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inference request, P��S����� leverages the performance models

corresponding to the device, network, and server that are currently

being used. That is, we estimate the pre-execution time for both

on-device preprocessing )< and in-cloud preprocessing )2 as:

)< (G) = )<
?A4? (G) +)=F (G) +)2

?A4? (G) + 2,

)2 (G) = )=F (G) +)2
?A4? (G) + 2,

where G is the input features to our model. The cloud preparation

time is denoted as 2 and is set to be 1<B as discussed in Section 4.2.

)<
?A4? and )2

?A4? are the preprocessing models for the mobile de-

vice and the cloud server, respectively. )=F is the speci�c network

transfer time model for the currently active mobile network. If

)< (G) < )2 (G), P��S����� will choose to perform preprocessing

on the mobile device, and otherwise will use in-cloud preprocessing.

Currently, one of the features, image �le size to send, is estimated

to be the average size of previously preprocessed images.

Retraining models. In order to ensure the accuracy of decisions

made by P��S�����, it is important to keep performance models up

to date. P��S����� retrains its linear regression models periodically

to ensure that each mobile device has access to up-to-date perfor-

mance models. As the time to retrain regression-based models is

low but non-negligible, the frequency of retraining is in large part

related to the amount of new performance data collected as well as

the accuracy of the current on-device performance models. In this

work, we use a simple strategy to trigger the retraining once the

prediction accuracy falls below the training accuracy [13].

Retraining is done either on-device or in the cloud, depending

on the type of models. Mobile-speci�c models, such as those for

on-device preprocessing and network models, are trained on-device.

This allows for keeping mobile-speci�c data local and ensuring that

the data used for modeling is relevant to the device being used.

Cloud-speci�c models, such as those for in-cloud preprocessing,

are trained in the cloud and parameters are attached to inference

responses. This is enabled by using linear regression models since

they require only as many parameters as they have inputs.

Adapting to network transfer time variations. Because mobile

networks are inherently variable even when using the same type

of networks, the predicted network transfer time can deviate from

the actual time. Although retraining models, as outlined above, will

mitigate long-term network changes, transient changes can still

be problematic. To mitigate the impact of these transient network

changes on preprocessing decisions, we use a delta-based approach

to reactively adjust the predicted network transfer time based on

recently observed variations, if any. Concretely, for each inference

request 8 , we record the predicted network transfer time as )̂ 8
=F and

the actual network time ) 8
=F . We use X8 =

() 8

=F
−)̂ 8

=F
)

B8I48
to represent

the di�erence in bandwidth prediction where B8I48 is the size of

request 8 , with a positive X8 indicating network conditions are worse

than predicted. Applying exponential smoothing, we calculate �8 =

(1−U)�8−1+UX8 whereU ∈ (0, 1). For the next inference request 8+1,

P��S����� will estimate the network transfer time to be )̂ 8+1
=F + �

8 .

Selectively using the on-device performance models. In some

cases real-world input results in very small inputs which would be

ine�cient to consider for on-device preprocessing. In these cases

Table 4: Comparison of pre-execution latency to baselines. We com-

pared the pre-execution time achieved by P��S����� and the baseline approaches

in terms of what percentage they were of the the empirically derived static

minimum, which is shown as absolute time in milliseconds. P��S����� in many

cases outperforms any of the static baselines.

Residential University

Device Algorithm 50
C⌘

95
C⌘

99
C⌘

50
C⌘

95
C⌘

99
C⌘

Static Minimum 713.2ms 1231.0ms 1876.6ms 707.2ms 1215.7ms 1984.5ms

Static remote 922.6% 1094.7% 1524.9% 274.2% 288.8% 316.9%

Static local 100.1% 100.0% 100.0% 100.5% 101.0% 100.0%
Low-End

P��S����� 95.0% 100.3% 113.8% 93.4% 94.5% 94.1%

Static Minimum 582.4ms 875.6ms 1316.1ms 502.4ms 749.7ms 1090.2ms

Static remote 1082.3% 1353.0% 1003.1% 275.4% 599.5% 502.6%

Static local 100.1% 100.0% 103.1% 100.3% 100.0% 100.0%
Mid-End

P��S����� 97.3% 96.7% 83.5% 97.6% 96.6% 94.1%

Static Minimum 448.7ms 690.0ms 979.8ms 384.2ms 666.7ms 951.7ms

Static remote 1457.6% 1818.5% 1454.4% 234.9% 238.8% 223.9%

Static local 100.1% 100.0% 100.0% 100.2% 102.1% 100.0%
High-End

P��S����� 98.9% 96.3% 104.7% 98.1% 98.7% 105.7%

we leverage two fast on-device checks (< 4`B) to decide whether to

use the on-device performance models. These checks considered

two factors: (i) �le size; and (ii) image resolution.

In the �rst we see whether the �le size is larger than the average

transmitted �le size (∼53kB). If it is smaller then P��S����� then it

is likely that it is a very small image and on-device preprocessing

is unnecessary. In the second check we see whether the image reso-

lution is less than the preprocessing target size (e.g. 331×331pixels).

If it is then any preprocessing would only increase the �le size and

potentially decrease accuracy. If either of these conditions is true

then the raw image data is transmitted to the cloud-based server.

6 EXPERIMENTAL EVALUATION

Our key evaluation goal is to quantify the e�ectiveness of P��S�����

in reducing pre-execution time and examine its decision accuracy.

We found that P��S����� incurs minimal overhead of 0.33ms on

average, or 0.07% per request.

6.1 Experimental Setup

We use the same setup as in Section 4.1 for evaluating P��S�����.

Baseline policies. We evaluated P��S����� against three baselines.

Static local always preprocesses the inference request on mobile

devices before sending it to the cloud servers. Static remote always

sends the raw input data directly to the cloud servers for prepro-

cessing. We also derive a static minimum baseline by picking the

lower pre-execution time out of the above two static baselines.

Performance metrics.We chose �1 score to measure P��S�����’s

ability in making preprocessing placement decisions. The �1 score

is calculated as a harmonic mean of the precision and the recall. A

perfect precision and recall corresponds to an �1 score of 1. In our

case, precision is calculated as the number of correctly predicted

requests preprocessed locally divided by the total number of local

preprocessing decisions made by P��S�����. The recall is calculated

as the number of correctly decided local preprocessing decisions

divided by the total number of requests that should use local pre-

processing. To analyze the reduction in bandwidth usage due to

P��S�����, we use the metric of bandwidth utilization. This metric

is calculated by comparing the number of sent bytes by P��S�����

to the bytes incurred when using static remote.



6.2 Latency Reduction and Prediction Accuracy

In this experiment, we quantify the pre-execution time savings pro-

vided by P��S�����, as well as P��S�����’s decision accuracy. We

used P��S����� running on each mobile device to make preprocess-

ing decisions dynamically. We sent all images from the image-1k

dataset over both the university and residential WiFi, and report

the pre-execution time for P��S����� and our three baselines.

Pre-execution time reduction. In Table 4 we compare the pre-

execution time of P��S����� and three baselines at a range of quan-

tiles. We report the absolute time for static minimum and normalize

the performance of other approaches against it.

We make the following two main observations. First, P��S�����

achieved comparable, or better, pre-execution time to the static min-

imum baseline for all three mobile devices. P��S����� outperformed

the static minimum baseline in 77.8% of cases and was within 6%

for all but one case. Speci�cally, at median P��S����� always per-

formed better, with a decrease in latency of up to 50.2ms (7.1%)

compared to the static local baseline and more than 1.2s (180.8%)

better than the static remote baseline. At higher percentiles we see

an even larger improvement, with up to 217.2ms decrease in latency

at the 99th percentile when compared to the static minimum base-

line. These improvements are all noticeable to end users [40] and

thus can improve their experiences. Second, P��S����� performed

more accurately on university WiFi rather than residential WiFi.

This supports the design choice of modeling distinct networks and

devices individually.

Classi�cation accuracy. To understand the ability of P��S�����

in making dynamic pre-processing decisions, we recast it as a bi-

nary classi�cation problem. To do this we use the choices of static

minimum as a ground truth and examine the choices made by P���

S�����. For all tested scenarios, P��S����� achieved an �1 score of at

least 0.980, with a maximum score of 0.990 indicating very high clas-

si�cation accuracy. This suggests that our linear regression models

were su�cient for making dynamic preprocessing decisions.

6.3 Bandwidth Reduction and its Implications

P��S�����’s dynamic preprocessing does not only a�ect the pre-

execution time, but also the amount of data sent. Table 5 shows the

bandwidth utilization of P��S�����. We �rst observe that P��S�����

signi�cantly reduced the bandwidth requirements for all tested

cases. This also suggests that P��S����� decided to preprocess most

tested images on mobile devices. Second, we see that P��S����� had

lower bandwidth utilization when using residential WiFi than using

university WiFi. This suggests that P��S����� chose to preprocess

more images in the cloud when using university WiFi, which aligns

with our previous observation that university WiFi was faster in

Figure 3(b). Finally, the high-end device had the highest bandwidth

utilization on university WiFi, despite having the most powerful

hardware. This indicates P��S�����’s ability to make trade-o�s

based on computational capacity and network connection.

Implication for Energy Savings. Below we show that P��S�����

leads to mobile energy reduction by judiciously making preprocess-

ing decisions for images of di�erent sizes and imposing negligible

energy overhead. We present the analysis as the following. Previous

work has shown that energy consumption for the transmission of

data over aWiFi network by amobile device is at least 0.005J/kB [42].

Table 5: Bandwidth utilization

Residential Network University Network

Low-End Device 1.91% 4.93%
Mid-End Device 1.86% 4.79%
High-End Device 1.86% 7.33%

This equates to roughly 0.265J of energy for a 53kB preprocessed

image and 50J for our largest unpreprocessed image. On-device

preprocessing for our Pixel device is done on the Pixel Visual Core

device which uses a maximum of 8W [4], leading energy consump-

tion for on-device preprocessing ranging from 0.8J to 2.5J, for small

and larger images respectively. This further shows that small im-

ages are more energy e�cient to transmit for remote preprocessing

while large images can be an order of magnitude more energy ef-

�cient through local preprocessing. Thus, P��S����� can reduce

energy consumption through a reduction in network bandwidth.

Further, P��S����� makes these decisions in 330us, which equates

to approximately 130uJ of energy [1], which is negligible.

6.4 E�ectiveness of Optimizations

Next, we quantify the e�ectiveness of P��S�����’s two optimiza-

tions: delta-based network adaptiveness and selective usage of

on-device performance models. For this test we set U = 0.5. When

using both optimizations we see a reduction in pre-execution time

by 49.3ms (6.4%) at the 95
C⌘ percentile and 85.3ms (7.4%) at the

99
C⌘ percentile. If only the adaptive optimization is enabled, we

observe that P��S����� reduces per-execution time by up to 3.2%;

while if only the selective optimization is used, we observe that

P��S����� reduces pre-execution by up to 4.0%. Our observations

suggest that both adaptive and selective optimizations are bene�cial

in improving P��S�����’s robustness and with minimal overhead.

7 RELATED WORK

Computation o�loading for Deep Learning. O�oading compu-

tationally intensive tasks to remote servers is a common technique

for mobile devices. This can be done either to reduce latency and

energy consumption [8, 10, 27]. O�oading of deep learning infer-

ence [20, 25, 46] generally partitions execution between on-device

and remote execution, requiring prepartitionedmodels to be present

on the mobile device. P��S����� proposes an alternative approach to

deep learning o�oading that fully takes advantage of cloud-based

hardware when possible by having model execution be entirely

handled on this more powerful hardware. This is more similar to tra-

ditional o�-loading techniques by removing the need to manually

partition deep learning models.

In-cloud Inference Execution. High-accuracy deep learning mod-

els have high computational requirements [5], which has driven

the need to run them on powerful cloud servers, potentially with

specialized hardware[24]. Industry frameworks [2, 37] aim to make

models available for inferencewhileminimizing latency by allowing

optimizations. Other approaches may try to optimize for other fac-

tors such as throughput [9, 15, 26], accuracy [35], or cost [43]. Since

many frameworks accept a target execution latency [26, 35, 43], by

reducing pre-execution latency P��S����� increases their ability to

meet these targets.



8 DISCUSSION

Generalizability. In this work we used pre-execution time in im-

age classi�cation as a motivational example, but P��S����� could be

used in analyzing other deep learning applications [3, 7, 39] which

have similar work�ows but di�erent preprocessing trade-o�s. For

example, virtual assistants could leverage the pro�le aspect of P���

S����� to identify choke points and dynamically adapt accuracy.

Implications of future technology. As other �elds develop they

will improve aspects of the steps discussed in Section 2, which

potentially only increases the need to understand the interplay be-

tween the di�erent factors. One such improvement is the increased

bandwidth provided by the introduction of 5G, which would be ex-

pected to encourage more in-cloud preprocessing due to decreased

network latency. The modular models used by P��S����� allow

it to incorporate such improvements and are thus orthogonal to

P��S����� by further reducing overall response latency.

9 CONCLUSION

We demonstrated the importance of modeling the pre-execution

latency for mobile devices that leverage cloud inference, and in-

troduced e�ective techniques for reducing this latency. Through

empirical characterization, we found that pre-execution latency

can often be orders of magnitude longer than execution time itself,

making it a prime candidate for optimization. Further, our explo-

ration of machine learning based performance models showed that

linear regression models allow for adequate modeling accuracy for

the steps that comprise pre-execution time with low overhead.

Based on the key �ndings from our empirical characterization

and modeling, we further designed and built P��S�����, a system

for dynamically determining preprocessing location in an accurate

and agile manner. Using simple models P��S����� achieved a clas-

si�cation �1 accuracy of up to 0.99, leading to 217.2ms reduction

over the best static approach.
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