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Abstract
We study the isoperimetric and spectral profiles of certain families of finitely generated
groups defined via actions on labelled Schreier graphs and simplegluing of such. In one
of our simplest constructions—the pocket-extension of a group G—this leads to the
study of certain finitely generated subgroups of the full permutation group S(G ∪{∗}).
Some sharp estimates are obtained while many challenging questions remain.

Mathematics Subject Classification Primary 60J10; Secondary 60F99 · 20F65

1 Introduction

1.1 A short historical perspective

The term random walk was introduced in a short note in the form of a question that
Karl Pearson sent to the journal Nature in 1905. The random walk in question took
place in the plane. In the second edition of Le Calcul des Probabilités, published in
1912, Henri Poincaré discusses the mixing of cards produced by repeated shuffles
and explains how it is modeled by repeated multiplications of random elements in a
permutation group. In 1921,Geoge Pólya famously considered the dichotomy between
recurrence and transience in the context of simple random walk on a d-dimensional
grid. In 1940, Kioshi Ito and Yukiyosi Kawada considered repeated convolutions on
compact groups. By the 1950’s, the concept of random walks in d-dimensional space
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and on discrete lattices in d-spacewaswell established. In 1950,MarkKacwonhis first
of two Chauvenet Prizes for an article titled Random Walk and the Theory of Brownian
Motion published in theMonthly three years earlier. Also in 1950,Dvoretzky andErdös
wrote Some Problems on Random Walk in Space for the second Berkeley Symposium
onMathematics Statistics andProbability. Except for sporadic interest in card shuffling
problems and a few other isolated works, it is hard to find any reference before 1958
where multiplying random elements of a non-commutative group is mentioned.

In the summer of 1956, Harry Kesten–who was then a student in Amsterdam–wrote
to Mark Kac. He asked if he could come to Cornell to work under Kac’s supervision.
A fellowship was offered and Kesten came to Cornell that fall. In the spring of 1958,
he defended his thesis titled Symmetric Random Walks on Groups. The first sentence
reads:

Let G be a countable group and let A = {a1, a2, . . . } (ai ∈ G) generate G. Consider
the random walk on G in which every step consists of right multiplication by ai or its
inverse a−1

i , each with probability pi (pi ≥ 0, 2
∑

i pi = 1).
Kesten goes on to explain that the paper is concerned with the relations between

properties of the highest eigenvalue λ(G) of the associated linear operator on �2(G)

and the structure of the group (Kesten uses the shorthand notation λ(G) when it is
clear which random walk is considered). The final section (Sect. 5) discusses some
open problems including the following:

As mentioned in §3, it would be interesting to find all groups with λ(G) = 1.
Especially, since for every finite group, the spectrum contains 1. A weak form of
the Burnside conjecture would be: “If G is finitely generated and every element has
bounded (or more general, finite) order, then λ(G) = 1.” This would readily follow
if one could prove the converse of Corollary 3, i.e., “If G has no free subgroups on
more than 1 generator, then λ(G) = 1.” However, the author was unable to prove or
disprove this. If this converse of Corollary 3 is not true, however, it might be possible
to construct a group G in which every element has finite order but λ(G) < 1.

The paper end with:
Note added in proof. Since this paper was submitted, the author proved that λ(G) =

1 is equivalent to the existence of an invariant mean on G (cf. Full Banach mean values
on countable groups, Math. Scand. vol. 7 (1959)). It seems that the Burnside conjecture
has been disproved recently in Russia.

These direct quotes form Kesten’s paper leave no doubt that his work introduced
the subject of random walks on groups with a strong emphasize on (a) understanding
random walks on groups in general and (b) understanding the relations between the
behavior of random walks and the structure of the underlying group. The last sentence
of the “note added in proof” refers to P.S.Novikov’s 1959 announcement that theBurn-
side group B(m, n) is infinite for n odd, n > 71. This announcement was premature.
Only in 1968 did Adyan and Novikov succeed to prove that B(m, n) is infinite for n
odd, n > 4381. See http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Burnside_
problem.html for a brief history of the Burnside Problem.

The first author learned directly from his colleague Harry Kesten that the subject
of Kesten’s Ph.D. thesis evolved from a very specific question suggested by Mark
Kac. This question was perhaps related to a problem considered in 1954 by Richard
Bellman in [10], Limit theorems for non-commutative operations. I.TheMathematical
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Reviews entry for this article was written by J. Wolfowitz, one of the Cornell faculty
who interacted with Kesten during his time as a graduate student. Kac’s question
concerned the behavior of some sort of dynamics that switches randomly between two
2 by 2 matrices. There is no trace of this question in Kesten’s thesis although he would
come back to the related problem of the study of products of random matrices in his
famous joint work with H. Furstenberg which was initiated when both where visiting
Princeton in 1958/59.

It is notable that Kesten’s thesis does not introduce random walks on groups as a
generalization of randomwalks on the d-dimensional grid. The text gives no references
to suchworks (e.g., no references to Pólya and subsequentworks). It is also curious that
the paper does not use the term convolution at all and only rarely appeals explicitely
to the multiplication law of the group! E.B. Dynkin and M.B. Malyutov (1961), and
G. Margulis (1966), wrote important related papers in the following years. Neither
cites Kesten’s thesis but Kesten reviewed both papers for Mathematical Reviews. The
famous little bookProbabilities on Algebraic Structures published byUlfGrenender in
1963 gives only marginal attention to Kesten’s work (Section 5.5.3 and related Note).

It seems fair to say that Kesten’s thesis did not immediately find an audience,
especially in the probability community. During the 1960s, it attracted the atten-
tion of people interested in ergodic theory, non-commutative harmonic analysis,
and functional analysis, such as M.M. Day and H. Furstenberg, and of Marcel-Paul
Schützenberger who was interested in formal languages. Kesten himself became inter-
ested in random walks on abelian groups, a subject on which he collaborated with
his Cornell colleague and close friend F. Spitzer. Kesten’s contribution to the fifth
Berkeley Symposium on Mathematics Statistics and Probability (1965), The Martin
Boundary of Recurrent Random Walks on Countable Groups, is the rare instance
when Kesten revisited the subject he created in his thesis. The famous question
known as Kesten’s Problem—Which are the finitely generated groups that carry a
non-degenerated recurrent random walk?—Are those groups only the finite exten-
sions of {0}, Z and Z

2?—emerged from this article.
During the next decade (1970s), a group centered in France (A. Avez, E. Derriennic,

Y. Guivarc’h, M. Keane and B. Roynette, encouraged by A. Brunel, and later, P. Baldi,
Ph. Bougerol, and others) explored a variety of important questions around random
walks on groups. The volumes [13,23] give a representative picture of these efforts.
In particular, Kesten’s problem was resolved affirmatively in the context of connected
Lie groups. The extend of the differences between this particular context and the
context of finitely generated groups was perhaps not entirely apparent at the time. The
contributions of J. Rosenblatt during the seventies should also be mentioned here.

It is during the 1980s that the subject of RandomWalks on Groups took off thanks
to remarkable progress and contributions. Using an amenability criterion based on co-
growth developed by R. Grigorchuck (a criterion that parallels Kesten’s amenability
criterion), Adyan proved in 1982 that many Burnside groups are not only infinite but
non-amenable. In 1983, V. Kaimanovich and A. Vershik published an elegant and
influential article in the Annals of Probability which, as the following quote makes
clear, expands on Kesten original vision of the subject:

Probabilistic properties of random walks on groups are deeply intertwined
with many essential algebraic characteristics of groups and their group algebras
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(amenability, exponential growth, etc.). On the other hand, random walks on groups
regarded as a special class of Markov processes provide new simply describable exam-
ples of nontrivial probabilistic behavior. Both these aspects make the subject especially
interesting and important.

M. Gromov had proved in 1981 that any finitely generated group with polynomial
volume growth contains a nilpotent group of finite index. A few years later, R. Grig-
orchuck proved that groups of intermediate volume growth, that is, volume growth
that is faster than any polynomial but slower than any exponential, exist and are, in
fact, plentiful. When, around 1985, N. Varopoulos established a sharp relationship
between volume growth of the type V (r) ≥ crd and the decay of the return probabil-
ity of the type P id(Xn = id) ≤ Cn−d/2 (where id = idG denotes the identity element
in G), he provided the solution to Kesten’s problem: because of the recurrence crite-
rion

∑
P id(Xn = id) = ∞ and Gromov’s theorem, the only finitely generated groups

that carry a non-degenerate recurrent random walk are the finite extensions of {0}, Z

and Z
2.

Before these developments, the subject of Random Walk had been strongly
influenced by areas of mathematics such as ergodic theory, harmonic analysis, repre-
sentation theory, and the theory of Markov processes. This had left only a marginal
role to what should have always been one of the main actors, group theory. Indeed,
Lie groups and matrix groups–objects that are completely absent in Kesten’s original
work–had taken a preeminent role. Little attention was given to finitely generated
groups beyond the key example of free groups and a few other special cases. This
changed drastically during the 1980s thanks in part to the attention given to geometric
group theory through the influential work ofM. Gromov. For randomwalk theory, this
had the momentous effect to bring back group theory –be it geometric group theory
or combinatorial group theory–to the center of the stage.

Here are some of the key interrelated questions that have emerged from this body
of work:

• What is the structure of sets of harmonic functions (bounded, positive, of polyno-
mial growth, of a given growth type, slow, or fast)? Here, harmonic functions are
solutions u of the equation u ∗ μ = u where μ is a given probability measure on
G.

• What are the spectral properties of the convolution operator f �→ f ∗ μ when μ

is a (symmetric) probability measure?
• What is the behavior of the probability of return of a symmetric randomwalk driven
by a measure μ, P id(Xn = id) = μ(n)(id), and, more generally, the behavior of
max{μ(n)(g) : g ∈ G} for non-symmetric measures?

• What is the escape behavior of transient random walks captured, say, in terms of
some given distance function and in the form of average displacement or almost
sure results?

• What is the asymptotic entropic behavior, that is, the behavior of n �→
E(− logμ(n)(Xn)) as n tends to infinity?

In general, these questions can be phrased by asking: What is the influence of the
structure of the group G on the random walk behavior? How does the answer depend
on basic properties ofμ such as symmetry or moment assumptions? Can some random
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walk behaviors (for classes of randomwalks on a groupG) be deemed group invariant?
What properties of G can be understood by observing random walk behaviors? Can
randomwalk behavior be used to understand groups better? In each of these directions
of research, many interesting natural questions remain open.

We end this short historical perspective with some pointers to recent progress in
the directions outlined above. Further references are found in the listed articles. Some
recent results on harmonic functions and group structure are in [2,4,5,7,19,21,22,26].
Entropy and/or displacement are discussed in [1,6,12,16,27,29]. Probability of return,
spectral and other properties are discussed in [3,8,9,11,20,35–37].

The present work is devoted to the study of the behavior of random walks on
groups that arise from a certain type of rather simple and basic combinatorial/algebraic
construction. These groups are, in a natural particular way, subgroups of permutation
groups on infinite countable vertex sets. Our key example is the pocket group G�
built on the finitely generated group G. It is the subgroup of S(G ∪ {∗}) generated by
all translations by elements in G (by definition, these permutations fix ∗) and by the
transposition τ = (∗, idG).

2 Spectral and isoperimetric profiles of pocket extensions

To any finitely generated group, one can associate the monotone non-increasing func-
tions

�1,G ,�2,G and �G

which, respectively, describe the L1- and L2-isoperimetric profiles and the return
probability (or heat kernel decay) associated with the group G (precise definitions are
recalled below in Section 3.2). From a coarse analysis point of view which we briefly
recall below, these are group invariants in the sense that they do not depend on the
particular choice of the symmetric finite generating set that is used to define them.
Celebrated Theorems due to Følner and Kesten assert that the dichotomy between
amenable and non-amenable groups can be captured precisely using any one of these
three invariants: A group is non-amenable if and only if �1,G (equivalently, �2,G) is
bounded below away from 0, and this is also equivalent to having �G decay exponen-
tially fast.

This paper focuses on these invariants and how they depend on the structure of the
underlying group in the context of several constructions which yield amenable groups
based on the gluing of some basic actions. See Sect. 3.2 for details. To put this work
in perspective, recall that among polycyclic groups or (almost equivalently) finitely
generated discrete amenable subgroups of linear groups, the behaviors of �1,G , �2,G
and �G are well understood and fall in exactly 2 possible categories (the meaning of
the notation 
 used below is spelled out at the beginning of Sect. 3.2):

• The polycyclic group G has exponential volume growth and

�1,G(v)2 
 �2,G(v) 
 1

[log(1 + v)]2 and �G(n) 
 exp(−n1/3).
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• The volume growth VG satisfies VG(r) 
 (1 + r)d for some integer d and

�1,G(v)2 
 �2,G(v) 
 (1 + v)−2/d and �G(n) 
 (1 + n)−d/2.

These can be considered as the “classical” behaviors. See [39] for the description of
a larger class of groups for which only these behaviors can occur.

By now it is well-understood that, for more general groups, other behaviors can
occur. See, e.g., [18,30,34,40]. One of the first and most popular example of construc-
tion that demonstrates the existence of other possible behaviors is the lamplighter
group (Z/2Z) � G with base G. Here G is a finitely generated group and (Z/2Z) � G
is the semi-direct product

(Z/2Z)(G)
�α G

where (Z/2Z)(G) = ⊕g∈G(Z/2Z)g is the direct sum of countably many copies of
{0, 1} = Z/2Z (i.e., (Z/2Z)(G) is the group of all binary sequences indexed by G
with finitely many non-zero entries). The action of G on these binary sequences is
by index translation (i.e., for h ∈ G, α(h)((ηg)g∈G) = (η′

g)g∈G with η′
g = ηh−1g ,

g ∈ G). This is a special case of a more general construction known as wreath product.
To simplify notation, let G � = (Z/2Z) � G be the lamplighter group with base G.

Works by A. Erschler [18], by C. Pittet and the first author [30], and by the present
authors [36], describe how to compute the invariants �1,G� ([18]), �2,G� , ([36]), and
�G� ([30,36]) as functions of the corresponding invariant for G. In particular,

�p,G�(v) 
 �p,G(log(1 + v)), v > 0, p = 1, 2.

The goal of this paper is to provide similar results for a variety of related but
different constructions. Any countable group G can be viewed as a subgroup of the
groupS(G) of all permutations of the setG. Namely, an element h ∈ G is viewed as the
permutation g �→ hg. The group S(G) is very large (not finitely generated and, indeed,
uncountable) and it contains many finitely generated groups that contain G. We are
interested in certain of these finitely generated subgroups of S(G) which have G both
as a subgroup and as a quotient, and which arise from some particular constructions
that provide explicit generators. One variant of this type of constructions—which we
call the pocket extension—is as follows. Let G be a finitely generated group with
identity element idG . Add a new element, ∗, to the countable set G to form the set
G ∪ {∗} (this is not a group). The pocket group G� is the subgroup of S(G ∪ {∗})
generated by all translations by elements in G (by definition, these permutations fix
∗) and by the transposition τ = (∗, idG). To understand what this means, view any
element in S(G ∪{∗}) as a marking of G ∪{∗} by itself. A translation by an element h
of G leaves the marker at ∗ unchanged and move the marker at g ∈ G to hg ∈ G. The
transposition τ simply transposes the markers at ∗ and e. This is consistent with the
view that permutations of a deck of cards are described by their action on the positions
of the cards. We prove that
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�p,G�(v) 
 �p,G

(
log(1 + v)

log(1 + log(1 + v))

)

, v > 0, p = 1, 2

This is the same behavior as the known behavior for the wreath product G � G. Other
constructions of this type are described in Section 3.1.

3 Preliminaries

3.1 Groups defined by labelled graphs and gluings

In what follow, S(X) denotes the full symmetric group of the set X whereas
S0(X), A0(X) denote, respectively, the group of all permutations of X with finite
support and the alternating subgroup of permutations of X with finite support which
are of even type (signature 1).

Let (X , E) be a graphwhere the edge-set E is equippedwith amapφ : E → X ×X ,
φ(e) = (x(e), y(e)) (this map describes the edge e as a pair of vertices, allowing for
multiple edges and self loops). We assume that there is an involution e �→ ě with no
fix points and such that φ(ě) = (y(e), x(e)). Assume that X is finite or countable and
that (X , E) is regular of degree 2k in the sense that for each x ∈ X there are 2k edges
in E such that x(e) = x . Let A = {αi : 1 ≤ i ≤ k} be an alphabet with abstract
inverse A−1 = {α−1

i : 1 ≤ i ≤ k}. A labelling of (X , E) is a map m : E → A ∪ A−1

such that m(ě) = m(e)−1. Call (X , E, m) a labelled graph.
Any such labelled graph defines a finitely generated group 
 = 
(X , E, m), sub-

group of the full symmetric group of X , S(X), and generated by k elements αi ,
1 ≤ i ≤ k, and their inverses. By convention, think of an element of σ ∈ S(X)

as a rule to move around distinct markers seating above each vertex in X . An element
σ tells us, for each x , where to move the marker currently at x . When describing an
element σ , we say that σ moves x to y to signify that it moves the marker at x to y
(of course, σ also moves the label at y to somewhere else). This is consistent with the
fact that we can always describe a given σ by its action on the trivial self-labelling of
X by markers in X .

The action of eachα±1
i on the elements of X is given by the labelling in the sense that

α · x = y if and only if there is an edge e labelled with α and such that φ(e) = (x, y).
In practice, it is often convenient to indicate only the edges labelled by αi , 1 ≤ i ≤ k.
For each of these there is an “inverse edge” labelled by the corresponding α−1

i which
is omitted. All self loops are also omitted because they can be recovered from the rest
of the labelling. To figure out the action of the product α2α1 on a vertex x , follow the
edge at x labelled α1 and from there, follow the edge labelled α2. Proceed similarly
for longer products.

We are interested in a very basic gluing procedurewhichwe now describe. Consider
two labelled graphs (Xi , Ei , mi ) as above (with distinct alphabets of possibly different
sizes k1, k2), and subsets V1 ⊂ X1, V2 ⊂ X2 equipped with a bijective map j : V1 →
V2. Let (X , E, m) be the the labelled graph of degree 2(k1 + k2) obtained by gluing
(X1, E1, m1) and (X2, E2, m2) via the identification of the vertices in V1 with the
vertices in V2 (using the bijective map j) and adding appropriate labelled self-loops at
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Fig. 1 First step (Houghton group): t1 in blue, t2 in red. The color of a dot indicates the presence of a loop
labelled with the associated generator

Fig. 2 Second step (Houghton group): t1 in blue, t2 in red, t3 in green. Each vertex except the central vertex
carry a loop labelled with the generator associated with the given color

all vertices outside V1 ≡ V2. Obviously, one can glue together more than two labelled
graphs along different sets and this can be achieve by repeating the above procedure
sequentially.

Example 3.1 (Houghton group) See Figs. 1 and 2. In this example (it first appeared
in [25], hence the name), we glue together three copies of the Cayley graph of Z

with canonical generators t1, t2, t3. Using the previous description, we start with two
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copies 〈t1〉, 〈t2〉, and identify these two copies ofZ = {. . . ,−2,−1, 0, 1, 2, . . . } along
their respective subsets {. . . ,−2,−1, 0} to obtain an infinite tripod with one branch
carrying double edges labelled t1, t2, one branch carrying simple edges labelled t1
and self-loops labelled t2 and the last branch carrying simple edges labelled t2 and
self-loops labelled t1. See Fig. 1 (recall that we only describe one half of the labelling,
that is, we omit the description of the “inverse edges” labelled −ti ).

Next, we glue a third copy of Z = 〈t3〉 by identifying 0t3 with the already identified
0t1 = 0t2, the points nt3, n > 0, with nt2, and the points nt3, n < 0, with the points
−nt1. See Fig. 2.

Call Y the vertex set so obtained. The group H3 is defined by the labelled graph
with vertex set Y and 3 generators and their marks as described above. Note again
how in Fig. 2 we have omitted all the “inverse edges” and that it is a trivial matter to
recover them. In this case, we have actually indicated the existence of self-loops at
each vertex by using the color code associated with the generators. But observe that
we could have drawn all vertices black instead because the loops can be recovered
from the rest of the labelling.

The group H3 can alternatively be described as the group of those permutations
of Y which reduce to an eventual translation along each of the ends of Y . Indeed,
call Ri the half-ray on which ti acts trivially, i = 1, 2, 3, and orient each of these
three half-rays in the direction moving away from o. By recording the far away effect
of any element t of H3 along each of the rays, we obtain a group homomorphism
φ : H3 → Z

3 satisfying

φ(t1) = (0, 1,−1), φ(t2) = (1, 0,−1), φ(t3) = (−1, 1, 0).

The image of this map is the subgroup � of Z
3 of those elements n = (n1, n2, n3)

satisfying
∑3

1 ni = 0 and we have a short exact sequence

1 → S0(Y ) → H3
φ→ � → 1

and S0(Y ) = [H3,H3]. See, e.g., [28] and the references given therein.
The careful reader will have noticed that the second step of the construction above

was unnecessary. The group 
 obtain after the first step and generated by t1, t2 is
already the group H3.

Example 3.2 (Variation on theHoughtongroup) Instead of gluing the first two copies
of Z along the negative integers, let us glue then along their respective subset {−1, 0}.
In a second step, let us glue the third copy of Z = 〈t3〉 by identifying 0t3 with the
already identified 0t1 ≡ 0t2, −1t3 with 1t1, and 1t3 with 1t2. This gives us a graph
made of three copies of Z glued together along a length 1 tripod centered at the central
point 0. See Figure 3. If we call Y the associated vertex set (it has six linear ends) and
let 
 be the associated group, we have the short exact sequence

1 → S0(Y ) → 

φ→ Z

3 → 1
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Fig. 3 Sketch of the gluing of three copies of Z along a length 1 tripod centered at 0

and [
,
] = S0(Y ). Here φ associates to any element γ of 
 the three eventual Z

translations observed at infinity along the three pairs of ends of Y associated respec-
tively to t1, t2, and t3.

Example 3.3 (Rooted gluing) Suppose we have two or more labelled graphs
(Xi , Ei , mi ), i = 1, 2, . . . , � (each with their distinct labellings) and a preferred
vertex oi . Let (X , E, m) be the labelled graph with vertex set X = (∪�

1Xi \ {oi })∪{o}
corresponding to identifying the points o1, o2, . . . , o�. One can check that the associ-
ated group 
 contains a copy of each 
i where 
i is the group defined by (Xi , Ei , mi )

and also a copy of A0(X) which can be identified as

A0(X) = 〈[
i , 
 j ]
; i �= j〉.

Sometimes, 
 will in fact contains the full symmetric group with finite support S0(X),
for instance, when one of the 
i contains an odd permutation with finite support.

In the case where the labelled graphs (Xi , Ei , mi ) are labelled Cayley graphs of
infinite groups 
i , each rooted at the identity element id
i , then there is an obvious
projection 
 → 
1 ×· · ·×
� which captures the action of an element γ ∈ 
 on each

i at infinity and whose kernel is A0(X). We note that the group 
 resulting from
this construction does not depend on the choice of the generators of the groups 
i ,
1 ≤ i ≤ �.

Example 3.4 (Pocket extension) One of the simplest classes of examples of this type
is obtained by joining a rooted labelled graph (X , E, m) with the Cayley graph of the
two-element group {id, ∗}with generator ∗. Let (X∗, E∗, m∗) be the resulting labelled
graph. In general, this basic example is already too complex to be analyzed completely
and we will only provide some partial results.

Wewill however give sharp general results in the casewhen (X , E, m) is the labelled
Cayley graph of an infinite finitely generated group G equiped with a finite generating
set S. In this case, X∗ = G ∪ {∗} and the associated group is

G� = G � S0(G ∪ {∗}).

In the case when G is finite, G� = S(X∗) and this construction leads to interesting
generating sets of the symmetric group. This finite case is discussed in a forthcoming
paper [38].
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Fig. 4 The labelled graph defining the star-extention of Z; s±1 = ±1, t = (0, 1). The green dots mark the
elements 0 and 1 in Z. The black dots carry extra loops associated with the trivial action of t and t−1. The
edges between 0 and 1 associated with t−1 are not included in the picture

Example 3.5 (Star extension of Cayley graphs) Compare the following construction
to the pocket extension construction discussed above. Let (X , E, m) be the labelled
Cayley graph associated to a group G with finite generating set S = {s±1

1 , . . . , s±1
k }

and labelling alphabet s1, . . . , sk . The simplest way to define the star extension (G, S)�
of G is as a subgroup of S(G) (the group of all permutations of the elements of G).
Namely, (G, S)� is the subgroup of S(G) generated by all the left-translation by
elements of G and by the k transpositions “ transpose the identity id and sk” (which
really means, transpose the marker at id with the marker at sk). To obtain this group as
the group generated by a label graph, let (X�, E�, m�) be the labelled graph obtained
by adding only 4k new non-trivial edges to the Cayley graph (X , E, m). Recall that
each edge e is paired with its “opposite” ě. In what follows , we omit the description of
the “opposite” edges so that we only describe 2k new edges denoted e�

i , f �
i , 1 ≤ i ≤ k,

with

x(e�
i ) = idG , y(e�

i ) = si , x( f �
i ) = si , y( f �

i ) = idG , m(e�
i ) = m( f �

i ) = ti .

At any x ∈ X \ {idG , si }, the labelling ti is carried by a self-loop at x .
As promised, the group 
 = (G, S)� associated with this labelled graph is the

subgroup of S(G) generated by the “translations” s1, . . . , sk and the transpositions
ti = (idG, si ), 1 ≤ i ≤ k.When G is infinite, (G, S)� contains a copy of G (translation
at infinity) andwe have
 = (G, S)� = G�S0(G).WhenG is finite, (G, S)� = S(G).
See Fig. 4 for an illustration with G = Z.

3.2 Isoperimetric profiles

Given two functions f1, f2 taking non-negative real values but defined on an arbitrary
domain (not necessarily a subset of R), we write f � g to signify that there are
constants c1, c2 ∈ (0,∞) such that c1 f1 ≤ f2 ≤ c2 f1. Given two monotone non-
negative real functions f1, f2, write f1 
 f2 if there exists ci ∈ (0,∞) such that

c1 f1(c2t) ≤ f2(t) ≤ c3 f1(c4t)

on the domain of definition of f1, f2. Usually, f1, f2 will be defined on a neighborhood
of 0 or infinity and tend to 0 or infinity at either 0 or infinity. In some cases, one or
both functions are defined only on a countable set such as N. When this is the case,
we have to interpret c2t, c4t as nearest integers values. We denote the associated order
by �. Note that the equivalence relation 
 distinguishes between power functions of
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different degrees and between stretched exponentials exp(−tα) of different exponent
α > 0 but does not distinguish between different rates of exponential growth or decay.

Given a probability measure φ on a group G, let (Sl
n)∞0 (resp, (Sr

n)∞0 ) denotes
the trajectory of the left (resp. right) random walk driven by φ (often started at the
identity element id). More precisely, if (Xn)∞1 are independent identically distributed
G-valued random variables with law φ, then

Sl
n = Xn . . . X1X0 ( resp. Sr

n = X0X1 . . . Xn).

Let Px∗,φ, ∗ = l or r be the associated measure on GN with X0 = x and Ex∗,φ the
corresponding expectation Ex∗,φ(F) = ∫

GN F(ω)dPx∗,φ(ω). In particular,

P id∗,φ(Sn = x) = E id∗,φ(1x (Sn)) = φ(n)(x).

In this work, we find it convenient towork (mostly, but not always) with the left version
of the random walk and we will drop the subscript l in the notation introduced above
unless we need to emphasize the differences between left and right. Observe that the
randomwalkon the left is a right-invariant process since (Xn . . . X0)y = Xn . . . (X0y).
When the measure φ is symmetric in the sense that φ(x) = φ(x−1) for all x ∈ G, its
Dirichlet form is defined by

Eφ( f , f ) = EG,φ( f , f ) = 1

2

∑

x,y∈G

| f (yx) − f (x)|2φ(y).

This is the Dirichlet form associated with random walk on the left, E l
φ = Eφ , and Er

φ

is defined similarly.
The (random walk) group invariant �G is a positive decreasing function defined

on [0,∞) up to the equivalence relation 
 which describes the probability of return
of any random walk on the group G driven by a measure φ that is symmetric, has
generating support, and a finite second moment with respect to a fixed word metric
on G (i.e.,

∑
g |g|2φ(g) < ∞). See [31]. Namely, for any finitely generated group G

and any measure φ as just described,

∀ n = 1, 2, . . . , φ(2n)(id) = P id
φ (S2n = id) 
 �G(n).

Given a symmetric probability measure φ, set

�2,G,φ(v) = �2,φ(v) = inf{λφ(�) : � ⊂ G, |�| ≤ v}

where
λφ(�) = inf{Eφ( f , f ) : support( f ) ⊂ �, ‖ f ‖2 = 1}. (3.1)

The function v �→ �2,φ(v) is called the L2-isoperimetric profile or spectral profile of
φ.
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The associated L1-isoperimetric profile is defined by

�1,G,φ(v) = �1,φ(v)

= inf

{
1

2

∑

x,y

| f (yx) − f (x)|φ(y) : |support( f )| ≤ v, ‖ f ‖1 = 1

}

.

Using an appropriate discrete co-area formula, �1,φ can equivalently be defined by

�1,φ(v) = inf

{

|�|−1
∑

x,y

1�(x)1G\�(xy)φ(y) : |�| ≤ v

}

.

If we define the boundary of � to be the set

∂� = {(x, y) ∈ G × G : x ∈ �, y ∈ G \ �}

and set

φ(∂�) =
∑

x∈�,xy∈G\�
φ(y)

then

�1,φ(v) = inf{φ(∂�)/|�| : |�| ≤ v}.

It is well-known that
1

2
�2

1,φ ≤ �2,φ ≤ �1,φ. (3.2)

Given a non-increasing function �, we define its right-continuous inverse �−1 by

�−1(s) = inf{v > 0 : �(v) ≤ s}.

The Følner function FølG,φ is related to the L1-isoperimetric profile defined above by

FølG,φ(t) = inf{v : �1,φ(v) ≤ 1/t}

so that FølG,φ(t) = �−1
1,φ(1/t) (i.e., FølG,φ(t) is the right-continuous inverse of the

non-decreasing function �1,φ at 1/t and t �→ FølG,φ(t) is left-continuous). In the
literature, the definition FølG,φ(t) = inf{v : �1,φ(v) < 1/t} is sometimes used
instead.

We note that, for p = 1, 2, the functions v �→ �p,φ are non-increasing right
continuous step-functions changing values only at integer values of their argument
v ∈ [1,∞). By definition, �p,φ = ∞ on [0, 1) and

�p,φ(v) = sφ =
∑

g �=id
φ(g) for v ∈ [1, 2).
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The right continuous inverse �−1
p,φ only takes integer values or the value +∞. It is

constant equal to 1 on [sφ,∞). More generally, in the definition of �−1
p,φ(v), the

infimum is attained. Obviously, if v < �−1
p,φ(s) then �p,φ(v) > s.

Recall that a finitely generated group G is amenable if and only if (this could be
taken as the definition) �1,G(v) 
 1 for all v. Equivalently, �−1

1,G(s) = +∞ for all
s > 0 small enough.

Notation 3.6 By elementary comparison arguments, for any two symmetric finitely
supported probability measures φ1, φ2 with generating support on a group G, we have

�1,G,φ1 
 �1,G,φ2 and �2,G,φ1 
 �2,G,φ2 .

For this reason we often denote by

�1,G ( resp. �2,G)

the
-equivalence class of�1,G,φ (resp.�1,G,φ)withφ as above. By abuse of notation,
we sometimes write

�p,G = �p,G,φ

or understand �p,G as standing for a fixed representative.

Remark 3.7 In the definition of �p,G,φ (here, p = 1, 2), it is not required that φ

generates G. In particular, if G1 is a subgroup of a group G2 and φ is a symmetric
measure supported on G1 then we can consider �p,Gi ,φ for i = 1, 2. Simple con-
siderations imply that, in such cases, �p,G1,φ = �p,G2,φ . In some instance, it might
nevertheless be much easier to estimate �p,G2,φ than �p,G1,φ directly. If φ is finitely
supported and G2 is finitely generated then a simple comparison argument yields
�p,G1,φ ≤ C(φ, G1, G2)�p,G2 .

We end this section by recalling briefly the fundamental relations that relate the
spectral profile �2,G,φ to the probability of return P id

φ (Xr
2n = id) = φ(2n)(id). If

ψ is defined as a function of t by t = ∫ 1/ψ
1

ds
s�2,φ(s) then φ(2n)(id) � ψ(n). In

the other direction, i.e., for a lower bound on �2,φ in terms of φ(2n)(id), see, e.g.,
[36, Theorem 2.3]. These results are both essentially from [14]. For nicely behaved
functions, they imply that a two-sided estimate of �2,φ is equivalent to a two-sided
estimate of φ(2n)(id).

4 Rooted gluing of Cayley graphs

The aim of this section is to prove two complementary theorems which, together,
provide matching upper and lower bounds for the L1- and L2-isoperimetric profiles
�1,
,q and �2,
,q for the group 
 associated with the rooted gluing (at the identity
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element) of � labelledCayley graphs (
i , Si ), i = 1, . . . , �, equippedwith a symmetric
measure q of the form

q = �−1
�∑

1

μi (4.1)

where each μi is a symmetric probability measure on 
i with generating support and
each 
i is viewed as a subgroup of 
 through the obvious identification. The results
are expressed in terms of the isoperimetric profiles

�p,i = �p,
i ,μi

of the pairs (
i , μi ), p = 1 or 2. The measures μi are assumed to be symmetric but
they are otherwise arbitrary.

4.1 Commutator computations

We will need the following lemma. Recall from Example 3.3 that 
 is defined by its
action on

X = {o} ∪
(
∪�
1(
i \ {id
i })

)
,

and that 
 ≤ S(X) contains a copy of each 
i . The following computations shows
that it also contains A0(X).

Lemma 4.1 For gi ∈ 
i , g j ∈ 
 j , i �= j , we have

[gi , g j ] = gi g j g
−1
i g−1

j = (o, gi , g j ) ∈ A0(X).

If σ ∈ A0(X) has finite support U contained in {o} ∪ (X \ 
 j ) then, for all g j ∈ 
 j ,
[σ, g j ] has support in U ∪ {o, g j }. In fact,

[σ, g j ] =
{

(o, σ (o), g j ) if σ(o) �= o
id otherwise.

Proof The notation (o, gi , g j ) stands for the element of A0(X) ⊂ 
 which takes the
label at vertex o to gi , the label at vertex gi to g j and the label at vertex g j to o. The
two computations are done by inspection. ��
Lemma 4.2 For gi ∈ 
i , i ∈ {r , s, t}, r �= s, we have

gr gs gt =
{

gs gr gt (g
−1
t , g−1

r , g−1
s ) if r �= t

gs gr gt (g
−1
t , (gt gr )

−1, g−1
s ) if r = t .

Proof Lemma 4.1 gives us [g−1
s , g−1

r ] = (o, g−1
s , g−1

r ) and conjugaison of this cycle
by gt gives the desired result. ��
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Lemma 4.3 Assume that, for some 0 ≤ �′ ≤ �, the groups 
i with i = 1, . . . , �′ are
infinite, and the groups 
i with i = �′ + 1, . . . , � are finite. Then, as a set, the group

 associated with the rooted gluing (at the identity element) of the � labelled Cayley
graphs (
i , Si ) satisfies


 = 
1 × · · · × 
�′ × W0 (only as sets),

where

W0 =
{

S0(X) if there is at least one 
i which is finite of even order,
A0(X) if none of the 
i is finite or each finite 
i has odd order.

Namely, any element γ of 
 has a unique representation

γ = γ1 . . . γ�′τ, γi ∈ 
i , 1 ≤ i ≤ �′, τ ∈ W0.

and all such products appear in 
. In fact, there is a short exact sequence

1 → W0 → 
 → 
1 × · · · × 
�′ → 1.

Proof Since [
i , 
 j ] ≤ A0(X) for i �= j and that 
 = 〈
1, . . . , 
�〉 (viewing each

i as a subgroup of 
), it is obvious that any element of γ ∈ 
 has a representation of
the form γ = γ1 . . . γ�τ with τ ∈ A0(X). Any element γi that belongs to a finite 
i

is in S0(X). This implies that any element of γ ∈ 
 has a representation of the form
γ = γ1 . . . γ�′τ with τ ∈ W0 whereW0 is as described above. Uniqueness comes from
the fact that each of the γi ∈ 
i , i = 1, . . . , �′, is determined uniquely by the action
of γ on the end 
i of X at infinity. That any such product does occur follows from
the computations in Lemma 4.1 and the fact that the set of all three cycles generate
A0(X). ��
Remark 4.4 When all the
i ’s are finite, the group 
 is finite and equal to eitherA0(X)

or S0(X) with the latter occurring if and only if at least one of the 
i ’s has even order.
With finite groups, this construction is interesting in so far as it provides a way to
construct interesting generating sets for some alternating and symmetric groups. See
[38].

Remark 4.5 In the short exact sequence described above, the projection onto 
1 ×
· · · × 
�′ is given by the action at infinity on each infinite 
i . The sequence does not
split when there are more than one infinite 
i because, although 
1 and 
2 appear in
a canonical way as subgroups of 
, the direct product 
1 × 
2 does not.

Remark 4.6 What happens if one consider more intricate gluing along some finite
subsets of vertices instead of the present rooted gluing at one point? The overall
structure of the groups 
 obtained through gluing over finite subsets is roughly the
same as that described above. The main possible difference is the exact nature of the
subgroup W0 ⊂ S(X) that might appear. In most cases, it is possible to show that this
subgroup is again either A0(X) or all of S0(X) but some specific configurations may
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lead to W0 being a smaller subgroup of S0(X). In any case, such examples appear to
necessitate ad hoc considerations depending of the exact nature of the gluing. We will
not pursue this here but note that, assuming that at least two of the 
i are infinite (and
that the gluing is over finite sets), the group W0 always acts transitively on X .

4.2 Statements of themain results

Recall that we are given a finite collection of Cayley graphs (
i , Si ), 1 ≤ i ≤ �,
each equipped with symmetric probability measure μi . The indexing of these groups
is chosen so that the first �′ of them are infinite and the remaining groups are all
finite. We assume throughout that �′ ≥ 1, that is, 
1 is infinite. In this case, we know
describe the isoperimetric and spectral profiles of themeasure q at (4.1) on the group


associated with the rooted gluing (at the identity element) of � labelled Cayley graphs
(
i , Si ), i = 1, . . . , �, in terms of the isoperimetric and spectral profiles of the pairs
(
i , μi ), 1 ≤ i ≤ �′. To simplify notation, we set �p,i = �p,
i ,μi , p = 1, 2.

Theorem 4.7 (Lower-bound) For p = 1, 2 (corresponding respectively to isoperimet-
ric and spectral profile) and referring to the setup described above, there are constants
c1(p), c2(p) > 0 such that the isoperimetric profile �p,
,q of the symmetric proba-
bility measure q defined on 
 at (4.1), satisfies

∀ v, s > 0, �p,
,q(v) ≥ c1(p)s

�
for all v ≤ max

1≤i≤�′

{
(c2(p)�−1

p,i (s))!
}

.

In particular, there exists v0 such that

∀ v ≥ v0, �p,
,q(v) � max
1≤i≤�′

{

�p,
i ,μi

(
log(1 + v)

log(1 + log(1 + v))

)}

.

Theorem 4.8 (Upper-bound)Referring to the setup described above, the isoperimetric
profiles �p,
,q of q on 
, p = 1, 2, satisfy

∀ v, s > 0, �p,
,q(v) ≤ s for all v ≥
⎛

⎝1 +
�′
∑

1

�−1
p,i (s) +

∑

�′<i≤�

|
i |
⎞

⎠!.

In particular,

∀ v > 0, �p,
,q(v) � max
1≤i≤�′

{

�p,
i ,μi

(
log(1 + v)

log(1 + log(1 + v))

)}

.

The following statement concerns the special case of the pocket extension of a
group G. It obviously follows from the previous two results.
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Theorem 4.9 Let G be an infinite finitely generated group. Let G� be the pocket
extension of G. For p = 1, 2 and for all v > 0,

�p,G�(v) 
 �p,G

(
log(1 + v)

log(1 + log(1 + v))

)

.

4.3 Test functions and proof of the upper-bounds

This section focuses on the profile upper-bounds stated in Theorem 4.8. We give the
proof for p = 2 (the case p = 1 is similar). Recall that, as a set,


 = 
1 × · · · × 
�′ × W0.

The construction of test functions depends heavily on this product structure. The
difficulty is, of course, that the Dirichlet form that defines our random walk is only
partly compatible with this product structure.

Proof of Theorem 4.8 for p=2 Fix s > 0 and ε > 0. For each i ∈ {1, . . . , �′}, pick a set
Ui and a function ψi on 
i such that

Eμi (ψi , ψi ) ≤ (1 + ε)s‖ψi‖22 and support(ψi ) = Ui with |Ui | ≤ �−1
2,i (s).

Let V be the set of all elements τ in W0 ≤ 
 with support in

(
∪�′
1 U−1

i

)
∪
(
∪�

�′+1
i

)

where each U−1
i is viewed as a subset of X .

Referring to Lemma 4.3, construct a test function on 
 = 
1 × · · · × 
�′ × W0 by
setting, for each γ = γ1 . . . γ�′τ ∈ 
,

ψ(γ ) = 1V (τ )

�′
∏

1

ψi (γi ).

Obviously, we have

‖ψ‖22 = |V |
�′
∏

1

‖ψi‖22.

For any si ∈ 
i in the support of μi , i ∈ {1, . . . , �}, we compute |ψ(siγ ) − ψ(γ )|2.
Write (uniquely)

siγ = (siγ )1 . . . (siγ )�′τsi γ .
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Note that, for each j ∈ {1, . . . , �′},

(siγ ) j =
{

γ j if j �= i
siγi if j = i .

By Lemma 4.2, the permutation τsi γ ∈ W0 is the product of τ by a permutation
supported by

{ {γ −1
1 , . . . , (siγi )

−1, . . . , γ −1
�′ } if 1 ≤ i ≤ �′,

{γ −1
1 , . . . , γ −1

�′ } ∪ 
i if �′ < i ≤ �.

In particular, when 1 ≤ i ≤ �′,

τ ∈ V , γ j ∈ U j , 1 ≤ j ≤ �′, and siγi ∈ Ui imply that τsi γ ∈ V , (4.2)

and, when �′ < i ≤ �,

τ ∈ V , γ j ∈ U j , 1 ≤ j ≤ �′, imply that τsi γ ∈ V . (4.3)

Write

2Eq(ψ,ψ) =
∑

ψ(γ )ψ(sγ ) �=0

|ψ(γ ) − ψ(sγ )|2μ(s) + 2
∑

ψ(γ ) �=0;ψ(sγ )=0

|ψ(γ )|2μ(s)

and

∑

ψ(γ )ψ(sγ ) �=0

|ψ(γ ) − ψ(sγ )|2μ(s)

= �−1
�∑

i=1

∑

ψ(γ )ψ(si γ ) �=0

|ψ(siγ ) − ψ(γ )|2μi (si )

= |V |�−1
�′
∑

i=1

∏

j �=i

‖ψ j‖22
∑

ψi (γi )ψi (si γi ) �=0

|ψi (siγi ) − ψi (γ )|2μi (si )

where the last equality holds because of (4.2)-(4.3). We also have

∑

ψ(γ ) �=0;ψ(sγ )=0

|ψ(γ )|2μ(s)

= �−1
�∑

i=1

∑

ψ(γ ) �=0;ψ(si γ )=0

|ψ(γ )|2μi (si )

= |V |�−1
�′
∑

i=1

∏

j �=i

‖ψ j‖22
∑

ψi (γi ) �=0;ψi (si γi )=0

|ψi (γ )|2μi (si )
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because of (4.2–4.3). It follows that

Eq(ψ,ψ) = |V |
�∏

1

‖ψi‖22 �−1
�′
∑

i=1

Eμi (ψi , ψi )

‖ψi‖22

and

Eq(ψ,ψ) ≤ (1 + ε)s|V |
�∏

1

‖ψi‖22.

After letting ε got to zero, this becomes

Eg(ψ,ψ)

‖ψ‖22
≤ s.

Because the support of ψ as cardinality at most

�′
∑

1

|Ui | ×
⎛

⎝
�′
∑

1

|Ui | +
∑

�′<i≤�

|
i |
⎞

⎠!

and |Ui | ≤ �−1
2,i (s), 1 ≤ i ≤ �′, the desired bound on �2,
,q(v) follows. ��

4.4 L1-isoperimetric profile lower bound (special case)

In this section we consider the basic example obtained by gluing at one point (the
neutral element) the Cayley graph (G, S) of a finitely generated group G with finite
generating set labelled with the alphabet S = {s1, . . . , sk} and a small finite cycle
group 〈β〉 of order b ∈ {2, 3}. This corresponds to the gluing of two labelled graphs
(Xi , Ei , mi ) where

X1 = G, E1 = {(g, s±1
i · g, s±1

i ) : g ∈ G, i ∈ {1, . . . , k}}

and m1((g, s±1
i · g, s±1

i )) = s±1
i , and

X2 = Z/bZ, E2 = {(x, β±1 · x,β±1) : x ∈ Z/bZ}

and m2((x, β±1 · x,β±)) = β±1. Let X = {β, β−1} ∪ G (note that the set notation
makes this correct for both b = 2, in which case β−1 = β, and b = 3). Let 
 =
〈β, s1, . . . , sk〉 ≤ S(X) be corresponding group. When necessary, we will use the
more explicit notation


(β, G) = 
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to describe this abstract construction based on a given group G and a cyclic group
< β > of order 2 or 3. By definition any element g ∈ G ≤ 
 acts on G = X \ {β±1}
by translation on the left, (g, g′) → gg′ and leaves invariant {β±1}. The generator β

acts trivially on G \ {id} and rotates cyclically the distinct elements of {id, β, β−1}.
By Sect. 4.1, it is clear that 
 = G � W0 where W0 is either S0(X) or A0(X)

depending on whether b = 2 or 3.

Theorem 4.10 Referring to the setting described above, let μ be a symmetric probabil-
ity measure on G and ν be the uniform measure on 〈β〉. There are universal constants
c1, c2 > 0 (independent of G and μ and b = 2, 3) such that the symmetric probability
q = 1

2 (μ + ν) on 
 satisfies

∀ v, s > 0, �1,
,q(v) ≥ c1s for all v ≤ (c2�
−1
1,G,μ(s))!.

This holds with c1 = 1/100 and c2 = 1/32. In particular,

�1,
,q(v) � �1,G,μ

(
log(1 + v)

log(1 + log(1 + v))

)

.

The proof of this theorem given below follows closely the argument developed by
Anna Erschler to prove her wreath product isoperimetric inequality in [17]. Since

 = G � W0, we write any element γ ∈ 
 as a pair (gγ , τγ ) where gγ ∈ G and
τγ ∈ W0 so that γ = gγ τγ . The element gγ captures the action of γ on G at infinity
which is by translation. The element τγ is a permutation of X with finite support. Note
that for any s ∈ G and γ = gγ τγ ∈ 
, we have sγ = (sgγ )τγ , that is, gsγ = sgγ and
τsγ = τγ . Also β±1γ = gγ τβ±1γ with τβ±1γ = g−1

γ β±1gγ τγ .

Definition 4.11 Given a finite subset U of 
, set

K (U ) = {τ ∈ W0 : τ = τγ for some γ ∈ U }

and let E K (U ) be the set of pairs {τ, τ ′} ⊂ K (U ), τ �= τ ′, such that there exists g ∈ G
and ε ∈ {±1} for which (g, τ ) ∈ U and (g, τ ′) = βε(g, τ ) ∈ U (note that this is
indeed a property of the pair {τ, τ ′} ⊂ K (U )). An element τ ∈ K (U ) is a-satisfactory
if

#{g ∈ G : (g, τ ) ∈ U and at least one of β(g, τ ), β−1(g, τ ) ∈ U } ≥ a.

In words, given the set U , an element τ ∈ K (U ) is a-satisfactory if there are at
least a locations g1, . . . , ga such that, for each i = {1, 2, . . . , a}, (gi , τ ) ∈ U and
βεi (gi , τ ) ∈ U for at least one εi ∈ {±1}.

Recall that , by definition, for any finite set U , q(∂U ) is given by

q(∂U ) = 1

2

∑

γ,s∈


|1U (γ ) − 1U (sγ )|q(s) =
∑

γ,s∈


1U (γ )1X\U (sγ )q(s). (4.4)
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Lemma 4.12 (Compare [17, Lemma 2]) Let s ∈ (0, ε/16)], ε ∈ (0, 1). Assume that
the finite set U ⊂ 
 is such that q(∂U ) ≤ s|U |. Then we have

#

{

γ ∈ U : τγ is
1

2
�−1

1,G,μ(4ε−1s)-satisfactory

}

≥ (1 − ε) |U |.

Proof Say that an element γ ∈ U is bad if neither βγ nor β−1γ is in U . Say γ is good
if it is not bad. If γ is bad then both (γ, β±1γ ) are on the boundary of U and, since
q(∂U ) ≤ s|U | and q({β, β−1}) ≥ 1/4, we must have

#{γ ∈ U : γ is bad} ≤ 4 s |U |.

Let N be the set of all γ = (g, τ ) ∈ U such that τ is non-satisfactory at the level
a = 1

2�
−1
1,G,μ(4ε−1s), that is,

N =
{

γ ∈ U : τγ is not
1

2
�−1

1,G,μ(4ε−1s)-satisfactory

}

.

WriteN as the disjoint unionN = N bad ∪N good. Suppose the desired conclusion does
not hold, that is,

|N | > ε|U |.

Since |N bad| ≤ 4s|U |, we must have |N bad| < 6ε−1 s |N |. For τ ∈ W0, write

N (τ ) = {(g, σ ) ∈ N : σ = τ }
N•(τ ) = {(g, σ ) ∈ N• : σ = τ }, • = good or bad.

Note that

N• =
⋃

τ∈W0

N•(τ )

and let C be the set of all permutations in W0 such that

|N (τ )| ≤ 2|N good(τ )| (i.e., |N bad(τ )| ≤ |N good(τ )|)

Observe that

|N | =
∑

τ∈C
|N (τ )| +

∑

τ /∈C
|N (τ )|

≤
∑

τ∈C
|N (τ )| + 2

∑

τ /∈C
|N bad(τ )|

≤
∑

τ∈C
|N (τ )| + 2|N bad|
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Since |N bad| < 4ε−1s|N | ≤ 1
4 |N |, it follows that

|N | ≤ 2
∑

τ∈C
|N (τ )|. (4.5)

We now estimate from below the size of the boundary of U . For this purpose, set
N (τ ) = {g ∈ G : (g, τ ) ∈ N (τ )} and define N •(τ ) in the same fashion for • =
good or bad . Obviously |N •(τ )| = |N•(τ )| where • is blank, good or bad. Since

q = 1
2 (ν + μ) with μ supported on G, we have (see (4.4))

2q(∂U ) ≥
∑

γ∈U ,s∈G

1
\U (sγ )μ(s) ≥
∑

γ∈N ,s∈G

1
\U (sγ )μ(s).

Observe that N = {(g, τ ) : g ∈ N (τ, τ ∈ W0} and recall that if γ = gγ τγ and
s ∈ G then sγ = (sgγ , τγ ). If g ∈ N (τ ) then γ = (g, τ ) ∈ U and the only way that
sγ = (sg, τ ) /∈ U is that sg /∈ N (τ ). It follows that

2q(∂U ) ≥
∑

γ∈N ,s∈G

1
\U (sγ )μ(s)

=
∑

τ∈W0

∑

g∈N (τ ),s∈G

1G\N (τ )
(sg)μ(s)

≥
∑

τ∈C
μ(∂N (τ )). (4.6)

If g ∈ N good(τ ) then at least one of β±1(g, τ ) is in U (see the definition or bad/good)
and τ is not 1

2�1,G,μ(4ε−1s)-satisfactory. Hence, we must have

|N good(τ )| <
1

2
�−1

1,G,μ(4ε−1s).

When τ ∈ C, it follows that the set N (τ ) ⊂ G has size bounded by

|N (τ )| ≤ 2|N good(τ )| < �−1
1,G,μ(4ε−1s).

This implies

μ(∂N (τ )) ≥ 4ε−1s|N (τ )|.

Using this inequality in (4.6), it follows that

q(∂U ) ≥ 2ε−1s
∑

τ∈C
|N (τ )| ≥ ε−1s|N | > s |U |.
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where the last inequality follows from the assumption that |N | > ε|U |. This contra-
dicts the main hypothesis. Hence it must be the case that |N | ≤ ε|U |, that is,

#

{

γ ∈ U : τγ is
1

2
�−1

1,G,μ(4ε−1s)-satisfactory

}

≥ (1 − ε) |U |.

��
The next lemma is a version of the edge removal lemma of A. Erschler [17,

Lemma 1]. We need to generalize the notion of a-satisfactory vertex. Given the graph
(K (U ), E K (U )) (recall that K (U ) ⊂ W0 is a finite subset of permutations), consider
a subgraph (K ′, E ′) of (K (U ), E K (U )). A vertex τ ∈ K ′ is a-satisfactory in (K ′, E ′)
if there are at least a distinct elements g ∈ G such that γ = (g, τ ) ∈ U and at least one
of (τ, τg,+), (τ, τg,−) ∈ E ′ where τg,+, τg,− are defined by β±1(g, τ ) = (g, τg,±),
that is

τg,± = g−1β±1gτ.

Note that τg,ε = τg′,η if and only if g = g′ and ε = η. Thus, if τ is a-satisfactory,
there are at least a distinct edges adjacent to τ in (K ′, E ′). If τ is not a-satisfactory in
(K ′, E ′) then there are less than 2a edges adjacent to τ in (K ′, E ′).

We say that an edge {τ, τ ′} ∈ E ′ is a-satisfactory if both of its ends, τ, τ ′ are a-
satisfactory. Let NS(K ′, E ′, a) be the set of all non-a-satisfactory edges for (K ′, E ′).

Lemma 4.13 Assume that

|NS(K (U ), E K (U ), a)|
|E K (U )| ≤ 1

4
.

Then there exists a subgraph (K ′, E ′), K ′ �= ∅, all of whose vertices are (a/4)-
satisfactory.

Proof Set K0 = K (U ), E0 = E K (U ). Consider the vertices in (K0, E0), which are
not (a/4)-satisfactory in (K0, E0). Remove these vertices and all their adjacent edges
to obtain (K1, E1). If some of the vertices in (K1, E1) are not (a/4)-satisfactory in
(K1, E1), remove them and all adjacent edges and repeat. Label each vertex τ with
the time, iτ , of its removal and orient each of the edges removed towards the vertex
that remains after the removal of the edge (if both ends of the edge are removed at the
same time, orient the edge arbitrarily). Let Ri = {τ ∈ K0 : iτ = i} be the set of all
vertices removed at time i . By definition, such a vertex is in Ki−1 but not in Ki . For
each vertex τ ∈ K0, record the two sequences of numbers

aτ, j , j ≤ iτ and bτ, j , j ≥ iτ

where aτ j is the number of oriented edges (τ ′, τ ) removed at time j ≤ iτ and bτ j is
the number of oriented edges (τ, τ ′) removed at time j ≥ iτ (in both cases, j = iτ ′ ).
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Bydefinitionwe have that the total number T of removed edges in thewhole process
is

T =
∞∑

i=1

∑

τ∈Ri

∑

1≤ j≤i

a j,τ =
∞∑

i=1

∑

τ∈Ri

∑

j≥i

bτ, j .

To show that the process must end with a non-empty graph, we argue by contradiction.
Assume instead that the removal process ends with the empty graph (every vertex gets
removed at some point). Since every vertex gets removed in the end, we have that

∑

1≤ j≤iτ

a j,τ +
∑

j≥iτ

bτ, j

is exactly the degree of the vertex τ in (K (U ), E K (U )) = (K0, E0).
Write Na = N (K0, E0, a) for the set of vertices that are non-a-satisfactory in

(K0, E0) and split the sum for T into

T =
∞∑

i=1

∑

τ∈Ri ∩Na

∑

j≥i

bτ, j +
∞∑

i=1

∑

τ∈Ri ∩(K\Na)

∑

j≥i

bτ, j .

In the first summation, since τ is non-a-satisfactory, the sum is bounded by the total
number of non-a-satisfactory edges

∞∑

i=1

∑

τ∈Ri ∩Na

∑

j≥i

bτ, j ≤ |N S(K0, E0, a)|.

Now we bound the second sum. By definition, the vertices removed during the first
round are non-a/10-satisfactory in (K0, E0). It follows that the second sum actually
starts from i = 2. From the edge removal procedure, τ ∈ Ri ∩ (K \ Na), i ≥ 2,
implies that τ was a-satisfactory in (K0, E0) but has becomes non-a/4-satisfactory
in (Ki−1, Ei−1) and gets removed in round i = iτ . Therefore

deg τ =
∑

1≤ j≤iτ

a j,τ +
∑

j≥iτ

bτ, j ≥ a and
∑

j≥iτ

bτ, j ≤ 2a/4 = a/2.

It follows that for any τ ∈ Ri ∩ (K \ Na),

∑

1≤ j≤iτ

a j,τ ≥ 2
∑

j≥iτ

bτ, j .

Summing up, we have

∞∑

i=1

∑

τ∈Ri ∩(K\Na)

∑

j≥i

bτ, j ≤ 1

2

∞∑

i=2

∑

τ∈Ri ∩(K\Na)

∑

1≤ j≤i

a j,τ ≤ 1

2
T .
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Combining the two estimates, it follows that

T ≤ |N S(K , E, a)| + 1

2
T

and, because |N S(K , E, a)| ≤ 1
4 |E K |,

T ≤ 2|N S(K , E, a)| ≤ 1

2
|E(K )|.

This contradicts the assumption that the process ends with the empty graph. ��
Lemma 4.14 Fix U ⊂ G and let (K , E) be a subgraph of (K (U ), E K (U )) such that
each vertex in K has at least 2b distinct neighbors in (K , E). Then

|K | ≥ b!.

Proof We proceed by induction on b. The statement is obviously true for b = 1.
Suppose it is true for b = k − 1. Let τ0 ∈ K . By assumption there exists k distinct
elements g1, . . . , gk ∈ G and εi ∈ {±1} such that

τi = (g−1
i βεi gi )τ0 ∈ K and ε1 = ε2 = · · · = εk = ε0 ∈ {±1}.

(here we can assume that the εi s are all the same because of the assumption that τ0
has 2k neighbors).

Let x0 = τ−1
0 (β−ε0). Then, by construction, τi (x0) = g−1

i . For each i ∈ {i, . . . , k}
consider the set of verticesPi which is the connected component of τi in the subgraph
�i of (K , E) obtained by removing all edges labelled g−1

i βεgi , ε ∈ {±1}. Each
vertex in �i has at least 2(k − 1) neighbors in �i so that, by the induction hypothesis,
|Pi | ≥ (k −1)!. It remains to check that the setsPi , 1 ≤ i ≤ k are disjoints. This is the
case because, by inspection of the definitions, for each σ ∈ Pi , we have σ(x0) = g−1

i .
��

Proof of Theorem 4.10 Let 
 = 〈β, s1, . . . , sk〉 = G � W0 be as in Theorem 4.10.
Let μ be a symmetric probability measure on G and ν be the uniform measure on 〈β〉
(recall that β has order 2 or 3). Let q = 1

2 (μ + ν). Let U be a finite subset of 
 such
that q(∂U ) ≤ (s/84)|U | with s ≤ 1/4. By Lemma 4.12 with ε = 1/16, we have

#{g ∈ U : τg is
1

2
�−1

1,G,μ(s)-satisfactory } ≥
(

1 − 1

16

)

|U |.

It follows that the subgraph (K (U ), E K (U ) from Definition 4.11 satisfies

|N S(K (U ), E K (U ), a)|
|E K (U )| ≤ 1

4
for a = 1

2
�−1

1,G,μ(s).
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It follows from Lemma 4.13 that there is a non-empty subgraph (K ′, E ′) all of whose
vertex has at least a/4 neighbors. By Lemma 4.14,

|K (U ) ≥ |K ′| ≥ �a/8�!.

Obviously, |U | ≥ |K (U )|. Hence, we have proved that for any s ∈ (0, 1/4) and any
finite subset U ⊂ 
 with q(∂U ) ≤ (s/84)|U |, we must have

|U | ≥ � 1

16
�−1

1,G,μ(s)�!.

This completes the proof of Theorem 4.10. ��

4.5 Proof of Theorem 4.7 for p = 1

Theorem 4.7 describes lower bounds on the isoperimetric (p = 1) and spectral profiles
(p = 2) of any group 
 obtained from the Cayley graphs (
i , Si )

�
1 of � finitely gener-

ated groups
i via rooted gluing at the identity element. Each group
i is equippedwith
a symmetric measure μi and the group 
 is equipped with the associated symmetric
measure q defined at (4.1).

Suppose that i ∈ {1, . . . , �} is such that at least one of the 
 j , j �= i has at least
3 elements. Then, according to the commutator computations recorded in Lemmas
4.1-4.2, the group 
 contains a group 
∗

i = 〈Si , β〉 = 
i � A0(X∗
i ) where X∗

i =

i ∪ {β, β−1} and β also stands for the three cycle (id, β, β−1) (see Sect. 4.4). If
every 
 j , j �= i , is a two element group then, obviously, 
 contains a subgroup

∗

i = 〈Si , β〉 = 
i � S0(X∗
i ) where X∗

i = 
i ∪ {β} and β also stands for the
transposition (id, β). In both cases, let ν be the uniform measure on 〈β〉 and set
μi∗ = 1

2 (μi + ν). By a simple comparison argument, there is a positive constant c
which depends only on a positive lower bound on

μ∗ = inf {μi (s) : s ∈ Si , i ∈ {1, . . . , �}} ,

such that

�p,
,q(v) ≥ c�−1�p,
∗
i ,μi∗(v).

Hence, in the case p = 1 (isoperimetric profile) the conclusion of Theorem 4.7 follows
from Theorem 4.10.

4.6 Proof of Theorem 4.7 for p = 2

By the same comparison technique used above in the case p = 1, in order to prove
the spectral profile statement (i.e., the case p = 2) of Theorem 4.7, it suffices to prove
the spectral profile version of Theorem 4.10 which is the following statement.
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Theorem 4.15 Referring to the setting ofTheorem 4.10, let μ be a symmetric probabil-
ity measure on G and ν be the uniform measure on 〈β〉. There are universal constants
a1, a2 > 0 (independent of G and μ and b = 2, 3) such that the symmetric probability
q = 1

2 (μ + ν) on 
 satisfies

∀ v, s > 0, �2,
,q(v) ≥ a1s for all v ≤ (a2�
−1
2,G,μ(s))!.

In particular, for all v > 0,

�2,
,q(v) � �2,G,μ

(
log(1 + v)

log(1 + log(1 + v))

)

.

Proof We adapt the technique of [36, Section 4] which involves comparison with well
chosen spread-out measures. By [36, Theorem 4.7] (with φ = μ and α = 1/2), for
any v ≥ 1, we can associate to the symmetric probability measure μ on G another
symmetric probability measure on G, ζμ,v = ζv such that (the constant c below is a
positive numerical constant independent of v, μ, G)

�1,G,ζv (v) ≥ 1/2 and Eμ ≥ c�2,G,μ(8v)Eζv .

By Theorem 4.10, the measure qv = 1
2 (ν + ζv) on the group 
 satisfy

�1,
,qv (u) ≥ c1/2 for u ≤ (c2v)!.

Using the left-hand side of (3.2), this also gives

�2,
,qv (u) ≥ c21/8 for u ≤ (c2v)!.

But it is clear that we also have (recall that q = 1
2 (ν + μ) on 
)

Eq ≥ c�2,G,μ(8v)Eqv .

So, for any v ≥ 1, we have

�2,q,
(u) ≥ c(c21/8)�2,G,μ(8v) for u ≤ (c2v)!.

Setting s = �2,G,μ(8v), this reads

�2,q,
(u) ≥ c(c21/8)s for u ≤
(c2
8

�−1
2,G,μ(s)

)
!.

��
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5 Houghton groups and variations

Let Yk = {o} ∪ (∪k
1Ri ) where each Ri is a copy of {1, 2, . . . }, explicitly, Ri = {ri,m :

m = 1, 2 . . . }. In words, Yk is the union of k copies of the non-negative integers
where all copies of 0 have been identified. The Houghton group Hk is the group of
all permutation of Yk which are eventual translations on each ray Ri , 1 ≤ i ≤ k. By
definition, this means that there is a projection φ : Hk → Z

k which associates to each
element h of Hk , φ(h) = (m1, . . . , mk) where mi captures the (positive or negative)
amount of eventual translation away from 0 along the ray Ri . By definition, the kernel
of φ is contained in the subgroup S0(Yk) of those permutations that have finite support
and it must be all of them. The image of φ is the subgroup � = {(mi )

k
1 : ∑k

1 mi = 0}
of Z

k . Indeed, by inspecting the action of an element g ∈ Hk on the star

S(N ) = {o} ∪k
1 {ri,n : 1 ≤ n ≤ N }

where N is chosen so large that g acts by translation on each of {ri,N+1, ri,N+2, . . . },
one sees that φ(g) = (m1, . . . , mk) ∈ �, that is,

∑k
1 mi = 0. Also, for any pair (i, j),

1 ≤ i < j ≤ k, consider the element hi, j of Hk which is“translation by 1" along the
copy of Z obtained by setting 0 = o, −n = ri,n, n = r j,n, n = 1, 2, . . . . Clearly, the
images φ(hi, j ), 1 ≤ i < j ≤ k, generates �. It is plain to check that, for i1 < j1 ≤ k,
i2 < j2 ≤ k, j1 �= j2, the commutator [hi1, j1 , hi2, j2 ] is the transposition (r j1,1, r j2,1)

when i1 = i2 and the three cycle (o, r j1,1, r j2,1) if i1 �= i2. It easily follows that the
elements hi, j , 1 ≤ i < j ≤ k generateHk (in fact we only need k − 1 of then chosen
so that each ray Ri is represented at least once) and that we have a short exact sequence

1 → S0(Y ) → Hk
φ→ � → 1

with, in addition, S0(Y ) = [Hk,Hk]. See, e.g., [28] for details and earlier references.
Given a family p of

(k
2

)
symmetric probability measures pi, j , 1 ≤ i < j ≤ k, on

Z, define a symmetric probability measure qp on Hk by setting

qp(g) =
(

k

2

)−1 ∑

1≤i< j≤k

∑

n∈Z
pi, j (n)1{hn

i, j }(g). (5.1)

This probability measure is supported on the powers of the generators hi, j and we
allow the possibility that pi, j (0) = 1 (at least for some pairs (i, j)).

Theorem 5.1 Referring to the setting and notation introduced above, let

(i0, j0) �= (i1, j1), 1 ≤ i0 < j0 ≤ k, 1 ≤ i1 < j1 ≤ k,

be such that pim , jm (1) > 0 for m = 0, 1. Then there are positive constants
c1(k, p), c2(k, p) such that, for all v, s > 0, the profiles �p,Hk ,qp of the symmet-
ric probability measure qp on Hk , p = 1, 2, satisfies
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�p,Hk ,qp(v) ≥ c1(k, p)s for all v ≤
(

c2(k, p) max
m=0,1

{
�−1

p,Z,pim , jm
(s)

})

!.

Proof Consider for simplicity the case when i0 �= i1, j0 �= j1. In Hk , consider
the subgroups Zm =< him , jm > and the three cycles βm = (o, r1,im′ , r1, jm′ ) where
m′ = m + 1 mod 2, m ∈ {0, 1}. By construction, Hk contains a copy of 
(β, Z)

with Z =< him , jm > and β = βm . Further, let μm denote the measure pim , jm on
Z =< him , jm >. Let νm be the uniform measure on< βm > and set q = 1

2 (νm +μm),
then a simple comparison argument implies that

�p,Hk ,qp ≥ c�p,Hk ,qm , p = 1, 2.

Here the exact value of the positive constant c depends on lower bounds on pim , jm (1),
m = 1, 2. Theorem 4.10 (and its spectral version Theorem 4.15) implies

�p,Hk ,qp(v) ≥ c1s for all v ≤ (c2�
−1
p,Z,pim , jm

(s))!.

��
The next theorem provide matching upper-bound for the isoperimetric and spectral

profiles under certain assumptions. To obtain this upper-bound, we follow a line of
reasoning that is similar to the one used for the rooted gluing of Cayley graphs.
However, there are some significant differences in some of the details.

Lemma 5.2 Exclude one of the rays, say Rk. For each remaining Ri , 1 ≤ i ≤ k − 1,
set gi = hi,k and Zi = 〈gi 〉. Any element γ ∈ Hk admits a unique decomposition of
the form

g = z1 . . . zk−1τ with zi ∈ Zi , 1 ≤ i ≤ k − 1, and τ ∈ S0(Y ).

Proof Since Hk is generated by g1, . . . , gk−1 (see above) and have commutators in
S0(Y ), it is plain that every element g ∈ Hk can bewritten as described above. To prove
uniqueness, we observe that the integer vector (z1, . . . , zk−1) is uniquely determined
by the condition that φ(g) = (−z1,−z2, . . . ,−zk−1,

∑k−1
1 zk) ��

Theorem 5.3 Fix p = 1, 2. For any s ∈ (0, 1], let ψs be a symmetric non-negative
function on Z supported on (−r(s), r(s)), normalized by ‖ψr‖p = 1, and such that
for any 1 ≤ i < j ≤ k,

1

2

∑

x,y∈Z
|ψs(x + y) − ψr (x)|p pi, j (y) ≤ s.

Then

∀v, s > 0, �p,Hk ,q(s) ≤ 2s for all v ≥ ([k + 3]r(s))!
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Proof The case p = 1, 2 are similar and, for simplicity, we focus on the case p = 2.
Making use of Lemma 5.2, consider the test function

�s(g) = 1Vs (τ )

k−1∏

i=1

ψs(zi ), g = z1 . . . zk−1τ ∈ Hk

where the set Vs ⊂ S0(Y ) will be chosen later. Obviously, we have

‖�s‖22 = |Vs |‖ψs‖2(k−1)
2 .

Next, we want to estimate EHk ,q(�s, �s) from above. This involves computing the
products hm

u,vz1 . . . zk−1τ where 1 ≤ u < v ≤ k and m ∈ Z. By inspecting the
commutator relations between hz

i,k and hm
u,v , one finds that

hm
u,vz1 . . . zk−1τ = z′

1 . . . z′
k−1τ

′

where

z′
i = zi + εi,u,vm with εi,u,v =

⎧
⎨

⎩

0 if i /∈ {u, v}
1 if i = u

−1 if i = v

and

support(τ ′) ⊂ support(τ ) ∪ S

(

2|m| +
k−1∑

1

|zi |
)

.

We choose

Vs = {τ : support(τ ) ⊂ S((k + 3)r(s))}

so that

|zi | ≤ r(s), |m| ≤ 2r(s) and τ ∈ Vs implies τ ′ ∈ Vs .

Write

2EHk ,q(�s, �s) =
∑

�s (g)�s (hg) �=0

|�s(hg) − �s(g)|2q(h)

+2
∑

�s (g) �=0,�s (hg)=0

|�s(g)|2q(h).
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By inspection, the right most term on the right-hand side is bounded above by

4|Vs |
(

k

2

)−1

‖ψs‖2(k−2)
2

∑

1≤u<v≤k

∑

ψs (z) �=0,ψs (z+y)=0

|ψs(z)|2 pu,v(y).

Consider g, h such that �s(g)�(hg) �= 0 with q(h) �= 0 and write g = z1 . . . zk−1τ ,
h = hm

u,v . We must have

|zi | ≤ r(s), |m| ≤ 2r(s) and support(τ ) ⊂ S((k + 3)r(s)).

Let us consider the more difficult case when v �= k. Then, we have

|�s(hg) − �s(g)|2
= 1Vs (τ )

∏

j /∈{u,v}
|ψs(z j )|2 |ψs(zu + m)ψs(zv − m) − ψs(zu)ψs(zv)|2

and

|ψs(zu + m)ψs(zv − m) − ψs(zu)ψs(zv)|2
≤ 2

(
|ψs(zu + m)|2|ψs(zv − m) − ψs(zv)|2 + |ψs(zv|2|ψs(zu + m) − ψs(zu)|2

)
.

Using this inequality and summing up we obtain that

∑

�s (g)�s (hg) �=0

|�s(hg) − �s(g)|2q(h)

is bounded by

2

(
k

2

)−1

|Vs |‖ψs‖2(k−2)
2

∑

1≤u<v≤k

∑

ψs (z)ψs (z+y) �=0

|ψs(z + y) − ψs(z)|2 pu,v(y).

Putting the different terms together yields

2EHk ,q(�s, �s) ≤ 4|Vs |
(

k

2

)−1

‖ψs‖2(k−2)
2

∑

1≤u<v≤k

EZ,pu.v
(ψs, ψs)

and

EHk ,q(�s, �s)

‖�s‖22
≤ 2s.

��
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The following results describe the spectral profile of q in the special case when
each pi, j is one of the measures

ξα, α ∈ (0,∞) ∪ {s, t}

where

ξα(m) =
⎧
⎨

⎩

cα(1 + |m|)−α−1 if α ∈ (0,∞)

3−11{−1,0,1}(m) if α = s
δ0 if α = t.

Set

ρα(s) =

⎧
⎪⎪⎨

⎪⎪⎩

s−1/α if α ∈ (0, 2)
s−1/2[1 + log(1/s)]1/2 if α = 2

s−1/2 if α ∈ (2,∞) ∪ {s}
0 if α = t

Theorem 5.4 On the Houghton group Hk , let the probability measure qp at (5.1) be
such that for each 1 ≤ i < j ≤ k, pi, j = ξαi, j , αi, j ∈ (0,∞) ∪ {s, t}. Assume that at
least two αi, j are different from t and set

ρ(s) = max{ραi, j (s) : 1 ≤ i < j ≤ k}.

Then , for all v, s > 0, we have

�2,Hk ,q(v) 
 ρ−1
(

log(1 + v)

log(1 + log(1 + v))

)

.

In particular,

�2,Hk (v) 

(

log(1 + v)

log(1 + log(1 + v))

)2

.

Proof The lower estimate for the spectral profile is obtained by Theorem 5.1. The
matching upper bound follows from Theorem 5.3. All we need to check is that
�2,Z,ξα

(v) 
 ρ−1
α (v) (in order to apply Theorem 5.1) and that the functions

ft (z) = (t − |z|)+ provide good test functions in the sense that

Eξα ( ft , ft )

‖ ft‖22

 ρ−1

α (t).

See [36, A.2]. ��
Remark 5.5 One can prove a version of Theorem 5.4 dealing with the isoperimetric
profile instead of the spectral profile by using a similar line of reasoning and the results
of [36, A.2].
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6 Other examples: Schreier graphs and star extensions

Star extension of Cayley graphs (Example 3.5) and pocket and rooted extensions based
on Schreier graphs are, in general, more difficult to handle than the pocket and rooted
extensions of Cayley graphs treated in the previous section. In this section we look,
successively, at rooted extensions based on Schreier graphs and at star extensions of
Cayley graphs.

Structurally, what makes a rooted extension 
 of a Cayley graph easier to handle is
the fact that the permutations of the underlying set X appearing in 
 can be reduced
to translations along the constituent subgroups associated with the original Cayley
graphs times finite support permutations of X . In the general Schreier graph case,
even so any element of 
 appears to “look like” a translation at infinity in each of the
constituent Schreier graphs, it is not possible to assign uniquely an actual element of
the corresponding subgroup of 
 to capture this effect. Nevertheless, in some simple
cases when the main feature governing the behavior of random walks on 
 is the
volume growth functions of the constituent Schreier graphs, it is possible to obtain
satisfactory results via a rather coarse approach explained in the next section. This
same approach applies as well to the study of star extensions of Cayley graphs.

Note that the results obtained for rooted extensions based onCayley graphs allow us
a large variety of measure q including the possibility of measures with infinite support.
The results obtained in this section are restricted to finitely supported measures (up to
comparisons of forms).

6.1 Comparison with random three cycles

Consider � labelled rooted connected graphs (Xi , Ei , mi , oi ), i = 1, 2, . . . , � (with
distinct labellings). Let (X , E, m) be the labelled graph with vertex set X = (∪�

1Xi \
{oi }) ∪ {o} corresponding to identifying the points o1, o2, . . . , o�. Let 
 be the corre-
sponding subgroup of S(X). The group 
 contains a copy of each 
i where 
i is the
group defined by (Xi , Ei , mi ) and also a copy of A0(X) with

A0(X) = 〈[
i , 
 j ]
; i �= j〉.

Indeed, one verifies by inspection that for any two elements gi , g j ∈ 
, gi ∈ 
i , g j ∈

 j , which move o, i �= j , we have

[gi , g j ] = gi g j g
−1
i g−1

i = (o, gi · o, g j · o),

as in Lemma 4.1,

g[gi , g j ]g−1 =
⎧
⎨

⎩

(g · o, gi · o, g j · o) if g ∈ 
k, k /∈ {i, j}
(g · o, ggi · o, g j · o) if g ∈ 
i

(g · o, gi · o, gg j · o) if g ∈ 
 j ,
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and (still assuming g j · o �= o)

g j g[g−1g′, g j ]g−1g−1
j =(o, g · o, g′ · o), g, g′ ∈
i , g j ∈
 j , i �= j, g−1g′ · o �= o.

Any element γ of 
 can be written in the form γ = g1 . . . , g�τ with gi ∈ 
i

and τ ∈ A0(X) but this can possibly be done in many different ways since pairs of
elements in a given 
i may only differ via a permutation of finite support of Xi . Note
that γ = g1 . . . , g�τ with gi ∈ 
i and τ ∈ A0(X) belongs to S0(X) if and only if each
gi reduces to a finite permutation on Xi . This shows that 
 contains the full symmetric
group with finite support S0(X) exactly when at least one of the groups 
i contains
an odd permutation with finite support. The following Proposition is tailored to cover
the situations described above but is framed in a much more general setting.

Proposition 6.1 Let 
 be a finitely generated group with finite generating set T =
{θ±1

1 , . . . , θ±1
k }. Assume that (X , E, m, o) is a connected labelled rooted Schreier

graph for (
, T ). Let d be the graph distance between two points of X and set
BX (o, r) = {x ∈ X : d(o, x) ≤ r}. Assume that either S0(X) ⊂ 
 with

|(o, x)|T ≤ Dd(o, x)

or, more generally, that A0(X) ⊂ 
 with

|(x, y, z)|T ≤ D max{d(o, x), d(o, y), d(o, z)}.

Then there is a constant c1 such that

�1,
,u(v) ≥ c1r−1 for all v <
√|BX (o, r)|!

where u = |T |−11T is the uniform measure on the symmetric generating set T .

Remark 6.2 An acceptable lower bound on the spectral profile is obtained by applying
the general inequality �2,
,u(v) ≥ 1

2�1,
,u(v)2.

Remark 6.3 Note that the first case is actually covered by the second case. In the
first case where one can use the transpositions (o, x), a simpler direct proof using
comparisonwith the “transpose o and x” randomwalk can be given. It follows the same
line of reasoning described below for the second case. Note also that, in this general
setting, the distance assumptions made in this proposition are non-trivial assumptions
relating the geometry of (X , d) to the generating set T of 
.

Let N = |BX (o, r)|. Let μN be the uniform measure on all three-cycles (x, y, z)
with x, y, z ∈ BX (o, r). Regarding μN as a measure on AN (the finite alternating
group on N objects), we know that μ(t)

N converges to 2/(N !) as t tends to infinity. It is
well known that this walk can be analyzed in details in a way similar to what was done
for the random transposition walk in [15]. In particular, it is proved in [33] (see also
[24,32]) that there exists a constant C such that, for all t ≥ 2

3 N (log N + c), c > 0,

(N !/2)|μ(t)
N (id) − 1| ≤ Ce−2c.
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In particular,

μ
(tN )
N (id) ≤ (1 + C)

2

N ! , tN = 2

3
N log N .

Lemma 6.4 Fix ε ∈ (0, 1). There exists N0 such that for v ∈ (0, (N !)ε) and N ≥ N0,
we have

�1,AN ,μN (v) ≥ �2,AN ,μN (v) ≥ (1 − ε).

Proof Using the trace formula for the random walk with Dirichlet boundary condition
on a set U ⊂ AN , we have

μ
(t)
N (id) ≥ 1

|U | exp(−λ(μN , U )t)

where

λ(μN , U ) = inf
{EμN (φ, φ) : support(φ) ⊂ U , ‖φ‖2 = 1

}

is the lowest eigenvalue of δid − μN in U with Dirichlet boundary condition. In
particular,

λ(μN , U ) ≥ t−1
N (log(N !) − log |U | − log(2(1 + C))).

Since

�1,AN ,μN (v) ≥ �2,AN ,μN (v) = inf{λ(μN , U ) : |U | ≤ v}

the desired result follows. ��
Proof of Proposition 6.1 Consider the two probability measures u and μN on the
group 
. The hypothesis |(x, y, z)|T ≤ D max{d(o, x), d(o, y), d(o, z)} for x, y, z ∈
BX (o, r) and a simple comparison technique imply that

1

2

∑

h,g∈


| f (gh) − f (h)|μN (g) ≤ Dr
1

2

∑

h,g∈


| f (gh) − f (h)|u(g).

Hence the conclusion of Proposition 6.1 follows readily from the result stated in
Lemma 6.4 (here we choose ε = 1/2 in Lemma 6.4). ��

6.2 Example: pocket extensions based on Schreier graphs

Proposition 6.1 applies easily to the pocket extension based on a Schreier graph. Please
note that a given group G may be defined by any one of its actions on a variety of
different Schreier graphs. The finitely generated group
 defined by the rooted labelled
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Schreier graph (X∗, E∗, m∗) as in Example 3.4 obtained form a given rooted labelled
Schreier graph (X , E, m) that defines G is an object that depends not only on G but
on (X , E, m).

Let (X , E, m) be a rooted labelled Schreier graph defining a group G. Let 
 be the
finitely generated group defined by the rooted labelled Schreier graph (X∗, E∗, m∗)
(the pocket extension of (X , E, m)) as defined in Example 3.4.

Corollary 6.5 (of Proposition 6.1) Let V• be the volume growth function of (X , E, m)

at the root. Set V −1• (t) = inf{s : V•(s) ≥ t}. Let 
 be as above. We have

�1,
(v) � 1

V −1•
(

log(1+v)
log(1+log(1+v))

) , �2,
(v) � 1
[
V −1•

(
log(1+v)

log(1+log(1+v))

)]2 .

When specializing to the casewhen (X , E, m) is a Cayley graph ofG (inwhich case

 = G� is the pocket extension of G), this result is weaker than the result provided
by Theorem 4.10 (and Theorem 4.9. It is sharp only when the isoperimetric profile
�1,G of G satisfies �1,G(v) 
 1/V −1(v) where V is the volume growth function of
G. To be more explicit, if (X , E, m) is a Cayley graph of an amenable group G with
exponential volume growth then, obviously, V −1• (v) 
 log(1+ v). But there are such
groups G with profile �1,G 
 1/ f for function f that increases arbitrarily slowly
to +∞, e.g., any iterated logarithms is possible. See [12,17]. On the other hand, the
above result apply in much greater generality.

Remark 6.6 It is straightforward to generalize Corollary 6.5 to the rooted gluing of �

labelled Schreier graphs. The statement is the same with V• = max1≤i≤�{Vi } where
each Vi is the rooted volume function on (Xi , Ei , mi ).

6.3 Example: star extensions of a Cayley graph

Proposition applies nicely to the star extension
 = (G, S)� of a labelled Cayley graph
(G, S) (see Example 3.5). Indeed, in this case 
 = G � S(G) and if x = σ1 . . . σ� in
G, σi ∈ S ∪ S−1 then we can write the transposition (e, x) in the form

(e, x) = σ1tσ1 . . . σ�−2tσ�−2σ�−1tσ�
σ−1

�−1tσ�−1 . . . σ−1
2 tσ2σ

−1
1 tσ1 (6.1)

where

tσ =
{

ti = (e, si ) if σ = si

s−1
i ti si = (e, s−1

i ) if σ = s−1
i

This shows that the transposition (e, x) as length at most 8�. In other words, if x has
length |x |S in (G, S) then (e, x) has length atmost 8|x |S in (
, T )where T = S∪{ti =
(e, si ) : 1 ≤ i ≤ k}.
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Theorem 6.7 Let (G, S) be a labelled Cayley graph with volume growth function V
and V −1(t) = inf{s : V (s) ≥ t}. Let 
 = (G, S)� be its the star extension. Then we
have

�1,
(v) � 1

V −1
(

log(1+v)
log(1+log(1+v))

) , �2,
(v) � 1
[
V −1

(
log(1+v)

log(1+log(1+v))

)]2 .

The next result provides an upper-bound.

Theorem 6.8 Let (G, S) be a labelled Cayley graph. Let 
 = (G, S)� be its star
extension. Then we have

�p,
(v) � �p,G

(
log(1 + v)

log(1 + log(1 + v))

)

.

Corollary 6.9 (of Theorems 6.7-6.8) The star extension 
 = (G, S)� of any Cayley
graph (G, S) of a polycyclic group G satisfies

�p,
(v) 
 �p,G

(
log(1 + v)

log(1 + log(1 + v))

)

, p = 1, 2.

Proof of Theorem 6.8 To estimate �p,
 , we pick the finitely supported measure ν =
1
2 (ν1 + ν2) where ν1 is the uniform measure on S, the generating set of G viewed as a
subgroup of 
, and ν2 is the uniform measure on the k transpositions ti = (e, si ) also
viewed as elements in 
. Since 
 = G × S(G), we can try to use a test function of
the form

ψ(γ ) = 1V (τ )φ(g), γ = (g, τ ).

We pick φ to be a good test function for �p,G(v) so that U = support(φ) in G has
size at most v and

1

2|S|
∑

g∈G,s∈S

|φ(sg) − φ(g)|2 ≤ η
∑

g∈G

|φ(g)|2, η = 2�p,G(v).

We then pick

V =
⋃

s∈S

U−1s.

We give the details in the case p = 2 (the case p = 1 is very similar). Write

Eν(ψ,ψ) = 1

2

∑

γ,z∈


|ψ(zγ ) − ψ(γ )|2ν(z)
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= 1

4

∑

γ,z∈


|ψ(zγ ) − ψ(γ )|2ν1(z) + 1

4

∑

γ,z∈


|ψ(zγ ) − ψ(γ )|2ν2(z).

The first term in this sum is obviously equals to

|V |
4|S|

∑

g∈G,s∈S

|φ(sg) − φ(g)|2

which bounded below by η|V |
2 ‖φ‖22 = (η/2)‖ψ‖22. For the remaining term, write

1

4

∑

γ,z∈


|ψ(zγ ) − ψ(γ )|2ν2(z) = 1

4k

∑

g;τ ;1≤i≤k

|1V (g−1ti gτ) − 1V (τ )|2|φ(g)|2

Note that for g−1ti g is the transposition (g−1, g−1si ). It follows that when g ∈ U =
support(φ), g−1ti gτ and τ are supported either both in V or both in G \V . This means
that 1

4

∑
γ,z∈
 |ψ(zγ ) − ψ(γ )|2ν2(z) = 0. Thus we have found a function ψ such

that

Eν(ψ,ψ) ≤ η

2
‖ψ‖22

and which has a support of size at most (kv)!. This yields the desired result. ��
Remark 6.10 The upper bound on �p,
 , 
 = (G, S)�, can also be obtained indirectly
by noting that 
 is a subgroup of G� and using Theorem 4.9. It is to be noted that
Theorem 4.9 allows for starting with an arbitrary symmetric probability measure on G
but that the results concerning the star extension (G, S)� are obtained only for finitely
supported symmetric probability measures on G.

7 Pocket extension of Schreier graphs: the case of bubble groups

7.1 Bubble groups

The family of the so-called bubble groups was considered in [26]. See also [4,37].
Let a = (a1, a2, ...) and b = (b1, b2, ..) be two natural integer infinite sequences.

The “bubble group”
a,b is associatedwith the tree like bubble graph Xa,b were Xa,b is
obtained from the rooted treeTb with forward degree sequence (1, b1−1, b2−1, . . . )
as follows. Each edge at level k ≥ 1 in the tree (we make the convention that the level
of an edge is the level of the child on that edge) is replaced by a cycle of length
2ak called a bubble. See Figs. 5, 6 and 7. Each vertex at level k ≥ 1 (we ignore the
root which is now part of a circle of length 2a1) is blown-up to a bk-cycle with each
vertex of this cycle inheriting one of the associated 2ak+1-cycle. These bk-cycles are
called branching cycles. Finally, at each vertex which belong only to a bubble (but
not to a branching cycle), we add a self loop. The vertex set of the graph Xa,b can be
parametrized using pairs (w, u) with w a finite word in
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Fig. 5 A piece of the labelled Schreier graph of an infinite bubble group with a = (a1, a2, . . . ), b =
(3, 3, 3 . . . )

Fig. 6 Sketch of the Schreier graph X : levels, b(w),mk . Details of the red circle region are shown in Figure
7

Fig. 7 Sketch showing N(1k−2, r), mk

{∅} ∪ (∪∞
k=1{1, . . . , b1 − 1} × {1, . . . , b2 − 1} × · · · × {1, , . . . , bk − 1})

and u ∈ {0, . . . , 2ak+1 − 1} if |w| = k. By definition, the vertex o = ∅ is the root.
In the graph Xa,b, we call “level k” the set of all the vertices (w, u)with |w| = k−1,

0 ≤ u ≤ 2ak − 1. If all the ak are distinct, this is the set of all vertices that belong to
a bubble of length 2ak . We say that a branching cycle is at “level k” if it is attached
at the far end (i.e., furthest away from o) of a level-k bubble. Note that the vertices of
any branching cycle at level k are parametrized as follows:

• (w′, ak) with |w′| = k − 1 for the vertex closest to the root o, a vertex which also
belongs to a level-k bubble,
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• (w′z, 0) with z ∈ {1, . . . , bk − 1} for the other vertices on that branching cycle,
each of which also belongs to a level-(k + 1) bubble.

We let

b(w′) = {(w′, ak), (w
′1, 0), . . . , (w′(bk − 1), 0)}

denote the branching cycle at (w′, ak).
Having chosen an orientation along each cycle (say, clockwise), we label each edge

of the bubble with the letter a and each edge of the branching cycle with the letter b.
The group 
a,b is a subgroup of the (full) permutation group of the vertex set of

Xa,b generated by two elements α and β. Informally, α rotates the bubbles whereas
β rotates the branching cycles. Formally, the action of the permutation α (resp. β) on
any vertex x in Xa,b is indicated by the oriented labeled edge at x labelled with an
a (resp. a b). Obviously, we can replace the edge labels a, b with the group elements
α, β, once these are defined.

These groups are somewhat mysterious. We know they have exponential volume
growth when all bi are at least 3, that the groups 
a,b are non-amenable when both
sequence a,b are bounded and that they are amenablewhen lim inf ai = ∞. Typically,
their isoperimetric and spectral profiles are not precisely known (modulo the usual
equivalence relation 
). A more detailed description is given in [37] and also in [4],
especially the appendix of this paper written by Nicolas Matte Bon. Here we will
focus in the case when the sequence b = (3, 3, 3, . . . ) and the sequence ai is strictly
increasing. The main case of interest for us is when ai ≈ 2κi for some fixed parameter
κ ∈ (0,∞). Because we only consider the case b = (3, 3, 3, . . . ), we will use the
simplified notation Xa, 
a. We equip 
a with the symmetric probability measure u
which is the uniform measure on {α±1, β±1} and with the associated Dirichlet form
Eu (multiplication on left).

For simplicity of notation, we assume throughout that each entry ai of the sequence
a is divisible by 4. Set

N(w, r) = {x ∈ X : d(x, b(w)) ≤ r}, w ∈ {1, 2}(∞), r > 0.

For any k ≤ j , w of length |w| = j and 0 ≤ r ≤ ak−1 − 1, we have an obvious
bijective map

ιwk : N(w, r) �→ N(1k−1, r)

which can be used to identify these vertex sets. For a given level k, we set

mk = (1k−1, ak/2), Bk(l) = {x ∈ X : d (x,mk) ≤ l} , 0 ≤ l ≤ (ak/2) − 1.

7.2 Construction of test functions on 0a and the pocket extension of its Schreier
graph

Definition 7.1 For each k ≥ 8 and � ∈ (0, (ak/2) − 1), consider the set Uk(�) of all
elements g ∈ 
a such that there exists a sequence γ1, . . . γq ∈ {α±1, β±1} such that
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g = γq . . . γ1 and, for all 1 ≤ j ≤ q, γ j . . . γ1mk ∈ Bk(�). For any s ∈ {0, 1, . . . , �k},
with �k = (ak/4) − 1, define ψk on 
a by

ψk(g) =
{

0 if g /∈ Uk(�k)

(1 − s/�k)+ if g ∈ Uk(�k) and d(mk, gmk) = s.

Lemma 7.2 The function ψk satisfies

‖ψk‖22 = 2�k + 2 + 1/�k

3(2�k + 1)
|Uk(�k)| and E(ψk, ψk) = 1

2�k(2�k + 1)
|Uk(�k)|.

In particular

Eu(ψk, ψk)

‖ψk‖22
≤ 3

2�2k
.

Proof The sets Uk(�k, t) = {g ∈ Uk(�k) : gmk = αtmk}, t ∈ {0,±1, . . . ,±�k}, form
a partition ofUk(�k) and they all have the same cardinality because one can check that
α−tUk(�k, t) = Uk(�k, 0) (by inspection, for g in Uk(�k, t) with the given restriction
on t , the action of α±1 of gmk is a simple shift along the given cycle). It follows that

‖ψk‖22 = |Uk(�k, 0)|
∑

−�k≤t≤�k

(1 − t/�k)
2

= 1

3
(2�k + 2 + 1/�k)|Uk(�k, 0) = 2�k + 2 + 1/�k

3(2�k + 1)
|Uk(�k)|,

and

8Eu(ψk, ψk) =
∑

g

(|ψk(αg) − ψk(g)|2 + ψ(α−1g) − ψk(g)|2)

=
∑

−�k≤t<�k

(1/�k)
2|Uk(�k, 0)| +

∑

−�k<t≤�k

(1/�k)
2|Uk(�k, 0)|

= 4

�k
|Uk(�k, 0)| = 4

�k(2�k + 1)
|Uk(�k)|.

��
In order to use Lemma 7.2 to estimate the spectral profile, we need to estimate from

above the size of the support of ψk . Set sk = ∑k
1 a j

Lemma 7.3 For any k ≥ 8, any element g ∈ Uk(�k, 0) ⊂ 
a, viewed as an element of
S(Xa), is the product of permutations supported in the disjoint finite sets B(o, sk−1 +
�k) and N j (w, �k), |w| ≥ k. Moreover, The factor supported in N(1k, �k) determines
uniquely all the factors supported one each N(1k, �k), |w| ≥ k, via the isomorphisms
ιwk+1 : N(w, �k) → N(1k, �k). In particular,

|Uk(�k, 0)| ≤ (|B(o, sk−1 + �k)|!) × (|N(1k, �k)|!).
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Fig. 8 Sketch of the Schreier
graph X∗

a used to define 
̃a

Proof Let g = γq . . . γ1 ∈ Uk(�k, 0). From the definition of Uk(�k, 0), it follows that,
for any w with |w| = j − 1 ≥ k − 1, each of the bubble segment

Ik(w) = B((w, a j/2), a j/2 − �k − 1)

centered at the middle points (w, a j/2) and of radius a j/2−�k −1 are left point-wise
invariant by g. In fact, each of these segments is moved as a block throughout the
sequence of steps γ j . . . , γ1, 1 ≤ j ≤ q without escaping the full bubble segment
containing (w, a j ). Moreover, the translations of these segments are all following the
moves of the pointmk = (1k−1, ak/2). This implies that these segments acts as buffers
restricting the action of g on points belonging to the various "connected components"
of the complement of the union of these segments. Namely, the action of g has to
internal on each of these components. The statement of the lemma captures this fact
and enumerate these components. ��

We now turn to the treatment of the pocket extension of Xa. Let us call the resulting
group 
̃a. It is defined by the labelled graph X∗

a depicted schematically on Figure 8 and
generated by three elements τ, α, β. The transposition τ transposes the new vertex ∗
and the root o of Xa. It act trivially at each of the other vertices (each carry a self-loop
labelled τ ). At the new vertex ∗, the labellings a and b are carried by self-loops, i.e.,
α and β act trivially at ∗.

From this description, it should be rather obvious that exactly the same argument
use for 
a applies to 
̃a modulo some very small adaptation. For clarity, we give
explicitly the definition of the the test functions for 
̃a. When working with 
̃a, the
symmetric probability measure u is the uniform measure on {τ, α±1, β±1}.
Definition 7.4 For each k ≥ 8 and � ∈ (0, (ak/2) − 1), consider the set Ũk(�) of all
elements g ∈ 
̃a such that there exists a sequence γ1, . . . γq ∈ {τ, α±1, β±1} such that
g = γq . . . γ1 and, for all 1 ≤ j ≤ q, γ j . . . γ1mk ∈ Bk(�). For any s ∈ {0, 1, . . . , �k},
with �k = (ak/4) − 1, define ψ̃k on 
a by

ψ̃k(g) =
{

0 if g /∈ Ũk(�k)

(1 − s/�k)+ if g ∈ Ũk(�k) and d(mk, gmk) = s.

Lemma 7.5 The statements of Lemma 7.2 and Lemma 7.3 apply to the functions ψ̃k

on 
̃a after replacing Xa by X∗
a and Uk(�) by Ũk(�). Note also that in the present

case, the ball B(o, r) is a ball in X∗
a and thus contains the extra vertex ∗.

Remark 7.6 It follows from Lemma 7.5 that we have exactly the same upper-bound
on the spectral profiles of the group 
a and 
̃a. Comparing with the results in [37],
this is also essentially the same upper-bound as for the permutation wreath-product
Z �Xa 
a.
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Let Va(t) = |B(o, t)| the volume of the ball or radius t at the root on Xa. This
volume is given by

Va(t) =
k−1∑

1

2a j2
j−1 + 2(t − sk−1)2

k−1 for sk−1 ≤ t ≤ sk .

This is the quantity that play a role when applying Corollary 6.5 to obtain a lower
bound on the isoperimetric and spectral profiles of 
̃a. Namely,

�1,
̃a
(v) ≥ c

r
whenever v ≤ √

Va(r)!

which gives

�1,
̃a
(v) � 1

V −1
a (

log(1+v)
log(1+log(1+v))

)
where V −1

a (v) = inf{s : Va(s) ≥ v}.

The upper bound on �2,
̃a
(v) obtained above is based on the functions

Wa(t) =
k−1∑

1

2a j2
j−1 + (ak/2)2

k−1 for ak−1 < 2t ≤ ak

and

Aa(t) = ak/2 for ak−1 < 2t ≤ ak .

It reads

�2,
̃a
(v) ≤ C

r2
whenever v ≥ (Wa(r)!)(Aa(r)!).

Because the factor Aa(r)! is much smaller than the other factor and r is on the scale
of log v, this gives

�2,
̃a
(v) ≤ C

[W −1
a (

log(1+v)
log(1+log(1+v))

)]2 where W −1
a (v) = sup{s : Wa(s) ≤ v}.

Taking into account the left-hand side inequality in (3.2), the lower bound on the
isoperimetric profile and the upper-bound on the spectral profile match-up rather well
as long as ai 
 si (i.e., the sum si is approximately equal to it last term ai ). In the
following theorem, we focus on the case when ai 
 2κi for some κ ∈ (0,∞). In this
case, we have si 
 ai and

Va(r) 
 Wa(r) 
 r
κ+1
κ .
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Theorem 7.7 Let 
̃a be the group associated with X∗
a , the Schreier graph pocket exten-

sion of Xa. Under the assumption that ai 
 2κi for some κ ∈ (0, 1), the isoperimetric
and spectral profiles satisfy

�1,
̃a
(v)2 
 �2,
̃a

(v) 

(
log(1 + log(1 + v))

log(1 + v)

)2κ/(κ+1))

.

The return probability function �
̃a
satisfies

�
̃a
(n) 
 exp

(
−n

κ+1
3κ+1 (log n)

2κ
3κ+1

)
.

It is perhaps surprising that the behavior of �p,
a , p = 1, 2, and of �
a , for the
bubble group 
a itself are not yet entirely understood. Because 
a is a subgroup of 
̃a
(and because the same arguments apply directly in both cases), �p,
a � �p,
̃a

and
�
̃a

� �
a .
Regarding the sequence a = (ai ) that defines Xa, 
a and 
̃a, it is possible to obtain

relatively good results for sequences a growing faster a than 2κi . See [37] for related
computations. Understanding the behavior of random walk on 
a and 
̃a when the
growth of a is slower than exponential appears to be a harder challenge. The method
explained here provides upper and lower bounds for�p,
̃a

and�
̃a
but theses bounds

do not match. Again, see [37] for related computations.
Data sharing not applicable to this article as no datasets were generated or analyzed

during the current study.
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