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Interaction-driven spontaneous symmetry breaking lies at the heart of many quantum 
phases of matter. In moiré systems, broken spin/valley ‘flavour’ symmetry in flat bands 
underlies the parent state from which ultimately correlated and topological ground states 
emerge1–10. However, the microscopic mechanism of such flavour symmetry breaking and 
its connection to the low-temperature phases remain to be understood. Here, we investigate 
the broken-symmetry many-body ground state of magic-angle twisted bilayer graphene 
(MATBG) and its nontrivial topology using simultaneous thermodynamic and transport 
measurements. We directly observe flavour symmetry breaking as a pinning of the 
chemical potential at all integer fillings of the moiré superlattice, highlighting the 
importance of flavour Hund’s coupling in the many-body ground state. The topological 
nature of the underlying flat bands is manifested upon breaking time-reversal symmetry, 
where we measure energy gaps corresponding to Chern insulator states with Chern 
numbers 𝑪 = 𝟑, 𝟐, 𝟏 at filling factors ν=1,2,3, respectively, consistent with flavour 
symmetry breaking in the Hofstadter’s butterfly spectrum of MATBG. Moreover, 
concurrent measurements of resistivity and chemical potential allow us to obtain the 
temperature-dependent charge diffusivity of MATBG in the strange metal regime11, a 
quantity previously explored only in ultracold atoms12. Our results bring us one step closer 
to a unified framework for understanding interactions in the topological bands of MATBG, 
with and without a magnetic field. 

In condensed matter systems with flat electronic bands, the Coulomb interaction between 
electrons can easily surpass their kinetic energy and give rise to a variety of exotic quantum 
phases, including Mott insulators, quantum spin liquids, and Wigner crystals13–15. In this strongly 
correlated regime, electrons may spontaneously order themselves to minimize the total Coulomb 
energy at the cost of increasing their kinetic energies, leading to the breaking of certain 
symmetries. Such broken-symmetry states can occur at a relatively high energy scale and act as a 
parent state for phases that appear at lower energy scales, such as superconductivity. 
Furthermore, when there is nontrivial topology in the system, the interplay between strong 
correlations and the underlying topology could lead to novel phases of matter. Understanding the 



physics behind this interplay could guide us in designing next-generation strongly-correlated 
topological quantum materials. 

Magic-angle twisted bilayer graphene (MATBG) serves as a unique platform to investigate 
interaction driven phenomena in a highly tunable flat-band system. When two layers of 
monolayer graphene (MLG) are stacked with a small twist angle of 𝜃 ∼ 1.1°, the interlayer 
hybridization in the resulting moiré superlattice renormalizes the Fermi velocity and creates flat 
bands at low energies16,17. In this regime, a plethora of exotic correlated and topological 
phenomena have been experimentally demonstrated, including correlated insulator states, 
superconductivity, and the quantum anomalous Hall effect1,2,4–7. Scanning tunneling and single-
electron transistor experiments have directly shown the significance of Coulomb-induced phase 
transitions that break the spin/valley symmetry9,10,18–21. Despite significant experimental and 
theoretical progress, the microscopic picture that underlies the broken-symmetry states and their 
possible connections to the correlated phases and superconductivity still requires investigation. 

Flavour Hund’s Coupling in MATBG 

Here we study the interplay between interaction-driven symmetry breaking and nontrivial 
topology in MATBG by directly measuring the combined thermodynamic and transport 
properties of its many-body ground state. We use a unique technique22 to sense the chemical 
potential of MATBG. The MATBG is separated from a MLG layer by an ultrathin layer of hBN 
(∼ 1 nm, Fig. 1a). We use the top gate voltage 𝑉𝑡𝑔 and back gate voltage 𝑉𝑏𝑔 to control the
densities in MLG and MATBG, and measure the transport properties of the two layers 
simultaneously. Direct probing of the chemical potential 𝜇 of one layer is achieved by sensing 
the screening of the electric field from the gates by the other layer22 (Fig. 1b and Supplementary 
Information). In particular, when one layer is at the charge neutrality point (CNP), e.g. 𝑛𝑀𝐿𝐺 =

0, the chemical potential of the other layer (𝜇𝑀𝐴𝑇𝐵𝐺) is given by 𝜇𝑀𝐴𝑇𝐵𝐺 = − (
𝑒𝐶𝑡𝑔

𝐶𝑖
) 𝑉𝑡𝑔, where

𝐶𝑡𝑔 and 𝐶𝑖 are the geometric capacitances per unit area of the top and middle hBN dielectrics,
respectively.  

The MLG layer used in our experiments has very low disorder < 3 × 109 cm-2 (Fig. 1c). The
MATBG layer has a twist angle of 𝜃 = 1.07 ± 0.03°, and exhibits correlated states at integer 
filling factors 𝜈𝑀𝐴𝑇𝐵𝐺 =

4𝑛𝑀𝐴𝑇𝐵𝐺

𝑛𝑠
= +1, ±2, +3 of the flat bands (𝑛𝑠 = 8𝜃2/√3𝑎2 is the

superlattice density of TBG and 𝑎=0.246 nm is the graphene lattice constant), as well as 
superconducting states at both 𝜈 = −2 − 𝛿 and +2 + 𝛿, where 𝛿 is a small change in filling 
(Fig. 1d). The superconducting transition temperature 𝑇𝑐 reaches as high as 2.7 K for 𝜈 = −2 −
𝛿 (Extended Data Figure 1). Figure 1e and f show the resistance of MATBG and MLG as a 
function of 𝑉𝑡𝑔 and 𝑉𝑏𝑔 at 𝐵⊥=0 T and 𝐵⊥=1 T, respectively. As a proof of principle, 𝜇𝑀𝐿𝐺 as a
function of 𝑛𝑀𝐿𝐺 is obtained by tracking the CNP of MATBG (Fig. 1e inset and Supplementary
Information), from which we determine the MLG Fermi velocity to be 𝑣𝐹 =  1.12 × 106 m/s by
fitting to |𝜇𝑀𝐿𝐺| = ℏ𝑣𝐹√𝜋|𝑛𝑀𝐿𝐺|. In a magnetic field 𝐵⊥ = 1 T, the spectrum of MLG is
quantized into discrete Landau levels at energies ±𝑣𝐹√2𝑒ℏ𝐵|𝑁| as expected. Our technique can
thus determine the chemical potential of either layer with a sensitivity of ≲ 1 meV. 

The chemical potential of MATBG is shown in Fig. 2a. Hereafter we will simply use 𝑛 (𝜈) and 𝜇 
to denote 𝑛𝑀𝐴𝑇𝐵𝐺 (𝜈𝑀𝐴𝑇𝐵𝐺) and 𝜇𝑀𝐴𝑇𝐵𝐺. The 𝑉𝑡𝑔 axis is directly proportional to 𝜇 when tracking



the CNP of MLG (shown as the green curve). The longitudinal resistance 𝑅𝑥𝑥 of MLG (purple) 
and MATBG (orange) is overlaid for qualitative comparison, and the gray dash lines indicate the 
integer filling factors 𝜈 = 0, ±1, ±2, ±3. Around the MATBG CNP (𝜈 = 0), 𝜇 rises quickly with 
𝜈, consistent with a minimal DOS at the Dirac point. However, once we start filling electrons 
into the flat band, its slope decreases quickly and 𝜇 reaches a local maximum around 𝜈 = 0.6. 
Surprisingly, it then decreases, exhibiting a negative inverse compressibility 𝜒−1 = 𝑑𝜇/𝑑𝑛,23 
and gets pinned at a local minimum around 𝜈 = 1. Subsequently, 𝜇 rises again until it reaches 
the next maximum. This intriguing pinning behaviour repeats at each integer filling factor, 
including 𝜈 = 4 (Fig. 2a inset). On the hole-doped side (𝜈 < 0), the pinning behaviour is 
opposite and weaker (i.e. creates weak maxima in 𝜇). The total bandwidth estimated from 𝜇 is 
around ∼40 meV. We also investigated 𝜇 versus temperature from 2 K to 70 K (Fig. 2d). The 
observed pinning behaviour persists prominently up to 20 K. We point out that the pinning of 𝜇 
should not be interpreted as a measure of the gaps of the insulator states because its energy scale 
(visible up to 70 K) is much greater than the typical energy scale of the insulator states (typically 
below 10 K). Instead, the insulator state, and possibly also the superconducting state, might be 
thought of as low-energy states that emerge from the broken flavour symmetry ‘parent’ states. 
We also note that the pinning on the hole-doped side occurs at slightly more negative values of 𝜈 
(Supplementary Information). 

The pinning of 𝜇 at all integer 𝜈 is reminiscent of the stabilization of half-filled or full-filled 
electronic shells in atoms, which is known as Hund’s rule for maximum spin multiplicity and 
stems from the Coulomb exchange interaction between the electrons. In MATBG, the pinning 
behaviour of the chemical potential is naturally explained when both the on-site inter-flavour 
Coulomb repulsion energy U and inter-site intra-flavour exchange energy J are considered. We 
focus on 𝜈 > 0 in the following description. Figure 2b shows 𝜇 calculated with a mean-field 
model for different values of U and J (Supplementary Information), which qualitatively 
reproduces the experimentally measured 𝜇 only when both U and J are nonzero and of similar 
magnitude (purple solid curve), beyond the currently established understanding9,10,21. A possible 
mechanism for such stabilization of 𝜇 at 𝜈 = 1 is illustrated in Fig. 2c and elaborated in the 
Methods. We note that the mean-field treatment of the Coulomb interactions correctly captures 
the many-body compressibility to leading order24, but might not give the same ground state as 
the exact solution. Other mechanisms, such as the formation of a Wigner crystal25, might also be 
relevant to the observation of negative compressibility.  

To probe the magnetic properties of the correlated states, we measured 𝜇 as a function of in-
plane magnetic field up to 11 T (Fig. 2e,f for 𝜈 = +1 and 𝜈 = +2  and Extended Data Figure 2 
for 𝜈 = −1, −2, +3). At 𝜈 = ±1, the pinning of 𝜇 is clearly strengthened by 𝐵∥, as is the peak in 
𝑅𝑥𝑥

𝑀𝐴𝑇𝐵𝐺 (Methods and Extended Data Figure 3), suggesting that the 𝜈 = ±1 states develop a 
spin-polarization in response to the magnetic field. To confirm this, we directly obtained the 
magnetization by integrating the Maxwell's relation10 (Fig. 2e inset). We indeed find that the 
magnetization reaches a value on the order of one 𝜇𝐵 at 𝜈 = ±1, consistent with a spin-polarized 
state at finite field, which would indicate either a very soft paramagnetic state or a ferromagnetic 
state at zero field. The 𝜈 = ±2 states, on the other hand, have been speculated to be spin-
unpolarized insulating states1,4,26. However, we find that, while the transport peak there is indeed 
suppressed by 𝐵∥ (see Fig. 2f and Extended Data Figure 3), 𝜇 measured at 𝜈 = ±2 does not show 
significant dependence on the in-plane magnetic field (Fig. 2f). Furthermore, 𝑀∥ does not return 
to zero when 𝜈 is tuned from ±1 to ±2 (Fig. 2e inset). While the lack of dependence of 𝜇 can be 



partially captured by our theoretical model (Supplementary Information), the persistence of 
magnetization near 𝜈 = ±2 is at odds with the finite-field spin-unpolarized ground state inferred 
from transport. These observations suggest that in an in-plane field the 𝜈 = ±2 gaps might select 
a ground state with nontrivial spin and/or valley texture, beyond simply occupying two flavours 
with opposite spins.   

Our experiments also constrain the possible mechanism of superconductivity in MATBG. The 
superconducting dome lies in the region where 𝜒−1 is high (Extended Data Figure 4b), with 
maximum 𝑇𝑐 corresponding to a maximum in 𝜒−1. Since a Bardeen-Cooper-Schrieffer (BCS) 
type superconductivity in the weak-coupling limit would be enhanced when the DOS is high 
(and thus χ−1 low), our observation of an opposite trend indicates that it is hard to reconcile the 
superconductivity in MATBG with a weakly-coupled BCS theory. Future theories attempting to 
model the superconductivity in MATBG will likely need to consider the importance of Coulomb 
interactions, including both repulsion and Hund’s coupling, and the consequent phase transitions. 

Correlated Chern Insulators 

We now turn to the topological properties of MATBG. By measuring 𝜇 in a perpendicular 
magnetic field, we can observe the energy gaps that result from the interplay between the 
Hofstadter spectrum and the Coulomb interactions26–30. The helical nature of the Dirac electrons 
in graphene endows each flat band of MATBG a Chern number of 𝐶 = ±1, which is usually 
explicitly manifested when the composite 𝐶2𝒯 symmetry is broken, either by alignment to the 
hBN substrate (breaks 𝐶2) or by applying a magnetic field (breaks 𝒯). Figure 3c shows the 
Hofstadter butterfly spectrum of TBG, where the topologically nontrivial gaps (𝐶 = ±1) and the 
trivial gaps (𝐶 = 0) are shown. The former gaps are smoothly connected to the Landau level 
gaps at  𝜈𝐿𝐿 = 𝜈/(𝜙/𝜙0) = ±4 at low fields, where 𝜙 is the magnetic flux per unit cell and 
𝜙0 = ℎ/𝑒 is the flux quantum. Without interactions, the only possible total Chern number in this 
picture is 𝐶𝑡𝑜𝑡 = 0, ±4, since all flavours are in the same gap. The Coulomb interactions cause 
their Chern numbers to be different, and give rise to new hierarchies of Chern gaps.  

These topological gaps are directly observed in Fig. 3a. Near charge neutrality, we observe the 
gaps as steps in 𝜇 at the Landau level filling factors 𝜈𝐿𝐿 = 0, ±2, ±4, whose positions evolve 
according to the Streda formula31 𝑑𝑛/𝑑𝐵 = 𝜈𝐿𝐿/𝜙0. In the meantime, the extrema of 𝜇 at 𝜈 =
1, 2, 3 at 𝐵⊥ = 0 evolve into topological gaps at 𝐵⊥ = 6 T. Their evolution follows the same 
Streda formula 𝑑𝑛/𝑑𝐵 =  𝐶/𝜙0  that indicates the total Chern number of 𝐶 = 3,2,1 associated 
with the states originally at 𝜈 = 1,2,3, respectively.  

The broken-symmetry Landau levels and topological Chern gaps can be analyzed in a unified 
way using a correlated Hofstadter spectrum model32. We consider the single-particle DOS to be 
representative of the Hofstadter spectrum shown in Fig. 3c, and add the mean-field U and J in a 
similar manner as above. Using this model, we calculate the Chern number 𝐶 as a function of 𝜈 
and reproduce the experimentally observed sequence of 0, ±2, ±4 near CNP, and 3, 2, and 1 at 
densities 𝜈 = 1 + 3𝜙/𝜙0, 2 + 2𝜙/𝜙0, and 3 + 𝜙/𝜙0, respectively (Fig. 3d). By performing a 
similar calculation (Supplementary Information), we can simulate the evolution of the chemical 
potential with the magnetic field (Fig. 3b). The remarkable similarity with the experimental data 
clearly indicates that this model captures the main features of the correlated spectrum with and 
without a magnetic field. 



A more quantitative analysis is performed on the chemical potential measured at 𝐵⊥ = 6 T (Fig.
3e). From the steps in 𝜇, we extract the values of the Landau level gaps at 𝜈𝐿𝐿  = −4, −2, 0, 2,
and 4 to be 5.9, 3.3, 5.9, 2.3, and 4.9 meV, respectively. The small values of the gaps at 𝜈𝐿𝐿 =
±4 translate to a Fermi velocity of approximately 𝑣𝐹 ∼ 6 × 104 m/s, consistent with previous
experiments1,27. The Chern gaps at 𝜈 = 1 + 3𝜙/𝜙0, 2 + 2𝜙/𝜙0, and 3 + 𝜙/𝜙0 are extracted to
be 2.2, 5.0 and 1.9 meV respectively. The larger gap at 2 + 2𝜙/𝜙0 is consistent with the fact
that this state is more readily resolved in electronic transport experiments1,2,4,5,26,29. Its difference 
with the gaps at 𝜈 = 1 + 3𝜙/𝜙0 and 3 + 𝜙/𝜙0 might be attributed to different magnetic ground
states. These gaps have a weak dependence on 𝐵⊥ (Extended Data Figure 5), consistent with the
Hofstadter spectrum (Fig. 3c). 

Charge Diffusivity of a ‘Strange Metal’ 

In correlated metals with multiple bands near the Fermi energy, the atomic Hund’s coupling is 
known to play an important role in their many-body physics, including the strange metal 
regime33. In MATBG, recent experiments have reported evidence for strange metal behaviour11, 
manifested as resistivity linear with T from very low T. As shown in Fig. 4a and c, the resistivity 
in our MATBG sample is largely linear with T over a range of densities around the correlated 
states, and with a slope that is weakly dependent on n11,34. It has been hypothesized that the 
strange metal behaviour can be universally described by a ‘Planckian’ scattering rate bound Γ ∼
 𝑘𝐵𝑇/ℏ in the framework of incoherent non-quasiparticle transport35. However, the construction
of a microscopic picture for this bound is still in progress36,37. 

A universal framework to investigate the strange metal regime is the Nernst-Einstein relation, 
which connects the resistivity 𝜌, compressibility 𝜒, and charge diffusivity 𝐷 of a generic 
conductor by 𝜌−1 = 𝑒2𝜒𝐷. A linear in T resistivity could thus originate from: (i) 𝜒−1 ∝  𝑇,
which could arise from thermodynamic contributions38,39 when 𝑘𝐵𝑇 ≳  𝑊; (ii) 𝐷−1 ∝  𝑇, which
represent a linear scattering rate; or (iii) a combined T-dependence of both. Differentiating 
between these possibilities could help constrain theoretical models for strange metal 
behaviour38,40,41. However, to the best of our knowledge, there are no reported measurements of 
the compressibility or charge diffusivity for strange metals, and only recent experiments have 
begun to explore this physics in ultracold atoms12. 

Our combined resistivity and compressibility measurements allow us to extract the charge 
diffusivity of MATBG (Fig. 4b). While 𝜒−1 becomes negative before each integer filling factor
at T < 20 K, as discussed above, at higher T it converges to a roughly constant value of order 1 
eV·nm2 regardless of 𝜈. Figure 4d shows selected traces of 𝜒−1 vs T, which exhibit only a weak
dependence on T, albeit 𝜌 exhibits a prominent linear-in-T behaviour, suggesting that the linear 
𝜌-T behaviour in MATBG is mainly due to a T-dependent charge diffusivity. Figure 4e-f shows 
the T-dependence of the extracted effective diffusivity 𝐷∗ = 𝜒−1/𝑒2(𝜌 − 𝜌0) and its inverse,
where 𝜌0 is the residual resistivity extrapolated at zero temperature. These quantities indeed
appear to roughly follow a ∼ 𝑇−1 and a ∼ 𝑇 trend, respectively. Our observations therefore
indicate that the strange metal regime in MATBG is consistent with a scattering rate linear in T. 
These arguments do not apply to regions with negative electronic compressibility as the 
interpretation of diffusivity in this case needs to be modified42 (Supplementary Information). 
Interestingly, we find the extracted diffusivity D*(T) at all these fillings to be within about a 
factor of 2 from a diffusivity bound 𝐷𝑏𝑜𝑢𝑛𝑑 = ℏ𝑣𝐹

2/(𝑘𝐵𝑇) proposed for incoherent metals38.
While this bound is known to be violated in the low-temperature region in a large-U system40, 



this is not at odds with our observations if MATBG is in the intermediate U regime (𝑈/𝑊 ∼ 1, 
deduced from our modeling and other experiments9,10,18). 
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Main Figure Legends 
Figure 1. Device structure and demonstration of chemical potential measurement. (a) 
Schematics of the measurement technique. MATBG and monolayer graphene (MLG) are 
separated by a thin (~1 nm) hBN spacer and dual-gated. We simultaneously measure the 
resistance of MATBG and MLG. (b) Band diagram of the heterostructure, showing the 



relationship between the chemical potentials of MATBG (𝜇𝑀𝐴𝑇𝐵𝐺) and MLG (𝜇𝑀𝐿𝐺), the back
gate voltage 𝑉𝑏𝑔 and top gate voltage 𝑉𝑡𝑔, and the electrostatic potential drops 𝑉0, 𝑉1, and 𝑉2. e is
the electron charge. (c) Transport characterization of MLG, showing a sharp resistance 𝑅𝑥𝑥

𝑀𝐿𝐺

peak versus MLG carrier density 𝑛𝑀𝐿𝐺, with full width half maximum of less than 3 × 109 cm-2.
Inset: Landau fan diagram (𝑅𝑥𝑥

𝑀𝐿𝐺 versus 𝑛𝑀𝐿𝐺 and magnetic field B) in MLG, which shows that
the Landau levels become visible already at ±0.03 T. (d) Transport characterization of MATBG. 
The twist angle of MATBG is 𝜃 = 1.07 ± 0.03°. We find correlated states at filling factors 
𝜈𝑀𝐴𝑇𝐵𝐺 = 1, ±2, 3, as well as superconducting domes (blue) at −2 − 𝛿 and +2 + 𝛿,
respectively. (e-f) Combined plot of the resistance of MLG and MATBG, represented by purple 
and orange colour scales, respectively, and overlaid in the same axes. As a proof of principle, we 
use the charge neutrality point (CNP) of MATBG (orange diagonal feature) to probe the 
chemical potential of MLG, at (e) B=0 and (f) 𝐵⊥ =1 T. The horizontal purple stripes are the
resistive features in MLG. From the CNP of MATBG, we extract the chemical potential 𝜇𝑀𝐿𝐺

versus density 𝑛𝑀𝐿𝐺, which is shown in the insets of (e-f). The white line in the inset of (e) is a
fit to |𝜇𝑀𝐿𝐺| = ℏ𝑣𝐹√𝜋|𝑛𝑀𝐿𝐺| . The red ticks in the inset of (f) denote the expected Landau level
(LL) energies ±𝑣𝐹√2𝑒ℏ𝐵|𝑁|, where 𝑣𝐹 = 1.12 × 106 m/s and N is an integer.

Figure 2. Chemical potential of MATBG as a function of temperature and in-plane 
magnetic field. (a) Sensing the chemical potential of MATBG using the CNP of MLG. 
Measurement taken at B=0 T and T=4 K. The green line shows the extracted chemical potential 
of MATBG. Gray dash lines mark the integer filling factors of MATBG, which agree with the 
MATBG correlated resistive features. The chemical potential is pinned at each filling factor, 
showing the stabilization of the state. The inset shows the same features probed by tracking the 
N=1 MLG LL at B=0.7 T. (b) Mean-field estimate of the chemical potential with various 
Coulomb repulsion energy U and exchange energy J in units of the single-particle bandwidth 
𝑊 ≡ 1. The experimental data are best explained qualitatively when both terms are nonzero. (c) 
Illustration of interaction-driven chemical potential stabilization at 𝜈 = 1. Chemical potential 
curve at T=2 K near 𝜈 = 1 is shown. A phase transition associated with flavour symmetry 
breaking occurs before each integer filling factor (except 𝜈 = 4). The exchange energy J 
stabilizes the filled flavour when the filling factor is close to one. (d) Temperature dependence of 
the chemical potential of MATBG from T=2 K to T=70 K, probed with the MLG CNP. Clear 
pinning behaviour at integer filling factors persists up to T=20 K. (e) In-plane magnetic field, 𝐵∥,
dependence of the chemical potential of MATBG at T=4 K and 𝐵⊥=0.7 T, probed with the N=1
MLG LL. The pinning in chemical potential around odd filling factors 𝜈 = ±1 gets intensified as 
𝐵∥ is applied, whereas those at filling factors ±2 do not display significant change. Inset:
Magnetization 𝑀∥ in units of Bohr magneton 𝜇𝐵 per moiré unit cell, which shows that all states
at 𝜈 = ±1, ±2, ±3 are magnetized in an in-plane field. Error bands (blue) correspond to 95% 
confidence interval. (f) Zoom-in of the chemical potential (top) and transport resistance (bottom) 
aligned for comparison, shown for 𝜈 = +1, +2. The same plots for other fillings are shown in 
Extended Data Figure 2. 

Figure 3. Probing the correlated Chern gaps of MATBG in a perpendicular magnetic field. 
(a) Experiment and (b) simulation of the chemical potential versus 𝜈 in MATBG, at 𝐵⊥ from
zero to 6 T. W is the bandwidth used in the simulation (see Supplementary Information). Near
charge neutrality we find gaps that correspond to Landau level filling factors  𝜈𝐿𝐿 = 0, ±2, and
±4, while the pinning of 𝜇 at 𝜈 = 1,2,3 shown in Fig. 2 evolves into topological gaps with Chern



numbers C=3,2,1, respectively, as evident from their slope in magnetic field 𝑑𝑛/𝑑𝐵 = 𝐶/𝜙0, 
where 𝜙0 is the flux quantum. (c) The Hofstadter's butterfly spectrum of TBG up to a flux per 
unit cell of 𝜙0/2 (calculation shown for 1.8°, but spectrum is qualitatively similar for the magic 
angle). The major gaps in the spectrum have Chern numbers of C=0, -1, +1, 0 per flavour, 
respectively. (d) Calculated total Chern number of TBG using the mean-field model with 
Coulomb repulsion and exchange interactions for a flux of 𝜙0/6. The correct Chern number is 
reproduced, both in the Landau levels near the charge neutrality (C=-4,-2,0,2,4, indicated by red 
bars) and in the correlated Chern gaps (C=3,2,1, indicated by the blue bars). The dots above the 
plot show the configuration of the four flavours in each gap. The colouring scheme of the dots 
matches the ones shown in (c). Adding the Chern number of each flavour gives the total Chern 
number. (e) Extraction of energy gaps in the correlated spectrum of MATBG at 𝐵⊥ = 6 T. See 
Extended Data Figure 5 for their dependence on 𝐵⊥. 

Figure 4. Resistivity, electronic compressibility, and diffusivity of MATBG in the strange 
metal regime. (a) Resistivity and (b) inverse electronic compressibility 𝜒−1 = 𝑑𝜇/𝑑𝑛 of 
MATBG versus 𝜈 and temperature. Colour marks show the position of 𝜈 where the line-cuts are 
taken in (c-f). (c) Linear resistivity-temperature behaviour across a range of densities around the 
correlated states, with only a weak dependence of slope on 𝜈. (d) Line-cuts of 𝜒−1 do not show 
significant dependence on T. (e) Effective diffusivity 𝐷∗ = 𝜒−1/𝑒2(𝜌 − 𝜌0), where 𝜌0 is 
obtained by fitting the linear in T range and extrapolating to T=0. (f) 1/D* shows linear trend as a 
function of T. The gray dash line denotes a diffusivity bound 𝐷𝑏𝑜𝑢𝑛𝑑(𝑇) = ℏ𝑣𝐹

2/(𝑘𝐵𝑇), where 
we used a Fermi velocity of 𝑣𝐹 = 6 × 104 m/s. 

 

Methods 
Sample Fabrication 

The multilayer heterostructure consists of one sheet of monolayer graphene (MLG) and twisted 
bilayer graphene (TBG) twisted at a small angle 𝜃 ∼ 1.1°, separated by a thin (~1 nm) hBN 
layer. This sandwich is encapsulated by two h-BN flakes. All flakes were first exfoliated on 
SiO2/Si substrates, and subsequently analyzed with optical microscopy and atomic force 
microscopy to determine their thicknesses and quality. The multilayer heterostructure was 
fabricated by a modified polymer-based dry pick-up technique, where a layer of poly(bisphenol 
A carbonate)(PC)/polydimethylsiloxane(PDMS) on a glass slide fixed on the micro-positioning 
stage was used to sequentially pick up the flakes. The order of the pick-up was hBN-MLG-
hBN(1 nm)-MLG-MLG, where the last two MLG sheets were laser-cut from one MLG flake 
(see Supplementary Information) and twisted by an angle ~1.1°. All hBN layers were picked up 
at 90°C, while the MLG layers were picked up at room temperature. The hBN-MLG-hBN(1 
nm)-MLG-MLG heterostructure was then released on the pre-stacked hBN-Pd/Au back gate at 
175°C. Hall-bar geometry for transport measurements was defined with electron beam 
lithography and reactive ion etching for each of the MLG and MLG-MLG layers. The top gate 
and electrical edge-contacts were patterned with electron beam lithography and thermal 
evaporation of Cr/Au.  

 

 



Measurement Setup 

Electronic transport measurements were performed in a dilution refrigerator with a 
superconducting magnet, with a base electronic temperature of 70 mK. Current through the 
sample, amplified by 107 V/A, and the four-probe voltage, amplified by 1000, were measured 
with SR-830 lock-in amplifiers synchronized at the same frequency between 1~20 Hz. Current 
excitation of 1 nA or voltage excitation of 50~100 μV was used for resistance measurements. We 
measured both MLG and MATBG layers simultaneously for accurate comparison. See 
Supplementary Information for details of the extraction of chemical potential from the data. 

Flavour Symmetry Breaking and Negative Compressibility at 𝝂 = 𝟏 

In Fig. 2c, we schematically illustrated the spontaneous flavour symmetry breaking at 𝜈 = 1 due 
to the Coulomb interactions, and how this generates negative compressibility when a finite J is 
present. Near charge neutrality, as the density is increased, all four flavours are filled at the same 
rate (panel (i)). As 𝜈 starts to approach one, the Coulomb repulsion between different flavours 
starts to surpass the kinetic energy penalty of filling up only one flavour. As 𝜈 reaches a certain 
value (still below 1), a flavour-symmetry-breaking phase transition occurs and all electrons are 
transferred into a single flavour to minimize the Coulomb repulsion9,10 (panel (ii)). From this 
phase transition point all the way to 𝜈 = 1, i.e. while a single flavour is being filled, the U term 
does not have any contribution to the free energy, while the J term decreases the total free energy 
as ∼ −𝐽𝜈2 (see Supplementary Information). This term decreases the chemical potential and
results in a negative inverse compressibility 𝜒−1 ∝ 𝒟−1 − 2𝐽 (𝒟 is the single-particle DOS per
flavour) when 2𝐽 > 𝒟−1. At 𝜈 = 1 (panel (iii)), maximal stabilization by the exchange term J is
reached, and thus the pinning of 𝜇. Further increase in 𝜈 (panel (iv)) populates the other three 
empty flavours and it increases the chemical potential before the next phase transition occurs. 

We note that systems with negative compressibility tend to phase separate in order to minimize 
the total free energy. The observation of a negative compressibility indicates that our system 
might be in a strong Coulomb frustration regime43, which acts to suppress macroscopic phase 
separation that may occur otherwise in an unconstrained system.  

Maxwell's Relations 

Using Maxwell's relations between thermodynamic variables, we can obtain information about 
various thermodynamic quantities by taking different derivatives of the chemical potential. The 
free energy of the system per unit area in the presence of a magnetization can be written as 𝑔 =
𝑢 − 𝑇𝑠 − 𝑀∥𝐵∥, where u, M, s are the internal energy, magnetization, and entropy per area
respectively. u and g satisfy 

𝑑𝑢 =  𝑇𝑑𝑠 + 𝐵∥𝑑𝑀∥  + 𝜇𝑑𝜈, (1) 

 𝑑𝑔 =  −𝑠𝑑𝑇 − 𝑀∥𝑑𝐵∥  + 𝜇𝑑𝜈. (2)



By taking the second derivative of g with respective to (𝜈, 𝐵∥) in different orders, we can obtain
the following Maxwell's relationship, 

(
𝜕𝑀∥

𝜕𝜈
)

𝑇,𝐵∥

 =  − (
𝜕𝜇

𝜕𝐵∥ 
)

𝑇,𝜈

, (3) 

Therefore, we can integrate from the 𝐵∥-derivative of 𝜇 to obtain the change in 𝑀∥ as a function
of density 𝜈, 

𝑀∥ =  𝑀∥(𝜈 = 0)  − ∫ (
𝜕𝜇

𝜕𝐵∥
)

𝑇,𝜈′

 𝑑𝜈′
𝜈

0

 

The extracted 𝜕𝑀∥/𝜕𝜈 and 𝑀∥ versus 𝜈 are shown in Extended Data Figure 6. We extract the
uncertainty (95% confidence interval) of 𝜕𝑀∥/𝜕𝜈 from fitting of 𝜇 with 𝐵∥, and propagate
through the integration to obtain uncertainty in 𝑀∥.

Thermal activation gap analysis 

Thermal activation gap analysis was performed based on the Arrhenius formula 𝑅 ∼
exp(−𝛥/2𝑘𝐵𝑇), where 𝑘𝐵 is the Boltzmann constant and 𝛥 is the gap size. A temperature-
dependent background was removed from the raw resistance 𝑅𝑥𝑥 of MATBG to avoid being
affected by the linear 𝑅𝑥𝑥-𝑇 behaviour in MATBG26. The corrected quantity is denoted by
𝑅𝑀𝐴𝑇𝐵𝐺

∗  and shown in Extended Data Fig. 3a-b. By fitting the gaps as a function of the in-plane 
magnetic field 𝐵∥ to 𝛥 = 𝑔𝜇𝐵𝐵∥, where 𝜇𝐵 is the Bohr magneton, we find effective transport g-
factors of ~1.31 for the 𝜈 = +2 state and ~0.57 for the 𝜈 = +1 state, as shown in Extended Data 
Fig. 3c. 

Methods References 
43. Ortix, C., Lorenzana, J. & Di Castro, C. Coulomb-Frustrated Phase Separation Phase

Diagram in Systems with Short-Range Negative Compressibility. Phys. Rev. Lett. 100,
246402 (2008).

Data Availability Statement 
The data that support the current study are available from the corresponding authors upon 
reasonable and well-motivated request. 

Extended Data Figure Legends 



Extended Data Figure 1. Superconductivity and Landau fan diagram of MATBG. (a) 
Superconducting curves for 𝜈 = −2 − 𝛿 and +2 + 𝛿 domes of MATBG. Maximum 𝑇𝑐~2.7 K is
determined from 50% normal resistance of the 𝜈 = −2 − 𝛿 curve. (b) Landau fan diagram of 
MATBG at 1 K. The CNP shows the main sequence 𝜈𝐿𝐿 = ±4, ±8, … and broken symmetry
states 𝜈𝐿𝐿 = −1, ±2, ±3. There are fans from 𝜈 = ±2, where the sequence 𝜈𝐿𝐿 = +2, +4, +6
and 𝜈𝐿𝐿 = −2 are seen, respectively. We also find transport evidence of a correlated Chern gap
with Chern number C=3 from 𝜈 = +1.  

Extended Data Figure 2. In-plane magnetic field dependence of 𝝁 and 𝑹𝒙𝒙 at (a) 𝝂 = −𝟐,
(b) 𝝂 = −𝟏, and (c) 𝝂 = +𝟑. (a-b) The hole-doped side features are qualitatively similar to the
features on the electron-doped side, but weaker. Note that the ‘dip’ in 𝜇 on the electron-doped
side is analogous to the ‘peak’ on the hole-doped side. For 𝜈 = −1, the peak in 𝑅𝑥𝑥 and the
‘peak’ feature in 𝜇 enhance in 𝐵∥. For 𝜈 = −2, the peak in 𝑅𝑥𝑥 weakens upon applying 𝐵∥, while
the feature in 𝜇 does not exhibit a noticeable change. (c) For 𝜈 = +3, the trend in 𝜇 is similar to 
that for 𝜈 = +1, i.e. the ‘dip’ feature is enhanced with 𝐵∥, though the dependence is generally
weaker. There is no noticeable peak in 𝑅𝑥𝑥 at 𝜈 = +3.

Extended Data Figure 3. Thermal activation gap analysis and g-factors of the correlated 
states. (a-b) Fitting of temperature-dependent resistance using the Arrhenius formula 𝑅∗ ∼
exp(−Δ/2𝑘𝐵𝑇) at 𝜈 = +1, +2, respectively, for in-plane magnetic fields 𝐵∥ = 0~11 T. 𝑅∗ is the
background-removed resistance of MATBG. (c) 𝐵∥-dependence of the thermal activation gap Δ.
The extracted g-factors are ~0.57, ~1.31 for the 𝜈 = +1, +2 states, respectively. 

Extended Data Figure 4. Overlaying the inverse compressibility and the superconducting 
dome, and full-range chemical potential data. (a) Temperature dependence of inverse 
compressibility 𝑑𝜇/𝑑𝑛 for T=2~70 K at B=0 T. Negative compressibility near 𝜈 = +1, +2 
persists up to 𝑇 ∼ 20 K. (b) Comparison between 𝑑𝜇/𝑑𝑛 and superconducting 𝑇𝑐 dome (red
points, 20% normal-state resistance) near 𝜈 = −2 − 𝛿. The 𝑇𝑐 dome occurs near maximum
𝑑𝜇/𝑑𝑛, which is unexpected within a weak coupling BCS-type mechanism for the 
superconductivity. (c) Same data as Fig. 2d but showing the chemical potential beyond 𝜈 = ±4. 

Extended Data Figure 5. Perpendicular magnetic field dependence of Landau level and 
Chern gaps. (a-e) Gap extraction from the chemical potential curves at 𝐵⊥ = 0~6 T. (f-g)
Magnetic field dependence of (f) the Landau level gaps and (g) the correlated Chern gaps. While 
the 𝜈𝐿𝐿 = ±4 , 0 Landau level gaps have increasing trend with 𝐵⊥, the 𝜈𝐿𝐿 = ±2  gaps show
relatively weak dependence. Similarly, the three correlated Chern gaps also exhibit weak 
dependence on 𝐵⊥. The reason why the Chern gap at 𝜈 = 2 + 2𝜙/𝜙0 is larger than the other two
might be attributed to the difference in their magnetic ground states, with contributions from 
both orbital and spin degrees of freedom.  

Extended Data Figure 6. In-plane magnetization of MATBG. (a) (𝜕𝑀∥

𝜕𝜈
)

𝑇,𝐵∥

=  − (
𝜕𝜇

𝜕𝐵∥ 
)

T,ν

versus 𝜈. Peaks are visible near 𝜈 = ±1. T=4 K. (b) Magnetization 𝑀∥ from integrating the curve
in (a). 𝑀∥ persists near all filling factors 𝜈 = ±1, ±2, ±3. The error bands correspond to a
confidence level of 95%. 
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