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In the 1950's, Pomeranchuk1 predicted that, counterintuitively, liquid 3He may 12 

solidify upon heating, due to a high excess spin entropy in the solid phase. Here, using 13 

both local and global electronic entropy and compressibility measurements, we show 14 

that an analogous effect occurs in magic angle twisted bilayer graphene2–6. Near a 15 

filling of one electron per moiré unit cell, we observe a dramatic increase in the 16 

electronic entropy to about ૚࡮࢑ per unit cell. This large excess entropy is quenched by 17 

an in-plane magnetic field, pointing to its magnetic origin. A sharp drop in the 18 

compressibility as a function of the electron density, associated with a reset of the 19 

Fermi level back to the vicinity of the Dirac point, marks a clear boundary between 20 

two phases. We map this jump as a function of electron density, temperature, and 21 

magnetic field. This reveals a phase diagram that is consistent with a Pomeranchuk-22 

like temperature- and field-driven transition from a low-entropy electronic liquid to a 23 

high-entropy correlated state with nearly-free magnetic moments. The correlated 24 

state features an unusual combination of seemingly contradictory properties, some 25 

associated with itinerant electrons, such as the absence of a thermodynamic gap, 26 

metallicity, and a Dirac-like compressibility, and others associated with localized 27 

moments, such as a large entropy and its disappearance with magnetic field. 28 

Moreover, the energy scales characterizing these two sets of properties are very 29 

different: whereas the compressibility jump onsets at ࢀ ∼ ૜૙۹, the bandwidth of 30 

magnetic excitations is ∼ ૜۹ or smaller. The hybrid nature of the new correlated state 31 
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and the large separation of energy scales have key implications for the physics of 32 

correlated states in twisted bilayer graphene. 33 

Systems of strongly interacting fermions exhibit a competition between 34 

localization, minimizing the potential energy, and itineracy, minimizing kinetic energy. 35 

The advent of two-dimensional moiré systems, such as magic angle twisted bilayer 36 

graphene2–6 (MATBG), allows studying this physics by controlling the ratio between the 37 

electronic interactions and bandwidth in a highly tunable way. When this ratio is large,  38 

electrons tend to localize and form Mott insulators7,8. When the bandwidth dominates, 39 

a Fermi liquid state is formed in which electrons are itinerant. MATBG is at the boundary 40 

between these two extremes, showing  a host of fascinating electronic phases, including 41 

correlated insulators3,9,10, Chern insulators11–13, superconductors4,9,10, and 42 

ferromagnets14,15. Scanning tunneling spectroscopy16–19 and electronic compressibility 43 

measurements20,21 indicate that in this system the strengths of the Coulomb interaction 44 

and the kinetic energy are indeed comparable. In this regime, there is an inherent 45 

tension between localized and itinerant descriptions of the physics. Moreover, the 46 

topological character22–24 of the nearly-flat bands in MATBG implies that a simple 47 

“atomic” description, in which electrons are localized to individual moiré lattice sites, 48 

may not be appropriate. Instead, a picture analogous to that of quantum Hall 49 

ferromagnetism has been proposed25–27. Understanding this interplay between itineracy 50 

and localization, and the new physics that emerges from it, remains a major challenge. 51 

In this work we find that, surprisingly, the correlated state in MATBG above a filling 52 

of one electron per moiré site has a hybrid nature, with some properties resembling 53 

those of an itinerant system, and others resembling those of localized electrons. At 54 

temperatures of a few Kelvin we measure unusually large excess entropy, which is 55 

rapidly suppressed by a moderate in-plane magnetic field. This suggests that even at 56 

such low temperatures, there are strongly fluctuating magnetic moments in the system, 57 

a behavior typically associated with local moments. On the other hand, our 58 
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measurements find that this state is metallic and has no thermodynamic gap, naturally 59 

fitting an itinerant picture.  60 

The presence of fluctuating moments at temperatures much below the electronic 61 

bandwidth indicates the existence of a new, anomalously small energy scale associated 62 

with the bandwidth of magnetic excitations, which is an order of magnitude smaller 63 

than the scale where a jump appears in the compressibility21,28. This jump marks the 64 

boundary between the new state at filling factor ߥ > +1 and the state at lower 65 

densities. By tracking the dependence of this boundary on temperature and magnetic 66 

field, we find that it exhibits an electronic analogue29–32 of the famous Pomeranchuk 67 

effect1 in 3He. In that system, a transition from a Fermi liquid to a solid occurs upon 68 

increasing temperature, driven by the high nuclear spin entropy of the atoms in the 69 

solid. Similarly, we find that the new state above ߥ = +1 is favored relative to the 70 

metallic state at ߥ < +1 upon raising the temperature, due the former’s high magnetic 71 

entropy. The transition near ߥ = +1	can also be driven by an in-plane magnetic field 72 

that polarizes the free moments. (A related effect near ߥ = −1 was proposed very 73 

recently, on the basis of transport measurements33.) The hybrid state observed here, 74 

with itinerant electrons coexisting with strongly fluctuating magnetic moments, calls for 75 

a new understanding of electron correlations in MATBG. 76 

Our data is measured using two independent techniques on two conceptually 77 

different devices. The bulk of the results are obtained from local measurements of the 78 

electronic entropy34,35 and compressibility using a scanning nanotube single-electron 79 

transistor (SET) on hBN-encapsulated twisted bilayer device (Device 1, Fig. 1a). We focus 80 

on a large (5μm × 4μm) region with an extremely homogenous twist angle that is close 81 

to the theoretical magic angle ߠ = 1.130 ± 0.005. Similar results are obtained from 82 

global entropy measurements using a monolayer graphene sensor (Device 2, Fig. 3a). 83 

Both methods have been described elsewhere21,36. 84 

 85 

Electronic compressibility and transport 86 
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The inverse compressibility, ݀ߤ/݀݊, measured in Device 1 at ܶ = 15K as a 87 

function of the filling factor, ߥ = ݊/(݊௦/4)  (where ns corresponds to four electrons per 88 

moiré unit cell), is shown in Fig. 1b. As reported previously21, sharp jumps in ݀ߤ/݀݊ are 89 

observed close to integer ߥ’s, reflecting Fermi surface reconstructions. These were 90 

termed Dirac revivals since they were interpreted as resets of partially filled energy 91 

bands back to near the Dirac point, leading to the decreased compressibility. The 92 

cascade of revivals is already very prominent at this relatively high temperature. 93 

Measurements of ߩ௫௫ vs. ߥ at various temperatures (Fig. 1c) show insulating behavior at 94 ߥ = 2,3 and semi-metallic behavior at ߥ = 0. As previously noted37, ߩ௫௫ shows a step-95 

like increase across ߥ ≈ 1, which gradually disappears with decreasing temperature, 96 

markedly different than the behavior at other integer 97 .ݏ′ߥ 

The unusual physics near ߥ = 1 is revealed from the dependence of ݀ߤ/݀݊ on 98 

temperature, ܶ, and parallel magnetic field, ܤ∥. At low temperature and ܤ∥ = 0T (Fig. 99 

2a), the jump in ݀ߤ/݀݊ occurs at ߥ slightly larger than 1. Increasing the temperature 100 

moves the jump towards a lower ߥ, and surprisingly, increases the magnitude of the 101 

jump rather than smearing it. Similar measurement with ܤ∥ = 12T at low ܶ (Fig. 2b) 102 

exhibits a much larger jump, which is also closer to ߥ = 1. With increasing temperature, 103 

this jump remains close to ߥ = 1, but oppositely to the ܤ∥ = 0T case, reduces its 104 

amplitude and increases its width. 105 

 106 

Local measurements of electronic entropy 107 

The chemical potential, ߥ)ߤ, ܶ) (measured relative to that at charge neutrality), 108 

can be obtained by integrating ݀ߤ/݀݊ over density (Fig. 2c,d). Visibly, ߤ depends 109 

strongly on ܶ  for a range of ߥ′s. This is clearly seen when we plot ߤ vs. ܶ at two 110 

representative ߥ′s (Fig. 2c, inset). At ߥ =  is practically independent of ܶ (blue). In 111 ߤ ,0.2

contrast, at ߥ = 0.9 (red) ߤ is nearly constant until ܶ ∼ 4K, and then decreases 112 

approximately linearly with ܶ. At ߥ >  is again nearly temperature independent. 113 ߤ ,1.15

Comparing ߤ at ܤ∥ = 0T (Fig. 2c) and ܤ∥ = 12T (Fig. 2d) reveals a clear contrast: 114 
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whereas for ܤ∥ = 0T, ߤ is a decreasing function of temperature for 0.4 < ߥ < 1.15, for 115 ܤ∥ = 12T, ߤ decreases with ܶ for ߥ < 0.9 and increases for ߥ > 0.9.  116 

 These measurements allow us to directly determine the entropy of the system, by 117 

integrating Maxwell’s relation: ቀడ௦డఔቁ் = −ቀడఓడ்ቁఔ, to obtain ߥ)ݏ, ܶ) (where ݏ is the 118 

entropy per moiré unit cell). For more details on this procedure see Supplementary 119 

Information section SI1. Fig. 2e shows (ߥ)ݏ at ܶ ≈ 10K (obtained from the slope of ߤ vs. 120 ܶ in the range ܶ = 4.5K − 15K), for ܤ∥ 	= 0T, 4T,	 8T, and 12T. At ܤ∥ = 0T the entropy 121 

is small at low ߥ′s, climbs close to ߥ = 1, remains roughly constant between ߥ = 1 and 122 2 at ݏ ≈ 1.2݇஻, drops rapidly near ߥ = 2, and decreases towards zero after ߥ = 3. 123 

Clearly, the ߥ  dependence of the entropy is qualitatively different from that of the 124 

compressibility: whereas the latter drops sharply near ߥ = 1 (Fig. 2a), the former 125 

remains at a high value.  126 

An important insight into the origin of this large entropy is given by its magnetic 127 

field dependence. As seen in Fig. 2e, the entropy above ߥ = 1 depends strongly on 128 .∥ܤ 

In particular, at ܤ∥ = 12T, most of the entropy between ߥ = 1 and 2 is quenched. The 129 

inset shows ܤ)ݏ∥ = 0T) − ∥ܤ)ݏ = 12T) vs. ߥ (the purple shading indicates errorbars; 130 

see Supplementary Information SI1). The entropy difference increases sharply near 131 ߥ = 1, reaching a maximum of 0.85 ± 0.1݇஻ between ߥ = 1 and 2. To appreciate the 132 

significance of this value, recall that an entropy of ݇஻ln(2) ≈ 0.7݇஻ corresponds to two 133 

degenerate states on each moiré unit cell. Moreover, in a Fermi liquid, we would expect 134 

a much weaker change of the entropy with ܤ∥ (Supplementary Information SI4), of the 135 

order of ݇஻ times the ratio of the Zeeman energy (about 1meV at ܤ∥ = 12T) to the 136 

bandwidth, estimated to be ܹ ∼ 30meV (see below). Finally, we observe that at 137 ܤ∥ = 12T the entropy shows a cascade of drops following each integer ߥ, similar to the 138 

revival drops observed in the compressibility (Supplementary Info. SI5), reproduced by 139 

the mean-field calculation (Supplementary Info. SI3). The dramatic quenching of entropy 140 

by moderate ܤ∥ strongly suggests a magnetic origin.  141 

 142 
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Global measurements of the entropy 143 

To test the robustness of our results, we measured the entropy in a completely 144 

different setup, in which a sheet of monolayer graphene senses the chemical potential 145 

of MATBG, averaged over the entire device36 (Fig. 3a). Fig. 3b shows the entropy 146 

extracted in three different temperature ranges. We see (inset) that the globally 147 

measured entropy for ܶ = 4K − 16K is in good agreement with the locally measured 148 

one over a similar range of temperatures, both in the overall shape, the magnitude of 149 (ߥ)ݏ, and the detailed features. At elevated temperatures, the minimum in the entropy 150 

at ߥ = 0 gradually fills in, evolving from a double-dome structure at low ܶ 151 

(corresponding to the valence and conduction flat bands) to a single dome at high ܶ. 152 

This dependence is qualitatively reproduced by a naïve calculation for a system of non-153 

interacting electrons, whose density of states rises linearly from the charge neutrality 154 

point until the band edges (Fig. 3c). The merging of the domes in (ߥ)ݏ occurs when the 155 

temperature exceeds a fraction of the bandwidth. Calibrating the bandwidth using the 156 

measured entropy at ܶ ≈ 55K gives ܹ ≈ 30meV (where ܹ is the full bandwidth – 157 

from valence band bottom to conduction band top), in rough agreement with STM16–19 158 

and compressibility36 experiments. This free-electron picture is of course invalid at low 159 

temperatures, where interactions are important. The measured (ߥ)ݏ in the valence 160 

band is approximately a mirror image of (ߥ)ݏ in the conduction band (Fig. 3b), although 161 

it is smaller and with less pronounced features. This is consistent with the weaker  162 ݀ߤ/݀݊ revivals observed in the valence band relative to the conduction band21,36 163 

(Supplementary Info. SI9). 164 

 165 

Mapping the phase diagram 166 

So far, we have shown a dramatic change in the magnetic entropy and 167 

compressibility near ߥ = 1. This change may be due to a continuous buildup of 168 

electronic correlations.  Alternatively, it can be interpreted as an underlying first-order 169 

phase transition between two distinct phases. Naively, one would then expect a 170 



 

 

7 
 
 

discontinuous jump in thermodynamic properties and hysteretic behavior across the 171 

transition, which are not observed. However, we note that a true first-order phase 172 

transition is forbidden in two dimensions in the presence of disorder or long-range 173 

Coulomb interactions38, as these broaden the transition into a mesoscale coexistence 174 

region (Supplementary Info. S10). Experimentally, although the revival transition is very 175 

sharp and may be consistent with Coulomb- and/or disorder- smeared 1st order 176 

transition, we cannot rule out a sharp crossover or a higher order phase transition. 177 

Nevertheless, the sharpness of the rise of ݀ߤ/݀݊ at the revival transition allows us to 178 

precisely track its filling factor, ߥ =  ோ(Fig. 4a), and map a phase diagram, which is 179ߥ

naturally explained when this feature is interpreted as a proxy for a first-order 180 

transition.  181 

The measured ߥோ vs. ܤ∥ and ܶ forms a surface in the (ߥ, ,∥ܤ ܶ) space (Fig. 4b) 182 

whose projections onto the (ν, ,and (ν (∥ܤ ܶ) are shown in Figs. 4c,d. At ܶ = 2.8K and 183 

at low ߥ ,∥ܤோ depends weakly on ܤ∥, but decreases linearly above ܤ∥ ≈ 4T (Fig. 4c, 184 

blue). A similar crossover is observed at higher temperatures, but with a crossover 185 ∥ܤ 

that increases with temperature. The ܶ dependence of ߥோ at ܤ∥ = 0T (Fig. 4d) is linear 186 

at low temperatures and curves up at higher temperatures. As ܤ∥ increases, the curve 187 

shifts towards smaller ߥ’s, and simultaneously its slope at low temperatures changes 188 

sign. At ܤ∥ = 12T, ߥோ first increases with ܶ, reaches a maximum at ܶ ≈ 9K, and then 189 

decreases. 190 

The phenomenology seen in Figs. 4b-d can be understood in terms of a first-order 191 

phase transition at ߥ =  ோ, and a ‘free moment’ 192ߥ ோ between a Fermi liquid phase belowߥ

phase above it. The latter has a high concentration of free moments (about one per 193 

moiré site), coexisting with a low density of itinerant electrons. Within this framework, 194 

the shift of ߥோ as a function of ܤ∥ and ܶ reflects the magnetization and entropy 195 

differences between the two neighboring phases.  196 

At ܤ∥ = 0T, the free moment phase has a higher entropy than the Fermi liquid, 197 

due to thermal fluctuations of the moments. Hence, the former becomes entropically-198 
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favorable at high temperatures. This explains the observed decrease of ߥோ with 199 

increasing ܶ at low fields (Fig. 4d). Raising temperature at fixed ߥ may therefore drive a 200 

transition from the Fermi liquid to the free moments phase, an electronic analogue of 201 

the Pomeranchuk effect. As ܤ∥ increases and the Zeeman energy exceeds the 202 

temperature, the moments become nearly fully polarized and their entropy is quenched 203 

(as is observed directly in Fig. 2e). Consequently, at low temperatures and sufficiently 204 

high fields, the Fermi liquid phase is favored by raising the temperature. The trend 205 

reverses once the temperature exceeds the Zeeman energy. This explains the non-206 

monotonic behavior of ߥோ as a function of ܶ, seen at ܤ∥ = 12T in Fig. 4d. The main 207 

features of the phase boundary are qualitatively reproduced in a thermodynamic model 208 

of the two phases (Supplementary Info. SI7 and insets of Figs. 4b,c,d). Note that the 209 

experiment probes moments that couple to in-plane field. This includes Zeeman-210 

coupled spins and may also include the valleys if their in-plane orbital moment is non-211 

zero. 212 

 213 

Discussion 214 

The observation of free magnetic moments at surprisingly low temperatures has 215 

profound implications for the physics of MATBG. Low energy magnetic fluctuations are 216 

destructive for superconductivity and may be the limiting factor for the superconducting 217 

௖ܶ. Moreover, increased scattering from fluctuating moments can account for the 218 

“strange metal” behavior reported over a broad range of temperatures39,40.  219 

An important question raised by our observations regards the origin of the free 220 

moments. Soft collective modes have been predicted in insulting states of MATBG25–27, 221 

but our experiments show metallic behavior near ߥ = 1. Moreover, the energy scale 222 

associated with the appearance of free moments is strikingly low (3K	or	less), much 223 

below the microscopic energy scales in the system. Understanding the state near ߥ = 1, 224 

that combines behaviors associated with electron localization and itineracy, and its 225 

surprisingly low onset temperature, poses a key challenge for the theory of MATBG.  226 
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Figure 1: Experimental setup and device characterization. a. A nanotube-based single 356 

electron transistor (SET) is used to measure the local electronic compressibility and 357 

entropy of magic angle twisted bilayer graphene (MATBG). The MATBG is encapsulated 358 

between top and bottom h-BN layers (not shown) and has a metallic back-gate. By 359 

monitoring the current through the SET, we track changes in the MATBG chemical 360 

potential, ݀ߤ, in response to a density modulation, ݀݊, produced by an a.c. voltage on 361 

the back-gate21, ߜ ஻ܸீ . A d.c. back-gate voltage, ஻ܸீ , sets the overall carrier density in 362 

the MATBG, n. Some of the measurements are performed in a parallel magnetic field, 363 ∥ܤ 

(indicated). b. Inverse compressibility, ݀ߤ/݀݊, measured as a function of the moiré 364 

lattice filling factor, ߥ = ݊/(݊௦/4), at ܶ =  ௦ is the density that correspond to 4 365݊) ܭ15

electrons per moiré site). Measurements are done on a large spatial domain (~5݉ߤ ߠ ,throughout which the twist angle is extremely homogenous (݉ߤ4 366× = 1.130∘ ± 0.005 367 

(measured by spatial mapping of the ஻ܸீ  that corresponds to ݊௦, as in Refs. 21,41). As 368 

seen previously21, a jump of ݀ߤ/݀݊ appears near all integer filling factors. This jump 369 

corresponds to a Fermi surface reconstruction, in which some combination of the 370 

spin/valley flavors filling is reset back to near the charge neutrality point, and 371 

correspondingly ݀ߤ/݀݊ shows a cascade of sawtooth features as a function of density. 372 

The trace is measured at ܶ = 15K, showing that even at this high temperature this 373 

sawtooth cascade is well developed c. Two-probe resistance, ܴ, measured as a function 374 

of ߥ  and temperature. Notice that unlike the inverse compressibility, which measures a 375 

local quantity, the resistance gives an averaged result over domains with different twist 376 

angle. Therefore, the resistance maxima are slightly shifted from the usual integer 377 ߥ 

values, probably because another domain with a small difference in twist angle 378 

dominates the transport characteristics globally. 379 

 380 

Figure 2: Measurement of large magnetic entropy above	ࣇ = ૚. a. Inverse 381 

compressibility,	݀ߤ/݀݊, as a function of ߥ, near	ߥ = 1, measured at zero parallel 382 

magnetic field,	ܤ∥ = 0ܶ, and at several temperatures. With increasing	ܶ, the jump in 383 
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 and becomes stronger. b. Same measurement done 384 ߥ moves toward lower ݊݀/ߤ݀

at	ܤ∥ ≈ 12ܶ. Here, opposite to the zero-field case, increasing ܶ reduces the magnitude 385 

of the ݀ߤ/݀݊ jump, as expected from thermal smearing. c. The chemical potential	386 (ߥ)ߤ 

(relative to that of the charge neutrality point) at	ܤ∥ = 0ܶ, obtained by integrating the 387 ݀ߤ/݀݊ signal in panel a with respect to	݊. Inset: ߤ(ܶ, (ߥ − ܶ)ߤ = ,ܭ2.8 ߥ for (ߥ = 0.2 388 

(blue) and ߥ = 0.9 (red). At ߥ = 0.2 the chemical potential is nearly temperature 389 

independent, whereas at ߥ = 0.9 it is roughly constant until ܶ ∼ 4K and then start 390 

decreasing approximately linearly with ܶ. d. Similar to c, but at	ܤ∥ = 12ܶ. In contrast to 391 

the zero-field case, here, below ߥ ≈ ߥ decreases with ܶ while above ߤ ,	0.9 ≈  392 ߤ 0.9

increases with ܶ. e. The electronic entropy in units of ݇஻ per moiré unit cell, as a 393 

function of ߥ at ܶ ≈ 10K and at various parallel magnetic fields, ܤ∥ = 0,4,8,12T. To 394 

obtain the entropy we determine the partial derivative (߲ߤ/߲ܶ)ఔ,஻∥  from a linear fit to 395 

the measured ߤ vs. ܶ in the range	ܶ = 4.5K − 15K. The entropy per moiré cell is then 396 

obtained by integrating  Maxwell’s relation: (߲ߥ߲/ݏ)்,஻∥ = ∥ఔ,஻(߲ܶ/ߤ߲)−  , over ߥ (see 397 

Supp Info. for details) . At ܤ∥ = 0 the entropy climbs rapidly near ߥ = 1 to a value of 398 1.2݇஻ per moiré cell. Inset: the difference between the entropies at low and high fields, 399 ܤ)ݏ∥ = 0T) − ∥ܤ)ݏ = 12T). The purple shading shows the estimated error bar.  400 

 401 

 Figure 3: Temperature dependence of the Entropy. a. Experimental setup for 402 

measuring the global entropy, averaged over the entire device36. The device consists of 403 

MATBG and a monolayer graphene (MLG) sensor layer, separated by an ultrathin (1	݊݉) 404 

layer of h-BN (not shown), as well as top and bottom metallic gates.  By balancing the 405 

electrochemical potential of the adjacent layers in the device, we can obtain the 406 

relationship between the density and chemical potential of MATBG and MLG and the 407 

gate voltages applied to the system. In the special case where the density of MLG is 408 

zero, i.e. at its charge neutrality point, the chemical potential of MATBG is directly 409 

proportional to the voltage applied to the top gate. This technique allows us to reliably 410 

extract the chemical potential and entropy of MATBG at temperatures up to 70 K.  b. 411 
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The measured entropy, in units of ݇஻ per moiré unit cell, as a function of ߥ at three 412 

different temperature ranges (top legend). The entropy derivative, ݀ߥ݀/ݏ, is obtained 413 

from a linear fit to ߤ vs. ܶ in the corresponding temperature range, and is then 414 

integrated over ߥ to yield the entropy per moiré unit cell (similar to Fig. 2e). Inset: 415 

comparison between the ߥ dependences of the entropies, measured at the low 416 

temperature range, obtained from local and global measurements. c. The entropy as a 417 

function of ߥ and ܶ calculated for a system of four degenerate non-interacting Dirac 418 

bands (whose density of states climbs linearly with energy from the Dirac point to the 419 

end of the conduction or the valence band). The color-coded lines show the curves 420 

whose temperatures correspond to the mean of the temperature ranges of the 421 

experimental curves. The gray lines represent the entire evolution from zero 422 

temperature to high temperature, where the entropy saturates on a value of 423 8݈݊(2) ≈ 5.5, where the factor 8 reflects the total number of energy bands. A 424 

bandwidth of ܹ = 30ܸ݉݁is chosen such that the calculated value of the entropy at the 425 

highest temperature roughly matches the one obtained from the measured curve at the 426 

same temperature.  427 

 428 

Figure 4: Experimental phase diagram. a. The inverse compressibility, ݀429 ,݊݀/ߤ 

measured as a function of ߥ	near ߥ = 1, at several values of parallel magnetic field, 430 .∥ܤ 

We track the filling factor that corresponds to the center the jump in ݀ߤ/݀݊ (labeled 431 ߥோ	). Visibly, the application of ܤ∥ pushes ߥோ	 to lower values. b. Measured ߥோ	as a 432 

function of ܤ∥ and ܶ, plotted as dots in the (ߥ, ,∥ܤ ܶ) space (the dots are colored by their 433 

temperature). The dashed lines are polynomial fits to the dots at constant ܤ∥ or 434 

constant ܶ. Inset: the same surface calculated from a simple model that assumes a 435 

transition between a Fermi liquid and a metallic phase that contains one free moments 436 

per moiré site (see text). c. Projection of the data in panel b onto the (ߥ,  plane, 437 (∥ܤ

showing the dependence of ߥோ	on ܤ∥ for various temperatures. At low fields, ߥோ	is 438 

independent of field but it becomes linear in ܤ∥ at high fields, a behavior expected from 439 
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the field polarization of free moments (see text). Inset: curves calculated from the 440 

model. d. Projection onto the (ν, ܶ) plane, showing the dependence of ߥோ	 on ܶ for 441 

various magnetic fields. At ܤ∥ =  is linear in ܶ at small ܶ ‘s and then curves up at 442	ோߥ ,0ܶ

higher ܶ’s. At high magnetic field, the dependence of ߥோ on ܶ becomes non-monotonic. 443 

Inset: curves calculated from the model.  444 

 445 

Data availability: The data in the main text is available in 446 

https://github.com/erezberg/pomeranchuk_data 447 

The code used in this work is available in 448 

https://github.com/erezberg/pomeranchuk_tblg_theory 449 

 450 
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SI1. Extraction of the entropy 24 

In both the local and global measurements, we determine the entropy using a Maxwell 25 

relation, relating the partial derivatives of the entropy with respect to the filling factor to that 26 

of the chemical potential with respect to temperature:  27 (߲ߥ߲/ݏ)்,஻∥	 =  ஻∥,ఔ(߲ܶ/ߤ߲)−

where ݏ is the entropy per moiré unit cell. In the global measurements, we probe the chemical 28 

potential of the MATBG directly using a monolayer graphene sensor. The measurement 29 

determines the chemical potential relative to that at the charge neutrality point (CNP): 30 Δߥ)ߤ, ܶ, (∥ܤ = ,ߥ)ߤ ܶ, (∥ܤ − ,ܶ)஼ே௉ߤ  .(∥ܤ
In the local measurements, we use a nanotube single electron transistor to measure the inverse 31 

compressibility and integrate it over the density, to obtain the same quantity:  32 Δߥ)ߤ, ܶ, (∥ܤ = ,ߥ)ߤ ܶ, (∥ܤ − ,ܶ)஼ே௉ߤ (∥ܤ = න ஻∥,்௡(߲݊/ߤ߲)
଴ ݀݊ᇱ. 

In these measurements, the inverse compressibility is probed at typical frequencies of few 33 

hundred Hz, and with an excitation ߜ ஻ܸீ = 40ܸ݉ on the back gate, chosen to be small enough 34 

as to not smear essential features.  35 

The entropy then follows from: 36 s(ߥ, ܶ, (∥ܤ = න ఔ	஻∥,்(ߥ߲/ݏ߲)
଴ ᇱߥ݀ = −න ஻∥,ఔఔ(߲ܶ/ߤ߲)

଴  ᇱߥ݀
= −න ݀(Δߤ)݀ܶఔ

଴ ᇱߥ݀ − න ஼ே௉݀ܶఔߤ݀
଴  ᇱߥ݀

The first term provides the ߥ-dependent part of the entropy. The second one, which we do not 37 

measure directly, adds a linear term in ߥ. The value of this constant is determined by making 38 

the assumption that inside the gap separating the conduction flat band and the higher 39 

dispersive band, namely at ߥ = 4, the electronic entropy is zero. To see why this assumption is 40 

justified we note that inside a gap, the electronic entropy is given by ݏ = 16݇஻ ா೒ௐ ݁ି ಶ೒మೖಳ೅  41 

(where ܹ is the width of the flat band, and ܧ௚ is the size of the gap to the dispersive band). Our 42 

compressibility measures directly the size of the gap to be ܧ௚ ≈ 30ܸ݉݁, and estimate the 43 

bandwidth to be of similar magnitude  ܹ ≈ 30 − 40ܸ݉݁. The entropy in such gap at  ܶ ≈ 10K 44 
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is ݏ ≈ 4 ∙ 10ି଻݇஻, making our assumption well justified for the relevant temperatures reported 45 

in the paper. 46 

 47 

We note that the bandwidth of the flat bands obtained from this fit is significantly larger than 48 

the theoretical predications, and that this is consistent with the large bandwidths observed in 49 

all existing experiments: STM experiments (Ref 16-19 in the main text) give bandwidths in the 50 

range of 22ܸ݉݁ − 55ܸ݉݁ and compressibility measurements (Ref 21, 26 in main text) give 51 40ܸ݉݁ − 55ܸ݉݁. The somewhat larger estimate of bandwidth from compressibility, might 52 

reflect the fact that when the mixing to the high-energy dispersive bands is not negligible, the 53 

bandwidth extracted from compressibility may increase slightly by the effects of interactions. 54 

 55 

Fig. S1a shows the derivative of the entropy per electron with respect to ߥ for three different 56 

temperature ranges, from the measurements done in Device 2.  using the global 57 

measurements. We removed a constant background in ds/d(ߥ) ߥ to account for the variation of 58 ߤ with T at charge neutrality, such that the entropy at ߥ = ±4 is zero. For each temperature 59 

range, ߤ was assumed to be linearly dependent on T at a given ߥ. The confidence bound of 95% 60 

is shown for this linear fitting process. The entropy obtained after integration is shown in Fig. 61 

S1b. The error highlighted bands show the propagated uncertainty in this integration process.  62 

 63 
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Fig. S1: Extraction of entropy in Device 2 for different temperatures. (a) Derivative of entropy with respect to 64 ߥ 
obtained from Maxwell’s relation (߲ߥ߲/ݏ)்,஻∥	 =  ஻∥,ഌfor three temperature ranges spanning 4 K to 70 K. 65(߲ܶ/ߤ߲)−

(b) Entropy change ݏ߂ per moiré unit cell with respect to the band insulators at ߥ = ±4. 66 

 67 

In the scanning SET measurements, we get an additional small component of parasitic 68 

capacitance between the SET and the back-gate. This results from the fact that our SET scans at 69 

a finite height (hundreds on nm's) above the MATBG. This parasitic capacitance adds a 70 

background to the measured inverse compressibility of the order of ݀ߤ/ܸ݀ < 10ିସ. In the 71 

estimation of the entropy this gets doubly integrated yielding a term that depends quadratically 72 

on ߥ. We remove this term by assuming that the entropy at ߥ = 0 is also zero (in addition to 73 

assuming it is zero at ߥ = 4 as discussed above). As seen in the global entropy measurements 74 

(Fig. 3b and S1b), the entropy curve that correspond to the temperature range ܶ = 4K − 16K 75 

(blue) shows that the entropy at ߥ = 0 is smaller than 0.1݇஻. Since local entropy measurements 76 

are performed only in this temperature range, the assumption that ݏ = 0 at ߥ = 0 is justified. 77 

 To determine the uncertainty in the local measurements of the entropy (Fig. 2e in the 78 

main text), we first extract the noise level in our measured ݀ߤ/݀݊. We then add to our 79 

measured compressibility signal randomly distributed noise with the experimental noise 80 

variance and see how it changes the resulting entropy curve. Repeating this over a statistically 81 

significant instances of random noise gives us the error bars in our determined entropy, which 82 

are shown in Fig. S2, for the traces taken at different parallel magnetic fields (as in Fig. 2e in the 83 

main text). 84 
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 85 

Fig. S2: Errorbars of the measured local entropy. Solid lines show ݏ vs. ߥ  for serval values of ܤ∥. The shaded bands 86 
around each curves give the 1 sigma errorbars (see the text in this Supplementary section for details).   87 

 88 

SI2. Entropy of non-Interacting Dirac electrons 89 

To get a rough understanding of the overall ߥ dependence of the measured entropy at 90 

high temperatures, it is useful to compare it to the entropy in a system of non-interacting Dirac 91 

bands. The curves in Fig. 3c in the main text were obtained for such a model with the a single-92 

particle density of states that rises linearly from zero at the charge neutrality point up to the 93 

band top and bottom at ±ܹ/2, where ܹ is the bandwidth. The density of states (ߝ)ߩ for each 94 

spin/valley flavor is given by:  95 

 96 

(ߝ)ߩ  = ଼|ఌ|ௐమ Θ ቀௐଶ −  ቁ, (1) 97|ߝ|

where Θ(ݔ) is the Heaviside step function. The entropy per unit cell is then given by: 98 
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 99 

,ߥ)ݏ  ܶ) = −݃௙݇஻ ׬ (ߝ)ி݊}(ߝ)ߩߝ݀ ln[݊ி(ߝ)] + [1 − ݊ி(ߝ)] ln[1 − ݊ி(ߝ)]}ஶିஶ . (2) 100 

Here, ݃௙ = 4 is the number of spin/valley flavors, ݊ி(ߝ) = 1/(1 + ݁(ఌିఓ)/்) is the Fermi-Dirac 101 

distribution, and the chemical potential is determined by solving the equation for the filling 102 

factor ߥ, given by: 103 

ߥ  = ݃௙ൣ׬ ஶିஶ(ߝ)ி݊(ߝ)ߩߝ݀ − 1൧. (3) 104 

Solving Eq. (3) for ߥ)ߤ, ܶ) and inserting the result into (2) gives ߥ)ݏ, ܶ) shown in Fig. 3c of 105 

the main text. 106 

 107 

 108 

SI3. Entropy in mean-field Dirac revival model 109 

In Refs.1,2, we have used a simple mean-field model to describe the Dirac revival 110 

features in the compressibility. At zero temperature, this model features a cascade of phase 111 

transitions upon increasing the electron density, where the spin and valley symmetries are 112 

successively broken. At each transition, electrons of one flavor become more populated than 113 

the others. The minority flavors’ densities reset to the vicinity of the charge neutrality point. 114 

This causes a sharp drop in the density of states at the Fermi level, reviving the Dirac-like 115 

density dependence of the inverse compressibility near each integer filling factor. Hence, we 116 

termed this phenomenon “Dirac revival transitions”.  117 

Here, we present a calculation of the entropy as a function of density and in-plane 118 

magnetic field within the same mean-field model. The model consists of four flavors of 119 

electrons (two valleys and two spins), each with a single-particle density of states (ߝ)ߩ. The 120 

interaction, of strength ܷ, is assumed to be local in real space and featureless in flavor space. 121 

The Hamiltonian is written as 122 

ܪ  = ∑ ఈ,௡,ܓ	 ܓఈ௡ߝ) − றܓఈ௡߰(ߤ ߰ఈ௡ܓ +  ୧୬୲, (4) 123ܪ
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where ߙ = ܭ} ↑, ܭ ↓, ′ܭ ↑, ′ܭ ↓} is a spin/flavor index, ݊ = 1,2 labels the conduction and 124 

valence bands, ߝఈ௠ܓ are the band dispersions (that are valley and ݊ dependent but spin 125 

independent), and the interaction Hamiltonian is given by:   126 ܪ୧୬୲ = ௎ଶே ∑ 	ఈஷఉ ∑ 	{௡೔},{ܓ೔},۵ భறܓ߰ఈ௡భ	రା۵ܓయିܓమିܓభାܓߜ ߰ఉ௡మܓమற ߰ఉ௡యܓయ߰ఈ௡రܓర. (5) 127 

Here, ܰ is the number of unit cells, and ۵ is a reciprocal lattice vector. The interaction couples 128 

only electrons of different spin/valley flavors, since it is assumed to be delta function-like in real 129 

space. Then, by the Pauli principle, two electrons of the same spin and valley cannot occupy the 130 

same point in real space, and do not interact. This captures the exchange part of the 131 

interaction, which favors spin or valley polarization. Including an intra-flavor term ܬ, as in Ref2., 132 

does not change the results for the entropy shown below.  133 

We analyze the system within a Hartree-Fock mean-field approximation, allowing for an 134 

arbitrary filling of each flavor, but no other form of broken symmetry. We use a mean-field 135 

Hamiltonian of the form:  136 

୑୊ܪ  = ∑ ఈ,௡,ܓ	 ܓఈ௡ߝ) − ߤ − றܓఈ)߰ఈ௡ߤ ߰ఈ௡137 (6) ,ܓ 

with variational parameters ߤఈ, and minimize the grand potential of the trial density matrix 138 ߩො = ௘షಹಾಷ/೅୘୰[௘షಹಾಷ/೅]. The variational grand potential per unit cell is given by  139 

Ω୑୊ = ∑ 	ఈ ఈߤ)݂ + (ߤ + ௎ଶ ∑ 	ఈஷఉ ఈߤ)ߥ + ఉߤ)ߥ(ߤ + (ߤ + ∑ 	ఈ ఈߤ)ߥఈߤ +  140 (7) (ߤ

where  141 

(ߤ)݂  = −ܶ ׬ 	ஶିஶ (ߝ)ߩ	ߝ݀ ቂlog ቀ1 + ݁ିഄషഋ೅ ቁ + ఌିఓ் Θ(−ߝ)ቃ, 142 

(ߤ)ߥ  = ׬ 	ஶିஶ (ߝ)ߩ	ߝ݀ ቀ ଵଵା௘(ഄషഋ)/೅ − Θ(−ߝ)ቁ.  143 

Here, (ߝ)ߩ = ଵே∑ ߝ)ߜ − ܓ(ܓߝ  is the density of states of each flavor. Minimizing Eq. (6) with 144 

respect to ߤఈ, we obtain a variational estimate for Ω(μ, ܶ). The entropy can then be obtained 145 
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though ݏ = − డஐడ். Following Ref1, we use a simple linear model for the density of states, given in 146 

Eq. (1). Using different models for the density of states does not alter the results qualitatively.  147 

  148 

Figure S3: Mean-field calculation. a. Partial occupations ߥఈ of each valley/spin flavor as a function of total filling 149 
factor ߥ, at ܶ = ∥ܤ ,0 = 0, showing a cascade of flavor symmetry breaking transitions near each integer filling. b. 150 
Entropy as a function of ߥ at ܤ∥ = 0, for different temperatures. The dips in the entropy correspond to the 151 
resetting of some of the spin/valley flavors back to the charge neutrality point (ߥఈ = 0), while others are fully 152 
filled. At these points the density of states at the Fermi level is minimal.  153 

 154 

We expect that at low temperatures, this approximation, built on a density matrix  155 

corresponding to a non-interacting Hamiltonian with self-consistently determined ߤఈ’s, will 156 

exhibit an entropy that is essentially ݏ = గమଷ ∑ ߤ)ߩ + ఈ)ܶఈߤ . Hence, the entropy is proportional 157 

to the total density of states at the Fermi level.  158 

Fig. S3a shows the partial filling factors of each flavor as a function of the total filling 159 

factor at zero temperature, choosing ܹ = 2ܷ = 300K. The results do not change qualitatively 160 

for different values of ܷ/ܹ, as long as 2ܷ and ܹ are comparable1,2. As seen in the figure, near 161 

charge neutrality, all four flavors start filling equally as the density is raised. Before ߥ = 1 is 162 

reached, a phase transition occurs, in which one flavor suddenly becomes more populated than 163 

the others. When the majority flavor reaches ߥఈ = 1, the other flavors are reset to the vicinity 164 

2K

6K

10K

14KT =
Bk = 0Ta b
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of the charge neutrality point, and then begin filling again equally as the density is raised, until 165 

another phase transition is encountered. This is the cascade of revivals described in Refs 1,2. 166 

In Fig. S3b, we present the entropy per unit cell ߥ)ݏ, ܶ) computed from the same model, as 167 

a function of ߥ for different temperatures. Thus, the entropy show clearly the revival 168 

transitions, visible as sharp dips in the entropy near each integer filling. The dips are explained 169 

by the fact that the total density of states at the Fermi level is minimal at these fillings. This 170 ߥ 

dependence of the entropy resembles the one measured at a high field, ܤ∥ = 12T (Fig. 2e), 171 

suggesting that the mean-field description captures the essential part of the physics there. On 172 

the other hand, the entropy measured at ܤ∥ = 0T (fig. 2e) is quantitatively different than the 173 

one obtained here, emphasizing the imporant role of fluctuating free moments which are not 174 

included in the mean-field model. 175 

We note that the partial fillings as a function of ߥ at the elevated temperatures are not strongly 176 

modified compared to those at ܶ = 0, shown in Fig. S3a, although the positions of the phase 177 

transitions shift slightly with temperature. 178 

SI4. The effect of a magnetic field on the entropy in a mean-field model without 179 

free spins 180 

A Zeeman field can be included in the Hamiltonian (4) by adding the following term:  181 

 182 

௓ܪ  = ௓ܧ− ∑ σఈ	ܓ,ఈ,௡ ߰ఈ௡ܓற ߰ఈ௡183 (8) ,ܓ 

where ܧ௓ =  184 ߙ ఈ is the spin projection of electrons of flavorߪ is the Zeeman energy, and 	∥ܤ஻ߤ

along the magnetic field. To account for the Zeeman field in the mean-field calculation, we 185 

replace ߤ → ߤ +  ఈ in Eqs. (6) and (7). 186ߪ௓ܧ

The entropy vs. ߥ at ܶ = 10K in the presence of different in-plane magnetic fields is 187 

shown in Fig. S4. As seen in the figure, the effect of a field of up to ܤ∥ = 12T is quite small, 188 

decreasing the entropy by at most 0.1݇஻ relative to the ܤ∥ = 0 value near the maxima of the 189 
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entropy before the integer fillings. The change in the entropy away from the maxima due to the 190 

field is even smaller.  191 

Comparing the mean-field results to the experimentally measured entropy (Fig. 2e in 192 

the main text), we see that the calculated entropy is in rough qualitative agreement with the 193 

experimental one at ܤ∥ = 12T and ܶ ≈ 10K, showing a similar peak structure near each 194 

integer filling. The overall magnitude of the calculated entropy at ܤ∥ = 12T is also similar to the 195 

measured one. However, the calculated entropy at ܤ∥ = 0 is very different from the measured 196 

entropy. In particular, unlike in the calculation, the measured entropy does not drop after 197 ߥ = 1, but rather remains nearly constant at a high value. Moreover, the measured entropy is 198 

strongly field dependent for ߥ > 1, whereas the calculated one is weakly field dependent at all 199 ߥ. We ascribe this failure of the mean-field model to the appearance of nearly-free magnetic 200 

moments  (as discussed in detail in the main text). These free moments, that onset near ߥ = 1, 201 

fluctuate strongly at low magnetic fields, an effect which is not captured in mean-field theory. 202 

Upon applying a strong Zeeman field, these fluctuations are quenched (as seen experimentally 203 

by the dramatic decrease in the entropy), and mean-field theory may be adequate.   204 

   205 

Figure S4: Effect of an in-plane magnetic field on the entropy within the mean-field model. In this 206 

calculation, the temperature is ܶ = 10K. The different curves are for ܤ∥ = 0T, 6T, 12T. The entropy 207 

depends only weakly on field, in contrast to the experiment. As explained above, the mean-field 208 

approximation does not capture the strong magnetic fluctuations present in the experiment at ߥ > 1.  209 

 210 
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SI5. Tracking ߥோ using different features of the ݀ߤ/݀݊ jump 211 

In the main text, the transition from high to low compressibility near ߥ = 1 was tracked by 212 

following the midpoint of the rise in ݀ߤ/݀݊. Since the rise is fastest around its midpoint, this 213 

procedure gives us excellent resolution in defining the filling factor that corresponds to this rise, 214 

of about ߥߜோ~0.005. We note, however, that the overall width of the rise in filling factor can 215 

be significantly larger, and in extreme cases can even reach Δߥ ≈ 0.2. It is thus necessary to 216 

check whether tracking different features of the transition as a function of magnetic field or 217 

temperature will lead to similar conclusions. 218 

 219 

 220 
 221 

Fig. S5: ࢔ࢊ/ࣆࢊ rise at for different ࡮ ,ࢀ∥. a. Measured rise in ݀ߤ/݀݊ near ߥ = 1 at ܤ∥ = 8T and ܶ = 3.1K. b. 222 
Same for ܤ∥ = 0T and ܶ = 12.4K. The filling factors that correspond to the minimum and maximum of the rise, 223 ߥ௠௜௡ and ߥ௠௔௫ are identified using a fit to a 4th order polynomial around the relevant regions (dashed purple). Also 224 
labeled are the filling factors at the midpoint of the rise, ߥோ, at quarter of the rise, ߥଵ/ସ, and at three quarters of 225 

the rise, ߥଷ/ସ. 226 

 227 

In Fig. S5 we show two examples: the first (panel a), measured at ܤ∥ = 8T and ܶ = 3.1K, 228 

shows a rather sharp rise. In the second (panel b), measured at ܤ∥ = 0T and ܶ = 12.4K, the 229 

rise is more gradual. In general, similar to what is shown in these two representative 230 

measurements, we see that lower fields or higher temperatures smear the ݀ߤ/݀݊ rise. To 231 

check how sensitive are the results shown in Fig. 4 of the main text to the choice of the 232 



12 
 

definition of the location on the rise in ݀ߤ/݀݊, we repeat the analysis with different criteria for 233 

the chosen location. Since ߥ௠௜௡	 and ߥ௠௔௫ have large uncertainties, especially at high 234 

temperatures and low fields, we follow instead the filling factors at one quarter of the rise, ߥଵ/ସ, 235 

and three quarters of the rise, ߥଷ/ସ. The uncertainties in determining the latter are still low 236 

enough to make significant observations, and their tracking can still identify whether the 237 

observed features are tied to a specific part of the rise. Fig. S6 shows the extracted ߥோ, ∥ܤ ௗఓ/ௗ௡ୀ଴, plotted as a function of ܶ atߥ ଷ/ସ andߥ ଵ/ସ, 238ߥ = 0T and ܤ∥ = 12T. This figure should be 239 

compared with Fig. 4d in the main text. 240 

While there are quantitative difference between the curves obtained by the different 241 

methods, we can see that in the overall dependence and the essential features in all the curves 242 

agree. For example, we see that at ܤ∥ = 12T, independently of the method used, ߥோ increases 243 

with temperature at low temperatures, reaching a maximum, and then starts decreasing with 244 

increasing temperature at high temperatures, where the crossover occurs at ܶ ≈ 9K. 245 
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 246 
Fig. S6: Tracking different features of the ࢔ࢊ/ࣆࢊ rise near ࣇ = ૚. a. ߥோ, b. ߥௗఓ/ௗ௡ୀ଴, c. ߥଵ/ସ, d. ߥଷ/ସ (as 247 

defined in Fig. S5 and in this section's text) as a function of ܤ∥ and ܶ. 248 

SI6. Thermodynamic model for Fermi liquid to free moment phase transition 249 

Here, we describe the simple thermodynamic model we used in the main text to 250 

describe the first order phase transition.  251 

The experiment is done under conditions where the temperature ܶ, parallel magnetic 252 

field ܤ∥, and gate voltage ݒ௚ are fixed. The appropriate thermodynamic potential to be 253 

minimized under these conditions is the grand canonical potential, Ω(ݒ௚, ܶ,  It is convenient 254 .(∥ܤ

to express the gate voltage in terms of the equivalent filling factor, ߥ଴ = ଵ௘ ܿ௚ݒ௚ (ܿ௚ is the 255 

geometric capacitance from the MATBG to the gate per moiré unit cell). For clarity, it is useful 256 
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to derive the grand canonical potential starting from the free energy ݂, which is a function of 257 

the filling factor ߥ, and then obtain Ω by a Legendre transformation.  258 

Our simple model postulates the existence of a first order transition between two 259 

phases. The first phase is a relatively simple metallic phase, which we model as a Fermi liquid. 260 

The second phase is characterized by the existence of free moments. This phase is also metallic, 261 

although its density of states is lower than that of the first phase. We assume that in the second 262 

phase, there is one free spin per unit cell, coexisting with metallic Fermi liquid electrons.  263 

The free energies per moiré unit cell of the two phases are chosen as follows: 264 

௜݂(ߥ, ܶ, (∥ܤ = ௜ߝ + 12ቆ݁ଶܿ௚ + ௜ቇߢ1 ଶߥ − ߥ௜ߤ − ௜ܶଶ2ߛ − ߯௜ܤ∥ଶ2 − ௜ܶlnߙ ൤2cosh ൬ߤ஻ܤ∥ܶ ൰൨. 
Here, ݅ = 1,2 labels the two phases, ߝ௜ and ߤ௜ are reference energies and chemical 265 

potentials, ߢ௜ = ቀௗ௡ௗఓቁ௜ are the intrinsic compressibilities (or quantum capacitances), ߛଵ,ଶ are the 266 

specific heat coefficients, ߯௜ are the Pauli contributions to magnetic susceptibility of the 267 

itinerant electrons, and ߙ௜ are the concentrations of free spins per unit cell, taken to be ߙଵ = 0 268 

and ߙଶ = 1 (the results do not depend sensitively on the value of ߙଶ, as long as it is of order 269 

unity). We have assumed that the free spins have a gyromagnetic ratio ݃ = 2. 270 

We now carry out a Legendre transformation, Ω = ݂ −  271 ,ߥ minimize Ω with respect to ,ߥ௚ݒ݁

and thus eliminate ߥ in favor of ߥ଴ = ଵ௘ ܿ௚ݒ௚. Since in our experiment ݁ଶ/ܿ௚ is much larger than 272 1/ߢ௜, we keep only terms to lowest order in 
௖೒௘మ఑೔. The grand potentials of the two phases per 273 

unit cell are: 274 

Ω௜(ߥ଴, ܶ, (∥ܤ = ௜̃ߝ − 12 ݁ଶܿ௚ ଴ଶߥ − ଴ߥ௜ߤ − ௜ܶଶ2ߛ − ߯௜ܤ∥ଶ2 − ௜ܶlnߙ ൤2cosh ൬ߤ஻ܤ∥ܶ ൰൨. 
Here, ߝ௜̃ = ௜ߝ − ௖೒ଶ௘మ ,଴ߥ)௜ଶ. In terms of Ωߤ ܶ,  the thermodynamic variables are given by: 275 ,(∥ܤ

ߥ = − ௖೒௘మ	 డஐడఔబ, ݏ = − డஐడ், ݉ = − డஐడ஻∥, 276 

where ݏ and ݉ are the entropy and in-plane magnetization per unit cell, respectively.  277 
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The first order transition surface in the (ߥ଴, ܶ,  parameter space is given by the 278 (∥ܤ

condition ΔΩ(ߥ଴, ܶ, (∥ܤ = Ωଶ − Ωଵ = 0. The theoretical curves shown in Fig. 4 of the main text 279 

were obtained using the following parameters: ߝଶ̃ − ଵ̃ߝ = 72K, ߤଶ − ଵߤ = 64K, and ߛଶ − ଵߛ ଶߛ ଵ. The negative sign ofିܭ0.0331− 280= −  ଵ corresponds to the fact that the density of states of 281ߛ

itinerant carriers in the free moment phase is lower than that of the simple metallic phase. For 282 

simplicity, we neglect the Pauli contribution ߯௜ to the magnetic susceptibility, which is negligible 283 

compared to the free moment contribution.  284 

Under these assumptions, the surface of the first order transition can be simply 285 

expressed as: 286 

∗଴ߥ = ଶߤ1 − ଵߤ ൜ߝଶ̃ − ଵ̃ߝ − 12 ଶߛ) − ଵ)ܶ∗ଶߛ − ܶ∗ln ൤2cosh ൬ߤ஻ܤ∥∗ܶ∗ ൰൨ൠ, 
where ߥ଴∗, ܶ∗, and ܤ∥∗ denote the equivalent filling factor, temperature, and magnetic field of a 287 

point on the transition surface.  288 

The Clausius-Clapeyron relations along the transition surface can be obtained by 289 

differentiating ΔΩ: 290 

݀ΔΩ = − ݁ଶ2ܿ௚ Δߥ݀ߥ଴∗ − Δܶ݀ݏ∗ − Δ݉݀ܤ∥∗. 
 291 

Here, Δߥ = ଶߥ − ݏଵ, Δߥ = ଶݏ − and Δ݉	ଵ,ݏ = ݉ଶ −݉ଵ are the jumps in the filling factor, 292 

entropy, and magnetization across the transition, respectively. Along a ߥ଴∗ =  contour of 293 .ݐݏ݊݋ܿ

the transition surface, get the relation 294 

ቆ߲ܶ∗߲ܤ∥∗ቇఔబ∗ = −ΔΔ݉ݏ , 
which is the relation we used in SI7, with ߥ଴∗, ܶ∗, and ܤ∥∗ identified as the filling factor (ߥோ), 295 

temperature, and magnetic field at the Dirac revival point.  296 

 297 
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SI7. Anti-correlation between entropy and magnetization. 298 

The jump in compressibility seen at ߥோ is sharp, but not discontinuous, as one may naively 299 

expect from a first order phase transition. Indeed, in the presence of long-range Coulomb 300 

interactions and disorder in two dimensions, a first order transition is not expected to be sharp. 301 

If we assume that the revival transition at ߥ = 1 represent a smeared first-order phase 302 

transition, we can derive from the shape of the phase boundary the relation between 303 

magnetization and entropy. We demonstrated this relation by analyzing the slope of the phase 304 

boundary via the Clausius-Clapeyron equation: Δ݉/Δݏ =  Δ݉ are 305	and ݏఔೃ. Here, Δ(∥ܤ߲/߲ܶ)−

the differences in the entropy and magnetization per moiré unit cell between the free moment 306 

and the Fermi liquid phases, and (߲ܶ/߲ܤ∥)ఔೃ  is the derivative of the transition temperature 307 

with respect to magnetic field at constant ߥோ. To obtain the ratio Δ݉/Δݏ we reconstruct such 308 

equi-ߥோ contours by fitting a polynomial surface in the ܤ∥ and ܶ plane to the measured points, 309 

and extract the slope of the contour lines at different points (Fig. S7). Consider point A in Fig. 310 

S7: At this point, (߲ܶ/߲ܤ∥)ఔೃ ≈ 0. The Clausius-Clapeyron equations then imply that Δ݉ ≈ 0. 311 

In contrast, at point B, the equal ߥோ contours are nearly vertical, implying that Δݏ ≈ 0. This 312 

clear anti-correlation between Δݏ and Δ݉ follows naturally from our simple model, where both 313 Δݏ and Δ݉ originate from the same free moments, that are either strongly thermally 314 

fluctuating, or polarized along the magnetic field. At point C, the contour has a positive slope, 315 

from which we deduce that Δݏ < 0, Δ݉ > 0.  316 

 317 

 318 
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Fig. S7: Anti-correlation between the entropy and magnetization as determined from the boundary surface 319 
curvature. Measured ߥோ	 as a function of ܤ∥ and ܶ (colored dots). The contours are obtained from a fit of these dots 320 
to a polynomial surface (3rd order in ܶ and 2nd order in ܤ∥). The slope of the contours in this (ܤ∥, ܶ) plane gives via 321 
the Clausius-Clapeyron relation the ratio of the magnetization and entropy jumps across the transition, Δ݉/Δݏ ఔೃ. Visibly, in the point labeled A the contours are horizontal, implying Δ݉(∥ܤ߲/߲ܶ)− 322= ≈ 0. At point B the contours 323 
are vertical and thus Δݏ ≈ 0. The crossover occurs along a diagonal line that correspond to the polarization of the 324 
free moments. At point C, the contour has a positive slope, from which we deduce that Δݏ < 0, Δ݉ > 0.  325 

 326 

 327 

  328 
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SI8. Comparison of transport measurements and compressibility. 329 

Using the multilayer device shown in Fig. 3a, we can simultaneously obtain the transport 330 

resistances and the chemical potential of MATBG. Fig. S8a shows the longitudinal resistance 331 ܴ௫௫ versus ߥ at different temperatures from 1K to 70K. The peaks in resistance near ߥ = −1 332 

denoted by the blue dots start appearing at a finite temperature of  ∼ 5K, and subsequently 333 

move to lower absolute value of filling factor as the temperature increases. The Hall coefficient 334 

and density, as shown in Fig. S8b and c, also show a similar trend. The shift of the resistive peak 335 

at ߥ = −1 has been attributed3 to a Pomeranchuk-like mechanism, similar to the one near 336 ߥ = 1. 337 

 338 

The shift of the peak at ߥ = +1, on the other hand, is much smaller, as was also 339 

observed in Device 1 shown in Fig. 1. Indeed, from our analysis in Fig. 4, the shift of the ߥ = +1 340 

state as a function of temperature is on the order of ߥ߂ = 0.06, which might be shadowed in 341 

the transport measurement by a moderate twist angle inhomogeneity on the order of ±0.02°. 342 

 343 

 344 
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345 

 346 

  347 

Figure S8: Transport characterization of MATBG from ૚ − ૠ૙۹. (a) Longitudenal resistance ܴ௫௫ versus ߥ. Blue and
green dots mark the peaks in resistance near ߥ = ±1 after a linear background is removed at each temperature.
(b-c) Hall coefficient ܴு = ܴ݀௫௬/݀ܤ and the corresponding Hall density ߥு = (− ଵோಹ௘)/(௡ೞସ )	 in the same range of

temperatures and densities. 
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SI9. Comparison of the temperature dependence of ݀ߤ/݀݊ near ߥ = 1 and 348 ߥ = −1. 349 

As discussed in the main paper there are qualitative similarities between the 350 

measurements of the entropy in the electron and hole sides, although the system is far from 351 

being electron-hole symmetric. In figure S8a we present a measurement of ݀ߤ/݀݊ as a function 352 

of filling factor for different temperatures, covering both the electron and hole sides. As can be 353 

seen in the figure, an asymmetric “Dirac revival” jump in the compressibility is present in both 354 

the electron and hole sides. However, while the jump of ݀ߤ/݀݊ in the electron side is very 355 

sharp and appears close to ߥ = 1, in the hole side it is much broader, smaller in height, and 356 

appears further away from ߥ = −1. The fact that the Dirac revival features in the 357 

compressibility is stronger and sharper on the electron side have already been observed in 358 

earlier experiments1 over a wide range of twist angles.  359 

Although the feature in the hole side is more smeared than that in the electron side, the 360 

temperature dependencies of the two features are qualitatively similar: both become stronger 361 

and move towards charge neutrality with increasing temperature (see also Fig. S8b). This 362 

suggests that the underlying physics in the vicinity of ߥ = ±1 may be similar. However, the 363 

reason for the large width of the feature on the hole side is currently unclear. Potential disorder 364 

is expected to smear the electron and hole sides in a similar way, and therefore it cannot 365 

explain the difference between the widths in the two sides. Angle disorder can also lead to a 366 

spatial smearing of the local filling factor, ߥ = ݊/(݊௦/4), by locally varying the density that 367 

corresponds to full flat bands, ݊௦. However, also this effect should be electron-hole symmetric 368 

for ߥ = ±1, since the absolute value of the carrier density in these two filling factors is the 369 

same. One can also clearly see that the combined effect of potential and angle disorder is 370 

rather small, since even in their presence the jump of ݀ߤ/݀݊ in ߥ = +1 is very sharp. A possible 371 

reason for the difference might be that the density jump between the two phases that are 372 

involved in the transition is larger in the hole side than in the electron side, and therefore the 373 

density range of mesoscale phase coexistence in the hole side is larger. However, this is purely 374 

speculative, and more experiments would be needed to clarify the underlying reasons for the 375 

differences between the physics in the conduction and valence flat bands.  376 
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 377 

 378 
Figure S8: Comparison of the temperature dependence of ࢔ࢊ/ࣆࢊ near ࣇ = ૚ and ࣇ = −૚. a. ݀ߤ/݀݊ measured 379 
as a function of ߥ at various temperatures. b. The filling factor that corresponds to revival transition near ߥ =  plotted as a function of temperature.  381 ,݊݀/ߤ݀ ோ, determined by the deflection point of the rise inߥ 380 , 1−
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SI10. The nature of the revival transition near ߥ = 1 382 

The central finding of this work is the identification of two regions in the phase diagram 383 

with very distinct behaviors of the entropy. The jump in compressibility as a function of density 384 

that separates the two regions is quite sharp; however, the jump is not infinitely sharp and is 385 

not resolution limited. In addition, there is no sign of hysteresis between the two regions. 386 

Therefore, strictly speaking, there is no first-order transition between the two regions. This is 387 

not unexpected, since as we point out in the manuscript, first-order transitions are not allowed 388 

in two dimensions in the presence of disorder and long-range Coulomb interactions. This is so 389 

since in the vicinity of the transition the system always prefers to break up into mesoscopic 390 

domains of the two phases, smearing the transition. The length scale over which the system 391 

breaks up depends strongly on microscopic parameters. In similar systems where disorder 392 

induces phase separation the typical spatial scale of the domains is of the order of tens of 393 

nanometers (for a recent example see Ref 4),  well below our spatial resolution (which was 394 

about 500nm in this experiment). Thus, although the transition is rather sharp we cannot rule 395 

out the possibility that this is a sharp crossover rather than a 1st order phase transition. In our 396 

experiment, there is no evidence for a spontaneously broken symmetry in the ߥ > 1 phase at 397 

temperatures ܶ > 2.8	K. Conversely, at these temperatures the magnetic moments in this 398 

phase are strongly fluctuating, showing no sign of long-range order. Thus, a smooth crossover 399 

between the two phases is not forbidden and can be consistent with the data. Nevertheless, 400 

since the crossover is quite rapid, it seems reasonable to interpret it as a slightly smeared 401 

underlying first order transition, and we show that such an interpretation naturally explains the 402 

dependence of the phase boundary on temperature and in-plane field.  403 

A higher-order transition is also possible, but on theoretical grounds, we believe it is less 404 

likely. A second-order transition can occur generically between two phases that are 405 

distinguished by symmetry; however, as mentioned above, there is no direct evidence in our 406 

experiment for spontaneous symmetry breaking at ܶ > 2.8K. Alternatively, a second-order 407 

transition may appear as a critical end point of a first order transition (as in a liquid-gas critical 408 

point). However, this critical point requires fine tuning, and should appear as a point in the 409 (ߥ, ܶ) plane, rather than as a line.  410 
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We also note that hysteretic behavior is not forbidden near specific phase transitions in 411 

two-dimensions. For example, hysteresis was observed near ߥ = −1 in references [10] and [13] 412 

of the main paper. In those works, the system was measured in the presence of a perpendicular 413 

magnetic field, while our experiments are performed in an in-plane field. In addition, the 414 

hysteresis was observed there upon cycling the magnetic field (and not the density), whereas 415 

our scans were only taken as a function of density. Finally, the hysteresis was visible only at low 416 

temperatures (ܶ < 1K), whereas our experiments are done at ܶ > 2.8K.  417 

Often, the existence of hysteresis is tied to the presence of an incompressible phase in the 418 

system. In the vicinity of an incompressible phase and in the presence of disorder, it is well 419 

known that the system breaks up in real space to incompressible and compressible regions. 420 

Compressible islands that are surrounded by incompressible strips can have very long charging 421 

times, and this leads to glassy behavior of the overall system. This can manifest itself in 422 

hysteresis, as is seen, e.g., around quantum Hall gapped states (for a recent example, see Fig. 423 

S5 in https://arxiv.org/pdf/2008.05466.pdf). On the other hand, if the phases that are involved 424 

are compressible, charge can equilibrate rapidly. Thus, hysteresis that is related to the ability of 425 

the charge degrees of freedom to equilibrate will happen only when a gapped phase is 426 

involved. This could explain very nicely the difference between our experiment and those of 427 

Refs. [10,13]: in these references, hysteresis is observed whenever a Chern insulator appears. 428 

Since a Chern insulator is gapped, the formation of a real space mixture of a Chern insulator 429 

and a compressible phase can cause hysteresis. In our experiment, in contrast, there is no 430 

indication for a thermodynamic gap, and the two phases on either side of the transition are 431 

clearly compressible, which can explain the absence of hysteresis in our case.  432 

Hysteresis can, in principle, also arise due to the formation of a macroscopic collective 433 

degrees of freedom, such as domain walls in a ferromagnet, whose equilibration time can be 434 

very long. This situation arises naturally, for example, when there is a spontaneous breaking of 435 

a discrete symmetry. However, in our experiment, performed at ܶ > 2.8K, there is no 436 

indication for such symmetry breaking. 437 

 438 
 439 
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SI11. The entropy data at two temperature windows 440 

The ~10ܭ temperature range used for extracting the entropy in this paper was necessary 441 

for obtaining low enough noise, such that the entropy curves have good significance. With our 442 

existing signal-to-noise ratios it would be prohibitive to measure the detailed temperature 443 

dependence of the entropy. Nevertheless, to check the consistency of our data we bin it below 444 

into two temperature windows. Figure 9 shows the 'magnetic entropy',	ܵ(0ܶ) − ܵ(12ܶ), 445 

similar to the one shown in the paper (Fig. 2e, inset), but now extracted from two separate 446 

temperature windows: ܶ = ܭ3.5 − ܶ  and  ܭ9 = ܭ9 −  The shaded regions around each 447 .ܭ16

curve show the error bars, determined in a similar manner to those in the main paper (as 448 

described in the Supplementary Information section SI1). Notably, there are some differences 449 

between the two curves. However, these differences are well within the error bars, and thus 450 

we do not think one can assign a real significance to them. On the other hand, we can see that 451 

the two entropy traces, obtained from the two different temperature windows, look overall 452 

very similar. Specifically, both curves show a rather sharp increase of the 'magnetic entropy' 453 

near ߥ = 1 and a fast decrease near ߥ = 2. This gives additional support to the robustness of 454 

our observations, but also lends extra support to the observation that we made in the paper, 455 

based on the mapping of the phase boundary (Fig. 4), that the 'magnetic entropy' appears 456 

already at very low temperatures, of the order of few degrees Kelvin.  457 

 458 

 459 
Figure S9: Magnetic entropy from two temperature windows. a. The magnetic entropy, (12ܶ)ݏ −  460 ,(0ܶ)ݏ
extracted from the slope of ߤ vs. ܶ taken at from two different temperature windows: ܶ = 3.5 −  and 461 (blue) ܭ9
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ܶ = 9 −  The shaded regions indicate the error bars, determined along the same procedure used for Fig. 462 .(red) ܭ16
2e in the main paper, that is described in section SI1. 463 
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