
NanoLambda: Implementing Functions as a Service

at All Resource Scales for the Internet of Things.

Gareth George, Fatih Bakir, Rich Wolski, and Chandra Krintz

Computer Science Department

Univ. of California, Santa Barbara

Abstract—Internet of Things (IoT) devices are becoming in-
creasingly prevalent in our environment, yet the process of
programming these devices and processing the data they produce
remains difficult. Typically, data is processed on device, involving
arduous work in low level languages, or data is moved to the
cloud, where abundant resources are available for Functions
as a Service (FaaS) or other handlers. FaaS is an emerging
category of flexible computing services, where developers deploy
self-contained functions to be run in portable and secure con-
tainerized environments; however, at the moment, these functions
are limited to running in the cloud or in some cases at the “edge”
of the network using resource rich, Linux-based systems.

In this paper, we present NanoLambda, a portable platform
that brings FaaS, high-level language programming, and familiar
cloud service APIs to non-Linux and microcontroller-based IoT
devices. To enable this, NanoLambda couples a new, minimal
Python runtime system that we have designed for the least capa-
ble end of the IoT device spectrum, with API compatibility for
AWS Lambda and S3. NanoLambda transfers functions between
IoT devices (sensors, edge, cloud), providing power and latency
savings while retaining the programmer productivity benefits of
high-level languages and FaaS. A key feature of NanoLambda is
a scheduler that intelligently places function executions across
multi-scale IoT deployments according to resource availability
and power constraints. We evaluate a range of applications that
use NanoLambda to run on devices as small as the ESP8266 with
64KB of ram and 512KB flash storage.

Index Terms—IoT, serverless, cloud functions, edge computing,
microcontrollers, portability

I. INTRODUCTION

The Internet of Things (IoT) provides a data collection and

computing fabric for physical objects in our environment. As

such, it enables developers to build new classes of applica-

tions that integrate with and act upon the world around us.

However, with these applications come new data processing

and software development challenges. Specifically, developers

must either port their code to large numbers of highly resource-

constrained, heterogeneous devices (e.g. sensors, actuators,

and controllers embedded with microcontrollers), or move

their data on volatile, high latency, and energy-consuming

long-haul networks to perform computation on resource-rich

cloud infrastructures.

Functions as a Service (FaaS) is a technology originally

developed by cloud providers to ease the development of

scalable cloud and web services [6], [9], [11], [21], [22], [26],

[34]. Because of its simple, event-driven programming model

and autoscaled deployment, FaaS is increasingly used for IoT

applications [8], [12], [13], [23], [36]. With FaaS, developers

decompose their applications into multiple functions, each re-

sponsible for some short-lived piece of processing. A function

is typically a small, single-entry code package (50 megabytes

or less) written in a high level language (e.g. Python, node.js,

or Java). Thanks to their small size and self-contained design,

these functions are easily invoked and scaled automatically

by the FaaS platform in response to incoming events (data

arrival, messages, web requests, storage updates, etc.). Many

functions, potentially belonging to different tenants, execute on

a single server, using Linux containers to provide secure iso-

lation and a consistent execution environment. Together, these

features allow the application developer to focus on the func-

tion logic using a single, familiar programming environment,

without having to port code to heterogeneous architectures, to

consider where functions execute, or to manage how and when

to scale their applications.

To support IoT, some FaaS platforms are now able to move

data from devices at the “edge” of the network to the cloud [8],

[13], [23]. Given high latency and intermittent connectivity of

these networks, other FaaS alternatives offer edge extensions

that instead move the functions to the edge (which are typically

much smaller in size than data) to consume and operate on data

“near” where it is produced. Performing computations at the

edge reduces application response latency and device power

consumption, e.g. many IoT devices are battery powered and

radio use consumes significant energy [16], [19], [20], [24],

[33], [35], [36].

Although a step in the right direction, these edge-aware

FaaS systems still impose a significant burden on IoT de-

velopers. Specifically, FaaS functionality in most cases is

limited to Linux-based edge systems – precluding the use

of a uniform programming methodology on non-Linux de-

vices (i.e. microcontroller-based sensors and embedded sys-

tems). To integrate such devices, existing platforms use mul-

tiple technologies and protocols [10], [12], [13], [16], [23],

[24]. For example, an IoT applications developer that uses

AWS Lambda [9] and Greengrass (i.e. AWS Lambda at

the edge) [24] for edge-cloud interoperation must configure

MQTT [15], FreeRTOS, IoT SDK [25], AWS Lambda, AWS

Greengrass, and a persistent storage service (typically S3 [4]

or DynamoDB [3]), in addition to the function itself. Thus,

IoT application development requires significant expertise in

a myriad of programming technologies and styles that is

further complicated by differing systems capabilities, resource

restrictions, quality of service, and availability [10], [16].

CSPOT attempts to overcome these challenges via a low-

level, distributed operating system that implements a FaaS ex-

ecution environment for C-language functions across all tiers

of scale in IoT [36]. CSPOT provides the same event-driven

deployment and execution model across systems ranging from

clouds to microcontrollers, to hide heterogeneity. It exports a

distributed storage abstraction that functions use to persist and

share state. CSPOT supports execution of functions written

using high level programming frameworks and cloud APIs

via Linux containers and C-language bindings. However, these

latter capabilities (i.e. high-level language support, function

isolation, and interoperability with other FaaS systems) does

not extend to microcontrollers or any non-Linux system.

The key challenge with extending these capabilities to

microcontroller-based systems, which all FaaS systems must

face, is supporting the vast heterogeneity of such devices

coupled with their limited computational resources. Sensors

and embedded systems implement different hardware architec-

tures, operating software, and peripherals, which make them

difficult to program, to provide abstractions for, and to leverage

using existing APIs and programming frameworks. Limited

compute, storage, and battery resources severely constrain

what programs run on these devices. Finally, most devices lack

the physical hardware (e.g. memory protection units, sufficient

volatile and non-volatile storage, etc.) that is required to run

conventional FaaS software stacks.

In this paper, we overcome these challenges to extend FaaS

uniformly to the least capable of IoT devices. To enable

this, we design and implement a distributed FaaS platform

called NanoLambda that runs over and integrates with CSPOT .

By doing so, we leverage CSPOT’s FaaS programming and

deployment model, its fault resilient distributed storage ab-

straction, and cloud and edge portability. NanoLambda raises

the level of abstraction of CSPOT to support execution and

isolation of Python functions on non-Linux systems. By doing

so, NanoLambda makes Python FaaS functions ubiquitous and

portable across all tiers of IoT (across sensors, edge systems,

and clouds) and facilitates programmer productivity across

these heterogeneous systems.

NanoLambda is also unique in that it is tailored to the FaaS

programming model and mirrors the APIs of popular cloud-

based FaaS systems. By optimizing resource use and power

consumption, NanoLambda facilitates efficient execution of

Python functions on severely resource constrained devices. By

implementing popular FaaS and storage APIs from the de facto

standard AWS Lambda [9], NanoLambda brings cloud-based

FaaS familiarity to IoT programming, and facilitates reuse of

existing FaaS applications in IoT settings.

The NanoLambda platform consists of Edge/Cloud compo-

nents (called NanoLambda Cloud/Edge) and microcontroller

(i.e. on-device) components (called NanoLambda On Device)

that interoperate. NanoLambda Cloud/Edge runs on Linux-

based systems, employs a containerized runtime, executes

FaaS functions directly (those targeting the local host), and

provides a translation service for functions that target neigh-

boring, non-Linux devices. The translator transforms Python

functions, emulating any AWS Lambda and Simple Storage

Service (S3) API calls, using compact and efficient bytecode

code packages that are executed by NanoLambda On Device.

Our design of the translator is sufficiently small and efficient

to run on even resource-constrained Linux-based edge systems

(e.g. single board computers like the Raspberry Pi) .

NanoLambda On Device is designed without dependency

on Linux interfaces or a memory protection unit for function

isolation. To enable this, it integrates a from-scratch, novel

redesign of a Python interpreter called IoTPy. IoTPy defines

its own bytecode language (precluding the need for recom-

pilation for different devices) and code packaging system

(which the NanoLambda Cloud/Edge translator targets). IoTPy

also implements FaaS- and device-aware optimizations that

efficiently implement CSPOT capabilities while staying within

the memory limitations of highly resource constrained IoT

devices. Our design of IoTPy is motivated by our observation

that existing Python interpreters, including MicroPython [30],

are too resource intensive for increasingly ubiquitous IoT

devices that we wish to target (e.g. the Espressif ESP8266).

With the combination of these components, NanoLambda

achieves AWS compatibility and efficient FaaS execution end-

to-end.

In the sections that follow, we describe NanoLambda and

the design and implementation of its components and features.

With this hybrid edge-device service ensemble, this paper

makes the following contributions:

• We explore the feasibility and performance of a FaaS

service for running high level Python functions on

highly resource restricted devices (e.g., microcontrollers).

We evaluate the efficacy of our system using a “real

world” implementation. We also provide microbench-

marks which delve into the performance trade-offs of

running FaaS on-device and show that for a variety of

suitable applications it can provide improved latency and

power efficiency.

• We demonstrate portability and the possibility of ubiquity

– executing the program on device, at the edge, or in

the cloud – using CSPOT [36], a distributed runtime

(designed to support FaaS) to implement a multi-scale

compatibility service for FaaS that is API-compatible

with AWS Lambda and S3.

• We present a simple scheduler that uses this portability to

select locations for function execution based on latency

constraints, and we show that the scheduler outperforms

either remote-only execution or on-device-only execution

across a range of problem sizes.

• We achieve isolation between untrusted FaaS functions on

non-Linux IoT devices using a high-level language virtual

machine for Python as an alternative to heavyweight

containerization.

As a result, this work enables the use of a single FaaS pro-

gramming model and set of APIs across all resource scales in

an IoT deployment while leveraging the considerable existing

code base and technological footprint of AWS Lambda.

2

II. RELATED WORK

Functions as a Service (FaaS) is a cloud-computing platform

with which developers write code without consideration for

the hardware on which it runs. Applications are broken down

into distinct units of functionality and packaged as functions

that can be distributed and updated on the fly. Functions are

executed in lightweight containers which provide portability,

scalability, and security: functions are automatically scaled

across multiple machines, while execution is isolated from

other tenants of those instances. A number of major cloud

providers such as AWS Lambda [9], Google Cloud Functions

[22], and Microsoft Azure Functions [11] now offer hosted

FaaS platforms.

Because of its automatic scaling and convenience, FaaS has

seen increased adoption in IoT in recent years. AWS IoT,

for example, leverages FaaS functions extensively in order to

allow users of the platform to attach functions that handle IoT

events [17]. Serverless [34], a leading industry toolchain for

FaaS programming, estimates that IoT makes up 6% [1] of

the use of FaaS in industry.

An emerging development in IoT data processing is the

prospect of FaaS at the edge for data processing. Commercial

offerings such as AWS GreenGrass [24] and open source

Apache OpenWhisk [6] make it possible for users to host their

own FaaS deployments on low-power devices. By running

functions at the edge, the hope is that handlers can be

run closer to where data is produced, making better use of

locally-available processing and reducing latency penalties and

transfer costs. The authors of [31] explore the concept of a

serverless platform for real-time data analytics at the edge and

discuss the benefits and challenges of the approach.

CSPOT is an open source, low-level distributed operat-

ing system for IoT that executes a uniform FaaS model

across devices ranging from servers in the cloud to resource-

constrained sensors and microcontrollers [36]. CSPOT exports

a distributed storage abstraction called a WooF for persistent

storage of FaaS function objects. WooFs are append-only

logs with built-in event tracking and repair capabilities [28].

WooFs serve both the role of state storage and execution

log – appending data to WooFs optionally can trigger the

execution of an event handler that responds to the appended

data. Functions (i.e. event handlers) are implemented as Linux

executables allowing for flexibility of language choice and

libraries. A pool of docker containers is maintained to run

handlers – by running only one handler in a container at

any given time, functions are isolated from one another. This

enables development of complex applications, and provides the

security, portability, and scalability expected of FaaS systems.

For Linux systems, CSPOT provides an execution envi-

ronment and AWS API compatibility (for S3 and Lambda

services) for Python functions. However, this support does not

extend to microcontrollers (which we address with the work

herein). To execute C-language functions on microcontrollers,

CSPOT uses a threaded, multitasking system with direct mem-

ory addressing. This support is available for ARM, AVR, and

Espressif microcontrollers. FaaS functions in CSPOT must be

compiled and installed on a per-device basis. Our work enables

Python functions (including Python AWS Lambda functions)

to be executed over CSPOT , including on microcontrollers.

We do so using a combination of automatic translation at the

edge and interpretation on-device to enable both portability

and efficiency.

When functions can be made highly portable, as is the case

with FaaS, interesting possibilities for improving performance

emerge, such as scheduled execution. The authors of [7]

propose a framework for scheduling execution among multiple

FaaS providers. The authors develop an extensible API for

executing functions across multiple providers, as well as a

metrics database that tracks execution statistics from these

services. Once a model of function performance has been built

for a given provider, this information can be provided to a user-

defined scheduler, e.g., a Python function which selects the

provider with the minimum latency. The authors find that by

employing a scheduler, they can achieve a 200% faster average

round-trip execution time compared to executing on any one

service provider. This serves as a promising example of how

the portable nature of FaaS functions can provide application

developers with more flexible execution options and improved

performance.

III. NanoLambda DESIGN AND IMPLEMENTATION

At present, writing applications for IoT means programming

for APIs and libraries specific to each device, writing functions

that are “locked in” to particular cloud provider APIs, and

using only those devices that are supported by these platforms.

It is our objective to support a common programming model

everywhere, extending from IoT devices to the edge to the

cloud. In service of this goal, we opted to design our system

around CSPOT , a low-level framework for supporting IoT

FaaS. CSPOT provides the foundation for our high-level FaaS

runtime, with powerful cross-platform primitives for secure

function (event handler) execution and data persistence.

However, existing cloud-based FaaS offerings that have seen

adoption in industry use high level languages, such as Python,

for their handlers. These high-level languages are particularly

advantageous for portability and programmer productivity.

The CSPOT service, while capable of running with minimal

overhead on a wide range of severely resource-constrained

devices, defines its own API. Thus while CSPOT is, itself,

portable, it cannot execute FaaS functions written for existing

cloud services such as AWS Lambda.

It is our view that, in order to provide the same convenience,

compatibility, and security as FaaS handlers executing in

the cloud, a FaaS system for resource-restricted, non-Linux

devices should have the following properties:

1) Ease of development – we wish for NanoLambda to

be familiar to developers already using FaaS, ideally

allowing existing FaaS functions to run with little to

no code changes.

3

Service. The service compiles handlers on-demand into a

compact binary representation that can be sent to the device

for execution. Fetch requests check that the code size and

memory requirements (specified in the function configuration)

fit within the resource constraints of the requesting device. If

rejected, it is possible for the cloud/edge device to execute the

function on behalf of the IoT device.

B. NanoLambda On Device

NanoLambda On Device is runs Python handlers on non-

Linux IoT devices. As shown in Figure 1 (on right), the service

leverages CSPOT WooF logs on-device for persistent storage

and event invocation. As for Linux systems, FaaS handlers are

invoked in response to data appended to storage logs.

As seen in the figure, the typical model for NanoLambda

On Device is that data is produced by threads monitoring

sensors on the device and appending it to objects in the object

store. It is also possible for data to be remotely delivered

for processing over CSPOT’s network API. Each append to

the object store is processed by CSPOT’s event model which

runs a C-language handler function with the new data. Similar

to the NanoLambda Cloud/Edge’s support for Python using

a special Linux handler binary with an embedded Python

interpreter, we extend NanoLambda Cloud/Edge with Python

support by registering a special C-language handler function

which interprets the handler’s name to be a Python Lambda

function deployed via the NanoLambda Cloud/Edge service.

When this function is invoked, it triggers the handler with

the payload provided by the newly appended object in an

instance of the IoTPy VM. By leveraging CSPOT’s existing

functionality, we are able to offer Python 3 Lambda support

on device.

C. IoTPy

To ease development and portability, we choose Python as

our FaaS programming language because its bytecode is easily

portable and its simple virtual machine implementation can

be easily ported to IoT devices. Likewise, we package FaaS

functions using the package format defined for AWS Lambda

for compatibility purposes.

To achieve a small code and memory footprint we opted

to implement IoTPy: our own extremely lightweight Python

interpreter built from the ground up with embedding in mind.

We found existing solutions, such as MicroPython [30], to be

unsuitable because they left little additional space for features

such as our FaaS runtime and the drivers for our networking

and sensors. On our most resource-constrained devices, such

as the ESP8266, our binary must be able to fit in as little as

512KB of flash memory.

IoTPy is written to be as unintrusive as possible with a

focus on allowing the Python interpreter to be treated like a

library. To keep IoTPy small, we opted to omit the Python

parser/lexer on the device. Instead, these tasks are offloaded

to the NanoLambda Cloud/Edge service. This benefits us in a

number of ways:

1) bytecode compilation as well as optimization steps can

be performed by a full Python 3.6 implementation on

NanoLambda Cloud/Edge service

2) memory use is reduced since we are only shipping

compact bytecode representation to the device, and

3) a simpler virtual machine implementation can be used on

device – by delegating compilation to the NanoLambda

Cloud/Edge service, our IoTPy is able to limit its func-

tionality to implementing the core language features of

the Python virtual machine (VM).

Together, these capabilities mitigate the additional complexity

of maintaining a simple Python bytecode VM. To enable

these capabilities we make some tradeoffs with regard to

program storage and architectural simplicity. IoTPy provides a

convenient C/C++ interface for extending Python with native

functions. We currently provide implementations for only the

most common Python libraries and emulation of only the AWS

S3 and Lambda deployment services. The libraries include

common math functions, JSON operations, APIs for accessing

device peripherals, basic networking, and interfaces for the

APIs provided by NanoLambda Cloud/Edge. IoTPy cannot,

however, load standard Python packages.

When comparing the size of the generated binary files for

IoTPy and MicroPython, we find that the code for the IoTPy

library uses 290KB of flash storage, whereas MicroPython

requires 620KB of flash storage. Thus the IoTPy imple-

mentation leaves us with almost 300KB of additional storage

available for programs, drivers, and the FaaS runtime.

D. Python VM Security and Isolation for FaaS Handlers

IoT devices are often so resource-constrained that they

lack security features such as memory protection units to

implement separate address spaces for isolated execution of

user code. Additionally, conventional FaaS isolation, achieved

by Linux features like container-based isolation, is simply not

possible on devices like these. The authors of [2] and [29] find

various attacks, many of which rely on out-of-range memory

access, to exploit IoT devices and execute code or update their

firmware with malicious payloads. Yet it is essential that IoT

developers be able to reprogram and update their devices in

the field.

By placing the majority of application logic in FaaS han-

dlers, we reduce potential attack surface area. A secure Python

virtual machine implementation can ensure that the bytecode

running within it cannot access memory out of range or

otherwise escape the permissions allowed to the handler by

the built-in functions provided to it. Python handlers can then

be isolated from one another by running in separate instances

of the Python VM. This isolation is similar to traditional Linux

containers.

E. Deploying and Running Functions

By leveraging NanoLambda Cloud/Edge and its compatibil-

ity layer for Amazon’s AWS Lambda APIs, we minimize the

effort to port functions to the IoTPy platform. In many cases,

functions run directly on IoTPy without code changes.

5

In Table I we show invocation latencies for various config-

urations of the NanoLambda runtime. The “No Server Cache”

configuration represents the true “cold start” cost of invoking

a new AWS Lambda function for the first time. This number

includes both the time taken for the server to compile the

Lambda function and to deliver it to the device. The Local

Cache configuration shows us the typical amortized runtime

of the application where frequently invoked Lambda functions

will typically be already available on the device. We can

see that the performance difference is substantial, requiring

almost 32x as much time to invoke a function that is not in

cache. This is largely due to the effects of both compilation

time and the cost of network latency. Compilation and code

transfer each take roughly 100 milliseconds on the network

tested. We include “No Local Cache” to show the startup cost

of a function shared by multiple devices. In this scenario, a

function typically has already been accessed and compiled by

the server but has not yet been delivered to a given device.

We expect this to be representative of the startup cost for real-

world deployments.

We include a C implementation of the same handler function

as a baseline. It is worth noting that this is on the order of

20x faster than our configuration with local caching. This is a

substantial overhead, but it is representative of what we would

expect for the performance difference between an interpreted

language without JIT and a compiled language like C [32].

Ultimately, it is up to the application developer to determine

when the flexibility and ease of deployment with Python and

the FaaS ecosystem outweigh its overhead.

Configuration Latency in ms

NanoLambda Local Caching 6.7 ms

NanoLambda No Local Cache 119.5 ms

NanoLambda No Server Cache 220.4 ms

NanoLambda C Handler 0.3 ms

TABLE I
AVERAGE LATENCY FOR 100 ITERATIONS OF THE HANDLER FUNCTION

B. Predictive Maintenance Application

In this experiment, we look at the detailed performance of

a NanoLambda application with more demanding processing

requirements compared to the previous example. Predictive

maintenance techniques use sensors to detect part failures or

other maintenance requirements.

Our experiment considers motor maintenance by analyzing

the vibrations off of a motor as measured by an accelerometer.

It is possible to detect if the motor or a connected part has

failed by monitoring for changes in the distribution of the

magnitude of vibrations picked up by the accelerometer. Our

application detects these changes with a Python implementa-

tion of the Kolmogorov–Smirnov (KS) test, used to compare

a reference distribution against real time measurements from

an accelerometer. The test provides the probability that the

empirical distribution matches the reference distribution. A

possible failure can be flagged if this probability drops below

a tuned threshold.

list containing a reference

distribution from accelerometer

reference = [...]

def kstest(datalist1, datalist2):

omitted, see implementation from

gist.github.com/devries/11405101

def new_accel_sample(payload, ctx):

global reference

transformed = []

for record in payload:

transformed.append(

magnitude(record)))

prob = kstest(

transformed,

reference)

return prob

Fig. 4. The implementation of the handler providing the KS test results

In Figure 4, we show the implementation of our KS test

handler. The handler is provided with a JSON payload con-

taining a list of recent accelerometer data as tuples of (x, y, z)

acceleration. These records are normalized to a transformed

array of floating point magnitudes and then passed to an

“off-the-shelf” open-source implementation of the KS test by

Christopher De Vries [27]. This KS test implementation is

computationally intensive and scales linearly with the input

problem size.

In Table II, we show the performance of a real-world

installation. The hardware configuration is a CC3220SF pro-

cessor with 1MB of program flash and 256KB of RAM. This

processor is wired to an accelerometer monitored by a sampler

thread (much like the photoresistor experiment), which collects

data from the accelerometer 5 times per second and appends it

to a data log. Every 32 samples, a handler is invoked to analyze

recent data. The handler is always invoked on device and

shows the performance of a more complex handler running on

IoTPy. The more complex function requires longer execution

time, 147ms, as well as a longer startup time of 436ms to

compile.

We found this handler to be sufficiently computationally

intensive to be a good candidate for offloading to an edge cloud

device. To this end, we next present a scheduler for offloading

computationally-intensive tasks to remote FaaS providers.

C. Saving Power With Execution Offloading

In Figure 5 we show the power used by the CC3220SF

microcontroller for KS problem sizes 20 and 80 over the

Configuration Latency (ms) Power Use (mJ) Memory Use KB

NanoLambda Local Caching 209.4 ms 21.23 mJ 23.6KB
NanoLambda No Local Cache 729.0 ms 85.00 mJ 21.7KB

TABLE II
AVERAGE TIMES/POWER CONSUMPTION OVER 100 ITERATIONS OF THE

HANDLER FUNCTION ON THE CC3220SF MICROCONTROLLER WITH A KS
PROBLEM SIZE OF 32 IN EACH CONFIGURATION.

7

execution allows our platform to outperform either remote-

only execution or on-device-only execution across a range

of problem sizes by rescheduling execution in response to a

latency model for each execution strategy.

VII. ACKNOWLEDGMENTS

This work has been supported in part by NSF (CNS-

1703560, CCF-1539586, ACI-1541215), ONR NEEC

(N00174-16-C-0020), and the AWS Cloud Credits for

Research program. We thank the reviewers and our shepherds

for their valuable feedback and suggestions.

REFERENCES

[1] 2018 serverless community survey: huge growth in
serverless usage. https://www.serverless.com/blog/
2018-serverless-community-survey-huge-growth-usage/ [Online;
accessed on 24-June-2020].

[2] T. Alladi, V. Chamola, B. Sikdar, and K. R. Choo. Consumer iot:
Security vulnerability case studies and solutions. IEEE Consumer

Electronics Magazine, 9(2):17–25, 2020.
[3] Amazon DynamoDB. https://aws.amazon.com/dynamodb/. [Online;

accessed 15-Nov-2016].
[4] Amazon s3. ”www.aws.amazon.com/s3” [Online; accessed on 24-June-

2020].

[5] Amazon s3 rest api. ”https://docs.aws.amazon.com/AmazonS3/latest/API/
Type API Reference.html” [Online; accessed on 24-June-2020].

[6] Apache OpenWhisk. https://openwhisk.apache.org/. [Online; accessed
24-Jun-2020].

[7] A. Aske and X. Zhao. Supporting multi-provider serverless computing
on the edge. In International Conference on Parallel Processing, 2018.

[8] AWS IoT Core. ”https://aws.amazon.com/iot-core/” [Online; accessed
12-Sep-2017].

[9] AWS Lambda. https://aws.amazon.com/lambda/. [Online; accessed 24-
Jun-2020].

[10] AWS Lambda IoT Reference Architecture. http://docs.aws.amazon.
com/lambda/latest/dg/lambda-introduction.html [Online; accessed 12-
Sep-2017].

[11] Azure Functions. https://azure.microsoft.com/en-us/services/functions/.
[Online; accessed 24-Jun-2020].

[12] Azure IoT Edge. https://azure.microsoft.com/en-us/services/iot-edge/.
[Online; accessed 22-Aug-2018].

[13] Azure IoT Hub. https://azure.microsoft.com/en-us/services/iot-hub/
[Online; accessed 22-Aug-2018].

[14] F. Bakir, R. Wolski, C. Krintz, and G. Sankar Ramachandran. Devices-
as-services: Rethinking scalable service architectures for the internet
of things. In USENIX Workshop on Hot Topics in Edge Computing

(HotEdge 19), July 2019.

[15] A. Banks and R. Gupta. Mqtt v3.1.1 protocol specification, 2014.

[16] Nicole Berdy. How to use Azure Functions with IoT Hub mes-
sage routing, 2017. ”https://azure.microsoft.com/en-us/blog/how-to-use-
azure-functions-with-iot-hub-message-routing/”.

[17] Creating a rule with a aws lambda action. https://docs.aws.amazon.com/
iot/latest/developerguide/iot-lambda-rule.html [Online; accessed on 24-
June-2020].

[18] Flatbuffers. https://google.github.io/flatbuffers/ [Online; accessed on 24-
June-2020].

[19] D. Floyer. The Vital Role of Edge Computing inthe Internet of
Things. ”http://wikibon.com/the-vital-role-of-edge-computing-in-the-
internet-of-things/” [Online; accessed 22-Aug-2016].

[20] Fog Data Services - Cisco. http://www.cisco.com/c/en/us/products/
cloud-systems-management/fog-data-services/index.html. [Online; ac-
cessed 22-Aug-2016].

[21] Function as a Service. https://en.wikipedia.org/wiki/Function as a
Service [Online; accessed 12-Sep-2017].

[22] Google Cloud Functions. https://cloud.google.com/functions/docs/. [On-
line; accessed 24-Jun-2020].

[23] Google IoT Core. https://cloud.google.com/iot-core/. [Online; accessed
12-Sep-2019].

[24] GreenGrass and IoT Core - Amazon Web Services. https://aws.amazon.
com/iot-core,greengrass/. [Online; accessed 2-Mar-2019].

[25] Internet of Things - Amazon Web Services. https://aws.amazon.com/iot/.
[Online; accessed 22-Aug-2016].

[26] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez, R. Popa,
I. Stoica, and D. Patterson. Cloud Programming Simplified: A Berkeley
View on Serverless Computing, Feb 2019.

[27] kstest.py. https://gist.github.com/devries/11405101 [Online; accessed on
24-June-2020].

[28] W-T. Lin, F. Bakir, C. Krintz, R. Wolski, and M. Mock. Data repair
for Distributed, Event-based IoT Applications. In ACM International

Conference On Distributed and Event-Based Systems, 2019.
[29] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu. Security

vulnerabilities of internet of things: A case study of the smart plug
system. IEEE Internet of Things Journal, 4(6):1899–1909, 2017.

[30] Micropython. https://microPython.org [Online; accessed on 24-June-
2020].

[31] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan. A serverless
real-time data analytics platform for edge computing. IEEE Internet

Computing, 21:64–71, 01 2017.
[32] Python 3 versus C gcc fastest programs. https://benchmarksgame-team.

pages.debian.net/benchmarksgame/fastest/Python3-gcc.html [Online;
accessed 24-June-2020].

[33] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for
VM-based Cloudlets in Mobile Computing. IEEE Pervasive Computing,
8(4), 2009.

[34] Serverless Platform. [Online; accessed 10-Feb-2019] www.serverless.
com.

[35] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt. Cloudlets: bringing
the cloud to the mobile user. In ACM Workshop on Mobile Cloud

Computing and Services. ACM, 2012.
[36] R. Wolski, C. Krintz, F. Bakir, G. George, and W-T. Lin. CSPOT:

Portable, Multi-Scale Functions-as-a-Service for IoT. In ACM/IEEE

Symposium on Edge Computing, 2019.

12

	Introduction
	Related Work
	NanoLambda Design and Implementation
	NanoLambda Cloud/Edge Service
	NanoLambda On Device
	IoTPy
	Python VM Security and Isolation for FaaS Handlers
	Deploying and Running Functions
	Execution Offloading Capabilities

	Evaluation
	Automatic Light Control Application
	Predictive Maintenance Application
	Saving Power With Execution Offloading
	Predictive Maintenance Application with a Naive Offloading Scheduler
	An Improved Scheduler for Predictive Maintenance

	Limitations
	Conclusions
	Acknowledgments
	References

