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Abstract. For a relatively large class of well-behaved absorbing (or killed) finite
Markov chains, we give detailed quantitative estimates regarding the behavior of the
chain before it is absorbed (or killed). Typical examples are random walks on box-
like finite subsets of the square lattice Z% absorbed (or killed) at the boundary. The
analysis is based on Poincaré, Nash, and Harnack inequalities, moderate growth,
and on the notions of John and inner-uniform domains.
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1. Introduction

1.1. Basic ideas and scope. Markov chains that are either absorbed or killed at
boundary points are important in many applications. We refer to Collet et al.
(2013); Diaconis and Miclo (2015); Burkholder (1977); DeBlassie (1987); Denisov
and Wachtel (2015) for entries to the vast literature regarding such chains and
their applications. Absorption and killing are distinguished by what happens to
the chain when it exits its domain U. In the killing case, it simply ceases to exist.
In the absorbing case, the chain exits U and gets absorbed at a specific boundary
point which, from a classical viewpoint, is still part of the state space of the chain.
In this paper we study the behavior of chains until they are either absorbed or
killed, which means that there is no significant difference between the two cases.
For simplicity, we will phrase the present work in the language of Markov chains
killed at the boundary.

The goal of this article is to explain how to apply to finite Markov chains a
well-established circle of ideas developed for and used in the study of the heat
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equation with Dirichlet boundary condition in Euclidean domains and manifolds
with boundary, or, equivalently, for Brownian motion killed at the boundary. By
applying these techniques to some finite Markov chains, we can provide good es-
timates for the behavior of these chains until they are killed. These estimates are
also very useful for computing probabilities concerning the exit position of the pro-
cess, that is, the position when the chain is killed. Such probabilities are related to
harmonic measure and time-constrained variants. This is discussed by the authors
in a follow-up article Diaconis et al. (20204). As a bonus, these techniques provide
new results for Metropolis-type chains associated with certain weights on boxes and
other subsets of Z<.

In Diaconis and Miclo (2015), a very basic example of this sort is discussed, lazy
simple random walk on {0,1..., N} with absorption at 0 and reflection at N. This
served as a starting point for the present work. Even for such a simple example,
the techniques developed below provide improved estimates.

The present approach utilizes powerful tools: Harnack, Poincaré and Nash in-
equalities. It leads to good results even for domains whose boundaries are quite
rugged, namely, inner-uniform domains and John domains. The notions of “Harnack
inequality” and “John domain” are quite unfamiliar in the context of finite Markov
chains and their installment in this context is non-trivial and interesting mostly
when a quantitative viewpoint is implemented carefully. The main contribution of
this work is to provide such an implementation.

(0,0 (N,0)

FIGURE 1.1. The forty-five degree finite cone in Z>

The type of finite Markov chains—more precisely, the type of families of finite
Markov chains—to which these methods apply is, depending of one’s perspective,
both quite general and rather restrictive. First, we will mostly deal with reversible
Markov chains. Second, the most technical part of this work applies only to fami-
lies of finite Markov chains whose state spaces have a common “finite-dimensional”
nature. Our basic geometric assumptions require that all Markov chains in the gen-
eral family under consideration have, roughly speaking, the same dimension. The
model examples are families of finite Markov chains whose state spaces are subsets
of Z2 for some fixed d, such as the family of forty-five degree cones parametrized by
N shown in Figure 1.1. Many interesting families of finite Markov chains evolve on
state spaces that have an “infinite-dimensional nature,” e.g., the hypercube {0,1}%
or the symmetric group S; where d grows to infinity. Our main results do not
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apply well to these “infinite-dimensional” families of Markov chains, although some
intermediary considerations explained in this paper do apply to such examples. See
Section 7.1.

The simple example depicted in Figure 1.1 illustrates the aim of this work. Start
with simple random walk on the square grid in the plane. For each integer N > 2,
consider the subgraph of the square grid consisting of those vertices (p, ¢) such that

g<p<Nand0<qg<N,

which are depicted by black dots on Figure 1.1. Call this set of vertices U = Uy.
The boundary where the chain is killed (depicted in blue) consists of the bottom
and diagonal sides of the cone, i.e., the vertices with either ¢ = 0 or p = ¢ for
0 <p,q < N. Call this set U = Uy and set X = Xy = Uy U OUy. The vertices
along the right side of the cone, {(N,q¢),1 < ¢ < N}, have one less neighboring
vertex, so we add a loop at each of these vertices. (In Figure 1.1, these vertices are
depicted with larger black dots and the loops are omitted for simplicity.)

We are interested in understanding the behavior of the simple random walk on
X killed at the boundary OU, before its random killing time 7. In particular, we
would like to have good approximations of quantities such as

P,y >0), P (Xy =ylty >¥), P(Xy =y and 7y > ¥¢), (L.1)
forz,ye U, 0<t</{, and
lim P, (X; = y|ltv > £), (1.2)
£— 00

for z,y € U, 0 <t < 400 where the time parameter t is integer valued. This limit,
if it exists, can be interpreted as the iterated transition probability at time ¢ for the
chain conditioned to never be absorbed. We chose the example in Figure 1.1 because
it is a rather simple domain, but already demonstrates some of the complexities in
approximating the above quantities.

1.2. The Doob-transform technique. Before looking at this example in detail, con-
sider a general irreducible aperiodic Markov kernel K on a finite or countable
state space X. Let U be a finite subset of X such that the kernel Ky (z,y) =
K(x,y)1y(z)1y(y) is still irreducible and aperiodic. Let (X:) be the (discrete
time) random walk on X driven by K, and let 7y be the stopping time equal to the
time of the first exit from U as above.

A rather general result explained in Section 7 implies that the limit

lim P, (X =yltv > ¢), z,y €U, t € Nxg
£— 00 -

exists and so we can define K, , (z,y) for any z,y € U and t € N> as
K]goob(x?y) = lim PT(Xf = y|7'U > g)
£— 00

It is not immediately clear that this collection of ¢-dependent kernels,
K]1300b7 K%oob’ Kgoob7 ttty

has special properties, but it turns out that it is nothing other than the collection
of the iterated kernels of the kernel Kpoo, = K3, itself, i.e.,

Klt)oob ('Tv y) = Z Kézsb ('T7 Z)KDOOb(Z7 y)
zeU

Moreover, Kpoop, is an irreducible aperiodic Markov kernel.
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To see why this is true, let us explicitly find the kernel Kp,.,. Recall that, by
the Perron-Frobenius theorem, the irreducible, aperiodic, non-negative kernel Ky
has a real eigenvalue 8y € [0, 1] which is simple and such that |3 < By for every
other eigenvalue 8. This top eigenvalue 5y has a right eigenfunction ¢y and a left
eigenfunction ¢§ which are both positive functions on U. Set

Ko (2,y) = By ' o(@) ™ Ku (2, y)¢0(y)
and observe that this is an irreducible aperiodic Markov kernel with invariant prob-
ability measure proportional to ¢j¢o. These facts all follow from the definition and
elementary algebra.
In Section 7, we show that

lim P, (X, = ylry > £) = K} (2,y),
L—00

and hence
Koo (2,9) = K§, (2,).
This immediately implies that

P.(X; =y and 75 > t) = Ky (2,y) = ByEpoon (@, y)do (@) do(y) -
If we assume—this is a big and often unrealistic assumption—that we know the

eigenfunction ¢, either via an explicit formula or via “good two-sided estimates,”
then any question about

P.(X; =y and 7y > t) or, equivalently, K};(z,y)

can be answered by studying
K]?)oob (‘T7 y)

and vice-versa. The key point of this technique is that Kp,., is an irreducible
aperiodic Markov kernel with invariant measure proportional to ¢§¢o and its ergodic
properties can be investigated using a wide variety of classical tools.

The notation Kp.,;, refers to the fact that this well-established circle of ideas is
known as the Doob-transform technique. From now on, we will use the name K,
instead, to remind the reader about the key role of the eigenfunction ¢g.

1.3. The 45 degree finite discrete cone. In our specific example depicted in Fig-
ure 1.1, Ky is symmetric in x,y so that ¢§ = ¢g. We let 7y = 2/(N(N — 1))
denote the uniform measure on U and normalize ¢y by the natural condition
7y (¢3) = 1. Then, 74, = @37y is the invariant probability measure of K4, and this
pair (K4,,7Tg,) is irreducible, aperiodic, and reversible. By applying known quan-
titative methods to this particular aperiodic, irreducible, ergodic Markov chain, we
can approximate the quantities (1.1) and (1.2) as follows.
For any x = (p,q) € U and any ¢, set z 5 = (p,;,q,/7) Where

Py = (p+2[VE/4])) AN and 4.5 = (¢+ |VE/4]) A (N/2).

The transformation x = (p,q) — = ; = (p,/7,q,/;) takes any vertex x = (p,q) and
pushes it inside U and away from the boundary at scale v/t (at least as long as
t < N). The two key properties of z 7 are that it is at distance at most Vt from
x and at a distance from the boundary U of order at least v/ A N.

The following six statements can be proven using the techniques in this paper.
The first five of these statements generalize to a large class of examples that will be
described in detail. The last statement takes advantage of the particular structure
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of the example in Figure 1.1. Note that the constants ¢, C' may change from line to
line but are independent of N,t and x,y € U = Uy.

(1)

(2)

For all N, cN~2 <1 — By < CN~2. This eigenvalue estimate gives a basic
rate at which mass disappears from U. (See Theorem 7.23.) For a more
precise statement, see item 5 below.

All eigenvalues of Ky are real, the smallest one, S..;,, satisfies

Bo + Buin = cBoN 2
and, for any eigenvalue 8 other than gy,
Bo— B> cBoN 2.
The first of these inequalities shows that ﬁmﬂ, the smallest eigenvalue of

Ky, , is strictly larger than —1, which implies the aperiodicity of Ky, .
For all x,y,t, N with ¢t > N?

NN -1DP,(X;=yand 7y > 1) ‘} —ct/N?
f”{ 25800(@)90 (1) fpscem

A simple interpretation of this (and the following) statement is that

P,.(X: =y and 7y >t) (resp. P,(7y > 1))

is asymptotic to a known function expressed in terms of Sy and ¢g. (See
Theorem 7.17.)
For all z,t, N with ¢t > N2,

max{ N(N_ 1)Pm(TU > t) _ 1‘} < Ce_Ct/Nz.

k2 2650 (x) v (¢o)
For all z,¢, N,
t Po(z) t Po(z)
5 0¢0($\/{) < Palry > 1)< Chy do(x )

Unlike the third and fourth statements on this list, which give asymptotic
expressions for

P,(X; =y and 7y > t) and P, (7y > 1)

for times greater than N2, the fifth statement provides a two-sided bound
of the survival probability P, (7y > t) that holds true uniformly for every
starting point z and time ¢ > 0. (See Corollary 8.24.)

For all N and = = (p,q) € U, where U is described in Figure 1.1,

epa(p+q)(p— )N ~* < ¢o(x) < Cpa(p+ q)(p — )N ™.

Observe that this detailed description of the somewhat subtle behavior of
¢o in all of U, together with the previous estimate of P,(7y > t), pro-
vides precise information for the survival probability of the process (X;)¢>0
started at any given point in U.

In general, it is hard to get detailed estimates on ¢q, although some non-trivial and
useful properties of ¢y can be derived for large classes of examples. Even in the
example given in Figure 1.1, the behavior of ¢q is not easily explained. In this case,
it is actually possible to explicitly compute ¢g:

¢o(x) = 4k sin 2]\?]1 1 si ™ (sin2 P sin® ™4 ) .

"ON 1 oN+1 M ON+1
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The constant xy which makes this eigenfunction have L?(7y)-norm equal to 1 can

_ \/BN(N-1)

be computed to be Ky = SNIT - The eigenvalue f is

B _! COSL-FCOS ST
072 2N +1 2N +1)°

1.4. A short guide. Because some of the key techniques in this paper have a geo-
metric flavor, we have chosen to emphasize the fact that all our examples are
subordinate to some preexisting geometric structure. This underlying geometric
structure introduces some of the key parameters that must remain fixed (or appro-
priately bounded) in order to obtain families of examples to which the results we
seek to obtain apply uniformly.

For a flowchart describing the overall organization of this paper, see Figure 1.3.

Generally, we use the language of graphs, and the most basic example of such
a structure is a d-dimensional square grid. Throughout, the underlying space is
denoted by X. It is finite or countable and its elements are called vertices. It is
equipped with an edge set € which is a set of pairs undirected {z,y} of distinct
vertices (note that this excludes loops). Vertices in such pairs are called neighbors.
For each z € X, the number of pairs in € that contain z is supposed to be finite, i.e.,
the graph is locally finite. The structure (X, &) yields a natural notion of a discrete
path joining two vertices and we assume that any two points in X can indeed be
joined by such a path.

Two rather subtle types of finite subsets of X play a key role in this work:
a-John domains and a-inner-uniform domains. Inner-uniform domains are always
John domains, but John domains are not always inner-uniform. The number a €
(0,1] is a geometric parameter, and we will mostly consider families of subsets
which are all either a-John or a-inner-uniform for one fixed o > 0. John domains,
named after Fritz John, are discussed in Section 2.1 whereas the discussion of
inner-uniform domains is postponed until Section 8. Our most complete results
are for inner-uniform domains. These notions are well known in the context of
(continuous) Euclidean domains, in particular in the field of conformal and quasi-
conformal geometry. We provide a discrete version. See Figures 2.6, 8.16, and 8.18
for simple examples.

Whitney coverings are a key tool used in proofs about John and inner-uniform
domains. These are collections of inner balls within some domain that are nearly
disjoint and have a radius that is proportional to the distance of the center to the
boundary. These collections of balls are not themselves a covering of the domain,
but the balls with tripled radius are, i.e., they generate a covering. See Section 2.2
for the formal definition and Figure 2.8 for an example. Whitney coverings are
absolutely essential to the analysis presented in this paper. For instance, a Whitney
covering of a given finite John domain U is used to obtain good estimates for the
second largest eigenvalue of a Markov chain (e.g., simple random walk on our graph)
forced to remained in the finite domain U. See, e.g., Theorem 6.4.

With the geometric graph structure of Section 2 fixed, we add vertex weights,
m(zx) for each z € X, and (positive) edge weights, pg, for each {z,y} € €, with
the requirement that y is subordinated to m, i.e., 32 cx pay < m(z) (often, pgy is
extended to all pairs by setting ji, = 0 when {z,y} € &). Section 3.1 explains how
each choice of such weights defines a Markov chain and Dirichlet form adapted to
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FIGURE 1.2. A graph with weights 7, i (¢ subordinated to ) and
the resulting Markov kernel (with invariant measure 7). On the
right, each edge {z,y} carries two numbers, K(z,y) and K(y,z),
with K (z,y) written next to . Large dots indicate non-zero hold-
ing and the holding value is indicated nearby.

the geometric structure (X, €). This is illustrated in Figure 1.2 where the Markov
kernel K = K, is obtained by seting K (x,y) = pqgy/7(z) for z # y and K(z,z) =
1= cx Hay/m(z). We will generally refer to the geometric structure of (X, €)
with weights (, u) instead of the Markov chain.

Section 3 introduces the important known concepts of volume doubling, mod-
erate growth, various Poincaré inequalities, and Nash inequalities. These notions
depend on the underlying structure (X, €) and the weights (m, ). There is a very
large literature on volume doubling, Poincaré inequalities and Nash inequalities in
the context of harmonic analysis, global analysis and partial differential equations
(see, e.g., Grigor’yan, 2009; Saloff-Coste, 2002 and the references therein for point-
ers to the literature) and analysis on countable graphs (see Barlow, 2017; Coulhon,
2000; Grigor’yan, 2018; Salofl-Coste, 1997). The notion of moderate growth is
from Diaconis and Salofl-Coste (1994, 1996) which also cover volume doubling and
Poincaré and Nash inequalities in the context of finite Markov chains.

Section 4 is one of the key technical sections of the article. Given an underlying
structure (X, &, 7, 1) which satisfies two basic assumptions—volume doubling and
the ball Poincaré inequality—we prove a uniform Poincaré inequality for finite a-
John domains with a fixed a.. This relies heavily on the definition of a John domain
and the use of Whitney coverings. Theorems 4.6 and 4.10 are the main statements
in this section. Section 5 provides an extension of the results of Section 4, namely,
Theorems 5.5 and 5.11, by modifying the weights on the graph in a way . The line
of reasoning for these results is adapted from Jerison (1986); Maheux and Salofi-
Coste (1995); Saloff-Coste (2002) where earlier relevant references can be found (all
these references treat PDE type situations).

Section 6 illustrates the results of Section 5 in the classical context of the
Metropolis-Hastings algorithm. Specifically, given a finite John domain U in a
graph (X, ¢), we can modify a simple random walk via edges weights in order to
target a given probability distribution. Under certain hypotheses on the target dis-
tribution, Section 5 provides useful tools to study the convergence of such chains.
We describe several examples in detail.
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Section 7 deals with applications to absorbing Markov chains (or, equivalently for
our purpose, chains killed at the boundary). We call such a chain Dirichlet-type by
reference to the classical concept of Dirichlet boundary condition. The section has
two subsections. The first provides a very general discussion of the Doob transform
technique for finite Markov chains. The second applies the results of Section 5 to
Dirichlet-type chains in John domains. The main results are Theorems 7.14, 7.17,
and 7.23.

Section 8 introduces the notion of inner-uniform domain in the context of our un-
derlying discrete space (X, €). Theorem 8.9 captures a key property of the Perron-
Frobenius eigenfunction ¢q in a finite inner-uniform domain. This key property is
known as a Carleson estimate after Lennart Carleson. There is a vast literature
regarding this estimate and its relation to the boundary Harnack principle in the
context of potential theory in Euclidean domains (see, e.g., Ancona, 1978; Banue-
los et al.; 1991; Aikawa, 2001, 2005, 2008 and the references and pointers given
therein).

Corollary 8.12 is based on the Carleson estimate of Theorem 8.9 and on Theo-
rem 7.14. Tt provides a (sharp) quantitative convergence (to stationarity) for Doob-
transform chains in finite inner-uniform domains. Section 8.2 provides a proof of the
Carleson estimate via transfer to the associated cable-process and Dirichlet form.
Because the Carleson estimate is a deep and difficult result, it is nice to be able
to obtain it from already known results. We use here a similar (and much more
general) version of the Carleson estimate in the context of local Dirichlet spaces
developed in Lierl and Saloff-Coste (2014b,a) following Aikawa (2001, 2015) and
Gyrya and Saloff-Coste (2011). We apply to the eigenfunction ¢q the technique of
passage from the discrete graph to the continuous cable space. This requires an
interesting argument. (See Proposition 8.18.) Section 8.3 provides more refined
results regarding the iterated kernels K7}, (chain killed at the boundary) and K to
(associated Doob-transform chain) in the form of two-sided bounds valid at all
times and all space location in U. A key result is Corollary 8.24 which gives, for
inner-uniform domains, a sharp two-sided bound on P, (7y > t), the probability
that the process (X;)¢~o started at x has not yet exited U at time .

The final section, Section 9, describes several explicit examples in detail.

2. John domains and Whitney coverings

This section is concerned with notions of a purely geometric nature. Our basic
underlying structure can be described as a finite or countable set X (vertex set)
equipped with an edge set & which, by definition, is a set of pairs of distinct vertices
{z,y} C X. We write & ~ y whenever {x,y} € € and say that these two points are
neighbors. By definition, a path is a finite sequence of points v = (zo, ..., Z,) such
that {z;,2;41} € € 0 < i < m. We will always assume that X is connected in the
sense that, for any two points in X, there exists a finite path between them. The
graph-distance function d assigns to any two points x,y in X the minimal length of
a path connecting x to y, namely,

d(xﬂy) = mf{m : EI Y= (ml)gba o=, Tm =Y, {miaxH»l} S @}
We set
B(z,r) ={y:d(z,y) <r).
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Changing Weights
(Section 5)

Concept of Poincaré
and Nash inequal-
ity (Section 3)
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Theorem 7.17)

Examples of absorbing chains in John
and inner-uniform domains (Section 9)

FIGURE 1.3. A flowchart of the main ideas in this paper. The
purple boxes denote the background ideas, the yellow boxes denote
the main technical sections, the red boxes denote the main results,
and the green box denotes the examples.

This is the (closed) metric ball associated with the distance d. Note that the radius
is a nonnegative real number and B(z,r) = {z} for r € [0,1).

Notation. Given a ball F = B(x,r) with specified center and radius and & > 0,
let KE denote the ball kE = B(x, kr).
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Remark 2.1. We think of € as producing a “geometric structure” on X. Note
that loops are not allowed since the elements of & are pairs, i.e., subsets of X
containing two distinct elements. This does not mean that the Markov chains we
will consider are forbidden to have positive holding probability at some vertices.
The example in the introduction, Figure 1.1, does have positive holding at some
vertices (specifically, at (NN, q) for 1 < ¢ < N) so the associated Markov chain is
allowed to have loops even though the geometric structure does not.

Let U be a subset of X. Define the boundary of U to be
OU ={y € X\ U : 3z € U such that {z,y} € €}.

Note that this is the outer boundary of U in the sense that it sits outside of U. We
say that U is connected if, for any two points z,y in U, the exists a finite path
Yoy = (%0, 1, ..., Tm) With g = z and x,, = y such that ; € U for 0 <i <m. A
domain U is a connected subset of X. We will be interested here in finite domains.

Definition 2.2. Given a domain U C X, define the intrinsic distance dy by setting,

for any z,y € U,

dy(z,y) =inf{m : 3(z;)y", vo=2, Tm =V, {Ti,xip1} €€, z;, €U, 0<i<m}.

In words, dy(x,y) is the graph distance between z and y in the subgraph (U, €y)

where €y = €N (U x U). It is also sometimes called the inner distance (in U). Let
By(z,r)={y €U :du(z,y) <r}

be the (closed) ball of radius r around « for the intrinsic distance dy .

In the example of Figure 1.1, we set
X=Xyv={(p):0<q¢<p<N}
The edge set € = € is inherited from the square grid and
U=Un={(p,g):0<qg<p< N}
It follows that the boundary OU of U (in (X, €)) is
U = 0Un = {(p,p), (p,0) : 0 <p < N}

2.1. John domains. The following definition introduces a key geometric notion
which is well known in the areas of harmonic analysis, geometry, and partial differ-
ential equations.

Definition 2.3 (John domain). Given «, R > 0, we say that a finite domain
U C X, equipped with a point o € U, is in J(X, &, 0, a, R) if the domain U has the
property that for any point « € U there exists a path v, = (zo,...,2,,) of length
m, contained in U such that xy = x and x,, = o, with

meag]({mx} <R and d(xz;, X\ U) > a(l +1),

for 0 < i < m,. When the context makes it clear what underlying structure (X, &)
is considered, we write J(o, o, R) for J(X, €, 0,, R).

We can think of a John domain U as being one where any point x is connected
to the central point o by a carrot-shaped region, which is entirely contained within
U. The x is the pointy end of the carrot and the point o is the center of the round,
fat end of the carrot. See Figure 8.15 for an illustration.
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Within the lattice Z?, there are many examples of John domains: the lattice
balls, the lattice cubes, and the intersection of Euclidean balls and Euclidean equi-
lateral triangles with the lattice. See also Examples 2.9, 2.10, and 2.11 and Fig-
ure 2.6 below. Domains having large parts connected through narrow parts are not
John. These examples, however, are much too simple to convey the subtlety and
flexibility afforded by this definition.

(0,0 (N,0)

FIGURE 2.4. The forty-five degree finite cone in Z? with the “cen-
ter” marked as a red o.

Definition 2.4 (a-John domains). Given (X, €), let J(a) = J(X, €, a) be the set
of all domains U C X which belong to J(X, &, 0,a, R) for some fixed o € U and
R > 0. A finite domain in J(«) is called an a-John domain.

Definition 2.5 (John center and John radius). For any domain U € J(«), there
is at least one pair (0, R), with o € U and R > 0, such that U € J(o,«, R). Given
such a John center o, let R(U,o0,«) be the smallest R such that U € J(o,a, R).
Assuming « is fixed, we call R(U, o0, «) the John-radius of U with respect to o.

Remark 2.6. If we apply the second condition of Definition 2.3 to any point in U
at distance 1 from the boundary, we see that a € (0, 1].

Remark 2.7. Given U € J(X, €, «), define the internal radius of U, viewed from o,
as
po(U) = max{dy(o,z) : x € U}.

Then, the John-radius R(U,o0,«) is always greater than or equal to p,(U), i.e.,
R(U,0,a) > po(U). Furthermore, we always have

min{dy(0,2) : 2 € X\ U} =d(0,X\U) > a(1 + R(U, 0, ) ),
which implies that
a(l+ R(U,o0,a)) <1+ p,(U) <1+ R(U,o0,«q).

In words, when U € J(«) is not a singleton, the John-radius of U and p,(U) are
comparable, namely,

%R(U7 0,0) < po(U) < R(U, 0, x).
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We can also compare p,(U) to the diameter of the finite metric space (U,dy).
Namely, we have
0o(U) < diam(U, dy) < 2p,(U).

Remark 2.8. Let us compare this definition of a discrete John domain to the con-
tinuous version introduced in the classical reference Martio and Sarvas (1979). In
Martio and Sarvas (1979), a Euclidean domain D is an («, §)-John domain (denoted
D € J(a,p)) if there exists a point o € D such that every x € D can be joined
to o by a rectifiable path 7, : [0,7,] (paramatrized by arc-length) with ~,(0) = z,
Yo (Ty) = 0, Ty, < B and do(v4(t),0D) > «a(t/T,) for ¢t € [0,T,]. (Here dy is the
Euclidean distance.) If one ignores the small modifications made in our definition
to account for the discrete graph structure, the class J(o,a, R) is the analogue of
the class J(aR, R) with an explicit center o. The smallest R such that D belong
to J(aR, R) with a given center o would be the analogue of our John-radius with
respect to o.

Example 2.9. Consider the example depicted in Figure 2.4. From the definition of
John domain, one can see that it is best to choose o far from the boundary. We pick
o= (N, |N/2]), depicted in red in Figure 2.4. For each point x = (p,¢q) € U we will
define a (graph) geodesic path ~, joining x to o in U that satisfies the conditions of
a John domain. First, draw two straight lines L and L’. The first line L, shown in
red in Figure 2.4, joins (0,0) to (N, N/2). This is the line with equation p —2¢ =0
and the integer points on this line are at equal graph-distance from the “boundary
lines” {(p,q) : q=0,p=0,1,...,N} and {(p,p) : p=0,1,..., N} as shown in blue
in Figure 2.4. The line L', shown in green, has the equation p — 2q = 1. For any
integer point z = (p, q) on the line L, there is graph-geodesic path 7, joining = to
o obtained by alternatively moving two steps right and one step up. Similarly, for
any integer point = (p, q) on the line L', there is a graph-geodesic path +, joining
z to o by moving right, then up, to reach a point ' on L. From there, following
vz to o. For any integer point z in U above L, define 7, by moving straight right
until reaching an integer point x’ on L, then follow 7, to 0. For those x € U below
L, move straight up until reaching an integer point 2’ on L’. From there, follow
the path v, to o.

Along any of the paths v, = (zo,...,2Zm), with g = z € U and z,,, = o,
d(z;, X\U) is non-increasing and d(zs;, X\U) > 1+i. It follows that d(z;, X\U) >
%(1 + 7). This proves that U is a John domain with respect to o with parameter
o =1/3 and John-radius R(U, 0, 5) = po,(U) = N + [N/2] — 3.

Example 2.10 (Metric balls). Any metric ball U = B(o, R) is a 1-John domain,
ie.,

B(o,R) € J(%,€,0,1,R).
This is a straightforward but important example. For each z € B(o,r), fix a path
of minimal length v, = (2o = x,21,...,Zm, = 0), my < R, joining z to o in
(%, €). Then, d(x;, X\ B(o, R)) > 1+ ¢ because, otherwise, there would be a point
z ¢ B(o, R) and at distance at most R from o, contradicting the definition of a ball.

Example 2.11 (Convex sets). In the classical theory of John domains in Euclidean
space, convex sets provide basic examples. Round, convex sets have a good John
constant (a close to 1) whereas long, narrow ones have a bad John constant («
close to 0). We will describe how this theory applies in the case of discrete convex
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sets, but first, let us review the continuous case. Here is how the definition of
Euclidean John domain given in Martio and Sarvas (1979) applies to Euclidean
convex sets. A Euclidean convex set C' belongs to J(a, 8) (see Martio and Sarvas,
1979, Definition 2.1 and Remark 2.8 above) if and only if there exists o € C such
that
Bs(o,a) C C C Bs(o,f).

Here the balls are Euclidean balls and this is indicated by the subscript 2, ref-
erencing the dy metric. This condition is obviously necessary for C' € J(a, ).
To see that it is sufficient, observe that along the line-segment 7,, between any
two points x,y € C, parametrized by arc-length and length T', the function f(t) =
da(Yay(t), C€), defined on [0, T7, is concave (it is the minimum of the distances to the
supporting hyperplanes defining C'). Hence, if we assume that B(y,«a) C C, either
da(y, C°) < da(x,C) and then da(yey(t),C¢) > a > ak, or da(y,C¢) > da(z, C°)
and

o (an(0),C°) = o, C°) 2 1 (da{y,C°) = da(, C°))

which gives
a1 (0.0 2 g + (1 1) oo 0 2 .

To transition to discrete John domains, we first consider the case of finite domains
in Z? because it is quite a bit simpler than the general case (compare Diaconis and
Saloff-Coste, 1996, Section 6 and Virag, 1998). In Z2, we can show that any finite
sub-domain U of Z? (this means we assume that U is graph connected) obtained as
the trace of a convex set C such that By(o,aR) C C C B(o, R) for some a € (0,1)
and R > 0 is a o/-John domain with o’ depending only on «. (For a discussion of
convex domains in Z¢ with d > 2, see Appendix A.)

FIGURE 2.5. A finite discrete “convex subset” of Z2

Convexity is certainly not necessary for a family of connected subsets of Z¢ to
be a-John domains with a uniform « € (0,1). Figure 2.6 gives an example of such
a family that is far from convex in any sense. If we denote by Uy the set depicted
for a given N and let oy = (|2N/3], | IN/2]) the chosen central point, then there
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are positive reals a,c¢,C, independent of N, such that Uy is a J(on,a, R) with
cN < R < CN. Figure 2.7 gives an example of a family of sets that is NOT
uniformly in J(a), for any a > 0.

(LN/3),N) - (12N/3],N)

(0,N) M M
(0,LN/3])
~ (N,[N/2])
(0,13N/7])
~ (N,LN/3])
(0,0) (N,0)

FIGURE 2.6. A non-convex example of John domain, with the
boundary points indicated in blue, and center o indicated in red.

(0,N)

(0,N—[VN])

(0,0) (N,0)

FIGURE 2.7. A family of subsets that are not uniformly John do-
mains, with the boundary points indicated in blue. The passage
between the top and bottom triangles is too narrow.

The following lemma shows that any inner-ball By (z,r) in a John domain con-
tains a ball from the original graph with roughly the same radius. When the graph
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is equipped with a doubling measure (see Section 3), this shows that the inner balls
for the domain U have volume comparable to that of the original balls.

Lemma 2.12. Given U € J(X, €, ), recall that p,(U) = max{dy(o,z) : x € U}.
For any x € U and r € [0,2p,(U)], there exists x, € U such that B(x,,ar/8) C
By(x,r). Forr > 2p,(U), we have By (z,r) =U.

Proof: The statement concerning the case r > 2p,(U) is obvious. We consider
three cases. First, consider the case when o € By (z,r/4) and p,(U) <1 < 2p,(U).
Then B(o, ap,(U)/4) C By(x,r) and we can set x, = o. Second, assume that o €
By (z,r/4) and r < p,(U). Recall from Remark 2.7 that d(o, X\U) > a(1+p,(U)).
It follows that B(o,ar/8) C U and B(o, ar/8) C By(x,r). We can again set x, = o.
Finally, assume that o & By (z,r/4). If r < 8, we can take x, = x. When r > 8, let
Yz = (20 = 2, 21,...,2m = 0) be the John-path from = to o and let z, = z;, where
z; is the first point on =, such that z;1; € By(x, |r/4]). By construction, we have
dy(z,x.) < |r/4] +1<r/2,i(x,r) > |r/4] and

§(zr) > a(l+|r/4]) > ar/4,

where 0(z) = d(z,X \ U). Therefore B(z,,ar/8) C U and By(z,, ar/8) =
B(zy,ar/8) C By(z,r). O

2.2. Whitney coverings. Let U be a finite domain in the underlying graph (X, &)
(this graph may be finite or countable). Fix a small parameter n € (0, 1). For each
point z € U, let

Bl ={y €U :d(z,y) <nd(x)/4}
be the ball centered at x of radius r(z) = ndé(x)/4 where
6(z) = d(z, X\ U)

is the distance from x to X \ U, the boundary of U in (X, &). The finite family
F ={B :z € U} forms a covering of U. Consider the set of all sub-families V of
F with the property that the balls B in V are pairwise disjoint. This is a partially
ordered finite set and we pick a maximal element

W={B! :1<i<M},

which, by definition, is a Whitney covering of U. Note that the Whitney covering
of U is not a covering itself, but it generates a covering, because the triples of the
in W, i.e., the balls with tripled radius, are a covering of U. Because the balls in
U are disjoint, this is a relatively efficient covering.

The size M of this covering will never appear in our computation and is in-
troduced strictly for convenience. This integer M depends on U, s,n and on the
particular choice made among all maximal elements in V.

Whitney coverings are useful because they allow us to do manipulations on balls
that form a covering—such as doubling their size—without leaving the domain U.
Moreover, for any k < 4/7, the closed ball {y : d(z,y) < kr(z)} is entirely contained
inU.

In the above (standard, discrete) version of the notion of Whitney covering, the
largest balls are of size comparable to nmax{d(z, X\ U) : € U}. In the following
s-version, s > 1, where s is a (scale) parameter, the size of the largest balls are at
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?

FIGURE 2.8. A Whitney covering of the forty-five degree cone with
n = %, where the boundary of the cone is indicated in blue. The
color of each ball in the Whitney covering indicates its radius.

most s. Fix s > 1 and a small parameter n € (0, 1) as before. For each point z € U,
let
By ={y :d(z,y) < min{s,ni(z)/4}}

be the ball centered at x of radius r(x) = min{s,nd(x)/4}. Note as before that,
for any k < 4/n, the closed ball {y : d(z,y) < kd(x)/4} is entirely contained in U.
The finite family F, = {B2" : « € U} form a covering of U. Consider the set of
all sub-families V, of F; with the property that the balls B> in V, are pairwise
disjoint. These subfamilies form a partially ordered finite set and, just as we did
with F, we pick a maximal element

W ={B;":1<i< M},

which is the s-Whitney covering. See Figure 2.9 for an example.

As before, the size M of this covering will never appear in our computations.
It will be useful to split the family W into its two natural components, W, =
Wos UWc,s where W_, is the subset of Wy of those balls B(z;,r(z;)) such that
r(xz;) = s.

Remark 2.13. When the domain U is finite (in a more general context, bounded)
any Whitney covering W, with parameter s large enough, namely

s > n(po(U) +1)/4,
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PUDRORDRDEPIP RIS

FIGURE 2.9. The left figure shows a standard Whitney covering
of the upper right corner of a square (boundary indicated in blue)
with n = %. The right figure shows an s-Whitney covering, where
s = 3, i.e., the maximum radius of a Whitney ball is 3.

is simply a Whitney covering W because min{s,nd(x)/4} = nd(x)/4 for all x € U.
It follows that properties that hold for all Wy, s > 0, also hold for any standard
Whitney coverings W.

Lemma 2.14 (Properties of Wy, s > 1). For any s > 0, the family Wy has the
following properties.
(1) The balls By = B(xi,7(x4)), 1 <i < M, are pairwise disjoint and
M
U C B, 3r(x:)).
1

In other words, the balls with tripled radius cover U.
(2) For any p <4/n and any z € B(x;, pr(x;)),
6(zi)(1 = pn/4) < 0(z) < (1 + pn/4)6(x:)
and
(1= pn/4)r(z:) <r(z) < (14 pn/4)r(z:).
(3) For any p < 2/n, if the balls B(z;, pr(x;)) and B(xj,pr(x;)) intersect then
L_Llopn/d_ o) _L+pn/d_ o
37 14+pn/4 ™ 0(z;) — 1—pn/d
Proof: We prove the first assertion. Consider a point z € U. Since W; is maximal,
the ball BS" intersects UM B(x;,7(x;)). So there is an i € {1,2,...,M} and a
y € By such that y € B;". By the triangle inequality,
6(xi) 2 0(2) = r(xi) —r(z) = 6(z) —nd(x:)/4 —ni(z)/4,
which yields,

(L4 n/4)0(zi) = (1 —n/4)é(2),
and hence,
(L+n/r(z:) = (1 —n/4)r(z).
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It follows that

d(zs,2) < r(a:) +1(2) < r(z2) (1 + 1 +Z§j) < (1 + ;) r(zs).

Therefore, z € B(x;,3r(x;)).
The proofs of (2)-(3) follow the same line of reasoning. O

3. Poincaré and Nash inequalities

In this section, we fix a background graph structure (X, €) and use z ~ y to
indicate that {z,y} € €. As before, let d(z,y) denote the graph distance between
x and y, and let

B(a:,r) = {y : d(x’y) < r}
be the ball of radius r around z. (Note that balls are not uniquely defined by their
radius and center, i.e., it’s possible that B(z,r) = B(Z,7) for  # & and r # 7.) In
addition we will assume that X is equipped with a measure 7 and, later, that € is
equipped with an edge weight p = (f44) defining a Dirichlet form.

Definition 3.1 (Doubling). We say that 7 is doubling (with respect to (X, &))
if there exists a constant D (the doubling constant) such that, for all z € X and
r >0,
V(z,2r) < DV (z,r).
Doubling is a critical property of the measure m with many important implica-

tions. A related notion which we use is that of moderate growth. See Appendix B
for more information.

3.1. Edge weights, associated Markov chains and Dirichlet forms. This section in-
troduces symmetric edge weights p., = 1y > 0 and the associated quadratic form

LS (@) - 1) (0() — 9)) -

Sll(fa g) = 5
z,yeX
Definition 3.2. Consider a set of symmetric edge weights p = (ftay)artyex-
(1) We say the edge weight p1 = (lgy)etyecx, is adapted to € if
Hay > 0 if and only {z,y} € €.
(2) We say that the edge weight 1 = (lzy)zxyex is elliptic with constant
P, € (0,00) with respect to (¥, &, x) if
V{r,y} € € Pepryy > 7(2).
(3) We say that the edge weight p = (fzy)s,yex 1S subordinated to 7 on X if
VzeX, Z Hay < 7(2).
yex

Remark 3.3. An adapted edge weight p is always such that pg, = 0 if {z,y} € €,
so the definition of adapted edge weight means that p is carried by the edge set €
in a qualitative sense. Ellipticity makes this quantitative in the sense that jiz, >
P lm(z). Note that, with this definition, the smaller the ellipticity constant, the
better.
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Remark 3.4. Since iy = [tys, the ellipticity condition is equivalent to

PeMa:y > 7T(y)
and also to Peizy > max{n(z), 7(y)}.

The condition Zyex Hzy < +oo implies immediately that the quadratic form
&, defined on finitely supported functions is closable with dense domain in L?(r).
In that case, the data (X, 7, u) defines a continuous time Markov process on the
state space X, reversible with respect to the measure m. This Markov process is the
process associated to the Dirichlet form obtained by closing £, in L?(7) and to the
associated self-adjoint semigroup H;. See, e.g., Fukushima et al. (2011, Example
1.2.4).

Definition 3.5. Assume the the edge weight y is subordinated to =, i.e.,

Vo e X, Z Pay < ().

yeX
Set
_ oy /() for o # y,
Kulwy) = { L= (yex ay/m(x))  fora=y. 31

Note that the condition that p is subordinated to 7 is necessary and sufficient
for the semigroup H; to be of the form H; = e *U~%) where K is a Markov kernel
on X. Indeed, we then have K = K,,. This Markov kernel is always reversible with
respect to . Of course, if we replace the condition Zyex pay < m(x) by the weaker
condition Y7y pzy < A7(x) for some finite A, then H; = e~ A=K 4-1,) where

A~y is the weight (A7 gy )z yex-

3.2. Poincaré inequalities.

Definition 3.6 (Ball Poincaré Inequality). We say that (X, &, 7, u) satisfies the
ball Poincaré inequality with parameter @ if there exists a constant P (the Poincaré
constant) such that, for all z € X and r > 0,

2 W@ = fulrz) <P’ 30 f(2) = JW)P ey
2EB(z,r) z,y€B(z,1),2vy

Remark 3.7. Under the doubling property, ellipticity is somewhat related to the
Poincaré inequality on balls of small radius. Whenever the ball of radius 1 around
a point x is a star (i.e., there are no neighboring relations between the neighbors
of z as, for instance, in a square grid) the ball Poincaré inequality with constant P
implies easily that, at such point z and for any y ~ z,

m(y) < PDZNxzr

To see this, fix y € B(xz, 1) and apply the Poincaré inequality on B(z,1) to the test
function defined on B(zx, 1) by

e ifxFy
f(x){l ifx =y,
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FIGURE 3.10. A finite piece of the Vicsek graph, an infinite graph
which is both a tree and a fractal graph, has volume growth of
type ¢ with d = log5/log3 and satisfies the Poincaré inequality
on balls with parameter § =1+ d =1+ log5/log 3.

where ¢ = 7(y)/(7(B(z,1)) — 7(y)) so that the mean of f over B(x,1) is 0. Recall
that B(z,1) is assumed to be a star and note that 0 < ¢ < 7(y)/7(z) < D where
D > 1 is the doubling constant. This yields

m(y) < P(1— C)Q:U'a:y < PDZngy

Hence, when all balls of radius 1 are stars then the ball Poincaré inequality with
constant P implies ellipticity with constant P, = D?P. (See Remark 3.4.) However,
when it is not the case that all balls of radius 1 are stars then the ball Poincaré
inequality does not necessarily imply ellipticity.

Definition 3.8 (Classical Poincaré inequality). A finite subset U of X, equipped
with the restrictions of 7 and p to U and €N (U x U) satisfies the (Neumann-type)
Poincaré inequality with constant P(U) if and only if, for any function f defined
on U,

Y 1f@) = folPn(z) < PU)ELu (S, f)

zeU
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where
Euvhi0) =5 3 (F) = F0)(0(x) — 9(u) ey

z,yelU
and fy = m(U)™ 3 e f(@)m(x).

Example 3.9. Assume that X is finite and that (X, &, 7w, u) satisfies the ball
Poincaré inequality with parameter . Then, taking r = diam(X) implies that
X satisfies the Poincaré inequality with constant P(X) = 2Pdiam(X)?.

Definition 3.10 (Q-Poincaré Inequality). Let Q@ = {Q(x,r) : = € X,7 > 0} be
a given collection of finite subsets of X. We say that (X, &, 7, u) satisfies the Q-
Poincaré inequality with parameter @ if there exists a constant P such that for any
function f with finite support and r > 0,

SO 1f (@) = Quf(@)Pr(x) < Progu(f, f)

zeX

where
Eulf.0) =5 3 (F) = F0)(9(x) — 9(0))piny

T,yeX
and Q. f(2) = 7(Q(x,7)) ™" X eqa,n f(W)T(Y)-

Example 3.11. The typical example of a collection Q is the collection of all balls
B(x,r). In that case, @, f(z) = f-(z) is simply the average of f over B(z,r). In
this case, the Q-Poincaré inequality is often called a pseudo-Poincaré inequality.
Furthermore, if (X, & m, u) satisfies the doubling property and the ball Poincaré
inequality then it automatically satisfies the pseudo-Poincaré inequality.

The notion of Q-Poincaré inequality is tailored to make it a useful tool to prove
Nash inequalities. (See Proposition 3.12.) An appropriate collection Q must be
determined that satisfies this inequality, but there is no other restriction on what
the collection @ might be. In applications, the set Q(x,r) tends to grow in size with
r. We can think of @, f as a regularized version of f at scale r. The Q-Poincaré
inequality provides control (in L?-norm) of the difference f — Q,f. If X is finite
and there is an R > 0 such that Q(z, R) = X for all « then Qrf(z) is the 7w average
of f over X and the Q-Poincaré inequality at level R becomes a classical Poincaré
inequality as defined above.

3.3. Nash inequality. Nash inequalities (in R™) were introduced in a famous 1958
paper of John Nash as a tool to capture the basic decay of the heat kernel over
time. Later, they where used by many authors for a similar purpose in the contexts
of Markov semigroups and Markov chains on countable graphs. Nash inequalities
where first used in the context of finite Markov chains in Diaconis and Saloff-Coste
(1996), a paper to which we refer for a more detailed introduction.

Assume that (X, €) is equipped with a measure 7 and an edge weight . The
following is a variant of Diaconis and Saloff-Coste (1996, Theorem 5.2). The proof
is the same.

Proposition 3.12. Assume that there is a family of operators defined on finitely
supported functions on X, Qs (with 0 < s < T') such that

1Qsflloc < M (14 5)~"[| fll1
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for some v > 0 and that the edge weight 1 = (fz,y) is such that

If = Qs I3 < Ps°Eu(f, f)-
then the Nash inequality

AT < € 406 0)+ il AIB] 1127

holds with C' = (1 + £)3(1 + 2)%/v MO/ P.
Remark 3.13. When
Qf(2) =m(Qz,r)™ D fly)r(y)
yeQ(z,r)
as in the definition of the Q-Poincaré inequality, the first assumption,

1Qsflloe < M(1+5)""[I£]]1,

amounts to a lower bound on the volume of the set Q(z, ). In that case, the second
assumption is just the requirement that the Q-Poincaré inequality is satisfied. For
an application of this abstract result, see Lemma 6.2.

For the next statement, we assume that p is subordinated to 7, i.e., for all x,
> yex Hay < m(z). We consider the Markov kernel K defined at (3.1) for which 7

is a reversible measure and whose associated Dirichlet form on L?(r) is £,(f, f) =

Proposition 3.14 (Diaconis and Saloff-Coste, 1996, Corollary 3.1). Assume that
w is subordinated to m and that

Vel m), |fIZH <c [e D)+ ||f||2} T
Then, for all0 <n < 2N,

8C(1+v/0)\"""
n+1

swu}/a{KQ"(w,y)/w(y)} = sup{K2” (z,z)/7(x } < 2(

This proposition demonstrates how the Nash inequality provides some control
on the decay of the iterated kernel of the Markov chain driven by K over time.

4. Poincaré and Q-Poincaré inequalities for John domains

This is a key section of this article as well as one of the most technical. Assuming
that (X, &, m, u) is adapted, elliptic, and satisfies the doubling property and the
ball Poincaré inequality with parameter 6, we derive both a Poincaré inequality
(Theorem 4.6) and a Q-Poincaré inequality (Theorem 4.10) on finite John domains.
The statement of the Poincaré inequality can be described informally as follows:
for a finite domain U in J(«) we have, for all functions f defined on U,

> If(@) = fulPn(z) < CRPE,u(f, f)

xeU
where R is the John radius for U and C depends only on « and the constants, coming
from doubling, the Poincaré inequality on balls, and ellipticity, which describe the
basic properties of (%, &, 7, ). (Instead of R, one can use the intrinsic diameter
of U because they are comparable up to a multiplicative constant depending only
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on «, see Remark 2.7.) We give an explicit description of the constant C' without
trying to optimize what can be obtained through the general argument. For many
explicit examples running a similar argument while taking advantage of the feature
of the example will lead to (much) improved estimates for C in terms of the basic
parameters.

These results will be amplified in Section 5 by showing that the same technique
works as well for a large class of weights which can be viewed as modifications of
the pair (7, ).

Throughout this section, we fix a finite domain U in X with (exterior) boundary
OU such that U € J(o,a, R) for some o € U. We also fix a witness family of
John-paths ~, for each z € U, joining = to o and fulfilling the a-John domain
condition.

4.1. Poincaré inequality for John domains. Fix a Whitney covering of U € J (o, o, R),
W = {B; = B] = B(xz;,r;):1<i<Q},

with 7; = nd(z;)/4 and parameter n < 1/4. By Lemma 2.14, the collection of balls
B! =3B; = B(x;,3r;) covers U, and it is useful to set

W' ={3B;: 1<i<Q}

Please note that we always think of the elements of W, W’ as balls, each with a
specified center and radius, not just subsets.

Lemma 4.1. Any ball E in W (i.e., E = B; for some i) has radius r bounded
above by n(2R + 1) /4.

Proof: By hypothesis, U € J(o,a, R). Let R, = §(0). Any other point z € U is at
distance at most R from o. It follows that é(z) < R+ R, < 2R+ 1. O

Fix a ball E, in W such that 3F, contains the point o. For any E = B(z,7) € W,
let v¥ = ~, be the John-path from z to o and select a finite sequence

W/(E) = (Fy,...,F)ig) = (Fo, ., Fyg)) (4.1)

of distinct balls FF = F; € W/, for 0 < i < q(E) such that F =3E, FquE) = 3E,,
FF intersects v and d(FE,, FF) < 1,0 < i < q(E) — 1. This is possible since
the balls in W’ cover U. When the ball F is fixed, we drop the superscript E from
the notation FF. For each E € W, the sequence of balls 3FF (for 1 < i < ¢(E))
provides a chain of adjacent balls joining z to o along the John-path v¥. The union
of the balls 6FF form a carrot-shaped region joining z to o (thin at z and wide
at 0). These families of balls are a key ingredient in the following arguments. See
Figure 4.11 for an example.

Lemma 4.2. Fixn < 1/4 and p < 2/n. The doubling property implies that any
point z € U is contained in at most D'T1082(40+3) distinet balls of the form pE with
E W, where D 1is the volume doubling constant.

Remark 4.3. Note that this property does not necessarily hold if p is much larger
than 2/7. This lemma implies that

S X < DIHOm(04),
Eew
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FIGURE 4.11. A chain of 9 balls W/(E) = {3Fy,3F1,...,3Fyg)},
q(E) = 8, covering the path v, from o to z (blue points staying
close to the straight line from o to z) with F = B(z,r) € W, where
W is a Whitney covering of the corner of a square. The ball centers
are in red. The Whitney parameter n = 4/5. The initial Whitney
ball E has radius 1/5 so 3Fy = E = {z}. The ball 3F7,3Fg are
also singleton but 3F5 has radius 9/5. The ball 3Fj is centered at
o and has radius 30.

Proof: Suppose z € U is contained in N balls pE with F € W, and call them
E; = B(x;,r;), 1 <i < N. By Lemma 2.14(3), the radii r; satisfy r;/r; < 3 (this
uses the inequality p < 2/7) and it follows that

N
U B(zi,m:) € B(z;, (4p+ 3)r;).

Because the balls E; are disjoint, applying this inclusion with j chosen so that
7m(E;) = min{n(E;) : 1 <i < N} yields

N7(Ej) < m((4p + 3)E;) < D' Fos0 ) (Ey),
which, dividing by w(E;) proves the lemma. O
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Lemma 4.4. Fizn < 1/4 and p <2/n. For any ball E = B(z,r(z)) € W and any
ball F = B(y,3r(y)) € W/(E), where W/(E) is defined in (4.1), we have E C kF
with kK = 3a~ '~ 1.

Proof: By construction, there is a point z in F on the John-path v¥ from z to o
and 0(z) > a(1 4 d(z,z)). This implies

dr(y)/n=0(y) 2 6(2) = 3r(y) = a(l +d(z,z)) = 3r(y),
that is, ((4/n) + 3)r(y) > a(l + d(=, 2)). It follows that
z € By, 3+a™l 7 (44 30)r(y)).
Observe that
d(x) < 0(y) +d(z,y) <4n~'r(y) + B+ o~ n~ (4 +30)r(y)
which gives
r(z) =nd(x)/4 < r(y)(1 +a ' (3an+ 4+ 3n)/4).
Then,
B(z,r(x)) € Bly,d(x,y) +r(x)),
which gives
B(z,r(x)) € By, (4+a™'n" (44 30+ (3an® + 40 + 30) /4)r (y)).
Because o < 1 and we assumed n < 1/4, we have
4+a 'y 4430+ Ban? +4n +3n?)/4) <4+ 60yt < TainTh

and hence B(z,r(z)) € fa~'n~'B(y,r(y)). For simplicity, we record this as
B(x,r(z)) C kB(y,r(y)) with k = 3a~1n~L. O

Lemma 4.5. Fizn < 1/4. For each E € W, the sequence
W/(E) = (Fy,...,F)ip)

has the following properties. Recall that for eachi € {0,...,q(E)}, FF = B(zF, pF)
with p¥ = 3rf = (3n/4)8(zF) and that FF = 3E, Fqsz) = 3E,. (We drop the
reference to E when E is clearly fized.)
(1) For each E, when p; < 1 we have B(z;, p;) = {2} and
1+d(z0,2) < 4/(3an).
(2) For each E andi € {1,...,q(E)—1} such that max{p;, pi+1} < 1, we have
zrzi,zeU

(3) For each E andi € {1,...,q(E)—1} such that max{p;, pi+1} > 1, we have

S @) = F@) Py,

@,y E8F; xry

|sz‘ - fFi+1|2 = ‘f(zl) - f(zi+1)|2 <

m(2i)

\fr, = fr |2 <2D°P(8p;)’

L

5|~

for any function f on U.
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Proof: In the first statement we have p; = p(z;) = 31d(z;)/4 < 1. Because U €
J(a), Eg = B(zp,79) = E and z; must be on v¥ =,

6(zi) = a1+ d(2i, 20))-

It follows that 1 4 d(zo,2z;) < 4/(3an).

The second statement is clear.

For the third statement, we need some preparation. First we obtain the lower
bound

min{d(2;),0(z41)} > %7

based on the assumption that max{p;,pi+1} > 1. If both p;, p;+1 are at least
1, there is nothing to prove. If one of them is less than 1, say p; < 1, then
F; = B(z;,pi) = {z} and d(z;, Fi11) < 1. It follows that

4 4
3 < 3,0 = 6(zi+1) < 14 pip1 +6(2).

But pit1 = (37/4)0(zi41), so
31

and (using the fact that n < 1/4)

5 4
— < — —2<(%).
6n — 3n < 0(z)

This shows that min{p;, p;y+1} > g because

. 3 . 3n 5
min{pi, pi1} = 5 min{d(z,),0(zi1)} > Z”@ = 5/8.

Next, we show that
F,UF,4 1 C8F;N8F;4; CU.

By assumption, the balls B(zj41,6rj41) and B(zj,6r;) intersect.  Applying
Lemma 2.14(3) with p = 6 and n < 1/4 gives that 5/11 < r;41/r; < 11/5 and

it follows that
max{pH_l, Pi } < 11/5.
Pi  Pit+1

Moreover, because d(F;, F;11) < 1, we have
max{d(z;,2) : 2 € Fi11) < p;i +2pit1 +1 < 8p;
and similarly,

max{d(zi41,2) : 2 € F;} < piy1+2p; +1 < 8pit1.
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It follows that F; U F;y; C 8F; N8F;11 C U. Now, we are ready to prove the
inequality stated in the lemma. Write

= tral = | X, V0= fmem(o
< W “ZF 1£(6) = FQP©)m(C)
< mg;%f@— 2 (¢)
< GBI PN
< PG PRI

O

Theorem 4.6. Fiz «,0,D,P,> 0. Assume that (X, €, m, u) is adapted, elliptic,
and satisfies the doubling property with constant D and the ball Poincaré inequality
with parameter 6 and constant P. Assume that the finite domain U and the point
0 € U are such that U € J(o,a, R), R > 0. Then there exist a constant C' depending
only on o, 0, D, P and such that

> If@) = fulPr(x) < PO)ELu(f, f)

zeU
with
P(U) < CR? with C = 4792PD% + 16 D**+21°eB%) jax (R P,, 292 P D%}
where kK = 36/a. In particular,
C < 17D30+2loe2(1/0) max(R=9p, 29 P},

Proof: We pick a Whitney covering with n = 1/12. Recall from Lemma 4.1 that all
balls in W have radius at most R/16. It suffices to bound Y~ .., | f(x) — f3g,|*7(x)

because
D1 @) = fulPn( mm{Zlf ) — cf*n( )}-
zeU zeU

The balls in W’ cover U hence

D) = fam (@) < Y > |f(@) = fam, [Pr(2).

zeU EeW ze3FE

Next, using the fact that (a + b)? < 2(a® + b?), write

> Z|f—f3Eo|2w<2<Z Z|f—f3E|2w> +2 Y 7(3E)|fsp — fam,|”.

EeW 3E EeW 3E EeW

We can bound and collect the first part of the right-hand side very easily because,
using the Poincaré inequality in balls of radius at most 3R/16 < R/4 and then
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Lemma 4.2, we have

Y @ - faplPw(@) < PR/ YD f Y) P bty
FEeW ze3F Eew mgng
< PD*(R/4)’Euu(f, f)- (4.2)

This reduces the proof to bounding

> 7BE)|fsp — fsm, >

Eew
For this, we will use the chain of balls W/(E) = (FF, ... Fq(E)) to write

q(E)-1

|fse — f3m,| < Z \fre = frE, |-

i=0
Notation. For any function f on U and any ball F = B(xz, p) € W' set

1/2

G(F, f) = Z @) = F W)ty

x€8FﬂU ywx

With this notation, Lemma 4.5(2)-(3) yields
\fre = fre | < QRVPG(FE, f),

where Q? = max{R?P,,292PD°%}. With & as in Lemma 4.4, this becomes

q(E)—-1
|fse = far,|1e < QR " G(FF, flpl,pe.
1=0
Write
S wBE)fse — fam,P <D DN U fse — fap, PLp(x)n(z)
EeW EcW zeU
q(E)—-1 2

< QDR Y| Y GFE pr(@)| 1p(@)n(z)
EcW zeU =0 '
2

< QD’R° YD | D G(F NHler(x)| 1p(z)n(z)
EcW zeU |FeWw’

< QDR | D G(F ler(a)| w(x)
zeX |FeWw’

where the last step follows from the observation that . ., 1p < 1 because the
balls in W are pairwise disjoint.
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By Proposition B.1 and the fact that the balls in WV are disjoint, we have

Z 2

zeX

> GE3E, f)ls.p(z)

Eew

8D4+2 log, (3K) Z

x
_ 8D4+210g2(3n) Z G(3E7f)27T(E)
Eew

gD 208 N " N f(@) = f(y)P ey

EeW z,ye24 ENU

By Lemma 4.2 (note that 2/n = 24), for each x € X, there are at most D8 balls E
in W such that 24F contains x. This yields
2

SIS GEF, f)lser(a)| w(x) < 8D, (f, 7).

zeX |Few

m(x)

2

()

IN

S GBE, i)

Eew

Collecting all terms gives Theorem 4.6 as desired. O

4.2. Q-Poincaré inequality for John domains. For any s > 1, fix a scale-s Whitney
covering Ws with Whitney parameter n < 1/4. For our purpose, we can restrict
ourselves to integer parameters s no greater than 2R + 1 which results in making
only finitely many choice of coverings. Recall that W; is the disjoint union of W_;
(balls of radius exactly s) and W, (balls of radius strictly less than s). As before,
we denote by W,, WL., and W., the sets of balls obtained by tripling the radius
of the balls in Wy, W_, and W_,.

Fix a ball E2 in W, such that 3E? contains the point o. For any E = B(z,r)
€ W, select a finite sequence

W(E) = (FOSEv e aF;fE)) = (Fo, -, Fy(m))

of distinct balls F'¥ = F; € W, (for 0 < i < q.(E)) such that Fg'¥ = 3E,
FquE) = 3E2, F>" intersects 4¥ and d(Fiﬁ}f,Fis’E) <1(0<4i<gqs(E)—1). This
is obviously possible since the balls in W/ cover U. When the parameter s and the
ball E are fixed, we drop the supscripts s, E from the notation FiS’E. We only need

a portion of this sequence, namely,

s, E s, E
where ¢f(E) is the smallest index j such that r; = s. If no such j exists, set

q(E) = q(E). For future reference, we call these sequences of balls local s-chains.
Namely, the sequence W (F) is the local s-chain for E at scale s.
We set

_ s, E
F(s,B) = F}: (),

to be the last ball in the local s-chain of E. For each z, choose a ball E(s,z) € W
with maximal radius among those E € W, such that 3F contains x and set

B 3E(s,x) when 2 € Upep_ 3E,
F(s,) _{ F(s,E(s,z)) otherwise.
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The ball F(s,z) is, roughly speaking, chosen among those balls of radius 3s in the
Whitney covering that are not too far from x and away from the boundary of U —
for points x near the boundary, where the Whitney balls have radius less than s,
F(s,x) is the last ball in the local s-chain of E € W, where 3E covers x.

Definition 4.7. For s € [0,1], set Qs = I (i.e., Qsf = f). For any s > 1, define
the averaging operator

Q.f(x) = Qulz,y) f(y)n(y)
by setting

1
Qs(z,y) = W]-F(s,z) ().

Next we collect the s-version of the statements analogous to Lemmas 4.2 and 4.4.
The proofs are the same.

Lemma 4.8. Fixn < 1/4 and p < 2/n. For any s > 0, the following properties
hold.

(1) Any point z € U is contained in at most D'T1°82(40%3) distinct balls pE
with E € W;,.

(2) Foranyball E = B(x,r(x)) € W, and any ball F = B(y, 3r(y)) € W.(E)
we have E C kF with k = 3a~1n~1.

The s-version of Lemma 4.5 is as follows. The proof is the same.
Lemma 4.9. Fizn < 1/4. For each s > 1, and E € W, the sequence

s, E E

has the following properties. Set i € {0,...,q*(E)}, FiS’E = B(zf’E,Pf’E) with
pf’E = 37’f’E = 3min{s,nd(zF)/4} and that FOS’E = 3E, F;;?E) = F(s,E). We
drop the reference to s and E when they are clearly fized.

(1) For each E € W, when p; < 1 we have B(z;, p;) = {z:} and
1+ d(z0,2) < 4/(3an).
(2) Foreach E € Wes andi € {1,...,q:(E) —1} such that max{p;, pi+1} <1,

we have

P.
fE: = fronl? = 1) = fae)P < =< D0 1f(2) = F(20)Pre,

m(2i) &,
zeU
(3) For each E € W, and i € {1,...,q5(E) — 1} such that max{p;,pi+1} >1
we have min{d(z;),d(zi+1)} > 4/(9), min{p;, pix1} > 1/3 and
F,UF,1 C8F, CU.

Furthermore, for any function f on U,

|fFi - fFi+1|2 S 2D6P(8p2)0 Z |f(5£‘) - f(y)|2,u$y

]
x,yc8F;

1
m(F;)
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Theorem 4.10. Fiz a,0,D,P., P > 0. Assume that (X, €, m, u) is adapted, elliptic
and, satisfies the doubling property with constant D and the ball Poincaré inequality
with parameter 0 and constant P. Assume that the finite domain U and the point
o € U are such that U € J(o,a,R), R > 0. Then there exists a constant C
depending only on o, 0, D, P and such that

Vs >0, Y |f(@) - Quf(@)’m(z) < Cs"Euu(f, f)

zeU
with
C =3%7PD® + 16D +210803%) ;ax (P, 892P D6}

where k = 36/ .

Proof: The conclusion trivially holds when s € [0,1] because Qsf = f in this
case. For s > 1, as in the proof of Theorem 4.6, we pick a Whitney covering with
17 =1/12. We need to bound

D@ = Quf@)fPr@) = Y Y 1f(@) ~ frem ()

zelU EeWwWs =xze3E
E=E(s,z)

= > > |f@) - fselr()

EcW—_, xzc3E
E=E(s,z)

+ Z Z — fr(s.m)*m(2)

EcW., z€3FE
E=E(s,x)

Z Z |f(z) = fapl*m(x)

EeW—; ze3FE

T Z Z |f(@) = fres,pl*m ().

EcWcs z€3E

IN

Note that, in the first two lines, we are only summing over the x such that £ =
E(s,z) i.e., E € W is the selected ball of radius s which covers . That way, z € U
appears once in the sum. In the third line, we expand the sum and each x may
appear multiple times.

We can bound and collect the first part of the right-hand side of the last inequal-
ity using the Poincaré inequality on balls of radius 3s and Lemma 4.8(1),

> > 1f@) — faplPr(x) < N Ny )ty

EcW_; x€3E EeW_; z,ye3E
T~y

3°PD%s’E, u(f, f). (4.4)

IN

This reduces the proof to bounding

SN @) = frea (@)

EcW_., ze3E

<2 ) (Z |f(:c)f3E|27r(a:)+7r(3E)f3EfF(s,x)|2>.

EcW<. \ze3E
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The first part of the right-hand side is, again, easily bounded by

2 Y Y f(@) = fselPa@) < 37OPs >T >" [f(2) = f) Py

EcWcs z€3E EeEW, s x,y€3E,x~y
1+6 5.0
< 3+PD38M,U(f>f)'

The second part is

2 Z (BE)|fse — fress|®

EcWc

for which we use the chain of balls W/(E) = (F3'%, ..., F;EEE)) to write

a;(B)—1
‘f3E_fF(s,E)| < Z; |fFi5fE _fFZ_SJ’rFf|'
Lemma 4.9(2)-(3) and the notation G(F, f) introduced for the proof of Theorem 4.6
yields

|fF.S*E - fFS+?| < ng/zG(Fis}Ev f)a Q2 = max{s_ePe, 802PD6}

and, with s as in Lemma 4.8(2),

s (B)-1
\fsb — fres.m)lle < Qs"? Z G(Fi&Eyf)lElKFiswE-
i=0
Using this estimate, the same argument used at the end of the proof of Theorem 4.6
(and based on Proposition B.1) gives

2 > 7BE)fsp = fr(sm|® < 16Q° D188, 1(f, f).
EeW

5. Adding weights and comparison argument

Comparison arguments are very useful in the study of ergodic finite Markov
chains (see Diaconis and Saloff-Coste, 1993b and Diaconis and Saloff-Coste, 1993a).
This section uses these ideas in the present context. The results here are used
in Section 6 to study the rates of convergence for Metropolis type chains and in
Sections 7 and 8 for studying Markov chains which are killed on the boundary.

By their very nature, the (almost identical) proofs of Theorems 4.6 and 4.10 allow
for a number of important variants. In this subsection, we discuss transforming the
pair (7, pt) into a pair (7, it) so that the proofs of the preceding section yield Poincaré
type inequalities (including @Q-type) for this new pair.

Definition 5.1. Let U be a finite domain in (X, & m, ). Let (7, 1) be given on
(U, €y). We say that the pair (7, ) (1, A)-dominates the pair (w, ) in U if, for
any ball E = B(z,r) C U with r < 61d(z), we have

sup M::JCEB < Ainf @:xEB,{x,y}eE ,
7T(.17) Ky
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Remark 5.2. If n > 1/6, this property is very strong and not very useful. We will
use it with n < 1/12 so that each of the balls considered is far from the boundary
relative to the size of its radius. The size of balls for which this property is required,
namely, balls such that r < 6nd(z) is dictated by the fact the we will have to use
this property for the balls 24F where E = B(z,7(z)) is a ball that belong to an
7-Whitney covering of U. See Lemma 4.9(3). By construction, such a ball F will
satisfy r(z) = nd(z)/4 and r = 24r(z) satisfies r = 61d(z).

The following obvious lemma justifies the above definition.

Lemma 5.3. Assume that (7, 11) (n, A)-dominates the pair (7, pn) in U.
(1) If (m, p) is Pe-elliptic then (7, 1) is AP.-elliptic on U.
(2) If B= B(z,7) is a ball such that r < 6775(2) and the Poincaré inequality
Yo 1f@) = falPm < P(B) Y 1f(@) = f(0) 1y
reEB r,yeB
holds on B then
SOUf = FBIPF <Y If (@) = felF < AP(B) Y 1f(x) = F(y)*Fiay

reB zeB z,yeB

where fB is the mean of f over B with respect to ™ and fg is the mean of
f over B with respect to 7.

Definition 5.4. Assume that U is a connected subset of (X, €) with internal bound-
ary 0U = {z € U : Jy € X\U, {z,y} € €}. For each x € §U, introduce an auxiliary
vertex z¢ and set

U=UU{z:xz €U}, €y=CEyU{{z,z}:ze U},

so that { has an additional copy of §U attached to §U. By inspection, a domain
Uisin J(X,€& «,0,R) if and only if U € J(U, €y, ,0, R). If T is a measure on
U then we can extend this measure to a measure on 4, which we still call 7, by
setting 7(z°) = 7(z), # € 6U. If 7 is D-doubling on (U, €) then its extension is
2D-doubling on (4, ).

5.1. Adding weight under the doubling assumption for the weighted measure.
Theorem 5.5. Referring to the setting of Theorems 4.6-4.10, assume further that
we are giwen n € (0,1/12) and a pair (7,p1) on U which dominates (m,p) with
constants (n, A) and such that T is D-doubling on (U, €y). Then there exists a
constant C' depending only on n, A, o, 0, D, P, P, such that

Vs> 0, Y 1f(@) - Quf (@7 (2) < CsEnu(f. f).

€U
We can take
C =7(3°PA(2D)%) 4+ 16 A(2D)"*+21°6(2%) max{ P, 82P(2D)°}
where k = T/(an).

Here Qs is as in Definition 4.7 with 7 instead of w. In particular,

Z 1f(x) = ful*7(2) < CR&: v (f, f)-

zeU
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Proof: Follow the proofs of Theorems 4.6-4.10, using a n-Whitney covering with 7
small enough that the Poincaré inequalities on Whitney balls (in fact, on double
Whitney balls) holds for the pair (7, &) by Lemma 5.3. To make the argument go
as smoothly as possible, use the construction of (L, €y ) in Definition 5.4. The proof
proceeds as before with (7, i) instead of (7, ). The full strength of the assumption
that 7 is doubling is key in applying Proposition B.1 in this context. 0

5.2. Adding weight without the doubling assumption for the weighted measure.

Definition 5.6. Let ¢ : U — (0,00) be a positive function on U (we call it a
weight). We say that ¢ is A-doubling on U if the measure 7 is doubling on
(U, €y) with constant A.

Definition 5.7. Let ¢ : U — (0,00) be a positive function on U. We say that ¢
is (n, A)-regular on U if

Y(x) < Ay(y) for all {z,y} € €y,
and, for any ball E = B(z,r) C U with r < 6nd(z), we have

max{y} < Amin{¢}.

Remark 5.8. Assume that 1 is (1, A)-regular and consider any pair (7, i) on (U, €p)
such that

T <9, Mmy"/}(m) < Alﬁzy-
Then the pair (7, 1) (n, AA’)-dominates (m, u). For instance we can set ™ = ¢7
and take 1 to be given by one of the following choices:

HzyV/ ¢($)¢(y), ﬁxy = Hazy mln{@b(l’), ¢(y)} or ﬁxy = Hzy HlaX{iﬁ(w)a 1/)(3/)}
In these three cases A’ = /A, A’ = A and A’ = 1, respectively.

Definition 5.9. Fix n € (0,1/8). Let ¢ be a weight on a finite domain U such that
¥ is (n, A)-regular on U. Assume U is a John domain, U € J(«,0, R), equipped
with John paths 7, joining = to o, x € U, and a family of n-Whitney coverings
Ws, s > 1. We say that 1 is (w, Ay )-controlled if, for any local s-chain W. (E) =

(F9F, .., F;S](EE)) with F*F = B(xy,3r(2)), 0 < i < ¢*(E), we have

Vs>1, Vie{0,...,q:(E)}, ¥(xo) < A1s¥Y(x;).
When we say that an (1, A)-regular weight v on U € J(«, 0, R) is (w, A1)-controlled,

we assume implicitly that a family of n-Whitney coverings Ws, s > 1 has been
chosen.

Remark 5.10. When w = 0, the weight ¢ is essentially increasing along the John
path joining Whitney balls to o.

Theorem 5.11. Given the setting of Theorems /.0 and j.10, assume further that
we are given n € (0,1/12) and a weight ¢ on U such that v is (n, A)-regular and
(w, Ay)-controlled. Set ™ = m and let [ be a weight defined on €y such that

vxay € Ua sz(x)umy S AQﬁzy (51)

Then there exist a constant C' depending only on n,«,0, A, A1, As, D, P and such
that

Vs>0, Y |f(x) = Quf(x)*F(z) < Cs" ™ Exu(f, f)-

zeU
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Here @5 is as in Definition 4.7 with 7 instead of w. The constant C' can be taken
to be

C =C =TAAy(3° PD%) + 16 D4+2108(2%) A3 A} Ay max{P,,872P A2 D%}

where k = T/(an). In particular,

> 1f(@) = fulPF(z) < CR™™Eu(f, f).

xeU
Proof: (The case s € [0,1] is trivial and we can assume s > 1). This result is
a bit more subtle than the previous result because the measure ™ may not be
doubling. However, because v is (1, A)-regular and i satisfies (5.1), it follows from
Remark 5.8 that (7, z) (n, AAz)-dominates (7, ). By Lemma 5.3 this implies that
(7, ) is AAyP.-elliptic and the #-Poincaré inequality on balls B(z,r) such that
r <nd(z), z € U, with constant PAAs. Using the notation fB for the mean of f
over B with respect to 7, we also have, for any ball F in W, and its local s-chain
WL (E) = (F>P)& ) with F>F = B(ay, 3r(x;)), FSF = 3E,

r3 7 0/2/( s, E
where G is defined just as G but with respect to the pair (7, ). Here we can take
Q?* = AAy max{P,,8°2PA?D"}.

In this computation (see the proof of Lemma 4.5), we have had to estimate
7(8F;)/7(F;) by AD? using the doubling property of m and the fact that 1 is
(n, A)- regular (in words, what is used here is the fact that, because ¢ is (1, A)-
regular, 7 is doubling on balls that are far away from the boundary even so it is
not necessarily globally doubling on (U, €p)).
Next, set

1/2

(Ff Z Z|f |Mw7!

ZEBFOU U"’w

This differs from G (F, f) only by the use of 7 instead of 7 in the fraction appearing
in front of the summations (but note that this quantity involves the edge weight
). Now, we have

ra ra %(3E) Yz (04w) /2 ryx s, E
Fpee — Tl < AVAQs TG (FF, )

w(3E)

because o

7(3E) » 2 Wi ET)

< < ) < L .

~(3E) = Ap(xo) < AAys¥ih(x;) < A%Ars (F5F)

This gives
- #(3E)\ /2
|f3e — fres,p)l <7TE3E;) 1g
q; (E)-1

< A4 QST N GHESE, PLel, e,
=0
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To finish the proof, we square both sides, multiply by 7(3E), and proceed as at the
end of the proof of Theorem 4.10, using the doubling property of 7. O

5.3. Regular weights are always controlled. The following lemma is a version of a
well-known fact concerning chains of Whitney balls in John domains.

Lemma 5.12. Assume that (X, €, ) is doubling with constant D. Fizn € (0,1/8).
Let 1 be a weight on a finite domain U such that i is (n, A)-reqular on U and U is
a John domain, U € J(a,o0, R), equipped with John paths vy, joining x to o, x € U,
and a family of n- Whitney coverings Wy, s > 0. Then there existw > 0 and A; > 1

such that v is (w, Ay)-controlled on U. Here Ay = A?>T* and w = 2k log, A with
Kk = DAtloga(1+1/(an))

Proof: Using the notation of Definition 5.9, we need to compare the values taken by
the weight ¢ at any pair of points zq, z;, such that x( is the center of a Whitney ball
E and z; is the center of a ball belonging to the local s-chain W. (E). This local
s-chain is made of balls in W/, each of which has radius at most 3s and intersects
the John path vg = 7y, joining z¢ to o.
Assume that we can prove that

#{K € Wes : 2K Nyg # 0} < klogy(4s). (5.2)
Of course, under this assumption,

1+ ¢l (E) = #WL(E) <1+ klogy(4s).
Further, by definition of W. (E) = (F(f’E7 ... F* ) the balls 2FZ‘S’E7 2Ffj£ have

a;(E)
a non-empty intersection or are singletons {xz;}, {z;+1} with {z;, z;41} € €. Since

Y is (17, A)-regular and the ball 2F* has radius 6r(z;) < 3nd(x;)/2, we have
() < A%P(xiq1), i=0,...,¢5(E).
This implies
(o) < AZAHRI0R() 0y = AZHIRZRIoB Ay G0 g*(B).  (5.3)
To prove (5.2), for each p > 1, let the John path ~,, be
Yao = (E0 = Toy -+, Em = 0).
Consider
#{K = B(z,17r) € Wes : 3K Nyg # 0,7 € [p,2p)}, p> 1. (5.4)
Let K = B(x,r), K’ = B(2',r") be any two balls from that set and let &; € 3K and
¢} € 3K’ be two points on the John path v,, that are witness to the fact that these
balls intersect +,,. Now, by construction,
d(x,&) < 3r, r =nd(z)/4 and §(&) > a(l +1)
It follows by the triangle inequality that 6(x) > §(&;) — (3n/4)0(x) and thus, using
a similar argument for z’, &}, 17,
5(z) > (a/2)(1 +14) and §(z') > (a/2)(1 + i

i')
This, combined with the assumption that r € [p,2p) from (5.4), implies that 1 +
max{%,j} < (16/an)p and

d(z,2') <8 (1 + 0?77) p, B(',p)C B (x (9+ 16) p) .

ar
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By construction, the balls K/ € W, are disjoint and the doubling property of 7
thus implies that

#{K = B(x,7) € Wy : 3K Ny # 0,7 € [p, 2p)} < DHHles2(1+1/(am),
The same argument shows that

#{K = B(z,r) € We, : 3K Nyg # 0,7 € (0,1)} < DHHlee2(1+1/(am),
If s € (2%, 25+1] for some k, this implies

#{K e Wes: 3K Nvyg # 0} D4+10gz(1+1/(an))(k +2)

<
< D4+10g2(1+1/(a77)) 10g2 (48)
This validates (5.2), which yields

w(xo) < A2+4I€S2N log, A'l/)(xz)

for i =0,...,q*(E), x = D*log2(1+1/(am)) 0

6. Application to Metropolis-type chains

6.1. Metropolis-type chains. We are ready to apply the technical results developed
so far (primarily within Section 5) to Metropolis-type chains on John domains.
The reader may find motivation in the explicit examples of Section 6.3. First we
explain what we mean by Metropolis-type chains. Classically, The Metropolis and
Metropolis Hastings algorithms give a way of changing the output of one Markov
chain to have a desired stationary distribution. See Liu (2008) or Diaconis and
Saloff-Coste (1998) for background and examples.

Assume we are given the background structure (X, &, p, 7) with X finite or count-
able. Assume that p is adapted and subordinated to . Let U be a finite domain in
X. This data determines an irreducible Markov kernel Ky ;7 on U with reversible
probability measure 77, proportional to 7|y, given by (this is similar to (3.1))

B Py /T () forx £y, z,y eU
Kyu(z,y) = { 1= (X cvisms Maz/m(T)) for x =y € U. (6.1)
The notation Ky 7 captures the idea that this kernel corresponds to imposing the
Neumann boundary condition in U (i.e., some sort of reflection of the process at
the boundary).
Suppose now that we are given a vertex weight ¢) and a symmetric edge weight
hgy on the domain U. Set

T =, ﬁzy = ,U*zyhxya

D ey <7

yeU

and assume that

so that 1 is subordinated to 7 in U. This yields a new Markov kernel K defined
on U by

R(z,y) = Py /T () forx #y, z,y €U (6.2)

{ 1- (ZZEUIZN$ ﬁﬂﬂz/%(x)) fOI‘ r=y € U
This kernel is irreducible and reversible with reversible probability measure propor-
tional to 7.
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Example 6.1. The choice h,, = min{¢)(z),(y)} satisfies this property and yields
the well-known Metropolis chain with proposal chain (Kn,y,7y) and target prob-
ability measure 7y, proportional to © = ¢7|y. Other choice of h would lead to
similar chains including the variants of the Metropolis algorithm considered by
Hastings and Barker. See the discussion in Billera and Diaconis (2001, Remark
3.1).

6.2. Results for Metropolis type chains. In order to simplify notation, we fix the
background structure (X, &, m, u). We assume that 7 is D-doubling, p is adapted
and that the pair (m, u) is elliptic with ellipticity constant P, and satisfies the
f-Poincaré inequality on balls with constant P. We also assume that p is subor-
dinated to . We also fix a € (0,1). In the statements below, we will use ¢, C to
denote quantities whose exact values change from place to place and depend only
on 0, D, P., P and a. Explicit descriptions of these quantitates in terms of the data
can be obtained from the proofs. They are of the form

max{c™!,C} < AIpA(+losl/a) yax (P, Py

where Ay, Ay are universal constants.
Within this fixed background, we consider the collection of all finite domains
U C X which are John domains of type J(«,o0, R) for some point 0 € U and
R < 2R(U,o0,a). The parameter R is allowed to vary freely and all estimates are
expressed in terms of R. Recall that p,(U) = max{dy(o,x) : z € U} satisfies
2R(U,0,c) > 2p,(U) > §(0) > aR(U, 0, ).

We always assume implicitly that U is not reduced to a singleton so that R(U, o, ) >
1. Since « is fixed, it follows that R =< p,(U), namely,

%R < po(U) < 4R.
We need the following simple technical lemma.

Lemma 6.2. Assume that U € J(o,a, R), with R < 2R(U, 0, ), is not a singleton
and 0 < n < 1/4. Referring to the construction of the ball F(s,x), s >0, z € U,
used in Definition /.7, any n-Whitney covering W of U satisfies
o W_, = () whenever s > 3R(U,o0,c). In that case, F(s,x) = 3E% for all
x € U and the ball E has radius
r(0) = nd(0)/4 with aR(U,0,a) < §(0) < 2R(U, 0, ).

o When s < anR(U,0,a)/4, all balls F(s,x) have radius 3s.
o Whens € (anR(U,0,a)/4,3R(U,0,)), each ball F(s,z), x € U, has radius
contained in the interval

[anR(U, 0,)/2,9R(u, 0, )].
In particular, for all s € (0,anR/8)

n(F(s,2)) _ 7(Ble(a),s) _ 1 (1+s>1og2D’

7(U) = =02\ 8m (6:3)

m(B(2(x),8R)) ~ D?
and, for all s € (0,anR/8), the averaging operator Qs (Definition /.7) satisfies
1Qs flloe < M(1+5)" "= P f|h

where |[fll1 = X,ep |f(@)|7(x) and M = D*(8R)"5= P /n(U).
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Remark 6.3. The bound (6.3) is a version of moderate growth for the metric measure
space (U,dy, ) with the additional twist that, for each s,z, we consider the ball
F(s, ) instead of the ball By (x,s). The reason for this is that it is the balls F'(s,x)
that appear in the definition of the operator @, because of the crucial use we make
of the Whitney coverings W;, s > 0.

Our first result concerns the Markov chain driven by Ky defined in Exam-
ple 6.1. This is a reversible chain with reversible probability measure m;;. We let
B = Bn.u be the second largest eigenvalue of Ky iy and B_ = n,u,— be the smallest
eigenvalue of Ky 7. From the definition, it is possible that U = X and 8_ = —1.

Theorem 6.4. There exist constants c,C such that for any R > 0 and any finite
domain U € J(a, R), we have

1-— ﬂN,U > CRiG.

Assume further that 1 + Byy.— > cR™%. Under this assumption, for allt > RY,
{ K}V,U(xv y)
max { |[—————

z,ycU

v (y)
Proof: This result is a consequence of Theorems 4.6 and 4.10. We use a Whitney
covering family Wy, s > 0, with n = 1/4. For later purpose when we will need
to use a given 1, we keep 7 as a parameter in the proof. Theorem 4.6 gives the
estimates for 1 — Sn 7. (Theorem 4.10 also gives that eigenvalue estimate if we pick
s < R large enough that the Whitney covering W, is such that W_; is empty.) By
Lemma 6.2, for s € (0,anR/8]

1Qsflloe < M(1+5)~ "5 7| f]

where M = D?(8R)°22? /7(U). Now, we appeal to Theorem 4.10 and Proposi-
tions 3.12 and 3.14 to obtain

sup {K"(z,y)/m(y)} < Cx(U) " (R/(n + 1))'o82 P/

z,yeU

for all t < (anR/4)%. This is the same as

xS;lgU{Kt(fay)/ﬂu(y)} < O(R’/(n+1))'e2 P10 (6.4)

-1

} < Ce2t/R

for all ¢t < (anR/4)?, because 7y = 7(U) 'n|y. The constant C is of the type
described above and incorporates various factors depending only on D, 0, «, P, P,
which are made explicit in Theorem 4.10, Lemma 6.2 and Propositions 3.12 and 3.14.

The next step is (essentially) Diaconis and Saloff-Coste (1996, Lemma 1.1). Us-
ing operator notation for ease, write

{ K'(z,y)
sup <} |——=
z,yeU

T (y)
and observe that, for any ti,ty such that ¢t = t; + 2t, |[(K — 70)"|| £1(xy)—L IS
bounded above by the product of

- 1]} K = 70 21y e

(K = 70) | 11 (o) L2(r0)s 1K = 70) | L2(r0 )= L2 (r0)
and
(K — 70) 2 | L2(rp ) - Lo -
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The first and last factors are equal (reversibility and duality) and

K22 (x,y)
I(E = 70) 2|72 ) e = SUD { Cmoly) 1’}

z,yelU TU (y)

For a proof of this fact, see Saloff-Coste (1997). The second factor is

(K = 70)"2 | L2(rp) = 12 (re) = max{Bn,u, |Bn,u,— |}

We pick 5 to be the largest integer less than or equal to (anR)?/(2-4%) and apply
(6.4) to obtain

Kt
e { e 1’} < 282 P00 (an)'0%2 P/¥ max{ v, |By.u,- [}
r,ycU U (y)
This gives the desired result. O

The following very general example illustrates the previous theorem.

Example 6.5 (Graph metric balls). Fix constants P, P,# and D. Assume that
(%, €, m, ) is such that the volume doubling property holds with constant D to-
gether with P,-ellipticity and the 6-Poincaré inequality with constant P. We also
assume (for simplicity) that

S by < w(a) 2.

Yyn~x
Under this assumption, for any finite domain U, the kernel Ky has the property
that Ky y(z,x) > 1/2 (this is often called “laziness”) and it implies that Sy y,— > 0.

Let U = B(o, R) be any graph metric ball in (X, ). From Example 2.10, such a

ball is a John domain with o = 1, namely, U € J(X,€,1,0,R) and R = R(U, «, 0).
Since Bn,u,— > 0, Theorem 6.4 applies and show that K} ;; converges to my in
times of order R?. This applies for instance to the metric balls of the Vicsek graph
of Figure 3.10.

Next we consider a weight 1 which is (1, A)-regular to U and A-doubling. This
means that the measure 7T = 97 is A doubling on (U, €y) (and also, by extension,
(U, &) is 2A doubling). For simplicity we pick & to be given by the Metropolis
choice

flay = flay min{7(z), 7(y)}.
This implies that 1 is subordinated to 7™ and we let
Ky =K
be defined by (6.2). This reversible Markov kernel has reversible probability mea-
sure 7y proportional to 7 on U. Also, the hypothesis that ¢ is (5, A)-regular to
U implies that the pair (v, 1) (1, A?)-dominates (7, ) on U. See Remark 5.8. This

shows that we can use Theorem 5.5 to prove the following result using the same
line of reasoning as for Theorem 6.4. We will denote by By, the second largest

eigenvalue of K=K v, and by By, — its lowest eigenvalue.

Theorem 6.6. For fizedn € (0,1/8), A > 1, there exist constants ¢, C such that for
any R > 0, any finite domain U € J(a, R) and any weight ¥ which is (n, A)-regular
(see Definition 5.7) and A-doubling on U, we have

1— By >cR7?,
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Assume further that 1 + By g, — > cR=Y. Under this assumption, for allt > R?,
ot
max M < Ce‘th/Rs.
z,yelU 7u(y)
There are universal constants A1, As such that
max{c !, C} < A?(AD)‘%(H'IOg 1/an) max{P,, P}.

Replacing the hypothesis that ¢ is (1, A)-regular and A-doubling by the hy-
pothesis that ¢ is (1, A)-regular and (w, A)-controlled leads to the following similar
statement.

-1

Theorem 6.7. For fized n € (0,1/8),A > 1 and w > 0, there exist constants c,C
such that for any R > 0, any finite domain U € J(«a, R) and any weight 1 which is
(n, A)-regular and (w, A)-controlled (see Definition 5.9) on U, we have

1-— ﬁUﬂl’ > CR_(H-HU).
Assume further that 1+ By g, — > cR~9+)  Under this assumption, for allt > R?,
max { M } < Ce*QCt/RWM.
x,yeU 7u(y)
There are universal constants Ay, Ay such that
max{c*,C} < A?“" (AD)AQ(H'log 1/am) max{P., P}.

-1

6.3. FExplicit examples of Metropolis type chains. We give four simple and instruc-
tive explicit examples regarding Metropolis chains. There are based on a cube
U = [N, N]? in some fixed dimension d. The key parameter which is allowed to
vary is IN. This cube is equipped with its natural edge structure induced by the
integer lattice. The underlying edge weight is y, , = (2d)~! and 7 is the counting
measure.

To obtain each of our examples, we will define a “boundary" for U and a weight
1 that is (1/8, A)-regular and A doubling.

Example 6.8. Our first example uses the natural boundary of U = [N, N]¢ in
the square grid Z?. The weight 1 = 1),,, v > 0, is given by
P(z) = o(x)”.

Recall that 6(x) is the distance to the boundary. Thus, this power weight is largest
at the center of the cube. It is (1/8, A)-regular and A-doubling with A depending
of d and v which we assume are fixed. Theorem 6.6 applies (with § = 2). The
necessary estimates on the lowest eigenvalue S, — holds true because there is
sufficient holding probability provided by the Metropolis rule at each vertex (this
holding is of order at least 1/N and, in addition, there is also enough holding at
the boundary). Here R < N and convergence occurs in order N? steps.

Example 6.9. Our second example is obtained by adding two points to the box
from the first example, which will serve as the boundary. Let X = [-N, N]? U
{u_,u4}, where u_ is attached by one edge to (—N,...,—N) and u attached by
one edge to (N, ..., N). Within X, let U = [-N, N]%, so the boundary is {u_,uy}.
Again, we consider the power weight

Bla) = () = 6(a)", v>0
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but this time ¢ is the distance to the boundary {u_,u,}. This power weight is
constant along the hyperplanes Zle z; = k and maximum on Z?Zl xz; = 0.

=

FIGURE 6.12. The box U = [-N, N]3 with two boundary points
up,us attached at corners (—N,—N,—N) and (N,N,N) (these
to corners are marked with black dots). The blue plane is the
set of points in U at maximal distance from the boundary points
{u_,uy}. The center of the box is shown with the axes. The grid
is not shown.

This weight is (1/8, A)-regular and A-doubling with A depending of d and v
which are fixed. Theorem 6.6 applies (with 8 = 2). The necessary estimates on the
lowest eigenvalue Sy 4 — hold true because there is sufficient holding probability
provided by the Metropolis rule (again, at least order 1/N at each vertex). We
have R < N and convergence occurs in order N? steps.

Example 6.10. Our third example is obtained by adding only one boundary point
to the box from the first example. Let X = [-N, N]? U {ug} where wuq is attached
by one edge to the center (0,...,0). Within X, let U = [N, N]%, so the boundary
is {uo}. Still, we consider the power weight

P(x) = Pu(z) = 6(x)”, v >0,
where § is the distance to the boundary {ug}. This power weight is constant along
the boundary of the graph balls centered at (0, ...,0). It is largest at the 2d corners.
In this case, we obtain a John domain with a fixed o only when d > 1 (in the case
d =1, there is no way to avoid passing near the boundary point ug). When d > 1,
we can chose o to be one of the four corners. Again, the weight is (1/8, A)-regular
and A doubling with A depending on d and v which are fixed. Theorem 6.6 applies
(with § = 2). The necessary estimates on the lowest eigenvalue Sy — hold true as
in the previous examples. Again, R =< N and convergence occurs in order N2 steps.
We note that there is no problems replacing the single “pole” 0 in this example by
an arbitrary finite set O of “poles”, as long as we fix the number of elements in O.

Example 6.11. This last example involves weights which lead to non-doubling
measure but are w-controlled. Take d = 1 and U = [—N,..., N], a symmetric
interval around 0 in Z. Fix v > 1 and consider the weight v, = §(x)™", where 0 is
the distance to the boundary {—N —1, N+1}. It is easy to check that this weight is
not doubling (compare the 7-volume of B(0, N/2) to that of B(0, N)). Obviously,
1, is w-controlled with w = v. The reference Saloff-Coste (1999, Theorem 9.6)
applies to this family and provides the eigenvalue estimate

1— By, =~ N~
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and the fact that this chain converges to its equilibrium measure in order NtV
steps. This should be compared with the eigenvalue estimate of Theorem 6.7 which
reads 1 — By, > ¢cN727% because R ~ N and w = v. This estimate is off
by a factor of N, but it is clear that the parameter w = v plays a key role in
estimating Sy, in this case. The following modification of this example shows
that the eigenvalue estimate of Theorem 6.7 is actually almost optimal. Consider
[— (N +1), (N +1)] equipped with the measure 7(z) = (N +2— |z])~%, a € (0,1)
and the usual graph structure induced by Z. This space is doubling and satisfies
the Poincaré inequality on balls (this is not obvious, but it can be proved). On this
space, let U = [-N, ..., N] and repeat the construction above with ¢, (z) = §(x)
v > 1—a. Now, on this new space, this weight is not doubling but it is w-controlled
with w = v. The previous argument shows that the eigenvalue By ., satisfies
1 — Bu.aw, ~ N717%7" whereas Theorem 6.7 yields Buy,a,p, > ¢N7277. Since a
can be chosen as close to 1 as desired, Theorem 6.7 is indeed almost sharp.

7. The Dirichlet-type chain in U

We continue with our general setup described by the data (%, €, 7, u). We assume
that p is adapted and that p is subordinated to 7w. For any finite domain U, we
consider Kp 7, the Dirichlet-type kernel in U, defined by

B Py /() for x # y with z,y € U
Kpu(z,y) = { 1= (X cxinmg Maz/m(T)) forz =y eU.

This is the kernel describing the chain that is killed when it exits U. Let us point
out the subtle but essential difference between this definition and that of Ky v,
the Neumann-type kernel on U. The values of these two kernels are the same when
x # y or when x = y has no neighbors outside U. But when x = y has a neighbor
outside U, we have

(7.1)

KNU($$_1_< Z Uwz)/ﬂ-

zeU:z~x
whereas

KDU(mm 1( Z ,Ufﬂnz>/7T

zeX iz~
Because p is adapted, at such a point x,

Z Ky y(z,y) =1 whereas Z Kpuy(z,y) <1
yeU yeU

In words, the kernel Kp y; is not strictly Markovian and the Markov chain corre-
sponding to this kernel includes killing at the boundary. In terms of the global
Markov kernel K = K, defined on X by (3.1), we have

Kpy = 1y(z)K(z,y)1u(y).
To simplify notation, we set
Ky =Kpy.
The goal of this section is to apply the previous results to the study of the

iterated kernel K};(z,y). This will be done using the method of Doob’s transform
explained in more general terms in the next subsection.
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7.1. The general theory of Doob’s transform. For the purpose of this subsection,
we simply assume we are given a finite or countable state space X equipped with a
Markov kernel K. We do not assume any reversibility. Fix a finite subset U and
consider the restricted kernel

Ky(z,y) = 1y(2)K (z,y)1v(y).

Throughout this section, we assume that this kernel Ky is irreducible on U in the
sense that for any z,y € U there is an integer ¢ = ¢(z,y) such that K}, (z,y) > 0.
The period d of Ky is the greatest common divisor of {t : K};(z,z) > 0}. Note
that d is independent of the choice of x € U. When d = 1 (which is referred to as
the aperiodic case), there exists an N such that K}y (z,y) > 0 simultaneously for
all z,y € U. We are interested in understanding the behavior of the chain driven
by K on X, started in U and killed at the first exit from U. If (X;)5° denotes the
chain driven by K on X and

T=mp=inf{t>0:X; €U}
is the first exit time from U, we would like to have good approximations for quan-
tities such as
P.(rv >¥0), P,( Xy =y | 7w >1{), P,(Xy =yand 7 > 1),
for z,y € U, 0 <t < /L. The last of these quantities is, of course,
P,.(X; =y and 7 > t) = K};(z,).
See Collet et al. (2013) for a book length discussion of such problems. The key

lemma is the following.

Lemma 7.1. Assume that Ky is irreducible and aperiodic. Let By, ¢g denote the
Perron-Frobenius eigenvalue and right eigenfunction of Ky, respectively. The limit

P, (X, =y | 7w =00) :ngI;on(Xt =y |1 >0L)

exists and it is equal to K% (z,y) where Ky, is the irreducible aperiodic Markov
o $o
kernel given by

Koy(,9) = By ' —— Ku(e.)éo(y), .y € UL (72)
po(z)
Remark 7.2. When Ky is irreducible but periodic, it still has a unique Perron-
Frobenius eigenvalue and right eigenfunction, Sy, ¢g, and one can still define the
Markov kernel Ky, (and use it to study Ky), but the limit in the lemma does not
typically exist. See Example 7.6 below.

Remark 7.3. In general terms, Doob’s transform method studies the Markov kernel

Ky, in order to study the iterated kernel K};. By definition,
1
K} (x,y) = Bioo(x)KY (x,y)——. 7.3
0@ y) = Fodo(@) Ko, (2,4) 23 (7.3)

Let ¢§ denote the (positive) left eigenfunction of Ky associated with 5. By in-
spection, the positive function ¢j¢o, understood as a measure on U, is invariant
under the action of K4, that is,

Y dh(@)bo(@) Ky (2,y) = 95(y)do(y)-

zeU
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This measure can be normalized to provide the invariant probability measure for
the irreducible Markov kernel K,. We call this invariant probability measure 7, .
It is given by
7T¢0($> — ¢3($)¢0($) )
> yev 26(Y)9o(y)

The measure 7, is one version of the quasi-stationary distribution (a second version
is in Definition 7.7 below). The measure 7y, gives the limiting behavior of the chain,
conditioned never to be absorbed. As shown below, it is the key to understanding
the absorbing chain as well. The Doob transform is a classical tool in Markov chain
theory Kemeny et al. (1976, Chapter 8). For many applications and a literature
review see Pang (2019).

Proof of Lemma 7.1: Fix T' € N and any ¢t < T'. For each L > 0, we have

Pm(Xt =y, Ty >1 ‘ TU >L)

_ PE(TU>L‘Xt:y,TU>t) Pz(Xt:y,’TU>t) (74)
P.(ry > L, 7y >t) ’

We can assume L > T, because we will later take the limit as L tends to infinity.
So (7.4), the identity above, becomes,
P.(X:=y|m>1L)
PE(TU > L ‘ Xy = Y, Ty > t) Pz(Xt =Y, TUu > t)
Pw(TU > L)

or equivalently,

Px(TU > L ‘ Xt =Y,Tu > t)
Pm(TU > L)

P,(Xy=ylmw>1L)= Ky (2, y) (7.5)

Because (X;) is a Markov chain,

P,(ru >L | Xy =y, 7v >t) Pylry>L—1)
P.(rv > L) P.(rv > L)
Yo KT, 2)
- ZzeU K5($>Z)
v By o) KL (y, 2)do(2) !
Y eu BEdo(@)KE (x,2)d0(2) "t

where the last line follows by (7.3).
Plugging this into (7.5), we have
Pz(Xt:y | TU>L):
> ev gy H(y, 2)¢o(2)

= > Ka%o (z,2)po(2)~L By Lo (x) KL (, y) o (y) (7.6)

Now we take the limit as L tends to infinity. To finish the proof of Lemma 7.1 we
need to show that

. ZzeU Ké’_t(y,z)(;ﬁo(z)*l
1 0 =1 7.7
P S oKL @ o) T .7

which is the content of the following, Lemma 7.4. (]
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Lemma 7.4. Assume that Ky (x,y) is irreducible and aperiodic on U. Then,

C Yev Ky (g 2)0(2)
lim 7 — =
L=oo 3 . cv Koy (2, 2)d0(2)
Proof: By Remark 7.3, K4, is an irreducible aperiodic Markov kernel with invariant

measure Ty, proportional to ¢f¢o. By the basic convergence theorem for finite
Markov chains (e.g., Norris, 1998, Thm. 1.8.5),

(7.8)

Jim KG () = 74, (y)-
Applying this to

v Ky, 2)do(2) !

Yeev Ky (@, 2)¢o(2) 7
we can see that both the numerator and denominator approach

> wgy(2)0(2) 7L

zeU
The stated result follows. O

Remark 7.5. If Ky is irreducible and periodic of period d > 1, then so is K4,. The
chain driven by Ky, has d periodic classes, C; (with 0 < ¢ < d — 1), each of which
has the same measure, m4,(C;) = 7y, (Co), and the limit theorem reads

lim K;Hd(x y) = { T (y)/d if x € Ciy € Ciyy
0 b

L—o0 0 otherwise.

Here, 0 <7 < d—1, and the index 7 + ¢ in C;4, is taken modulo d. It follows that,
typically, the ratio in Lemma 7.4 has no limit. See below for a concrete example.

Example 7.6. As a concrete example, consider the simple random walk on five
vertices where the boundary vertices have holding probability %

Lifli—jl=1i=j=0,ori=j=4

K(z;,z;) =142
( 2 {O else

Let U = {x1,2z2,23} be the middle three vertices and define Ky to be sub-
Markovian kernel described above. The transition matrix for Ky is given by

o= O
Nl= O N
o= O

with largest eigenvalue Sy = g and normalized eigenfunction

po =

—
w\»—w‘&w\
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This is a reversible situation (hence, ¢§ = ¢¢) and the period is 2 with periodic
classes: Cy = {z2} and C; = {x1,z3}. We have

Jim S K2 @2, y)05 () = V2
yeU
and
Jim 37K (o) y) = 2,
yelU

and hence the ratio in Lemma 7.4 has no limit.

Previously, we were considering P, (X; = y | 7v > L), the probability that the
process (X;) equals y at time ¢ and is still inside U at some other time L. Now, we
consider the case where t = L.

Definition 7.7. Set

Vi(y) =P, Xy=y|7w>t), z,yel.

This is the second form of quasi-stationary distribution; v/%(y) describes the chance
that the chain is at y at time ¢ (starting from z) given that it is still alive.

Theorem 7.8. Assume that Ky is irreducible and aperiodic. Then

¢ (y)
ZZGU ¢6(Z) '

lim v (y) =

t—o00
Proof: Write
vp(y) =Po(Xe =y | 70 > t)
 P.(Xi=y, v >t)
P(rv > 1)
__ Ki(zy)
a EzeU K(t](xv z)
Bdo(@) K, (2,y)do(y) "
 Yev Bido(@) K (2, 2)po(2) !
K (my)dely) !
C Yev K (@, 2)d0(2) 1
Taking the limit when ¢ tends to infinity yields
o Po(y) " g, (y) Z1€)
B = S G0 () S 5()
This equality follows from the basic Markov chain convergence theorem (Levin and

Peres, 2017, Theorem 4.9). The stated result follows since 7y, is proportional to

®5%0- O

Theorem 7.9. Assume that Ky is irreducible and aperiodic. Then the rate of
convergence in

(7.9)

. %5()
lim v} () = ="
t—oo ¥ >zev 96(2)
s controlled by that of
lim Kéo(x, ) =Ty (4).

t—o0
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More precisely, fiz e > 0. Assume that N, is such that, for anyt > N, andy € U,

K (z,
Kolmy) 1 _
7T¢0(y>
Then, for any t > N,
‘(Zzey $5(2))v5 () 1’ 2
* - < —.
¢0(y) 1—c¢
Proof: For a fixed € > 0, let N be such that, for ¢ > N, and z € U,
K (z,z
Ko(®2) . 10
T (Z)

or equivalently,
| Kg, (,2)¢5 " (2) — ey (2)] < ecop(2),

where ¢ = (37, oy ¢o(x)¢5(x)) " is the normalization constant w4, = cdo¢y. Sum-
ming over all z € U and applying the triangle inequality,

Kt (z,2)oq (=
Saew Kol 05" | _—
CZzeU 95(2)
For ease of notation, we abbreviate
ag = Ké)() (m,y)(bo(y)_l, a= C(b(*)(y)>

b= K} (z,2)¢0(2)"", b=cY ¢p(2),

zeU zeU

so that (7.10) and (7.11) become,

%71}<eand ‘btll<e.
a b

The formula (7.9) for v¢(y) gives
(S 5NAW) (S 00K, @00 ar b

o5(y) T () ey K (2, 2)00(2) T b a
and thus
(X wev 96(w)vi(y) . 1‘ _ |t b 1‘ _ aib — bia
5 (y) b a bia
b Q¢ bt
< (2 = 2t
- bt ( a 1‘ b 1‘)
2€
1—¢
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7.2. Dirichlet-type chains in John domains. We return to our main setting of an
underlying space (%, €, 7, u) with u subordinated to m and K defined by this data
as in (3.1). For any finite domain U C X, we consider the kernel Ky = Kpy
defined at (7.1) and equal to Ky(z,y) = ly(z)K(z,y)1y(y). We also let my
be the probability measure proportional to |y, i.e., my(z) = w where Z =
>_yev Tlu(y) is the normalizing constant. Let ¢o, @5 be the right and left Perron-
Frobenius eigenfunctions of the kernel Ky; considered in subsection 7.1 above. By
construction, Ky (z,y)/my(y) is symmetric in z,y, that is,

Tu(y)Ku(y, z) = mu(z)Ku(z,y).
Multiplying by ¢o(y) and summing over y, we have
> b0 (W) Koy, 2) = mu(x) Y Ku(@,y)éo(y) = Borru () do(x).
yeu yeU

This shows that ¢o(y)my(y) is proportional to ¢f(y). If we choose to normalize ¢
by the natural condition Y x € U¢é(x)my(x) = 1, then the invariant probability
measure of the Doob transform kernel K, at (7.2)—which is proportional to ¢§¢o—
is

Ty = ¢(2)7rU.
Next, observe that, for any z,y € X,
m(2)K(2,Y) = oy
and, for any x,y € U,

¢g(m)W|U(m)K¢o (m,y) = 6()_1¢0(x)¢0(y)7r‘U($)K(x’y) = B()_1¢0($)¢0(y),umy

This means that the kernel Ky, is obtained as a Markov kernel on the graph (U, €/)
using the pair of weights (&, 7) where

{ﬂzy = ﬂ(;ld)o(x)ébo(y)ﬂmy

T = ¢imlu,

ie., K4, = fizy/7. Indeed, for any =,y € U, we have

fizy = (Z 7?(2)> o (1) Ko, (2,) and 7(z) = (Z 7T(Z)) o (2)-

zeU zeU

Furthermore, [ is subordinated to 7 in U because, for any x € U,

D fay =) By tbo(@)do(y)mlu (@)K (x,y) = ¢o(x)*nlu(x) = 7(x).

yeU yeU

All of this means that we are in precisely the situation of Section 5. We now list
four assumptions that will be used to obtain good results concerning the behavior of
the chain (K, , 7s,) by applying the techniques described in Section 5 and Section 6.
In what follows, we always fix the parameter o € (0,1] as well as 6 > 2.

For the reader’s convenience we give brief pointers to notation that will be used
crucially in what follows: John domains (Section 2.1), Whitney coverings (Sec-
tion 2.2), D-doubling (Definition 3.1, the ball Poincaré inequality (Definition 3.6),
elliptic (Definition 3.2), subordinated weight (Definition 3.2), (n, A)-regular (Defi-
nition 5.7), and (1, A)-controlled (Definition 5.9).
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Assumption Al (on (X, & 1, u)): The measure 7 is D-doubling, p is adapted
and the pair (7, p) is elliptic and satisfies the #-Poincaré inequality on balls
with constant P. In addition, u is subordinated to .
Assumption A2 (on the finite domain U): The finite domain U C X be-
longs to J(o, a, R) for some o € U with R(o,a,U) < R < 2R(o,,U).
Assumption A3 (on U in terms of ¢y): There are n € (0,1/12] and A > 1
such that ¢ is (1, A)-regular and A-doubling on U.
Assumption A4 (on U in terms of ¢g): There are n € (0,1/12], w > 0, and
A > 1 such that ¢g is (1, A)-regular and (w, A)-controlled on U.
Assumption Al will be our basic assumption about the underlying weighted
graph structure (X, &€, m, u). Assumption A2 is a strong and relatively sophisticated
assumption regarding the geometric properties of the finite domain U. Assumptions
3 and 4 are technical requirements necessary to apply the methods in Sections 4
and 5. In the classical case when the parameter 6 in the assumed Poincaré inequality
satisfies § = 2, Assumptions A1-A2 imply that Assumption A4 is satisfied. This
follows from Lemma 7.10 below and Lemma 5.12. (Recall that (1, A)-regular implies
(', A)-regular for every n’ < n. So (1/8, A)-regular implies (1/12, A)-regular.)

Lemma 7.10. Assume that A1-A2 are satisfied and 0 = 2. Then ¢q is (1/8,A)-
reqular with A depending only on the quantities D, P., P appearing in Assumption
Al.

Proof: The short outline of the proof is that doubling and Poincaré (with 6 = 2)
imply the Harnack inequality

sup{¢o} < Cp inf{¢o}
B B

for any ball B such that 2B C U. The constant Cy is independent of B and U
and depends only of D, P., P. This would follow straightforwardly from Delmotte’s
elliptic Harnack inequality (see Delmotte, 1997) if ¢ were a positive solution of
(I-K)u=0
in the ball 2B. However, ¢ is a positive solution of
(I - K)u=(1-pp)u.

Heuristically, at scale less than R, this is almost the same because Assumption
A1l implies that 1 — 8y < CR™2. This easy estimate follows by using a tent test
function in the ball B(o,R/4) C U. To prove the stated Harnack inequality for
¢o, one can either extend Delmotte’s argument (adapted from Moser’s proof of the
elliptic Harnack inequality for uniformly elliptic operators in R™), see Delmotte
(1997), or use the more difficult parabolic Harnack inequality of Delmotte (1999).
Indeed, to follow this second approach,

1
1- 5(1 — B0))"¢o(x))

is a positive solution of the continuous-time (resp. discrete-time) parabolic equation

v(t,z) = e 217Gy (z) (resp. w(t,z) = (

[at + %(1 _ K)} v=0 (resp. w(t+1,2)—w(t,z) = — B(I _ K)wt] (@)

in U (in the discrete time case, w; = w(t,-)). These parabolic equations are associ-
ated with the (so-called) lazy version of the Markov kernel K, that is, (I + K) to
insure that the results of Delmotte (1999) are applicable. The parabolic Harnack
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inequality in Delmotte (1999) necessitates that the time scale be adapted to the
size of the ball on which it is applied, namely, the time scale should be r? if the ball
has radius r. Our positive solution v(t,z) = e~2(1=F0)t g () of the heat equation
is defined on R x B where B = B(z,7) C U is a ball of radius r. The parabolic
Harnack inequality gives that there is a constant C'y such that, for all z,y € B,

v(r?, x) < Cro(2r?,y).
Because 1 — y < CR™2 and r < R, the exponential factors

e~3(1=B0)r? = o= (1=Bo)r?
behave like the constant 1. This implies that ¢o(x) = ¢o(y) for all z,y € B. O

The following statement is an easy corollary of the last part of the proof of
Lemma 7.10. See the remarks following the statement.

Lemma 7.11. Fix 0 > 2. Assume that (X,&, 7, ) is such that p is adapted,
the pair (m,p) is elliptic and p is subordinated to w. In addition, assume that
the operator %(I + K,,) satisfies the 0-parabolic inequality PHI(#) of Barlow and
Bass (2004, (1.9)). If U is a finite domain in X satisfying A2, the function ¢q is
(1/8, A)-regular with A depending only on the 6, P., and the constant Cg from the
0-parabolic Harnack inequality.

Remark 7.12. The f-parabolic inequality PHI(6) of Barlow and Bass (2004) im-
plies the doubling property and the #-Poincaré inequality (Barlow and Bass, 2004,
Theorem 1.5). In addition it implies the so-called cut-off Sobolev inequality CS(6)
(Barlow and Bass (2004, Definition 1.4; Theorem 1.5)). Conversely, doubling, the 6-
Poincaré inequality and CS(#) imply PHI(6). In the case 6 = 2, the cut-off Sobolev
inequality is always trivially satisfied. When 6 > 2, the cut-off Sobolev inequality
is non-trivial and become essential to the characterization of the parabolic Harnack
inequality PHI(#). See Barlow and Bass (2004, Theorem 5) (in Barlow and Bass,
2004, the parameter 6 is called B).

Remark 7.13. To prove Lemma 7.11, it is essential to have an upper bound 1— 5y <
CR~? on the spectral gap 1 — 3y. This upper bound easily follows from the cut-off
Sobolev inequality CS(6).

We can now state two very general results concerning the reversible Markov
chain (K4, Tg,) in the finite domain U. The first theorem has weaker hypotheses
and is, in principle, easier to apply. When the parameter w = 0, the two theorems
gives essentially identical conclusions. The proofs are immediate application of the
results in Section 5 and follow the exact same line of reasoning used in Section 6
to obtain Theorems 6.6-6.7. In the following statement, S_ is the least eigenvalue
of the pair (Ky,,mg,) and S is second largest eigenvalue of (Kg,,mg,). If By —
denotes the smallest eigenvalue of Ky on L*(U, 7y ), then - = By.—/Bo. If Bui
denotes the second largest eigenvalue of Ky on L?(U, 7y ), then 8 = By1/Bo. The
eigenfunction ¢g is normalized by 7y (¢3) = 1.

Theorem 7.14. Fiz o,0,n,w,P., P,D,; A and assume A1-A2-A4. Under these
assumptions there are constants ¢,C € (0,00) (where ¢,C depend only on the pa-
rameters «,0,1,w, Pe, P, D and A) such that

1-By<CR™?
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and

1-8> cR—(0+w)
Assume further that 1 + B_ > ¢R=OF9) Then, for all t > R, we have the
following L> rate of convergence,

KL (x,y) t
oI/ < —
0 (Y) = Cex"( CRM)'

Equivalently, in terms of the kernel Ky, this reads

|K{ (. y) — Bido(@)do(y)mu (y)| < Cﬁf)d’o(m)éf’o(y)ﬂU(y)@*Ct/R“w,
for all z,y € U and t > ROT.

max -1

T, YyEu

Remark 7.15. Part of the proof of this result is to show that there are constants
C,v such that, for all t < R?*% and z,y € U,

K} (z,y)
To (y)

where C, v depends only on the parameters «,,n,w, P,, P, D and A. In terms of
K}, this becomes for all t < RO+ and z,y € U,

K (z,y)
v (y)

This type of estimate for K}, is called intrinsic ultracontractivity. It first appeared
in the context of Euclidean domains in Davies and Simon (1984); Davies (1985) (see
also Davis, 1991) and has been discussed since by many authors. In its classical
form, ultracontractivity of the Dirichlet heat semigroup in a bounded Euclidean
domain U is the statement that, for each ¢ > 0, there is a constant Cy such that for
all z,y e U,

< C(R**/t),

< C(RVT /1) o () do(y).

hi (t, @, y) < Cego()do(y)

Here h(t,z,y) is the fundamental solution (e.g., heat kernel) of the heat equation
with Dirichlet boundary condition in U. Ultracontractivity may or may not hold in
a particular bounded domain. It is known that it holds in bounded Euclidean John
domains, see Cipriani (1994). We note here that running the line of reasoning used
here in the case of bounded Euclidean John domains would produce more effective
ultracontractivity bounds than the ones reported in Cipriani (1994).

Remark 7.16. As mentioned above, Theorem 7.14 is relatively easy to apply. Hy-
pothesis Al is our basic working hypothesis regarding (X, &, 7, ). Hypothesis A2
requires the finite domain U to be a John domain. When 6 = 2, Hypothesis A4 is
automatically satisfied for some w > 0 depending only on the other fixed parame-
ters (Lemma 7.10). When 6 > 2, we would typically appeal to Lemma 7.11 in order
to verify A4. This requires an additional assumption on (X, &, m, 1), namely, that
1(I + K,,) satisfies the parabolic Harnack inequality PHI(6) of Barlow and Bass
(2004). For instance, Theorem 7.14 applies uniformly to the graph metric balls
in (X, ¢, 7, u) under Hypothesis A1 when 6 = 2, and under Al and PHI(#) when
6 > 2. Consider the infinite Vicsek fractal graph (X", &Y (a piece of which is pic-
tured in Figure 3.10) equipped the vertex weight 7V (z) = 4, x € XV and the edge
weight u;/y =1, {x,y} € V. This structure is a good example for the case 6 > 2.
It has # = d + 1 where d = log5/log3 and also volume growth m(B(z,7)) < 79.
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It satisfies the parabolic Harnack inequality PHI(6). See, e.g., Barlow et al. (2005,
Example 2 and Example 3, Section 5) which provides larger classes of examples of
this type.

Theorem 7.17. Fix a,0,n,P., P,D,A and assume A1-A2-A3. Under these as-
sumptions there are constants ¢,C' € (0,00) (where ¢,C depend only on the param-
eters o, 0,m, P., P, D and A) such that

1— By <CR™?
and
1—8>cR7Y.
Assume further that 1 4+ 3_ > cR™%. Then, for allt > R?, we have
Kt (x,
max M — 1| < Cexp (—ct0> .
| s ) R

FEquivalently, in terms of the kernel Ky, this reads

| Kb (2, y) — Bho(x)do(y)mo (y)| < CBio()do(y)mu (y)e /™,
for all z,y € U and t > RY.

Remark 7.18. As for Theorem 7.14, part of the proof of Theorem 7.17 is to show
that there are constants C, v such that, for all t < R’ and z,y € U,

K (x,y)
T (y)

where C, v depends only on the parameters «, 6,7, P., P, D and A. In terms of K,
this gives the intrinsic ultracontractivity estimate for all t < R? and z,y € U,

K (z,y)
v (y)

Remark 7.19. Theorem 7.17 gives a more satisfying result than Theorem 7.14 in
that it does not involves the extra parameter w (the two theorems have the same
conclusion when w = 0). However, Theorem 7.17 requires to verify Hypothesis
A3, that is, to show that 74, is doubling. This is an hypothesis that is hard to
verify, even for simple finite domains in Z?. At this point in this article, the only
finite domains in Z2 for which we could verify this hypothesis are those where we
can compute ¢ explicitly such as cubes with sides parallel to the axes or the 45
degree finite cone of Figure 1.1. This shortcoming will be remedied in the next
section when we show that finite inner-uniform domains satisfy Hypothesis A3 (see
Theorem 8.9).

< C(R'/1)",

< C(RY /)" ¢o(x)po(y).

Example 7.20. We can apply either of these two theorems to the one dimensional
example of simple lazy random walk on {0,1,..., N} with absorption at 0 and
reflection at N. This is the leading example of Diaconis and Miclo (2015) where
quantitative estimates for absorbing chains are discussed. In this simple example,
we know exactly the function ¢g and we can easily verify A1-A2-A3 and A4 with
w = 0. In terms of the Doob-transform chain K, and its invariant measure mg,,
the result above proves convergence after order N? steps. This improves upon the
results of Diaconis and Miclo (2015) by a factor of log N.
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Example 7.21. In the same manner, we can apply the two theorems above to the
example discussed in the introduction (Figure 1.1). The key is again the fact that
we can find an explicit expression for the eigenfunction ¢ and that it follows that
Assumptions A1-A1-A3 and A4 with w = 0 are satisfied. The conclusion is the
same. In terms of the Doob-transform chain Ky, and its invariant measure mg,,
the result above proves convergence after order N2 steps.

Example 7.22. Let us focus on the square grid Z™ in a fixed dimension m and
on the family of its finite a-John domains for some fixed o € (0,1]. In addition,
for simplicity, we assume that the weight p is constant equal to 1/(4m) on the grid
edges and 7 = 1 (this insure aperiodicity of K and Ky). Obviously, Al is satisfied
with 8 = 2 and A2 is assumed since U is an a-John domain. Theorem 7.17 does not
apply here because we are not able to prove doubling of the measure 7y, (and in
fact, doubling should probably not be expected in this generality). However, there
is an w (which depends only on the two fixed parameters m and «) such that A4 is
satisfied (this follows from Lemma 5.12 and Lemma 7.10), and hence, we can apply
Theorem 7.14.

Theorem 7.23. Fizm and « € (0,1]. Let the square grid Z™ be equipped with the
weights p, 7 described above. There are constants ¢ = ¢(m,a),C = C(m,a) and
w = w(m,a) such that, for any finite a-John domain U in Z™ with John radius
Ry = R(o,,U), the Doob-transform chain Ky, satisfies

cRy® <1- By < CRy?,

1—B>cR;>",

t
S CeXp (_CR?]J’"’J) .

and, fort > R?>*T¥

K (x,y)

o)

max
T, yeu

Equivalently, in terms of the kernel Ky, this reads

| K (2,y) — Bido(@)do(w)mu (y)| < CBio(x)do(y)mu (y)e™/F ",
for all z,y € U and t > R*t¥.Moreover, for 1 <t < R9*% we have
K (z,y)
T (y)

It is an open question whether or not it is possible to prove the above theorem
with w(m, a) = 0 for all finite a-John domains in Z™ or, even more generally, for
a general underlying structure (X, &, 7, 1) under assumption Al with 6 = 2.

< O (R* ™ /t) do(x) o (y).

Remark 7.24. Recall from Definition 7.7 that v%(y) = P,(X; =y | 7 > t). The-
orem 7.9 gives control on the rate of convergence of v.(y) in terms of the rate of
convergence of Kéo (z,y). We can now apply Theorem 7.9 in each of the settings
described above in Theorems 7.14, 7.17, and 7.23. For example, in the case of
the square grid Z™ and for a fixed @ € (0,1), there exists w = w(m,a) > 0 and
C = (m,a),c = c(m,a) > 0 such that, for any finite a-John domain U with John

radius R,

V> CR2+UJ, ¢0(y)l/i(y) 1 < efct/Rz'*'“
ZZEU ¢0(Z)
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8. Inner-uniform domains

We now turn to the definition of inner («a, A)-uniform domains. These domains
form a subclass of the class of a-John domains. They allow for a much more precise
analysis of Metropolis-type chains and their Doob-transforms.

.................

FIGURE 8.13. A graph in which, at large scales, some balls are
not inner-uniform. To the left, the graph ends after finitely many
step with an origin o which serves as the center of the balls to be
considered. To the right, the indicated pattern is repeated infin-
itely many times at larger and larger scales. This graph is roughly
linear. It satisfies doubling and Poincaré.

Although the definition of inner-uniform domains given below appears to be quite
similar to that of John domains, it is in fact much harder, in general, to find inner-
uniform domains than it is to find John domains. In the square lattice Z%, both
classes of domains are very large and contain many interesting natural examples.
Things are very different if one consider an abstract graph structure (X, €) of the
type used in this paper. We noted earlier that any graph distance ball B(o,r) in
such a structure (X, €) is a 1-John domain. In particular, X admits an exhaustion
X = lim,_ B(o,7) by finite 1-John domains. We know of no constructions of
an increasing family of a-inner-uniform domains in (X, ), in general. Even if we
assume additional properties such as doubling and Poincaré inequality on balls, we
are not aware of a general method to construct inner-uniform subsets. Of course, it
may happen that, as in the case of Z¢, graph balls turn out to be inner-uniform (all
for some fixed o > 0). But that is not the case in general. Figures 8.13 and 8.14
describe a simple planar graph in which, there are balls B(o,r;) with r; tending to
infinity which each contains points x;,y; such that dp(, ) (s, y:) = pi = o(r;) but
the only path from z; to y; of length O(p;) has a middle point z; which is at distance
1 from the boundary. All other paths from x; to y; have length at least r;/8. This
implies that the inner-uniformity constant «; of the ball B(o,r;) is O(p;/r;) < o(1).
The graph in question has a very simple structure and it satisfies doubling and the
Poincaré inequality on balls at all scales.

8.1. Definition and main convergence results.

Definition 8.1. A domain U in X is an inner (o, A)-uniform domain (with respect
to the graph structure (X, €)) if for any two points x,y € U there exists a path
Yoy = (X0 = &, 21, ..., 2, = y) joining = to y in (U, €y) with the properties that:
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FIGURE 8.14. The basic model for the balls in the graph of Figure
8.13. The shortest path from x to y is much shorter than any other
path but its middle point is at distance 1 from the boundary of the
ball marked by blue dots.

(2) For any j € {0,...,k}, d(z;, X\ U) > a1 + min{j, k — j}).

Remark 8.2. Because the second condition must hold for all z, including those that
are distance 1 from the boundary, we see that « € (0, 1].

We can think of an inner-uniform domain U as being one where any two points
are connected by a banana-shaped region. The entire banana must be contained
within U. See Figure 8.15 for an illustration.

There is an alternative and equivalent (modulo a change in «) definition of
inner-uniformity which uses distance instead of path-length in the second condition.
More precisely, in this alternative definition, the condition “for any j = 0,...,k,
d(z;,X\U) > a(14+min{j, k—j})” is replaced by “for any j = 0, ..., k, d(z;, X\U) >
o min{dy (z;,x),du(z;,y)}". It is obvious that the definition we choose here easily
implies the condition of the alternative definition (with o = «’). The reverse
implication is much less obvious. It amounts to showing that it is possible to choose
the path ~,, so that any of its segments (z;,%it+1,...,2;) provide approximate
geodesics between its end-points. This requires a modification (i.e., straightening)
of the path ~;, provided by the definition because there is no reason these paths
have this property. See Martio and Sarvas (1979).

The following lemma shows that all inner-uniform domains are John domains.
However, the converse is not true. See Figure 8.16.

Lemma 8.3. Suppose that U is a finite inner (o, A)-uniform domain. Let o be a
point such that d(o,X\ U) = max{d(z,X\U) : x € U}, and let R = d(o,X\ U).
Then U € J(X,€,0,a%/8,(2/a)R), that is, U is an («?/8)-John domain.

Proof: Look at the mid-point z = /2] along vz,. We have R > d(z,X \ U)
> ak/2 so the k < (2/a)R. We consider three cases to find a lower bound on
d(z;, X\ U) along 7vzo.

(1) When j < k/2, then we have d(z;, X\ U) > a(1 + j).

(2) When z; € B(o, R/2), then we have that

d(w;, X\U) > R/2> (a/A)k > (a/8)(1 +J).
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FIGURE 8.15. On the left: The banana regions for arbitrary pairs
of points which are the witnesses for the inner-uniform property.
On the right: The carrot regions joining arbitrary vertices to the
central point o marked in red. They are witnesses for the John
domain property.

(3) When z; ¢ B(o, R/2) and j > k/2, then k — j > R/2 and
d(z;, X\ U) > a(l+k —j) > a(l+ R/2) > a(l + ak/4) > (a®/4)(1 + 7).
(]

(LN/2],N)
(0,N)
(N,[5N/8])
o ——F——F—F—1—+—FF+1F""F+"+*
(0,0) (N,0)

FIGURE 8.16. A domain that is John but not inner-uniform. The
blue dots are the boundary. Note that, on the middle vertical line,
the blue dots are placed on every other vertex, up to the indicated
height.

Remark 8.4. The word “inner” in inner-uniform refers to the fact that the first
condition compares the length k of the curve 74, to the inner-distance dy(z,y)
between z and y. If, instead, the original distance d(x,y) is used (i.e., the first
condition in the definition becomes k < Ad(xz,y)), then we obtain a much more
restrictive class of domains called “uniform domains.” See Figure 8.18.
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FIGURE 8.17. Finite discrete “convex subsets” of Z? are (inner-)uniform

(LN/3],N) - ([2N/3],N)

(0,N) Y

(N,[2N/3])

(0,0) (N,0)

FIGURE 8.18. A domain that is inner-uniform but not uniform.

Example 8.5. The set Xy in Figure 1.1 (a forty-five degree finite cone in Z?) is
a uniform domain, and hence, also an inner-uniform domain. Finite convex sets
in Z% in the sense of Example 2.11 are uniform domains, all with the same fixed
(a, A) depending only on the dimension d. The domain pictured in Figure 2.6 is a
uniform domain, with the same fixed (o, A) for all N. Note that in this example,
viewed as a subset of Z?2, some of the boundary points are not killing points, but
points where the process is reflected. This illustrates how variations of this type
(i.e., with reflecting points) can be treated with our methods.

Example 8.6. In Example 2.10, we observed that metric balls are always 1-John
domains. They are not always inner-uniform domains. See Figures 8.13 and 8.14.
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Example 8.7. The discrete “finite convex subsets" U of Z? satisfying (A.1) and
considered in Proposition A.l are inner-uniform with parameter & > 0 depending
only on the dimension d and the parameter « in (A.1). Note that the inner dis-
tance in such a finite connected set is comparable to the graph distance of Z¢ with
comparison constant depending only on the dimension d and the parameter « in
(A.1) (i-e., these finite domains are uniform).

Here is a rough description of the paths 7., that demonstrate that such domains
U are inner-uniform. (See Figure 8.17). Let r be the distance between x and
y in Z%. Recall that U has “center” o and that we can go from z (and y) to o
while getting away linearly from the boundary, roughly along a straight-line (see
Proposition A.1). Let & and ¢ be respective points along the paths joining x and y
to o, respectively at distance r from x and from y. Convexity insures that there is
a discrete path in U joining Z to ¢ while staying close to the straight-line segment
between these two points. This discrete path from # to § has length at most Ar
and stays at distance at least ar from the boundary. This completes the discussion
of the example.

Now we return to the general setting. We define a special point z,. for each point
x € U and radius r > 0. The meaning of this definition and the key geometric
property of . is that x,. is a point which is essentially as far away from the boundary
as possible while still being within a ball of radius r of z, i.e., d(x, z,) < r. Namely,
d(z,X\U) > a(l +7r) if r < R and z, = o otherwise.

Definition 8.8. Let U be a finite inner (a, A)-uniform domain. Let o be a point
such that d(o, X\ U) = max{d(z,X\U) : « € U} = R. Let v, be a collection of
inner («, A)-uniform paths from z € U to y € U. For any € U and r > 0, let .
be defined by

R Ty if vpo = (¥ = xg, 21, ..., 2, = 0) with k& > r,
" 0 if v40 = (¥ = xo, 21,..., 25 = 0) with k <.

The following Carleson-type theorem, regarding the eigenfunction ¢y, is the key
to obtaining refined results for the convergence of the intrinsic Doob-transform
chain on a finite inner-uniform domain. The context is as follows. In addition to
the geometric structure (X, &), we assume we are given a measure 7 and an edge
weight p such that (X, €, m, u) satisfies Assumption Al with 6 = 2, i.e., we assume
that the measure 7 is D-doubling, p is adapted, = dominates p, and the pair (7, u)
is elliptic and satisfies the 2-Poincaré inequality on balls with constant P.

Theorem 8.9. Assume (X, &, 7, u) satisfies Assumption Al with 6 = 2 and fix
a, A. There exists a constant Cy depending only on o, A, D, P,, P such that, for
any finite inner (a, A)-uniform domain U, the positive eigenfunction ¢o for the
kernel Ky in U is (1/8, Cy)-regular and satisfies

Vr >0, €U, z € By(r,1/2), ¢o(2) < Codo(zy).

Corollary 8.10. Under the assumptions of Theorem 8.9, there are constants Dy,
D, depending only on o, A, D, P,, P such that

VeeU, r>0, mg,(Bu(x,2r)) < Domy,(Bu(z,r)).
Moreover, for all v € [0, R],
Dl_1¢0(xr)27rU(B(xr,ar)) < 4o (By(z,7)) < Di¢o(x,)* 7y (B(z,, ar)).
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The following corollary gives a rate of convergence of the Doob transform chain
to its stationary distribution in L>°.

Corollary 8.11. Under the assumptions of Theorem 8.9, there are constants C,c
depending only on o, A, D, P,, P such that, assuming that the lowest eigenvalue B_
of the reversible Markov chain (Kg,,Ts,) satisfies 1 4+ B_ > cR™2, we have

< Cexp (—c}é) ,

for allt > R?. In terms of the kernel Ky, this reads

Kb (2, y) — Bido(2)do(y)mu(y)| < CBYbo(x)do(y)mu (y)e /7,

for all z,y € U and t > R?.

K (2,9)

Tpo (Y) !

max
x,yelU

Proof: This follows from Theorem 7.17 because the measure ¢3my is doubling by
Theorem 8.9 (and U is a John domain by Lemma 8.3). O

Corollary 8.12. Under the assumptions of Theorem 8.9, there are constants c,C
depending only on «a, A, D, P., P such that the second largest eigenvalue B of the
reversible Markov chain (Kgy,, ¢g,) satisfies

¢cR?2<1-8<CR™2

If Bua < Buo = Po denotes the second largest eigenvalue of the kernel Ky acting
on on L*(U,ny) then B = Bui/Bo and

cR™?Bo < Bo — Bua < CBR™
or equivalently
Bo(1—CR™2) < By < Bo(l —cR™?).
In particular, for all t,
—Ct/R?
max Z{; |KGy (,y) = g (y)| > ce™ YR
ye

The following theorem is closely related to Theorem 8.9 and is to used to obtain
explicit control on the function ¢g. In Section 9 we demonstrate the power of this
theorem in several examples.

Theorem 8.13. Assume Al with § = 2 and fir o, A. There exists a constant
Cy depending only on a, A, D, P., P such that, for any finite inner («, A)-uniform
domain U, any point x € U and r > 0 such that

By(z,r) ={y€U:dy(z,y) <r}#U
and any function h defined in U and satisfying Kyh = h in By(x,r), we have
Py) _ My

Vy,z € By(z,r/2), bolz) = 1h(z)
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8.2. Proofs of Theorems 8.9 and 8.15: the cable space with loops. The statement
in Theorem 8.9 is a version of a fundamental inequality known as a Carleson es-
timate Carleson (1962) and was first derived in the study of analysis on Lipschitz
domains Kemper (1972); Ancona (1978); Dahlberg (1977); Wu (1978). For a mod-
ern perspective, sharp results, and references to the vast literature on the subject
in the context of analysis on bounded domains, see Banuelos et al. (1991); Aikawa
(2001, 2005, 2008, 2015). The generality and flexibility of the arguments developed
by H. Aikawa in these papers and other works, based on the notion of “capacity
width,” is used in a fundamental way in Gyrya and Saloff-Coste (2011) and in Lierl
and Saloff-Coste (2014b,a); Lierl (2015, 2018) to extend the result in the setting of
(nice) Dirichlet spaces.

Given (X, €, u, m) one can build an associated continuous space X, known as the
cable space for (%, €, 7, 1). In many cases, it is more difficult to prove theorems
in discrete domains than in continuous domains — the cable space provides an
important bridge by allowing us to transfer known theorems from the continuous
space X to its associated discrete space X.

Topologically, the space X is a connected one-dimensional complex, that is, a
union of copies of the interval [0,1] with some identifications of end points. The
process of building the cable space from the discrete space (X, &, u, 7) is straightfor-
ward: the zero-dimensional points in the complex are given by the vertices X; two
points z and y are then connected by a unit length edge [0,1] if {z,y} € €, with 0
identified with x and 1 identified with y. For early references to the cable space, see
the introduction to Cattanco (1997). This resource is particularly relevant because
it discusses the spectrum of the discrete Laplacian.

But we need to allow for the addition of self-loops, copies of [0, 1] with 0 and 1
identified to each other and to some vertex x € X. (Recall that & has no self-loops.)
We will use the notation (0, 1), for the self-loop at x minus the point x itself. Let
£ be the subset of those z € X where 3 _; ptay < 7(x). Form a loop at each z € £
and set the weight ., on the loop to be equal to its “deficiency,”

Wy = T(T) — Z Hay, T € L. (8.1)

yeU

In what follows we will use the notation xy as an index running over {z,y} € &
when = # y and z € £ when x = y.

We need to use a simple (but rather interesting) variation on this construction.
We introduce a loop-parameter, call it £. For any fixed ¢ € [0, 1], we construct the
cable space X, as described above but the self-loops have length ¢ instead of 1
above. The other edges (non-self-loops) still have length 1.

More precisely, the space Xy is obtained by joining any two points x,y in X with
{z,y} € € by a continuous edge e,, = (0,1),, isometric to the interval (0,1) and
adding a self-loop ez, = (0, ), at each x € £. Strictly speaking,

X=2xU| [J (0,1)n u(U(o,E)m>

{z,y}ee z€L

with ez, being a copy of (0, 1) when = # y and a copy of (0,¢) when = y. See Fig-
ure 8.19. The topology of this space is generated by the open subintervals of these
many copies of (0,1) and (0, £), together with the star-shaped open neighborhoods
of the vertices in X.
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FIGURE 8.19. A simple example of (X, &, m, 1) and the associated
cable spaces X, where the edge weights p are indicated in black
and the vertex weights m are indicated in red. The black weights
on the loops indicate the “deficiencies” in the edge weights, as de-
scribed in (8.1).

The cable Dirichlet space associated with the data (X, &, u, 7, ¢) is obtained by
equipping X, with its natural distance function dy : X; x X; — [0, 00), the length
of the shortest path between two points. The space X, is also equipped with a
measure 7 equal to jig,dt on each interval ey, (including the intervals e,.), and
with the Dirichlet form obtained by closing the form

Exf.5)= 3 [ 102, (0P £ € DoXo)

T,yeX

where Dy(Xy) is the space of all compactly supported continuous functions on X,
which have a bounded continuous derivative féw on each open edge ey and eg,.
(Note that the values of these various edge-derivatives at a vertex do not have to
match in any sense.) The domain of £x,, D(€x,), is the closure of Dy(X,) under
the norm

1/2
1fllex, = ( [ UrPam + x5, f>) .

For two function f and g, we can define £x,(f,g) by the polarization formula:

Ex,(£,0) = 1 [Ex.(T +0.F +9) — Ex.(f — 9.7~ ).

The cable Dirichlet space (X, 7, Ex,) is a regular strictly local Dirichlet space
(see, e.g., Fukushima et al.; 2011; Gyrya and Salofl-Coste, 2011) and its intrinsic dis-
tance is the shortest-path distance d, described briefly above. This Dirichlet space
is actually quite elementary in the sense that it is possible to describe concretely
the domain of the associated Laplacian, the generator of the associated Markov
semigroup of operators acting on L?(X,, ). First, we recall that this Laplacian is
the self-adjoint operator A, with domain D(A,) in L?(Xy, 7) defined by

D(Ay) = {u € D(€x,) : 3C such that,Vf € Dy(Xy), Ex, (u, f) < Cllull2}-
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For any function u € D(A,) there exists a unique function v € L?(Xy, 7) such that
Ex,(u, f) = sz vfdm (from the Riesz representation theorem) and we set

Agu = —0.
This implies that
SXZ u, f /ngudﬂ'

for all u € D(A) and all f € Dy(X,) (equivalently, all f € D(Ex,)).

From the above abstract definition, we can now derive a concrete description of
D(Ay). We start with a concrete description of D(€x,). A function f is in D(€x,)
if it is continuous on Xy, belongs to L?(Xy, ) and the restriction f.,, of f to any
open edge (0,1),,, has a distributional derivative which can be represented by a
square-integrable function f;_ - satisfying

Sy [ I£L,1PdE < 0.

z,yeX Cay

The key observation is that, because of the one-dimensional nature of X, on any
edge ey, (or subinterval of e;,) on which f’ is defined in the sense of distributions
and represented by a square integrable function, we have

F(52) — Fls0)| < VTso — 5] ( / If’(8)|2d8>1/2-

We now give a (well-known) concrete description of D(A,). A function u €
L?(Xy,m) is in D(Ay) if and only if
(1) The function v € L?(X,, ) admits a continuous version, which, abusing
notation, we still call u.
(2) On each open edge ey, the restriction u.,, of u to e;, has a continuous
first derivative ugw with limits at the two end-points and such that

Z uxy/ y\th < 00.

T, yeX

Furthermore u.,, has a second derivative in the sense of distributions which
can be represented by a square-integrable function “/e;y and

Z“W/ g, |Pdt < .

T, yeX
(3) At any vertex x € X, Kirchhoff’s law

Z fayle,, () + Z faz (te,, (0) — de,, (£)) =0

y{z,y}e€ zel

holds. Here, for {z,y} € €, w,,, () is the (one-sided) derivative of u at
x computed along e, oriented from x to y and, for z € £, 4., (0) and
e, (¢) are the (one-sided) derivatives of ., on (0,¢),, at 0 and at £.
We say that a function u defined on a subset € is locally in D(A,) if it satisfies
the above properties over §2 except for the global square integrable conditions on
u, v’ and u”. For such a function, Ayu is defined as the locally square integrable
function Ayu = v where v = u’e’w on ezy NQ.
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FIGURE 8.20. U and U in black with their boundaries in blue.

Remark 8.14. The stochastic process associated with the Dirichlet form €£x, can
be explicitly constructed using Brownian motion. More specifically, starting at a
vertex in the cable space, one performs Brownian excursions along adjacent edges
until reaching another vertex. For a detailed description see Revuz and Yor (1999);
Folz (2014). See Berkolaiko and Kuchment (2013) for a description of the related
quantum graphs.

Definition 8.15. To any finite domain U in (X, &) we associate the domain U = Uy,
in X, formed by all the vertices x in U and all the open edge e;, with at least one
end point in U, including the loops e;, with x € U.

See Figure 8.20 for an example of Defintion 8.15. As another example, consider
the trivial finite domain U = {x}. To it, we associate the domain U formed by the
vertex x and all the open edges containing x, i.e., an open star around x, perhaps
with a self-loop of length ¢, whose branches are in one to one correspondence with
the y € X such that {z,y} € €.

With this definition, the discrete finite domain U is inner-uniform if and only
if the domain U is inner-uniform in the metric space (X, d;). Following Gyrya
and Saloff-Coste (2011, Definition 3.2) we say that a continuous domain U is inner-
uniform in the metric space (Xy, dy) if there exists constants A¢ and a¢ such that,
for each &,¢ € U, there exists a continuous curve v¢¢ : [0,7] — U (called an
inner-uniform path) contained in U with |ye¢| = 7 such that (1) 7¢(0) = £ and

Yec(T) = C, (2) [rec| < A°du (€, €) and (3) for any ¢ € [0, 7],
dg(’}@c(t),Xg \ U) > af min{t,TU — t}

where dy is the distance in U.

The important constants A% a? and A¢,a¢ (d for discrete, ¢ for continuous)
capturing the key properties of an inner-uniform domain in both cases are within
factors of 8 from each others. (This is because the discrete and continuous paths are
not very different from each other, as explained below. Very large self-loops would
be problematic, but we restrict to £ € [0,1].) In fact, for any pair of points £, ¢ in
U we can define an inner-uniform path ~¢¢ from  to ¢ as follows. If the two points
satisfy dy(&,¢) = 7 < 1, i.e., they are either on the same edge or on two adjacent
edges, then we set v¢¢ to be the obvious path from £ to ¢, parametrized by arc-length
(one can easily check that this path satisfies d¢(yec(t), X \ U) > min{t, 7 — t}).
When dy(&,¢) > 1, one can join them in U by first finding the closest points z(¢)
and z(¢) in U (if there are multiple choices, pick one) and then use the obvious
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continuous extension of the discrete inner-uniform path from x(¢) to x(¢), which
is, again, parametrized by arc-length.
Finally we extend Definition 8.8 from U to U as follows.

Definition 8.16. Let U be a finite inner-uniform domain equipped with a central
point o € U such that d(o, X\ U) = max{d(z,X\U) : x € U}. For any point £ € U,
let ¢, be the inner-uniform continuous path defined above joining £ to o in U. For
any £ € U and r > 0, let &, be defined by

&=a(§)rifr>1

where x(€) is the (chosen) closest point to £ in U and x(§), is given by Definition 8.8,
and

& = Yeo(min{r, 7}) if r € (0,1) and yeo(7) = 0,

Remark 8.17. The two key properties of the point &. € U are as follows. There
are two constants C, e which depends only on the inner-uniform constants A, « of
U such that

(1) The inner-distance dy (¢, &) is no larger than Cr;
(2) The distance dg(&-, X \ U) is at least er.

In the present case, we chose the points &, so that, for » > 1, they actually belong
to U and coincide with z(£), from Definition 8.8.

The heat diffusion with Dirichlet boundary condition on the bounded inner-
uniform domain U = Uy is studied in Lierl and Saloff-Coste (2014a,b). The heat
diffusion semigroup with Dirichlet boundary condition on the domain U is the
semigroup associated with the Dirichlet form obtained by closing the (closable)
form

Eo.(f.f) = /U |2

defined on continuous functions f in U that are locally in D(€x,) and have compact
support in U (for such function, f' = féw on ez, N ). The subscript D in this

notation stands for Dirichlet condition. Let HtU D — ¢tAu.p he the associated self-
adjoint semigroup on L?(U,my) with infinitesimal generator Ay p. Here, wy is
the normalized restriction of 7 to U

7wy = m(U) x|y,

The domain of Ay p is exactly the set of functions f that are locally in D(A,) in
U, have limit 0 at the boundary points of U and satisfy fU |u"|?dm < oo. Also the
parameter ¢ does not appear explicitly in the notation we just described, but all
these objects depend on the choice of /.

Just as in the discrete setting, the key to the study of HtU’D is the Doob-
transform technique which involves the positive eigenfunction ¢, associated to
the smallest eigenvalue Ay ¢ of —Ay p in U. This function is defined by the follow-
ing equations:

(1) A&o = inf {fU |f/|2d7TU : f S D<(€U,D>7IU |f|2d7TU = 1};
(2) ¢e0 € D(Au,p) and Ay peo = —A1,0¢e,0;
(3) [y l@eolPdm =1.
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Proposition 8.18. Assume that (X, €, m, 1) is such that u is adapted and p is
subordinated to . Let U be a finite domain in (X, €). There exists a value

by = Eo(%, E, m,u, U) S [0, 1]

of the loop-parameter £ such that the following properties hold true.

Let U be the bounded domain in Xy, associated to U. Let ¢g, [y be the Perron-
Frobenius eigenfunction and eigenvalue of Kyr. Let ¢g, Ag be the eigenfunction and
bottom eigenvalue of Ay p for the parameter £y as defined above. There exists a
constant k > 0 such that

(1) Bo = cos(vAo),
(2) ¢o(z) = ko(x) for all vertices x € U.

Proof: First, we study the function ¢, for an arbitrary ¢ € [0,1]. On each edge
ezy in U, the function ¢y satisfies

a 2
(83) [De,0]e., = —Ar0[Pe0]e,,

where [¢,0]e,, is restriction of ¢; o to the edge ey,. This implies

Cay

- (v/Ae,0lay)
[Pr,0]e., (5) = Peol SlTSJVijy v)beol bln(\/AAoS) + ¢0(x) cos(v/Ar09)

where s € (0,¢,,) parametrizes the arc length of e;,, from = to y with

{1 when x # y
lyy =
¢  when z=y.
When z =y,

[De0e.. (0) = [@r0le.. (£) = o),
on the edge (0,¢),, satisfies
[@e.0le,, (5) = [De0]e,. (£ — 5).

To express Kirchhoff’s law at « € U, we compute, for x # y,

VAo
sin(, / )\370)

and the function [¢y o]

Cxx

[be.0e., (0) = (@e,0(y) — cos(y/Ae0)Pro()),

and, for x =y,

- — —

[@e0le,, (0) = [@role,. (1) = 2[peole,,(0)

VAo
= 2—F———(1 —cos(\/Arof))
i Tzoﬁ) (VAe,00))pe0(x
It follows that Kirchhoff’s law gives

Z Py (Dr,0(y) — cos(y/Ae0)Peo(T))

y{z,y}ee

sin(4/A¢,0)
+2U (1 — cos(y/Ai0f))
1 i Tz 0 (Vv Ar00)) o
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Recall that Ky (z,y) = pgy/m(x) for z,y € U with {z,y} € € and Ky(z,z) =
taz /(). Tt follows that, for © € U,

Kyo(x Zﬂmﬂﬁzo *L Z Hay®e.0(Y) + poadeo(z) |,

(@) y{z,ytee
and Kirchhoff laws for ¢, yields

Kudeolz) _ Ky(z,2) + (1 — Ky(z,2)) cos(v/Ae0)
®e0()

sin(y/Ae,0)
—2Ky(x, (1 —cos(y/Ae,0f))
v(@ ) S est) sin \/m€ cos(v/Aeo

= cos(/Ar0)

sin(y/Ac,0) (1 —cos(y/Ac0f))
+Ky(z,z)(1 — cos(y/Aeo)) (1 — 25111 \/HE (1~ cos m)) )

Given the uniqueness of the Perron-Frobenius eigenvalue and the fact that the
associated positive eigenfunction is unique up to a multiplicative constant, the
proposition follows from the previous computation if there exists £y, € [0,1] at
which the function

F)=1-2 sin(4/Ac,0) (1 —cos(y/Ac,0f))
B sin(y/Arof) (1—cos(v/Aro))

vanishes. But, by an easy inspection, F'(0) = 1 and F(1)
that the function

—1. If we can prove

0 )\g,o

is continuous, then F' must vanish somewhere between [ = 0 and [ = 1 by the
intermediate value theorem, so we are done. ~
Fix ¢1,¢s. Any function f on X,, is turned into a function f on Xy, by setting

_ fery (8) ife#y
fEmy( ) { feTT(£23/£1) if x = Y.

Further,

Js

Ex, (F 1) = Ex0, (1 1)+ (62/0) = 1) Y piaa / L Pt

zel Coz

PP = / F2dm + (1)) = 1) S fiaa / \fo, 2dt

£2 Xy zel Caw

and

Applying this to the function ¢y, o, normalized so that fX[ |pe, o|?dm = 1, we
-1

find that
max{l, 51/52}

min{1,¢5/¢;}
Exchanging the role of ¢, s yields the complementary inequality
min{1, ¢, /ls}
max{1,03/01}
This proves the continuity of £ — A as desired. (|

Agy0 < Aes0-

A0 > 01,0
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Remark 8.19. When the quantity Ky (x,z) is constant, say, Ky(x,x) = 6 for all
x € U, then every function ¢y for £ € [0, 1] satisfies ¢o(x) = kepe,0(x) at vertices
x € U, and we have

B sin(4/Ag,0) (1 —cos(y/Az,0f))
Bo=1—(1—cos(\/Arp)) (1 -6 (1 - Qsin(\/VQK) 0= cos(y/Ae0)) )) .

In words, the entire function of £ on the right-hand side is equal to the constant .

Theorem 8.20 (Special case of Lierl and Saloff-Coste, 2014a, Proposition 5.10).
Assume Al with 0 = 2 and fix o, A. There exists a constant Cy depending only
on a, A, D, P,, P such that, for any finite inner («, A)-uniform domain U and loop
parameter £ € [0,1], the positive eigenfunction ¢y o for the Ay, p in Uy is (1/8, Cop)-
reqular and satisfies

vr > 07 g S Ug, FAS BUz(far/Q)a ¢Z,0(Z) S CO¢Z,O(€T)-

Proof: The domain U = Uy in (X,,d/) is inner-uniform and the Dirichlet space
(Xy, 7, Ex,) is a Harnack space in the sense of Gyrya and Saloff-Coste (2011) and
Lierl and Saloff-Coste (2014a). The most basic case of Lierl and Saloff-Coste (2014a,
Proposition 5.10) provides the desired result. Technically speaking, the definition of
the map (z,7) — & here and in Lierl and Saloff-Coste (2014a) are slightly different
but these differences are inconsequential. [l

Proof of Theorem 8.9: Together, Theorem 8.20 and Proposition 8.18 obviously
yield Theorem 8.9. O

Proof of Theorem 8.13: We use the same method as in the proof of Theorem 8.9
and extract this result from the similar result for the cable process with the proper
choice ¢y of loop length. Local harmonic functions for the cable process (with
Dirichlet boundary condition at the boundary of U) are always in a one-to-one
correspondence with local harmonic functions for Ky, independently of the choice
of the loop parameter ¢. Therefore, the stated result follows from Lierl and Saloff-
Coste (2014a, Theorem 5.5).

O

8.3. Point-wise kernel bounds. In this section, we describe how to obtain the fol-
lowing detailed point-wise estimates on the iterated kernels K}, and Kéo when U
is inner-uniform. Recall that V(z,r) = m(B(x,r)) and x 4 is a point such that

d(x 7, X\U) > a(l+ /1) if vVt < R and z ;7 = o otherwise.

Theorem 8.21. Assume Al with 0 = 2 and fix a, A. In addition, assume that
the pair (m,p1) is such that -, cx pay < (1 — €)m(x) with € > 0 (this means that
mingex{K,(x,x)} > €). There exist constants c1, cz,C1,Ca € (0,00), which depend
only on «, A, D, P., P and are such that, for any finite inner (o, A)-uniform domain
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U, integer t and x,y € U such that dy(z,y) < t,
Cy exp(—cidy (z,y)?/t)
VV @DV (g, VDo (@ 5)d0(yy7)
K} (z,y)

b0(v)>m(y)
Coexp(—cady (z,y)? /1)

V@OV (5, VD60(w ) bolyz)

Remark 8.22. When t is larger than R? then z /i = 0 and the two-sided estimate
above states that Ky, (z,y) is roughly of order 7y, (y)*my(y) because ¢o(0)? ~
> .ev 98(2)mu(z) = 1. The convergence result stated earlier give better estimates
in this case. When t < R2, the statement provides a useful estimate of the iterated
kernel before equilibrium is reached.

IN

The following corollary simply translates Theorem 8.21 in terms of the iterated
kernel K},.

Corollary 8.23. Assume Al with 6 = 2 and fix a, A. In addition, assume that
the pair (m,p) is such that - cx pay < (1 — €)m with € > 0 (which implies that
mingex{K,(z,z)} > €). There exist constants c1,c2,C1,Cs € (0, 00)which depend
only on a, A, D, P., P and are such that, for any finite inner (o, A)-uniform domain
U, for any integer t and any x,y € U such that dy(z,y) < t,

C1B50(x)o(y) exp(—crdu (z,)*/t)
V@V (5, VDo ( 2)0(u,7)
Ki(z,y)
m(y)
Cafy¢o(x)doly) exp(—cady (2, y)* /1)
V@ VOV (5, V(@ )b y.7)
Outline of the proof of Theorem 8.21: To simplify notation, set
I? = K¢0, T = ¢(2)7T|U~

IN

The estimates stated above and which we are going to obtain for Kt = K;O do
not depend on the exact scaling of ¢y and 7|y as long as the given choice made
is used consistently. The first key point of the proof is the fact that K = Ky,
is Markov (i.e., satisfies >° s K(z,y) = 1 for each z € U) and reversible with
respect to 7@ = ¢27|y. (Normalizing is optional.) Also, the reversible Markov chain
(K, 7) satisfies K(z,z) > ¢ and the ellipticity condition K(z,y) > 1/P. where
P, = By L P. max{¢o(z)/do(y) : {x,y} € €y}. The constant P. is bounded above
in terms of the constants «, A, D, P, P,, € only.

It is well-known (see Barlow, 2017, Theorem 6.34 or Delmotte, 1999) that the
two-sided Gaussian-type estimate stated in Theorem 8.21 for the reversible Markov
chain (IN( ,7) is equivalent to the conjunction of two more geometric properties which
are (a) the doubling property

YeeU, r>0, 17(96,27") < Ef/(m,r)
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of the volume function
V(e,r) =7Bu(,r) = > &wrluw),
yEBy (z,r)
and (b) the Poincaré inequality
min Y [f() —€FRW <Pt 30 1)~ SRR 0)R(2),
By (z,r) y,2€By (z,r)

for all x € U, r > 0 and all f defined over By (z,r). See Delmotte (1999).
Theorem 8.9 shows that

‘7(:43, r) ~ ¢o(x,)?V (z,7) (8.2)

and the doubling property of V follows from Corollary 8.10. The proof of the
Poincaré inequality on the balls By (x,r) follows from a variation on the argument
developed in Section 4 which uses the additional property of inner-uniform domains.
See Gyrya and Saloff-Coste (2011) for the proof in the context of strictly local
Dirichlet spaces and Houston-Edwards (2018) for the case of discrete graphs. O

The following useful corollary to Theorem 8.21 is illustrated in several different
examples in Section 9.

Corollary 8.24. Given the setup of Theorem 8.21,
c (t) do() ¢ do(x)
do(2,/z) Y go(z )’

where Ty is the first time that the process (X¢) exits U, and ¢,C > 0 are constants
which depend only on o, A, D, P,, P.

<P,y >t)<Ch

Proof: Remark 8.17 gives us a constant ¢ such d(z,,X \ U) > cr. Note that for

any y € B(z j,¢V/1/2), we have ¢o(y) < Coo(z ) and do(y5) = C'o(x ).
Furthermore, Theorem 8.9 gives that

Vi, Vt) = V(y, V) = V(z 5 cVt/2) = do(x7)?V (2, VE).

Now, we use the lower bound concerning K}, from Corollary 8.23 and the previ-
ous observations to obtain

o> 1) =Y Ki(n,y) > Kilay)

yel yEB(wﬁ,C\/E/Q)
po(z)
> Bt 8.3
za do(x ) (8:3)
For the upper bound, also using Corollary 8.23,
(T > t) Z KU z,9)
yeU
752d%](z,y)
< oy ) 5o ), ")
i) st 9 v (a viV (5, v
< Bt do(@) (8.4)

Yoz )
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The last inequality holds because ¢q(y) < C¢o(y,;) by Theorem 8.9, and

efczd%/(fyy)

yEZU \/V(x7 VHV (y, V1)

on any doubling space. ([l

m(y) <C

9. Some explicit examples

In this section, we consider explicit families of finite domains indexed by a size
parameter N which is comparable to the diameter of the relevant domain. Each
finite domain U is an a-inner-uniform domain with a chosen “center” o which is just
a point in U at maximal distance R = Ry from the boundary (see Lemma 8.3).
Within each family, the inner-uniformity parameter, a € (0, 1), is fixed.

The underlying weighted graph (X, &, m, u) for these examples satisfies A1 with
6 = 2. In fact, in this section, the underlying space is the square grid Z? of some
fixed dimension d (or some simple modification of it).

We normalize the Perron-Frobenius eigenfunction ¢ by my(63) = 1. Because of
Theorem 8.9, we have

max{¢o} < Codo(0)
and (see the (1/8, Cy)-regularity of ¢g),

Co min_ {do} > ¢o(o0).

B(o,R/2)
Furthermore, 7y (B(o, R/2)) > com(U). It follows that
Vy € B(Ov R/2)7 ¢0(y) ~ ¢0(0) ~1

uniformly within each family of examples considered. In fact, in many examples,
the choice of the point o is somewhat arbitrary because one could as well pick any
point 0 with the property that

1 R
- L1 _ R
46,2\ U) = 5 max{d(z, X\ U)} = 3
Any such point 6 has the property that

Vy € B(0,R/4), ¢o(y) = ¢o(0) =~ do(0) =1

uniformly over 0 and within each family of examples considered. See Figure 9.21.

FIcURE 9.21. In light orange, regions where ¢¢ is approximately
equal to 1. On the left, an example in which there is essentially
one central point 0. On the right, an example in which the “center”
o can be placed in a variety of different location.
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9.1. Graph distance balls in Z*. InZ?,let U = B(N) = {x = (p,q) € Z* : |p|+]q| <
N}. This is the graph ball around 0 in Z2. Equip Z? with the counting measure
and with edge weights

_ /8 i pe —pyl + g —ayl =1
Y 0 otherwise.

The Markov kernel K, drives a lazy random walk on the square lattice, with holding

probability 1/2 at each vertex. We are interested in the kernel

Ky(z,y) = Ku(z,y)1u(z)1y(y)

which we view as defining an operator on L?(U, ;) where 7 is the uniform proba-
bility measure on U. This set is clearly inner-uniform (in fact, it is uniform because
the inner distance between any two points in U is the same as the distance between
these point in Z?).

Let us introduce the Perron-Frobenius eigenfunction ¢¢ and its eigenvalue .
Obviously, they depend on N. This is one of the rare cases when ¢g and 5y can be
determined explicitly:

po(x) = K cos (2(N7r+1)(p + (J)) cos (2(]\;;1)(1? - Q)>

-3 o )

The normalizing constant «p is of order 1. Here we need to recall that ¢ vanishes
on points at graph distance N + 1 from the origin in Z2.

To illustrate our result for estimating P, (7y > t) without writing long formulas,
let us consider the probabilities P, g)(7vr > t) and P, ) (1y > t) that a random
walk started at © = (p,0) (for 0 < p < N) and = = (p,p) (for 0 < p < N/2),
respectively, has not yet been killed by time ¢. For all ¢ < N2, we have

with

N—p 2
P(p’O)(TU > t) ~ (W) 5 0 S p S N. (91)
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This comes from applying Corollary 8.24 to the eigenfunction above,
Po((p,0))

do((p,0),7)
_ l.0)

do((p — V1,0))

_ (cos(m)?

cos(gx (p — V1))?
Now, use that cos (5% x) = sin (5 (N — 2)) ~ 55 (N — z). In particular, for any
(N-p)®

T

P(p70) (TU > t) ~

fixed 0 < t < N2, Pp,0)(Ty > t) vanishes asymptotically like as p tends to

N.
Similarly, for 0 < t < N2,
N —2p

P >R | ———F

) (TU > 1) (N—?p—l—\/z

In this case, for any fixed 0 < t < N?, Py, (7 > t) vanishes like N—\;gﬂ when p
tends to N/2.

>,0S2pSN-

Remark 9.1. While our results apply equally well to the graph distance balls of Z¢
for d > 2, they are much more complicated in that case and there is no explicit
formula for ¢ or the eigenvalue By. The ball is a polytope with faces of dimension
0,1,...,d. The vanishing of ¢y near each of these faces is described by a power
function of the distance to the particular face that is considered. The exponent
depends on the dimension of the face and on the angles made by the higher dimen-
sional faces meeting at the given face (the exponent is always 1 when approaching
the highest dimensional faces).

FIGURE 9.23. B(N)\ {0} in Z? (the blue central point is part of
the boundary)

9.2. B(N)\{(0,0)} in Z2. The case when U = B(N)\{(0,0)} is interesting because
we are able to describe precisely the behavior of ¢y even though there is no explicit
formula available. First, we note again that this is an inner-uniform domain (there
is no preferred point o in this case, since any point at distance of order N/2 from
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(0,0) will do). Theorem 8.13 will play a key part in allowing us to describe the
behavior of ¢g. First, we claim that

1— By~ N2

The lower bound follows from comparison with the eigenvalue bound from the box
itself B(IV) and because (3 is increasing under inclusion. For the upper bound, use
the test function

f((p,q)) = min{d((0,0), (p,q)), N +1-d((0,0),(p,q))}
which vanishes at all boundary points for U.

Second, we show that
(N =Ip+g)(N —Ip—q])log(1 + |p| + |ql)

To obtain this result, cover U by a finite number (independent of ) of Z? balls { B; }
of radius of order IV so that the trace of U in each of the balls 25; is of one of the
following four types: (1) no intersection with the boundary of U; (2) the intersection
with the boundary of U is {(0,0)}; (3) the intersection with the boundary of U is
a subset of {(p,q) : p+q¢= N} {(p.¢) : p—q= N} {(p,g) : p+qg=—N} or
{(p,q) : p—q = —N}; and (4) the intersection with the boundary is a corner formed
by two of the previously mentioned lines. See Figure 9.23 for an illustration of these
four types. In case (1), we know that ¢ is approximately constant in B;. Moreover,
this approximately constant value must be (approximately) the maximum value of
¢o because of Theorem 8.9, and this constant must be approximatively equal to
1 because ¢ is normalized by m;(¢2) = 1. This is compatible with the proposed
formula describing ¢p. In case (2), Theorem 8.13 allows us to compare ¢o((p,q))
to the harmonic function h((p,q)) equal to the discrete modified Green’s function
(or potential kernel),

A((0,0), (p, @) = Y _(M"((0,0), (p, q) — M*((0,0), (0,0)))
t=0
on Z2\ {(0,0)}. Here M is the Markov kernel of aperiodic simple random walk
on Z2. It is well-known that this function is comparable to log(1 + |p| + |gq|) (See
Spitzer, 1976, Chapter 3 from which we borrowed the notation A(x,y). More precise
estimates are available using a sharp version of the local limit theorem, but this is
enough for our purpose). Because the ball B; in question must contain a point at
distance of order N from the boundary of U at which ¢ is of order 1, we find that,
in such a ball,
log(1
oy DL D

Again, this estimate is compatible with the proposed formula. In case (3), we easily
have a linear function h vanishing on the (flat) portion of the boundary contains
in that ball and positive discrete harmonic in U. Thanks to Theorem 8.13, this
provides the estimate

®o((p,q)) = du ((p, qZ)\E,x \ )

in balls of this type, which has the form suggested by the proposed formula. Finally,
in case (4), and, for definiteness, in the case the ball B; is centered at the corner
of intersection of the line {(p,q) : p4+ ¢ = N} and {(p,q) : p — ¢ = N}, the function
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h((p,q)) = (N —p — q)(N — p + q) vanishes on these two lines and is discrete
harmonic. This gives (again, using Theorem 8.13)

bo(pa)) ~ N —P= 9N —ptaq)

N2
as desired.
PaN
PASEN
/T/\[ \r\r\
< >
N 7
N V4
AU

FIGURE 9.24. B(N)\ {0} in B(N) (The blue central point is the
entire boundary.)

9.3. B(N)\ {0} in B(N), in dimension d > 1. First we explain the title of this
subsection. Consider the simple random walk in the ball B(N) C Z¢, with any
reasonable reflection type hypothesis on the boundary of B(N). Our aim is to
study absorption at 0 for this random walk on the finite set B(/N). To put this
example in our general framework, we set Xy = B(N) equipped with the edge
set €y induced by the underlying square lattice, that is the collection of all lattice
edges with both end points in B(N). The measure 7 on X = B(N) is the counting
measure and each lattice edge e in € is given the weight u(e) = 1/(2d). This
means that the Markov kernel K, for our underlying walk has no holding at point
x € B(N —1) C B(N) and holding probability v(z)/(2d) where v(z) = 2d — #{y €
B(N) : {z,y} € €y} when x € B(N)\ B(N — 1) (this holding probability at
the boundary is always at least 1/2). The domain Uy of interest to us here is
Uy = B(N)\ {0} (inside B(N)) whose sole outside boundary point is the center 0.
When the dimension d is at least 2, this is an inner-uniform domain in (Xy, €y)
(there is no canonical center but any point at distance at least N/2 from 0 can be
chosen to be the center o).

Because the domain Uy is inner-uniform (uniformly in N), Theorem 8.13 yields

_ Bido(x)

Pz(TUN > t) ~ m

and, for ¢ > N2, Corollary 8.11 gives,
_ _ 2
[5G, (@) = do(@)o(y) BEUNI | < CBio(@)doly)e /N
As in the previous examples, the key is to obtain further information on 5y and

¢o. For that we need to treat the cases d = 2 and d > 2 separately. In both cases,
we use Theorem 8.13 to estimate ¢q.
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9.3.1. Case d = 2. The first task is to estimate 1 — 3y from above and below.
This is done by using the same argument explained in Saloff-Coste (1997, Example
3.2.5: The dog). See Subsection 9.4.1 below where we spell out the main part of
the argument in question. The upshot is that 1 — 8y ~ 1/(N?log N). We know
that ¢o(z) ~ 1 when z is at graph distance at least N/2 from O (see the outline
described in Example 9.3 for type 1 balls). To estimate ¢y at other points, we
compare it with the global positive harmonic function from Z2? \ {0} given by the
so-called modified Green’s function h(z) = A(0,z) = > o [M*(0,z) — M*(0,0)]
where M stands here for the Markov kernel of aperiodic simple random walk in Z2
as in Example 9.3. Note that h vanishes at 0. Classical estimates (e.g., Spitzer,
1976) yield h(z) ~ log |z|. This, together with Theorem 8.13 and the estimate when
x is at distance at least N/2 from 0, gives

log ||
Po(z) ~ log N’

9.3.2. Case d > 2. The case d > 2 is perhaps easier although the arguments are
essentially the same. The eigenvalue f3y is estimated by 1 — By ~ 1/N¢ and the
harmonic function h(z) = >°,° M*(0,2) — >°,° M*(0,0) (these sums converge
separately because d > 2) is estimated by h(z) ~ (1 —1/(1 + |z[)?~2). This gives

~ (1 -1/(1+ |x\)d_2)
Y@~ T M)

~ 1.

9.3.3. Discussion. The first thing to observe in these examples is the fact that
1 — By =o0(1/N?). For t > N? we have

K () = do(2)d () 55U || < CBhbo(a)doly)e ™.

In the case d = 2, if € > 0 is fixed and z,y are at distance greater than N€ from the
origin, we can without loss of information, simplify the above statement and write

|Kb (2, y) — dol(@)bo(y) BYU || < Ce V/N".

Because 3} decays significantly slower than e~/ 2, this provides a good example

of a quasi-stationary distribution during the time interval ¢t € (N2, N2log N).

In the case d > 2, the same phenomenon occurs, only in an even more tangible
way. For any x,y € Un, ¢o(z), ¢o(y) are uniformly bounded away from 0 (even for
the neighbors of the origin, 0). Moreover, 1 — 3y ~ 1/N?% = o(1/N?). For t > N?
and x,y € Uy,

K (@,y) = do(@)do(y)B3|U || < Cem*/N.
For any fixed T and all N bigger than T2/(¢=2) on intervals of the type t €

(TN? N/T), K} (2,y) is well approximated by ¢o(x)do(y)|U|~* because, on such
intervals, 8¢ remains close to 1.

9.4. B(N)\ Ba2(L) in B(N), in dimension d > 1. We work again in Xy = B(N)
with the weighted graph structure explained above. We use By(r) to denote the
trace on the lattice Z? of the Euclidean (round) ball of radius r centered at the
origin, 0. The domain we wish to investigate is Uy ;, = B(IN)\Bz(L) with L = o(N)
so that the number of points in Uy, is of order N 4 and U N, is inner-uniform
(uniformly in all choices of N, L). Again, the chosen center o in Uy, can be any
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point at graph distance N from 0. All the estimates described below are uniform
in N, L as long as L = o(N).

9.4.1. Estimating By. First we explain how to estimate Sy for Un 1, = B(IN)\ B2(L)
in B(N) using and argument very similar to those used in Saloff-Coste (1997,
Example 3.2.5: The dog). For each point z € U fix a graph geodesic discrete
path ~, that joins = to the origin in Z¢ while staying as close as possible to the
straight line from z to the origin. We stop 7, whenever it reaches a point in By(L).

N
AN
i!‘
N
|

1

!

O

&

FIGURE 9.25. Paths to the origin in B(N) \ By(L)

Given a function f on B(N) which is equal to zero on By(L) and a directed edge
e = (x,y), set df(e) = f(y) — f(z). The edges along a path ~, are all directed
toward the origin. Using this notation, we have

F@P <D df(OF < Iyl Y 1df(e)Pw(e)

where w is a weight function on the edge e which will be chosen later and ||, =
> eer w(e)~!. Summing over all z € U, we obtain

e 2
SoIE <2y ( > mww(e)) WL < ¢, N, 18 1)

zelU ec€ \x:ygde
where

Co(d, N, L) 2dgleag{w(e) S mw}.

Ty De
Using the Rayleigh quotient formula for 1 — 3y, we obtain the eigenvalue estimate

Bo<1-1/Cy(d,N,L)
for any choice of the weight w. Here we choose w(e) to be the Euclidean distance
of the edge e to the origin raised to the power d — 1. This implies that
log(N/L) when d =2,
< Cy X
halw < Ca {L‘d+2 when d > 2
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for some constant C; which depends on the dimension d. It remains to count how
many x use a given edge e. Because we use paths that remain close to the straight
line from x to the origin, the vertices z that use and given edge y at Euclidean
distance T from the origin must be in a cone of aperture bounded by Cy/T. The
number of these vertices is at most C4N x (N/T)%~! where the constant Cy changes
from line to line. See Figure 9.25. Recall that w(e) ~ T9~!. Putting things together
yields

N?log(N/L) when d =2,

Col(d, N, L) < Cy x
( ) < Ca {Nde+2 when d > 2.

In terms By this gives

1/N%log(N/L) when d = 2,

~1
L= o= Cy {Ld_2/Nd when d > 2.

The upper-bound is a simple computation using a test function which take the
value 0 on By(L) and increase linearly at rate 1 until taking the value L. After that
the test function remains constant equal to L. Note that this bound interpolates
between the case L = 1 (more or less, the previous case) when 1 — 5y ~ 1/N? and
the case when L is a fixed small fraction of N, in which case 1 — 3y ~ 1/N2.

FIGURE 9.26. Uy, = B(IN)\Bz(L): In the yellow region of width

L around Bs(L), ¢o(z) ~ (125 )d(z, Bo(L)).

9.4.2. Estimating ¢g in the case d = 2. The technique is the same as the one
described below for the case d > 2. Here we omit the details and only describe
the findings. The behavior of the function ¢q is best described by considering two
zones. See Figure 9.26. The first zone is B2(2L) \ Ba(L) in which the function ¢
is roughly linearly increasing as the distance from Bs(L) increases and satisfies

_ logL

do(@) ~ log N
The second zone is B(N) \ B2(2L) in which ¢q satisfies

log ||
do(z) ~ log N~

d(x, B2(L)).
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9.4.3. Estimating ¢g in the case d > 2. Because of the basic known property of ¢q
discussed earlier, it satisfies ¢o ~ 1 on the portion of Uy ; which is at distance of
order N from By (L) (the outer-part of Uy, ). The function ¢ is also bounded on
Un, uniformly in N, L. One key step is to find out the region in Uy, 1, over which ¢g
is bounded below by a fixed small e. For this purpose we use, a simple comparison
with the Green’s function G(0,y) = >_,° K*(0,y), of the simple random walk on
Z%. First, find the smallest positive T = T'(L) such that

Bo(L) c {x € 2%:G(0,2) > T}.

Recall that
G(0,2) ~ 1/(1 + |z])*~2 (9.2)
This shows that T ~ 1/L%2 (the implied constants in this estimate depend on d

because we are using both the Euclidean norm and the graph distance).
We are going to compare ¢y to a multiple of the harmonic function

v(z) =1—-G(0,2)/T

to show that ¢ > av on Vy . It is clear that v ~ 1 when |z| = N (uniformly over
N, L). It follows that there is a constant a > 0, independent of N, L, such that
¢o — av is nonnegative on the boundary of Vy ;, = B(N)\ {z: G(0,2) > T} (the
constant a is chosen so that this is true on the outer-boundary whereas, on the
inner-boundary, v = 0, ¢o > 0). Since o — av is superharmonic on Vi 1, it follows
by the maximum principle that ¢9 > av on Vi 1. Because of the known estimate
for G recalled above and of the general properties of ¢q, this shows that

¢o ~ 1 over B(N) \ Ba(2L).

All the statements and arguments given so far would work just as well if we
where considering B(N) \ B(L) instead of B(N) \ B2(L). These two cases differ
only in the behavior of their respective ¢y near the interior boundary. For Uy 1 =
B(N)\ Bz(L), it is possible to show that

bo(z) ~ T
The fundamental reason for this is the (uniform) smoothness of the boundary of
the Euclidean ball By(L) (viewed at scale L). The result is a consequence of one of
the main result in Varopoulos (2009) (see also Varopoulos, 2014, 2015).

9.5. B(N)\ B(L), d = 2. Next we consider B(N) \ B(L), L < N/2, in dimension
d = 2. We have again
Bo ~ 1/(N?log(N/L))

In the zone B(N) \ Bz(2L) (outside the yellow area in Figure 9.27), the function
¢ is estimated by
_ log|z|

do(z) ~ logN°
We note here that the exact outer shape of the yellow region is unimportant (we
could have drawn a diamond instead of a round ball). In order to describe the
function ¢q is the yellow zone (B2(2L) \ B(L)), it is convenient to split the region
into eight areas, the four edges and four corners. To be more precise, see Figure 9.28,
where the two red circles describes the two types of region that we will consider.
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FIGURE 9.27. B(N)\ B(L)

The estimates described below are compatible when two regions intersect. In the
type 1 regions, because the relevant piece of the boundary at scale L is flat,
log L
Q@) X TN

d(z, B(L)).

|
|

I
n

FIGURE 9.28. The yellow zone in B(N) \ B(L)

In the type 2 regions, centered around one of the corner of B(L),

~ logL 2/3 _ e b
¢0($)~ logN(p/L) 008(40/3)a x_(xl’x2)7$ §=pe

Here ¢ is the tip of the diamond B(L) around which the region of type 2 is centered,
6 is the angle in [—7, 7) measured from the median semi-axis through the tip. This
last estimate is obtained by using the results of Varopoulos (2009) to derive the
behavior of discrete harmonic function in a type 2 region from the behavior of
the analogous classical harmonic function in the unbounded one-sided-cone with
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aperture 37/2 in R?, ie., {(r,0) € R? : § € [0,37/2]} with boundary lines § = 0
and 6 = 37 /2.

10. Summary and concluding remarks

This article gives detailed quantitative estimates describing the behavior of
Markov chains on certain finite sub-domains of a large class of underlying graphs
before the chain exits the given sub-domain. There are two types of key assump-
tions.

The first set of assumptions concern the underlying graph (before we consider a
particular sub-domain). This underlying graph belongs to a large class of graphs
whose properties mimic those of the square grid Z™. This class of graphs can
be defined in a variety of known equivalent different ways: it satisfies, uniformly
at all scales and locations, the doubling volume condition and Poincaré inequality
on balls; equivalently, the iterated kernel of simple random walk satisfies detailed
two-sided “Gaussian or sub-Gaussian bounds”; or, equivalently, it satisfies a certain
type of parabolic Harnack inequality for (local) positive solutions of the discrete
heat equation. See the books Barlow (2017); Grigor'yan (2009) for details and
pointers to the literature. It is perfectly fine for the reader to concentrate attention
on the case of the square grid Z™. However, even if the reader concentrates on this
special case, the techniques that are then used to study the behavior of the chain
in sub-domains are the same techniques as the ones needed to understand the more
general class of graphs we just alluded to.

The second set of assumptions concerns the finite sub-domains of the underlying
graph that can be treated. These sub-domains are called John domains and inner-
uniform domains, and both are defined using metric properties. For John domains
(the larger class), there is a central point o and any other point of the domain can
be joined to the central point o by a carrot-shaped region that remains entirely
contained in the domain. The inner-uniform condition (a strictly more restrictive
condition) requires that any pair of point in the domain can be joined by a banana-
shaped region that is entirely contained in the domain. It is not easy to get a good
precise understanding of the type of regions afforded by these conditions because
they allow for very rugged domains (e.g., in the Euclidean plane version, the classical
Koch snowflake). They do cover many interesting examples.

It is worth emphasizing here that the strength of the results obtained in this
article comes from the conjunction of the two types of assumptions described above.
Under these assumptions, one can describe the results of this paper by saying that
any question about the behavior of the chain until it exits the given sub-domain
boils down (in a technically precise and informative way) to estimating the so-called
Perron-Frobenius eigenvalue and eigenfunction of the domain. Let us stress here
that it is quite clear that it is necessary to understand the Perron-Frobenius pair in
order to get a handle on the behavior of the chain until it exits the domain. What
is remarkable is the fact that it is essentially sufficient to understand this pair in
order to answer a host of seemingly more sophisticated and intricate questions.
This idea is not new as it is the underlying principle of the method known as the
Doob-transform technique which has been used by many authors before. Under
two basic types of assumptions described above, this idea works remarkably well.
In different contexts (diffusion, continuous metric measure spaces, Dirichlet forms
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and unbounded domains) this same idea is the basis for many of the developments
in Pinsky (1995); Gyrya and Saloff-Coste (2011).

For inner-uniform domains, the more restrictive class of domains, the results
obtained are rather detailed and complete. For John domains, the results obtained,
which depend on the notion of moderate growth (see Lemma 6.2), are less detailed
and leave interesting questions open.

We conclude with pointing out to further potential developments. This article
focuses on the behavior before the exit time of the given finite domain. In the follow-
up paper Diaconis et al. (2020-+), we discuss, in the case of inner-uniform domains,
the implications of these results on the problem of understanding the exit position.
This can be framed as an extension of the classical Gambler’s ruin problem. In a
spirit similar to what was said above, Diaconis et al. (2020-+) shows how Gambler’s
ruin estimates on inner-uniform domains reduce to an understanding of the Perron-
Frobenius eigensolution on the domain. Much less is known for John domains in
this direction.

Having reduced a certain number of interesting questions to the problem of
estimating the Perron-Frobenius eigenfunction ¢g of a given finite domain, we owe
the reader to observe that this task, estimating ¢g, remains extremely difficult.
There are plenty of interesting results in this direction and many more natural open
problems. An illustrative example is the following: consider the cube of side length
2N in Z3 with the three main coordinate axes going through the center removed;
this is an inner-uniform domain and we would like to estimate the eigenfunction
¢o. Another example, less mysterious, is to find precise estimates for ¢q for the
graph balls in Z™ with m > 3.

For finite domains in Z™ with diameter R, we have proved that the key conver-
gence parameter for the quasi-stationarity problems considered here is order R? for
a-inner-uniform domains and no more than R?*% for a-John domains where w > 0
depends only on the dimension m and John parameter «. It is an interesting open
question to decide whether or not w can be taken to be always equal to 0. Even if
there are John domains where w must be positive, it is clear that there is a class
of John domains that is strictly larger than the class of all inner-uniform domains
and for which one can take w = 0. Elucidating this question is an interesting open
problem in the present context and in the context of analysis in Euclidean domains.
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Appendix A. Convex sets in Z¢ with d > 2

To deal with higher dimensional grids (d > 2), let us adopt here the definition
put forward by Virag (1998): a subset U of the square lattice Z¢ is convez if and
only if there exists a convex set C' C R? such that U = {z € Z? : d (z,C) < 1/2}
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where doo(x,y) = max{|z; — y;| : 1 < i < d}. The set C is called a base for U.
We will use three distances on R? and Z%: the max-distance du, the Euclidean L2-

distance da(z,y) = \/2?21 |z; — y;|? and the Ll-distance d;(z,y) = Z?:l |x; — il

which coincides with the graph distance on Z<.

Virdg (1998) shows that, given a subset U of Z¢ that is convex in the sense
explained above, for any two points z,y € U, there is a discrete path v, =
(20,...,2m) in U such that: (a) z0 = z,2m = y; (b) vay is a discrete geodesic
path in Z%; and (c) if L,, is the straight-line passing through z and y then each
vertex z; on Yy, satisfies doo (2, Lay) < 1. We will use this fact to prove the follow-
ing proposition.

Proposition A.1. Let U C Z¢ be convez in the sense explained above, with base
C. Suppose there is a point o in U and positive reals o, R such that

Bs(o,aR) C C and C + B« (0,1) C By(o, R), (A1)

where C + B (0,1) = {y € R? : doo(y,C) < 1}. Then the set U is in J(o,a/, R')
with o/ = a/(6dv/d) and aR < R’ < \/dR, where d is the dimension of the under-
lying graph Z.°.

The dimensional constants in this statement are related to the use of three met-
rics, namely, dy,ds and de..

Remark A.2. In practice, this definition is more flexible than it first appears because
one can choose the base C. Moreover, once a certain finite domain U is proved to
be an ap-John-domain in Z?, it is easy to see that we are permitted to add and
subtract in an arbitrary fashion lattice points that are at a fixed distance ry from
the boundary OU of U in Z%, as long as we preserve connectivity. The cost is to
change the John-parameter «ag to &y where &gy depends only on rg and «g.

Proof of Proposition A.1: The convexity of C (together with that of the unit cube
B (0,1)) implies the convexity of C' = C + B (0,1). Thus, we know that there
exist straight-line segments [, joining any point z € C’ to o, and C’ is convex.
By assumption (A.1) and Bg(o,aR) C C’ C Bs(o, R), which demonstrates that
C' € J(aR,R). For x € U, the construction in Virag (1998) provides a discrete
geodesic path 7, = (2o,...,Zm,) (of length m,) in Z¢ joining = to o within the
set U and which stays at most ds.-distance 1 from [,. As usual, we parametrize
I by arc-length so that [,,(0) = z, I,(T) = o, T = T,,. For each point z; € v,, we
pick a point z; on I, such that deo (s, 2;) = doo(x4, 1) < 1 and define ¢; € [0,T] by
z; =l (t;). For each x € U,

dy(z,0) < Vddy(z,0) < VdR.
To obtain a lower bound on d; (z;,Z% \ U), observe that
dl(xi,Zd \ U) Z dl(xi,Rd \ C)

because C' is contained in U + By (0,1). By definition of C’, di(z;,R?\ C) >
di(z;, R4\ C') — d. Hence, we have

dy (25, Z\U) > do(z;, R\ C') — d.

Recall that z; = [,,(¢;) is on the line-segment from z to o and at d..-distance less
than 1 from z;. Further, we know that do(z;,R?\ C’) > at; because C’ is inner
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uniform. Also, we have

di(z, z; i —d
ti = dQ(J?,Zi) Z dQ(l‘,Ii) 7d2(1‘772}1) Z 1(\1‘[657) - \/&: Z\/;l .

)

[e%

6dvd

Putting these estimates together gives

dl(xivzd \ U) >

STE

We claim that this implies
dl(.Ti,Zd \ U) Z

(1+4)

for all 0 <7 < my,. Ifi>2(d+d7\/a) then

a . dvd a (1 @ .
\/E<Z—d—a> 2ﬂ<2>26d\/3(1+z)’

and so the claim follows by the inequality above. Alternatively, if ¢ < 2 (d + M)
1.

o )
then 6d”i/g (1+414) <1 and so the claim follows because d(x;, Z?\ U) > O

Appendix B. Volume doubling and moderate growth

B.1. Doubling and moderate growth. Assume that X is equipped with a positive
measure 7, where m(A) = > _ , m(z) for any finite subset A of X. (The total mass
(%) may be finite or infinite.) Denote the volume of a ball with respect to 7 as

V(z,r) = n(B(z,1)).

For any function f and any ball B we set
1
fB=—= flx)m(x).
=EPIUCLD

If U is a finite subset of X, then let 7|y be the restriction of 7 to U, i.e., w|y(z) =
m(x)1y(z). We often still call this measure 7. Let 7y be the probability measure
on U that is proportional to 7|y, i.e., my(z) = w where Z = ZyEU |y (y) is
the normalizing constant.

Recall from Definition 3.1, that 7 is doubling (with respect to (X, €)) if there

exists a constant D (the doubling constant) such that, for all z € X and r > 0,
V(x,2r) < DV (z,r).
This property has many implications. The proofs are left to the reader.
(1) For any = ~ y, m(x) < D7 (y).

(2) For any x € X, #{y : {x,y} € ¢} < D2
(3) Forany z € X,7 > s >0 and y € B(z,7),

V(z,r) 5 (max{l,r} logz D
V(y,s) =D (max{l,s}) ’

We will need the following classic result for the case p = 2. (For example, for
the proofs of Theorems 4.6 and 4.10.) The complete proof is given here for the
convenience of the reader.
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Proposition B.1. Let (X, &, m) be doubling. For any p € [1,00), any real number
t > 1, any finite sequence of balls B;, and any sequence of non-negative reals a;, we

have
‘ E a;1p, E a;lp,
i i »

where C = 2(D2p)1= Y/ DIHosat qnd || f||, = (X | f[Pm) /.

Remark B.2. For p = 1, the result is trivial since 7(tB) < D'°¢2()7(B) for any ball
B.

)

<c‘
P

Proof: For any function f, consider the maximal function
Mf() = sup § s S 7))

= — ™
BSIJ)U m(B) v yimy

By Lemma B.3 below, ||Mf|l; < Cyl|fllq for all 1 < g < +00. Also, for any ball B,
x € B and function A > 0, we have

5 2 M) < ()@
yetB
and thus 1 )
o) y;g ) < —5 ;B(Mh)(y)ﬁ(y)
Set,

fly) = Zailtsi(y) and g(y) = ZailBi(y)-

It suffices to prove that, for all functions h > 0, | > fhn| < Clgl|pl|hl|lq, Where

1/p+1/q = 1. Note that
> F@)hy)n(y) > ai Y hy)n(y)

yeX % yeLB;

™ tBZ
ST 3 0rnaty

DN " a, N (Mh)(y)n(y)
% yeB;

D52t N "N " ailp, (MA)(y)w(y)

yex i
D1+log2tHngHMh”q
Cy D102 g||, ||| 4.
Applying this fact with h = f?/? proves the desired result. O

IN IN

IN N

Lemma B.3. For any q € (1,+00] and any f, the mazimal function M satisfies
IMflly < Cyllflly with Cy = 2(D2)1 VP where 1/p+1/g = 1.

Proof: Consider the set VAf = {z : Mf(z) > A}. By definition, for each = € VAf
there is a ball B, such that ﬁ > ye, | f(Y)lm(y) > A. Form

B={B,:zeV]}
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and extract from it a set of disjoint balls Bi,..., B, so that B; has the largest
possible radius among all balls in B, Bs has the largest possible radius among all
balls in B which are disjoint from Bj. At stage i, the ball B; is chosen to have the
largest possible radius among the balls B, which are disjoint from By,..., B;_1.
We stop when no such balls exist.

We claim that the balls 3B; cover VAf , where 1 < i < g and ¢ is the size of B.
For any x € V/\f, we have B, = B(z,r), for some z and r, and B(z,r) N (U{B;) # 0.
By construction if j is the first subscript such that there exists y € B(z,r) N B;, r
must be no larger than the radius of B;. This implies 2z € 2B; and z € 3B5;.

It follows from the fact that 3B; cover VAf that

n(V{) < DY m(B) < DA' Y0 N [f(@)ln(z) < DAY |f(w)In(x).

=1 i=1 x€B; xeX
Next observe that M f < M(f1yf>x/23) + A/2 and thus

{w: Mf(x) > A} C{a: M(fLypza2)(@) > A/2}
Therefore T(M f > \) < 2D?\~! 2 (w|f () >x/2) [f(@)|m(2). Finally, recall that
[R]|E = q/ m(h > AN 1A,
0

for h > 0. This gives

2/f()] D294
Prfl <20y [ N @) = 225 Y ().

zex /0 zeX

1/q
This gives C, = 2D?/4 (1711/(1) CIf1/p+1/qg=1then C, =2(D?*p)'~1/7. O

The following notion of moderate growth is key to our approach. It was intro-
duced in Diaconis and Saloff-Coste (1994) for groups and in Diaconis and Salofi-
Coste (1996) for more general finite Markov chains. The reader will find many
examples there. It is used below repeatedly, in particular, in Lemma 6.2 and The-
orems 6.4-6.6-6.7, and in Theorems 7.14-7.17-7.23.

Definition B.4. Assume that X is finite. We say that (X, €, m) has (a, v)-moderate
volume growth if the volume of balls satisfies
V(z,r) 1+7\"
Vr € (0, diam], > - )
r € (0, diam] (%) “ (dlam)
where diam = sup{|vy| : z,y € X} is the maximum of path lengths |y, | with .,
the shortest path between x,y € X.

Remark B.5. When X is finite and 7 is D-doubling then (X,& 7) has
((D)72,1log, D)-moderate growth because

V(z,s)  V(x,s) S p-1 (max{l,s})log"’D > p-2 (1 + s)log?D
m(X)  V(z,diam) ~ diam - diam '
Because of this remark, moderate growth can be seen as a generalization of the
doubling condition. It implies that the size of X (as measured by 7(X)) is bounded
by a power of the diameter (this can be viewed as a “finite dimension” condition
and a rough upper bound on volume growth). It also implies that the measure of
small balls grows fast enough: V(z,s) > an(X)(diam)~ 0822 (1 4 5)".
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