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Abstract

We study the isoperimetric and spectral profiles of certain families of finitely generated
groups defined via actions on labelled Schreier graphs and simple gluing of such. In one
of our simplest constructions—the pocket-extension of a group G—this leads to the
study of certain finitely generated subgroups of the full permutation group S(G U {x}).
Some sharp estimates are obtained while many challenging questions remain.

Mathematics Subject Classification Primary 60J10; Secondary 60F99 - 20F65

1 Introduction
1.1 A short historical perspective

The term random walk was introduced in a short note in the form of a question that
Karl Pearson sent to the journal Nature in 1905. The random walk in question took
place in the plane. In the second edition of Le Calcul des Probabilités, published in
1912, Henri Poincaré discusses the mixing of cards produced by repeated shuffles
and explains how it is modeled by repeated multiplications of random elements in a
permutation group. In 1921, Geoge Pdlya famously considered the dichotomy between
recurrence and transience in the context of simple random walk on a d-dimensional
grid. In 1940, Kioshi Ito and Yukiyosi Kawada considered repeated convolutions on
compact groups. By the 1950’s, the concept of random walks in d-dimensional space
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and on discrete lattices in d-space was well established. In 1950, Mark Kac won his first
of two Chauvenet Prizes for an article titled Random Walk and the Theory of Brownian
Motion published in the Monthly three years earlier. Also in 1950, Dvoretzky and Erdos
wrote Some Problems on Random Walk in Space for the second Berkeley Symposium
on Mathematics Statistics and Probability. Except for sporadic interest in card shuffling
problems and a few other isolated works, it is hard to find any reference before 1958
where multiplying random elements of a non-commutative group is mentioned.

In the summer of 1956, Harry Kesten—who was then a student in Amsterdam—wrote
to Mark Kac. He asked if he could come to Cornell to work under Kac’s supervision.
A fellowship was offered and Kesten came to Cornell that fall. In the spring of 1958,
he defended his thesis titled Symmetric Random Walks on Groups. The first sentence
reads:

Let G be a countable group and let A = {ay, az, ...} (a; € G) generate G. Consider
the random walk on G in which every step consists of right multiplication by a; or its
inverse ai_l, each with probability p; (p; > 0,25, pi = 1).

Kesten goes on to explain that the paper is concerned with the relations between
properties of the highest eigenvalue A(G) of the associated linear operator on £%(G)
and the structure of the group (Kesten uses the shorthand notation A(G) when it is
clear which random walk is considered). The final section (Sect. 5) discusses some
open problems including the following:

As mentioned in §3, it would be interesting to find all groups with A(G) = 1.
Especially, since for every finite group, the spectrum contains 1. A weak form of
the Burnside conjecture would be: “If G is finitely generated and every element has
bounded (or more general, finite) order, then M(G) = 1.” This would readily follow
if one could prove the converse of Corollary 3, i.e., “If G has no free subgroups on
more than 1 generator, then A(G) = 1.” However, the author was unable to prove or
disprove this. If this converse of Corollary 3 is not true, however, it might be possible
to construct a group G in which every element has finite order but A(G) < 1.

The paper end with:

Note added in proof. Since this paper was submitted, the author proved that A(G) =
1 is equivalent to the existence of an invariant mean on G (cf. Full Banach mean values
on countable groups, Math. Scand. vol. 7 (1959)). It seems that the Burnside conjecture
has been disproved recently in Russia.

These direct quotes form Kesten’s paper leave no doubt that his work introduced
the subject of random walks on groups with a strong emphasize on (a) understanding
random walks on groups in general and (b) understanding the relations between the
behavior of random walks and the structure of the underlying group. The last sentence
of the “note added in proof™ refers to P.S. Novikov’s 1959 announcement that the Burn-
side group B(m, n) is infinite for n odd, n > 71. This announcement was premature.
Only in 1968 did Adyan and Novikov succeed to prove that B(m, n) is infinite for n
odd, n > 4381. See http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Burnside_
problem.html for a brief history of the Burnside Problem.

The first author learned directly from his colleague Harry Kesten that the subject
of Kesten’s Ph.D. thesis evolved from a very specific question suggested by Mark
Kac. This question was perhaps related to a problem considered in 1954 by Richard
Bellman in [10], Limit theorems for non-commutative operations. I. The Mathematical
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Reviews entry for this article was written by J. Wolfowitz, one of the Cornell faculty
who interacted with Kesten during his time as a graduate student. Kac’s question
concerned the behavior of some sort of dynamics that switches randomly between two
2 by 2 matrices. There is no trace of this question in Kesten’s thesis although he would
come back to the related problem of the study of products of random matrices in his
famous joint work with H. Furstenberg which was initiated when both where visiting
Princeton in 1958/59.

It is notable that Kesten’s thesis does not introduce random walks on groups as a
generalization of random walks on the d-dimensional grid. The text gives no references
to such works (e.g., no references to Pélya and subsequent works). It is also curious that
the paper does not use the term convolution at all and only rarely appeals explicitely
to the multiplication law of the group! E.B. Dynkin and M.B. Malyutov (1961), and
G. Margulis (1966), wrote important related papers in the following years. Neither
cites Kesten’s thesis but Kesten reviewed both papers for Mathematical Reviews. The
famous little book Probabilities on Algebraic Structures published by Ulf Grenender in
1963 gives only marginal attention to Kesten’s work (Section 5.5.3 and related Note).

It seems fair to say that Kesten’s thesis did not immediately find an audience,
especially in the probability community. During the 1960s, it attracted the atten-
tion of people interested in ergodic theory, non-commutative harmonic analysis,
and functional analysis, such as M.M. Day and H. Furstenberg, and of Marcel-Paul
Schiitzenberger who was interested in formal languages. Kesten himself became inter-
ested in random walks on abelian groups, a subject on which he collaborated with
his Cornell colleague and close friend F. Spitzer. Kesten’s contribution to the fifth
Berkeley Symposium on Mathematics Statistics and Probability (1965), The Martin
Boundary of Recurrent Random Walks on Countable Groups, is the rare instance
when Kesten revisited the subject he created in his thesis. The famous question
known as Kesten’s Problem—Which are the finitely generated groups that carry a
non-degenerated recurrent random walk?—Are those groups only the finite exten-
sions of {0}, Z and Z??—emerged from this article.

During the next decade (1970s), a group centered in France (A. Avez, E. Derriennic,
Y. Guivarc’h, M. Keane and B. Roynette, encouraged by A. Brunel, and later, P. Baldi,
Ph. Bougerol, and others) explored a variety of important questions around random
walks on groups. The volumes [13,23] give a representative picture of these efforts.
In particular, Kesten’s problem was resolved affirmatively in the context of connected
Lie groups. The extend of the differences between this particular context and the
context of finitely generated groups was perhaps not entirely apparent at the time. The
contributions of J. Rosenblatt during the seventies should also be mentioned here.

It is during the 1980s that the subject of Random Walks on Groups took off thanks
to remarkable progress and contributions. Using an amenability criterion based on co-
growth developed by R. Grigorchuck (a criterion that parallels Kesten’s amenability
criterion), Adyan proved in 1982 that many Burnside groups are not only infinite but
non-amenable. In 1983, V. Kaimanovich and A. Vershik published an elegant and
influential article in the Annals of Probability which, as the following quote makes
clear, expands on Kesten original vision of the subject:

Probabilistic properties of random walks on groups are deeply intertwined
with many essential algebraic characteristics of groups and their group algebras
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(amenability, exponential growth, etc.). On the other hand, random walks on groups
regarded as a special class of Markov processes provide new simply describable exam-
ples of nontrivial probabilistic behavior. Both these aspects make the subject especially
interesting and important.

M. Gromov had proved in 1981 that any finitely generated group with polynomial
volume growth contains a nilpotent group of finite index. A few years later, R. Grig-
orchuck proved that groups of intermediate volume growth, that is, volume growth
that is faster than any polynomial but slower than any exponential, exist and are, in
fact, plentiful. When, around 1985, N. Varopoulos established a sharp relationship
between volume growth of the type V (r) > cr¢ and the decay of the return probabil-
ity of the type P ig(X,, = id) < C n—4/2 (where id = idg denotes the identity element
in G), he provided the solution to Kesten’s problem: because of the recurrence crite-
rion Y_ Piq(X, = id) = oo and Gromov’s theorem, the only finitely generated groups
that carry a non-degenerate recurrent random walk are the finite extensions of {0}, Z
and Z2.

Before these developments, the subject of Random Walk had been strongly
influenced by areas of mathematics such as ergodic theory, harmonic analysis, repre-
sentation theory, and the theory of Markov processes. This had left only a marginal
role to what should have always been one of the main actors, group theory. Indeed,
Lie groups and matrix groups—objects that are completely absent in Kesten’s original
work-had taken a preeminent role. Little attention was given to finitely generated
groups beyond the key example of free groups and a few other special cases. This
changed drastically during the 1980s thanks in part to the attention given to geometric
group theory through the influential work of M. Gromov. For random walk theory, this
had the momentous effect to bring back group theory —be it geometric group theory
or combinatorial group theory—to the center of the stage.

Here are some of the key interrelated questions that have emerged from this body
of work:

e What is the structure of sets of harmonic functions (bounded, positive, of polyno-
mial growth, of a given growth type, slow, or fast)? Here, harmonic functions are
solutions u of the equation u * = u where p is a given probability measure on
G.

e What are the spectral properties of the convolution operator f +— f % u when u
is a (symmetric) probability measure?

e Whatis the behavior of the probability of return of a symmetric random walk driven
by a measure u, Pig(X, =id) = ,u,(")(id), and, more generally, the behavior of
max{u (g) : g € G} for non-symmetric measures?

e What is the escape behavior of transient random walks captured, say, in terms of
some given distance function and in the form of average displacement or almost
sure results?

e What is the asymptotic entropic behavior, that is, the behavior of n
E(—log 1™ (X,)) as n tends to infinity?

In general, these questions can be phrased by asking: What is the influence of the
structure of the group G on the random walk behavior? How does the answer depend
on basic properties of ; such as symmetry or moment assumptions? Can some random
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walk behaviors (for classes of random walks on a group G) be deemed group invariant?
What properties of G can be understood by observing random walk behaviors? Can
random walk behavior be used to understand groups better? In each of these directions
of research, many interesting natural questions remain open.

We end this short historical perspective with some pointers to recent progress in
the directions outlined above. Further references are found in the listed articles. Some
recent results on harmonic functions and group structure are in [2,4,5,7,19,21,22,26].
Entropy and/or displacement are discussed in [1,6,12,16,27,29]. Probability of return,
spectral and other properties are discussed in [3,8,9,11,20,35-37].

The present work is devoted to the study of the behavior of random walks on
groups that arise from a certain type of rather simple and basic combinatorial/algebraic
construction. These groups are, in a natural particular way, subgroups of permutation
groups on infinite countable vertex sets. Our key example is the pocket group Gg
built on the finitely generated group G. It is the subgroup of S(G U {x}) generated by
all translations by elements in G (by definition, these permutations fix *) and by the
transposition T = (x, idg).

2 Spectral and isoperimetric profiles of pocket extensions

To any finitely generated group, one can associate the monotone non-increasing func-
tions

A1,6, A2.g and D¢

which, respectively, describe the L'- and L?-isoperimetric profiles and the return
probability (or heat kernel decay) associated with the group G (precise definitions are
recalled below in Section 3.2). From a coarse analysis point of view which we briefly
recall below, these are group invariants in the sense that they do not depend on the
particular choice of the symmetric finite generating set that is used to define them.
Celebrated Theorems due to Fglner and Kesten assert that the dichotomy between
amenable and non-amenable groups can be captured precisely using any one of these
three invariants: A group is non-amenable if and only if A1 ¢ (equivalently, Az g) is
bounded below away from 0, and this is also equivalent to having ® s decay exponen-
tially fast.

This paper focuses on these invariants and how they depend on the structure of the
underlying group in the context of several constructions which yield amenable groups
based on the gluing of some basic actions. See Sect. 3.2 for details. To put this work
in perspective, recall that among polycyclic groups or (almost equivalently) finitely
generated discrete amenable subgroups of linear groups, the behaviors of Ay g, A2.G
and ®¢ are well understood and fall in exactly 2 possible categories (the meaning of
the notation =~ used below is spelled out at the beginning of Sect. 3.2):

e The polycyclic group G has exponential volume growth and

A1) = Ar6(v) = and ® (n) ~ exp(—n'/?).

[log(1 + v)]?
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e The volume growth Vi satisfies Vg (r) >~ (1 + r)? for some integer d and
Ac()? = Arg() =~ (14+v) Y4 and dg(n) ~ (1 +n)~9/2.

These can be considered as the “classical” behaviors. See [39] for the description of
a larger class of groups for which only these behaviors can occur.

By now it is well-understood that, for more general groups, other behaviors can
occur. See, e.g., [18,30,34,40]. One of the first and most popular example of construc-
tion that demonstrates the existence of other possible behaviors is the lamplighter
group (Z/27) : G with base G. Here G is a finitely generated group and (Z/27Z) : G
is the semi-direct product

(2)27) @ xq G

where (Z/27)'9) = @4c6(Z/27), is the direct sum of countably many copies of
(0,1} = Z/27 (i.e., (Z)27)©) is the group of all binary sequences indexed by G
with finitely many non-zero entries). The action of G on these binary sequences is
by index translation (i.e., for & € G, a(h)((ng)geG) = (né)geg with 17;, = -1
g € G). This s a special case of a more general construction known as wreath product.
To simplify notation, let G* = (Z/2Z) 1 G be the lamplighter group with base G.

Works by A. Erschler [18], by C. Pittet and the first author [30], and by the present
authors [36], describe how to compute the invariants A; . ([18]), A, g, ([36]), and
@ ([30,36]) as functions of the corresponding invariant for G. In particular,

Ap () 2 Ap glog(l+v)), v>0, p=1,2.

The goal of this paper is to provide similar results for a variety of related but
different constructions. Any countable group G can be viewed as a subgroup of the
group S(G) of all permutations of the set G. Namely, an element 2 € G is viewed as the
permutation g — hg. The group S(G) is very large (not finitely generated and, indeed,
uncountable) and it contains many finitely generated groups that contain G. We are
interested in certain of these finitely generated subgroups of S(G) which have G both
as a subgroup and as a quotient, and which arise from some particular constructions
that provide explicit generators. One variant of this type of constructions—which we
call the pocket extension—is as follows. Let G be a finitely generated group with
identity element idg. Add a new element, *, to the countable set G to form the set
G U {x} (this is not a group). The pocket group G is the subgroup of S(G U {x})
generated by all translations by elements in G (by definition, these permutations fix
x) and by the transposition T = (x, idg). To understand what this means, view any
element in S(G U {*}) as a marking of G U {*} by itself. A translation by an element &
of G leaves the marker at * unchanged and move the marker at g € G to hg € G. The
transposition t simply transposes the markers at * and e. This is consistent with the
view that permutations of a deck of cards are described by their action on the positions
of the cards. We prove that
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log(1 + v)
log(1 4 log(1 + v))

AP,G®(v):AP,G( ) v>0, p=1,2

This is the same behavior as the known behavior for the wreath product G : G. Other
constructions of this type are described in Section 3.1.

3 Preliminaries
3.1 Groups defined by labelled graphs and gluings

In what follow, S(X) denotes the full symmetric group of the set X whereas
So(X), Ag(X) denote, respectively, the group of all permutations of X with finite
support and the alternating subgroup of permutations of X with finite support which
are of even type (signature 1).

Let (X, E) be a graph where the edge-set E is equipped withamap¢ : E — X x X,
¢(e) = (x(e), y(e)) (this map describes the edge e as a pair of vertices, allowing for
multiple edges and self loops). We assume that there is an involution e — ¢& with no
fix points and such that ¢ (¢) = (y(e), x(e)). Assume that X is finite or countable and
that (X, E) is regular of degree 2k in the sense that for each x € X there are 2k edges
in E such that x(e) = x. Let A = {a; : | < i < k} be an alphabet with abstract
inverse A~ = {ct;1 :1 <i <k}. Alabelling of (X, E)isamapm : E — AUA™!
such that m(¢) = m(e)~". Call (X, E, m) a labelled graph.

Any such labelled graph defines a finitely generated group I' = I'(X, E, m), sub-
group of the full symmetric group of X, S(X), and generated by k elements «;,
1 < i < k, and their inverses. By convention, think of an element of 0 € S(X)
as a rule to move around distinct markers seating above each vertex in X. An element
o tells us, for each x, where to move the marker currently at x. When describing an
element o, we say that ¢ moves x to y to signify that it moves the marker at x to y
(of course, o also moves the label at y to somewhere else). This is consistent with the
fact that we can always describe a given o by its action on the trivial self-labelling of
X by markers in X.

The action of each aiil on the elements of X is given by the labelling in the sense that
o -x = yif and only if there is an edge e labelled with & and such that ¢ (e) = (x, y).
In practice, it is often convenient to indicate only the edges labelled by o;, 1 <i <k.
For each of these there is an “inverse edge” labelled by the corresponding «; ! which
is omitted. All self loops are also omitted because they can be recovered from the rest
of the labelling. To figure out the action of the product epr; on a vertex x, follow the
edge at x labelled o1 and from there, follow the edge labelled «;. Proceed similarly
for longer products.

We are interested in a very basic gluing procedure which we now describe. Consider
two labelled graphs (X;, E;, m;) as above (with distinct alphabets of possibly different
sizes k1, k2), and subsets V| C X1, Vo C X equipped with a bijective map j : V| —
V,. Let (X, E, m) be the the labelled graph of degree 2(k; + k») obtained by gluing
(X1, E1,my) and (X», E», mp) via the identification of the vertices in V| with the
vertices in V5 (using the bijective map j) and adding appropriate labelled self-loops at
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Fig. 1 First step (Houghton group): ¢ in blue, 7, in red. The color of a dot indicates the presence of a loop
labelled with the associated generator

Fig.2 Second step (Houghton group): #1 in blue, #; in red, 73 in green. Each vertex except the central vertex
carry a loop labelled with the generator associated with the given color

all vertices outside V| = V,. Obviously, one can glue together more than two labelled
graphs along different sets and this can be achieve by repeating the above procedure
sequentially.

Example 3.1 (Houghton group) See Figs. 1 and 2. In this example (it first appeared
in [25], hence the name), we glue together three copies of the Cayley graph of Z
with canonical generators t1, t2, t3. Using the previous description, we start with two
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copies (1), (t2), and identify these two copiesof Z = {..., =2, —1,0, 1,2, ... }along
their respective subsets {..., —2, —1, 0} to obtain an infinite tripod with one branch
carrying double edges labelled 1, t, one branch carrying simple edges labelled #;
and self-loops labelled 7, and the last branch carrying simple edges labelled #, and
self-loops labelled #. See Fig. 1 (recall that we only describe one half of the labelling,
that is, we omit the description of the “inverse edges” labelled —1;).

Next, we glue a third copy of Z = (t3) by identifying Ot3 with the already identified
0t; = 01, the points nt3, n > 0, with nt,, and the points nt3, n < 0, with the points
—nty. See Fig. 2.

Call Y the vertex set so obtained. The group H3 is defined by the labelled graph
with vertex set ¥ and 3 generators and their marks as described above. Note again
how in Fig. 2 we have omitted all the “inverse edges” and that it is a trivial matter to
recover them. In this case, we have actually indicated the existence of self-loops at
each vertex by using the color code associated with the generators. But observe that
we could have drawn all vertices black instead because the loops can be recovered
from the rest of the labelling.

The group H3 can alternatively be described as the group of those permutations
of Y which reduce to an eventual translation along each of the ends of Y. Indeed,
call R; the half-ray on which # acts trivially, i = 1,2, 3, and orient each of these
three half-rays in the direction moving away from o. By recording the far away effect
of any element ¢ of H3 along each of the rays, we obtain a group homomorphism
¢ : Hz — 77 satisfying

¢(t1) = (0,1, =1), ¢(2) = (1,0, =1), ¢(13) = (=1, 1, 0).

The image of this map is the subgroup ¥ of 73 of those elements n = (n1, n2, n3)
satisfying Zf n; = 0 and we have a short exact sequence

1> So) > Hs 5 x5 1

and So(Y) = [H3, H3]. See, e.g., [28] and the references given therein.

The careful reader will have noticed that the second step of the construction above
was unnecessary. The group I' obtain after the first step and generated by ?1, #5 is
already the group Hs.

Example 3.2 (Variation on the Houghton group) Instead of gluing the first two copies
of Z along the negative integers, let us glue then along their respective subset {—1, 0}.
In a second step, let us glue the third copy of Z = (f3) by identifying Otz with the
already identified 0 = 0fp, —1#3 with 171, and 173 with 1#,. This gives us a graph
made of three copies of Z glued together along a length 1 tripod centered at the central
point 0. See Figure 3. If we call Y the associated vertex set (it has six linear ends) and
let I" be the associated group, we have the short exact sequence

15 So¥) >T 37351
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>

Fig.3 Sketch of the gluing of three copies of Z along a length 1 tripod centered at 0

and [[', '] = Sp(Y). Here ¢ associates to any element y of I' the three eventual Z
translations observed at infinity along the three pairs of ends of Y associated respec-
tively to t1, t2, and #3.

Example 3.3 (Rooted gluing) Suppose we have two or more labelled graphs
(Xi, Ei,m;), i = 1,2,...,¢ (each with their distinct labellings) and a preferred
vertex o;. Let (X, E, m) be the labelled graph with vertex set X = (Uf Xi\{oi}) U{o}
corresponding to identifying the points o1, 02, . . ., 0¢. One can check that the associ-
ated group I" contains a copy of each I'; where I'; is the group defined by (X;, E;, m;)
and also a copy of Ag(X) which can be identified as

Ag(X) = ([T, T;1" i # ).

Sometimes, I will in fact contains the full symmetric group with finite support So(X),
for instance, when one of the I'; contains an odd permutation with finite support.

In the case where the labelled graphs (X;, E;, m;) are labelled Cayley graphs of
infinite groups I';, each rooted at the identity element idr,, then there is an obvious
projection I' — I'y x - - - x I'y which captures the action of an element y € I" on each
I'; at infinity and whose kernel is Ag(X). We note that the group I' resulting from
this construction does not depend on the choice of the generators of the groups I';,
1<i<dt.

Example 3.4 (Pocket extension) One of the simplest classes of examples of this type
is obtained by joining a rooted labelled graph (X, E, m) with the Cayley graph of the
two-element group {id, *} with generator x. Let (X*, E*, m™) be the resulting labelled
graph. In general, this basic example is already too complex to be analyzed completely
and we will only provide some partial results.

We will however give sharp general results in the case when (X, E, m) is the labelled
Cayley graph of an infinite finitely generated group G equiped with a finite generating
set S. In this case, X* = G U {*} and the associated group is

Ge =G X So(G U {x}).
In the case when G is finite, Gg = S(X™) and this construction leads to interesting

generating sets of the symmetric group. This finite case is discussed in a forthcoming
paper [38].

@ Springer



Isoperimetric profiles and random walks on some groups...

>
e % e

0"."."."."0"0".".1-"."."."o"o
R i e e e I T AR e s
e 1

w YO

Fig.4 The labelled graph defining the star-extention of Z; sTL = 41,7 =(0,1). The green dots mark the
elements 0 and 1 in Z. The black dots carry extra loops associated with the trivial action of t and t—1. The
edges between 0 and 1 associated with t—! are not included in the picture

Example 3.5 (Star extension of Cayley graphs) Compare the following construction
to the pocket extension construction discussed above. Let (X, E, m) be the labelled
Cayley graph associated to a group G with finite generating set S = {sftl, e s,ﬁcl}
and labelling alphabetsy, . . ., si. The simplest way to define the star extension (G, S),
of G is as a subgroup of S(G) (the group of all permutations of the elements of G).
Namely, (G, S). is the subgroup of S(G) generated by all the left-translation by
elements of G and by the k transpositions * transpose the identity id and s (which
really means, transpose the marker at id with the marker at si). To obtain this group as
the group generated by a label graph, let (X,, E., m,) be the labelled graph obtained
by adding only 4k new non-trivial edges to the Cayley graph (X, E, m). Recall that
each edge e is paired with its “opposite” ¢. In what follows , we omit the description of
the “opposite” edges so that we only describe 2k new edges denoted e, f*,1 <i <k,
with

x(e)) =idg, y(€)) =si, x(f) =si, y(ff) =idg, m(e)) =m(f) =+t;.

Atany x € X \ {idg, s;}, the labelling t; is carried by a self-loop at x.

As promised, the group I' = (G, S), associated with this labelled graph is the
subgroup of S(G) generated by the “translations” sy, ..., sy and the transpositions
t; = (idg, si), 1 <i < k.When G isinfinite, (G, S), contains a copy of G (translation
atinfinity) and we have I' = (G, S), = G xSp(G). When G is finite, (G, S), = S(G).
See Fig. 4 for an illustration with G = Z.

3.2 Isoperimetric profiles

Given two functions f1, f> taking non-negative real values but defined on an arbitrary
domain (not necessarily a subset of R), we write f < g to signify that there are
constants c¢1, ¢z € (0, 00) such that ¢y f1 < f» < ¢ f1. Given two monotone non-
negative real functions fi, f», write f1 >~ f> if there exists ¢; € (0, co) such that

crfileat) < fo(t) < c3fileat)

on the domain of definition of f1, f>. Usually, f1, f>» will be defined on a neighborhood
of 0 or infinity and tend to O or infinity at either O or infinity. In some cases, one or
both functions are defined only on a countable set such as N. When this is the case,
we have to interpret ¢, c4¢ as nearest integers values. We denote the associated order
by <. Note that the equivalence relation 2 distinguishes between power functions of
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different degrees and between stretched exponentials exp(—t*) of different exponent
o > 0 but does not distinguish between different rates of exponential growth or decay.

Given a probability measure ¢ on a group G, let (S,ll)8° (resp, (S,’l)go) denotes
the trajectory of the left (resp. right) random walk driven by ¢ (often started at the
identity element id). More precisely, if (X,){° are independent identically distributed
G-valued random variables with law ¢, then

Sh=X,...X1Xo (resp. S" = XoXi...Xp).
Let Pi’ o k= 1 or r be the associated measure on GY with Xo = x and Eji P the
corresponding expectation Ei ¢(F )=/, N F (a))dek" ¢(a)). In particular,

Pl (S =x) =EL,(L:(Sp) = " (x).

In this work, we find it convenient to work (mostly, but not always) with the left version
of the random walk and we will drop the subscript / in the notation introduced above
unless we need to emphasize the differences between left and right. Observe that the
random walk on the left is aright-invariant process since (X, ... X0)y = X, ... (XoY).
When the measure ¢ is symmetric in the sense that ¢ (x) = ¢(x_1) forall x € G, its
Dirichlet form is defined by

1
E(f, N =Eao(f, =5 D 1fG60) = P

x,yeG

This is the Dirichlet form associated with random walk on the left, Sé =&y, and & J)
is defined similarly.

The (random walk) group invariant ¢ is a positive decreasing function defined
on [0, 0o) up to the equivalence relation >~ which describes the probability of return
of any random walk on the group G driven by a measure ¢ that is symmetric, has
generating support, and a finite second moment with respect to a fixed word metric
on G (i.e., Zg |g1%¢(g) < 00). See [31]. Namely, for any finitely generated group G
and any measure ¢ as just described,

V=12 ... ¢ (d) =P(Sy =id) ~ dsn).
Given a symmetric probability measure ¢, set
A2,Gp(V) = Az p(v) = inf{ip(R) : R C G, || < v)

where
Ag () = inf{E(f, f) : support(f) C Q, [ fll2 = 1}. (3.1
The function v = A3 ¢(v) is called the L?-isoperimetric profile or spectral profile of

¢.
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The associated L'-isoperimetric profile is defined by
A1,G,9(V) = A1,g(v)

1
= inf {5 Z Lf vx) = f()|@(y) : [support(f)| < v, |Iflh = 1} :
Xy

Using an appropriate discrete co-area formula, A 4 can equivalently be defined by
A1¢(v) = inf {mrl Y 1o lga(y)e() : 2 < v} :
X,y
If we define the boundary of €2 to be the set
={(x,y)eGxG:xe,ye G\ Q}

and set

PO = Y o)

xeQ,xyeG\Q
then
Aj,p(v) = inf{g(9€2) /]2 : [L2] < v}.

It is well-known that 1
EA%,(,) <Axgy <Ay (3.2)

Given a non-increasing function A, we define its right-continuous inverse A~! by
A~ l(s) = inf{v > 0: A(v) < s).
The Fglner function Fglg 4 is related to the L I_isoperimetric profile defined above by
Folg ¢(t) = inf{v : Ay o(v) < 1/t}

so that Fglg ¢(t) = A;}b(l/t) (i.e., Fglg ¢ (1) is the right-continuous inverse of the
non-decreasing function Ay g at 1/t and ¢ + Fglg 4(¢) is left-continuous). In the
literature, the definition Fglg 4(f) = inf{v : Ay 4(v) < 1/t} is sometimes used
instead.

We note that, for p = 1, 2, the functions v — A, 4 are non-increasing right
continuous step-functions changing values only at integer values of their argument
v € [1, 00). By definition, A, 4 = oo on [0, 1) and

Apg() =syp= Y ¢(g)forvell,2).
g#id
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The right continuous inverse A;1¢ only takes integer values or the value +oo. It is
constant equal to 1 on [sg, 00). More generally, in the definition of A;lqb(v), the

infimum is attained. Obviously, if v < A;}(p (s) then Ap 4 (v) > 5.

Recall that a finitely generated group G is amenable if and only if (this could be
taken as the definition) Ay g(v) 2 1 for all v. Equivalently, Ailc(s) = +oo for all
s > 0 small enough.

Notation 3.6 By elementary comparison arguments, for any two symmetric finitely
supported probability measures ¢, ¢, with generating support on a group G, we have

A1,G,¢ = N1,G6,p, and A2 G ¢ = A2.G g5 -

For this reason we often denote by

A1, (resp. Azg)

the ~-equivalence class of A G ¢ (resp. A1 G,¢) With ¢ as above. By abuse of notation,
we sometimes write

ApG =NApGy
or understand A , ¢ as standing for a fixed representative.

Remark 3.7 In the definition of A, g ¢ (here, p = 1,2), it is not required that ¢
generates G. In particular, if G is a subgroup of a group G, and ¢ is a symmetric
measure supported on G then we can consider A, g, o for i = 1, 2. Simple con-
siderations imply that, in such cases, A, G, ¢ = Ap,G,,¢. In some instance, it might
nevertheless be much easier to estimate A, G, than A, G, ¢ directly. If ¢ is finitely
supported and G is finitely generated then a simple comparison argument yields
ApGp < C(P, G, Ga)Ap G,

We end this section by recalling briefly the fundamental relations that relate the
spectral profile A2 g to the probability of return Pj(X5, = id) = ¢ (id). If

¥ is defined as a function of t by t = 11/10 SAZ;(S) then ¢ (id) < ¥ (n). In

the other direction, i.e., for a lower bound on Aj 4 in terms of ¢)(2")(id), see, e.g.,
[36, Theorem 2.3]. These results are both essentially from [14]. For nicely behaved
functions, they imply that a two-sided estimate of Aj 4 is equivalent to a two-sided
estimate of ¢ (id).

4 Rooted gluing of Cayley graphs
The aim of this section is to prove two complementary theorems which, together,
provide matching upper and lower bounds for the L'- and L>-isoperimetric profiles

A1,r,q and Ay r 4 for the group I' associated with the rooted gluing (at the identity
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element) of £ labelled Cayley graphs (I';, S;),i = 1, ..., £,equipped with a symmetric
measure g of the form

g="Y .1

1

where each p; is a symmetric probability measure on I'; with generating support and
each T'; is viewed as a subgroup of I through the obvious identification. The results
are expressed in terms of the isoperimetric profiles

Api=Apr;

of the pairs (I';, u;), p = 1 or 2. The measures y; are assumed to be symmetric but
they are otherwise arbitrary.

4.1 Commutator computations

We will need the following lemma. Recall from Example 3.3 that I" is defined by its
action on

X = {0} U (U \ fidr, )

and that ' < S(X) contains a copy of each I';. The following computations shows
that it also contains Ag(X).

Lemmad4.l Forg; €'y, gj € 'y, i # j, we have

i, 8] = gigjg ¢ = (0,8 8)) € Ao(X).

If o € Ao(X) has finite support U contained in {o} U (X \ I';) then, forall g; € T'},
lo, g;] has support in U U {o, g;}. In fact,

1_J(0,0(0),8)) ifo(o) #o0
o, 81 = {id ! otherwise.

Proof The notation (o, g;, g;) stands for the element of Ag(X) C I' which takes the
label at vertex o to g;, the label at vertex g; to g; and the label at vertex g; to o. The
two computations are done by inspection. O

Lemma4.2 Forg; € I';,i € {r,s,t}, r # s, we have

-1 — _ .
88(g g e ifr #1

88581 = a S
reset {gsgrgt(gt Uigen ™" e ifr=t.

Proof Lemma 4.1 gives us [g;1 , g;l] = (o, gs’l, g,’l) and conjugaison of this cycle
by g; gives the desired result. O
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Lemma 4.3 Assume that, for some 0 < £’ < £, the groups T; withi = 1,..., £ are
infinite, and the groups U; withi = €' + 1, ..., £ are finite. Then, as a set, the group
I associated with the rooted gluing (at the identity element) of the £ labelled Cayley
graphs (I';, S;) satisfies

I'=T1 x--- x Ty x Wy (only as sets),

where

W — So(X) if there is at least one T'; which is finite of even order,
0= Ao (X) if none of the U'; is finite or each finite I'; has odd order.

Namely, any element y of I' has a unique representation
y=vi...vet, vieli, 1<i<l, veW.
and all such products appear in T. In fact, there is a short exact sequence
1->-Wog—>T—->T1x:---xTp—1.

Proof Since [T';, I";] < Ag(X) fori # j and that ' = (I'y, ..., I'y) (viewing each
I'; as a subgroup of I'), it is obvious that any element of y € T has a representation of
the form y = y; ... yet with T € Ag(X). Any element y; that belongs to a finite I';
is in Sp(X). This implies that any element of y € I has a representation of the form
y =y1...yet witht € Wo where W is as described above. Uniqueness comes from
the fact that each of the y; € T';,i = 1,..., £/, is determined uniquely by the action
of y on the end I'; of X at infinity. That any such product does occur follows from
the computations in Lemma 4.1 and the fact that the set of all three cycles generate
Ao (X). O

Remark 4.4 When all the I';’s are finite, the group I' is finite and equal to either Ag(X)
or So(X) with the latter occurring if and only if at least one of the I';’s has even order.
With finite groups, this construction is interesting in so far as it provides a way to
construct interesting generating sets for some alternating and symmetric groups. See
[38].

Remark 4.5 In the short exact sequence described above, the projection onto I'j x
-+ x I'pr 18 given by the action at infinity on each infinite I';. The sequence does not
split when there are more than one infinite I'; because, although I'1 and I'; appear in
a canonical way as subgroups of I', the direct product I'; x I'; does not.

Remark 4.6 What happens if one consider more intricate gluing along some finite
subsets of vertices instead of the present rooted gluing at one point? The overall
structure of the groups I' obtained through gluing over finite subsets is roughly the
same as that described above. The main possible difference is the exact nature of the
subgroup Wy C S(X) that might appear. In most cases, it is possible to show that this
subgroup is again either Ag(X) or all of So(X) but some specific configurations may
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lead to Wy being a smaller subgroup of So(X). In any case, such examples appear to
necessitate ad hoc considerations depending of the exact nature of the gluing. We will
not pursue this here but note that, assuming that at least two of the I'; are infinite (and
that the gluing is over finite sets), the group Wy always acts transitively on X.

4.2 Statements of the main results

Recall that we are given a finite collection of Cayley graphs (I';, S;), 1 < i < ¢,
each equipped with symmetric probability measure ;. The indexing of these groups
is chosen so that the first £ of them are infinite and the remaining groups are all
finite. We assume throughout that ¢’ > 1, that is, I'; is infinite. In this case, we know
describe the isoperimetric and spectral profiles of the measure g at (4.1) on the group I
associated with the rooted gluing (at the identity element) of £ labelled Cayley graphs
Ty, Si),i =1,..., ¢, in terms of the isoperimetric and spectral profiles of the pairs
(T;, ui), 1 <i < £'. To simplify notation, we set Api=Nprp»-p=12

Theorem 4.7 (Lower-bound) For p = 1, 2 (corresponding respectively to isoperimet-
ric and spectral profile) and referring to the setup described above, there are constants
c1(p), c2(p) > O such that the isoperimetric profile A r 4 of the symmetric proba-
bility measure q defined on I at (4.1), satisfies

1(17)

Vus>0, Aprg(v)> forall v < max, {(cz(p)A;ll(s))'}

In particular, there exists vy such that

log(1 +v)
Vo> A > N .
= Aprg) 2 maxv{ plib (log<1+log<1+v>)>}

Theorem 4.8 (Upper-bound) Referring to the setup described above, the isoperimetric
profiles Apr g of qonT, p=1,2, satisfy

el
Vou,s>0, Aprg() <sforalv=> 1+2Apl(s)+ >oanil

U<i<t

In particular,

log(1 +v)
Vu>0, A < Ap.rip '
v > P, Fq(v) Hl,a<Xe’ { pTispi (log(l + log(1 + U)))}

The following statement concerns the special case of the pocket extension of a
group G. It obviously follows from the previous two results.
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Theorem 4.9 Let G be an infinite finitely generated group. Let Gg be the pocket
extension of G. For p = 1,2 and for all v > 0,

log(1 + v)
Ap,G@(v) ~ApG ( g > .

log(1 4 log(1 + v))
4.3 Test functions and proof of the upper-bounds

This section focuses on the profile upper-bounds stated in Theorem 4.8. We give the
proof for p = 2 (the case p = 1 is similar). Recall that, as a set,

FZF[ X---XFg/XWQ.
The construction of test functions depends heavily on this product structure. The

difficulty is, of course, that the Dirichlet form that defines our random walk is only
partly compatible with this product structure.

Proof of Theorem 4.8 for p=2 Fix s > 0 and € > 0. Foreachi € {1, ..., ¢}, pick a set
U; and a function ¥; on I'; such that

Eu Wi, ¥i) < (1 + €)sllyill5 and support(y;) = U; with |[U;| < A5} (s).

Let V be the set of all elements v in Wy < I" with support in

0 rr—1 l
(ul U; ) U (UM]D)

where each Ul._1 is viewed as a subset of X.
Referring to Lemma 4.3, construct a test functionon I’ =I"1 x - -+ x ['py x Wy by

setting, foreachy = y;...ypt €T,

Z/

v(y) =1y [[vitn.

1

Obviously, we have
e/

w13 = VIT ] ihwili3.
1

For any s; € I'; in the support of u;, i € {1, ..., £}, we compute |V (s;y) — V()2
Write (uniquely)

siy =Sy (Siy)eTsy-
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Note that, for each j € {1, ..., ¢},

NS N7 WAL
(Sl)/)] - {S,’)/i if j =1.

By Lemma 4.2, the permutation ty,,, € Wy is the product of T by a permutation
supported by

v Ly il =i <2
bty hun it ¢ <i<d.

In particular, when 1 <i < ¢/,
teV,y;eUj, 1 <j<4t, ands;y; € U; imply that 75, € V, 4.2)
and, when ¢/ <i < ¢,
teV,yjeUj, 1<j<{, implythatt,, € V. 4.3)
Write

2, )=" Y WO —vEPue+2 D @I
Y)Y (sy)#0 Y (¥)#£0; 9 (sy)=0

and

Yo W) =Yy Puls)
V()Y (sy)#0

4
= W) = v Pris)
i=1 Y (Y)Y (5i7)#0

K/
=WV TG Y0 Witsiv) — v Pui(si)
i=1 j#i Vi (Vi) i (sivi) #0

where the last equality holds because of (4.2)-(4.3). We also have

> WmPus)
Y (y)#0:¢ (sy)=0

14
=YY WPt

i=1 Y (y)#0:¢ (siy)=0

6/
= VIeT" Y T I3 > Wi ()P i (s:)

i=1 j#i Vi (i) #0; ¥ (si vi)=0
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because of (4.2-4.3). It follows that

g &) l
&WW)IWFH%MEIE ﬁ%ﬁ
i=1 L2

and
¢
Eq ) < A+ sV [ ]Ivill3.
1

After letting € got to zero, this becomes

EW.¥) _
lyl3 —

Because the support of ¥ as cardinality at most
ZIUIX ZIU|+ 2. Irl ]!
U<i<t

and |U;| < Az_’l!(s), 1 <i < ¢, the desired bound on A r 4 (v) follows. O

4.4 L-isoperimetric profile lower bound (special case)
In this section we consider the basic example obtained by gluing at one point (the
neutral element) the Cayley graph (G, S) of a finitely generated group G with finite
generating set labelled with the alphabet S = {s{, ..., s¢} and a small finite cycle
group (B) of order b € {2, 3}. This corresponds to the gluing of two labelled graphs
(X;, E;, m;) where

Xi=G, Er={(gs5" g8 :geCGiec{l,... .k}
andm((g,5;" - g,57) =s;", and

=7Z/bZ, E>={(x, " x, ) x € Z/b7)}

and mo((x, B! - x, ) = BE!. Let X = {B, B!} U G (note that the set notation
makes this correct for both b = 2, in which case ﬂ_l =B,and b = 3). Let " =

(B,51,.--,8) < S(X) be corresponding group. When necessary, we will use the
more explicit notation

rg,g)=r
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to describe this abstract construction based on a given group G and a cyclic group
< B > of order 2 or 3. By definition any element g € G < T"actson G = X \ {8*!}
by translation on the left, (g, g’) — gg’ and leaves invariant {*'}. The generator
acts trivially on G \ {id} and rotates cyclically the distinct elements of {id, 8, 8~!}.

By Sect. 4.1, it is clear that ' = G x Wy where Wy is either So(X) or Ag(X)
depending on whether b = 2 or 3.

Theorem 4.10 Referring to the setting described above, let u be a symmetric probabil-
ity measure on G and v be the uniform measure on {B). There are universal constants
c1, c2 > 0 (independent of G and n and b = 2, 3) such that the symmetric probability
q= %(,u, + v) on T satisfies

Vu,s>0, Airg(v) > csforallv< (czAl_’lG’M(s))!.

This holds with ¢y = 1/100 and ¢y = 1/32. In particular,

log(1 + v)
Airq) 2 MG ( g ) .

log(1 + log(1 + v))

The proof of this theorem given below follows closely the argument developed by
Anna Erschler to prove her wreath product isoperimetric inequality in [17]. Since
I' = G x Wy, we write any element y € I" as a pair (g, 7,) where g, € G and
7, € Wy so that y = g, 7). The element g, captures the action of ¥ on G at infinity
which is by translation. The element 7, is a permutation of X with finite support. Note
thatforany s € Gand y = g, 7, € I', we have sy = (sg, )7y, thatis, g5, = sg, and
Tyy = Ty. Also gty = 8y Tp*ly With 1g+1,, = g;lﬁilgyry.

Definition 4.11 Given a finite subset U of T, set
KU)={r e Wyp:7 =1, forsomey € U}

andlet E K (U) be the set of pairs {z, 7'} C K(U), t # t’, such that there exists g € G
and € € {#1} for which (g, 7) € U and (g,1") = B°(g, ) € U (note that this is
indeed a property of the pair {zr, 7’} C K(U)). Anelement T € K(U) is a-satisfactory
if

#{g € G : (g, 1) € U and at least one of (g, 7), ﬂ_l(g, 1)e U} >a.
In words, given the set U, an element t € K(U) is a-satisfactory if there are at
least a locations g1, ..., g, such that, for each i = {1,2,...,a}, (gi,7) € U and

B (gi, t) € U for at least one ¢; € {£1}.
Recall that , by definition, for any finite set U, g(dU) is given by

1
qOU) =3 D o) —lw6nlgs) = 3 M lxnwy)es). 44

y,sel’ y,sel’
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Lemma 4.12 (Compare [17, Lemma 2]) Let s € (0,€/16)], € € (0, 1). Assume that
the finite set U C T is such that g(0U) < s|U|. Then we have

1
# {y eU:tis EAIE’#(467]s)-satisfact0ry } >{1—-e)|UJ.

Proof Say that an element y € U is bad if neither 8y nor ™'y isin U. Say y is good
if it is not bad. If y is bad then both (y, %!y) are on the boundary of U and, since
g(@U) < s|U|and g({B, B~'}) = 1/4, we must have

#{y e U :yisbad} <4s|U|.

Let AV be the set of all y = (g, T) € U such that T is non-satisfactory at the level

1 5—1 — .
a = jAl,G,u(4€ ls), that is,

. 1 -1 —1 .
N =1y eU:rt, isnot EAI,G,M(% s)-satisfactory ¢ .

Write AV as the disjoint union " = N, UN ... Suppose the desired conclusion does
not hold, that is,

IN| > €|U].
Since [Nyl < 4s5|U|, we must have |N,.| < 6! s |N]. For r € Wy, write

N@)={(g,0)eN:c =1}
Ne(x) ={(g,0) € Ny : 0 =1}, = good or bad.

Note that

No == U No(t)

‘L'EWO

and let C be the set of all permutations in Wy such that
V(D) < 2N (D] (s IN (D] <IN (D))
Observe that

NT=D IN@I+ ) IN(D)]
teC t¢C

<Y IN@I+2)  INw(D)]
teC t¢C

<Y IN@I+2Nl
reC
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Since |V, < 4e~'s|N| < 7NV, it follows that

NI <2) IV @)L 4.5)

teC

We now estimate from below the size of the boundary of U. For this purpose, set

N(@) ={g € G: (g.1) € N(1)} and define N,(7) in the same fashion for ¢ =

good or bad . Obviously INo(t)| = |No(7)| where e is blank, good or bad. Since
= %(v + w) with u supported on G, we have (see (4.4))

2q0U) = Y InpGyu) = Y Inusy)uls).
yeU,seG yeN,seG

Observe that N = {(g, 1) : g € N(r, T € Wy} and recall that if y = gy Ty and
s € Gthensy = (sgy, 7). Il g € N (t) then y = (g, 7) € U and the only way that
sy = (sg, 1) ¢ Uisthat sg ¢ N (7). It follows that

29(0U) = Y Inu(sy)u(s)
yeN,seG

=2 Y lammEam

TeWo0 geN(1),5€G

Y w@N(@). (4.6)

teC

v

Ifge N «0a(T) then at least one of ,Bil (g, 7)isin U (see the definition or bad/good)
and 7 is not %AI,G, M(46_1s)—satisfactory. Hence, we must have

— 1 B _
|Ng0od(r)| < EAI,IG,}L(A‘-G IS),

When 7 € C, it follows that the set A'(t) C G has size bounded by
IN@| 22N (D) < AT, (e s).
This implies
RON (1) = 4e~'sIN (@)
Using this inequality in (4.6), it follows that

q@U) = 2¢7's Y IN(1)| = € 'sIN| > s|U|.
reC
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where the last inequality follows from the assumption that |A/| > ¢|U]|. This contra-
dicts the main hypothesis. Hence it must be the case that || < €|U]|, that is,

1
# {y el 1, is 5Ailc’u(4e_1s)—satisfactory } > —-e)|U|.

m}

The next lemma is a version of the edge removal lemma of A. Erschler [17,
Lemma 1]. We need to generalize the notion of a-satisfactory vertex. Given the graph
(K(U), EK(U)) (recall that K (U) C Wy is a finite subset of permutations), consider
asubgraph (K’, E’) of (K (U), EK (U)). A vertex T € K’ is a-satisfactory in (K’, E’)
if there are at least a distinct elements g € G suchthaty = (g, t) € U and at least one
of (1, 7g,4), (7, 74,—) € E’ where Ty, 4, Tg,— are defined by /Sil(g, 7) = (g, Tg,+),
that is

—1 p=*l1
Tex=g B gt

Note that 7, . = 74 , if and only if ¢ = g’ and € = 5. Thus, if 7 is a-satisfactory,
there are at least a distinct edges adjacent to T in (K’, E’). If T is not a-satisfactory in
(K', E') then there are less than 2a edges adjacent to T in (K', E').

We say that an edge {t, T’} € E’ is a-satisfactory if both of its ends, t, t’ are a-
satisfactory. Let NS(K’, E’, a) be the set of all non-a-satisfactory edges for (K', E”).

Lemma 4.13 Assume that

INS(K(U), EK(U),a)| _ 1
|EK(U)| 4

Then there exists a subgraph (K', E"), K' # @, all of whose vertices are (a/4)-
satisfactory.

Proof Set Ko = K(U), Ey = EK(U). Consider the vertices in (K, Eg), which are
not (a/4)-satisfactory in (Ko, Ep). Remove these vertices and all their adjacent edges
to obtain (K1, E1). If some of the vertices in (K7, E1) are not (a/4)-satisfactory in
(K1, E1), remove them and all adjacent edges and repeat. Label each vertex v with
the time, i, of its removal and orient each of the edges removed towards the vertex
that remains after the removal of the edge (if both ends of the edge are removed at the
same time, orient the edge arbitrarily). Let R = {t € Kq : i; = i} be the set of all
vertices removed at time i. By definition, such a vertex is in K;_; but not in K;. For
each vertex T € K, record the two sequences of numbers

Az, j, J < i and bt,js J =it

where ag; is the number of oriented edges (z’, T) removed at time j < i; and brj is
the number of oriented edges (z, t’) removed at time j > i; (in both cases, j = iy/).
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By definition we have that the total number 7" of removed edges in the whole process
is

o o0
T=Y 2 D aie=) 2 D bej
i=1 reRi 1<j<i i=1reRi j=i

To show that the process must end with a non-empty graph, we argue by contradiction.
Assume instead that the removal process ends with the empty graph (every vertex gets
removed at some point). Since every vertex gets removed in the end, we have that

Z ajz+ Z be,j
1<j<ir Jj=ir

is exactly the degree of the vertex 7 in (K (U), EK(U)) = (Ko, Eo).
Write N, = N(Ky, Eo, a) for the set of vertices that are non-a-satisfactory in
(Ko, Ep) and split the sum for 7T into

T:i Z Zbr,j-i-i Z Zbr,j-

i=1 teRINN, j=i i=1 teRINK\N,) Jj=i

In the first summation, since t is non-a-satisfactory, the sum is bounded by the total
number of non-a-satisfactory edges

o0
> > D by < INS(Ko. Eo. a)l.

i=l teRINN, Jj=i

Now we bound the second sum. By definition, the vertices removed during the first
round are non-a/10-satisfactory in (Ko, Eg). It follows that the second sum actually
starts from i = 2. From the edge removal procedure, T € RN (K\ Ny, i > 2,
implies that T was a-satisfactory in (Ko, Ep) but has becomes non-a /4-satisfactory
in (K;_1, Ei_1) and gets removed in round i = i,. Therefore

degt= Y aj:+ Y brjzaand Y b <2a/4=a/2.

1<j<ir J=ir Jj=zir

It follows that for any 7 € R N (K \ Ny),

Z aj ¢ > zzbtj'

1<j<i; J=ir
Summing up, we have

> Y e

i=1 teRIN(K\Ny) j=i

| =

oo
> Y Yaespt
i=2

TeRINK\N,) 1=<j<i
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Combining the two estimates, it follows that
1
T <INSKK,E,a)|+ 5T
and, because |[INS(K, E, a)| < 4—1‘|EK|,

1
T <2INS(K. E,a)] = S|E(K)].

This contradicts the assumption that the process ends with the empty graph. O

Lemma4.14 Fix U C G and let (K, E) be a subgraph of (K (U), EK (U)) such that
each vertex in K has at least 2b distinct neighbors in (K, E). Then

IK| > b!.

Proof We proceed by induction on b. The statement is obviously true for b = 1.
Suppose it is true for b = k — 1. Let 7o € K. By assumption there exists k distinct
elements g1, ..., gk € G and ¢; € {£1} such that

T = (gi_lﬂéigi)ro ceKande =€) =---=¢, = ¢y € {£1}.

(here we can assume that the ¢;s are all the same because of the assumption that 7
has 2k neighbors).

Let xo = ro_l(ﬂ_eo). Then, by construction, 7; (xp) = gl._l. Foreachi € {i, ..., k}
consider the set of vertices 7P; which is the connected component of 7; in the subgraph
A; of (K, E) obtained by removing all edges labelled g;” ! B€gi, € € {£l1}. Each
vertex in A; has at least 2(k — 1) neighbors in A; so that, by the induction hypothesis,
|P;i| > (k—1)!. It remains to check that the sets P;, 1 < i < k are disjoints. This is the
case because, by inspection of the definitions, for each o € P;, we have o (xo) = g; I

O

Proof of Theorem 4.10 Let I' = (B, s1,...,s5t) = G X Wy be as in Theorem 4.10.
Let u be a symmetric probability measure on G and v be the uniform measure on (3)

(recall that 8 has order 2 or 3). Let ¢ = %(u + v). Let U be a finite subset of I" such
that g(0U) < (s/84)|U| with s < 1/4. By Lemma 4.12 with € = 1/16, we have

1 1
#HegelU:t,is EAEIG’M(S)-satisfactory } > <1 - 1_6> |U].

It follows that the subgraph (K (U), E K (U) from Definition 4.11 satisfies

INS(K(U), EK(U),a)] 1 _
EKD)] < Zfora_ 2ALG’M(S).
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It follows from Lemma 4.13 that there is a non-empty subgraph (K’, E’) all of whose
vertex has at least a/4 neighbors. By Lemma 4.14,

IK(U) > |K'| = a/8]\.

Obviously, |[U| > |K (U)|. Hence, we have proved that for any s € (0, 1/4) and any
finite subset U C I" with g(0U) < (s/84)|U |, we must have

Lo
U1 = LA g, (0L
This completes the proof of Theorem 4.10. O

4.5 Proof of Theorem 4.7 forp = 1

Theorem 4.7 describes lower bounds on the isoperimetric (p = 1) and spectral profiles
(p = 2) of any group I" obtained from the Cayley graphs (I';, S[)f of ¢ finitely gener-
ated groups I'; viarooted gluing at the identity element. Each group I'; is equipped with
a symmetric measure u; and the group I' is equipped with the associated symmetric
measure g defined at (4.1).

Suppose that i € {1,..., £} is such that at least one of the I'j, j # i has at least
3 elements. Then, according to the commutator computations recorded in Lemmas
4.1-4.2, the group I" contains a group I'}' = (S;, B) = I'; X Ag(X]) where X} =
[ U{B, B} and B also stands for the three cycle (id, B, B~1) (see Sect. 4.4). If
every I'j, j # i, is a two element group then, obviously, I contains a subgroup
'Y = (S8, B) = Ii x So(X7) where X = I'; U {B} and B also stands for the
transposition (id, 8). In both cases, let v be the uniform measure on (8) and set
Wix = %(,ui + v). By a simple comparison argument, there is a positive constant ¢
which depends only on a positive lower bound on

Ms = 1inf {pi(s) s € S;, i € {1,...,£}},
such that
Aprg®) = ct™ Ap s . (V).

Hence, in the case p = 1 (isoperimetric profile) the conclusion of Theorem 4.7 follows
from Theorem 4.10.

4.6 Proof of Theorem 4.7 forp = 2
By the same comparison technique used above in the case p = 1, in order to prove
the spectral profile statement (i.e., the case p = 2) of Theorem 4.7, it suffices to prove

the spectral profile version of Theorem 4.10 which is the following statement.
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Theorem 4.15 Referring to the setting of Theorem 4. 10, let i be a symmetric probabil-
ity measure on G and v be the uniform measure on {(B). There are universal constants
ai, ax > 0 (independent of G and p and b = 2, 3) such that the symmetric probability
q= %(/,L +v) on I satisfies

Vu,s >0, Aarg(v) >aisforallv< (a5 IR

In particular, for all v > 0,

log(1 + v)
Aorg(v) 2 A2Gu ( & ) )

log(1 4 log(1 + v))

Proof We adapt the technique of [36, Section 4] which involves comparison with well
chosen spread-out measures. By [36, Theorem 4.7] (with ¢ = u and @ = 1/2), for
any v > 1, we can associate to the symmetric probability measure ; on G another
symmetric probability measure on G, ¢, , = ¢y such that (the constant ¢ below is a
positive numerical constant independent of v, i, G)

A1,G,;,(v) > 1/2and &, > cAr G, (8V)E,.
By Theorem 4.10, the measure g, = %(v + &) on the group I satisfy
A1r,q, W) > c1/2 foru < (cav)!.
Using the left-hand side of (3.2), this also gives
Az g, W) > c%/8 foru < (cpv)!.
But it is clear that we also have (recall that g = %(v +wn)onl)
& = cho G (BV)E,,.
So, for any v > 1, we have
Azgr() > c(c1/8)A2.G..(8v) for u < (cav)!.

Setting s = A3 g, (8v), this reads

C —
Aggr(u) > c(c?/8)s foru < (§2A2’1G’M(s))!.
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5 Houghton groups and variations

Let Yy = {o} U (U]fR,-) where each R; is a copy of {1, 2, ...}, explicitly, R; = {ri m :
m = 1,2...}. In words, Y is the union of k copies of the non-negative integers
where all copies of 0 have been identified. The Houghton group Hj is the group of
all permutation of Y; which are eventual translations on each ray R;, 1 <i < k. By
definition, this means that there is a projection ¢ : H; — Z* which associates to each
element h of Hy, ¢ (h) = (my, ..., mg) where m; captures the (positive or negative)
amount of eventual translation away from 0 along the ray R;. By definition, the kernel
of ¢ is contained in the subgroup So(Y%) of those permutations that have finite support
and it must be all of them. The image of ¢ is the subgroup ¥ = {(mi)]lC : Zlf m; = 0}
of Z¥. Indeed, by inspecting the action of an element g € H; on the star

S(N) = {o} Ur {ri, 1 1 < < N}

where N is chosen so large that g acts by translation on each of {r; y41,7i n42, ...},
one sees that ¢ (g) = (my, ..., my) € X, thatis, Z]f m; = 0. Also, for any pair (i, j),
1 <i < j <k, consider the element /; ; of H; which is“translation by 1" along the
copy of Z obtained by setting0 = 0, —n =r; y,n =71, n = 1,2,.... Clearly, the
images ¢ (h; j), 1 <i < j <k, generates X. Itis plain to check that, fori; < j; <k,
ip < j2 <k, j1 # j2, the commutator [A;, j,, hi,, j,] is the transposition (7, 1,7},,1)
when i1 = i, and the three cycle (o, 7}, 1,7j,,1) if i1 # i>. It easily follows that the
elements /; j, 1 <i < j < k generate Hy (in fact we only need k — 1 of then chosen
so that each ray R; is represented at least once) and that we have a short exact sequence

1> So(¥) > Hy 5> x> 1

with, in addition, So(Y) = [Hx, Hx]. See, e.g., [28] for details and earlier references.
Given a family p of (]5) symmetric probability measures p; j, 1 <i < j <k, on
Z, define a symmetric probability measure g, on H by setting

k —1
qp(8) = (2> Yo Do il (). (5.1)
1<i<j<kneZ

This probability measure is supported on the powers of the generators 4; ; and we
allow the possibility that p; ;(0) = 1 (at least for some pairs (i, j)).

Theorem 5.1 Referring to the setting and notation introduced above, let

(io, jo) # (i1, j1), 1 =<io<jo<k, 1 <i1 <ji =k,
be such that p;, ;, (1) > 0 for m = 0,1. Then there are positive constants
ci(k, p), ca(k, p) such that, for all v,s > 0, the profiles A 3y q, of the symmet-

ric probability measure q, on Hy, p = 1, 2, satisfies
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Ap gy (0) = c1(k, p)s for all v < (cz(k, pomax {ALL, (S)D!.
Proof Consider for simplicity the case when ig # i1, jo # Jji1. In Hy, consider
the subgroups Z,, =< h;,, j, > and the three cycles B, = (o, Pliyys T1.j,) where
m' = m+1 mod 2, m € {0, 1}. By construction, Hy contains a copy of I'(8, Z)
with Z =< h;, j, > and B = B,. Further, let u, denote the measure p;, j, on
Z =< hy, j, >.Letv, be the uniform measure on < B,, > andsetg = %(vm + m),
then a simple comparison argument implies that

A[’kaﬂp z CA[?,'Hk,qm’ p=172.

Here the exact value of the positive constant ¢ depends on lower bounds on p;,, j,, (1),
m = 1, 2. Theorem 4.10 (and its spectral version Theorem 4.15) implies

Ap gy (0) = crs forall v < (2A, 7, ().

O

The next theorem provide matching upper-bound for the isoperimetric and spectral
profiles under certain assumptions. To obtain this upper-bound, we follow a line of
reasoning that is similar to the one used for the rooted gluing of Cayley graphs.
However, there are some significant differences in some of the details.

Lemma 5.2 Exclude one of the rays, say Ry. For each remaining R;, 1 <i <k — 1,
set gi = hj and Z; = (g;). Any element y € Hy admits a unique decomposition of
the form

g=21...2k—1TWithz; € Z;j, 1 <i <k—1, andt € Sop(Y).

Proof Since H is generated by g1, ..., gk—1 (see above) and have commutators in
So(Y),itis plain thatevery element g € Hy, can be written as described above. To prove
uniqueness, we observe that the integer vector (z1, .. ., Zx—1) is uniquely determined
by the condition that ¢ (g) = (—z1, =22, ..., —Zk_1. Zlf_l Zk) O

Theorem 5.3 Fix p = 1,2. For any s € (0, 1], let Y5 be a symmetric non-negative

Sunction on Z supported on (—r(s), r(s)), normalized by || Y|, = 1, and such that
forany 1 <i < j <k,

1
5 2 W@+ = @I pi () < 5.

X, yEZL

Then

Yu,s >0, App.q() <2s forall v=> ([k+3]r(s))!

@ Springer



Isoperimetric profiles and random walks on some groups...

Proof The case p = 1, 2 are similar and, for simplicity, we focus on the case p = 2.
Making use of Lemma 5.2, consider the test function

k—1

Wi(9) =Ly, (@) [[¥s@). g=z1...217 € Hy
i=1

where the set Vy C So(Y) will be chosen later. Obviously, we have

2(k—1
w13 = 1Vl 13570,

Next, we want to estimate &y, , (W, W) from above. This involves computing the
products 7;  z1 ... z¢k—1T where 1 < u < v < k and m € Z. By inspecting the

commutator relations between 4; , and A}’ , one finds that

m !/ / /
hu,vzl k1T =231 T

where
0 ifi ¢ {u,v}
Z; =z + € uvm With €y, = 1 ifi=u
—1lifi=v
and
k—1
support(t’) C support(zr) US <2|m| + Z |Zi |> .
1
We choose
Vs = { : support(t) C S((k + 3)r(s))}
so that
|zi| <r(s), |m| <2r(s)and T € V; implies T’ € V.
Write
264 (W, W) = Y [W(hg) — Wi(9) g (h)
W, (g)Ws (hg)#0

2 ) W@l

Vs (8)#0, s (hg)=0
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By inspection, the right most term on the right-hand side is bounded above by
ava (!t _lnwsn%(’“” Vs D Puu ().
2
I=u<v<k ¥;(2)#0,¥;(z+y)=0

Consider g, i such that W (g)W (hg) # 0 with g(h) # 0 and write g = 21 ... 2k—17T,
h = hy',,. We must have

|zil < r(s), |m| <2r(s)and support(r) C S((k + 3)r(s)).
Let us consider the more difficult case when v # k. Then, we have

| (hg) — Ws(g)I?

=1y, [ WeG)IP WsCau +ms @y —m) — Y)Y (zo) P
J#{u,v}

and

s 2+ m) (2o — m) = Yo @)Y (20
= 2 (15 G+ mPIWs (o = m) = Yo + WGP +m) = @)

Using this inequality and summing up we obtain that

Do 1Whg) — Us(9)Pq(h)

Wy (8)Ws (hg)#0
is bounded by
(" _l|vs|||1/fs||2““2) > Yo G+ — U@ pun(y).
2 2 s
l=u<vsk ¥s5(2)s(z+y)7#0
Putting the different terms together yields
K\~ 2(k=2)
281,.4(Ws, ¥) < 4Vil( ) 10l > Erp, W W)
I<u<v<k

and

EHk,q (W, Wy) -
W, 13
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The following results describe the spectral profile of g in the special case when
each p; ; is one of the measures

&y, a € (0,00) U {s, t}

where
ca(1+ m)~@ 1 ifa € (0, 00)
Exm) =1 37 "1 0ym) ifa=s
) ifa=t.
Set
s~ le ifa €(0,2)
sTI2[1 +log(1/)]V/? ifa =2
Pa(s) = 1,2 .
K ifa € (2,00) U {s}
0 ifao =t

Theorem 5.4 On the Houghton group Hy, let the probability measure g, at (5.1) be
such that foreach 1 <i < j <k, p; j = §a,-,j, a; j € (0,00) U {s, t}. Assume that at
least two a; ; are different from t and set

p(s) = max{py, () : 1 <i < j <k},

Then , for all v, s > 0, we have

log(1 + v) )

A ~ p !
2H3.q(V) = P (log(l +log(1 + v))

In particular,

log(1 + v) )2

Az (V) = <log(l + log(1 + v))

Proof The lower estimate for the spectral profile is obtained by Theorem 5.1. The
matching upper bound follows from Theorem 5.3. All we need to check is that
Arze, (V) = py L(v) (in order to apply Theorem 5.1) and that the functions
f1(2) = (t — |z|)+ provide good test functions in the sense that

gsa(flvfl) —1
_— 1).
T

See [36, A.2]. O

Remark 5.5 One can prove a version of Theorem 5.4 dealing with the isoperimetric
profile instead of the spectral profile by using a similar line of reasoning and the results
of [36, A.2].

@ Springer



L. Saloff-Coste, T. Zheng

6 Other examples: Schreier graphs and star extensions

Star extension of Cayley graphs (Example 3.5) and pocket and rooted extensions based
on Schreier graphs are, in general, more difficult to handle than the pocket and rooted
extensions of Cayley graphs treated in the previous section. In this section we look,
successively, at rooted extensions based on Schreier graphs and at star extensions of
Cayley graphs.

Structurally, what makes a rooted extension I" of a Cayley graph easier to handle is
the fact that the permutations of the underlying set X appearing in I" can be reduced
to translations along the constituent subgroups associated with the original Cayley
graphs times finite support permutations of X. In the general Schreier graph case,
even so any element of I appears to “look like” a translation at infinity in each of the
constituent Schreier graphs, it is not possible to assign uniquely an actual element of
the corresponding subgroup of I' to capture this effect. Nevertheless, in some simple
cases when the main feature governing the behavior of random walks on I' is the
volume growth functions of the constituent Schreier graphs, it is possible to obtain
satisfactory results via a rather coarse approach explained in the next section. This
same approach applies as well to the study of star extensions of Cayley graphs.

Note that the results obtained for rooted extensions based on Cayley graphs allow us
alarge variety of measure ¢ including the possibility of measures with infinite support.
The results obtained in this section are restricted to finitely supported measures (up to
comparisons of forms).

6.1 Comparison with random three cycles

Consider ¢ labelled rooted connected graphs (X;, Ej, m;,0;),i = 1,2,...,£ (with
distinct labellings). Let (X, E, m) be the labelled graph with vertex set X = (Uf Xi\
{o:}) U {0} corresponding to identifying the points o1, 02, ..., 0¢. Let I be the corre-

sponding subgroup of S(X). The group I' contains a copy of each I'; where I'; is the
group defined by (X;, E;, m;) and also a copy of Ay(X) with

Ao(X) = ([T:, T;1" i # ).

Indeed, one verifies by inspection that for any two elements g;, g; € I', g; € I';, g; €
I'j, which move 0,7 # j, we have

-1 -1
lgi-gjl=gigjg g = (0.8 -0,g; 0),
asin Lemma4.1,

(g-0.8i-0.8j-0) ifgelik¢lij}
-1 _ .
glgi.gjlg™ =1(g 0,88 -0,8;-0) ifgel;
(§-0,8i-0.88j-0) ifgely,
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and (still assuming g; - 0 # 0)

gjglg'¢’ gjle g7 = (0.8 0.8 -0), g.g'€li, g; €Ty, i#j, g 'g 0#o0.

Any element y of I can be written in the form y = g;..., g¢t with g; € T
and T € Ay(X) but this can possibly be done in many different ways since pairs of
elements in a given I'; may only differ via a permutation of finite support of X;. Note
thaty = g1..., get with g; € I'; and t € Ag(X) belongs to So(X) if and only if each
gi reduces to a finite permutation on X;. This shows that I" contains the full symmetric
group with finite support So(X) exactly when at least one of the groups I'; contains
an odd permutation with finite support. The following Proposition is tailored to cover
the situations described above but is framed in a much more general setting.

Proposition 6.1 Ler I be a finitely generated group with finite generating set T =
{Glil, el Qkil}. Assume that (X, E, m, o) is a connected labelled rooted Schreier
graph for (I', T). Let d be the graph distance between two points of X and set
Bx(o,r) = {x € X : d(o, x) < r}. Assume that either Sy(X) C T" with

[(0, x)|7 < Dd(o, x)
or, more generally, that Ayg(X) C T with
[(x, y, 2)|lr < Dmax{d(o, x),d(0, y),d(0, 2)}.

Then there is a constant ¢| such that

Arra() > cir~ ! forallv < \/|Bx(o,r)|!

where w = |T|~'17 is the uniform measure on the symmetric generating set T.

Remark 6.2 An acceptable lower bound on the spectral profile is obtained by applying
the general inequality Ay ru(v) > %Al,r’u(v)?

Remark 6.3 Note that the first case is actually covered by the second case. In the
first case where one can use the transpositions (o, x), a simpler direct proof using
comparison with the “transpose o and x”’ random walk can be given. It follows the same
line of reasoning described below for the second case. Note also that, in this general
setting, the distance assumptions made in this proposition are non-trivial assumptions
relating the geometry of (X, d) to the generating set T of I".

Let N = |Bx (o, r)|. Let un be the uniform measure on all three-cycles (x, y, z)
with x, y,z € Bx(o,r). Regarding ; as a measure on Ay (the finite alternating
group on N objects), we know that [LX,) converges to 2/(N!) as t tends to infinity. It is
well known that this walk can be analyzed in details in a way similar to what was done
for the random transposition walk in [15]. In particular, it is proved in [33] (see also

[24,32]) that there exists a constant C such that, for all ¢ > %N (logN +¢),c > 0,
(NY/2)luy (d) — 1] < Ce™.
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In particular,

) 2 2
my (d) < (1 +C)ﬁ’ IN = §N10gN.

Lemma 6.4 Fixe € (0, 1). There exists Ng such that for v € (0, (N!))€) and N > N,
we have

At ayuy (V) = Ao ayuy (V) = (1 —€).

Proof Using the trace formula for the random walk with Dirichlet boundary condition
onaset U C Ay, we have

. 1
0 (id) > ] XAy, U0

where
Ay, U) = inf {€,, (¢, @) : support(®) C U, [|$]2 = 1}

is the lowest eigenvalue of 6;4 — un in U with Dirichlet boundary condition. In
particular,

A, U) = 1y (log(NY) — log |U| — log(2(1 + CO))).

Since

At Ay, uny W) = Ao ayuy W) =inf{A(uy, U) : U] < v}
the desired result follows. O

Proof of Proposition 6.1 Consider the two probability measures u and py on the
group I'. The hypothesis |(x, y, 2)|7 < D max{d(o, x),d(0, y),d(0,z)} forx, y,z €
Bx (o0, r) and a simple comparison technique imply that

1 1
S0 1f @) = FWlun(e) < Dr Y7 1f(gh) = Fu(e).

h,gel’ h,gel’

Hence the conclusion of Proposition 6.1 follows readily from the result stated in
Lemma 6.4 (here we choose € = 1/2 in Lemma 6.4). O

6.2 Example: pocket extensions based on Schreier graphs
Proposition 6.1 applies easily to the pocket extension based on a Schreier graph. Please

note that a given group G may be defined by any one of its actions on a variety of
different Schreier graphs. The finitely generated group I' defined by the rooted labelled
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Schreier graph (X*, E*, m*) as in Example 3.4 obtained form a given rooted labelled
Schreier graph (X, E, m) that defines G is an object that depends not only on G but
on (X, E, m).

Let (X, E, m) be arooted labelled Schreier graph defining a group G. Let I" be the
finitely generated group defined by the rooted labelled Schreier graph (X*, E*, m*)
(the pocket extension of (X, E, m)) as defined in Example 3.4.

Corollary 6.5 (of Proposition 6.1) Let V, be the volume growth function of (X, E, m)
at the root. Set V._1 (t) = inf{s : Vo(s) > t}. Let " be as above. We have

1 1
, Ar(v) 2

-1 log(14v) 1 log(1+v) 2"
Ve <log(l+log(l+v))) [V° (m)]

When specializing to the case when (X, E, m) is a Cayley graph of G (in which case
I' = Gg is the pocket extension of G), this result is weaker than the result provided
by Theorem 4.10 (and Theorem 4.9. It is sharp only when the isoperimetric profile
A1, of G satisfies Aq,g(v) = 1/V~1(v) where V is the volume growth function of
G. To be more explicit, if (X, E, m) is a Cayley graph of an amenable group G with
exponential volume growth then, obviously, V:l (v) =~ log(1 + v). But there are such
groups G with profile A1, =~ 1/ f for function f that increases arbitrarily slowly
to 400, e.g., any iterated logarithms is possible. See [12,17]. On the other hand, the
above result apply in much greater generality.

A r(v) 2

Remark 6.6 1t is straightforward to generalize Corollary 6.5 to the rooted gluing of £
labelled Schreier graphs. The statement is the same with V, = maxj<;<¢{V;} where
each V; is the rooted volume function on (X;, E;, m;).

6.3 Example: star extensions of a Cayley graph

Proposition applies nicely to the star extension I' = (G, §), of alabelled Cayley graph
(G, S) (see Example 3.5). Indeed, in this case ' = G x S(G) and if x = 01 ...0¢ in
G, 0; € SUS™! then we can write the transposition (e, x) in the form

(e, x) = o1ty ...agfzt%zagfltglag_llt%l ...U{lt@of]ta, 6.1)

where

N t; = (e, si) ifo=s;
o si_ltisi = (e,si_l) ifo :si—1

This shows that the transposition (e, x) as length at most 8£. In other words, if x has
length |x|sin (G, S) then (e, x) has length at most 8|x|g in (I, ) where T = SU{#; =

(e,s;): 1 <i <k}
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Theorem 6.7 Let (G, S) be a labelled Cayley graph with volume growth function V
and V! (t) =inf{s : V(s) > t}. Let " = (G, S), be its the star extension. Then we
have

1 1
, Aor) 2

1 log(14v) 1 log(14v) o
4 (10g(1+log(l+v))) [V <log(1+log(1+v))>]

The next result provides an upper-bound.

Airw) 2

Theorem 6.8 Let (G, S) be a labelled Cayley graph. Let I' = (G, S), be its star
extension. Then we have

Apr(®) S Apo ( log(1 + v) ) .

log(1 + log(1 + v))

Corollary 6.9 (of Theorems 6.7-6.8) The star extension I' = (G, S), of any Cayley
graph (G, S) of a polycyclic group G satisfies

log(1 4+ v)
R A =1,2.
p.r(v) p.G <log(1 + log(1 + v))) e

Proof of Theorem 6.8 To estimate A, -, we pick the finitely supported measure v =
%(vl + vp) where vy is the uniform measure on S, the generating set of G viewed as a
subgroup of I', and v; is the uniform measure on the k transpositions #; = (e, s;) also
viewed as elements in I". Since I' = G x S(G), we can try to use a test function of
the form

V() =1v(t)p(g), v = (g 1).

We pick ¢ to be a good test function for A, ¢ (v) so that U = support(¢) in G has
size at most v and

1
— Y 166 =@ =0 1o n=2A,60).

2
|S| geG,ses geG

We then pick

V= UU*‘s.

seS

We give the details in the case p = 2 (the case p = 1 is very similar). Write

1
EWY) =5 D W) = v PvE)

y,zel
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1 1
=1 2 Wen —vmPi@+7 Y W@ - v)Pne.

y,zel y,zel

The first term in this sum is obviously equals to

VI 2
25| D 16Gsg) — p(9)l
geG,seS
which bounded below by @ o ||§ = /)¢ ||%. For the remaining term, write

1 1
72 e —vmPn@ =1 3 v ugn) — v(@Plg@)?

y,zel gt l<i<k

-1 1

Note that for g7 g is the transposition (g~', g~ 1s;). It follows that when g € U =
support(¢), g~ 't; g7 and 7 are supported either both in V or both in G \ V. This means
that %Zy,zel" [V (zy) — ¥ (y)|?v2(z) = 0. Thus we have found a function ¥ such
that

E (W, ¥) < gnwu%

and which has a support of size at most (kv)!. This yields the desired result. O

Remark 6.10 The upper boundon A, r, I' = (G, S)., can also be obtained indirectly
by noting that I' is a subgroup of Gg and using Theorem 4.9. It is to be noted that
Theorem 4.9 allows for starting with an arbitrary symmetric probability measure on G
but that the results concerning the star extension (G, §), are obtained only for finitely
supported symmetric probability measures on G.

7 Pocket extension of Schreier graphs: the case of bubble groups
7.1 Bubble groups

The family of the so-called bubble groups was considered in [26]. See also [4,37].

Leta = (aj, a2, ...) and b = (by, by, ..) be two natural integer infinite sequences.
The “bubble group” I' p is associated with the tree like bubble graph Xj , were X p s
obtained from the rooted tree T}, with forward degree sequence (1, b1 —1,b2—1,...)
as follows. Each edge at level k > 1 in the tree (we make the convention that the level
of an edge is the level of the child on that edge) is replaced by a cycle of length
2ay called a bubble. See Figs. 5, 6 and 7. Each vertex at level k > 1 (we ignore the
root which is now part of a circle of length 2a) is blown-up to a bi-cycle with each
vertex of this cycle inheriting one of the associated 2ay41-cycle. These by-cycles are
called branching cycles. Finally, at each vertex which belong only to a bubble (but
not to a branching cycle), we add a self loop. The vertex set of the graph X, ;, can be
parametrized using pairs (w, ) with w a finite word in
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b b
QOC—ROOOOOOOO&‘\

T o

Fig. 5 A piece of the labelled Schreier graph of an infinite bubble group with a = (ay,a»,...),b =
(3,3,3...)

level k
@ 1 1k:—1 $ lk
P ' '
mg e '
Y ot 5

|
a2 ag
I T <
b(w)a |U)| =k—-2

Fig.6 Sketch of the Schreier graph X: levels, b(w), my. Details of the red circle region are shown in Figure
7

(151, ax)
(15-2,0)
Fig.7 Sketch showing NAk-2, r), my
BYU U {1, by — 1y x {1, by — 1} x o x {1, ... b — 1})

andu € {0, ..., 2ar4+1 — 1} if |w| = k. By definition, the vertex o = ¢ is the root.

In the graph X, j, we call “level k™ the set of all the vertices (w, u) with |w| = k—1,
0 < u <2a; — 1. If all the a; are distinct, this is the set of all vertices that belong to
a bubble of length 2a;. We say that a branching cycle is at “level k™ if it is attached
at the far end (i.e., furthest away from o) of a level-k bubble. Note that the vertices of
any branching cycle at level k are parametrized as follows:

o (w', ay) with |w’| = k — 1 for the vertex closest to the root o, a vertex which also
belongs to a level-k bubble,
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e (w'z,0) with z € {1, ..., by — 1} for the other vertices on that branching cycle,
each of which also belongs to a level-(k 4 1) bubble.
We let

b(w) = {(w, ax), (w'1,0), ..., (W' —1),0)}

denote the branching cycle at (w’', ai).

Having chosen an orientation along each cycle (say, clockwise), we label each edge
of the bubble with the letter a and each edge of the branching cycle with the letter b.

The group I'y 1 is a subgroup of the (full) permutation group of the vertex set of
Xa,p generated by two elements « and 8. Informally, o rotates the bubbles whereas
B rotates the branching cycles. Formally, the action of the permutation « (resp. §) on
any vertex x in X, p is indicated by the oriented labeled edge at x labelled with an
a (resp. a b). Obviously, we can replace the edge labels a, b with the group elements
o, 3, once these are defined.

These groups are somewhat mysterious. We know they have exponential volume
growth when all b; are at least 3, that the groups I'y  are non-amenable when both
sequence a, b are bounded and that they are amenable when lim inf @; = oco. Typically,
their isoperimetric and spectral profiles are not precisely known (modulo the usual
equivalence relation ). A more detailed description is given in [37] and also in [4],
especially the appendix of this paper written by Nicolas Matte Bon. Here we will
focus in the case when the sequence b = (3, 3, 3, ...) and the sequence g; is strictly
increasing. The main case of interest for us is when a; ~ 2/ for some fixed parameter
k € (0, 00). Because we only consider the case b = (3, 3,3, ...), we will use the
simplified notation X,, I'y. We equip I'y with the symmetric probability measure u
which is the uniform measure on {a*!, B *11 and with the associated Dirichlet form
Eu (multiplication on left).

For simplicity of notation, we assume throughout that each entry a; of the sequence
a is divisible by 4. Set

Nw,r)={x € X :d(x, b(w)) <r}, we{l,2), r>0.

For any k£ < j, w of length |[w| = j and 0 < r < ax—1 — 1, we have an obvious
bijective map

s N(w, r) — NnAa,
which can be used to identify these vertex sets. For a given level k, we set

me =15k /2), Bi)={xe X :dx,mp) <1}, 0<I<(ar/2)— 1.

7.2 Construction of test functions on I'; and the pocket extension of its Schreier
graph

Definition 7.1 For each k > 8 and ¢ € (0, (ax/2) — 1), consider the set Uy (¢) of all
elements g € I'y such that there exists a sequence y1, ...y, € {a*!, B£1} such that
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g=Vvy-.-v1and, foralll < j <gq,y;...y1my € By({).Foranys € {0, 1, ..., &},
with € = (ar/4) — 1, define Y, on 'y by

w (g) = 0 ifg ¢ Ui (€x)
K& =1 (1 Z5/00)4 if g € Up(€r) and d(my, gmy) = s.

Lemma 7.2 The function i satisfies

20 24+1/¢ 1
262 Vb 0] and £, v1) = ————— Uk (801

2 _
Willz = =501 2020 + 1)

In particular

S V) _ 3
lywll3  — 267

Proof The sets Uy (€x, 1) = {g € U (€x) : gmy = a'my ), 1 € {0, £1, ..., ££;}, form
a partition of Uy (£x) and they all have the same cardinality because one can check that
a 'Up(l, t) = Ui (£, 0) (by inspection, for g in Uy (¢, t) with the given restriction
on ¢, the action of a®! of gmy is a simple shift along the given cycle). It follows that

IVll3 = Ul 00 D (1—t/4)?

— L <t <ty

1 20 +2+1/8
== +2+1/)|Ur(lg, 0) = ——————|Ur(£p)l,
3 G+ 2+ 1/601 Ui (b, 0) 3061 D) Uk (€i)]

and

8Eu (Wi, Yi)

D (nleg) — v @ + v @ 'g) — v
8

S WP U0+ D (/6| Ui (., 0)

— L <t <y — U<t <ty

4 4
= —|Up(l, 0)| = ——— Uk (1)
£k| (L, 0)] Ek(2£k+1)| [3¢93]

m}

In order to use Lemma 7.2 to estimate the spectral profile, we need to estimate from
above the size of the support of . Set s = Zlf aj

Lemma 7.3 Foranyk > 8, any element g € Uy (£, 0) C 'y, viewed as an element of
S(Xa), is the product of permutations supported in the disjoint finite sets B(0, sy—1 +
Li) and Nj(w, €y), lw| = k. Moreover, The factor supported in MAX, 0x) determines
uniquely all the factors supported one each (A, £y), |w| > k, via the isomorphisms
U - NUw, &) — MNA¥, €x). In particular,

Uk (€x, 0)] < (IB(0, sk—1 + €)1 x (INAY, o).
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Fig.8 Sketch of the Schreier

% * 0 4 <
graph X3 used to define I'y -:(:(% _______
T

Proof Let g =y, ... y1 € Ur(£, 0). From the definition of Uy (¢, 0), it follows that,
for any w with |w| = j — 1 > k — 1, each of the bubble segment

Ii(w) = B((w,a;/2),a;/2 — £ — 1)

centered at the middle points (w, a;/2) and of radius aj /2 — £; — 1 are left point-wise
invariant by g. In fact, each of these segments is moved as a block throughout the
sequence of steps y;...,y1, 1 < j < g without escaping the full bubble segment
containing (w, a;). Moreover, the translations of these segments are all following the
moves of the point m; = (1¥~!, a;/2). This implies that these segments acts as buffers
restricting the action of g on points belonging to the various "connected components"
of the complement of the union of these segments. Namely, the action of g has to
internal on each of these components. The statement of the lemma captures this fact
and enumerate these components. O

We now turn to the treatment of the pocket extension of X,. Let us call the resulting
group Ta. Itis defined by the labelled graph X depicted schematically on Figure 8 and
generated by three elements 7, «r, 8. The transposition t transposes the new vertex *
and the root o of X,. It act trivially at each of the other vertices (each carry a self-loop
labelled 7). At the new vertex *, the labellings a and b are carried by self-loops, i.e.,
a and B act trivially at .

From this description, it should be rather obvious that exactly the same argument
use for I'y applies to I'a modulo some very small adaptation. For clarity, we give
explicitly the definition of the the test functions for I'a. When working with T, the
symmetric probability measure u is the uniform measure on {r, a*!, g*!}.

Definition 7.4 For each k > 8 and ¢ € (0, (a;/2) — 1), consider the set l7k(£) of all
elements g € T, such that there exists a sequence 1, ... Yy € {7, ot 1) such that
g=Vvy-.-v1and, foralll < j <gq,y;...y1my € By(£).Foranys € {0, 1, ..., &},
with £, = (ax/4) — 1, define ¥ on I'y by

Ji(e) = 0 ifg¢ Uptr)
=1 (1 = s/t0), if g € Up(lr) and d(my, gmy) = s.

Lemma7.5 The statements of Lemma 7.2 and Lemma 7.3 apply to the functions lzk
on Ty after replacing Xa by X and Uy (£) by Ux(€). Note also that in the present
case, the ball B(o, r) is a ball in X and thus contains the extra vertex .

Remark 7.6 1t follows from Lemma 7.5 that we have exactly the same upper-bound
on the spectral profiles of the group I'y and I'y. Comparing with the results in [37],
this is also essentially the same upper-bound as for the permutation wreath-product
7.2 Xa Fa.
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Let Va(t) = |B(o, t)] the volume of the ball or radius ¢ at the root on X?. This
volume is given by

k—1
Va(t) = ZZaijfl +2(t — sk_l)2k*l for sp_1 <t < s¢.
1

This is the quantity that play a role when applying Corollary 6.5 to obtain a lower
bound on the isoperimetric and spectral profiles of I'y. Namely,

A, () = S Whenever v < VVa(r)!
st a r

which gives

1

-1 log(1+v)
Va' (ogiiogairoy)

where V, ! (v) = inf{s : Va(s) > v}.

Alfa(v) 2

The upper bound on A, § (v) obtained above is based on the functions
k=1
Wa(t) = Zzajzf—‘ + (ag/2)2K " forag_y < 2t < ax
1

and
Aa(t) = ar/2 for a1 < 2t < a.
It reads

Ay 7, (V) < r%whenever v > (Wa(r))(Aa(r))).

Because the factor A, (r)! is much smaller than the other factor and r is on the scale
of log v, this gives
C

—1 log(1+v) 2
[Wa ( log(1+log(14v)) ]

where W;l(v) = sup{s : Wa(s) < v}.

Ay, (0) =

Taking into account the left-hand side inequality in (3.2), the lower bound on the
isoperimetric profile and the upper-bound on the spectral profile match-up rather well
as long as a; >~ s; (i.e., the sum s; is approximately equal to it last term g;). In the
following theorem, we focus on the case when a; ~ 2 ! for some k € (0, 00). In this
case, we have s; >~ a; and

K+l

Va(r) = Wa(r) ~r « .
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Theorem 7.7 Let T be the group associated with X %, the Schreier graph pocket exten-
sion of Xa. Under the assumption that a; >~ 2" for some k € (0, 1), the isoperimetric
and spectral profiles satisfy

log(1 + log(1 + v)))ZK/(KH))

2~ ~ ~
ALR )7 = A7, () = ( log(1 + v)

The return probability function d>fa satisfies
K+l 2k
<I>'1:a (n) >~ exp (—nﬁ (log n)m) .

It is perhaps surprising that the behavior of A, r,, p = 1,2, and of ®r,, for the
bubble group I, itself are not yet entirely understood. Because Iy is a subgroup of Ta
(and because the same arguments apply directly in both cases), A, r, S A T, and
or < Or,.

Regarding the sequence a = (a;) that defines X,, '3 and Fa, it is possible to obtain
relatively good results for sequences a growing faster a than 2¢/. See [37] for related
computations. Understanding the behavior of random walk on I'; and 'y when the
growth of a is slower than exponential appears to be a harder challenge. The method
explained here provides upper and lower bounds for A , = and @ but theses bounds
do not match. Again, see [37] for related computations.

Data sharing not applicable to this article as no datasets were generated or analyzed
during the current study.
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