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exceed that of exiting through 𝑓 𝑖+1𝑎 . This indicates an upper bound

of computational budget, e.g., the difference between the two con-

secutive convolutional layers, when designing the branch classifiers.

This computational budget has to be shared with the early-exiting

controllers, further restricting our design space.

Similarly, the memory consumption of branch classifiers, i.e.,

number of parameter, is also a big problem. In classic CNN structure,

the 3D feature map outputed by last convolutional layer is flattened

and fed to a fully connected layer, where the most of the parameters

belong to. This suggests that simply attaching a classifier layer to

every convolutional layer may lead the memory consumption to

increase by multiple times.

Instead, we design the 𝑓 𝑖𝑎 with the structure of GAP-FC-SoftMax.

Here the GAP is a global average pooling layer and FC is a fully

connected layer. We chose to use the GAP layer because it signifi-

cantly reduce the resource requirement of the branch classifiers.The

input of 𝑓 𝑖𝑎 is the 3D activated feature map generated by the 𝑖-th

convolutional layer.

In short, the branch classifiers should: (i) comply to the resource

consumption pattern of the main branch network layers; and (ii)

without impacting the accuracy.

4.1.3 Early-exiting Controllers. Lastly, our EPNet requires a set

of early-exiting controllers 𝑓𝑐 = {𝑓 𝑖𝑐 , 𝑖 ∈ {1, 2, .., 𝑁 − 1}} that

regulates the usage of each exit 𝑖 .

We design 𝑓 𝑖𝑐 as a two-part network, i.e,. 𝑓 𝑖
𝑖𝑛

and 𝑓 𝑖𝑐𝑎𝑡 , to preserve

the information of features outputted by both the GAP layer and

the logits outputted by 𝑓 𝑖𝑎 . This allows our controllers to perform at

least as well as previously proposed rule-based policy [10, 16, 20].

Both of the 𝑓𝑖𝑛 and 𝑓𝑐𝑎𝑡 are in the form of stacked blocks FC-BN-

ReLU, except for the last activation of 𝑓𝑐𝑎𝑡 which should be Sigmoid

function. Here BN is a batch normalization layer.

Specifically, 𝑓 𝑖
𝑖𝑛

takes the 3D activated feature map generated by

the 𝑖-th convolutional layer as input and outputs a 1D vector 𝑣 . This

1D vector 𝑣 and the logits outputted by 𝑓 𝑖𝑎 are concatenated and

used as the input to 𝑓 𝑖𝑐𝑎𝑡 who then output a scalar signal 𝑝 ∈ [0, 1].

From the Bernoulli distribution paramiterized by 𝑝 , we sample a

stopping signal 𝑠 ∈ {0, 1}. If 𝑠 = 0, the forward propagation in

main branch 𝑓𝑚 will continue until another controller 𝑓
𝑗
𝑐 at 𝑗-th

convolutional layer outputs 𝑠 = 1, or reaches the final classifier in

𝑓𝑚 . If 𝑠 = 1, the forward propagation is immediately stopped and

the model output the label predicted by the current branch classifier

𝑓 𝑖𝑐 .

4.2 Learning the Early-exiting Policy

We formulate the early-exiting problem as a Markov decision pro-

cess (MDP) problem 𝑀 = (𝑆,𝐴,𝑇 , 𝑅), where the environment is

𝐸 = (𝑓𝑚, 𝑓𝑎, 𝐷). We describe the state set 𝑆 , Action set 𝐴, Trans-

formation table 𝑇 and Reward 𝑅 in detail below. The early-exiting

policy 𝜋 can be learned through maximizing the expected reward

𝐸𝜋 (𝑅), once 𝑓𝑚 and 𝑓𝑎 are trained.

States set 𝑆 . We define a state 𝑠𝑖 as (𝑚𝑖 , 𝑦𝑖 ) where𝑚𝑖 is the out-

putted vector at the GAP layer after the 𝑖-th convolutional layer of

𝑓𝑚 , and 𝑦𝑖 is the logits outputed by 𝑓 𝑖𝑎 . Additionally, 𝑆 contains a

distinguish state 𝑠𝑎𝑏 called absorbing state. The MDP stops when

any states transition to 𝑠𝑎𝑏 . In our case, 𝑠𝑎𝑏 represents the state

when the controller decides to stop and exit from exit 𝑖 . Lastly, we

define the start sate 𝑠0 = 𝐼 where 𝐼 denotes an image from 𝐷 .

Action set 𝐴. The MDP only has two actions: "stop at current

exit" or "continue to forward propagation". Here we denote it as

𝐴 = {0, 1}, where 0 is "stop" and 1 is "continue". Ones the agent

takes action 𝑎 = 1, the state transfer to 𝑠𝑎𝑏 . So given a image 𝑥 ,

the trajectory set T of agent can be denotes as T = {(𝑥, 0𝑛, 1) |𝑛 ∈

{0, 1, ..., 𝑁 − 1}}, where 0𝑛 means a succession of 0 of length 𝑛, and

𝑁 is the total number of branch exits.

Transformation table 𝑇 . 𝑇 = {𝑃 (𝑠, 𝑎, 𝑠 ′) |𝑠, 𝑠 ′ ∈ 𝑆, 𝑎 ∈ 𝐴}, where

𝑃 (𝑠, 𝑎, 𝑠 ′) is the probability that state 𝑠 transfer to 𝑠 ′ by taking action

𝑎. In this study, the 𝑇 is deterministic so that all 𝑃 (𝑠, 𝑎, 𝑠 ′) = 1 if

𝜋 (𝑠, 𝑎) = 𝑠 ′, otherwise 𝑃 (𝑠, 𝑎, 𝑠 ′) = 0.

Reward 𝑅. Given a Image 𝑥 from 𝐷 and a cost sensitivity 𝛽 . If the

agent stop at the 𝑖-th exit, the trajectory is 𝜏 = (𝑥, 0𝑖−1, 1). The

reward 𝑅(𝜏) is the 𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 ({𝑥}, 𝑓𝑖 , 𝛽) defined in Eq 1. Here 𝑓𝑖 is the

sub-network from the input layer of the main network 𝑓𝑚 to the

output layer of 𝑖-th branch classifier 𝑓 𝑖𝑎 .

4.3 Training Consideration of the Controllers

The main branch 𝑓𝑚 and additional branch classifiers 𝑓𝑎 can be

trained by simply summing their cross entropy loss together [20].

Here We mainly describe two approaches to train the controllers 𝑓𝑐 .

We compare their ability to find early-exiting policy in Section 5.5.

The first option is to leverage REINFORCE algorithm [23] to

train the early-exiting controllers as following.

∇𝜃𝐸𝜋 (𝑅) ≈
1

𝑚

𝑚∑
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

𝑓 𝑖𝑐 (𝑠𝑖 ) 𝑎𝑖 = 1, 𝑠𝑖 ≠ 𝑠𝑎𝑏

1 − 𝑓 𝑖𝑐 (𝑠𝑖 ) 𝑎𝑖 = 0, 𝑠𝑖 ≠ 𝑠𝑎𝑏

1 𝑠𝑖 = 𝑠𝑎𝑏

(3)

Here𝑚 is the number of episode, and 𝑛 denotes the length of

a trajectory, i.e., the number of exits. 𝑠, 𝑎, 𝑅 are the states, actions,

rewards defined in the previous section.

But the classic REINFORCE rule is based on sampling andMarkov

Chain Monte Carlo approach (MCMC), which could be inefficient

in our task. For example, if the dynamic model has 9 additional

branches, the trajectory 𝜏 = (𝑥, 09, 1) may have very low chance

to be sampled. This is because it requires all the controllers to

output continue. The low sampling efficiency can cause well known

drawback of REINFORCE, the high variance of policy gradient.

The second option, which we used for training the controllers

in this work, is to directly compute the exact gradient of 𝐸𝜋𝜃 (𝑅) as

following.

∇𝜃𝐸𝜋 (𝑅) =

𝑛∑

𝑗=1

∇𝜃

𝑛∏

𝑖=1

(
𝜋
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𝑎
𝑗
𝑖
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𝑗
𝑖
;𝜃
))

𝑅 𝑗
(4)

The gradient computation is feasible because of two important

properties of our MDP. First, The environment 𝐸 = (𝑓𝑚, 𝑓 𝑎, 𝐷) is

a given and the only randomness comes from the policy 𝜋 itself.

Second, given an image and a multi-branch network of 𝑁 branches,

the size of trajectories set is T = {(𝑥, 0𝑖 , 1) |𝑖 ∈ {0, 1, ..., 𝑁 − 1}}
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is larger than 1 − 𝛾 , the model halt the forward propagation. On

each dataset, we pick two thresholds. By the smaller 𝛾 the network

can achieve the high accuracy close to our EPNet. By the larger 𝛾

the network can maintain low computational cost close to EPNet.

Similar with BranchyNet, we also compare with Softmax-gate with

dynamic thresholds, denoted as Softmax-gate-oracle.

For fair comparisons, our EPNet uses the same structure as its

ResNet for its main branch network 𝑓𝑚 . Further, EPNet shares the

same structure and parameters of 𝑓𝑚 and 𝑓𝑎 with the BranchyNet

and Softmax-gated policy.

5.3 End-to-end Evaluation

5.3.1 Evaluation Methodology. We evaluated the effectiveness of

EPNet on all three datasets with following two metrics.

The first metric we chose is the benefit score that was defined

in the Equation (1). This metric allows us to compare our EPNet

to baselines in a unified way. In each task, we firstly set the cost

sensitivity to 𝛽 × 0.01, where 𝛽−1 is the order of magnitude of

the average comutational cost (FLOPS) of a single convolutional

layer in the EPNet used. Then we increase the cost sensitivity each

time by adding 𝛽 × 0.01 to the previous cost sensitivity. So we

can observe how the methods’ performances change against the

decreasing available resources. Under each setting of cost sensitivity,

we retrain the controllers and keep the rest part of EPNet fixed.

We also used a metric, referred to as budget-constrained accuracy,

for understanding the effectiveness of early-exiting [10, 16]. To

calculate the budget-constrained accuracy, we first define a com-

putational budget and then use it as a barrier for determining the

accuracy. For example, in the case of CIFAR-10, we used our EP-

Net’s total computational cost (FLOPS) over the test dataset as

the computational budget, and evaluated all baseline models. For

baseline models that did not finish all test images within the budget,

we assigned labels in an uniformly random way to the remaining

test images. We use 𝑎𝑐𝑐𝑏 to denote the resulting budget-constrained

accuracy.

5.3.2 Performances on Max-Min MNIST dataset. We first describe

the network structure and parameter settings we used in EPNet

for training on the Max-Min MNIST dataset, followed by the per-

formance comparison to its respective baselines.

Network structure setting. For the main branch network 𝑓𝑚 , we

used a ResNet with 12 convolutional layers. The first four layers

each has 32 filters, followed by another four layers with 64 fil-

ters. The last two convolutional layers are of 128 filters. We down-

sampled by using a stride of 2 for convolution when the number

of filters changed between layers. To construct the early exits, we

used a single-layer classifier 𝑓 𝑖𝑎 that takes the input of the 𝑖-th con-

volutional layer of 𝑓𝑚 . This resulted in a total of 12 potential exits.

On 𝑖-th exit, The classifier 𝑓 𝑖𝑎 is a single fully-connected layer. The

controller 𝑓 𝑖𝑐 consists of two fully-connected networks 𝑓𝑖𝑛 and 𝑓𝑐𝑎𝑡 ,

where the 𝑓𝑖𝑛 has 10, 10, 10 units in each layer, and the 𝑓𝑐𝑎𝑡 has 10,

10, 1 units in each layer.

Parameter setting. We adopted the Kaiming initialization [7] and

BN [13] without dropout when training the main and branch clas-

sifiers 𝑓𝑚 and 𝑓𝑎 , respectively. We used a mini-batch size of 64 and

momentum of 0.9. We set the initial learning rate to be 0.1. We

trained the classifiers for a total of 60 epochs. Once the classifiers

were trained, we fixed the classifiers and train the controllers 𝑓𝑐 .

The mini batch size is 64, and the initial learning rate is 0.01. We

trained the controllers for a total of 60 epochs as well.

Result and discussion. Figure 6(a) compares the benefit score

achieved by different baselines and our EPNet.

We make the following three key observations. First, the EP-

Net greatly outperforms all baselines, and the gap of performance

grows as the cost sensitivity grows. At beginning the cost sensi-

tivity is small (2 × 10
−7), the EPNet outperforms the best baseline

Softmax-gate-oracle by 3.11. When cost sensitivity reaches 1×10
−6,

the gap between the scores of EPNet and Softmax-gate-oracle in-

creases to 10.17. Second, the ability to learn the early-exiting policy

from dataset is the reason of the superiority of EPNet. The per-

formances of oracle baselines with dynamic thresholds and the

branchyNet-0.2 / 0.3 are very close, indicating the thresholds 0.2

and 0.3 recommended in [20] are suitable for this dataset, while

tuning the thresholds can’t bring obvious benefit. In contrast, the

gaps between the EPNet and the oracle baselines are much larger

than the differences among the early-exiting baselines. This re-

sults may indicate the EPNet learns much better representation of

the confidence of the classification than the rule-based methods.

Third, The ResNet’s benefit score is worst because it only focuses

on accuracy while has the highest computational cost.

Table 1 shows the comparison on budgeted batch classification.

The accuracy of EPNet is 95.51%, which is higher than the best

baseline Softmax-gate-0.2 by 7.35%. The BranchyNet-0.2 and 0.3

can’t finish within the budget. We have to rise the threshold to 0.95,

then the BranchyNet’s computational cost meets the limitation of

budget. But its accuracy is only 84.13% which is 11% lower than

EPNet. The ResNetwith same structure of the EPNet’s main branch

network, can only achieve 46.86% under the limited budget, which

is 48.65% lower than the EPNet. Compared with ResNet without

budget limitation, the EPNet’s accuracy is only 0.18% lower than

it, while saves about 50% of computation. Even when the budget

limitation is removed for the baselines except for ResNet, their

accuracies are all lower than EPNet by at least 1%.

5.3.3 Performances on Multi-scale Fashion MNIST. Next we study

the effectiveness of the EPNet on Multi-scale Fashion MNIST

dataset.

Network structure setting.We used the same network structure

as described in Section 5.3.2 for the Max-Min MNIST dataset.

Parameter setting. We adopted the Kaiming initialization [7] and

BN [13] without dropout when training the classifiers (i.e,. 𝑓𝑚 and

𝑓𝑎) and the controllers 𝑓𝑐 , respectively. For the classifiers, we used

a mini-batch size of 128 and momentum of 0.9. We set the initial

learning rate to be 0.1 and divide the learning rate by 10 every 100

epochs. We trained the classifiers for a total of 300 epochs. Once

the classifiers were trained, we fixed the classifiers and trained the

controllers 𝑓𝑐 . The mini batch size is 128, and the initial learning

rate is 0.01. After 50 epochs the learning rate was reduced to 0.001,

then we trained the controllers for another 50 epochs.

Result and discussion. Figure 6(b) shows the performances of

each model according to the benefit score. Similar with Max-Min

MNIST dataset, we make the following two key observations. First,
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impacts of gradients from multiple branches and proposed methods

to collaboratively improve the training of branches [16]. Both [10]

and [16] used the softmax probability for making early-exiting de-

cisions. Our work propose a learning-based early-exiting approach

for better adapting to inference environment.

Dynamic Inference on CNNs.

Figurnov et al. proposed a spatial adaptive inference architec-

ture called SACT [4] that can skip convolution within a residual

block. Specifically, SACT calculates a halting score during every

convolution in a residual block and decides whether to skip the

next convolution in the same residual block. Veit et al. proposed

a dynamic inference model called ConvNet-AIG [21] that aims to

only execute the layers related to the category of input image. Con-

cretely, ConvNet-AIG used a small network as a gated function

to decide whether to execute a residual block or just jump over it

through the shortcut link. Simiarly, Bengio et al. [2] proposed a

method to dropout some units of a layer in neural network. Wang

et al. proposed SkipNet [22] that leverages reinforcement learning

to identify the suitable shallow networks per sample. Our work

focuses on the co-design of a multi-branch network and its early-

exiting policy for efficient dynamic inference.

Dynamic Inference on RNNs.

Minh et al. proposed a recurrent attention model (RAM) [17] on

visual learning tasks. RAM can learn to only attend to the important

regions without scanning the entire image, similar to SACT [4]. On

the task of time series classification, Hartvigsen et al. [6] proposed

a novel model EARLIEST to jointly minimize the classification error

and the execution time of the model. Both RAM and EARLIEST

and the works mentioned above [2, 22] are trained by REINFORCE

algorithm. Ourwork also leverages reinforcement learning to obtain

the early-exiting policy. As our MDP has much smaller searching

space, our proposed controller can be trained in an efficient non-

sampling fashion.

7 CONCLUSION

In this work, we co-designed the multi-branch networks and the

early-exiting policies in the context of dynamic inference. Our pro-

posed solution, referred to as EPNet, addressed two key challenges,

namely (i) designing the learning objective to balance both accuracy

and efficiency; and (ii) explicitly considering the resource overhead

associated with the early-exiting policies. Concretely, we designed

a lightweight branch structure and cast the early-exiting problem

as a Markov decision process. This enables EPNet to make exit-

ing decisions per convolutional layer through the learned policy.

Comparisons of EPNet on three datasets to two types of baselines

demonstrate its efficacy in classification accuracy, adaptivity to

sample difficulty, and resource budgets.
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