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Abstract

Serverless computing is an emerging event-driven programming model
that accelerates the development and deployment of scalable web services on
cloud computing systems. Though widely integrated with the public cloud,
serverless computing use is nascent for edge-based, IoT deployments.

In this work, we present STOIC (Serverless TeleOperable Hybrld Cloud),
an [oT application deployment and offloading system that extends the server-
less model in three ways. First, STOIC adopts a dynamic feedback control
mechanism to precisely predict latency and dispatch workloads uniformly
across edge and cloud systems using a distributed serverless framework.
Second, STOIC leverages hardware acceleration (e.g. GPU resources) for
serverless function execution when available from the underlying cloud sys-
tem. Third, STOIC can be configured in multiple ways to overcome deploy-
ment variability associated with public cloud use. We overview the design
and implementation of STOIC and empirically evaluate it using real-world
machine learning applications and multi-tier IoT deployments (edge and
cloud). Specifically, we show that STOIC can be used for training image
processing workloads (for object recognition) — once thought too resource-
intensive for edge deployments. We find that STOIC reduces overall exe-
cution time (response latency) and achieves placement accuracy that ranges
from 92% to 97%.
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1 Introduction

Serverless computing (also known as Functions-as-a-Service (FaaS)) [1, 2, 3] is a popu-
lar cloud service for hosting and automatically scaling applications. Originally designed
for web services [4, 5], serverless computing defines a simple, event-driven programming
model and cloud platform with which developers write simple, short-lived functions that
are invoked by the platform in response to specific system-wide events (e.g. storage up-
dates, notifications, messages received, changes in state, custom events, etc.). Serverless
platforms automatically configure and provision isolated execution environments (typi-
cally via Linux containers) on-demand and users pay only for the resources their func-
tions use during execution. Given its success to date, public cloud providers and open
source communities have released multiple serverless platforms with similar functional-
ity [1,3,6,7, 8, 9].

Moreover, serverless computing has been extended to work at the “edge” of the net-
work to reduce the response latency and bandwidth associated with public cloud use by
data-driven applications (e.g. those that target the Internet of Things (IoT)) [10, 11, 12].
Doing so is challenging, however, because computing and storage resources are scarce
at the edge relative to resource-rich public and private clouds. Moreover, public/private
clouds may offer specialized hardware (e.g. GPUs) that can significantly speed up ma-
chine learning applications, which is not commonly available in resource-restricted edge
clouds.

In this paper, we investigate the use of serverless computing across the edge and public
cloud deployments (hybrid cloud settings). We develop a scheduling system, called the
Serverless TeleOperable Hybrid Cloud (STOIC), which automatically places and deploys
functions across these systems aiming to reduce the total execution time latency (versus
using either system in isolation). We specifically target image-based, object recognition
using Tensorflow (for training and inference) in this work.

STOIC automatically places serverless functions at the edge (without GPUs) or in
public cloud instances (equipped with 1+ GPUs) using predicted latency. We use the sys-
tem to perform online training and inference for batches of images from motion-triggered,
camera traps that capture images of wildlife in remote locations, with intermittent Internet
connectivity.

STOIC has two placement scenarios: the first places functions only at the runtime with
the least predicted latency, whereas the second places functions concurrently at both edge
and public cloud, but then terminates public cloud execution if/when it determines that the
edge will finish sooner. The former scenario is called Selector mode. The latter scenario,
called Duplicator mode, is useful when the cloud and/or network performance used for
deployment is intermittent or highly variable, or when executing at the edge incurs no cost
or other penalty — to ensure that progress is made. Our results show that STOIC speeds up
the total response time of the application by 3.3x versus a baseline scenario. In selector



mode, STOIC achieves a placement accuracy of 92% relative to the optimal placement.
In duplicator mode, STOIC accuracy is 95% for 2 GPUs and 97% (versus optimal) for 1
GPU cloud deployments over a 24-hour period.

In summary, with this paper, we make the following contributions.

e We design and implement a serverless framework that spans heterogeneous edge
and cloud systems, serving IoT requests, and leveraging GPU acceleration;

e We investigate feedback control mechanism and various analytical methodologies
to precisely model the unstable edge and public cloud environments; and

e We empirically evaluate the efficacy of using this extended serverless model for
machine learning applications and IoT deployments.

In the following sections, we first discuss the related work (Section 2). We then
present the design and implementation of STOIC (Section 3), following by our experi-
mental methodology and empirical evaluation of the system and application workloads,
using a distributed serverless deployment (Section 4). Finally, we present our conclusions
and future work plans (Section 5).

2 Related Work

We have explored an initial design and scheduler for STOIC in [13]. The work herein
extends this early work with a new scheduling system and consideration of both individual
and concurrent edge-cloud placements.

A significant body of work [14, 15, 16] has explored low-latency geo-distributed data
analytics and mobile-cloud offloading — which we take as inspiration for the STOIC de-
sign. One relevant approach is federated learning [17], by which a comprehensive model
is trained across heterogeneous edge devices or servers without exchanging local data
samples. Federated learning aims to address the security and networking concerns by
keeping the datasets local at devices, whereas STOIC intelligently offloads jobs across
multiple tiers of cloud infrastructure to further reduce latency.

In addition, STOIC targets IoT systems and leverages serverless computing and GPUs.
As such, other related work includes recent advances in machine learning infrastructure,
serverless computing, GPU accelerators, and container-based orchestration services. [18]
and [19] conduct a comprehensive survey on serverless computing including challenges
and research opportunities. We share the same viewpoint that the use of the serverless
execution model will grow for online training and inference applications. [20] provides
a prototype for a deep learning model serving in a serverless platform. [21] provides an-
other use case for accelerating serverless functions by GPU virtualization in data centers.
Unique in our work, STOIC extends an existing serverless framework to support GPU



DECENTER HCL-BaFog STOIC
Node Selection FoQoSAM MultiChain Dynamic Feedback Loop
Orchestration Kubernetes Docker Swarm Kubeless
Quality of Service | latency/throughput/availability latency/availability latency/availability
Trust Mgmt Smart Contracts Blockchain Nautilus
Application Video Streaming Sensor Data Sharing Image Recognition

Table 1: The comparison table of DECENTER, HCL-BaFog and STOIC.

acceleration and distributed function placement across the edge and public clouds. [22]
evaluates several serverless frameworks that use Kubernetes to manage and orchestrate
use of Linux containers. STOIC also integrates Kubernetes for container orchestration,
which is lightweight, flexible, and developer-friendly. We concur that Kubernetes is a
promising deployment infrastructure for serverless computing.

Another relevant domain of related work is edge-to-cloud infrastructure enabling IoT
device applications. [23] compares the processing time of face recognition between the
edge device and smartphones. It concludes that edge devices perform comparably faster
and scales better as the number of images increases. We agree with this conclusion, and
as such, we design STOIC to offload image processing workloads to both edge clouds
and public clouds. [24] proposes a distributed deep neural network that allows fast and
localized inference at the edge device using truncated layers of a neural network. [25]
defines edge cloud offloading as a Markov decision process (MDP) whose objective is
to minimize the average processing time per job. Based on this setting, it provides an
approximate solution to MDP with a one-step policy iteration. Similar to this approach,
[26] proposes a Global Cluster Manager for orchestrating network-intensive programs
within Software-Defined Data Centers (SDDCs) targeting high Quality of Service (QoS)
and, further, [27] classifies available cloud deployment options by a stochastic Markov
model, namely Formal QoS Assurances Method (FoQoSAM), to optimize the automated
offloading process. Due to its practical utility, such a method can guarantee that QoS
requirements are satisfied. [28] proposes a fog computing platform (DECENTER) and
a trust management architecture based on Smart Contracts. Related to this work, [29]
develops an architecture (HCL-BaFog) by the blockchain functionality to share sensor
data. Table 1 summarizes the properties of DECENTER, HCL-BaFog, and STOIC. These
works are complementary to STOIC and we are considering how to incorporate them into
the system as part of future work.

Also complimentary to STOIC, are tracing, testing, repair, and profiling tools (which
STOIC can leverage) for serverless systems. Multiple works track causal dependencies
across distributed serverless deployments for use in optimization, placement, and data
repair [30, 31, 32, 33]. FaaSProfiler [34] integrates testing and profiling within a FaaS
platform. [35] proposes a security solution that applies reinforcement learning (RL) to
provide secure offloading to the edge nodes to prevent jamming attacks. These related
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Figure 1: The STOIC Architecture

systems can be combined with STOIC to provide a robust serverless ecosystem for dis-
tributed IoT devices.

3 STOIC

To leverage hardware acceleration and distributed (multi-cloud) scheduling within a server-
less architecture, we have developed STOIC, a framework for distributing and executing
analytics applications across multi-tier IoT (sensing-edge-cloud) settings. Specifically,
STOIC optimizes the end-to-end process of packaging, transferring, scheduling, execut-
ing, and result retrieval for machine learning applications in these settings.

Figure 1 shows the distributed components of STOIC. At the edge, STOIC gathers
application input data, determines whether the lower application latency will be achieved
by processing the data on the edge or in the cloud, and then actuates the application’s
computation (with the necessary data) using the “best” choice. The public cloud com-
ponent manages whatever cloud resources are needed to receive the data from the edge,
trigger the computation, and return the results to the edge. The edge and cloud systems
mirror each other, running Kubernetes [36, 37] overlaid with kubeless [38], to provide a
uniform infrastructure for the framework.

Our system design is motivated by a need to classify wildlife images in a location



where it is possible to site a relatively powerful edge system but where network connec-
tivity is poor. In this paper, we report on the use of STOIC for processing images from
multiple, motion-triggered camera traps (sensors) deployed to a wildlife reserve currently
used to study ecological land use.

3.1 Edge Controller

The STOIC edge controller is a server that runs in an out-building at the reserve. It com-
municates wirelessly with the sensors and triggers analysis and computation upon their
arrival. The edge controller is connected to a research facility (which has full Internet
connectivity) via a microwave link. When a camera trap detects motion, it takes photos
and persists the images in flash storage buffer, where human experts would label images
for training tasks. Periodically, sensors transfer saved photos to the edge controller. Dur-
ing a transfer cycle, the edge controller compresses and packages all images generated
and transfers the package to the public cloud, if/when necessary. STOIC runs on the edge
controller and its executions are triggered by the arrival of image batches.

As an intermediate computational tier between the sensors and the public cloud, the
edge controller can be placed anywhere, preferably near the edge devices, to lower the
response latency for the data processing and analytics applications. It consists of three
major components:

e The cloud scheduler predicts the total latency based on historical measurements
for each available runtime.

e The requester takes as input the runtime and cloud predicted by the scheduler to
have the least latency. The requester stores the image package in an object storage
service running in this cloud. It then triggers a serverless function (running in a
Kubernetes pod) via a RESTful HTTP request to process the images.

e The inquisitor monitors public cloud deployment time. To enable this, it period-
ically in the background deploys each runtime (using Kubernetes pods [39]) and
records the deployment times in a database. No task/process is executed in this
process (the runtime is simply deployed and taken down). We use the inquisitor to
establish the historical time series for predicting the deployment latency of remote
runtimes.

The edge cloud that we use in this study is deployed at a research reserve and is con-
nected via the Internet. It consists of a cluster of three Intel NUCs [40] (6i7KYK), each
with two Intel Core i7-6770HQ 4-core processors (6M Cache, 2.60 GHz) and 32GB of
DDR4-2133+ RAM connected via two channels. The cluster is managed using the Euca-
lyptus cloud system [41], which mirrors the Amazon Web Services (AWS) interfaces for
Elastic Compute Cloud (EC2) to host Linux virtual machine (VM) instances and Simple
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Storage Service (S3) to provide object storage. The STOIC edge runtime uses Kubernetes
and kubeless for serverless function execution and S3 (i.e. walrus) for object storage on
the edge cloud.

3.2 Public/Private Cloud

To investigate the use of the serverless architecture with hardware acceleration, we em-
ploy a shared, multi-university, GPU cloud, called Nautilus [42], as our remote cloud
system. Nautilus is an Internet-connected, HyperCluster research platform developed by
researchers at UC San Diego, the National Science Foundation, the Department of En-
ergy, and multiple, participating universities globally. Nautilus is designed for running
data and computationally intensive applications. It uses Kubernetes [37] to manage and
scale containerized applications. It also uses Rook [43] to integrate Ceph [44] for object
storage. As of May 2020, Nautilus consists of 176 computing nodes across the US and
a total of 543 GPUs in the cluster. All nodes are connected via a multi-campus network.
In this study, we consider Nautilus a public cloud that enables us to leverage hardware
acceleration (GPUs) in the serverless architecture. The STOIC cloud/GPU runtimes use
Kubernetes and kubeless for serverless function execution and Ceph for object storage on
the public cloud.

A major challenge that we face with such deployments is hardware heterogeneity and
performance variability. On Nautilus, we have observed 44 different types of CPU (e.g.
Intel Xeon, AMD EPYC, among others) and 9 GPU types (e.g. Nvidia 1080Ti, K40,
etc.). Both CPUs and GPUs of different types have different performance characteristics.
Moreover, the object storage service is run on dedicated nodes that are distributed globally.

This heterogeneity impacts application execution time (which STOIC attempts to pre-
dict) in three significant ways. First, different CPU clock rates affect the transfer of
datasets from the main memory to GPU memory. Second, there is significant latency
and performance variability between runtimes and the storage service (which hold the
datasets and models). Third, the multi-tenancy of nodes (common in public cloud set-
tings) allows other jobs to share computational resources with our applications of interest
at runtime.

These three factors negatively make it difficult for users to determine which runtime to
use (to reduce application turn-around time) and when to execute locally (avoiding public
cloud use altogether). With STOIC, we address these challenges via a novel scheduling
system that adapts to this variability. In our results, we ensure reproducibility (avoiding
network performance variability) by confining nodes and GPUs (still heterogeneous) to a
single Nautilus region.



3.3 Runtime Scenarios

To schedule machine learning tasks across hybrid cloud deployments, we define four run-
time scenarios: (A) Edge - A VM instance on the edge cloud with AVX2 [45] support; (B)
CPU - A Kubernetes pod on Nautilus containing a single CPU with AVX?2 support [45];
(C) GPUI - A Kubernetes pod on Nautilus containing a single GPU; (D) GPU2 - A
Kubernetes pod on Nautilus containing two GPUs. STOIC considers each of these de-
ployment options as part of its scheduling decisions. Users can parameterize STOIC with
their choice of deployment or allow STOIC to automatically schedule their applications.

3.4 Execution Time Estimation

As depicted in Figure 1, the STOIC’s edge controller listens for image batches from the
remote camera traps and makes machine learning job requests. After a preset period
(parameterizable but currently set to an hour), STOIC estimates total response time (1)
of a requested batch, based on 4 different runtime scenarios. The total response time (1)
includes data transfer time (73), runtime deployment time (7;), and the corresponding
processing time (7},). We define total response time (1) as T = T} + Ty + T),.

3.4.1 Transfer time (7})

T} measures the time spent in transmitting a compressed batch of images from the edge
controller to edge cloud and public cloud. We calculate transfer time as 7; = F},/ B,
where Fj, represents the file size of batch and B, represents the bandwidth at the moment
provided by a bandwidth monitor at the edge controller.

3.4.2 Runtime deployment time (7})

Ty measures the time Nautilus uses to deploy requested kubeless function. Since the
scarcity of computation, it is common that multi-GPU runtime takes longer to deploy
than single-GPU and CPU runtimes. Note that, for edge runtime, the deployment time
zeroes out since STOIC executes the task locally in the edge cloud.

Because Nautilus is a shared cloud system, we observe significant variation in de-
ployment time on Nautilus for different times of the day. To accurately predict deploy-
ment time, we analyze deployment times as a time series using three methods: (1) auto-
regression modeling, (2) average sliding window, and (3) median sliding window. Auto-
regression [46] is a time series modeling technique based on the auto-correlation between
previous time steps and the following ones. The average sliding window is the moving
average [47] scanning through the time series by a fixed-length window. Similarly, the
median sliding window captures the moving median cross the time series. All window
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Figure 2: The Mean Absolute Error (MAE) of deployment time for the GPUI1
runtime. The x-axis is the window (history) size. The left subplot is MAE when
STOIC uses the average sliding window, the right subplot is MAE when STOIC
uses the median sliding window.

Optimal Minimum

Modeling | Runtime | Window Size MAE
AutoReg CpPU 15 8.977
AutoReg GPU1 15 9.605
AutoReg GPU2 15 17.918
Avg. SW CPU 33 7.714
Avg. SW GPU1 31 8.006
Avg. SW GPU2 91 16.52
Med. SW CPU 13 5.96

Med. SW GPU1 31 5.668
Med. SW GPU2 27 14.48

Table 2: Mean Absolute Error of three time series modeling methods for runtime
deployment time: auto-regression (AutoReg), average sliding window (Avg. SW),
and median sliding window (Med. SW). The median sliding window achieves the
lowest minimum MAE at optimal window size (that with the lease MAE) for all
three runtimes.



sizes used for three modeling processes are optimized based on historical data of deploy-
ment time (7y) in January 2020. We then compare the minimum Mean Absolute Error
(MAE) from each to select the best modeling methodology.

In this example, we consider a time series of 1244 data points for each runtime. Fig-
ure 2 shows representative analytics for GPU1 deployment time, in which MAE oscillates
as window size varies. We observe that the median sliding window reaches a lower mini-
mum MAE than the average sliding window at optimal window size. As listed in Table 2,
all three runtimes achieve the lowest minimum MAE using the median sliding window.
Therefore, STOIC adopts this methodology for deployment time prediction.

The inquisitor measures and records deployment time for each public cloud runtime
every minute (called the inquisitor period). After the inquisitor records 10 new measure-
ments (called the calibration period), the scheduler recomputes the window size over the
previous 100 measurements that result in the minimum MAE. It then uses this minimum
MAE window size to estimate of deployment time when jobs arrive. The inquisitor period,
calibration period, and maximum window size are all modifiable.

3.4.3 Processing time (7},

T}, is the execution time of a specific machine learning task and the target of task schedul-
ing across the hybrid cloud. STOIC formulates a linear regression on execution time
histories of STOIC jobs, and uses it to predict processing time relative to input (image
batch) size. Specifically, we use Bayesian Ridge Regression [48] due to its robustness to
ill-posed problems (relative to ordinary least squares regression [49]). STOIC queries the
database for the most recent processing time data (e.g. 10 data points) for each regres-
sion. This ensures that the parameters of the regression line reflect the current runtime
performance.

As part of our investigations into this approach, we have found that this approach is
highly susceptible to outliers. The root cause of these outliers is sporadic congestion and
maintenance (for nodes, networking, etc.) of the public cloud. Deviating significantly
from the average, outliers skew the regression line and overestimate the runtime latency
for extended periods (due to the windowing approach). We thus augment regression using
arandom sample consensus (RANSAC) technique [50], which iteratively removes outliers
from the regression. The algorithm 1 illustrates our RANSAC approach in STOIC.

3.4.4 Adaptability

To verify that STOIC’s estimation of execution time captures the actual latency of the
public cloud, we execute the application 50 times with 150-image batch using the GPU1
runtime. Depicted in Figure 3, we observe that actual total latency varies significantly and
predicted total latency has a non-negligible difference from the actual total latency at the
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Algorithm 1: Random Sample Consensus

1

e ® 9 S U B W N

ek e
B W o = =

15
16
17

Data: (1) Observation set of Process time 7},
(2) Bayesian Ridge Regression model M
(3) Minimum sample size n
(4) Residual threshold ¢
(5) Maximum iteration k
(6) Required inlier size d
(7) Minimum Root Mean Square Error e
Result: A set of parameters that best fits the data
while iterations < k do
curr_sample := n data points from observation;
curr_model := M regressed on curr_sample;
fit_data := empty set;
for every data point p in curr_sample do
if error of p < t then
‘ p — fit_data;
end
if fit_data size > d then
curr_error := average error in fit_data;
if curr_error | e then
‘ Update M and e

else
‘ Increment iteration
end

end
return M
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Figure 3: The comparison of predicted and actual total latency on 50 GPU1 bench-
mark executions with 150-image batch size. The x-axis is the epoch time and the
y-axis is the total latency.

Deployment 7}; | Processing 7}, | Total T’
First Half 42.7% 11.2% 15.8%
Second Half 29.2% 5.3% 9.2%

Table 3: The percentage mean absolute error (PMAE) of deployment, processing,
and total latency. PMAE is a latency-normalized metric and calculated as MAE
divided by mean latency, which indicates the residual in a measured period. The
decline of three latency metrics in the second half demonstrates the adaptability
of STOIC.

beginning of the experiment. However, over time, as STOIC learns the various latencies
of the system, the difference is significantly reduced. In Table 3, we report the percentage
mean absolute error (PMAE), which we compute as the MAE divided by mean latency.
The decrease in all three PMAE values in the second half of the execution trace also show
STOIC’s adaptability.

3.5 Workload Generation

To drive our empirical evaluation in faster-than-real time, we construct a workload gen-
erator from image batch histories (traces) collected by our camera traps. We consider the
set of images that occur together within an hour (i.e. due to motion events) a batch. Our
camera trap trace, starting on July 13th, 2013 and ending Jan. 15th, 2017, comes from a
fixed camera located at a watering hole in a remote area of our research reserve. The trace
contains images of bear, deer, coyote, puma, and birds as well as wind-triggered empty
images and other animals.
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Figure 4: Wildlife Hourly Activity Level (left graph) and its Conditional Empir-
ical Cumulative Distribution Function (right graph). The left graph demonstrates
the mean activity level of wildlife throughout the daytime. Based on the curve, 1
PM and 8 PM are two peak hours of animal activities. The right graph shows the
empirical CDF, which STOIC randomly samples for image batches to drive our
faster-than-real time empirical evaluation of the system.

After excluding camera maintenance periods (gaps), we extract 1136 effective days
(27264 hours) of data. The maximum size of hourly image batch is 2450, whereas the
minimum size is unsurprisingly zero, which constitutes 18139 hours out of 27264 hours
(66.53%). On average, an hourly image batch size contains 25 images. The left graph in
Figure 4 illustrates the wildlife hourly activity level based on the image batch size. We
infer from the curve that 1 PM and 8 PM are two peak hours of animal activity.

Specifically, we construct a conditional empirical cumulative distribution function
(ECDF) based on the probability definition of Pr(z < K|z > 0), where x is the image
batch size and K is the cutoff value. This conditional ECDF effectively represents the
trajectory of the animal activity level and makes the evaluation empirical. The right graph
in Figure 4 plots the conditional ECDFE. The x-axis is the image batch size ranging from
zero to 2450, whereas the y-axis is the cumulative probability. The STOIC workload
generator draws image batch sizes by randomly sampling this ECDF. Using this process,
we are able to evaluate and conclude by replaying the image stream from the camera traps
in fast-than-real time for the purposes of comparative evaluation.
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3.6 Implementation

We implement STOIC using Golang [51]. Golang provides high-performance execution
(vs scripting languages) and a user-friendly interface [52] to Kubernetes and database
technologies. STOIC currently supports machine learning applications developed using
the TensorFlow framework [53] and can be easily extended to permit other machine learn-
ing libraries.

As mentioned previously, the STOIC serverless architecture leverages kubeless [38].
As a Kubernetes-native serverless framework, kubeless uses the Custom Resource Def-
inition (CRD) [54] to dynamically create functions as Kubernetes custom resources and
launches runtimes on-demand. For specific machine learning tasks that STOIC executes,
we build custom Docker images that we upload to Docker Hub [55] in advance. When
the function controller receives a task request, it pulls the latest image from Docker Hub
before launching the function. This deployment pipeline makes the runtime flexible and
extensible for evolving applications.

To leverage the computational power of our CPU systems, we compile Tensorflow
with AVX2, SSE4.2 [45], and FMA [56] instruction set support. We use this optimized
version of Tensorflow on both the edge and public clouds.

To enable GPU access by serverless functions (available in the public cloud), we equip
our Docker container with NVIDIA Container Toolkit [57]. This includes the NVIDIA
runtime library and utilities, which link serverless functions to NVIDIA GPUs. We also
install CUDA 10.0 and cuDNN 7.0 to support the machine learning libraries.

3.7 Workflow

STOIC considers two workflows upon receiving an image batch: selector mode and du-
plicator mode. Both are depicted in Figure 5. In selector mode, STOIC predicts the total
response times (7) of the four deployment options: Edge, CPU, GPU1, and GPU2. It
then selects the runtime with the shortest estimated response time and deploys it locally
(Edge) or remotely (non-Edge). Once deployed, the pod notifies the STOIC requester at
the edge which then triggers the serverless function via an HTTP request. When the task
completes, the pod notifies the requester, which retrieves the results and runtime metrics
from the deployment and stores them in the database for use by the scheduler.

To handle deployment failure, STOIC implements a retry mechanism using exponen-
tial back-off. Starting at 100 milliseconds, STOIC waits 2X length of time for retrying
the deployment on Nautilus. After 10 failed attempts, STOIC claims timeout and returns
an error.

STOIC also attempts to reduce startup time (i.e. cold starts) at both the edge and
public cloud. On the edge cloud, STOIC creates a standby pod to serve the incoming
request upon application invocation. On the public cloud, STOIC triggers a function with

14



Query
Historical Data

Duplicator

i /e ]
L IL | |

Deployment Proc

Figure 5: The selector and duplicator modes of STOIC.

a single image to retrieve and cache the base model in memory at each pod.

We observe from Table 3 that there are significant variations in the deployment time
of the runtimes on the shared public cloud. To enable STOIC to adapt to this variability,
we consider a second workflow called duplicator mode. Using this mode, when the
scheduler selects a public cloud runtime (i.e. CPU, GPU1, GPU2), the requester also
deploys the job on the edge cloud. It then terminates edge cloud execution if the remaining
time at edge cloud is longer than the expected processing time (7;,) at the GPU runtime
once deployment completes. This “lagging decision” mechanism reduces the variability
of deployment time in the prediction. As a result, STOIC must only consider processing
time, which is more accurately predicted, to deploy tasks. Note that duplicator mode is
less energy-efficient because it runs tasks regardless of latency prediction and may waste
cloud resources by Kkilling the function in the middle. However, if such waste can be
tolerated, significant prediction accuracy and latency reduction are possible.

In addition, the inquisitor running in the background deploys the public cloud run-
times periodically and stores the deployment time duration in the database for use in the
prediction. We set a timeout (i.e. 10 minutes) to terminate this process for any unrespon-
sive deployment. That is, the inquisitor marks the runtime unavailable (from the point of
view of the requester) when the deployment hits the set timeout. The inquisitor continues
to attempt deployment of this runtime periodically and makes it available to the requester
once a deployment attempt is successful.

To bootstrap the system, STOIC executes two representative tasks for an application
for each runtime in both the edge and public cloud. It uses these data points as a basis for
its processing time estimation by linear regression. STOIC performs this bootstrapping
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each time a new version of the application is uploaded by the developer.

4 Evaluation

In this section, we empirically evaluate STOIC’s performance on image processing tasks.
We implement the application as a serverless function for STOIC to schedule and execute.

In each experiment, STOIC determines which resource to use for function execution
(among a small set of feasible choices). We then run the function on all resources and
compare the choice made by STOIC to the best (shortest duration) execution across all
possible choices.

4.1 Experimental Setup

The image processing application that we use as a benchmark classifies animal images
from a wildlife monitoring system called “Where’s The Bear” (WTB) [58]. “Where’s
The Bear” is an end-to-end distributed data acquisition and analytics system that automat-
ically analyzes camera trap images collected by cameras sited at the Sedgwick Natural
Reserve [59] in Santa Barbara County, California. Our deployment includes an edge
cloud located near the cameras where it acquires the image data. The edge cloud is con-
nected via a slow (microwave) link to a private cloud located at a research facility located
approximately 50 miles from the site. In this work, we explore using the Nautilus dis-
tributed GPU cloud [42] as the public cloud, in conjunction with the edge cloud to opti-
mize image classification on a convolutional neural network (CNN) [60] implemented by
Tensorflow and Scikit-learn [61].

In total, there are five classes that we consider: Bird, Fox, Rodent, Human, and Empty,
by which we label images for training tasks and evaluate model by inference. Since class
size is unbalanced due to the frequency of animal occurrences, we up-sample minority
classes (e.g. fox) using the Keras ImageDataGenerator [62]. Doing so ensures that the
classification model is not biased. We resize every image in the image dataset to 1920 X
1080, and for each class, the dataset contains 251 images used to train the CNN model.
Once model training is complete, the application stores this model in hdf5 format in object
storage at both edge cloud and Nautilus.

As described previously, STOIC moves images from the wildlife refuge to the public
cloud in batches. To better harness the multiple GPU runtime of the public cloud, the
application spawns a process (worker) for each GPU and adds all images in a batch to
a shared asynchronous queue. Upon the execution, workers remove images (one at a
time) from the shared queue until it is exhausted. This mechanism ensures multiple GPU
runtimes evenly divide the workloads among GPUs and achieve quasi-linear acceleration
at the application level, where the perfect linear speed-up is unattainable because of model
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Figure 6: The distribution of three components in total response time (7}) of 150
executions on GPUI runtime: Processing time (7},), Deployment time (7}), and
Transfer time (7}). The x-axis represents the time range, while the y-axis is the
frequency of executions. The deployment time, which is depicted in the red his-
togram, is volatile and error-prone to prediction.

loading and memory transfer overhead [63].

To drive this experiment, we use the workload generator described in Section 3.5 to
facilitate faster-than-real time evaluation of STOIC. The generator uses an image series
and their inter-arrival patterns from a camera trap image corpus ranging from 2013 to
2017. Figure 6 shows example histograms for processing time, transfer time, and deploy-
ment time on Nautilus for GPU1 runtime using 150 batches drawn from the workload
generator. On the x-axis, we show the elapsed time for processing time, transfer time, and
deployment time respectively. Note that processing time and transfer time are relatively
stable compared to deployment time.

4.2 Selector Evaluation

We first evaluate STOIC selector mode for a 24-hour period consisting of 162 image
batches, the sizes of which are drawn randomly from the workload generator. Each batch
is executed on the edge cloud, on the Nautilus CPU, on one Nautilus GPU, and two
Nautilus GPUs. Over the test period, the STOIC Selector chooses the fastest (lowest total
response time) from among these four options 149 times out of the 162 runs or 92% of
the time. That is, STOIC correctly identifies the fastest option with a success rate of 92%.

Further, we define MIN-LAT (minimum latency scheduler), which is an oracle sched-
uler that is 100% correct on selections of runtime. Such scheduler would have resulted
in an aggregate total latency of 10022 seconds, whereas the worst case, in which the
scheduler selects the highest-latency runtime for every run, has an aggregate latency of
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35940 seconds, compared to a STOIC aggregate latency of 10770 seconds. Thus STOIC
achieves an aggregate latency that is 7.4% slower than MIN-LAT, but 70% (3.33x) faster
than the worst case.

We further analyze the data points where STOIC made erroneous selections and found
two sources of error. First, the most error occurs around two batch sizes where the total
response times of runtime have approximately the same latency. To be specific, the edge
and GPU runtimes cross over at 35 image batch size and 90 image batch size for the
GPU1 and GPU2 runtimes. At these cross-points, the close predictions of latency lead
to incorrect selection. [13] Second, the deployment times for GPU runtime are volatile
and error-prone to prediction. As a representative instance, Figure 6 demonstrates the
distribution of processing time (1},), transfer time (7}), and deployment time (7};) of GPU1
runtime. We observe geometric distribution from the histogram of processing time and
transfer time, whereas deployment time varies irregularly with many outliers. These two
phenomenons lead to mistaken selections in the experiment.

4.3 Duplicator Evaluation

Note that the edge cloud node is not a shared resource — it is dedicated to the application. It
is implemented using inexpensive hardware that is connected to standard 120 VAC power
(in a closet in a management building located at the refuge). As a result, it is possible to
use the edge cloud for every batch even when it is not the fastest.

Put another way, there is no cost to running the edge cloud speculatively while data is
transferring to Nautilus and the application waits for Nautilus to deploy pods for the CPU
and GPU runtimes. If STOIC (using Selector) predicts that Nautilus will be faster, and
STOIC is correct, the work on the edge cloud is “duplicate work™ which is unnecessary.
However, because of the deployment variability, it may be that the edge cloud speculative
execution finishes ahead of that runtime scheduled to Nautilus.

However, unlike the edge cloud node, Nautilus is a shared resource. Thus we do not
wish to “waste” execution time on Nautilus unnecessarily. Thus, in this setting, the cost
of duplicate work on the edge is minimal compared to the cost of potentially duplicate
work on Nautilus. If this were not true, we would simply launch the job both at the edge
and on Nautilus and use whichever finished first.

Thus we explore a second scheduling strategy that attempts to minimize total response
time in light of the following assumptions:

e Duplicating unneeded work on the edge carries no penalty.
e Duplicating unneeded work in Nautilus is expensive.

e The STOIC predictions (initial and after transfer and deployment) will be used to
choose the resource that yields the fastest response time while using the Nautilus
resources parsimoniously.
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We call the STOIC scheduler that attempts to minimize response times under these as-
sumptions — the Duplicator.

Further, we noticed that the Nautilus CPU is seldom a good choice in practice. The
application must “pay” for the transfer and incur the deployment time variability to ac-
quire a CPU that is almost equivalent to the edge node CPU. Thus, in the “real world”
version of the STOIC scheduler for the application, we use the Duplicator with Nautilus
GPUs only.

The scheduling algorithm starts the task on the edge cloud node and also begins the
transfer to Nautilus. It then waits for the Nautilus deployment time and, when the pod
is fully deployed, it predicts whether to use the freshly acquired GPU or GPUs (i.e. to
“switch” to the GPU(s)) or to abandon the request and to complete the job on the edge.
To do so, STOIC must predict the remaining edge time at the moment the GPU pod is
deployed, and compare this remaining time to the predicted GPU processing time.

The Duplicator prediction is conditional upon the amount of time that has elapsed
during transfer and deployment to Nautilus. If STOIC predicts that the GPU pod will
start and complete their processing before the edge completes what remains of the job,
it allows the Nautilus and edge cloud executions to execute concurrently. If the Nautilus
job completes first, the edge cloud execution is terminated. Otherwise, if the edge cloud
execution finishes first (i.e. the prediction was incorrect) then the Nautilus job is termi-
nated (and the time between the start of the Nautilus job and the end of the cloud job is
“wasted” Nautilus time).

Alternatively, when STOIC predicts that the edge cloud will finish first, it returns the
GPU resources to Nautilus and run only the edge cloud job. If the Nautilus job would have
completed first (i.e. the conditional prediction in favor of the edge is incorrect) then the
time between when the Nautilus job would have finished and the time that the edge cloud
job completes is an additional delay (compared to having made a correct prediction).

Thus, choosing incorrectly (i.e. a failure) occurs when the actual completion time
exceeds the time of the runtime corresponding to the minimum prediction (in either edge
or GPU case) made by STOIC. That is, a “failure” for the Duplicator occurs when STOIC
makes a conditional choice (i.e. continue on edge or to include Nautilus) and the choice
results in a longer actual response time than the one not chosen. Table 4 shows the
performance of the Duplicator using the edge and one GPU and, separately, the edge
and two GPUs from Nautilus.

These results are both expected and surprising. As expected, restricting the choice to
the edge and a single Nautilus request and using a conditional prediction at deployment
time (as opposed to a ranking at the beginning) as a success criterion improves the suc-
cess rate dramatically. We do not claim that Duplicator is better than Selector in terms
of success rate. Instead, Duplicator enables a more dependable scheduling strategy for
the classification application based on conditional predictions rather than resource rank-
ing. Surprisingly, however, requesting 2 GPUs improves both success rate and aggregate
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Success Rate | versus MIN-LAT | versus Worst Case
Selector 92% 105% 30%
Duplicator Edge vs GPU1 97% 102% 30%
Duplicator Edge vs GPU2 95% 101% 30%

Table 4: The comparison of Selector and Duplicators. The table demonstrates
that the duplicator(GPU1) achieves the highest success rate in predicting optimal
runtime, whereas duplicator(GPU?2) obtains the lowest total latency.

STOIC Choice | Nautilus Savings (+) or Loss (-)
Edge +1393s
GPU1 —440s
GPU2 —257s

Table 5: Nautilus savings (positive values) and loss (negative values) for STOIC
Duplicator. Savings are the time returned to Nautilus due to edge execution. Loss
is the “wasted” time on Nautilus when the GPU runtimes are terminated because
of faster edge execution. All units are in seconds. In the GPU2 case, the time is
for both GPUs.

response time relative to choosing one.

This result surprised us for two reasons. First, because there was greater deploy-
ment variance and a larger mean deployment time for two GPUs, we expect that the edge
(which is more predictable) would generate a greater success rate, but a larger aggregate
response time. Put another way, we expected that STOIC would make safer predictions
favoring the edge in the GPU2 case, but the cost of this safety would be greater aggre-
gate response time. Empirically, however, we observe that STOIC “risks” predicting the
GPU2 deployment more frequently, but that it amortizes this risk effectively because the
two GPU execution is faster.

Note that the cost is not large. In practice, the application will use the one GPU case
to get a better success rate at the cost of 2% in aggregate response time. However, it is
interesting that STOIC is able to make this risk-reward trade-off explicit. Note also that
the worst case is unchanged. This result indicates that there are unusually bad response
time, but that all STOIC scheduling methods can mitigate them to approximately the same
degree.

We conclude our analysis with quantification of the savings and unnecessary loss of
Nautilus time that STOIC Duplicator is able to achieve. Table 5 shows the savings and
loss of Nautilus time that are realized by the Duplicator heuristic.

Recall that the total MIN-LAT time (the time associated with the minimum execu-
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tion of each batch) is 10022 seconds. The positive values in the table indicate the total
time returned to Nautilus (that would have otherwise been used) by selecting the edge for
execution. Note that these savings correspond to the results shown in Table 4 for the Du-
plicator. That is, they are the savings that STOIC was able to achieve while implementing
a schedule within either 1% or 2% of MIN-LAT. The loss (negative values) shows the
amount of Nautilus time that was used unnecessarily. That is, when STOIC Duplicator
chose conditionally to use the GPU or GPUs and the edge finishes first, the elapsed time
on Nautilus is unnecessarily “lost.” Clearly from the table, Duplicator saves more Nau-
tilus time than it loses. Thus, we infer that STOIC in duplicator mode optimizes the time
to solution (Table 4) while utilizing the expensive Nautilus resource efficiently (Table 5)
by using the edge cloud node speculatively.

5 Conclusion

In this paper, we propose a framework, called STOIC, for executing machine learning
applications in IoT-cloud settings using the serverless architecture. STOIC integrates an
edge controller and a public cloud with GPU acceleration. When the scheduler at the
edge controller receives a batch of images from open field camera traps, it predicts the
total response time for processing the batch based on batch size and historical log data.
In the selector mode, STOIC schedules the task to the runtime with the least predicted
latency. In the duplicator mode, STOIC co-schedules the task on the edge cloud and GPU
runtime in the public cloud. If the latter is deployed and predicted to be faster, the edge
cloud job is terminated. Otherwise, STOIC terminates the public cloud job and completes
the task on the edge cloud. This mode further optimizes the selection process by avoiding
volatile deployment times.

We present the design principles, implementation details, the feedback control mech-
anism, and different modeling methodologies to address the variability in the edge and
public cloud deployments. Our empirical evaluation demonstrates STOIC can schedule
tasks on local and remote deployments to achieve a speedup of 3.3x versus our baseline
scenario. STOIC’s success rate for prediction placement ranges from 92% to 97% for the
application and datasets that we study.

As part of future work, we plan to investigate substituting RANSAC with Gradient
Boosting Regression Trees (GBRT) to capture the non-linearity in the processing time
due to heterogeneous hardware across deployment options (runtimes). We also plan to
investigate model check-pointing in duplicator mode to better utilize computational re-
source on edge cloud and to improve the overall performance of the STOIC system.
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