NanoLambda: Implementing Functions as a Service
at All Resource Scales for the Internet of Things.

Gareth George, Fatih Bakir, Rich Wolski, and Chandra Krintz
Computer Science Department
Univ. of California, Santa Barbara

Abstract—Internet of Things (IoT) devices are becoming in-
creasingly prevalent in our environment, yet the process of
programming these devices and processing the data they produce
remains difficult. Typically, data is processed on device, involving
arduous work in low level languages, or data is moved to the
cloud, where abundant resources are available for Functions
as a Service (FaaS) or other handlers. FaaS is an emerging
category of flexible computing services, where developers deploy
self-contained functions to be run in portable and secure con-
tainerized environments; however, at the moment, these functions
are limited to running in the cloud or in some cases at the “edge”
of the network using resource rich, Linux-based systems.

In this paper, we present NanoLambda, a portable platform
that brings Faa$S, high-level language programming, and familiar
cloud service APIs to non-Linux and microcontroller-based IoT
devices. To enable this, NanoLambda couples a new, minimal
Python runtime system that we have designed for the least capa-
ble end of the IoT device spectrum, with API compatibility for
AWS Lambda and S3. NanoLambda transfers functions between
IoT devices (sensors, edge, cloud), providing power and latency
savings while retaining the programmer productivity benefits of
high-level languages and FaaS. A key feature of NanoLambda is
a scheduler that intelligently places function executions across
multi-scale IoT deployments according to resource availability
and power constraints. We evaluate a range of applications that
use NanoLambda to run on devices as small as the ESP8266 with
64KB of ram and 512KB flash storage.

Index Terms—IoT, serverless, cloud functions, edge computing,
microcontrollers, portability

I. INTRODUCTION

The Internet of Things (IoT) provides a data collection and
computing fabric for physical objects in our environment. As
such, it enables developers to build new classes of applica-
tions that integrate with and act upon the world around us.
However, with these applications come new data processing
and software development challenges. Specifically, developers
must either port their code to large numbers of highly resource-
constrained, heterogeneous devices (e.g. sensors, actuators,
and controllers embedded with microcontrollers), or move
their data on volatile, high latency, and energy-consuming
long-haul networks to perform computation on resource-rich
cloud infrastructures.

Functions as a Service (FaaS) is a technology originally
developed by cloud providers to ease the development of
scalable cloud and web services [6], [9], [11], [21], [22], [26],
[34]. Because of its simple, event-driven programming model
and autoscaled deployment, FaaS is increasingly used for IoT
applications [8], [12], [13], [23], [36]. With FaaS, developers

decompose their applications into multiple functions, each re-
sponsible for some short-lived piece of processing. A function
is typically a small, single-entry code package (50 megabytes
or less) written in a high level language (e.g. Python, node.js,
or Java). Thanks to their small size and self-contained design,
these functions are easily invoked and scaled automatically
by the FaaS platform in response to incoming events (data
arrival, messages, web requests, storage updates, etc.). Many
functions, potentially belonging to different tenants, execute on
a single server, using Linux containers to provide secure iso-
lation and a consistent execution environment. Together, these
features allow the application developer to focus on the func-
tion logic using a single, familiar programming environment,
without having to port code to heterogeneous architectures, to
consider where functions execute, or to manage how and when
to scale their applications.

To support IoT, some FaaS platforms are now able to move
data from devices at the “edge” of the network to the cloud [8],
[13], [23]. Given high latency and intermittent connectivity of
these networks, other FaaS alternatives offer edge extensions
that instead move the functions to the edge (which are typically
much smaller in size than data) to consume and operate on data
“near” where it is produced. Performing computations at the
edge reduces application response latency and device power
consumption, e.g. many IoT devices are battery powered and
radio use consumes significant energy [16], [19], [20], [24],
[33], [35], [36].

Although a step in the right direction, these edge-aware
FaaS systems still impose a significant burden on IoT de-
velopers. Specifically, FaaS functionality in most cases is
limited to Linux-based edge systems — precluding the use
of a uniform programming methodology on non-Linux de-
vices (i.e. microcontroller-based sensors and embedded sys-
tems). To integrate such devices, existing platforms use mul-
tiple technologies and protocols [10], [12], [13], [16], [23],
[24]. For example, an IoT applications developer that uses
AWS Lambda [9] and Greengrass (i.e. AWS Lambda at
the edge) [24] for edge-cloud interoperation must configure
MQTT [15], FreeRTOS, IoT SDK [25], AWS Lambda, AWS
Greengrass, and a persistent storage service (typically S3 [4]
or DynamoDB [3]), in addition to the function itself. Thus,
IoT application development requires significant expertise in
a myriad of programming technologies and styles that is
further complicated by differing systems capabilities, resource
restrictions, quality of service, and availability [10], [16].

CSPOT attempts to overcome these challenges via a low-
level, distributed operating system that implements a FaaS ex-
ecution environment for C-language functions across all tiers
of scale in IoT [36]. CSPOT provides the same event-driven
deployment and execution model across systems ranging from
clouds to microcontrollers, to hide heterogeneity. It exports a
distributed storage abstraction that functions use to persist and
share state. CSPOT supports execution of functions written
using high level programming frameworks and cloud APIs
via Linux containers and C-language bindings. However, these
latter capabilities (i.e. high-level language support, function
isolation, and interoperability with other FaaS systems) does
not extend to microcontrollers or any non-Linux system.

The key challenge with extending these capabilities to
microcontroller-based systems, which all FaaS systems must
face, is supporting the vast heterogeneity of such devices
coupled with their limited computational resources. Sensors
and embedded systems implement different hardware architec-
tures, operating software, and peripherals, which make them
difficult to program, to provide abstractions for, and to leverage
using existing APIs and programming frameworks. Limited
compute, storage, and battery resources severely constrain
what programs run on these devices. Finally, most devices lack
the physical hardware (e.g. memory protection units, sufficient
volatile and non-volatile storage, etc.) that is required to run
conventional FaaS software stacks.

In this paper, we overcome these challenges to extend FaaS
uniformly to the least capable of IoT devices. To enable
this, we design and implement a distributed FaaS platform
called NanoLambda that runs over and integrates with CSPOT.
By doing so, we leverage CSPOT’s FaaS programming and
deployment model, its fault resilient distributed storage ab-
straction, and cloud and edge portability. NanoLambda raises
the level of abstraction of CSPOT to support execution and
isolation of Python functions on non-Linux systems. By doing
80, NanoLambda makes Python FaaS functions ubiquitous and
portable across all tiers of IoT (across sensors, edge systems,
and clouds) and facilitates programmer productivity across
these heterogeneous systems.

NanoLambda is also unique in that it is tailored to the FaaS
programming model and mirrors the APIs of popular cloud-
based FaaS systems. By optimizing resource use and power
consumption, NanoLambda facilitates efficient execution of
Python functions on severely resource constrained devices. By
implementing popular FaaS and storage APIs from the de facto
standard AWS Lambda [9], NanoLambda brings cloud-based
FaaS familiarity to IoT programming, and facilitates reuse of
existing FaaS applications in IoT settings.

The NanoLambda platform consists of Edge/Cloud compo-
nents (called NanoLambda Cloud/Edge) and microcontroller
(i.e. on-device) components (called NanoLambda On Device)
that interoperate. NanoLambda Cloud/Edge runs on Linux-
based systems, employs a containerized runtime, executes
FaaS functions directly (those targeting the local host), and
provides a translation service for functions that target neigh-
boring, non-Linux devices. The translator transforms Python

functions, emulating any AWS Lambda and Simple Storage
Service (S3) API calls, using compact and efficient bytecode
code packages that are executed by NanoLambda On Device.
Our design of the translator is sufficiently small and efficient
to run on even resource-constrained Linux-based edge systems
(e.g. single board computers like the Raspberry Pi) .

NanoLambda On Device is designed without dependency
on Linux interfaces or a memory protection unit for function
isolation. To enable this, it integrates a from-scratch, novel
redesign of a Python interpreter called IoTPy. IoTPy defines
its own bytecode language (precluding the need for recom-
pilation for different devices) and code packaging system
(which the NanoLambda Cloud/Edge translator targets). IoTPy
also implements FaaS- and device-aware optimizations that
efficiently implement CSPOT capabilities while staying within
the memory limitations of highly resource constrained IoT
devices. Our design of loTPy is motivated by our observation
that existing Python interpreters, including MicroPython [30],
are too resource intensive for increasingly ubiquitous IoT
devices that we wish to target (e.g. the Espressif ESP8266).
With the combination of these components, NanoLambda
achieves AWS compatibility and efficient FaaS execution end-
to-end.

In the sections that follow, we describe NanoLambda and
the design and implementation of its components and features.
With this hybrid edge-device service ensemble, this paper
makes the following contributions:

o We explore the feasibility and performance of a FaaS
service for running high level Python functions on
highly resource restricted devices (e.g., microcontrollers).
We evaluate the efficacy of our system using a “real
world” implementation. We also provide microbench-
marks which delve into the performance trade-offs of
running FaaS on-device and show that for a variety of
suitable applications it can provide improved latency and
power efficiency.

+ We demonstrate portability and the possibility of ubiquity
— executing the program on device, at the edge, or in
the cloud — using CSPOT [36], a distributed runtime
(designed to support FaaS) to implement a multi-scale
compatibility service for FaaS that is API-compatible
with AWS Lambda and S3.

« We present a simple scheduler that uses this portability to
select locations for function execution based on latency
constraints, and we show that the scheduler outperforms
either remote-only execution or on-device-only execution
across a range of problem sizes.

« We achieve isolation between untrusted FaaS functions on
non-Linux IoT devices using a high-level language virtual
machine for Python as an alternative to heavyweight
containerization.

As a result, this work enables the use of a single FaaS pro-
gramming model and set of APIs across all resource scales in
an IoT deployment while leveraging the considerable existing
code base and technological footprint of AWS Lambda.

II. RELATED WORK

Functions as a Service (FaaS) is a cloud-computing platform
with which developers write code without consideration for
the hardware on which it runs. Applications are broken down
into distinct units of functionality and packaged as functions
that can be distributed and updated on the fly. Functions are
executed in lightweight containers which provide portability,
scalability, and security: functions are automatically scaled
across multiple machines, while execution is isolated from
other tenants of those instances. A number of major cloud
providers such as AWS Lambda [9], Google Cloud Functions
[22], and Microsoft Azure Functions [11] now offer hosted
FaaS platforms.

Because of its automatic scaling and convenience, FaaS has
seen increased adoption in IoT in recent years. AWS IoT,
for example, leverages FaaS functions extensively in order to
allow users of the platform to attach functions that handle IoT
events [17]. Serverless [34], a leading industry toolchain for
FaaS programming, estimates that IoT makes up 6% [1] of
the use of FaaS in industry.

An emerging development in IoT data processing is the
prospect of FaaS at the edge for data processing. Commercial
offerings such as AWS GreenGrass [24] and open source
Apache OpenWhisk [6] make it possible for users to host their
own FaaS deployments on low-power devices. By running
functions at the edge, the hope is that handlers can be
run closer to where data is produced, making better use of
locally-available processing and reducing latency penalties and
transfer costs. The authors of [31] explore the concept of a
serverless platform for real-time data analytics at the edge and
discuss the benefits and challenges of the approach.

CSPOT is an open source, low-level distributed operat-
ing system for IoT that executes a uniform FaaS model
across devices ranging from servers in the cloud to resource-
constrained sensors and microcontrollers [36]. CSPOT exports
a distributed storage abstraction called a WooF for persistent
storage of FaaS function objects. WooFs are append-only
logs with built-in event tracking and repair capabilities [28].
WooFs serve both the role of state storage and execution
log — appending data to WooFs optionally can trigger the
execution of an event handler that responds to the appended
data. Functions (i.e. event handlers) are implemented as Linux
executables allowing for flexibility of language choice and
libraries. A pool of docker containers is maintained to run
handlers — by running only one handler in a container at
any given time, functions are isolated from one another. This
enables development of complex applications, and provides the
security, portability, and scalability expected of FaaS systems.

For Linux systems, CSPOT provides an execution envi-
ronment and AWS API compatibility (for S3 and Lambda
services) for Python functions. However, this support does not
extend to microcontrollers (which we address with the work
herein). To execute C-language functions on microcontrollers,
CSPOT uses a threaded, multitasking system with direct mem-
ory addressing. This support is available for ARM, AVR, and

Espressif microcontrollers. FaaS functions in CSPOT must be
compiled and installed on a per-device basis. Our work enables
Python functions (including Python AWS Lambda functions)
to be executed over CSPOT, including on microcontrollers.
We do so using a combination of automatic translation at the
edge and interpretation on-device to enable both portability
and efficiency.

When functions can be made highly portable, as is the case
with FaaS, interesting possibilities for improving performance
emerge, such as scheduled execution. The authors of [7]
propose a framework for scheduling execution among multiple
FaaS providers. The authors develop an extensible API for
executing functions across multiple providers, as well as a
metrics database that tracks execution statistics from these
services. Once a model of function performance has been built
for a given provider, this information can be provided to a user-
defined scheduler, e.g., a Python function which selects the
provider with the minimum latency. The authors find that by
employing a scheduler, they can achieve a 200% faster average
round-trip execution time compared to executing on any one
service provider. This serves as a promising example of how
the portable nature of FaaS functions can provide application
developers with more flexible execution options and improved
performance.

III. NanoLambda DESIGN AND IMPLEMENTATION

At present, writing applications for [oT means programming
for APIs and libraries specific to each device, writing functions
that are “locked in” to particular cloud provider APIs, and
using only those devices that are supported by these platforms.
It is our objective to support a common programming model
everywhere, extending from IoT devices to the edge to the
cloud. In service of this goal, we opted to design our system
around CSPOT, a low-level framework for supporting IoT
FaaS. CSPOT provides the foundation for our high-level FaaS
runtime, with powerful cross-platform primitives for secure
function (event handler) execution and data persistence.

However, existing cloud-based FaaS offerings that have seen
adoption in industry use high level languages, such as Python,
for their handlers. These high-level languages are particularly
advantageous for portability and programmer productivity.
The CSPOT service, while capable of running with minimal
overhead on a wide range of severely resource-constrained
devices, defines its own API. Thus while CSPOT is, itself,
portable, it cannot execute FaaS functions written for existing
cloud services such as AWS Lambda.

It is our view that, in order to provide the same convenience,
compatibility, and security as FaaS handlers executing in
the cloud, a FaaS system for resource-restricted, non-Linux
devices should have the following properties:

1) Ease of development — we wish for NanoLambda to
be familiar to developers already using FaaS, ideally
allowing existing FaaS functions to run with little to
no code changes.

CSPOT WooF loTPY
- <=+ Invocation on device ||CSPOT WooF:
Object Store Handler Log loTPy and remote | | measurement
Code/API execution logs
translation <«—p| | capabilities
and
packaging
S3 APl Lambda API service Sensors & drivers: custom OS
Emulgnon L|| Emulation with monitoring C++ threads
Service L Service
NanoLambda Cloud/Edge NanoLambda On Device

Fig. 1. Service diagram outlining the interactions of the NanoLambda components that deliver FaaS for IoT. Shaded components are those added to CSPOT
by NanoLambda. NanoLambda Cloud/Edge runs on Linux hosts in the cloud or at the edge; NanoLambda On Device runs on microcontrollers and non-Linux

systems.

2) Portability — we want portable application code so that
the same implementation can run in the cloud or on the
device with little to no additional developer effort.
Small code and memory footprint — NanoLambda should
leave as much storage and memory space as possible
available for libraries and C extensions.

Security — IoT devices can be particularly vulnerable
to buffer overflow, stack overflow, and other classes of
exploits [2] [29], which we must protect against.

Figure 1 shows the architecture of the system we have
developed to meet these goals. We deliver on our goals with
two core systems built on CSPOT:

e NanoLambda Cloud/Edge, shown on the left in the figure,
provides FaaS handler execution to Linux capable devices
as well as object storage. It doubles as a centralized
repository from which IoT devices can request functions.

o NanoLambda On Device, shown on the right in the figure,
provides on-device handler execution capabilities with
IoTPy, a Python interpreter tailor-made for FaaS handler
execution.

This separation of concerns is primarily driven by the needs
to tailor our device implementation to best perform within
the constraints of low power non-Linux IoT devices. This
allows us to offload complex and processing-intensive tasks
to NanoLambda Cloud/Edge while keeping NanoLambda On
Device space- and power-efficient.

A. NanoLambda Cloud/Edge Service

Figure 1 illustrates the NanoLambda Cloud/Edge service
on the left. The core of this service consists of two REST
API servers, which export (i) an object store compatible
with the Amazon Simple Storage Service (S3) [4], and (ii)
a FaaS service that deploys FaaS functions written for AWS
Lambda [9] over CSPOT- in the same way they are deployed
over AWS.

To enable this, the servers leverage multiple CSPOT primi-
tives. This includes an object store and event model in which
handlers are triggered in response to object updates. CSPOT
objects are fixed-size records in append-only logs. Handlers
execute inside Linux containers allowing for concurrent ex-
ecution of handlers as isolated processes. The NanoLambda

3)

4)

Cloud/Edge API servers build upon these primitives and
CSPOT support for a subset of the S3 and AWS Lambda APIs
(for Linux systems), to unify deployment and execution of
AWS Lambda Python functions across Linux and non-Linux
systems.

Specifically, the S3 API Emulation Service provides a
wrapper for the CSPOT append-only object store. It stores
blobs to CSPOT’s fixed-size log records by first splitting them
into 16KB chunks and then linking these chunks together with
metadata records. It then stores a mapping between the blob’s
key and the location of the first chunk separately in an index
log. Blobs are retrieved via a sequential scan of the index
log to find their location. Once located they are read back in
chunks and streamed to the requester. This service exports this
functionality via the Amazon S3 REST API [5].

The Lambda API Emulation Service manages function
deployment and facilitates function execution in CSPOT. The
service stores the configuration and code package using the
S3 API Emulation Service, making it a single store for all
persistent data. By offloading state management to a cen-
tralized object store, these services make it possible to run
load-balanced instances across multiple physical machines, to
improve performance and scalability.

AWS Lambda compatibility is provided via a special
CSPOT handler binary, which embeds a Python interpreter.
When an function invocation request is received, NanoLambda
Cloud/Edge appends an invocation record to CSPOT’s object
store. This append creates an event, which invokes this handler
in an isolated docker instance. The handler reads the invocation
record and checks for the presence of the Python code for
the handler. If necessary, the code is fetched from the object
store. Once ready, the Python interpreter invokes the handler
function, with the payload from the invocation record, and
writes the result to a result log for return to the requester.

To support handler execution on device NanoLambda
Cloud/Edge implements an loTPy translator (cf Section III-C),
which compiles and packages Python handlers for execu-
tion on neighboring microcontroller devices. This translation
service enables IoT devices to fetch handler code from the
same function repository used by the Lambda API Emulation

Service. The service compiles handlers on-demand into a
compact binary representation that can be sent to the device
for execution. Fetch requests check that the code size and
memory requirements (specified in the function configuration)
fit within the resource constraints of the requesting device. If
rejected, it is possible for the cloud/edge device to execute the
function on behalf of the IoT device.

B. NanoLambda On Device

NanoLambda On Device is runs Python handlers on non-
Linux IoT devices. As shown in Figure 1 (on right), the service
leverages CSPOT WooF logs on-device for persistent storage
and event invocation. As for Linux systems, FaaS handlers are
invoked in response to data appended to storage logs.

As seen in the figure, the typical model for NanoLambda
On Device is that data is produced by threads monitoring
sensors on the device and appending it to objects in the object
store. It is also possible for data to be remotely delivered
for processing over CSPOT’s network API. Each append to
the object store is processed by CSPOT’s event model which
runs a C-language handler function with the new data. Similar
to the NanoLambda Cloud/Edge’s support for Python using
a special Linux handler binary with an embedded Python
interpreter, we extend NanoLambda Cloud/Edge with Python
support by registering a special C-language handler function
which interprets the handler’s name to be a Python Lambda
function deployed via the NanoLambda Cloud/Edge service.
When this function is invoked, it triggers the handler with
the payload provided by the newly appended object in an
instance of the IoTPy VM. By leveraging CSPOT’s existing
functionality, we are able to offer Python 3 Lambda support
on device.

C. IoTPy

To ease development and portability, we choose Python as
our FaaS programming language because its bytecode is easily
portable and its simple virtual machine implementation can
be easily ported to IoT devices. Likewise, we package FaaS
functions using the package format defined for AWS Lambda
for compatibility purposes.

To achieve a small code and memory footprint we opted
to implement IoTPy: our own extremely lightweight Python
interpreter built from the ground up with embedding in mind.
We found existing solutions, such as MicroPython [30], to be
unsuitable because they left little additional space for features
such as our FaaS runtime and the drivers for our networking
and sensors. On our most resource-constrained devices, such
as the ESP8266, our binary must be able to fit in as little as
512KB of flash memory.

IoTPy is written to be as unintrusive as possible with a
focus on allowing the Python interpreter to be treated like a
library. To keep IoTPy small, we opted to omit the Python
parser/lexer on the device. Instead, these tasks are offloaded
to the NanoLambda Cloud/Edge service. This benefits us in a
number of ways:

1) bytecode compilation as well as optimization steps can
be performed by a full Python 3.6 implementation on
NanoLambda Cloud/Edge service

2) memory use is reduced since we are only shipping
compact bytecode representation to the device, and

3) asimpler virtual machine implementation can be used on
device — by delegating compilation to the NanoLambda
Cloud/Edge service, our IoTPy is able to limit its func-
tionality to implementing the core language features of
the Python virtual machine (VM).

Together, these capabilities mitigate the additional complexity
of maintaining a simple Python bytecode VM. To enable
these capabilities we make some tradeoffs with regard to
program storage and architectural simplicity. JoTPy provides a
convenient C/C++ interface for extending Python with native
functions. We currently provide implementations for only the
most common Python libraries and emulation of only the AWS
S3 and Lambda deployment services. The libraries include
common math functions, JSON operations, APIs for accessing
device peripherals, basic networking, and interfaces for the
APIs provided by NanoLambda Cloud/Edge. IoTPy cannot,
however, load standard Python packages.

When comparing the size of the generated binary files for
IoTPy and MicroPython, we find that the code for the IoTPy
library uses 290KB of flash storage, whereas MicroPython
requires 620KB of flash storage. Thus the IoTPy imple-
mentation leaves us with almost 300KB of additional storage
available for programs, drivers, and the FaaS runtime.

D. Python VM Security and Isolation for FaaS Handlers

IoT devices are often so resource-constrained that they
lack security features such as memory protection units to
implement separate address spaces for isolated execution of
user code. Additionally, conventional FaaS isolation, achieved
by Linux features like container-based isolation, is simply not
possible on devices like these. The authors of [2] and [29] find
various attacks, many of which rely on out-of-range memory
access, to exploit [oT devices and execute code or update their
firmware with malicious payloads. Yet it is essential that IoT
developers be able to reprogram and update their devices in
the field.

By placing the majority of application logic in FaaS han-
dlers, we reduce potential attack surface area. A secure Python
virtual machine implementation can ensure that the bytecode
running within it cannot access memory out of range or
otherwise escape the permissions allowed to the handler by
the built-in functions provided to it. Python handlers can then
be isolated from one another by running in separate instances
of the Python VM. This isolation is similar to traditional Linux
containers.

E. Deploying and Running Functions

By leveraging NanoLambda Cloud/Edge and its compatibil-
ity layer for Amazon’s AWS Lambda APIs, we minimize the
effort to port functions to the IoTPy platform. In many cases,
functions run directly on IoTPy without code changes.

2ip edgelanbda.zip edgelambda.py

programmer deploys code to
NanoLambda Cloud/Edge service
with aws cli

NanolLambda
Cloud/Edge
1. stores code in object store service
2. compiles and caches compact
bytecode representation on-demand

when loT devices find a handler is not cached
locally they request bytecode representation
from NanoLambda service

Fig. 2. Life cycle of a function deployment from the application developer’s
command line to the NanoLambda Cloud/Edge service to the IoT device
running NanoLambda On Device

Function deployment is performed by developers using the
aws-cli or the aws-sdk (using a NanoLambda Cloud/Edge
device as the cloud target), meaning existing tools capable of
deploying to AWS Lambda can also deploy to NanoLambda
Cloud/Edge with few changes. Deploying a new version of
an application is done with the “aws lambda create-function”
command, which accepts the application code package as a
zip file, as well as other configuration parameters including
the function entry-point, its memory limit, and Python version
(Python 3.6 is currently supported). The deployment process
checks code size and resource limits (as is done in AWS
Lambda) and also checks for use of unsupported AWS APIs in
the code (e.g. only AWS REST S3 API is currently supported).
The validated function is stored in the S3 API Emulation
Service as described above.

Function execution on device is performed by IoTPy. Local
invocations are accelerated by an interpreter cache, which
allows the IoTPy interpreter for a given handler to be reused
if it is still available from a previous invocation. This is
done to avoid the relatively expensive process of reinitializing
Python built-ins as well as functions and globals defined in
the bytecode.

In Figure 2, we show the deployment and function download
process mapped out for NanoLambda On Device. When the
interpreter is still running (i.e. because it is already running a
function), execution involves simply setting up a new Python
frame with the call stack for the function and invoking the
function in the cached interpreter. When no interpreter is
running, the NanoLambda service opens a TCP connection
to NanoLambda Cloud/Edge and serializes a request for the
function using flatbuffers [18], a fast and memory efficient
binary protocol for network serialization. When NanoLambda
Cloud/Edge receives this request, the function is fetched from
our object store and compiled on the fly, using the Linux
implementation of Python 3.6 and the Python dis package to
extract generated bytecode.

F. Execution Offloading Capabilities

Our NanoLambda On Device service provides direct han-
dler code compatibility with the NanoLambda Cloud/Edge
service. We achieve this by adopting the same AWS Lambda-
compatible handler format.

NanoLambda On Device supports local execution of han-
dlers on microcontrollers like the ESP8266 and the CC3220SF.
NanoLambda Cloud/Edge, leveraging CSPOT’s tiered-cloud
approach, extends these execution options to include edge
cloud nodes like the Raspberry Pi Zero as well as in-cloud
solutions like CSPOT running on AWS EC2. Lastly, because
both services use a common function format which is code-
compatible with AWS Lambda, our handlers can be easily
transferred between the services, or even executed on AWS
Lambda itself. Selecting to develop application logic in com-
partmentalized functions using a high-level language lends the
developer immediate portability benefits, which grant her the
power to choose where code should be run to best utilize
resources or achieve desired performance.

IV. EVALUATION

In this section, we evaluate NanoLambda on two example
FaaS applications for sensor monitoring. We provide a perfor-
mance analysis of NanoLambda using micro-benchmarks to
expose a detailed analysis of its performance characteristics
under its various configurations. Additionally, we show how
NanoLambda’s portability can be leveraged to implement a
latency-aware scheduler that migrates execution between the
device and the edge cloud to improve performance across a
range of problem sizes.

A. Automatic Light Control Application

We show how NanoLambda might be used in an auto-
matic lighting control system — for example, to automati-
cally turn on walkway lighting at night based on ambient
light levels. The hardware setup for this experiment is a
photoresistor connected to the analogue-to-digital converter
(ADC) pin of an ESP8266 microcontroller. This processor
is extremely resource-constrained, with 80KB of user data
RAM and 512KB of flash storage for code. The only device-
specific C code written for this experiment is a simple sampler
thread, which measures the voltage on the ADC pin of the
microcontroller and writes it out to an invocation log at a rate
of 5 samples per second.

In response to each log append (analogous to publishing to
an MQTT queue), an IoTPy handler is invoked to analyze the
new data and send commands to the light system if necessary.
The implementation of the handler for this automatic light
control experiment is shown in Figure 3.

def new_light_1vl (payload,
if payload[0] > 100:
device.set_pin_high(2)
else:
device.set_pin_low(2)

ctx) :

Fig. 3. Handler function for the light control application

In Table I we show invocation latencies for various config-
urations of the NanoLambda runtime. The “No Server Cache”
configuration represents the true “cold start” cost of invoking
a new AWS Lambda function for the first time. This number
includes both the time taken for the server to compile the
Lambda function and to deliver it to the device. The Local
Cache configuration shows us the typical amortized runtime
of the application where frequently invoked Lambda functions
will typically be already available on the device. We can
see that the performance difference is substantial, requiring
almost 32x as much time to invoke a function that is not in
cache. This is largely due to the effects of both compilation
time and the cost of network latency. Compilation and code
transfer each take roughly 100 milliseconds on the network
tested. We include “No Local Cache” to show the startup cost
of a function shared by multiple devices. In this scenario, a
function typically has already been accessed and compiled by
the server but has not yet been delivered to a given device.
We expect this to be representative of the startup cost for real-
world deployments.

We include a C implementation of the same handler function
as a baseline. It is worth noting that this is on the order of
20x faster than our configuration with local caching. This is a
substantial overhead, but it is representative of what we would
expect for the performance difference between an interpreted
language without JIT and a compiled language like C [32].
Ultimately, it is up to the application developer to determine
when the flexibility and ease of deployment with Python and
the FaaS ecosystem outweigh its overhead.

Configuration Latency in ms
NanoLambda Local Caching 6.7 ms
NanoLambda No Local Cache 119.5 ms
NanoLambda No Server Cache | 220.4 ms
NanoLambda C Handler 0.3 ms

TABLE T
AVERAGE LATENCY FOR 100 ITERATIONS OF THE HANDLER FUNCTION

B. Predictive Maintenance Application

In this experiment, we look at the detailed performance of
a NanoLambda application with more demanding processing
requirements compared to the previous example. Predictive
maintenance techniques use sensors to detect part failures or
other maintenance requirements.

Our experiment considers motor maintenance by analyzing
the vibrations off of a motor as measured by an accelerometer.
It is possible to detect if the motor or a connected part has
failed by monitoring for changes in th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>