2
0π ≈ε 1.

Because (X,E,μ,π) is a θ -Harnack weighted graph, φ0(o) ≈ε φ0(z) for any z ∈ B(o, εR).
(This follows easily from the parabolic Harnack inequality of Definition 5.1. See the proof of
Lemma 7.10 and Lemma 7.11 in [7].) Using this and the doubling property of πφ0 ,

(5.7) φ0(o)2 ≈ε π
(
B(o, εR)

)−1 ∑
B(o,εR)

φ2
0π ≈ε π(U)−1.

Using (5.7) and the doubling property of π ,

π(U)1/2 ≈ε φ0(o)π(U) ≈ε

∑
B(o,εR)

φ0π ≤ π(φ0).

Also, π(φ0)
2 ≤ π(U)π(φ2

0) = π(U). It follows that

π(U)φ0(o)2 ≈ 1 and π(φ0) ≈ π(U)1/2.

We need to estimate (see Theorem 4.1)

PU(o, y) = pU(o, y)π(y) = φ0(o)
∑

z∈ν(y)

μzyφ0(z)

( ∞∑
t=dU (o,z)

βt
0k

t
φ0

(o, z)

)
.

Because of the first and second hypothesis, β0 = 1 − 1/TU ≥ 1 − CR−θ and Rθ ≤ CTU

(see Remark 5.7). It follows that (Kφ0, πφ0) also satisfies the ellipticity condition and thus
(Kφ0, πφ0) is a θ -Harnack Markov chain satisfying the ellipticity condition and we can use
the heat kernel estimates of Theorem 5.4. In the bounds in (5.4)–(5.5), the distance d is now
dU . We observe that, for z ∈ ν(y), R/2 ≤ dU(o, z) ≤ CR and (using the doubling property of
πφ0 and the normalization π(φ2

0) = 1),

Rθ∑
t=dU (o,z)

1

πφ0(BU(o, t1/θ ))
e−c(Rθ /t)1/(θ−1) ≈ Rθ .
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It follows that

∞∑
t=dU (o,z)

βt
0kφ0(o, z) ≈

Rθ∑
t=dU (o,z)

kt
φ0

(o, z) + ∑
t>Rθ

βt
0 ≈ TU

because, for t ≥ Rθ , we have kt
φ0

(o, z) + kt+1
φ0

(o, z) ≈ 1, and, for t ≤ Rθ , βt
0 ≈ 1. Also β0 ∈

(0,1) and
∑

t>Rθ βt
0 ≈ 1

1−β0
βRθ

0 ≈ TU . �

REMARK 5.13. By definition, the quantity PU(o, ·) defines a probability measure on
∂U . This means that it must be the case that, under the hypotheses of Theorem 5.11,

(5.8) TUφ0(o)
∑

y∈∂U

∑
z∈ν(y)

φ0(z)μzy ≈ 1.

To verify that this is indeed the case, observe (extending φ0 by 0 outside of U and using the
scalar product on L2(X, π))〈

1U, (I − K)φ0
〉
π = ∑

{x,y}∈E

(
1U(x) − 1U(y)

)(
φ0(x) − φ0(y)

)
μxy

= ∑
y∈∂U

∑
z∈ν(y)

φ0(z)μzy.

It follows that

(5.9)
∑

y∈∂U

∑
z∈ν(y)

φ0(z)μzy = ∑
U

(I − KU)φ0π = (1 − β0)
∑
U

φ0π = T −1
U π(φ0).

The estimate (5.8) now follows from (5.9) and

φ0(o) ≈ π(U)−1/2, π(φ0) ≈ π(U)1/2.

EXAMPLE 5.14 (Example 4.2, continued). Theorem 5.11 can be applied to the Euclidean
box U = {−N, . . . ,N}2 ⊂ Z

2 depicted in Figure 3. The explicit Perron–Frobenius eigenvalue
and eigenfunction β0, φ0 are given above in Examples 3.1 and 4.2. The square grid Z

2 is one
of the basic examples of a 2-Harnack graph. It also turns out that (Kφ0, πφ0) is a 2-Harnack
Markov chain on U , which can be proved using Theorem 5.5 with θ = 2. (This is a theorem
due to Thierry Delmotte [6] in the case θ = 2.) See, for example, [7], Section 7.2. This gives,
for n ∈ {−N, . . . ,N},

PU

(
(0,0), (N + 1, n)

) ≈ (N + 1)2

(N + 1)2 cos
πN

2(N + 1)
cos

πn

2(N + 1)

= sin
π

2(N + 1)
cos

πn

2(N + 1)

≈ 1

(N + 1)
cos

πn

2(N + 1)
.

EXAMPLE 5.15. We spell out how the preceding example generalizes in dimension n

when U = {−N, . . . ,N}n. Here the graph Z
n is equipped with the edge weight μxy = 1/4n

if
∑n

1 |xi − yi | = 1 and 0 otherwise and the vertex weight π ≡ 1. As in dimension 2, one can
compute exactly

β0 = 1

2

(
1 + cos

π

2(N + 1)

)
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FIG. 4. The gambler’s ruin problem with 3 players: extending the Perron–Frobenius eigenfunction φ0 into a
global NZ

2 periodic eigenfunction. The function φ0 vanishes at the blue dots.

and

φ0(x1, . . . , xn) = 1

(N + 1)n/2 cos
πx1

2(N + 1)
· · · cos

πxn

2(N + 1)
.

Observe that a point y = (y1, . . . , yn) is on the boundary ∂U of U if and only if there is a
j ⊂ {1, . . . , n} such that yj = N + 1 and all other coordinates of y are in {−N, . . . ,N}. For
such a y,

PU(0, y) ≈n

(N + 1)2

(N + 1)n
sin

π

2(N + 1)

∏
i �=j

cos
πyi

2(N + 1)

≈n

1

(N + 1)n−1

∏
i �=j

cos
πyi

2(N + 1)
.

We end this section with the treatment of the (2-dimensional) 3-player gambler’s ruin
problem depicted in Figure 1.

EXAMPLE 5.16 (The 3-player gambler’s ruin problem). The notation is described in
the Introduction. Theorem 5.11 applies to the 3-player gambler’s ruin problem (see Sec-
tion 6.4). In this case, as in the other examples discussed above, it is possible to compute the
Perron–Frobenius eigenfunction exactly. This is related to the fact that the eigenfunctions of
(Euclidean) equilateral triangles can be computed in closed trigonometric form, a fact first
observed by Lamé. See the related history in [21] and the treatment in [18–20]. We explain
the computation in detail in the square lattice coordinate system for the convenience of the
reader.

First, we compute φU,0 = φ0 and βU,0 = β0 where U is the domain of the 3-player gam-
bler’s ruin problem described in the Introduction (this is possible in closed form only in
dimension 2). Note that φ0, being the unique Perron–Frobenius eigenfunction (up to a mul-
tiplicative constant), must be symmetric with respect to swapping the two coordinates. We
extend φ0 into a function defined in the entire square {0, . . . ,N}2 so that the symmetry with
respect to x1 + x2 = N changes the extended φ0 into −φ0 (and we still call this extension
φ0). We then extend this function to the entire grid Z

2 by using translations by NZ
2. (See

Figure 4.) We now have a function defined on all of Z2 and, by construction, this function is
a NZ

2 periodic solution of Kφ0 = β0φ0 where K is given for all pairs (x1, x2), (y1, y2) ∈ Z
2

by

K
(
(x1, x2), (y1, y2)

) =

⎧⎪⎪⎨
⎪⎪⎩

1/6 if |x1 − y1| + |x2 − y2| = 1,

1/6 if x1 − y1 = y2 − x2 = ±1,

0 otherwise.
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Global periodic solutions of the equation Kφ = βφ must be linear compositions of func-
tions of the type eiy·x with

β = 1

3

(
cosa + cosb + 2 + cos(a − b)

)
, (a, b) ∈ 2π

N
Z

2.

Constant functions correspond to a = b = 0. The second smallest eigenvalue for this problem
is

β = 1

3

(
1 + 2 cos

2π

N

)
with a 6-dimensional real eigenspace spanned by

sin
2πx1

N
, sin

2πx2

N
, sin

2π(x1 + x2)

N

and their cosine counterparts (which we will not use). In this eigenspace, consider the func-
tion

φ
(
(x1, x2)

) = sin
2πx1

N
+ sin

2πx2

N
− sin

2π(x1 + x2)

N

= sin
2πx1

N

(
1 − cos

2πx2

N

)
+ sin

2πx2

N

(
1 − cos

2πx1

N

)

= sin
2πx1

N
+ sin

2πx2

N
+ sin

2π(N − (x1 + x2))

N
.

This function vanishes when x1 = 0, when x2 = 0 and also when x1 + x2 = N . Furthermore,
by careful inspection, φ ≥ 0 in the triangle

U ∪ ∂U = {
(x1, x2) : 0 ≤ x1,0 ≤ x2, x1 + x2 ≤ N

}
.

It follows that it must be the case that

β0 = 1

3

(
1 + 2 cos

2π

N

)
and

φ0
(
(x1, x2)

) = 2√
3N

(
sin

2πx1

N
+ sin

2πx2

N
− sin

2π(x1 + x2)

N

)
.

The following uniform two-sided estimate captures some of the essential information re-
garding the behavior of φ0, namely,

(5.10) φ0
(
(x1, x2)

) ≈ 1

N7 x1x2(x1 + x2)(N − x1)(N − x2)
(
N − (x1 + x2)

)
.

This captures all the symmetries of the problem. The value of φ0 at the central point
([N/4], [N/4]) is roughly 1

N
as expected (i.e., 1/

√
π(U)). If one approaches any of the three

corners along its median, φ0 vanishes as the cube of the distance to the corner. For the vertical
part of the boundary, {(0, y) : 1 ≤ y < N}, Theorem 5.11 gives,

PU

(([N/4], [N/4]), (0, y)
) ≈ N2

N

y2N(N − y)2

N7 ≈ y2(N − y)2

N5 .

Of course a similar formula holds for the other two sides of the triangle. Along the diagonal
side {(x,N − x) : 1 ≤ x < N}, the formula reads

PU

(([N/4], [N/4]), (x,N − x)
) ≈ x2(N − x)2

N5 .

In Section 6.4 we complete the description of harmonic measure, giving approximations valid
for all starting positions.
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6. Inner-uniform domains and global two-sided estimates.

6.1. Inner-uniform domains. We now describe a large class of domains for which the
hypotheses of Theorem 5.11 can be verified thanks to the results obtained by the authors in
[7], Section 8. For an inner-uniform domain (described below), we amplify Theorem 5.11 by
giving two-sided estimates of PU(x, y) which are uniform in x ∈ U and y ∈ ∂U .

The following definition is well known in the context of Riemannian and conformal ge-
ometry. See [7], Section 8, for a more complete discussion and pointers to the literature. All
the domains discussed in Examples 5.14–5.16 in the previous section are inner-uniform (in a
rather trivial way).

DEFINITION 6.1. A domain U ⊆ X is an inner (α,A)-uniform domain (with respect to
the graph structure (X,E)) if for any two points x, y ∈ U there exists a path γxy = (x0 =
x, x1, . . . , xk = y) joining x to y in (U,EU) with the properties that:

1. k ≤ AdU(x, y);
2. For any j ∈ {0, . . . , k}, d(xj ,X \ U) ≥ α(1 + min{j, k − j}).

Intuitively, U is an inner-uniform domain if, given any two points x, y ∈ U , one can form
a banana-shaped region between x and y which is entirely contained in U . (See Figure 5
for an illustration.) The following is a simple geometric consequence of the definition of
inner-uniform domains.

LEMMA 6.2. Let U be a finite inner (α,A)-uniform domain. Set

R = max
{
x ∈ U : d(x,X \ U)

}
.

There are constants a1, A1 depending only on α, A such that, for any central point o such
that d(o,X \ U) = R/2, we have

B(o, a1R) ⊂ U ⊂ BU(o,A1R).

Furthermore, for any point x ∈ U and any r > 0, there is a point xr ∈ U such that

dU(x, xr) ≤ A1 min{r,R} and d(xr,X \ U}) ≥ a1 min{r,R}.

REMARK 6.3. In what follows, for each x ∈ U and r > 0, we fix a point xr with the
properties stated above. The exact choice of these xr among all points with the desired prop-
erties is unimportant. Typically, for r ≥ R, we pick xr = o. See [7], Definition 8.8, for a proof
of the existence of such a point.

FIG. 5. An illustration of the inner-uniform condition. Note the banana-shaped region between any two points
in U .
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THEOREM 6.4 ([7], Theorem 8.9 and Corollaries 8.10, 8.23). Fix α ∈ (0,1] and A ≥ 1.
Assume that (X,E, π,μ) is a 2-Harnack graph satisfying the ellipticity condition (5.3) and
that U is a finite inner (α,A)-uniform domain with Perron–Frobenius eigenvalue and eigen-
function βU,0 = β0, φU,0 = φ0. Then the chain (Kφ0, πφ0) on (U,EU) is a 2-Harnack chain
with Harnack constant depending only on CH , the Harnack constant of (X,E, π,μ), the
ellipticity constant δ and the inner-uniformity constants α, A.

OUTLINE OF THE PROOF. The proof consists in showing that the weighted graph on
(U,EU) associated with (Kφ0, πφ0) satisfies the doubling condition and the Poincaré inequal-
ity on balls with constant Cr2, where C depends only on CH , δ, α and A. Once this is done,
the result follows from Theorem 5.5 (in the case θ = 2 used here, the result is due to Del-
motte). One of the keys to proving the desired doubling and Poincaré inequality on balls is
the following Carleson-type estimate for φ0. We state this result because of its importance
and also because it allows us to compute the volume for πφ0 in a more explicit way. �

THEOREM 6.5 ([7], Theorem 8.9). Assume that (X,E, π,μ) is a 2-Harnack graph sat-
isfying the ellipticity condition (5.3) and that U is a finite inner (α,A)-uniform domain with
Perron–Frobenius eigenfunction φ0. Then there is a constant CU depending only on CH , the
Harnack constant of (X,E, π,μ), the ellipticity constant δ and the inner-uniformity constants
α, A such that, for any R > 0, x ∈ U , and xr (defined in Definition 5.12),

max
y∈BU(x,r)

{
φ0(y)

} ≤ CUφ0(xr).

Moreover, there exists A1 > 0 such that, for any x ∈ U and r ∈ (0,2A1R), the πφ0 volume of
BU(x, r) satisfies ∑

y∈BU(x,r)

πφ0(y) ≈ π
(
B(x, r)

)
φ0(xr)

2.

The following estimates are derived from the properties of φ0 stated above and the ge-
ometry of inner-uniform domains. They will be useful in extracting usable formulas for
PU(t, x, y).

REMARK 6.6. Theorems 6.5 and 6.4 are stated for 2-Harnack graphs but versions of
these theorems are expected to hold for θ -Harnack graphs as well. Such extensions follow
from the same general line of reasoning used in the 2-Harnack case but also require rather
nontrivial adaptations because they require the use of a cut-off Sobolev inequality (see Def-
inition 5.6). The technical results needed are provided by J. Lierl’s papers, [16, 17]. A good
example in this direction is the Sierpinski gasket with the bottom line removed.

COROLLARY 6.7. There are constants a1, A1, A2, which depend only on the Harnack
constant of (X,E, π,μ) and on (α,A), such that for all x, z ∈ U and r > 0,

a1
(
1 + dU(x, z)

)−A1 ≤ φ0(x)

φ0(z)
≤ A1

(
1 + dU(x, z)

)A1,

and, whenever dU(x, z) ≤ A2r and 0 < s < r ,

a1 ≤ φ0(xr)

φ0(xs)
≤ A1

(
r

s

)A1

and a1 ≤ φ0(xr)

φ0(zr)
≤ A1.
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REMARK 6.8. The following useful estimate can be derived from this corollary. There
is a constant A′

1 > 0 such that, for any x, z ∈ U and 0 < r ≤ dU(x, z),

φ0(xr)

φ0(zr)
≤ A′

1

(
dU(x, z)

r

)A′
1
.

These statements are proved using the properties of φ0, the inner-uniformity of U and
chains of Harnack balls for φ0 in U .

6.2. The tale of three boundaries. Before providing a deeper exploration of the exit
positions, it is useful to take a look at the intrinsic boundary of a finite domain U . So
far we have taken the point of view that the boundary of U , ∂U , is defined as the set of
those points y in the ambient space X such that there is at least one edge {x, y} ∈ E with
x ∈ U . We also extended the intrinsic distance dU so as to define dU(x, y) when x ∈ U and
y ∈ ∂U by setting dU(x, y) = min{1 + dU(x, z) : z ∈ U, {z, y} ∈ E}. The attentive reader will
have noticed that this does not define a distance on U ∪ ∂U , in general, even after setting
dU(x, y) = min{1 + d(z, y) : z ∈ U} for x, y ∈ ∂U . This is because a given point on ∂U may
be approachable from within U through several very distinct directions. See Figure 6.

It is useful to introduce the extended boundary, ∂∗U of U . See Figure 7. To justify
this definition, think of the cable graph, which is a continuous analog of (X,E) where
the edges from E are replaced by unit segments. Now, when considering the domain U ,
keep all the edges between any two points in U (i.e., the set EU = E ∩ (U × U)) but
keep also the dangling half-edges {x, y}, x ∈ U , y ∈ X \ U each of which carry a edge
weight μxy . Each of these so-called dangling half-edges defines a distinct boundary point
in ∂∗U = {y∗

x = {x, y} : x ∈ U,y ∈ X \ U}. In some sense, this is the largest natural boundary
we can associate to U viewed as a domain in (X,E). By using this boundary we can record
not only the exit point y but also the point x representing the position in U from which the
exit occurred. Now, it is clear that the space U∗ = U ∪ ∂∗U can be equipped with a metric
dU that extends the inner metric defined on U in a natural way. Here we think of each dan-
gling edge as a unit interval open on one end and we close that interval by adding the missing
boundary point named y∗

x = {x, y}.

FIG. 6. A domain U , where the blue dots indicate absorbing boundary points. Consider the central point, where
the three interior absorbing lines meet. To study the probability that a random walk is absorbed at the central
point, we need to consider the three very different types of paths it could have taken: from above, below or the
right. Can we define an alternative notion of the boundary of U that resolves this problem?
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FIG. 7. The extended boundary ∂∗U defined by dangling edges. Note that the central point has three dangling
edges pointing toward it, indicating the three steps that a random walk could take at the time it’s absorbed.

Each extended boundary point is attached to exactly one vertex x ∈ U and each original
boundary point y ∈ ∂U corresponds to a finite collection of extended boundary points {y∗

x :
x ∈ ν(y)} parametrized by ν(y), the set of neighboring points to y in U (see Section 2).

Here, we are mostly interested in the original boundary and the extended boundary serves
as a useful tool in studying the harmonic measure and Poisson kernel for U . Neverthe-
less, we should also mention the intrinsic boundary ∂•U which is associated with the data
(U,EU,π |U,μ|EU

,KU). See Figure 8. This data suffices to tell which points in U have at
least one neighbor in X \ U , because at such a point x,

∑
y KU(x, y) < 1. But it retains no

information about the individual dangling edges and their respective weights. For any point
x ∈ U such that

∑
y KU(x, y) < 1, we introduce an abstract boundary point x• which we

may think of as a cemetery point attached to x. Each of the abstract boundary points x• is
attached to x by an abstract boundary edge {x, x•} so that the new graph(

U ∪ ∂•U,E•
U

)
, E•

U = EU ∪ {{
x, x•} : x• ∈ ∂•U

}
,

FIG. 8. The intrinsic boundary ∂•U . The marked dots correspond to those points x ∈ U to which an abstract
boundary point x• is attached. The attached abstract boundary points x• are not shown explicitly. In this case,
the central point is gone.
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is a connected graph with subgraph (U,EU). It is possible to construct the intrinsic boundary
∂•U from the extended boundary ∂∗U . Namely, each point x• ∈ ∂•U corresponds to the
collection {y∗

x = {x, y} : y ∈ ∂U} of extended boundary points. The edge (x, x•) in E•
U can

be given the weight
∑

y:y∗
x={x,y} μxy .

Finally, we note that, in general, there is no good direct relation between the natural bound-
ary ∂U and the intrinsic boundary ∂•U . Each of them can be seen as a different contraction
of the extended boundary ∂∗U . In some applications, a finite set U is given equipped with
a sub-Markovian kernel KU without reference to a larger, ambient graph X. Introducing the
intrinsic boundary allows us to put such examples in the framework of this paper.

6.3. Hitting probabilities for the extended boundary ∂∗U . We now explain some of the
consequences of the theorems of Section 6.1 on PU(t, x, y) within an inner-uniform do-
main U . The first thing to note is that Theorem 5.11 applies, uniformly, to all finite inner
(α,A)-uniform domains in a given underlying structure (X,E, π,μ) that is a 2-Harnack
graph. In order to get a more complete result which allows for varying a starting point and a
fixed time horizon t (Theorem 5.11 gives a two-sided estimate only for PU(o, y)), we need
to estimate (see Theorem 4.1)

PU(t, x, y) = φ0(x)

t−1∑

=0

β

0

∑
z∈ν(y)

φ0(z)k


φ0

(x, z)μzy.

It is easier and more informative to first consider this question in terms of the extended
boundary ∂∗U and that is how we now proceed. Any point y∗

z = {z, y} ∈ E∩U × ∂U = ∂∗U
can be reached only from the point z = zy . We set

pU

(
t, x, y∗

z

) =
t−1∑
l=0

k

U (x, z)μzy/π(y) = φ0(x)φ0(z)

t−1∑
l=0

β

0k


φ0
(x, z)μzy/π(y)

so that

pU(t, x, y) = ∑
z∈ν(y)

pU

(
t, x, y∗

z

)
.

The quantity pU(t, x, y∗
z ) is equal to 0 unless t ≥ 1 + dU(x, z) and we write

pU

(
t, x, y∗

z

) = φ0(x)φ0(z)

t−1∑

=dU (x,y)−1

β

0k


φ0
(x, z)μzy/π(y).

For clarity, we split the problem into several cases (represented in the next four lemmas)
even though these different cases can be captured by one final estimate, Theorem 6.15. The
exponential term in the estimate on PU(t, x, y∗

z ) depends on t and dU(x, z). The lemmas
distinguish between four different domains (depending on t and dU(x, z) and with some
nonempty intersections), and highlight the different behavior of the exponential term in the
estimate for PU(t, x, y∗

z ) within each of these domains. In Lemma 6.9, the exponential term
plays an important role in the estimate; in Lemma 6.10, the exponential term is still there, but
less important; and in Lemmas 6.11 and 6.13, the exponential term disappears.

All four of the following lemmas (Lemmas 6.9, 6.10, 6.11 and 6.13) take place under
the assumptions of Theorem 6.5: (X,E, π,μ) is a 2-Harnack graph satisfying the ellipticity
condition (5.3) and U ⊆ X is a finite inner (α,A)-uniform domain with Perron–Frobenius
eigenfunction φ0. Observe that, by construction and because of the ellipticity assumption,

δ−1 ≤ μuv

π(v)
≤ 1.



GAMBLER’S RUIN ON INNER UNIFORM DOMAINS 887

LEMMA 6.9 (1 + dU(x, zy) ≤ t ≤ (1 + dU(x, zy))
2−ε). Under the assumptions of Theo-

rem 6.5, fix ε > 0 and assume that x ∈ U , y∗
z ∈ ∂∗U and t are such that 1 + dU(x, z) ≤ t ≤

(1 + dU(x, z))2−ε , z = zy . Then

e−C1dU (x,z)2/tμzy

π(B(x,
√

t))
≤ PU

(
t, x, y∗

z

) ≤ e−c1dU (x,z)2/tμzy

π(B(x,
√

t))
.

PROOF. If t = 1, we must have x = z and it follows that

PU

(
1, x, y∗

z

) = K(x,y) = μxy/π(x) ≈ 1 ≈ π(y)/π(x)

by the ellipticity assumption. In what follows, we assume that t > 1.
Recall that the hypotheses imply that β0 ≥ 1 − C/R2. Because

t < d2(x, y) ≤ (A1R)2,

we can ignore the factors β

0 for 
 ≤ t because they are roughly constant. It now suffices to

bound
t−1∑


=dU (x,z)

k

φ0

(x, z).

For the upper bound, Theorem 5.4 gives (with constants c, C changing from line to line
and the point xr defined in Lemma 6.2)

φ0(z)

t−1∑

=dU (x,z)

k

φ0

(x, z)

≤ Cφ0(z)

π(φ2
01BU(x,

√
t))

t−1∑

=dU (x,z)

π(φ2
01BU(x,

√
t))

π(φ2
01BU(x,

√

))

e−cdU (x,z)2/


≤ Cφ0(z)

φ0(x√
t )

2π(B(x,
√

t))

t−1∑

=dU (x,z)

(t/
)κe−cdU (x,z)2/


≤ Cφ0(z)dU (x, z)2

φ0(x
√

t )
2π(B(x,

√
t))

e−cdU (x,z)2/t

≤ Cφ0(x)

φ0(x
√

t )
2π(B(x,

√
t))

e−cdU (x,z)2/t

≤ C

π(B(x,
√

t))
e−cdU (x,z)2/t .

The lower bound follows by similar computations and estimates. The only tricky part is
that we only have a heat kernel lower bound on the sum k


φ0
+k
+1

φ0
. This is perfectly suited for

the desired result, except when t = 1 + dU(x, z), in which case the sum
∑t−1


=dU (x,z) k


φ0

(x, z)

contains exactly one term. This case is handled by direct inspection and using the ellipticity
hypothesis. �

LEMMA 6.10 (1 + dU(x, zy) ≤ t ≤ A2(1 + dU(x, zy))
2). Under the assumptions of The-

orem 6.5, fix A2 and assume that x ∈ U , y∗
z ∈ ∂U and t are such that 1 + dU(x, z) ≤ t ≤

A2(1 + dU(x, z))2, z = zy . Then

c1tφ0(x)φ0(z)e
−C1dU (x,z)2/tμzy

φ0(x
√

t )
2π(B(x,

√
t))

≤ PU

(
t, x, y∗

z

) ≤ C1tφ0(x)φ0(z)e
−c1dU (x,z)2/tμzy

φ0(x
√

t )
2π(B(x,

√
t))

.
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PROOF. Write (with constants c, C changing from line to line)

φ0(z)

t−1∑

=dU (x,z)

k

φ0

(x, z)

≤ Cφ0(z)

π(φ2
01BU(x,

√
t))

t−1∑

=dU (x,z)

π(φ2
01BU(x,

√
t))

π(φ2
01BU(x,

√

))

e−cdU (x,z)2/


≤ Cφ0(z)

φ0(x
√

t )
2π(B(x,

√
t))

t−1∑

=dU (x,z)

(t/
)κe−cdU (x,z)2/


≤ Cφ0(z)t

φ0(x
√

t )
2π(B(x,

√
t))

e−cdU (x,z)2/t .

A matching lower bound follows similarly. �

LEMMA 6.11 ((1 + dU(x, zy))
2 ≤ t ≤ A3R

2). Under the assumptions of Theorem 6.5,
fix A3 and assume that x ∈ U , y∗

z ∈ ∂U and t are such that (1 + dU(x, z))2 ≤ t ≤ A3R
2,

z = zy . Then, setting d = dU(x, z),

PU

(
t, x, y∗

z

) ≈ (1 + d2)φ0(x)φ0(z)μzy

φ0(xd)2π(B(x, d))

{
1 + 1

(1 + d2)

t∑

=d2

φ0(xd)2π(B(x, d))

φ0(x
√

l)
2π(B(x,

√

))

}
.

PROOF. This is clear based on the proof of the previous estimate. �

DEFINITION 6.12. Let TU be such that β0 = 1 − 1/TU . For x ∈ U , y∗
z ∈ ∂U and t ≥

d(x, z)2, set d = dU(x, z), V (x, d) = π(B(x, d)) and

H(t, x, z) = 1+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for 1 + d ≤ t < d2,

φ0(xd)2V (x, d)

1 + d2

t∑
l=d2

1

φ0(x√
l)

2π(B(x,
√


))
for d2 ≤ t ≤ R2,

H
(
R2, x, z

) + φ0(xd)2V (x, d)

1 + d2

(min{t, TU } − R2)+
φ0(o)2π(U)

for R2 < t.

LEMMA 6.13 (1+d(x, zy)
2 ≤ t). Under the assumptions of Theorem 6.5, let TU be such

that β0 = 1 − 1/TU . For all x ∈ U , y∗
z ∈ ∂U and t ≥ dU(x, z)2, z = zy ,

PU

(
t, x, y∗

z

) ≈ (1 + dU(x, z)2)φ0(x)φ0(z)μzy

φ0(xdU (x,z))2π(B(x, dU(x, z)))
H(t, x, z).

The proof is a repetition of previous arguments.

REMARK 6.14. In many cases (e.g., for any finite inner-uniform domain U in Z
n, n �= 2,

and many particular examples in Z
2), we automatically have

∀t ∈ [
2d2,R2]

,

t∑

=d2

1

φ0(x√
l)

2π(B(x,
√


))
≈ 1 + d2

φ0(xd)2π(B(x, d))
,

where d = dU(x, z). In such cases, the function H(x, t) satisfies

H(t, x, z) ≈
⎧⎪⎨
⎪⎩

1 for d2 ≤ t ≤ R2,

1 + φ0(xd)2V (x, d)

1 + d2

(min{t, TU } − R2)+
φ0(o)2π(U)

for R2 ≤ t,
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and Lemma 6.11 simplifies to give

PU

(
t, x, y∗

z

) ≈ (1 + dU(x, z)2)φ0(x)φ0(z)μzy

φ0(xdU (x,z))2π(B(x, dU(x, z)))

for dU(x, z)2 ≤ t ≤ A3R
2.

The following theorem is proved by inspection of the different cases described above. We
also use the fact that, for any κ ∈ R and ω > 0 there exists 0 < c ≤ C < +∞ such that, for
all 0 < t < d2,

ce−2ωd2/t ≤
(

d2

t

)κ

e−ωd2/t ≤ Ce−(ω/2)d2/t .

THEOREM 6.15 (Global estimate of PU(t, x, y∗
z )). Under the assumptions of Theo-

rem 6.5, for all x ∈ U , y∗
z ∈ ∂∗U , z = zy ∈ U , d = dU(x, z) and t ≥ 1 + d , with H(t, x, z)

from Definition 6.12, the hitting probability of y∗
z before time t for the chain started at x,

P(t, x, y∗
z ), is bounded above and below by expressions of the form

c1
(1 + d2)φ0(x)φ0(z)μzy

φ0(xd)2π(B(x, d))
H(t, x, z)e−c2d

2/t ,

where the constants c1, c2 differ in the lower bound and in the upper bound and xd is defined
in Lemma 6.2. These constants depend only on the Harnack constant of (X,E, π,μ), the
ellipticity constant δ and the inner-uniformity constants α, A of U .

We conclude this section with two more statements. The first concerns the central point
o and gives a two-sided estimate for PU(t, o, y∗

z ) that holds for all t ≥ dU(o, y∗
z ) and all ex-

tended boundary points y∗
z . The second gives a two-sided estimate for the harmonic measure

PU(x, y∗
z ) that holds for all x ∈ U , y∗

z ∈ ∂∗
U .

THEOREM 6.16 (Hitting probabilities from the central point o). Fix α ∈ (0,1] and
A ≥ 1. Assume that (X,E, π,μ) is a 2-Harnack graph satisfying the ellipticity condition (5.3)
and that U is a finite inner (α,A)-uniform domain with Perron–Frobenius eigenvalue and
eigenfunction β0, φ0 with π(φ2

0) = 1 and recall that TU = (1 − β0)
−1. There are constants

c,C ∈ (0,∞) depending only on the Harnack constant of (X,E, π,μ), the ellipticity constant
δ, and the inner-uniformity constants α, A of U such that, for all t > 0 and y∗

z ∈ ∂∗U ,

c min{t, TU }μzyφ0(z)√
π(U)

e−CR2/t ≤ PU

(
t, o, y∗

z

) ≤ C min{t, TU }μzyφ0(z)√
π(U)

e−cR2/t ,

where o is a central point as defined in Definition 5.12.

THEOREM 6.17 (Harmonic measure from an arbitrary starting point). Fix α ∈ (0,1] and
A ≥ 1. Assume that (X,E, π,μ) is a 2-Harnack graph satisfying the ellipticity condition
(5.3) and that U is a finite inner (α,A)-uniform domain with Perron–Frobenius eigenvalue
and eigenfunction β0, φ0 with π(φ2

0) = 1 and set TU = (1 − β0)
−1. There are constants

c,C ∈ (0,∞) depending only on the Harnack constant of (X,E, π,μ), the ellipticity constant
δ and the inner-uniformity constants α, A of U such that, for all x ∈ U and y∗

z ∈ ∂∗U ,

PU

(
x, y∗

z

) ≈ φ0(x)φ0(z)μzy

{
TU +

R2∑
l=dU (x,z)2

1

φ0(x√

)

2π(B(x,
√


))

}
.
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LEMMA 6.18. Assume that the function V : (0,N] → (0,∞) satisfies volume doubling,

V (2r) ≤ CV (r),

quasi-monotonicity,

V (s) ≤ CV (r)

and

(6.1)
V (r)

V (s)
≥ C

(
r

s

)2+ε

,

for some C > 0 and for all 1 ≤ s < r ≤ N . Then we have

∀d ∈ (1,N/2),

N2∑

=d2

1

V (
√


)
≈ 1 + d2

V (d)
.

PROOF. Write

N2∑

=d2

1

V (
√


)
= 1

V (d)

N2∑

=d2

V (d)

V (
√


)

≤ C

V (d)

2 log2(N/d)∑
k=0

∑

:
≈d22k

(
d2

d22k

)2+ε

≈ C′d2

V (d)
.

The matching lower bound follows from the quasi-monotonicity of V with d ≤ N/2 because
it implies that the sum contains at least d2 terms of size at least C/V (d). �

REMARK 6.19. Lemma 6.18 is often useful in applying Theorem 6.17 because it sim-
plifies the conclusion of the theorem. Specifically, we want to apply Lemma 6.18 to the func-
tion r �→ φ0(xr)

2V (x, r), where V (x, r) = π(B(x, r)). Remember that φ0(xk)
2V (x, k) ≈

π(φ2
01B(x,k)) and Theorems 6.4 and 6.5 state that this function is doubling (it is also clearly

quasi-monotone). In fact, this function is the product of two functions r �→ φ0(xr)
2 and

r �→ V (x, r), each of which is quasi-monotone and doubling. If any one of these two func-
tions, by itself, satisfies (6.1), the product does also. If say, V (x, r) ≈ r2, then it suffices to
establish that φ0(xr)/φ0(xs) ≥ c(r/s)η for some η > 0. In any such situation, the conclusion
of Theorem 6.17 simplifies to read

(6.2) PU

(
x, y∗

z

) ≈ φ0(x)φ0(z)μzy

{
TU + 1 + dU(x, z)2

φ0(xdU (x,z))2π(B(x, dU(x, z)))

}
.

6.4. Examples.

Three-player gambler’s ruin problem. We return to Example 5.16, the three-player gam-
bler’s ruin problem which evolves in the triangle

U = {
(x1, x2) : 0 < x1,0 ≤ x2, x1 + x2 < N

}
.

In Example 5.16 we gave approximations to the harmonic measure starting from N/4, N/4.
We here complete this, giving uniform estimates from any start. The natural symmetries of the
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FIG. 9. The gambler’s ruin problem with 3 players, with starting points x in yellow and exit points y in blue. If
we know PU (x, y) for all yellow x and blue y, then all other possibilities PU (x′, y′) can be obtained by symmetry.

problem imply that each of the three corners of the triangle are equivalent (under appropriate
transformations) so we can focus on the the corner at the origin. We will describe two-sided
bounds on the harmonic measure PU(x, y) when x = (x1, x2) with 0 < x1, 0 < x2, 2x1 +x2 ≤
N , and y = (y1,0), 0 < y1 < N . See Figure 9. In this example, R ≈ N , TU ≈ N2, μzy ≈ 1,
π(B(x, r)) ≈ r2. Each boundary point y corresponds to either one or two extended boundary
points. For any y which has two extended boundary points {z, y} and {z′, y}, the internal
points z, z′ are neighbors in U . This means there is no real need to distinguish them when
estimating PU(x, y). For each y = (y1,0), 0 < y1 < N , we set zy = (y1,1) and z′ = (y1 −
1,1) with the convention that z(1,0) = z′

(1,0) = (1,1) and z(N−1,0) = z′
(N−1,0) = (N − 2,1).

Next, we appeal to estimate (5.10) to control φ0. For z = (z1,1), 0 < z1 < N − 1,

φ0(z) ≈ N−6z2
1(N − z1)

2.

For x = (x1, x2) with 0 < x1, 0 < x2, 2x1 + x2 ≤ N ,

φ0(x) ≈ N−6x1x2(x1 + x2)
(
N − (x1 + x2)

)
(N − x2).

Remark 6.19 applies to this example and we can use (6.2). Assume first that d = dU(x, zy) ≥
N/8. In this case, we have

PU(x, y) ≈ N2φ0(x)φ0(zy)

≈ N−10x1x2(x1 + x2)
(
N − (x1 + x2)

)
(N − x2)y

2
1(N − y1)

2.

Assume instead that d = dU(x, zy) ≤ N/8. In that case |x1 − z1| + |x2 − 1| ≤ 2d ≤ N/4 and
φ0(xd) ≈ φ0((x1 + d, x2 + d)). It follows that

PU(x, y) ≈ φ0(x)φ0(zy)
(1 + d2)

φ0(xd)2(1 + d2)

≈ x1x2(x1 + x2)y
2
1

(x1 + d)2(x2 + d)2(x1 + x2 + 2d)2 .

It is possible to summarize the two cases via one formula. Namely, for all x = (x1, x2) with
0 < x1, 0 < x2, 2x1 + x2 ≤ N and y = (y1,0), 0 < y1 < N , d = dU(x, zy),

(6.3) PU(x, y) ≈ x1x2(x1 + x2)(N − (x1 + x2))(N − x2)y
2
1(N − y1)

2

N4(x1 + d)2(x2 + d)2(x1 + x2 + 2d)2 .



892 P. DIACONIS, K. HOUSTON-EDWARDS AND L. SALOFF-COSTE

Note that, despite appearances, y appears in both the numerator and the denominator of
(6.3). For example, if x = (x1, x2) = (1,1) (i.e., the random walk starts in the lower left
corner), then

PU(x, y) ≈ (N − y1)
2

N2y4
1

,

where y = (y1,0). Thus, absorption is most likely for small y1 and falls off like y4
1 when y1

is of order N . Similarly, if x = (x1, x2) = (1,N −2) (i.e., the random walk starts in the upper
left corner), then

PU(x, y) ≈ y2
1(N − y1)

2

N8 ,

where y = (y1,0). Recall from Example 5.16 that

PU(x, y) ≈ y2
1(N − y1)

2

N5

when x = (x1, x2) = ([N/4], [N/4]) and y = (y1,0), which aligns with (6.3).

6.4.1. The square and cube with the center removed. Consider the cube with the center
removed,

U = {−N, . . . ,N}n \ {
(0, . . . ,0)

}
in dimension n ≥ 2. The boundary is

∂U = {
(0, . . . ,0)

} ∪
(

n⋃
i

Fi

)
,

F±i = {
x = (xj )

n
1 : xj ∈ {−N, . . . ,N} for j �= i;xi = ±(N + 1)

}
.

Here, X = Z
n is equipped with its natural edge set E = {{x, y} : ∑n

1 |xi − yi | = 1}. The
measure π is the counting measure and we can take either μxy = 1

2n
(in which case the chain

is periodic of period 2) or an aperiodic version with μxy = 1
κn

, κ ∈ (2,4), say. In any of
these cases, (X,E, π,μ) is a 2-Harnack graph and the Perron–Frobenius eigenvalue β0 of U

satisfies

1 − β0 ≈ 1

N2 .

This translates into TU ≈ N2. It is a bit more challenging to describe a good global two-sided
estimate for the Perron–Frobenius eigenfunction φ0. The estimates differ in dimension n ≥ 2.
When n ≥ 3 (recall the normalization π(φ2

0) = 1), we have the following estimate. (See [7],
Section 9.3, for the treatment of a similar example.)

φ0(x) ≈n

1

Nn/2

(
1 − 1

(1 + |x|)n−2

) n∏
1

(
1 − |xi |

N + 1

)

≈n 1{0}(x)
1

Nn/2

n∏
1

(
1 − |xi |

N + 1

)
.

In this two-sided bound, |x| = ∑n
1 |xi | and the implied constant depends on the dimension n.

Similarly, for n = 2,

φ0(x) ≈ 1

N

(
1 − |x1|

N + 1

)(
1 − |x2|

N + 1

)
log(1 + |x|)
log(1 + N)

.
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We now use these estimates to state two-sided bounds for PU(x, y) for x ∈ U , y ∈ ∂U .
We can let x be arbitrary in U and assume that y belongs either to the top face Fn = {y =
(ȳ,N + 1) : ȳ ∈ {−N, . . . ,N}n−1}, or is equal to the central point 0= (0, . . . ,0).

When n ≥ 3, Remark 6.19 applies and Theorem 6.17 gives (see (6.2)

PU

(
x, y∗

z

) ≈ φ0(x)φ0(z)

{
N2 + 1 + |x − z|2

φ0(x|x−z|)2(1 + |x − z|n)
}
.

At y = 0 and for each of its 2n neighbors z with all coordinates zero except one equal to ±1
(recall that the point x is in U = {−N, . . . ,N}n \ {0}),

PU

(
x,0∗

z

) ≈ φ0(x)Nn/2|x|2−n ≈
n∏
1

(
1 − |xi |

N + 1

)
|x|2−n.

At a point y on the top face Fn, there is a unique neighbor z of y lying in U and

PU(x, y) ≈
∏n

1(1 − |xi |
N+1)

∏n−1
1 (1 − |yi |

N+1)

(N + 1)
∏n

1(1 − |xi |−|x−y|
N+1 )2

|x − y|2−n.

As an illustrative example, consider the case when k of the coordinates of x are equal to
N + 1 − r , 
 of the first n − 1 coordinates of y are equal to N (by assumption yn = N + 1),
the remaining coordinates of x and y are less than N/2 and |x − y| is greater than N/2. For
such a configuration,

PU(x, y) ≈
(

1

N + 1

)n−1+
( r

N + 1

)k

.

In the case n = 2, we need to understand the quantity

S(x, d) =
8N2∑

=d2

1

φ0(x√

)

2(1 + 
)
,

where d = dU(x, z). When d ≥ N/4, S(x, d) ≈ N2. When d < N/4 and z is a neighbor of 0,

S(x, d) ≈ (N logN)2
8N2∑
d2

1


(log
)2 ≈ (N logN)2 1 + log(1 + 2N/d)

(1 + logN)(1 + log(1 + d))
.

When 0 ≤ d < N/4 and y is on one of the four faces F±i , i = 1,2, we have |x1 − y1| ≤ N/4,
|x2 − y2| ≤ N/4 and this implies |x| ≥ N/2. Since one of y1, y2 equals ±(N + 1), it follows
that one of |xi − yi | equals N + 1 − |xi | which must be less than d + 1. Now, for 
 ≥ d2, we
have

φ0(x
√


)

φ0(xd)
≈ (N + 1 − |x1| +

√

)(N + 1 − |x2| +

√

)

(N + 1 − |x1| + d)(N + 1 − |x2| + d)
≥ 1

2

1 + √



1 + d
.

Indeed, assume for instance that for i = 1, N +1−|x1| ≤ d +1. Then, for
√


 ≥ d ≥ N −|x1|,
(N + 1 − |x1| +

√

)(N + 1 − |x2| +

√

)

(N + 1 − |x1| + d)(N + 1 − |x2| + d)
≥ N + 1 − |x1| +

√



N + 1 − |x1| + d

≥ 1 + √



2(1 + d)
.
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Now write

S(x, d) = 1

(1 + d)2φ0(xd)2

8N2∑

=d2

φ0(xd)2(1 + d)2

φ0(x
√


)
2(1 + 
)

≤ C

(1 + d)2φ0(xd)2

8N2∑
d2

(
1 + d

1 + √



)4

≈ C

φ0(xd)2 .

The conclusion is that, when y = 0,

S(x, d) ≈ N2 logN
1 + log(1 + 2N/d)

1 + log(1 + d)

and

PU(x,0) ≈
(

1 − |x1|
N + 1

)(
1 − |x2|

N + 1

)
1 + log(1 + 2N/|x|)

(1 + logN)(1 + log(1 + |x|)) .

When y is on F±i , i = 1,2, whereas for y on one of the faces F±i , i = 1,2,

S(x, d) ≈ N2

(1 − |x1|−d
N+1 )2(1 − |x2|−d

N+1 )2

and

PU(x, y) ≈ (1 − |x1|
N+1)(1 − |x2|

N+1)(1 − |y1|−1
N+1 )(1 − |y2|−1

N+1 ) log(1 + |x|)
(1 − |x1|−|x−y|

N+1 )2(1 − |x2|−|x−y|
N+1 )2 log(1 + N)

.

6.5. Conclusion. For reversible Markov chains killed at the boundary of a finite subdo-
main U , the Doob-transform technique reduces estimates of the Poisson kernel (harmonic
measure) and its time-dependent versions to estimates of a reversible ergodic (except per-
haps for periodicity) Markov chain, where the estimates are determined explicitly in terms of
the Perron–Frobenius eigenfunction φ0. In general, neither the Perron–Frobenius eigenfunc-
tion nor the resulting ergodic Markov chain are easily studied. However, when the original
Markov chain (or, equivalently, its underlying graph) satisfies a parabolic Harnack inequality,
uniformly at all locations and scales, and the finite domain U is an inner-uniform domain,
it become possible to reduce all estimates solely to a good understanding of the Perron–
Frobenius eigenfunction φ0. See, Theorems 5.11 and 6.17. When the finite domain U has a
reasonably simple geometry, a variety of relatively sophisticated tools are available to deter-
mine the behavior of φ0 and this leads to sharp two-sided estimates for the Poisson kernel
and its time dependent variants.

In many cases of interest, global estimates of the Perron–Frobenius eigenfunction φ0 re-
main a difficult challenge. The results proved here provide further justifications for attempting
to tackle this challenge. The gambler’s ruin problem with four (or more) players is a good
example of such a problem. It is amenable to the techniques developed above and it is pos-
sible to show that the function φ0 vanishes in a manner similar to different power functions
near distinct parts of the boundary. In this and other similar examples, computing the various
exponents and putting together these bits of information to get a global two-sided estimate of
φ0 is a challenging problem.
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