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Abstract. We propose an efficient lighting estimation pipeline that is
suitable to run on modern mobile devices, with comparable resource com-
plexities to state-of-the-art on-device deep learning models. Our pipeline,
referred to as PointAR, takes a single RGB-D image captured from
the mobile camera and a 2D location in that image, and estimates a
2nd order spherical harmonics coefficients which can be directly utilized
by rendering engines for indoor lighting in the context of augmented
reality. Our key insight is to formulate the lighting estimation as a
learning problem directly from point clouds, which is in part inspired
by the Monte Carlo integration leveraged by real-time spherical har-
monics lighting. While existing approaches estimate lighting information
with complex deep learning pipelines, our method focuses on reducing
the computational complexity. Through both quantitative and qualita-
tive experiments, we demonstrate that PointAR achieves lower light-
ing estimation errors compared to state-of-the-art methods. Further, our
method requires an order of magnitude lower resource, comparable to
that of mobile-specific DNNs.
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1 Introduction

In this paper, we describe the problem of lighting estimation in the context of
mobile augmented reality (AR) applications for indoor scene. We focus on re-
covering scene lighting with the image-based lighting model [10] which is widely
used in modern computer graphics rendering. Accurate lighting estimation pos-
itively impacts realistic rendering, making it an important task in real-world
mobile AR scenarios, e.g., furniture shopping apps that allow user to place a
chosen piece in a physical environment.

At a high level, under the image-based lighting model, to obtain the lighting
information at a given position in the physical environment, one would use a
360◦ panoramic camera such as ones from Matterport3D [7] that can capture
incoming lighting from every direction. However, commodity mobile phones often
lack access to such panoramic camera, making it challenging to directly obtain
accurate lighting information and necessitating the task of lighting estimation.
There are three key challenges when estimating lighting information for mobile
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AR applications. First, the AR application needs to estimate the lighting at the
rendering location, i.e., where the 3D object will be placed, based on the camera
view captured by the mobile device. Second, as the mobile camera often only
has a limited field of view (FoV), i.e., less than 360 degree, the AR application
needs to derive or estimate the lighting information outside the FoV. Lastly, as
lighting information is used for rendering, the estimation should be fast enough
and ideally to match the frame rate of 3D object rendering.

Recently proposed lighting estimation approaches [12,13,23] are all learning-
based but did not consider the aforementioned unique challenges of supporting
AR on mobile phones. Gardner et al. proposed a simple transformation to tackle
the spatial difference between observation and rendering positions [12]. However,
the proposed transformation did not using the depth information and therefore
can lead to image distortion. Garon et al. improved the spatial lighting estima-
tions with a two-branches neural network that was reported to perform well on a
laptop GPU but not on mobile devices [13]. Song et al. further improved the es-
timation accuracy by decomposing the pipeline into differentiable sub-tasks [23].
However, the overall network was large in both size and computational complex-
ity which makes it ill-suited for running on mobile phones.

Our key insight is to break down the lighting estimation problem into
two sub-problems: (i) geometry-aware view transformation and (ii) point-cloud
based learning from limited scene. At a high level, geometry-aware view transfor-
mation handles the task of applying spatial transformation to an existing view,
e.g., camera photo, with a mathematical model. In other words, we skip the use
of neural networks for considering scene geometric and other parameters, unlike
previous methods that approached the lighting estimation with a monolithic
network [12,13]. This is crucial as it keeps the task simpler which in turns makes
the models more efficient to run on mobile devices. Our key idea for learning
lighting estimation spherical harmonics coefficients directly from point cloud,
instead of image, is in part inspired by the use of Monte Carlo Integration in
calculating the real-time spherical harmonics.

Concretely, We propose a hybrid lighting estimation for mobile AR with the
promise of realistic rendering effects and fast estimation speed. We rethink and
redefine the lighting estimation pipeline by leveraging an efficient mathematical
model to tackle the view transformation and a compact deep learning model for
point cloud-based lighting estimation.

Our method, referred to as PointAR, takes the input of a RGB-D image
and a 2D pixel coordination (i.e., observation position) and outputs the 2nd
order spherical harmonics coefficients (i.e., a compact lighting representation of
diffuse irradiance map) of a world position for rendering virtual objects. We
use irradiance map, a 360◦ panorama that represents the incoming irradiance at
every direction of a 3D position, as it sufficiently describes the diffuse light of
our interest. In summary, PointAR circumvents the hardware limitation (i.e.,
360 degree cameras) and enables fast lighting estimation on commodity mobile
phones.
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information that associate images, 360◦ panoramas, and the relationship between
images at observation and rendering locations.

The first step of our dataset creation process is to transform the observation
RGB-D images, i.e., captured at user locations, in Matterport3D dataset into
point cloud format. To transform the 2D image plane to 3D representation, we
leveraged the the pinhole camera model [9] and camera intrinsics of each photo
in the dataset. For each RGB-D photo, we first pre-processed the depth image
with distance transform to remove a small portion of pixels that are missing
depth data during capturing. Then we calculated the 3D point cloud coordinates
(x, y, z) as:

x =
(u− cx) ∗ z

fx
, (2)

y =
(v − cy) ∗ z

fy
, (3)

Where z is the depth value in RGB-D photo, u and v are the photo pixel
coordinates, fx and fy are the vertical and horizontal camera focal length, cx
and cy are the photo optical center.

With the above transformation, we generated the point cloud Po for each
observation position. Then, we applied a linear translation T to Po to transform
the view at observation position to the rendering position. This is an important
step as it will allow our model to learn and estimate spatially-variant lighting.

Specifically, T is determined by using the pixel coordinates of each render-
ing position on observation image from the Neural Illumination dataset in order
to calculate a vector to the locale point. We scaled the distance with a factor
of 0.95 to represent the rendering position for virtual objects. We found and
demonstrated in Section 5 that this approach achieved good spatial transforma-
tion, even though it only represents an estimate for the rendering location.

Then, we applied rotation U on the recentered point cloud PO for: (i) align-
ing with ground truth environment map in dataset for training purpose; and
(ii) rotating point cloud according to geometry surface and camera orientation
during inference time.

Finally, for each panorama at rendering position, we extracted 2nd order
spherical harmonics coefficients as 27 float numbers to represent the irradiance
ground truth. On generated point clouds, we also performed projection and
consequently generated respective 2D panorama images which will be used for
conducting variants evaluation.

4.4 Design and Training Discussions

Learning From Point Cloud Our choice to learn lighting information di-
rectly from point cloud is driven by mobile AR use cases and their performance
requirement of fast inference.

After obtaining the transformed point cloud, one intuitive approach is to
formulate the learning process as an image learning task by projecting the
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transformed point cloud into a panorama. This is because image-based lighting
graphics models [10] commonly use 360◦ panoramic view to calculate lighting
from every direction of the rendering position. However, learning from projected
point cloud can be challenging due to potential distortion caused by projecting
360◦ data to a 2D image plane and missing pixel values due to point cloud being
stored sparsely. We compare this formulation to PointAR in Section 5.

Our idea to learn diffuse lighting from the point cloud representation is in
part inspired by how real-time diffuse lighting calculation has been optimized
in modern 3D rendering engines. Ramamoorthi et. al [22] proposed the use of
spherical harmonics convolution to speedup the irradiance calculation. Com-
pared to diffuse convolution, spherical harmonics convolution is approximately
O(T

9
) times faster where T is the number of texels in the irradiance environ-

ment map [22]. However, as spherical harmonics convolution still includes in-
tegral operation, performing it directly on large environment maps might hurt
real-time performance. Consequently, Monte Carlo Integration was proposed as
an optimization to speed up lighting calculation through spherical harmonics
convolution by uniformly sampling pixels from the environment map.

In short, Monte Carlo Integration demonstrates the feasibility to calculate the
incoming irradiance with enough uniformly sampled points of the environment
map. In our problem setting of mobile AR, we have limited samples of the
environment map which makes it nature to formulate as a data-driven learning
problem with a neural network.

Although learning from point cloud representation can be a difficult task
due to the sparsity of point cloud data [20], we adopted a recently proposed
PointConv [26] architecture as the main component of our neural network de-
sign. We chose PointConv due to its good learning performance and efficient
implementation; other point cloud learning approaches [21,28,18] might also be
used.

Finally, we choice of estimating diffuse environment map instead of more
detailed environment map is again driven by our application scenarios. First, it
is challenging to construct detailed environment map from a limited scene view
captured by the mobile phone camera. This in turns can lead to more complex
neural networks that might not be suitable to run on mobile devices. Second,
neural network generated environment maps may be subject to distortion and
unexpected shape. This might lead to reflective textures during rendering and
can significantly affect the AR end-user experience.

Training Dataset Training a neural network that can accurately estimate
lighting requires a large amount of real-world indoor 3D scenes that represents
the complicated indoor geometries and lighting variance. Furthermore, in the
context of mobile AR, each training data item need to be organized as a tuple
of (i) a photo (C,D) captured by mobile camera at the observation position to
represent the user’s observation; (ii) a 360◦ panorama photo E at the rendering
position for extracting lighting information ground truth; (iii) a relation R be-
tween (C,D) and E to map the pixel coordinates at the observation phone to
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the ones at the rendering position, as well as the distance between these pixel
coordinates.

Existing datasets such as Matterport3D [7], Stanford 2D-3D-S [6] and Neural
Illumination [23] all fall short to satisfy our learning requirement. For example,
Matterport3D provides a large amount of real-world panorama images which
can be used to extract lighting information to serve as ground truth. However,
this dataset does not include either observation nor relation data. The dataset
derived by Neural Illumination has the format that is closest to our requirement
but is still missing information such as point clouds.

In this work, we leveraged both Matterport3D and the Neural Illumina-
tion datasets to generate a dataset that consists of point cloud data P and
spherical harmonics coefficients S. Each data item is a five-item tuple with
((C,D), E,R, P, S). However, the point clouds generated from observation im-
ages are very large, e.g., 1310720 points per observation image, which complicates
model training with large amount of GPU memory requirement.

In our current implementation, we down-sampled each point cloud with 1280
points to reduce resource consumption during training and inference. Our uni-
form down-sampling method is consistent with the one used in the PointConv
paper [26]. Similar to what was demonstrated by Wu et al. [26], we also observe
that reducing the point cloud size, i.e., the number of points, do not necessarily
lead to worse classification results but can reduce GPU memory consumption
linearly during training.

5 Evaluation

We trained and tested our PointAR neural network on our generated dataset
(Section 4.3) by following the train/test split method described in previous
work [23]. Our evaluations include end-to-end comparisons to recent works on
lighting estimation, ablation studies of our pipeline design, and resource com-
plexities compared to commonly used mobile DNNs.

Result Highlights We briefly summarize our evaluation results.

– Our proposed hybrid pipeline achieves better, i.e., lower, spherical harmonics
coefficients l2 loss and irradiance map l2 loss, than recently proposed works
by Song et al. [23] and Garon et al. [13] as shown in Table 1.

– When comparing to ground truth, the 3D objects rendered by our approach
have good rendering results as shown in Figure 6.

– Directly training from point cloud instead of from projected point cloud
achieved better SHC l2 and irradiance map l2 losses. Further, reducing the
number of sampled points slightly impacted the losses, e.g., by up to 5% for
spherical harmonics coefficients l2 loss, but proportionally reduced multiply
accumulates (MACs).

– Our proposed PointAR has comparable model size and MACs when com-
pared to mobile-specific DNNs, indicating its ability to efficiently run on
commodity mobile devices.
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Table 1. Comparison to state-of-the-art networks. Our approach PointAR

(highlighted in green) achieved the lowest loss for both spherical harmonics coefficients
l2 and irradiance map l2, demonstrating the efficiency of our point cloud transfor-
mation and directly learning from point clouds for indoor lighting estimation. Note
Song et al. [23] used traditional diffuse convolution to generate irradiance map and did
not use spherical harmonics coefficients.

Method SHC l2 Loss Irradiance Map l2 Loss

Song et al. [23] N/A 0.619
Garon et al. [13] 1.10 (± 0.1) 0.63 (± 0.03)
PointAR (Ours) 0.633 (± 0.03) 0.433 (± 0.02)

Comparisons to state-of-the-art. To evaluate the lighting estimation perfor-
mance of PointAR, we preformed quantitative comparison experiments with
two state-of-the-art end-to-end deep learning model architectures: (i) Song et
al. [23]; and (ii) Garon et al. [13]. Table 1 shows the comparison on two loss
metrics.

Song et al. [23] estimates the irradiance by using a neural network pipeline
that decomposes the lighting estimation task into four sub-tasks: (i) estimate
geometry, (ii) observation warp, (iii) LDR completion, and (iv) HDR illumina-
tion. As we used the same dataset as Song et al., we obtained the corresponding
irradiance map l2 loss from the paper. However, since Song et al. used the tra-
ditional diffuse convolution to obtain irradiance map, the paper did not include
spherical harmonics coefficients l2 loss. Garon et al. [13] estimates the spheri-
cal harmonics coefficients represented lighting and a locale pixel coordinate of a
given input image by training a two branches convolutional neural network with
end-to-end supervision. We reproduced the network architecture and trained on
the same dataset as ours without point clouds and relation E.

Table 1 shows that our PointAR achieved 31.3% and 30% lower irradi-
ance map l2 loss compared to Garon et al. [13] and Song et al. [23], respectively.
We attribute such improvement to PointAR’s ability to handle spatially vari-
ant lighting with effective point cloud transformation. Further, the slight im-
provement (1.7%) on irradiance map l2 loss achieved by Song et al. [23] over
Garon et al. [13] is likely due to the use of depth and geometry information by
Song et al. [23].

Comparisons to variants. To understand the impact of neural network archi-
tecture on the lighting estimation, we further conducted two experiments that
consist of (i) learning from projected point cloud and (ii) learning from point
clouds with different number of points. Table 2 and Table 3 compare the model
accuracy and complexity, respectively.

In the first experiment, we study the learning accuracy with two different
data representations, i.e., projected point cloud and point cloud, of 3D environ-
ment. We compare learning accuracy between learning from point cloud directly
with PointConv and learning projected point cloud panorama with ResNet50,
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Table 2. Comparison to variants. Row 1 and 2 compare the lighting estimation
accuracy with two input formats: point cloud and projected point cloud panorama
image. Row 3 to 6 compare the lighting estimation accuracy with different input
point cloud downsampling level.

Method SHC l2 Loss Irradiance Map l2 Loss

Projected Point Cloud + ResNet50 0.781 (± 0.015) 0.535 (± 0.02)
PointAR (Point Cloud + PointConv) 0.633 (± 0.03) 0.433 (± 0.02)

512 points (40%) 0.668 (± 0.02) 0.479 (± 0.02)
768 points (60%) 0.660 (± 0.02) 0.465 (± 0.02)

1024 points (80%) 0.658 (± 0.03) 0.441 (± 0.02)
1280 points (PointAR) 0.633 (± 0.03) 0.433 (± 0.02)

which was used in Song et al. [23]. In this experiment, we observed that learn-
ing from projected point cloud result in lower accuracy (i.e., higher l2 losses)
despite that ResNet50 requires an order of magnitude more parameters (i.e.,
memory) and MACs (i.e., computational requirements) than PointConv. The
accuracy difference is most likely due to the need to handle image distortion
that was caused by point cloud projection. Even though there might be other
more suitable convolution kernels than the one used in ResNet50 for handing
image distortion, the computational complexity still makes them infeasible to
directly run on mobile phones. In summary, our experiment shows that learning
lighting estimation from point cloud is a better way than traditional image-based
learning.

In the second experiment, we evaluate the performance difference on a serial
of down sampled point clouds at 40%, 60%, 80% of PointAR. From Table 3, we
observe that the multiply accumulates (MACs) decreases proportionally to the
number of sampled points, while parameters remain the same. This is because
the total parameters of convolution layers in PointConv block do not change
based on input data size, while the number of MACs depends on input size.
Despite the size decrease during down sampling, we do not observe noticeable
prediction accuracy decrease compared to PointAR, as shown in Table 2. An
additional benefit of downsampled point cloud is the training speed, as less GPU
memory is needed for the model and more can be used for loading input data.
In summary, our results suggest the potential and benefit for carefully choosing
the number of sampled points to trade-off goals such as training time, inference
time, and inference accuracy.

Complexity comparisons. To demonstrate the efficiency of our point cloud
based lighting estimation for real-time AR applications on mobile phones, we
compare the resource requirements of PointAR to state-of-the-art mobile neu-
ral network architectures [16,17]. Table 3 compares the number of parameters
and the computational complexity of different deep learning models. We chose
these two metrics as a proxy to the inference time because they were demon-
strated to be important factors [24]. Compared to the popular mobile-oriented
models MobileNet [16], our PointAR only needs about 33.5% memory and
1.39X of multiple accumulates (MACs) operations. Further, as MobileNet was
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Table 3. Comparison of model complexities. Row 1 to 4 compare resource com-
plexity of ResNet50 (which is used as one component in Song et al. [23]) and efficient
mobile-oriented DNNs to that of PointAR. Row 5 to 8 compare the complexity with
different input point cloud downsampling level.

Model Parameters(M) MACs(M)

ResNet50 [15] 25.56 4120
MobileNet v1 1.0 224 [16] 4.24 569

SqueezeNet 1 0 [17] 1.25 830
PointAR (Ours) 1.42 790

512 points (40%) 1.42 320
768 points (60%) 1.42 470

1024 points (80%) 1.42 630
1280 points (PointAR) 1.42 790

shown to produce inference results in less than 10ms [3], it indicates PointAR’s
potential to deliver real-time performance. Similar observations can be made
when comparing to another mobile-oriented model SqueezeNet [17].

6 Related Work

Estimating lighting has been a long-standing challenge in both computer vision
and computer graphics. A large body of work [12,23,11,14,29] has been pro-
posed to address various challenges in lighting estimation and more recently for
enabling real-time AR on commodity mobile devices [13].

Learning-based approaches. Recent works all formulated the indoor light-
ing estimation function using end-to-end neural networks [12,23,13]. Gardner et
al. trained on an image dataset that does not contain depth information and
their model only outputs one estimate for one image [12]. Consequently, their
model lacks the ability to handle spatially varying lighting information. Simi-
larly, Cheng et al. [8] proposed to learn a single lighting estimate in the form of
spherical harmonics coefficients for an image by leveraging both the front and
rear cameras of a mobile device. In contrast, Gardner et al. [12] proposed a net-
work with a global and a local branches for estimating spatially-varying lighting
information. Their model is trained on indoor RGB images and is demonstrated
to generate lighting estimation quickly. However, the model still took about
20ms to run on a mobile GPU card and might not work for older mobile devices.
Song et al. [23] proposed a fully differential network that consists of four compo-
nents for learning respective subtasks, e.g., 3D geometric structure of the scene.
Although it was shown to work well for spatially-varying lighting, this network
is too complex to run on most of the mobile devices.

Despite the differences in the neural network architectures, these works all
formulated the learning problem as one directly from a single image. Con-
sequently, the resulting neural networks have high computational complexities
and therefore might not be suitable to run on resource-constraint mobile devices,
e.g., devices without GPU and powered by battery. In contrast, our PointAR
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not only can estimate lighting for a given locale, but can do so quickly by di-
rectly learning from the transformed point cloud. Further, our work generated a
dataset of which each scene contains a dense set of observations in the form of
(point cloud, spherical harmonics coefficients).

Mobile AR. Today we are observing an increasingly rich support for de-
veloping AR applications for commodity Mobile devices such as by Google’s
ARCore and Apple’s ARKit [2,5]. These development toolkits currently provide
basic support for building the end-to-end AR pipeline and lower the barriers for
AR applications development. To achieve seamless AR experience, blending vir-
tual and physical worlds, there are still a number of challenges that are particular
to mobile devices. For example, it is important detect and track the positions of
physical objects so as to better overlay the virtual 3D objects [19,25,4]. Apichart-
trisorn et al. [4] proposed a framework that achieves energy-efficiency in object
detection and tracking by only using DNNs as needed, and leverages lightweight
tracking method opportunistically. Our work shares similar performance goals,
i.e., being able to run AR tasks on mobile devices, and design philosophy, i.e.,
by reducing the reliance on complex DNNs. Unlike prior studies, our work also
focuses on rethinking and redesigning the lighting estimation, an important AR
task for realistic rendering, by being mobile-aware from the outset.

7 Conclusion and Future Work

In this work, we described a hybrid lighting estimation pipeline that consists of an
efficient mathematical model and a compact deep learning model for predicting
lighting information at 2D locations for indoor scenes.

Our current focus is to improve the lighting estimation effect for each camera
view captured by mobile devices within the real-time budgets. However, mobile
AR applications might encounter heterogeneous resources, e.g., lack of mobile
GPU support, and application scenarios, e.g., 60fps instead of 30fps, that might
require further optimizations to meet the rigorous time budget. As part of the
future work, we will explore the temporal and spatial correlation of captured
image views as well as built-in mobile sensors for further improving the time
efficiency of lighting estimation in an energy-aware manner.

Acknowledgement This work was funded in part by NSF Grants # 1755659
and #1815619.
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