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Abstract—This paper presents a novel framework for
training convolutional neural networks (CNNs) to quantify
the impact of gradual and abrupt uncertainties in the form of
adversarial attacks. Uncertainty quantification is achieved by
combining the CNN with a Gaussian process (GP) classifier
algorithm. The variance of the GP quantifies the impact on
the uncertainties and especially their effect on the object
classification tasks. Learning from uncertainty provides the
proposed CNN-GP framework with flexibility, reliability and
robustness to adversarial attacks. The proposed approach
includes training the network under noisy conditions. This is
accomplished by comparing predictions with classification
labels via the Kullback-Leibler divergence, Wasserstein
distance and maximum correntropy. The network
performance is tested on the classical MNIST, Fashion-
MNIST, CIFAR10 and CIFAR 100 datasets. Further tests on
robustness to both black-box and white-box attacks are also
carried out for MNIST. The results show that the testing
accuracy improves for networks that backpropogate
uncertainty as compared to methods that do not quantify the
impact of uncertainties. A comparison with a state-of-art
Monte Carlo dropout method is also presented and the
outperformance of the CNN-GP framework with respect to
reliability and computational efficiency is demonstrated.

Index Terms— adversarial robustness, artificial intelligence,
convolutional neural networks, machine learning.

1. INTRODUCTION

Robustness in artificial intelligence (AI) is related to
reliability and explainability, especially when deep neural
networks (DNNs) are applied in uncertain environments [1].
DNNs operate by sequentially learning complex
representations by layers of linear computations followed by
non-linear transformations. This form of hierarchical learning
has since the previous decade of Al witnessed a giant leap in
accuracy, with systems achieving near human-level
performance on tasks such as image classification [2]. The
first half of this decade saw a surge of machine learning
algorithms which encouraged the development of DNNs that
not only predict but also quantify the impact of uncertainties
over their predictions [3]. Although it is difficult to foresee
what the next big leap of Al is going to be, there is now a
growing motivation towards developing Al systems that are
robust to adversarial attacks [4].

Developing robust Al systems entails plenty of challenges.
These include tackling human user errors, misspecified goals,
incorrect models and unmodeled phenomena [5]. Adversarial
attacks can be of two types: black box or white box [6]. These
attacks challenge the network’s learned capabilities. Black-
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box attacks only have access to the inputs of the network.
White-box attacks [6] on the other hand, have full access to
the DNN architecture; the inputs, outputs and the gradient
information in each of the nodes. Misspecified goals often
arise because the original intended Al system design goals do
not meet the end-user goals. The reverse of this situation
results in incorrect models. Another reason for incorrect
model occurrence is also the lack of representation of model
uncertainty. If a model is more uncertain at solving the
problem, likely it is not suitable for the task. Model
uncertainty is also referred to as epistemic uncertainty [7].

Finally, unmolded phenomenon challenges arise because
not all Al systems can incorporate prior knowledge of
everything in the environment. This phenomenon is also
known as aleatoric uncertainty and is present within the
inputs of the Al system [7]. Accounting for uncertainty in Al
systems will also improve its explainability since it allows the
model to explicate its predictions. This is also essential for
critical decision-making systems. Previous approaches to
building robust Al systems rarely considered such aspects.
This is the research challenge that this paper focuses on.

This paper explores the possibility of building a robust Al
system with only two convolutional layers and validates it on
both white and black-box attacks. The tests are carried on
relatively simple datasets MNIST [8] and FMNIST [9], as
well as on complex datasets CIFAR10 [10] and on large
dataset CIFAR100 [10]. The main idea is to use similarity
cost as a tool to backpropagate the uncertainty information.
This has a regularization effect on the loss functions. The
entire problem of learning from uncertainty is casted as an
example of backpropagation. The proposed framework trains
a simple convolutional neural network (CNN) [11] feature
extractor with a Gaussian process (GP) classifier [12] at a
higher level. The GP is introduced for two purposes, one to
characterize uncertainty and second to use the features from
CNN for classifying the input images. The uncertainty is
characterized by the variance of the GP. The CNN model
transforms large complex input spaces to simple, low
dimensional features for the GP to interpret.

The CNN-GP training is carried out in two stages:
backpropagation of epistemic uncertainty and then of
aleatoric uncertainty. The validation results demonstrate that
these two stages influence each other and cannot achieve
good results as isolated training materials. The main
contributions of this work are highlighted below.

* A CNN-GP framework is proposed for classification and
uncertainty quantification. The framework performance is
validated both with gradual and abrupt uncertainties (random
attacks in the data) and is compared with a state-of-the-art
approach with dropout
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* The framework has been extensively tested on four types
of datasets with increasing complexity; MNIST, FMNIST,
CIFARI10 and CIFAR100. The framework demonstrates that
backpropagation of uncertainty is vital for developing CNNs
and DNNs with strong robustness against black-box and
white-box adversarial attacks

* The uncertainty quantification is based on the GP
variance. The analysis charts that show reduced uncertainty
in predictions. Precision-recall and receiver operating
characteristics (ROC) curves characterize the accuracy of the
results

* The proposed framework provides reliable uncertainty
estimates and has an increased computational efficiency
compared with a state-of-art Monte Carlo dropout approach
[23]. The validation is performed with increasing strength of
the black-box and white-box attacks

* The paper shows that explainable Al is linked to robust
Al such that robustness in Al can be achieved by accounting
for uncertainty measures in both the model and datasets

The rest of the paper is organized as follows. Section II
gives a brief overview of recent methods from the fields of
meta-learning and adversarial learning in deep learning.
Section III presents the proposed framework. Followed by
Section IV on robustness analysis and tests on the accuracy
of the framework. These tests include black-box and white-
box attacks on four different datasets varying in complexity
and size. The propagated uncertainty is analyzed with the GP
variance, precision-recall and ROC curves. The variance
information is further tested with the increase of attack
strength. Section V presents discussion of the results and
finally ends with the section on future works in Section VI.

II. RELATED WORKS

Learning from uncertainty is an actively developing field
in Bayesian deep learning. It is practised in many forms and
under several learning monikers, of the most popular ones
being meta-learning [13] and adversarial learning [ 14]. Meta-
learning treatment of uncertainty-based learning consists of
recognizing the fact that learning from uncertainty is a “meta”
step operating on top of the main learning step (i.e.
backpropagation of gradients). On the other hand, adversarial
learning treats uncertainty as means for generating attacks
that may be black or white-box. There is a plethora of
techniques in both regimes [ 15] as well as defence strategies.
However, there are a few that leverage uncertainty. Amongst
these are the works of [1], which focus on the detection of
attacks, while [16] and [17] focus more on their mitigation.
There have even been some methods that merged the two
fields. For example, in [18], a generative adversarial network
(GAN) based discrimination is used to backpropagate
epistemic uncertainty. In this section, we study the literature
and compare the latest techniques to our approach.

A. Comparison of Current Approaches

Uncertainty related research in meta-learning is usually
adopted in semi-supervised tasks. These tasks entail learning
from a dataset with limited labels. This is also carried out in
noisy, uncertain conditions. Examples of this in literature can
be seen practised in [19] and [20]. The main difference in the
individual approaches is that [19] adopts a global averaging

scheme on DNN weights as a means of modelling noise in the
labels, while [20] generates an external noise model and a
student-teacher learning scheme to teach their network to be
consistent in predictions. Methods that involve external noise
generation do not require alteration of their training
architecture. They are also easy to scale.

Research in the field of adversarial learning, [16] and [17],
aim to reduce the effects of adversarial attacks. Major
differences between the approaches are that [17] uses a GAN
to train their main network to resist attacks while [21] and
[22] uses Bayesian methods. Specifically, [21] uses softmax
variance to account for uncertainty while [22] uses Monte
Carlo (MC) dropout. MC dropout quantifies uncertainty by
sampling via multiple forward passes and then computing the
variance from these samples [23]. GAN methods, on the other
hand, don’t discriminate between black-box or white-box
attacks. Therefore, such methods are flexible and applicable
to any form of classifier. MC dropout, on the other hand, can
scale well with network architecture but at the price of
computational cost. Additionally, [21] shows that softmax
variance is an approximation to the measure of mutual
information. Comparing this with predictive entropy obtained
from MC dropout, it is proved by [21] that mutual
information is more informative at detecting attacks. Here,
information criteria characterize how well the uncertainty is
represented and its sensitivity to adversarial attacks.

The drawbacks of these approaches [16], [17] are that
GAN based methods are difficult to train since they involve
optimizing of two separate DNN models (discriminator and
generator). The MC dropout is relatively slow at uncertainty
computation and the quality of the uncertainty measure is
dependent on the sampling rate. Another important factor is
the issue of calibration. Both GAN and MC dropout methods
have poorly calibrated representation of uncertainty as
opposed to the better calibrated softmax variance in [21].

B. Comparison with Proposed Methods

The aforementioned techniques [16], [17] and [21] provide
sound solutions in uncertainty-based robustness. However,
they only consider the forward propagation of uncertainty. In
this work, we confirm the theory posed by [1] and improve
the methods by both [16] and [18] which are indirectly
accomplishing backpropagation of uncertainty. The
framework, proposed in this paper, is faster than [16] and [18]
and less computationally expensive. This is because GANs
require training two separate networks, and the MC dropout
methods require long sampling time. The proposed
framework uses a Gaussian process classifier that allows fast
quantification of uncertainties. By backpropagating the
uncertainty information, it is possible to reduce the
uncertainty in the predictions as well as improve the
sensitivity of the framework to adversarial attack strength.

III. PROPOSED FRAMEWORK

A. Notations

This subsection describes the main notations (in Table I) used
in this paper and especially in the CNN-GP framework,
described in Section IV. The next subsections introduce both
the CNN and the GP parts of our proposed framework.
Dealing separately their formal definitions and descriptions.



B. Convolutional Neural Networks

CNNs are a specific type of neural networks that learn
features from images in a hierarchical fashion [11]. The main
idea is to use convolutional kernels that adapt to the input
image. Given a loss function, learning in CNNss is performed
by differentiating the outputs w.r.t the loss function and
updating the weights of each kernel by adding on the scaled
value (via learning rate y) of this gradient.

The proposed framework combines a CNN feature
extractor and a GP after it, in one architecture (Figure 1). The
CNN has two convolution layers of 32 and 64 filters of 3x3
kernel size. The padding size of convolutional layers varies.
This is because MNIST and FMNIST datasets share the same
input size of 28x28x1 as opposed to CIFAR10 and
CIFARI100 i.e. 32x32x3. For MNIST and FMNIST padding
size is set to 2 and 1 for CIFAR10 and CIFAR100. A max-
pooling layer is introduced between the second layer and the
final fully-connected layer. Pooling layers downsample the
features and dropout layers are used as a regularizer. The fully
connected layer, on the other hand, flattens the features to a
128x10 (for MNIST and FMNIST, 128x16 for CIFAR10, 128
x 100 for CIFAR100) feature vector. These features are then
fed to the GP half of the framework discussed in the next sub-
section.

C. Gaussian Process

A Gaussian Process is a Bayesian nonparametric approach
[12] which can represent highly nonlinear phenomena. The
GP approach models a distribution over functions. Learning
a GP is similar to learning in CNNs, in the sense that it
involves a kernel learning process. However, the choice of
the kernel and respectively the likelihood function is
problem-dependent. In our framework, we use a squared
exponential kernel for the kernel choice and a softmax
likelihood for squashing the posterior mean of the output
distribution to probabilities. For the choice of the GP model,
we use Massively Scalable Gaussian Processes (MSGP).

MSGPs are the preferred methods for many applications,
thanks to their scalability. MSGPs were introduced in [24]
and have celebrated achievements in sparse GP models with
inducing points. The computational load of computing the
inverse of the covariance matrix is reduced by using an
eigendecomposition of the covariance matrix to a series of
Toeplitz matrices.

Within the architecture, the output from the GP is a
categorical distribution, from which a 1xN vector (N is the
batch size) is then estimated via maximum likelihood.
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Fig. 1. The GP-CNN framework at test time. It consists of a CNN base
feature extractor with a GP after it.

TABLE I: NOTATIONS AND DEFINITIONS

Notation Meaning

M Total number of episodes

Y Learning rate of the base CNN feature extractor with GP classifier
K Number of neighbors sampled for synthetic image generation

N Batch size

B Kullback-Leibler divergence scaling factor

m Episode number

A Lengthscale parameters of the GP classifier

A The amplitude for the squared exponential kernel

U; Variational free parameters for the i*" batch of data

q(u;) Variational likelihood based on the i*" batch of data

p(u;) Expected real likelihood based on the i" batch of data

0N Weights of the CNN feature extractor for the m*"episode

olp Weights of the GP classifier for the m™episode

X; Data sample from the i**batch of data

Yi Label sample from the i* batch of data

X 4D-data tensor holding the data samples

Y 4D-data tensor holding the labels samples

D Dataset ordered pair holding X and Y

Z Number of units passed as features from the final layer of the CNN
Jl-z Epistemic variance / uncertainty for the i™ batch

'\iz Aleatoric variance / uncertainty for the i™ batch

6x; The difference between the i*" data point and the GP prediction
i The Gaussian process function

fENN The convolutional neural network function

’\L-CN N Softmax prediction from the CNN base feature extractor

PENN Prediction from the z™ node from the CNN base feature extractor
Lonax Maximum likelihood loss

LGP Similarity loss penalizing output from the GP classifier and labels

IV. A CONVOLUTIONAL NEURAL NETWORKS COMBINED
WITH A GAUSSIAN PROCESS AND LOSS FUNCTIONS FOR
UNCERTAINTY QUANTIFICATION

A. Training Algorithm for the Proposed Framework

The training algorithm for the proposed framework
consists of two halves a) backpropagation of epistemic
uncertainty and b) backpropagation of aleatoric uncertainty.
Both are carried out independently. In step a), the prediction
from the GP classifier is compared with the labels using the
maximum likelihood L£,,,, . The error obtained is then
backpropagated by the parameters of the GP (the lengthscale
A and amplitude oz) and the CNN (convolutional layers). For
inferring, we use the approximated variational inference since
categorical likelihood is used for the classification.

In step b), synthetic training samples are created. This step
is inspired by the work of [20] where randomly sampled mini-
batches are ranked. This is proceeded by the random selection
stage where the top k nearest neighbors of the mini-batch
samples are selected to replace the original samples. These
synthetic samples are then fed to both the CNN and GP.
Similarly, the loss function L¢F is used to backpropagate
aleatoric uncertainty by encouraging GP classifier to remain
consistent in its predictions. These losses encourage the
development of noise-tolerant weights and also have a
regularization effect. Three functions characterize similarity
losses: a) the Kullback-Leibler divergence (KLD), b) the
Wasserstein distance and ¢) the maximum correntropy (MC)
loss function. We formulate the losses in the next sub-section



and provide the full algorithm description below. The
notations that are used in the algorithm section are also
provided in Section IIl. Algorithm 1 presented below
summarizes the implemented CNN and GP framework for
characterizing the uncertainties. Different loss functions are
used and these are described in Section I'V.

All experiments in our paper use the following default arguments; batch
size=16, episodes=100, learning rate of GP=0.1, neighbors sampling
no.=10, KLD scaling factor = 1

Require: M: episodes, y: learning rate (GP), k: neighbors sampling no., N:
batch size, f: KLD scaling factor
DO: initialization of weights: 67}y, 00p
for m=0,...,M do

Sample mini batch (x;,y;), of length N from dataset D = {X, Y} where
X and Y are 4-D tensors holding images and labels from the entire dataset,

where x; € R"*WX¢ (image height, width and channel) and y; € R**C (C is
total number of classes).

BEGIN backpropagation of epistemic uncertainty o

do — forward pass of CNN base represented as a function fMV : x; —
z;, where z; € R?*C and Z is the number of hidden units’ feature outputs
passed from final fully-connected layer of CNN base feature extractor

do — forward pass of GP f % (z;) to obtain the posterior likelihood
pil £ (25 i, 07) = N (u, K)
where y; represents the mean of the GP and K; is the kernel (i.e. squared

L (ﬂ)] and V' represents the Gaussian

exponential K; = A exp [_E A

distribution

Compute the expected log likelihood to obtain max likelihood loss :
N
Lnax = 2.,y Eq [og(0 il £° (x); i, 07) — BDyu(q(wy) | p(:))]

Compute gradients of loss w.r.t weights of CNN base feature extractor
oL oL
and GP ; &% —max
90gp " 90cnN
Update the parameters of GP and CNN feature extractor for m*

e om 9Lmax mi1 _ gm _ o Lmax
episode: O¢Ny < 00w —V Jpm — - Lmax 066 < 06p =V S - Lomax
CNN GP

end

BEGIN backpropagation of aleatoric uncertainty 67

Make synthetic images via k neighbours to get X;

do — forward pass of the CNN base feature extractor fVV: £, - 2;

do — forward pass of the GP f¢F : 2, - p(¥; | f¢F(2); f;,67) =
N (@ Kz)

Calculate similarity loss LF between the labels y; and the GP
classifier posterior mean fi; from the choice of KLD, Wasserstein and
maximum correntropy

_yaLGP GP
a0, ”

Update the new parameters of 2% GP: 8% « 071

Update parameters of CNN feature extractor: 0%y < 0%y —
aLsP LGP
268y

end — End training loop

B. Loss Functions

Consider two sets of probability mass functions p(x) and
q(x) that take a data point x. Finding the shift of mass from
one set to the other requires calculating the discrepancy
between the two. The Kullback-Leibler divergence [25] Dy,
shown in (1), represents this discrepancy as a measure of
entropy. It quantifies the shift of probability mass by taking
the difference of entropy across the distributions.

The Wasserstein distance [26] solves the problem from the
point of view of optimal transport. These problems are
divided into two parts: assignment and cost. The assignment
strategy determines how much mass is moved across the
supports of the distributions. The cost measures the effort
required for the assignment strategy. Both are represented as
matrices P and C, respectively. The total cost can be obtained
by taking the Frobenius inner product of the two (i.e. {C, P)).
The objective then is to obtain the minimum of the product
and subtract from the regularized entropy in (2). Here, 1 is
denoted as the regularization term. For our experiments, we
choose the default value for 7 = 0.1 and a quadratic
distance-based cost function as an approximation to the
primal Wasserstein distance formulation [26].

Finally, the maximum correntropy loss function [27] has
also been implemented in the backpropagation step. The
maximum correntropy loss function uses a kernel to compute
the difference across two variables instead of using entropy-
based methods such as in KLD and Wasserstein functions.
The formulation can be seen in equation (3). The Gaussian
kernel is a popular one: ky (p(x) —q(x))? =

_ 2
7 ! exp (— C) qz(x)) ) , where o2 represents the variance
2mo 20
of the distribution. The considered cost functions are given

below.

LKL = Do (p || q)—Zp(x) logq(x) + Zp(x) logp(x) (1)

LWASS = min(C,P) — 1 Z p(x) logp(x) @)
rmMe — Vo_(p(x)’q(x)) = ]E[kg(p(x) - q(x))]

— 1 N k 3

-5 Z () — q(x)) ©)

The term V refers to the MC across two masses p(x) and
q(x) where E refers to the expected value. This measure has
been proven to be less sensitive to outliers. This is found in
many second-order statistics measures such as cross-entropy.
It is heavily studied in outlier suppression [27] and is ideally
suitable for robust algorithm design. The next Section V
presents results and analyses them.

V. PERFORMANCE VALIDATION

A. Validation Accuracy, Precision-Recall and ROC
Curves

Before the experiments, the CNN-GP classifier is trained
with the three different similarity losses. The purpose was to
observe the accuracy as a means of performance evaluation.
The average results were calculated by dividing the averaged
correct samples by the total number of samples. Experiments
were run ten times and accuracy values were averaged. The
standard deviation was + 2%. Then, the system was disrupted
using black-box attacks of two types: a) an additive white
Gaussian noise (AWGN) and b) motion blur (MB). The
results were compared with the system version where no
similarity losses were used (i.e. without regularization).
These results are presented in Table II. Next, the precision-
recall and the ROC results characterize the accuracy of the
proposed CNN-GP framework. These results are plotted for
each dataset side to side in Figure 2. The average precision
(AP) and ROC area are two quantities that are obtained by



averaging the individual curve entities. They help in grouping
entities that give similar results and make it easy to read the
curves individually.
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FMNIST-Precision Recall

TABLE II: PERFORMANCE VALIDATION BASED ON TEST ACCURACY FOR
EACH ATTACK TYPE ON THREE DATASET TYPE

MNIST No Attack (%) AWGN (%) ?f/;‘“’“ Blur
No regularization 88 51 65
KLD 97 (86) 89 (75) 72 (60)
WASS 86 (35) 77 (11) 70 (13)
MC 97 (40) 78 (21) 75 (33)
Fashion-MNIST

No regularization 85 32 12
KLD 88 53 76
WASS 81 56 72

MC 89 35 80
CIFARI0

No regularization 67 10 11
KLD 73 26 38
WASS 40 28 28

MC 65 25 38
CIFAR100

No regularization 55 10 8

KLD 60 10 12
WASS 35 10 10

MC 61 8 8
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Fig. 2. The respective precision-recall and ROC curves for GPCNN
framework trained on MNIST, FMNIST and CIFAR and on three loss
functions; KLD, Wasserstein distance and maximum correntropy. Each plot
considers three black-box attack configurations; no attack, a gaussian noise
and motion blurring. A) and B) show precision-recall and ROC curves for
MNIST dataset, C) and D) for FMNIST and E) and F) for CIFAR-10



B. Uncertainty Analysis

To further test the hypothesis that reducing uncertainty
allows the framework to be more reliable, we considered the
four cases and analyzed the evolution of uncertainty
separately. First, only the MNIST data was considered. The
output mean predictions from the GP classifier and the
standard deviation are plotted as bar graphs. This is shown in
Figure 4. Every time the label is correct, the appropriate
variance is computed from the likelihood. Blue bars represent
the variance of correct samples and yellow for the incorrect.
This is carried for each of the samples in the test set (10000
MNIST images).

The proposed framework is tested with three examples. One
on clean MNIST images (column 1), the other two on MNIST
corrupted by AWGN (column 2) and MB (column 3). The
results show that the more the number of blue bars, the more
accurate the model is, the lower the height of the blue or
yellow bars, the more reliable the model is. If the predictions
have higher yellow bars than blue, it is more susceptible to
black-box attacks.

C. Variance Sensitivity to Attack Strength

To test the sensitivity of the GP classifier to both black-box
and white-box, we consider two cases as shown in Figure 3A
and 3B. In one, we consider the case of white Gaussian noise
to perturb input images from MNIST dataset. The input
images are fed to GP classifier and the output variance from
the classifier is obtained. We plot these in Figure 3A for
standard deviations o,y in range 0.0 to 2.0.

We then test the system with the white-box attack fast
gradient sign method (FGSM) [28]. This particular method
works by computing the gradients of the output from the
CNN feature extractor with respect to the image through a
sign function to generate a new image that is imperceptible to
the human eye. However, can easily mislead the system’s
representation.

The strength of the attack is denoted by € that increases the
level of perturbation. The highlighted region in Figure 4B
denotes the vital change of state in the system that can alert
the system of the attack. This serves as a region where a high
variance can lead to early detection of the attack before its
intensity builds overtime. Beyond this region, any change in
variance would not be beneficial for a safety-critical system.

The proposed CNN-GP approach is also compared with the
standard MC dropout method [23] and results are presented
in Figure 3B. The MC dropout results are obtained by
isolating the pretrained CNN feature extractor and running
forward passes 100 times. From this the variance is computed
and later averaged across the samples.
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Fig. 3. Output variance computed from the GP classifier compared with the
strength of both the additive white Gaussian noise in A), similarly for MC
dropout in B) and fast-gradient sign method in C
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Fig. 4. Output variance plots from GP classifier for MNIST dataset for four configurations. The first row considers the case of model
trained without any regularization from similariy losses, the second row is for GP classifier trained on KLD similarity loss, third
row for Wasserstein distance and fourth for maximum correntropy. Each of the column represent the black-box attack types, the first
column is for clean MNIST images, second column for white gaussian noise and the third for motion blurring



D. Computational Time

The computational time of the proposed framework CNN-
GP is compared with the MC dropout method [23]. Both of
the models are made to output variance information on simple
MNIST input images. The sampling rate for MC dropout
method is set to 100. The respective run-time for each is then
computed on the University of Sheffield provided GPU
cluster (NVIDIA K&80). The testing time is measured in
minutes and the results are tabulated in Table I11.

TABLE III: RUN TIME ANALYSIS FOR PROPOSED MODEL CNN-GP AND MC

DRroprouT
Run Time
Model Type (min)
CNN-GP 1.18
MC dropout 7.27

VI. DISCUSSION

Considering the results from Table II, we see that when
there is no attack, the CNN-GP configurations that
backpropagate both epistemic and aleatoric uncertainties,
excluding the case with the Wasserstein metric, perform
better than without backpropagation (no regularization).
Furthermore, backpropagation of epistemic uncertainty
influences the backpropagation of aleatoric uncertainty since
the networks perform much worse when each of the processes
is done separately (bracketed accuracies represent aleatoric
only). This confirms that both stages of the training are
necessary for reliable results. This is further demonstrated by
uncertainty charts in Figure 4 where the uncertainty measures
of KLD (row 2) and MC (row 4) have lower bar heights for
incorrect sample variance (yellow bars) than those for the
cases that backpropagates epistemic uncertainty only (row 1).

We further see that the prediction results with the
Wasserstein metric are comparable with the other data,
regardless of the attack when tested on the complex CIFAR10
dataset (40%), it performs rather poorly than expected. This
agrees with the hypothesis of [29] which claims that the
Wasserstein metric yields biased gradients that have a higher
chance in leading to a false local minimum than the KLD
during optimization. This may also explain why KLD results
on the backpropagation of aleatoric uncertainty are higher
(75% and 60%) than the Wasserstein metric (11% and 13%).

This result may be due to the fact that an approximated
version of the Wasserstein metric is implemented. An
approximate implementation is performed to avoid the
complexity and intractability of computing the infimum of
double integrals in the primal version [26]. This is further
supported by the precision-recall diagram for the Wasserstein
metric for all attacks which shows that the precision for these
methods slowly drop when the dataset complexity is
increased (from MNIST to CIFAR10). The downward shift
of blue, black and yellow dashed lines in Figure 2 visualizes
these drops.

In order to characterize the robustness of the approaches,
the recall function is calculated. Precision is heavily affected
by the uncertainties and impacts the results of all methods.
However, the approaches with the MC dropout and KLD
maintain a good level of precision despite having poor recalls
(e.g. in AWGN attacks for MC and KLD). Hence, it is

possible to diagnose the recall aspect as a measure of
sensitivity to the attack.

Then, considering the MC and KLD results, it is evident
that using these losses results in high accuracies in motion
blurring when compared with the Wasserstein metric results.
The performances of the MC and KLD are similar. This is
further evident in Figure 4 where uncertainty charts for both
KLD and MC have a greater number of correct sample
variance (blue) as compared to those for the Wasserstein
metric (row 3). For MC, this was expected since this type of
loss is ideal for robust algorithm design. This is further
supported in Figure 2 where the precision-recall for both
KLD and MC for motion blurring (MB) remain the highest
(solid blue, green and yellow lines) as the dataset complexity
increases (MNIST to CIFAR10).

Regarding the variance sensitivity to attack strength, we can
see from Figures 3A and 3C that CNN-GP trained on the MC
similarity loss is more responsive than both KLD as well as
the no regularization configuration. This also demonstrates
that the MC is suitable for robust algorithm design. The
graphs show that both the MC and KLD functions, start with
higher confidence in predictions (i.e. low variance) before the
attack strength is increased when compared to the case
without regularization. This confirms both our hypothesis and
our results in Figure 4 that backpropagation in the CNN-GP
framework reduces the impact of uncertainties and attacks on
the classification results and characterize the model’s
confidence. For the MC dropout method, it is seen from both
Figure 3B and 3C that this model is not representing the
uncertainty estimates well when compared with the CNN
model. Hence, it is not reliable for uncertainty quantification.
The computational complexity of the compared approaches is
characterized by Table III which shows that the MC dropout
method is much slower than the CNN-GP framework.

VIL

This paper proposes a CNN-GP framework that can
characterize the impact of uncertainties on the classification
results. Three loss functions — the Kulback-Leibler
divergence, the Wasserstein distance and the maximum
correntropy were embedded in the backpropagation step of
the CNN-GP and their performance was compared. The GP
layer serves for quantifying the uncertainty, based on the GP
variance. A small variance corresponds to a small
uncertainty, a high variance means high uncertainty and
hence means that the classification result cannot be trusted.
The proposed CNN-GP framework is compared with a Monte
Carlo dropout and it is shown that the CNN-GP is more
efficient than the MC dropout method, especially with respect
to computational time. The results show that the models
become robust and reliable and can cope with attacks, after
learning from uncertainty. The main limitation of the
framework is that it is not able to get high accuracies on large
and complex datasets e.g. CIFAR10 and CIFAR100. That is
pointing to architecture issues more than the algorithm since
the state-of-the-art architecture for CIFAR10 uses up to more
than 15 convolutional layers [30]. In future, we will focus on
training large complex networks. Also, consider the
possibility of feeding the CNN feature extractor as a
covariance kernel to the GP. This may be computationally
more feasible and may also improve the uncertainty
representation in the GP since it will give the GP a holistic
view of the impact of the dataset on the performance of the
CNN. This work also investigates the relationship between

CONCLUSIONS AND FUTURE WORKS



reliable Al and robust Al via backpropagation of uncertainty
and leverages information to improve Al reliability.
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