
  

 Abstract—This paper presents a novel framework for 
training convolutional neural networks (CNNs) to quantify 
the impact of gradual and abrupt uncertainties in the form of 
adversarial attacks. Uncertainty quantification is achieved by 
combining the CNN with a Gaussian process (GP) classifier 
algorithm. The variance of the GP quantifies the impact on 
the uncertainties and especially their effect on the object 
classification tasks.  Learning from uncertainty provides the 
proposed CNN-GP framework with flexibility, reliability and 
robustness to adversarial attacks. The proposed approach 
includes training the network under noisy conditions. This is 
accomplished by comparing predictions with classification 
labels via the Kullback-Leibler divergence, Wasserstein 
distance and maximum correntropy. The network 
performance is tested on the classical MNIST, Fashion-
MNIST, CIFAR10 and CIFAR 100 datasets. Further tests on 
robustness to both black-box and white-box attacks are also 
carried out for MNIST. The results show that the testing 
accuracy improves for networks that backpropogate 
uncertainty as compared to methods that do not quantify the 
impact of uncertainties. A comparison with a state-of-art 
Monte Carlo dropout method is also presented and the 
outperformance of the CNN-GP framework with respect to 
reliability and computational efficiency is demonstrated. 
 

Index Terms— adversarial robustness, artificial intelligence, 
convolutional neural networks, machine learning.  

I. INTRODUCTION 
Robustness in artificial intelligence (AI) is related to 

reliability and explainability, especially when deep neural 
networks (DNNs) are applied in uncertain environments [1]. 
DNNs operate by sequentially learning complex 
representations by layers of linear computations followed by 
non-linear transformations. This form of hierarchical learning 
has since the previous decade of AI witnessed a giant leap in 
accuracy, with systems achieving near human-level 
performance on tasks such as image classification [2]. The 
first half of this decade saw a surge of machine learning 
algorithms which encouraged the development of DNNs that 
not only predict but also quantify the impact of uncertainties 
over their predictions [3]. Although it is difficult to foresee 
what the next big leap of AI is going to be, there is now a 
growing motivation towards developing AI systems that are 
robust to adversarial attacks [4]. 

Developing robust AI systems entails plenty of challenges. 
These include tackling human user errors, misspecified goals, 
incorrect models and unmodeled phenomena [5]. Adversarial 
attacks can be of two types: black box or white box [6]. These 
attacks challenge the network’s learned capabilities. Black- 
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box attacks only have access to the inputs of the network. 
White-box attacks [6] on the other hand, have full access to 
the DNN architecture; the inputs, outputs and the gradient 
information in each of the nodes. Misspecified goals often 
arise because the original intended AI system design goals do 
not meet the end-user goals. The reverse of this situation 
results in incorrect models. Another reason for incorrect 
model occurrence is also the lack of representation of model 
uncertainty. If a model is more uncertain at solving the 
problem, likely it is not suitable for the task. Model 
uncertainty is also referred to as epistemic uncertainty [7]. 

Finally, unmolded phenomenon challenges arise because 
not all AI systems can incorporate prior knowledge of 
everything in the environment. This phenomenon is also 
known as aleatoric uncertainty and is present within the 
inputs of the AI system [7]. Accounting for uncertainty in AI 
systems will also improve its explainability since it allows the 
model to explicate its predictions. This is also essential for 
critical decision-making systems. Previous approaches to 
building robust AI systems rarely considered such aspects. 
This is the research challenge that this paper focuses on. 

This paper explores the possibility of building a robust AI 
system with only two convolutional layers and validates it on 
both white and black-box attacks. The tests are carried on 
relatively simple datasets MNIST [8] and FMNIST [9], as 
well as on complex datasets CIFAR10 [10] and on large 
dataset CIFAR100 [10]. The main idea is to use similarity 
cost as a tool to backpropagate the uncertainty information. 
This has a regularization effect on the loss functions. The 
entire problem of learning from uncertainty is casted as an 
example of backpropagation. The proposed framework trains 
a simple convolutional neural network (CNN) [11] feature 
extractor with a Gaussian process (GP) classifier [12] at a 
higher level. The GP is introduced for two purposes, one to 
characterize uncertainty and second to use the features from 
CNN for classifying the input images. The uncertainty is 
characterized by the variance of the GP. The CNN model 
transforms large complex input spaces to simple, low 
dimensional features for the GP to interpret. 

The CNN-GP training is carried out in two stages: 
backpropagation of epistemic uncertainty and then of 
aleatoric uncertainty. The validation results demonstrate that 
these two stages influence each other and cannot achieve 
good results as isolated training materials. The main 
contributions of this work are highlighted below. 

• A CNN-GP framework is proposed for classification and 
uncertainty quantification. The framework performance is 
validated both with gradual and abrupt uncertainties (random 
attacks in the data) and is compared with a state-of-the-art 
approach with dropout  
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• The framework has been extensively tested on four types 
of datasets with increasing complexity; MNIST, FMNIST, 
CIFAR10 and CIFAR100. The framework demonstrates that 
backpropagation of uncertainty is vital for developing CNNs 
and DNNs with strong robustness against black-box and 
white-box adversarial attacks 

• The uncertainty quantification is based on the GP 
variance. The analysis charts that show reduced uncertainty 
in predictions. Precision-recall and receiver operating 
characteristics (ROC) curves characterize the accuracy of the 
results 

• The proposed framework provides reliable uncertainty 
estimates and has an increased computational efficiency 
compared with a state-of-art Monte Carlo dropout approach 
[23]. The validation is performed with increasing strength of 
the black-box and white-box attacks 

• The paper shows that explainable AI is linked to robust 
AI, such that robustness in AI can be achieved by accounting 
for uncertainty measures in both the model and datasets 

The rest of the paper is organized as follows. Section II 
gives a brief overview of recent methods from the fields of 
meta-learning and adversarial learning in deep learning. 
Section III presents the proposed framework. Followed by 
Section IV on robustness analysis and tests on the accuracy 
of the framework. These tests include black-box and white-
box attacks on four different datasets varying in complexity 
and size. The propagated uncertainty is analyzed with the GP 
variance, precision-recall and ROC curves. The variance 
information is further tested with the increase of attack 
strength. Section V presents discussion of the results and 
finally ends with the section on future works in Section VI. 

II. RELATED WORKS 
Learning from uncertainty is an actively developing field 

in Bayesian deep learning. It is practised in many forms and 
under several learning monikers, of the most popular ones 
being meta-learning [13] and adversarial learning [14]. Meta-
learning treatment of uncertainty-based learning consists of 
recognizing the fact that learning from uncertainty is a “meta” 
step operating on top of the main learning step (i.e. 
backpropagation of gradients). On the other hand, adversarial 
learning treats uncertainty as means for generating attacks 
that may be black or white-box. There is a plethora of 
techniques in both regimes [15] as well as defence strategies. 
However, there are a few that leverage uncertainty. Amongst 
these are the works of [1], which focus on the detection of 
attacks, while [16] and [17] focus more on their mitigation. 
There have even been some methods that merged the two 
fields. For example, in [18], a generative adversarial network 
(GAN) based discrimination is used to backpropagate 
epistemic uncertainty. In this section, we study the literature 
and compare the latest techniques to our approach. 

 

A. Comparison of Current Approaches 
Uncertainty related research in meta-learning is usually 

adopted in semi-supervised tasks. These tasks entail learning 
from a dataset with limited labels. This is also carried out in 
noisy, uncertain conditions. Examples of this in literature can 
be seen practised in [19] and [20]. The main difference in the 
individual approaches is that [19] adopts a global averaging 

scheme on DNN weights as a means of modelling noise in the 
labels, while [20] generates an external noise model and a 
student-teacher learning scheme to teach their network to be 
consistent in predictions. Methods that involve external noise 
generation do not require alteration of their training 
architecture. They are also easy to scale. 

Research in the field of adversarial learning, [16] and [17], 
aim to reduce the effects of adversarial attacks. Major 
differences between the approaches are that [17] uses a GAN 
to train their main network to resist attacks while [21] and 
[22] uses Bayesian methods. Specifically, [21] uses softmax 
variance to account for uncertainty while [22] uses Monte 
Carlo (MC) dropout. MC dropout quantifies uncertainty by 
sampling via multiple forward passes and then computing the 
variance from these samples [23]. GAN methods, on the other 
hand, don’t discriminate between black-box or white-box 
attacks. Therefore, such methods are flexible and applicable 
to any form of classifier. MC dropout, on the other hand, can 
scale well with network architecture but at the price of 
computational cost. Additionally, [21] shows that softmax 
variance is an approximation to the measure of mutual 
information. Comparing this with predictive entropy obtained 
from MC dropout, it is proved by [21] that mutual 
information is more informative at detecting attacks. Here, 
information criteria characterize how well the uncertainty is 
represented and its sensitivity to adversarial attacks. 

The drawbacks of these approaches [16], [17] are that 
GAN based methods are difficult to train since they involve 
optimizing of two separate DNN models (discriminator and 
generator). The MC dropout is relatively slow at uncertainty 
computation and the quality of the uncertainty measure is 
dependent on the sampling rate. Another important factor is 
the issue of calibration. Both GAN and MC dropout methods 
have poorly calibrated representation of uncertainty as 
opposed to the better calibrated softmax variance in [21]. 

B. Comparison with Proposed Methods 
The aforementioned techniques [16], [17] and [21] provide 

sound solutions in uncertainty-based robustness. However, 
they only consider the forward propagation of uncertainty. In 
this work, we confirm the theory posed by [1] and improve 
the methods by both [16] and [18] which are indirectly 
accomplishing backpropagation of uncertainty. The 
framework, proposed in this paper, is faster than [16] and [18] 
and less computationally expensive. This is because GANs 
require training two separate networks, and the MC dropout 
methods require long sampling time. The proposed 
framework uses a Gaussian process classifier that allows fast 
quantification of uncertainties. By backpropagating the 
uncertainty information, it is possible to reduce the 
uncertainty in the predictions as well as improve the 
sensitivity of the framework to adversarial attack strength. 

III. PROPOSED FRAMEWORK 

A. Notations 
This subsection describes the main notations (in Table I) used 
in this paper and especially in the CNN-GP framework, 
described in Section IV. The next subsections introduce both 
the CNN and the GP parts of our proposed framework. 
Dealing separately their formal definitions and descriptions. 



  

 

B. Convolutional Neural Networks 
CNNs are a specific type of neural networks that learn 

features from images in a hierarchical fashion [11]. The main 
idea is to use convolutional kernels that adapt to the input 
image. Given a loss function, learning in CNNs is performed 
by differentiating the outputs w.r.t the loss function and 
updating the weights of each kernel by adding on the scaled 
value (via learning rate 𝛾) of this gradient. 

The proposed framework combines a CNN feature 
extractor and a GP after it, in one architecture (Figure 1). The 
CNN has two convolution layers of 32 and 64 filters of 3x3 
kernel size. The padding size of convolutional layers varies. 
This is because MNIST and FMNIST datasets share the same 
input size of 28x28x1 as opposed to CIFAR10 and 
CIFAR100 i.e. 32x32x3. For MNIST and FMNIST padding 
size is set to 2 and 1 for CIFAR10 and CIFAR100. A max-
pooling layer is introduced between the second layer and the 
final fully-connected layer. Pooling layers downsample the 
features and dropout layers are used as a regularizer. The fully 
connected layer, on the other hand, flattens the features to a 
128x10 (for MNIST and FMNIST, 128x16 for CIFAR10, 128 
x 100 for CIFAR100) feature vector. These features are then 
fed to the GP half of the framework discussed in the next sub-
section. 

C. Gaussian Process  
A Gaussian Process is a Bayesian nonparametric approach 

[12] which can represent highly nonlinear phenomena. The 
GP approach models a distribution over functions. Learning 
a GP is similar to learning in CNNs, in the sense that it 
involves a kernel learning process. However, the choice of 
the kernel and respectively the likelihood function is 
problem-dependent. In our framework, we use a squared 
exponential kernel for the kernel choice and a softmax 
likelihood for squashing the posterior mean of the output 
distribution to probabilities. For the choice of the GP model, 
we use Massively Scalable Gaussian Processes (MSGP). 

MSGPs are the preferred methods for many applications, 
thanks to their scalability. MSGPs were introduced in [24] 
and have celebrated achievements in sparse GP models with 
inducing points. The computational load of computing the 
inverse of the covariance matrix is reduced by using an 
eigendecomposition of the covariance matrix to a series of 
Toeplitz matrices.  

Within the architecture, the output from the GP is a 
categorical distribution, from which a 1x𝑁 vector (𝑁 is the 
batch size) is then estimated via maximum likelihood. 
 

 
 
 
 

 
 
 

Fig. 1. The GP-CNN framework at test time. It consists of a CNN base 
feature extractor with a GP after it. 

 
 

TABLE I: NOTATIONS AND DEFINITIONS  

IV. A CONVOLUTIONAL NEURAL NETWORKS COMBINED 
WITH A GAUSSIAN PROCESS AND LOSS FUNCTIONS FOR 

UNCERTAINTY QUANTIFICATION 

A. Training Algorithm for the Proposed Framework 
The training algorithm for the proposed framework 

consists of two halves a) backpropagation of epistemic 
uncertainty and b) backpropagation of aleatoric uncertainty. 
Both are carried out independently. In step a), the prediction 
from the GP classifier is compared with the labels using the 
maximum likelihood ℒ𝑚𝑎𝑥 . The error obtained is then 
backpropagated by the parameters of the GP (the lengthscale 
λ and amplitude 𝜎𝐸) and the CNN (convolutional layers). For 
inferring, we use the approximated variational inference since 
categorical likelihood is used for the classification. 

In step b), synthetic training samples are created. This step 
is inspired by the work of [20] where randomly sampled mini-
batches are ranked. This is proceeded by the random selection 
stage where the top 𝑘  nearest neighbors of the mini-batch 
samples are selected to replace the original samples. These 
synthetic samples are then fed to both the CNN and GP. 
Similarly, the loss function  ℒ𝐺𝑃  is used to backpropagate 
aleatoric uncertainty by encouraging GP classifier to remain 
consistent in its predictions. These losses encourage the 
development of noise-tolerant weights and also have a 
regularization effect. Three functions characterize similarity 
losses: a) the Kullback-Leibler divergence (KLD), b) the 
Wasserstein distance and c) the maximum correntropy (MC) 
loss function. We formulate the losses in the next sub-section 

Notation Meaning 
𝑀 Total number of episodes 
𝛾 Learning rate of the base CNN feature extractor with GP classifier 
𝐾 Number of neighbors sampled for synthetic image generation 
𝑁 Batch size 
𝛽 Kullback-Leibler divergence scaling factor 
𝑚 Episode number 
𝜆 Lengthscale parameters of the GP classifier 
𝐴 The amplitude for the squared exponential kernel 
𝑢𝑖 Variational free parameters for the 𝑖𝑡ℎ batch of data 
𝑞(𝑢𝑖) Variational likelihood based on the 𝑖𝑡ℎ batch of data 
𝑝(𝑢𝑖) Expected real likelihood based on the 𝑖𝑡ℎ batch of data 
𝜃𝐶𝑁𝑁

𝑚  Weights of the CNN feature extractor for the 𝑚𝑡ℎepisode 
𝜃𝐺𝑃

𝑚  Weights of the GP classifier for the 𝑚𝑡ℎepisode 
𝑥𝑖 Data sample from the 𝑖𝑡ℎbatch of data 
𝑦𝑖 Label sample from the ith batch of data 
𝑋 4D-data tensor holding the data samples 
𝑌 4D-data tensor holding the labels samples 
𝐷 Dataset ordered pair holding 𝑋 and 𝑌 
𝑍 Number of units passed as features from the final layer of the CNN  
𝜎𝑖

2 Epistemic variance / uncertainty for the ith batch 
𝜎̂𝑖

2 Aleatoric variance / uncertainty for the ith batch 
𝛿𝑥𝑖 The difference between the ith data point and the GP prediction  
𝑓𝐺𝑃  The Gaussian process function 
𝑓𝐶𝑁𝑁 The convolutional neural network function 
𝑦̂𝑖

𝐶𝑁𝑁 Softmax prediction from the CNN base feature extractor 
𝑦̂𝑧

𝐶𝑁𝑁 Prediction from the zth node from the CNN base feature extractor 
ℒ𝑚𝑎𝑥 Maximum likelihood loss 
ℒ𝐺𝑃 Similarity loss penalizing output from the GP classifier and labels  
  



  

and provide the full algorithm description below. The 
notations that are used in the algorithm section are also 
provided in Section III. Algorithm 1 presented below 
summarizes the implemented CNN and GP framework for 
characterizing the uncertainties. Different loss functions are 
used and these are described in Section IV. 
 ____________________________________________________________ 
All experiments in our paper use the following default arguments; batch 
size=16, episodes=100, learning rate of GP=0.1, neighbors sampling 
no.=10, KLD scaling factor = 1 

____________________________________________________________ 

Require: 𝑀: episodes, 𝛾: learning rate (GP), 𝑘: neighbors sampling no., 𝑁: 
batch size, 𝛽: KLD scaling factor 
DO: initialization of weights: 𝜃𝐶𝑁𝑁

𝑚 , 𝜃𝐺𝑃
𝑚   

for 𝑚=0,…,𝑀 do 
      Sample mini batch (𝑥𝑖, 𝑦𝑖), of length 𝑁 from dataset 𝐷 = {𝑋, 𝑌} where 
𝑋 and 𝑌 are 4-D tensors holding images and labels from the entire dataset, 
where 𝑥𝑖 ∈ ℝℎ x 𝑤 x 𝑐 (image height, width and channel) and 𝑦𝑖 ∈ ℝ1xC (𝐶 is 
total number of classes).  

       BEGIN    backpropagation of epistemic uncertainty 𝜎𝑖
2 

       do → forward pass of CNN base represented as a function 𝑓𝐶𝑁𝑁 ∶ 𝑥𝑖 →

 𝑧𝑖, where 𝑧𝑖 ∈ ℝ𝑍xC and 𝑍 is the number of hidden units’ feature outputs 
passed from final fully-connected layer of CNN base feature extractor 

       do → forward pass of GP 𝑓𝐺𝑃(𝑧𝑖) to obtain the posterior likelihood 
𝑝(𝑦𝑖| 𝑓𝐺𝑃 (𝑧𝑖) ; 𝜇𝑖 , 𝜎𝑖

2) = 𝒩(𝜇𝑖 , 𝐾𝑖) 

where 𝜇𝑖 represents the mean of the GP and 𝐾𝑖 is the kernel (i.e. squared 
exponential 𝐾𝑖 = 𝐴 exp [−

1

2
(

𝛿𝑥𝑖

𝜆
)] and 𝒩 represents the Gaussian 

distribution 

       Compute the expected log likelihood to obtain max likelihood loss : 
ℒ𝑚𝑎𝑥 ≈ ∑ 𝔼𝑞 [log(𝑝(𝑦𝑖| 𝑓𝐺𝑃(𝑥𝑖); 𝜇𝑖, 𝜎𝑖

2)  − 𝛽𝐷𝐾𝐿(𝑞(𝑢𝑖) || 𝑝(𝑢𝑖)))]
𝑁

𝑖=1
 

       Compute gradients of loss w.r.t weights of CNN base feature extractor 
and GP : 𝜕ℒ𝑚𝑎𝑥

𝜕𝜃𝐺𝑃
,

𝜕ℒ𝑚𝑎𝑥

𝜕𝜃𝐶𝑁𝑁
 

       Update the parameters of GP and CNN feature extractor for 𝑚𝑡ℎ 
episode: 𝜃𝐶𝑁𝑁

𝑚+1 ← 𝜃𝐶𝑁𝑁
𝑚 − 𝛾

𝜕ℒ𝑚𝑎𝑥  

𝜕𝜃𝐶𝑁𝑁
𝑚  . ℒ𝑚𝑎𝑥, 𝜃𝐺𝑃

𝑚+1 ←  𝜃𝐺𝑃
𝑚 − 𝛾

𝜕ℒ𝑚𝑎𝑥

𝜕𝜃𝐺𝑃
𝑚  . ℒ𝑚𝑎𝑥 

       end 
____________________________________________________________ 

        BEGIN    backpropagation of aleatoric uncertainty 𝜎̂𝑖
2 

        Make synthetic images via 𝑘 neighbours to get 𝑥𝑖 

        do → forward pass of the CNN base feature extractor 𝑓𝐶𝑁𝑁: 𝑥𝑖̂ →  𝑧̂𝑖 

        do → forward pass of the GP 𝑓𝐺𝑃 ∶  𝑧̂𝑖  → 𝑝(𝑦̂𝑖  | 𝑓𝐺𝑃(𝑧̂𝑖) ; 𝜇̂𝑖 , 𝜎̂𝑖
2) =

𝒩(𝜇̂𝑖 , 𝐾𝑥𝑖
) 

         Calculate similarity loss ℒ𝐺𝑃 between the labels 𝑦𝑖 and the GP 
classifier posterior mean 𝜇̂𝑖 from the choice of KLD, Wasserstein and 
maximum correntropy 

         Update the new parameters of 𝜃𝐺𝑃
𝑚  GP: 𝜃𝐺𝑃

𝑚 ← 𝜃𝐺𝑃
𝑚 − 𝛾

𝜕ℒ𝐺𝑃

𝜕𝜃𝐺𝑃
𝑚  . ℒ𝐺𝑃 

         Update parameters of CNN feature extractor: 𝜃𝐶𝑁𝑁
𝑚 ←  𝜃𝐶𝑁𝑁

𝑚 −

𝛾
𝜕ℒ𝐺𝑃

𝜕𝜃𝐶𝑁𝑁
𝑚  . ℒ𝐺𝑃 

          end → End training loop 
 

B. Loss Functions 
Consider two sets of probability mass functions 𝑝(𝑥) and 

𝑞(𝑥) that take a data point 𝑥. Finding the shift of mass from 
one set to the other requires calculating the discrepancy 
between the two. The Kullback-Leibler divergence [25] 𝐷𝐾𝐿 , 
shown in (1), represents this discrepancy as a measure of 
entropy. It quantifies the shift of probability mass by taking 
the difference of entropy across the distributions. 

The Wasserstein distance [26] solves the problem from the 
point of view of optimal transport. These problems are 
divided into two parts: assignment and cost. The assignment 
strategy determines how much mass is moved across the 
supports of the distributions. The cost measures the effort 
required for the assignment strategy. Both are represented as 
matrices 𝑃 and 𝐶, respectively. The total cost can be obtained 
by taking the Frobenius inner product of the two (i.e. ⟨𝐶, 𝑃⟩). 
The objective then is to obtain the minimum of the product 
and subtract from the regularized entropy in (2). Here, 𝜂 is 
denoted as the regularization term. For our experiments, we 
choose the default value for  𝜂 = 0.1  and a quadratic 
distance-based cost function as an approximation to the 
primal Wasserstein distance formulation [26]. 

Finally, the maximum correntropy loss function [27] has 
also been implemented in the backpropagation step. The 
maximum correntropy loss function uses a kernel to compute 
the difference across two variables instead of using entropy-
based methods such as in KLD and Wasserstein functions. 
The formulation can be seen in equation (3). The Gaussian 
kernel is a popular one: 𝑘𝜎(𝑝(𝑥) − 𝑞(𝑥))2 =

1

√2𝜋𝜎
exp (−

(𝑝(𝑥)−𝑞(𝑥))2

2𝜎2 ) , where 𝜎2 represents the variance 
of the distribution. The considered cost functions are given 
below. 

 
ℒ𝐾𝐿𝐷 = 𝐷𝐾𝐿 (𝑝 || 𝑞) − ∑ 𝑝(𝑥) log 𝑞(𝑥) + 

𝑥

∑ 𝑝(𝑥) log 𝑝(𝑥) (1)

𝑥

 

        ℒ𝑊𝐴𝑆𝑆 =  𝑚𝑖𝑛⟨𝐶, 𝑃⟩ − 𝜂 ∑ 𝑝(𝑥) log 𝑝(𝑥) 

𝑥

                          (2) 

                 ℒ𝑀𝐶 =  𝑉𝜎(𝑝(𝑥), 𝑞(𝑥)) = 𝔼[𝑘𝜎(𝑝(𝑥) − 𝑞(𝑥))]

=
1

𝑁
 ∑ 𝑘𝜎(𝑝(𝑥) − 𝑞(𝑥))

𝑁

𝑥=1

                              (3) 

The term 𝑉𝜎  refers to the MC across two masses 𝑝(𝑥) and 
𝑞(𝑥) where 𝔼 refers to the expected value. This measure has 
been proven to be less sensitive to outliers. This is found in 
many second-order statistics measures such as cross-entropy. 
It is heavily studied in outlier suppression [27] and is ideally 
suitable for robust algorithm design. The next Section V 
presents results and analyses them. 

V. PERFORMANCE VALIDATION 

A. Validation Accuracy, Precision-Recall and ROC 
Curves 
Before the experiments, the CNN-GP classifier is trained 

with the three different similarity losses. The purpose was to 
observe the accuracy as a means of performance evaluation. 
The average results were calculated by dividing the averaged 
correct samples by the total number of samples. Experiments 
were run ten times and accuracy values were averaged. The 
standard deviation was ± 2%. Then, the system was disrupted 
using black-box attacks of two types: a) an additive white 
Gaussian noise (AWGN) and b) motion blur (MB). The 
results were compared with the system version where no 
similarity losses were used (i.e. without regularization). 
These results are presented in Table II. Next, the precision-
recall and the ROC results characterize the accuracy of the 
proposed CNN-GP framework. These results are plotted for 
each dataset side to side in Figure 2. The average precision 
(AP) and ROC area are two quantities that are obtained by 







  

 
  

Fig. 4. Output variance plots from GP classifier for MNIST dataset for four configurations. The first row considers the case of model 
trained without any regularization from similariy losses, the second row is for GP classifier trained on KLD similarity loss, third 
row for Wasserstein distance and fourth for maximum correntropy. Each of the column represent the black-box attack types, the first 
column is for clean MNIST images, second column for white gaussian noise and the third for motion blurring 
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D. Computational Time 
The computational time of the proposed framework CNN-

GP is compared with the MC dropout method [23]. Both of 
the models are made to output variance information on simple 
MNIST input images. The sampling rate for MC dropout 
method is set to 100. The respective run-time for each is then 
computed on the University of Sheffield provided GPU 
cluster (NVIDIA K80). The testing time is measured in 
minutes and the results are tabulated in Table III.  

 
TABLE III: RUN TIME ANALYSIS FOR PROPOSED MODEL CNN-GP AND MC 

DROPOUT 
  

Model Type Run Time 
(min) 

CNN-GP 1.18 
MC dropout 7.27 
  

VI. DISCUSSION 
 

Considering the results from Table II, we see that when 
there is no attack, the CNN-GP configurations that 
backpropagate both epistemic and aleatoric uncertainties, 
excluding the case with the Wasserstein metric, perform 
better than without backpropagation (no regularization). 
Furthermore, backpropagation of epistemic uncertainty 
influences the backpropagation of aleatoric uncertainty since 
the networks perform much worse when each of the processes 
is done separately (bracketed accuracies represent aleatoric 
only). This confirms that both stages of the training are 
necessary for reliable results. This is further demonstrated by 
uncertainty charts in Figure 4 where the uncertainty measures 
of KLD (row 2) and MC (row 4) have lower bar heights for 
incorrect sample variance (yellow bars) than those for the 
cases that backpropagates epistemic uncertainty only (row 1). 

We further see that the prediction results with the 
Wasserstein metric are comparable with the other data, 
regardless of the attack when tested on the complex CIFAR10 
dataset (40%), it performs rather poorly than expected. This 
agrees with the hypothesis of [29] which claims that the 
Wasserstein metric yields biased gradients that have a higher 
chance in leading to a false local minimum than the KLD 
during optimization. This may also explain why KLD results 
on the backpropagation of aleatoric uncertainty are higher 
(75% and 60%) than the Wasserstein metric (11% and 13%). 

This result may be due to the fact that an approximated 
version of the Wasserstein metric is implemented. An 
approximate implementation is performed to avoid the 
complexity and intractability of computing the infimum of 
double integrals in the primal version [26]. This is further 
supported by the precision-recall diagram for the Wasserstein 
metric for all attacks which shows that the precision for these 
methods slowly drop when the dataset complexity is 
increased (from MNIST to CIFAR10). The downward shift 
of blue, black and yellow dashed lines in Figure 2 visualizes 
these drops. 

In order to characterize the robustness of the approaches, 
the recall function is calculated. Precision is heavily affected 
by the uncertainties and impacts the results of all methods. 
However, the approaches with the MC dropout and KLD 
maintain a good level of precision despite having poor recalls 
(e.g. in AWGN attacks for MC and KLD). Hence, it is 

possible to diagnose the recall aspect as a measure of 
sensitivity to the attack.   

Then, considering the MC and KLD results, it is evident 
that using these losses results in high accuracies in motion 
blurring when compared with the Wasserstein metric results. 
The performances of the MC and KLD are similar. This is 
further evident in Figure 4 where uncertainty charts for both 
KLD and MC have a greater number of correct sample 
variance (blue) as compared to those for the Wasserstein 
metric (row 3). For MC, this was expected since this type of 
loss is ideal for robust algorithm design. This is further 
supported in Figure 2 where the precision-recall for both 
KLD and MC for motion blurring (MB) remain the highest 
(solid blue, green and yellow lines) as the dataset complexity 
increases (MNIST to CIFAR10). 

Regarding the variance sensitivity to attack strength, we can 
see from Figures 3A and 3C that CNN-GP trained on the MC 
similarity loss is more responsive than both KLD as well as 
the no regularization configuration. This also demonstrates 
that the MC is suitable for robust algorithm design. The 
graphs show that both the MC and KLD functions, start with 
higher confidence in predictions (i.e. low variance) before the 
attack strength is increased when compared to the case 
without regularization. This confirms both our hypothesis and 
our results in Figure 4 that backpropagation in the CNN-GP 
framework reduces the impact of uncertainties and attacks on 
the classification results and characterize the model’s 
confidence. For the MC dropout method, it is seen from both 
Figure 3B and 3C that this model is not representing the 
uncertainty estimates well when compared with the CNN 
model. Hence, it is not reliable for uncertainty quantification. 
The computational complexity of the compared approaches is 
characterized by Table III which shows that the MC dropout 
method is much slower than the CNN-GP framework. 

VII. CONCLUSIONS AND FUTURE WORKS 
This paper proposes a CNN-GP framework that can 
characterize the impact of uncertainties on the classification 
results. Three loss functions – the Kulback-Leibler 
divergence, the Wasserstein distance and the maximum 
correntropy were embedded in the backpropagation step of 
the CNN-GP and their performance was compared. The GP 
layer serves for quantifying the uncertainty, based on the GP 
variance. A small variance corresponds to a small 
uncertainty, a high variance means high uncertainty and 
hence means that the classification result cannot be trusted. 
The proposed CNN-GP framework is compared with a Monte 
Carlo dropout and it is shown that the CNN-GP is more 
efficient than the MC dropout method, especially with respect 
to computational time. The results show that the models 
become robust and reliable and can cope with attacks, after 
learning from uncertainty. The main limitation of the 
framework is that it is not able to get high accuracies on large 
and complex datasets e.g. CIFAR10 and CIFAR100. That is 
pointing to architecture issues more than the algorithm since 
the state-of-the-art architecture for CIFAR10 uses up to more 
than 15 convolutional layers [30]. In future, we will focus on 
training large complex networks. Also, consider the 
possibility of feeding the CNN feature extractor as a 
covariance kernel to the GP. This may be computationally 
more feasible and may also improve the uncertainty 
representation in the GP since it will give the GP a holistic 
view of the impact of the dataset on the performance of the 
CNN. This work also investigates the relationship between 



  

reliable AI and robust AI via backpropagation of uncertainty 
and leverages information to improve AI reliability.  
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