

1 **Entropic evidence for a Pomeranchuk effect in magic angle graphene**

2 Asaf Rozen^{1†}, Jeong Min Park^{2†}, Uri Zondiner^{1†}, Yuan Cao^{2†}, Daniel Rodan-Legrain²,
3 Takashi Taniguchi³, Kenji Watanabe³, Yuval Oreg¹, Ady Stern¹, Erez Berg^{1*}, Pablo Jarillo-
4 Herrero^{2*} and Shahal Ilani^{1*}

5 ¹ *Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100,
6 Israel.*

7 ² *Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts
8 02139, USA.*

9 ³ *National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan.*

10 [†] These authors contributed equally to the work.

11 *Correspondence to: erez.berg@weizmann.ac.il, pjarillo@mit.edu, shahal.ilani@weizmann.ac.il

12 In the 1950's, Pomeranchuk¹ predicted that, counterintuitively, liquid ³He may
13 solidify upon heating, due to a high excess spin entropy in the solid phase. Here, using
14 both local and global electronic entropy and compressibility measurements, we show
15 that an analogous effect occurs in magic angle twisted bilayer graphene²⁻⁶. Near a
16 filling of one electron per moiré unit cell, we observe a dramatic increase in the
17 electronic entropy to about $1k_B$ per unit cell. This large excess entropy is quenched by
18 an in-plane magnetic field, pointing to its magnetic origin. A sharp drop in the
19 compressibility as a function of the electron density, associated with a reset of the
20 Fermi level back to the vicinity of the Dirac point, marks a clear boundary between
21 two phases. We map this jump as a function of electron density, temperature, and
22 magnetic field. This reveals a phase diagram that is consistent with a Pomeranchuk-
23 like temperature- and field-driven transition from a low-entropy electronic liquid to a
24 high-entropy correlated state with nearly-free magnetic moments. The correlated
25 state features an unusual combination of seemingly contradictory properties, some
26 associated with itinerant electrons, such as the absence of a thermodynamic gap,
27 metallicity, and a Dirac-like compressibility, and others associated with localized
28 moments, such as a large entropy and its disappearance with magnetic field.
29 Moreover, the energy scales characterizing these two sets of properties are very
30 different: whereas the compressibility jump onsets at $T \sim 30\text{K}$, the bandwidth of
31 magnetic excitations is $\sim 3\text{K}$ or smaller. The hybrid nature of the new correlated state

32 and the large separation of energy scales have key implications for the physics of
33 correlated states in twisted bilayer graphene.

34 Systems of strongly interacting fermions exhibit a competition between
35 localization, minimizing the potential energy, and itineracy, minimizing kinetic energy.
36 The advent of two-dimensional moiré systems, such as magic angle twisted bilayer
37 graphene²⁻⁶ (MATBG), allows studying this physics by controlling the ratio between the
38 electronic interactions and bandwidth in a highly tunable way. When this ratio is large,
39 electrons tend to localize and form Mott insulators^{7,8}. When the bandwidth dominates,
40 a Fermi liquid state is formed in which electrons are itinerant. MATBG is at the boundary
41 between these two extremes, showing a host of fascinating electronic phases, including
42 correlated insulators^{3,9,10}, Chern insulators¹¹⁻¹³, superconductors^{4,9,10}, and
43 ferromagnets^{14,15}. Scanning tunneling spectroscopy¹⁶⁻¹⁹ and electronic compressibility
44 measurements^{20,21} indicate that in this system the strengths of the Coulomb interaction
45 and the kinetic energy are indeed comparable. In this regime, there is an inherent
46 tension between localized and itinerant descriptions of the physics. Moreover, the
47 topological character²²⁻²⁴ of the nearly-flat bands in MATBG implies that a simple
48 “atomic” description, in which electrons are localized to individual moiré lattice sites,
49 may not be appropriate. Instead, a picture analogous to that of quantum Hall
50 ferromagnetism has been proposed²⁵⁻²⁷. Understanding this interplay between itineracy
51 and localization, and the new physics that emerges from it, remains a major challenge.

52 In this work we find that, surprisingly, the correlated state in MATBG above a filling
53 of one electron per moiré site has a hybrid nature, with some properties resembling
54 those of an itinerant system, and others resembling those of localized electrons. At
55 temperatures of a few Kelvin we measure unusually large excess entropy, which is
56 rapidly suppressed by a moderate in-plane magnetic field. This suggests that even at
57 such low temperatures, there are strongly fluctuating magnetic moments in the system,
58 a behavior typically associated with local moments. On the other hand, our

59 measurements find that this state is metallic and has no thermodynamic gap, naturally
60 fitting an itinerant picture.

61 The presence of fluctuating moments at temperatures much below the electronic
62 bandwidth indicates the existence of a new, anomalously small energy scale associated
63 with the bandwidth of magnetic excitations, which is an order of magnitude smaller
64 than the scale where a jump appears in the compressibility^{21,28}. This jump marks the
65 boundary between the new state at filling factor $\nu > +1$ and the state at lower
66 densities. By tracking the dependence of this boundary on temperature and magnetic
67 field, we find that it exhibits an electronic analogue²⁹⁻³² of the famous Pomeranchuk
68 effect¹ in ³He. In that system, a transition from a Fermi liquid to a solid occurs upon
69 increasing temperature, driven by the high nuclear spin entropy of the atoms in the
70 solid. Similarly, we find that the new state above $\nu = +1$ is favored relative to the
71 metallic state at $\nu < +1$ upon raising the temperature, due the former's high magnetic
72 entropy. The transition near $\nu = +1$ can also be driven by an in-plane magnetic field
73 that polarizes the free moments. (A related effect near $\nu = -1$ was proposed very
74 recently, on the basis of transport measurements³³.) The hybrid state observed here,
75 with itinerant electrons coexisting with strongly fluctuating magnetic moments, calls for
76 a new understanding of electron correlations in MATBG.

77 Our data is measured using two independent techniques on two conceptually
78 different devices. The bulk of the results are obtained from local measurements of the
79 electronic entropy^{34,35} and compressibility using a scanning nanotube single-electron
80 transistor (SET) on hBN-encapsulated twisted bilayer device (Device 1, Fig. 1a). We focus
81 on a large ($5\mu\text{m} \times 4\mu\text{m}$) region with an extremely homogenous twist angle that is close
82 to the theoretical magic angle $\theta = 1.130 \pm 0.005$. Similar results are obtained from
83 global entropy measurements using a monolayer graphene sensor (Device 2, Fig. 3a).
84 Both methods have been described elsewhere^{21,36}.

85

86 **Electronic compressibility and transport**

87 The inverse compressibility, $d\mu/dn$, measured in Device 1 at $T = 15\text{K}$ as a
88 function of the filling factor, $\nu = n/(n_s/4)$ (where n_s corresponds to four electrons per
89 moiré unit cell), is shown in Fig. 1b. As reported previously²¹, sharp jumps in $d\mu/dn$ are
90 observed close to integer ν 's, reflecting Fermi surface reconstructions. These were
91 termed Dirac revivals since they were interpreted as resets of partially filled energy
92 bands back to near the Dirac point, leading to the decreased compressibility. The
93 cascade of revivals is already very prominent at this relatively high temperature.
94 Measurements of ρ_{xx} vs. ν at various temperatures (Fig. 1c) show insulating behavior at
95 $\nu = 2,3$ and semi-metallic behavior at $\nu = 0$. As previously noted³⁷, ρ_{xx} shows a step-
96 like increase across $\nu \approx 1$, which gradually disappears with decreasing temperature,
97 markedly different than the behavior at other integer ν 's.

98 The unusual physics near $\nu = 1$ is revealed from the dependence of $d\mu/dn$ on
99 temperature, T , and parallel magnetic field, B_{\parallel} . At low temperature and $B_{\parallel} = 0\text{T}$ (Fig.
100 2a), the jump in $d\mu/dn$ occurs at ν slightly larger than 1. Increasing the temperature
101 moves the jump towards a lower ν , and surprisingly, increases the magnitude of the
102 jump rather than smearing it. Similar measurement with $B_{\parallel} = 12\text{T}$ at low T (Fig. 2b)
103 exhibits a much larger jump, which is also closer to $\nu = 1$. With increasing temperature,
104 this jump remains close to $\nu = 1$, but oppositely to the $B_{\parallel} = 0\text{T}$ case, reduces its
105 amplitude and increases its width.

106

107 **Local measurements of electronic entropy**

108 The chemical potential, $\mu(\nu, T)$ (measured relative to that at charge neutrality),
109 can be obtained by integrating $d\mu/dn$ over density (Fig. 2c,d). Visibly, μ depends
110 strongly on T for a range of ν 's. This is clearly seen when we plot μ vs. T at two
111 representative ν 's (Fig. 2c, inset). At $\nu = 0.2$, μ is practically independent of T (blue). In
112 contrast, at $\nu = 0.9$ (red) μ is nearly constant until $T \sim 4\text{K}$, and then decreases
113 approximately linearly with T . At $\nu > 1.15$, μ is again nearly temperature independent.
114 Comparing μ at $B_{\parallel} = 0\text{T}$ (Fig. 2c) and $B_{\parallel} = 12\text{T}$ (Fig. 2d) reveals a clear contrast:

115 whereas for $B_{\parallel} = 0\text{T}$, μ is a decreasing function of temperature for $0.4 < \nu < 1.15$, for
116 $B_{\parallel} = 12\text{T}$, μ decreases with T for $\nu < 0.9$ and increases for $\nu > 0.9$.

117 These measurements allow us to directly determine the entropy of the system, by
118 integrating Maxwell's relation: $\left(\frac{\partial s}{\partial \nu}\right)_T = -\left(\frac{\partial \mu}{\partial T}\right)_\nu$, to obtain $s(\nu, T)$ (where s is the
119 entropy per moiré unit cell). For more details on this procedure see Supplementary
120 Information section SI1. Fig. 2e shows $s(\nu)$ at $T \approx 10\text{K}$ (obtained from the slope of μ vs.
121 T in the range $T = 4.5\text{K} - 15\text{K}$), for $B_{\parallel} = 0\text{T}, 4\text{T}, 8\text{T}$, and 12T . At $B_{\parallel} = 0\text{T}$ the entropy
122 is small at low ν 's, climbs close to $\nu = 1$, remains roughly constant between $\nu = 1$ and
123 2 at $s \approx 1.2k_B$, drops rapidly near $\nu = 2$, and decreases towards zero after $\nu = 3$.
124 Clearly, the ν dependence of the entropy is qualitatively different from that of the
125 compressibility: whereas the latter drops sharply near $\nu = 1$ (Fig. 2a), the former
126 remains at a high value.

127 An important insight into the origin of this large entropy is given by its magnetic
128 field dependence. As seen in Fig. 2e, the entropy above $\nu = 1$ depends strongly on B_{\parallel} .
129 In particular, at $B_{\parallel} = 12\text{T}$, most of the entropy between $\nu = 1$ and 2 is quenched. The
130 inset shows $s(B_{\parallel} = 0\text{T}) - s(B_{\parallel} = 12\text{T})$ vs. ν (the purple shading indicates errorbars;
131 see Supplementary Information SI1). The entropy difference increases sharply near
132 $\nu = 1$, reaching a maximum of $0.85 \pm 0.1k_B$ between $\nu = 1$ and 2. To appreciate the
133 significance of this value, recall that an entropy of $k_B \ln(2) \approx 0.7k_B$ corresponds to two
134 degenerate states on each moiré unit cell. Moreover, in a Fermi liquid, we would expect
135 a much weaker change of the entropy with B_{\parallel} (Supplementary Information SI4), of the
136 order of k_B times the ratio of the Zeeman energy (about 1meV at $B_{\parallel} = 12\text{T}$) to the
137 bandwidth, estimated to be $W \sim 30\text{meV}$ (see below). Finally, we observe that at
138 $B_{\parallel} = 12\text{T}$ the entropy shows a cascade of drops following each integer ν , similar to the
139 revival drops observed in the compressibility (Supplementary Info. SI5), reproduced by
140 the mean-field calculation (Supplementary Info. SI3). The dramatic quenching of entropy
141 by moderate B_{\parallel} strongly suggests a magnetic origin.

142

143 **Global measurements of the entropy**

144 To test the robustness of our results, we measured the entropy in a completely
145 different setup, in which a sheet of monolayer graphene senses the chemical potential
146 of MATBG, averaged over the entire device³⁶ (Fig. 3a). Fig. 3b shows the entropy
147 extracted in three different temperature ranges. We see (inset) that the globally
148 measured entropy for $T = 4\text{K} - 16\text{K}$ is in good agreement with the locally measured
149 one over a similar range of temperatures, both in the overall shape, the magnitude of
150 $s(\nu)$, and the detailed features. At elevated temperatures, the minimum in the entropy
151 at $\nu = 0$ gradually fills in, evolving from a double-dome structure at low T
152 (corresponding to the valence and conduction flat bands) to a single dome at high T .
153 This dependence is qualitatively reproduced by a naïve calculation for a system of non-
154 interacting electrons, whose density of states rises linearly from the charge neutrality
155 point until the band edges (Fig. 3c). The merging of the domes in $s(\nu)$ occurs when the
156 temperature exceeds a fraction of the bandwidth. Calibrating the bandwidth using the
157 measured entropy at $T \approx 55\text{K}$ gives $W \approx 30\text{meV}$ (where W is the full bandwidth –
158 from valence band bottom to conduction band top), in rough agreement with STM^{16–19}
159 and compressibility³⁶ experiments. This free-electron picture is of course invalid at low
160 temperatures, where interactions are important. The measured $s(\nu)$ in the valence
161 band is approximately a mirror image of $s(\nu)$ in the conduction band (Fig. 3b), although
162 it is smaller and with less pronounced features. This is consistent with the weaker
163 $d\mu/dn$ revivals observed in the valence band relative to the conduction band^{21,36}
164 (Supplementary Info. SI9).

165

166 **Mapping the phase diagram**

167 So far, we have shown a dramatic change in the magnetic entropy and
168 compressibility near $\nu = 1$. This change may be due to a continuous buildup of
169 electronic correlations. Alternatively, it can be interpreted as an underlying first-order
170 phase transition between two distinct phases. Naively, one would then expect a

171 discontinuous jump in thermodynamic properties and hysteretic behavior across the
172 transition, which are not observed. However, we note that a true first-order phase
173 transition is forbidden in two dimensions in the presence of disorder or long-range
174 Coulomb interactions³⁸, as these broaden the transition into a mesoscale coexistence
175 region (Supplementary Info. S10). Experimentally, although the revival transition is very
176 sharp and may be consistent with Coulomb- and/or disorder- smeared 1st order
177 transition, we cannot rule out a sharp crossover or a higher order phase transition.
178 Nevertheless, the sharpness of the rise of $d\mu/dn$ at the revival transition allows us to
179 precisely track its filling factor, $\nu = \nu_R$ (Fig. 4a), and map a phase diagram, which is
180 naturally explained when this feature is interpreted as a proxy for a first-order
181 transition.

182 The measured ν_R vs. B_{\parallel} and T forms a surface in the (ν, B_{\parallel}, T) space (Fig. 4b)
183 whose projections onto the (ν, B_{\parallel}) and (ν, T) are shown in Figs. 4c,d. At $T = 2.8$ K and
184 at low B_{\parallel} , ν_R depends weakly on B_{\parallel} , but decreases linearly above $B_{\parallel} \approx 4$ T (Fig. 4c,
185 blue). A similar crossover is observed at higher temperatures, but with a crossover B_{\parallel}
186 that increases with temperature. The T dependence of ν_R at $B_{\parallel} = 0$ T (Fig. 4d) is linear
187 at low temperatures and curves up at higher temperatures. As B_{\parallel} increases, the curve
188 shifts towards smaller ν 's, and simultaneously its slope at low temperatures changes
189 sign. At $B_{\parallel} = 12$ T, ν_R first increases with T , reaches a maximum at $T \approx 9$ K, and then
190 decreases.

191 The phenomenology seen in Figs. 4b-d can be understood in terms of a first-order
192 phase transition at $\nu = \nu_R$ between a Fermi liquid phase below ν_R , and a 'free moment'
193 phase above it. The latter has a high concentration of free moments (about one per
194 moiré site), coexisting with a low density of itinerant electrons. Within this framework,
195 the shift of ν_R as a function of B_{\parallel} and T reflects the magnetization and entropy
196 differences between the two neighboring phases.

197 At $B_{\parallel} = 0$ T, the free moment phase has a higher entropy than the Fermi liquid,
198 due to thermal fluctuations of the moments. Hence, the former becomes entropically-

199 favorable at high temperatures. This explains the observed decrease of ν_R with
200 increasing T at low fields (Fig. 4d). Raising temperature at fixed ν may therefore drive a
201 transition from the Fermi liquid to the free moments phase, an electronic analogue of
202 the Pomeranchuk effect. As B_{\parallel} increases and the Zeeman energy exceeds the
203 temperature, the moments become nearly fully polarized and their entropy is quenched
204 (as is observed directly in Fig. 2e). Consequently, at low temperatures and sufficiently
205 high fields, the Fermi liquid phase is favored by raising the temperature. The trend
206 reverses once the temperature exceeds the Zeeman energy. This explains the non-
207 monotonic behavior of ν_R as a function of T , seen at $B_{\parallel} = 12\text{T}$ in Fig. 4d. The main
208 features of the phase boundary are qualitatively reproduced in a thermodynamic model
209 of the two phases (Supplementary Info. SI7 and insets of Figs. 4b,c,d). Note that the
210 experiment probes moments that couple to in-plane field. This includes Zeeman-
211 coupled spins and may also include the valleys if their in-plane orbital moment is non-
212 zero.

213

214 **Discussion**

215 The observation of free magnetic moments at surprisingly low temperatures has
216 profound implications for the physics of MATBG. Low energy magnetic fluctuations are
217 destructive for superconductivity and may be the limiting factor for the superconducting
218 T_c . Moreover, increased scattering from fluctuating moments can account for the
219 “strange metal” behavior reported over a broad range of temperatures^{39,40}.

220 An important question raised by our observations regards the origin of the free
221 moments. Soft collective modes have been predicted in insulating states of MATBG²⁵⁻²⁷,
222 but our experiments show metallic behavior near $\nu = 1$. Moreover, the energy scale
223 associated with the appearance of free moments is strikingly low (3K or less), much
224 below the microscopic energy scales in the system. Understanding the state near $\nu = 1$,
225 that combines behaviors associated with electron localization and itineracy, and its
226 surprisingly low onset temperature, poses a key challenge for the theory of MATBG.

227

228

229 **References**

230 1. Pomeranchuk, I. On the theory of He3. *Zh.Eksp.Teor.Fiz* **20**, 919 (1950).

231 2. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene.

232 *Proc. Natl. Acad. Sci.* **108**, 12233–12237 (2011).

233 3. Cao, Y. *et al.* Correlated insulator behaviour at half-filling in magic-angle graphene

234 superlattices. *Nature* **556**, 80–84 (2018).

235 4. Cao, Y. *et al.* Unconventional superconductivity in magic-angle graphene

236 superlattices. *Nature* **556**, 43–50 (2018).

237 5. Li, G. *et al.* Observation of Van Hove singularities in twisted graphene layers. *Nat.*

238 *Phys.* **6**, 109–113 (2010).

239 6. Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands

240 in slightly twisted bilayer graphene: Tight-binding calculations. *Phys. Rev. B* **82**,

241 121407 (2010).

242 7. Regan, E. C. *et al.* Mott and generalized Wigner crystal states in WSe₂/WS₂ moiré

243 superlattices. *Nature* **579**, 359–363 (2020).

244 8. Tang, Y. *et al.* Simulation of Hubbard model physics in WSe₂/WS₂ moiré

245 superlattices. *Nature* **579**, 353–358 (2020).

246 9. Yankowitz, M. *et al.* Tuning superconductivity in twisted bilayer graphene. *Science*

247 **363**, 1059–1064 (2019).

248 10. Lu, X. *et al.* Superconductors, orbital magnets and correlated states in magic-

249 angle bilayer graphene. *Nature* **574**, 653–657 (2019).

250 11. Nuckolls, K. P. *et al.* Strongly Correlated Chern Insulators in Magic-Angle Twisted

251 Bilayer Graphene. *arXiv* 2007.03810 (2020).

252 12. Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern Insulators and

253 Topological Flat-bands in Magic-angle Twisted Bilayer Graphene. *ArXiv*

254 2007.03725 (2020).

255 13. Das, I. *et al.* Symmetry broken Chern insulators and magic series of Rashba-like

256 Landau level crossings in magic angle bilayer graphene. *Arxiv* 2007.13390 (2020).

257 14. Sharpe, A. L. *et al.* Emergent ferromagnetism near three-quarters filling in twisted
258 bilayer graphene. *Science* **365**, 605–608 (2019).

259 15. Serlin, M. *et al.* Intrinsic quantized anomalous Hall effect in a moiré
260 heterostructure. *Science* **367**, 900–903 (2020).

261 16. Kerelsky, A. *et al.* Maximized electron interactions at the magic angle in twisted
262 bilayer graphene. *Nature* **572**, 95–100 (2019).

263 17. Xie, Y. *et al.* Spectroscopic signatures of many-body correlations in magic-angle
264 twisted bilayer graphene. *Nature* **572**, 101–105 (2019).

265 18. Jiang, Y. *et al.* Charge order and broken rotational symmetry in magic-angle
266 twisted bilayer graphene. *Nature* **573**, 91–95 (2019).

267 19. Choi, Y. *et al.* Electronic correlations in twisted bilayer graphene near the magic
268 angle. *Nat. Phys.* **15**, 1174–1180 (2019).

269 20. Tomarken, S. L. *et al.* Electronic Compressibility of Magic-Angle Graphene
270 Superlattices. *Phys. Rev. Lett.* **123**, 046601 (2019).

271 21. Zondiner, U. *et al.* Cascade of phase transitions and Dirac revivals in magic-angle
272 graphene. *Nature* **582**, 203–208 (2020).

273 22. Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior
274 and superconductivity in twisted bilayer graphene. *Phys. Rev. X* **8**, 031089 (2018).

275 23. Song, Z. *et al.* All Magic Angles in Twisted Bilayer Graphene are Topological. *Phys.*
276 *Rev. Lett.* **123**, 036401 (2019).

277 24. Ahn, J., Park, S. & Yang, B.-J. Failure of Nielsen-Ninomiya Theorem and Fragile
278 Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry:
279 Application to Twisted Bilayer Graphene at Magic Angle. *Phys. Rev. X* **9**, 021013
280 (2019).

281 25. Bultinck, N. *et al.* Ground State and Hidden Symmetry of Magic-Angle Graphene
282 at Even Integer Filling. *Phys. Rev. X* **10**, 031034 (2020).

283 26. Ajesh Kumar, Ming Xie, A. H. MacDonald, Lattice Collective Modes from a
284 Continuum Model of Magic-Angle Twisted Bilayer Graphene. ArXiv:2010.05946

285 27. Wu, F. & Das Sarma, S. Collective Excitations of Quantum Anomalous Hall
286 Ferromagnets in Twisted Bilayer Graphene. *Phys. Rev. Lett.* **124**, 046403 (2020).

287 28. Wong, D. *et al.* Cascade of electronic transitions in magic-angle twisted bilayer
288 graphene. *Nature* **582**, 198–202 (2020).

289 29. McWhan, D. B. *et al.* Electronic Specific Heat of Metallic Ti-Doped V₂O₃. *Phys.*
290 *Rev. Lett.* **27**, 941–943 (1971).

291 30. Spivak, B. & Kivelson, S. A. Phases intermediate between a two-dimensional
292 electron liquid and Wigner crystal. *Phys. Rev. B* **70**, 155114 (2004).

293 31. Continentino, M. A., Ferreira, A. S., Pagliuso, P. G., Rettori, C. & Sarrao, J. L. Solid
294 state Pomeranchuk effect. *Phys. B Condens. Matter* **359–361**, 744–746 (2005).

295 32. Pustogow, A. *et al.* Quantum spin liquids unveil the genuine Mott state. *Nat.*
296 *Mater.* **17**, 773–777 (2018).

297 33. Saito, Y. *et al.* Isospin Pomeranchuk effect and the entropy of collective
298 excitations in twisted bilayer graphene. *ArXiv* 2008.10830 (2020).

299 34. Kuntsevich, A. Y., Tupikov, Y. V., Pudalov, V. M. & Burmistrov, I. S. Strongly
300 correlated two-dimensional plasma explored from entropy measurements. *Nat.*
301 *Commun.* **6**, 7298 (2015).

302 35. Hartman, N. *et al.* Direct entropy measurement in a mesoscopic quantum system.
303 *Nat. Phys.* **14**, 1083–1086 (2018).

304 36. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour
305 Hund's Coupling, Correlated Chern Gaps, and Diffusivity in Moir'e Flat Bands.
306 *Arxiv* 2008.12296 (2020).

307 37. Chen, S. *et al.* Electrically tunable correlated and topological states in twisted
308 monolayer-bilayer graphene. *Arxiv* 2004.11340 (2020).

309 38. Spivak, B. & Kivelson, S. A. Transport in two dimensional electronic micro-
310 emulsions. *Ann. Phys.* **321**, 2071–2115 (2006).

311 39. Cao, Y. *et al.* Strange Metal in Magic-Angle Graphene with near Planckian
312 Dissipation. *Phys. Rev. Lett.* **124**, 076801 (2020).

313 40. Polshyn, H. *et al.* Large linear-in-temperature resistivity in twisted bilayer
314 graphene. *Nat. Phys.* **15**, 1011–1016 (2019).

315 41. Uri, A. *et al.* Mapping the twist-angle disorder and Landau levels in magic-angle
316 graphene. *Nature* **581**, 47–52 (2020).

317

318 **Acknowledgements:** We thank Ehud Altman, Eva Andrei, Eslam Khalaf, Steve Kivelson,
319 Sankar Das Sarma, Gal Shavit, Joey Sulpizio, Senthil Todadri, Aviram Uri, Ashvin
320 Vishwanath, Michael Zaletel and Eli Zeldov for useful suggestions. E.B. is grateful to
321 Andrea Young for drawing his attention to the unusual physics near $\nu = \pm 1$, sharing his
322 unpublished data, and for a collaboration on a related experimental and theoretical
323 work³³, proposing that a similar effect to the one discussed here occurs near $\nu = -1$,
324 based on transport measurements. In this work, in contrast, we measured the entropy
325 directly, and mapped the entire phase diagram near $\nu = 1$ using compressibility
326 measurements. Work at Weizmann was supported by the Leona M. and Harry
327 B. Helmsley Charitable Trust grant, ISF grants (712539 & 13335/16), Deloro award, Sagol
328 Weizmann-MIT Bridge program, the ERC-Cog (See-1D-Qmatter, no. 647413), the ISF
329 Research Grants in Quantum Technologies and Science Program (994/19 & 2074/19),
330 the DFG (CRC/Transregio 183), ERC-Cog (HQMAT, no. 817799), EU Horizon 2020
331 (LEGOTOP 788715) and the Binational Science Foundation (NSF/BMR-BSF grant
332 2018643). Work at MIT was primarily supported by the US Department of Energy (DOE),
333 Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering
334 under Award DE-SC0001819 (J.M.P.). Help with transport measurements and data
335 analysis were supported by the National Science Foundation (DMR-1809802), and the
336 STC Center for Integrated Quantum Materials (NSF Grant No. DMR-1231319) (Y.C.). P.J.-
337 H acknowledges support from the Gordon and Betty Moore Foundation's EPiQS
338 Initiative through Grant GBMF9643 and partial support by the Fundación Ramón Areces.
339 The development of new nanofabrication and characterization techniques enabling this
340 work has been supported by the US DOE Office of Science, BES, under award DE-

341 SC0019300. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative
342 conducted by the MEXT, Japan, Grant Number JPMXP0112101001, JSPS KAKENHI Grant
343 Numbers JP20H00354 and the CREST(JPMJCR15F3), JST. This work made use of the
344 Materials Research Science and Engineering Center Shared Experimental Facilities
345 supported by the National Science Foundation (DMR-0819762) and of Harvard's Center
346 for Nanoscale Systems, supported by the NSF (ECS-0335765).

347

348 **Author Contributions:** A.R., J.M.P, U.Z., Y.C., P.J-H. and S.I. designed the experiment.
349 A.R., U.Z., performed the scanning SET experiments, J.M.P, Y.C. performed the
350 monolayer graphene sensing experiments. D.R-L. and Y.C. fabricated the twisted bilayer
351 graphene devices. A.R., J.M.P, U.Z., Y.C., P.J-H. and S. I. analyzed the data. E.B., Y.O. and
352 A.S. wrote the theoretical model. K.W. and T.T. supplied the hBN crystals. A.R., J.M.P,
353 U.Z., Y.C., Y.O., A.S., E.B., P.J-H. and S.I. wrote the manuscript.

354

355 **Competing interests:** The authors declare no competing interests.

356 **Figure 1: Experimental setup and device characterization.** **a.** A nanotube-based single
357 electron transistor (SET) is used to measure the local electronic compressibility and
358 entropy of magic angle twisted bilayer graphene (MATBG). The MATBG is encapsulated
359 between top and bottom h-BN layers (not shown) and has a metallic back-gate. By
360 monitoring the current through the SET, we track changes in the MATBG chemical
361 potential, $d\mu$, in response to a density modulation, dn , produced by an a.c. voltage on
362 the back-gate²¹, δV_{BG} . A d.c. back-gate voltage, V_{BG} , sets the overall carrier density in
363 the MATBG, n . Some of the measurements are performed in a parallel magnetic field, B_{\parallel}
364 (indicated). **b.** Inverse compressibility, $d\mu/dn$, measured as a function of the moiré
365 lattice filling factor, $\nu = n/(n_s/4)$, at $T = 15K$ (n_s is the density that correspond to 4
366 electrons per moiré site). Measurements are done on a large spatial domain ($\sim 5\mu m \times$
367 $4\mu m$) throughout which the twist angle is extremely homogenous, $\theta = 1.130^\circ \pm 0.005$
368 (measured by spatial mapping of the V_{BG} that corresponds to n_s , as in Refs. ^{21,41}). As
369 seen previously²¹, a jump of $d\mu/dn$ appears near all integer filling factors. This jump
370 corresponds to a Fermi surface reconstruction, in which some combination of the
371 spin/valley flavors filling is reset back to near the charge neutrality point, and
372 correspondingly $d\mu/dn$ shows a cascade of sawtooth features as a function of density.
373 The trace is measured at $T = 15K$, showing that even at this high temperature this
374 sawtooth cascade is well developed **c.** Two-probe resistance, R , measured as a function
375 of ν and temperature. Notice that unlike the inverse compressibility, which measures a
376 local quantity, the resistance gives an averaged result over domains with different twist
377 angle. Therefore, the resistance maxima are slightly shifted from the usual integer ν
378 values, probably because another domain with a small difference in twist angle
379 dominates the transport characteristics globally.

380

381 **Figure 2: Measurement of large magnetic entropy above $\nu = 1$.** **a.** Inverse
382 compressibility, $d\mu/dn$, as a function of ν , near $\nu = 1$, measured at zero parallel
383 magnetic field, $B_{\parallel} = 0T$, and at several temperatures. With increasing T , the jump in

384 $d\mu/dn$ moves toward lower ν and becomes stronger. **b.** Same measurement done
385 at $B_{\parallel} \approx 12T$. Here, opposite to the zero-field case, increasing T reduces the magnitude
386 of the $d\mu/dn$ jump, as expected from thermal smearing. **c.** The chemical potential $\mu(\nu)$
387 (relative to that of the charge neutrality point) at $B_{\parallel} = 0T$, obtained by integrating the
388 $d\mu/dn$ signal in panel a with respect to n . Inset: $\mu(T, \nu) - \mu(T = 2.8K, \nu)$ for $\nu = 0.2$
389 (blue) and $\nu = 0.9$ (red). At $\nu = 0.2$ the chemical potential is nearly temperature
390 independent, whereas at $\nu = 0.9$ it is roughly constant until $T \sim 4K$ and then start
391 decreasing approximately linearly with T . **d.** Similar to c, but at $B_{\parallel} = 12T$. In contrast to
392 the zero-field case, here, below $\nu \approx 0.9$, μ decreases with T while above $\nu \approx 0.9$ μ
393 increases with T . **e.** The electronic entropy in units of k_B per moiré unit cell, as a
394 function of ν at $T \approx 10K$ and at various parallel magnetic fields, $B_{\parallel} = 0, 4, 8, 12T$. To
395 obtain the entropy we determine the partial derivative $(\partial\mu/\partial T)_{\nu, B_{\parallel}}$ from a linear fit to
396 the measured μ vs. T in the range $T = 4.5K - 15K$. The entropy per moiré cell is then
397 obtained by integrating Maxwell's relation: $(\partial s/\partial \nu)_{T, B_{\parallel}} = -(\partial\mu/\partial T)_{\nu, B_{\parallel}}$, over ν (see
398 Supp Info. for details) . At $B_{\parallel} = 0$ the entropy climbs rapidly near $\nu = 1$ to a value of
399 $1.2k_B$ per moiré cell. Inset: the difference between the entropies at low and high fields,
400 $s(B_{\parallel} = 0T) - s(B_{\parallel} = 12T)$. The purple shading shows the estimated error bar.
401

402 **Figure 3: Temperature dependence of the Entropy.** **a.** Experimental setup for
403 measuring the global entropy, averaged over the entire device³⁶. The device consists of
404 MATBG and a monolayer graphene (MLG) sensor layer, separated by an ultrathin (1 nm)
405 layer of h-BN (not shown), as well as top and bottom metallic gates. By balancing the
406 electrochemical potential of the adjacent layers in the device, we can obtain the
407 relationship between the density and chemical potential of MATBG and MLG and the
408 gate voltages applied to the system. In the special case where the density of MLG is
409 zero, i.e. at its charge neutrality point, the chemical potential of MATBG is directly
410 proportional to the voltage applied to the top gate. This technique allows us to reliably
411 extract the chemical potential and entropy of MATBG at temperatures up to 70 K. **b.**

412 The measured entropy, in units of k_B per moiré unit cell, as a function of ν at three
413 different temperature ranges (top legend). The entropy derivative, $ds/d\nu$, is obtained
414 from a linear fit to μ vs. T in the corresponding temperature range, and is then
415 integrated over ν to yield the entropy per moiré unit cell (similar to Fig. 2e). Inset:
416 comparison between the ν dependences of the entropies, measured at the low
417 temperature range, obtained from local and global measurements. **c.** The entropy as a
418 function of ν and T calculated for a system of four degenerate non-interacting Dirac
419 bands (whose density of states climbs linearly with energy from the Dirac point to the
420 end of the conduction or the valence band). The color-coded lines show the curves
421 whose temperatures correspond to the mean of the temperature ranges of the
422 experimental curves. The gray lines represent the entire evolution from zero
423 temperature to high temperature, where the entropy saturates on a value of
424 $8\ln(2) \approx 5.5$, where the factor 8 reflects the total number of energy bands. A
425 bandwidth of $W = 30\text{meV}$ is chosen such that the calculated value of the entropy at the
426 highest temperature roughly matches the one obtained from the measured curve at the
427 same temperature.

428

429 **Figure 4: Experimental phase diagram.** **a.** The inverse compressibility, $d\mu/dn$,
430 measured as a function of ν near $\nu = 1$, at several values of parallel magnetic field, B_{\parallel} .
431 We track the filling factor that corresponds to the center the jump in $d\mu/dn$ (labeled
432 ν_R). Visibly, the application of B_{\parallel} pushes ν_R to lower values. **b.** Measured ν_R as a
433 function of B_{\parallel} and T , plotted as dots in the (ν, B_{\parallel}, T) space (the dots are colored by their
434 temperature). The dashed lines are polynomial fits to the dots at constant B_{\parallel} or
435 constant T . Inset: the same surface calculated from a simple model that assumes a
436 transition between a Fermi liquid and a metallic phase that contains one free moments
437 per moiré site (see text). **c.** Projection of the data in panel b onto the (ν, B_{\parallel}) plane,
438 showing the dependence of ν_R on B_{\parallel} for various temperatures. At low fields, ν_R is
439 independent of field but it becomes linear in B_{\parallel} at high fields, a behavior expected from

440 the field polarization of free moments (see text). Inset: curves calculated from the
441 model. **d.** Projection onto the (v, T) plane, showing the dependence of v_R on T for
442 various magnetic fields. At $B_{\parallel} = 0T$, v_R is linear in T at small T 's and then curves up at
443 higher T 's. At high magnetic field, the dependence of v_R on T becomes non-monotonic.
444 Inset: curves calculated from the model.

445

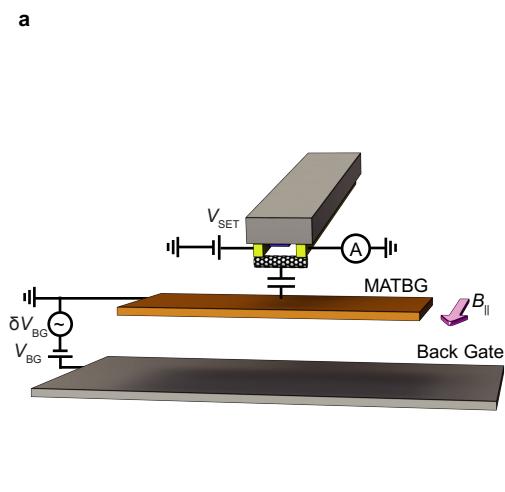
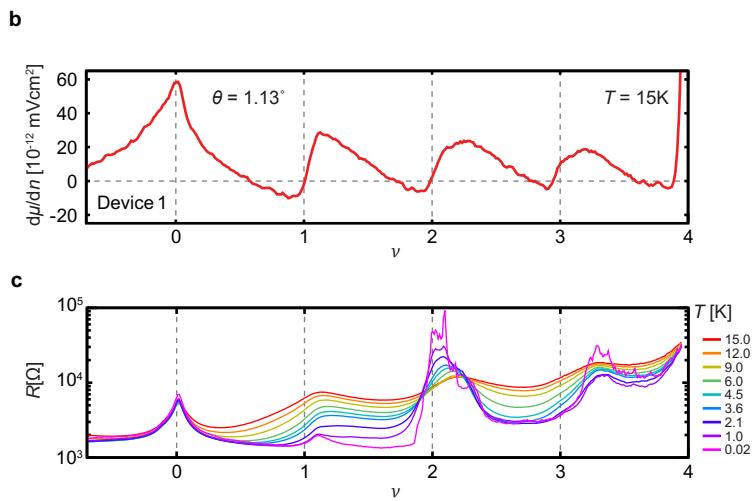
446 **Data availability:** The data in the main text is available in
447 https://github.com/erezberg/pomeranchuk_data
448 The code used in this work is available in
449 https://github.com/erezberg/pomeranchuk_tblk_theory

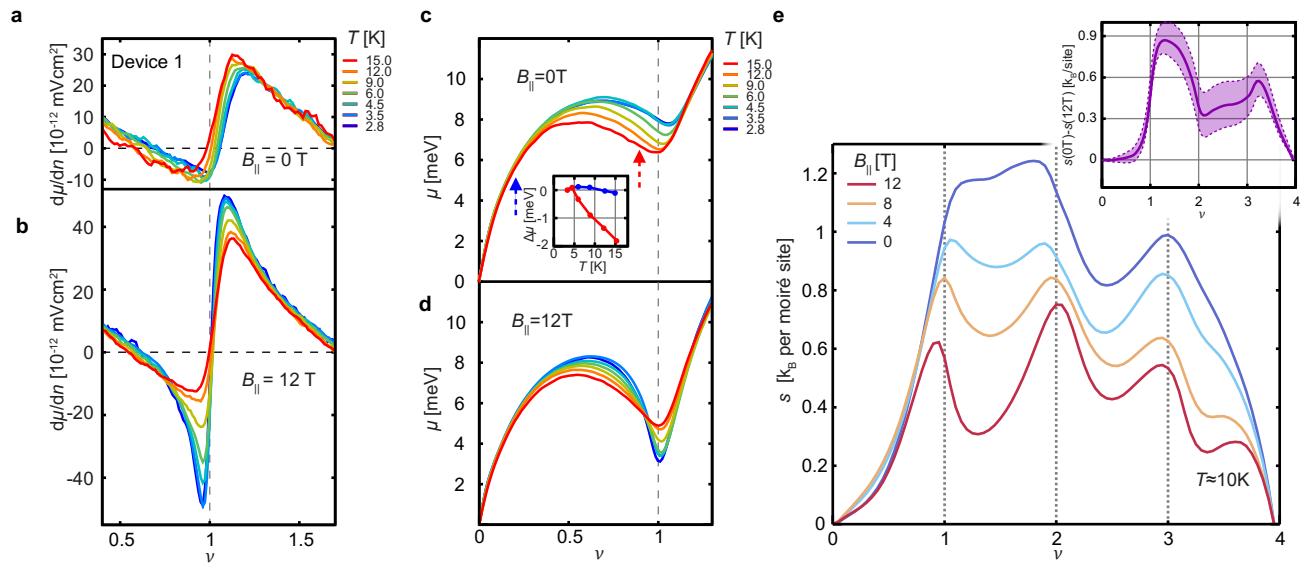
450

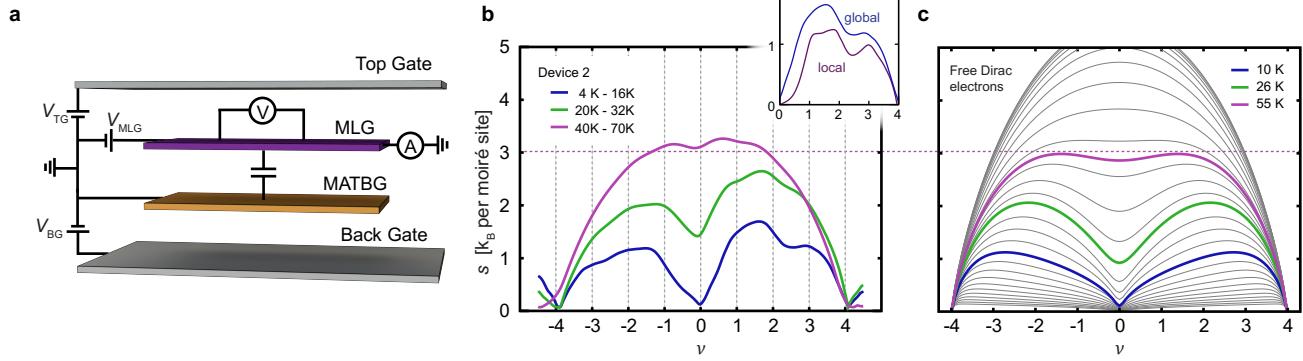
451

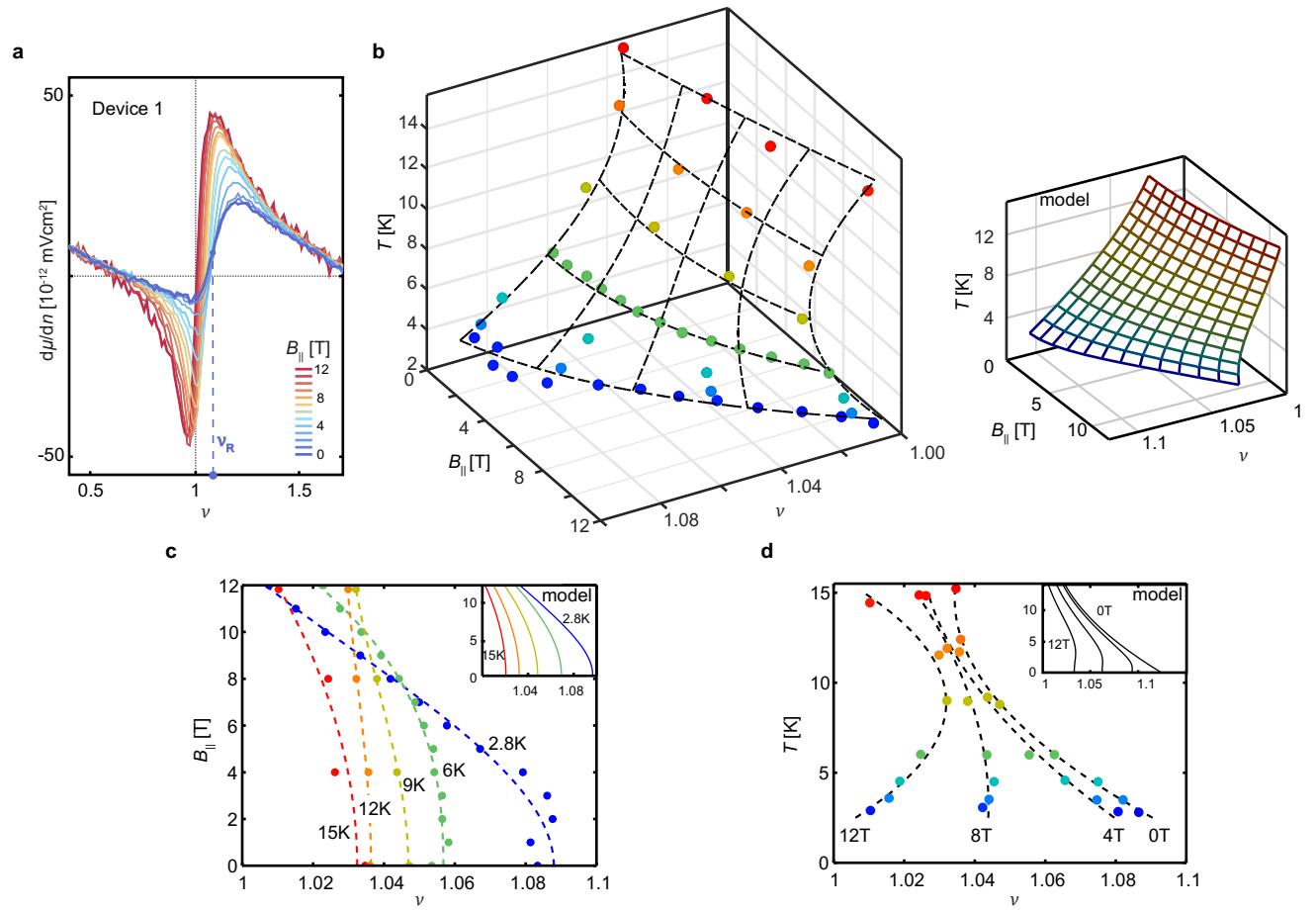
452

453









Supplementary materials for:
Entropic evidence for a Pomeranchuk effect in Magic Angle graphene

3 Asaf Rozen[†], Jeong Min Park[†], Uri Zondiner[†], Yuan Cao[†], Daniel Rodan-Legrain, Takashi
4 Taniguchi, Kenji Watanabe, Yuval Oreg, Ady Stern, Erez Berg^{*}, P. Jarillo-Herrero^{*} and Shahal
5 Ilani^{*}

10 **Contents**

11	SI1. Extraction of the entropy	2
12	SI2. Entropy of non-Interacting Dirac electrons	5
13	SI3. Entropy in mean-field Dirac revival model	6
14	SI4. The effect of a magnetic field on the entropy in a mean-field model without free spins	9
15	SI5. Tracking ν_R using different features of the $d\mu/dn$ jump	11
16	SI6. Thermodynamic model for Fermi liquid to free moment phase transition	13
17	SI7. Anti-correlation between entropy and magnetization.....	16
18	SI8. Comparison of transport measurements and compressibility	18
19	SI9. Comparison of the temperature dependence of $d\mu/dn$ near $\nu = 1$ and $\nu = -1$	20
20	SI10. The nature of the revival transition near $\nu = 1$	22
21	SI11. The entropy data at two temperature windows	24

24 [SI1. Extraction of the entropy](#)

25 In both the local and global measurements, we determine the entropy using a Maxwell
 26 relation, relating the partial derivatives of the entropy with respect to the filling factor to that
 27 of the chemical potential with respect to temperature:

$$(\partial s / \partial \nu)_{T, B_{\parallel}} = - (\partial \mu / \partial T)_{B_{\parallel}, \nu}$$

28 where s is the entropy per moiré unit cell. In the global measurements, we probe the chemical
 29 potential of the MATBG directly using a monolayer graphene sensor. The measurement
 30 determines the chemical potential relative to that at the charge neutrality point (CNP):

$$\Delta \mu(\nu, T, B_{\parallel}) = \mu(\nu, T, B_{\parallel}) - \mu_{CNP}(T, B_{\parallel}).$$

31 In the local measurements, we use a nanotube single electron transistor to measure the inverse
 32 compressibility and integrate it over the density, to obtain the same quantity:

$$\Delta \mu(\nu, T, B_{\parallel}) = \mu(\nu, T, B_{\parallel}) - \mu_{CNP}(T, B_{\parallel}) = \int_0^n (\partial \mu / \partial n)_{B_{\parallel}, T} dn'.$$

33 In these measurements, the inverse compressibility is probed at typical frequencies of few
 34 hundred Hz, and with an excitation $\delta V_{BG} = 40mV$ on the back gate, chosen to be small enough
 35 as to not smear essential features.

36 The entropy then follows from:

$$\begin{aligned} s(\nu, T, B_{\parallel}) &= \int_0^{\nu} (\partial s / \partial \nu)_{T, B_{\parallel}} d\nu' = - \int_0^{\nu} (\partial \mu / \partial T)_{B_{\parallel}, \nu} d\nu' \\ &= - \int_0^{\nu} \frac{d(\Delta \mu)}{dT} d\nu' - \int_0^{\nu} \frac{d\mu_{CNP}}{dT} d\nu' \end{aligned}$$

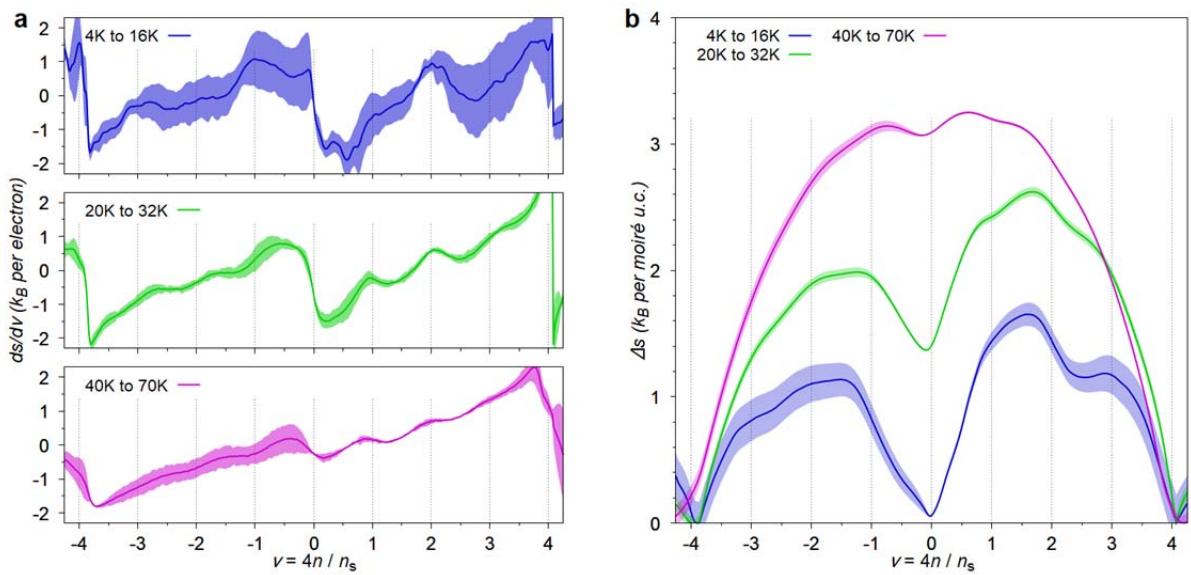
37 The first term provides the ν -dependent part of the entropy. The second one, which we do not
 38 measure directly, adds a linear term in ν . The value of this constant is determined by making
 39 the assumption that inside the gap separating the conduction flat band and the higher
 40 dispersive band, namely at $\nu = 4$, the electronic entropy is zero. To see why this assumption is

41 justified we note that inside a gap, the electronic entropy is given by $s = 16k_B \frac{E_g}{W} e^{-\frac{E_g}{2k_B T}}$
 42 (where W is the width of the flat band, and E_g is the size of the gap to the dispersive band). Our
 43 compressibility measures directly the size of the gap to be $E_g \approx 30meV$, and estimate the
 44 bandwidth to be of similar magnitude $W \approx 30 - 40meV$. The entropy in such gap at $T \approx 10K$

45 is $s \approx 4 \cdot 10^{-7} k_B$, making our assumption well justified for the relevant temperatures reported
 46 in the paper.

47
 48 We note that the bandwidth of the flat bands obtained from this fit is significantly larger than
 49 the theoretical predicitons, and that this is consistent with the large bandwidths observed in
 50 all existing experiments: STM experiments (Ref 16-19 in the main text) give bandwidths in the
 51 range of $22\text{meV} - 55\text{meV}$ and compressibility measurements (Ref 21, 26 in main text) give
 52 $40\text{meV} - 55\text{meV}$. The somewhat larger estimate of bandwidth from compressibility, might
 53 reflect the fact that when the mixing to the high-energy dispersive bands is not negligible, the
 54 bandwidth extracted from compressibility may increase slightly by the effects of interactions.

55
 56 Fig. S1a shows the derivative of the entropy per electron with respect to ν for three different
 57 temperature ranges, from the measurements done in Device 2. using the global
 58 measurements. We removed a constant background in $ds/d\nu (\nu)$ to account for the variation of
 59 μ with T at charge neutrality, such that the entropy at $\nu = \pm 4$ is zero. For each temperature
 60 range, μ was assumed to be linearly dependent on T at a given ν . The confidence bound of 95%
 61 is shown for this linear fitting process. The entropy obtained after integration is shown in Fig.
 62 S1b. The error highlighted bands show the propagated uncertainty in this integration process.



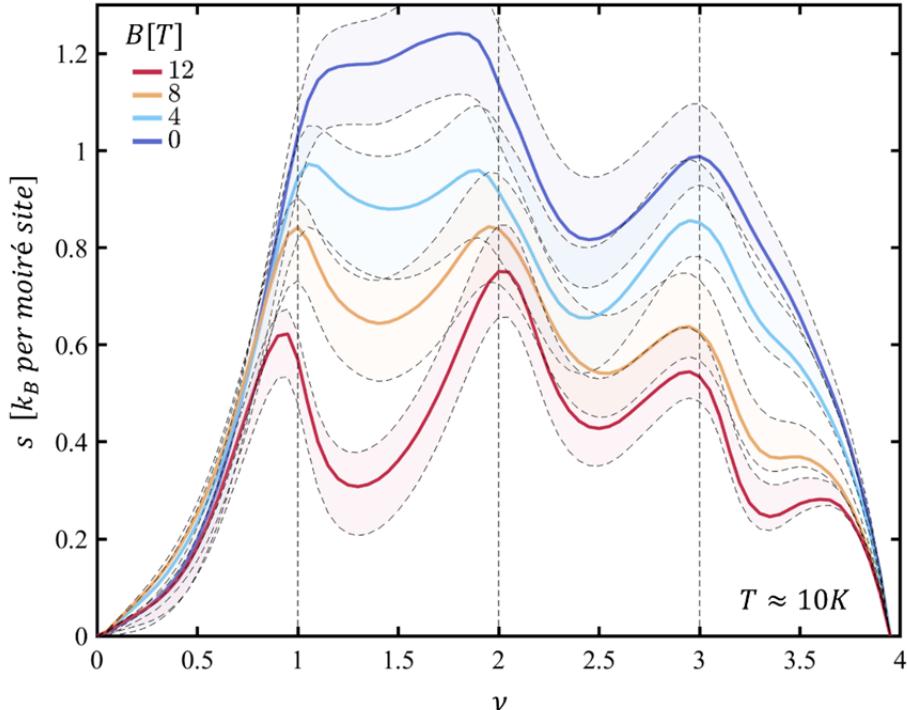
63

64 **Fig. S1: Extraction of entropy in Device 2 for different temperatures.** (a) Derivative of entropy with respect to ν
65 obtained from Maxwell's relation $(\partial s / \partial \nu)_{T, B_{\parallel}} = -(\partial \mu / \partial T)_{B_{\parallel}, \nu}$ for three temperature ranges spanning 4 K to 70 K.
66 (b) Entropy change Δs per moiré unit cell with respect to the band insulators at $\nu = \pm 4$.

67

68 In the scanning SET measurements, we get an additional small component of parasitic
69 capacitance between the SET and the back-gate. This results from the fact that our SET scans at
70 a finite height (hundreds on nm's) above the MATBG. This parasitic capacitance adds a
71 background to the measured inverse compressibility of the order of $d\mu/dV < 10^{-4}$. In the
72 estimation of the entropy this gets doubly integrated yielding a term that depends quadratically
73 on ν . We remove this term by assuming that the entropy at $\nu = 0$ is also zero (in addition to
74 assuming it is zero at $\nu = 4$ as discussed above). As seen in the global entropy measurements
75 (Fig. 3b and S1b), the entropy curve that correspond to the temperature range $T = 4\text{K} - 16\text{K}$
76 (blue) shows that the entropy at $\nu = 0$ is smaller than $0.1k_B$. Since local entropy measurements
77 are performed only in this temperature range, the assumption that $s = 0$ at $\nu = 0$ is justified.

78 To determine the uncertainty in the local measurements of the entropy (Fig. 2e in the
79 main text), we first extract the noise level in our measured $d\mu/dn$. We then add to our
80 measured compressibility signal randomly distributed noise with the experimental noise
81 variance and see how it changes the resulting entropy curve. Repeating this over a statistically
82 significant instances of random noise gives us the error bars in our determined entropy, which
83 are shown in Fig. S2, for the traces taken at different parallel magnetic fields (as in Fig. 2e in the
84 main text).



85

86 **Fig. S2: Errorbars of the measured local entropy.** Solid lines show s vs. ν for several values of B_{\parallel} . The shaded bands
 87 around each curves give the 1 sigma errorbars (see the text in this Supplementary section for details).

88

89 SI2. Entropy of non-Interacting Dirac electrons

90 To get a rough understanding of the overall ν dependence of the measured entropy at
 91 high temperatures, it is useful to compare it to the entropy in a system of non-interacting Dirac
 92 bands. The curves in Fig. 3c in the main text were obtained for such a model with a single-
 93 particle density of states that rises linearly from zero at the charge neutrality point up to the
 94 band top and bottom at $\pm W/2$, where W is the bandwidth. The density of states $\rho(\varepsilon)$ for each
 95 spin/valley flavor is given by:

96

$$97 \rho(\varepsilon) = \frac{8|\varepsilon|}{W^2} \Theta\left(\frac{W}{2} - |\varepsilon|\right), \quad (1)$$

98 where $\Theta(x)$ is the Heaviside step function. The entropy per unit cell is then given by:

99

100
$$s(\nu, T) = -g_f k_B \int_{-\infty}^{\infty} d\varepsilon \rho(\varepsilon) \{n_F(\varepsilon) \ln[n_F(\varepsilon)] + [1 - n_F(\varepsilon)] \ln[1 - n_F(\varepsilon)]\}. \quad (2)$$

101 Here, $g_f = 4$ is the number of spin/valley flavors, $n_F(\varepsilon) = 1/(1 + e^{(\varepsilon - \mu)/T})$ is the Fermi-Dirac
102 distribution, and the chemical potential is determined by solving the equation for the filling
103 factor ν , given by:

104
$$\nu = g_f \left[\int_{-\infty}^{\infty} d\varepsilon \rho(\varepsilon) n_F(\varepsilon) - 1 \right]. \quad (3)$$

105 Solving Eq. (3) for $\mu(\nu, T)$ and inserting the result into (2) gives $s(\nu, T)$ shown in Fig. 3c of
106 the main text.

107

108

109 [SI3. Entropy in mean-field Dirac revival model](#)110 In Refs.^{1,2}, we have used a simple mean-field model to describe the Dirac revival
111 features in the compressibility. At zero temperature, this model features a cascade of phase
112 transitions upon increasing the electron density, where the spin and valley symmetries are
113 successively broken. At each transition, electrons of one flavor become more populated than
114 the others. The minority flavors' densities reset to the vicinity of the charge neutrality point.
115 This causes a sharp drop in the density of states at the Fermi level, reviving the Dirac-like
116 density dependence of the inverse compressibility near each integer filling factor. Hence, we
117 termed this phenomenon "Dirac revival transitions".118 Here, we present a calculation of the entropy as a function of density and in-plane
119 magnetic field within the same mean-field model. The model consists of four flavors of
120 electrons (two valleys and two spins), each with a single-particle density of states $\rho(\varepsilon)$. The
121 interaction, of strength U , is assumed to be local in real space and featureless in flavor space.
122 The Hamiltonian is written as

123
$$H = \sum_{\mathbf{k}, \alpha, n} (\varepsilon_{\alpha n \mathbf{k}} - \mu) \psi_{\alpha n \mathbf{k}}^\dagger \psi_{\alpha n \mathbf{k}} + H_{\text{int}}, \quad (4)$$

124 where $\alpha = \{K \uparrow, K \downarrow, K' \uparrow, K' \downarrow\}$ is a spin/flavor index, $n = 1, 2$ labels the conduction and
 125 valence bands, $\varepsilon_{\alpha m \mathbf{k}}$ are the band dispersions (that are valley and n dependent but spin
 126 independent), and the interaction Hamiltonian is given by:

$$127 \quad H_{\text{int}} = \frac{U}{2N} \sum_{\alpha \neq \beta} \sum_{\{n_i\}, \{\mathbf{k}_i\}, \mathbf{G}} \delta_{\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3 - \mathbf{k}_4 + \mathbf{G}} \psi_{\alpha n_1 \mathbf{k}_1}^\dagger \psi_{\beta n_2 \mathbf{k}_2}^\dagger \psi_{\beta n_3 \mathbf{k}_3} \psi_{\alpha n_4 \mathbf{k}_4}. \quad (5)$$

128 Here, N is the number of unit cells, and \mathbf{G} is a reciprocal lattice vector. The interaction couples
 129 only electrons of different spin/valley flavors, since it is assumed to be delta function-like in real
 130 space. Then, by the Pauli principle, two electrons of the same spin and valley cannot occupy the
 131 same point in real space, and do not interact. This captures the exchange part of the
 132 interaction, which favors spin or valley polarization. Including an intra-flavor term J , as in Ref²,
 133 does not change the results for the entropy shown below.

134 We analyze the system within a Hartree-Fock mean-field approximation, allowing for an
 135 arbitrary filling of each flavor, but no other form of broken symmetry. We use a mean-field
 136 Hamiltonian of the form:

$$137 \quad H_{\text{MF}} = \sum_{\mathbf{k}, \alpha, n} (\varepsilon_{\alpha n \mathbf{k}} - \mu - \mu_\alpha) \psi_{\alpha n \mathbf{k}}^\dagger \psi_{\alpha n \mathbf{k}}, \quad (6)$$

138 with variational parameters μ_α , and minimize the grand potential of the trial density matrix
 139 $\hat{\rho} = \frac{e^{-H_{\text{MF}}/T}}{\text{Tr}[e^{-H_{\text{MF}}/T}]}$. The variational grand potential per unit cell is given by

$$140 \quad \Omega_{\text{MF}} = \sum_\alpha f(\mu_\alpha + \mu) + \frac{U}{2} \sum_{\alpha \neq \beta} \nu(\mu_\alpha + \mu) \nu(\mu_\beta + \mu) + \sum_\alpha \mu_\alpha \nu(\mu_\alpha + \mu) \quad (7)$$

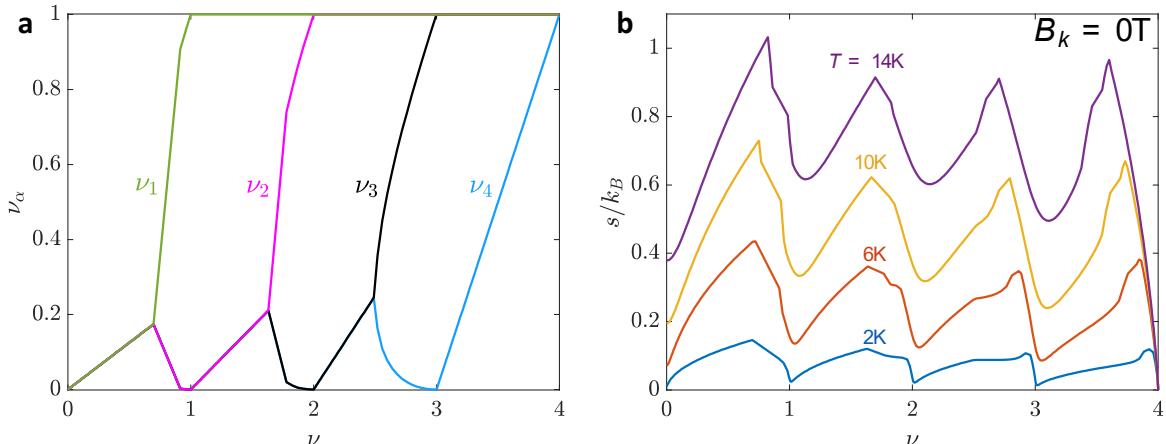
141 where

$$142 \quad f(\mu) = -T \int_{-\infty}^{\infty} d\varepsilon \rho(\varepsilon) \left[\log \left(1 + e^{-\frac{\varepsilon - \mu}{T}} \right) + \frac{\varepsilon - \mu}{T} \Theta(-\varepsilon) \right],$$

$$143 \quad \nu(\mu) = \int_{-\infty}^{\infty} d\varepsilon \rho(\varepsilon) \left(\frac{1}{1 + e^{(\varepsilon - \mu)/T}} - \Theta(-\varepsilon) \right).$$

144 Here, $\rho(\varepsilon) = \frac{1}{N} \sum_{\mathbf{k}} \delta(\varepsilon - \varepsilon_{\mathbf{k}})$ is the density of states of each flavor. Minimizing Eq. (6) with
 145 respect to μ_α , we obtain a variational estimate for $\Omega(\mu, T)$. The entropy can then be obtained

146 though $s = -\frac{\partial \Omega}{\partial T}$. Following Ref¹, we use a simple linear model for the density of states, given in
 147 Eq. (1). Using different models for the density of states does not alter the results qualitatively.



148
 149 **Figure S3: Mean-field calculation.** **a.** Partial occupations ν_α of each valley/spin flavor as a function of total filling
 150 factor ν , at $T = 0$, $B_\parallel = 0$, showing a cascade of flavor symmetry breaking transitions near each integer filling. **b.**
 151 Entropy as a function of ν at $B_\parallel = 0$, for different temperatures. The dips in the entropy correspond to the
 152 resetting of some of the spin/valley flavors back to the charge neutrality point ($\nu_\alpha = 0$), while others are fully
 153 filled. At these points the density of states at the Fermi level is minimal.

154
 155 We expect that at low temperatures, this approximation, built on a density matrix
 156 corresponding to a non-interacting Hamiltonian with self-consistently determined μ_α 's, will
 157 exhibit an entropy that is essentially $s = \frac{\pi^2}{3} \sum_\alpha \rho(\mu + \mu_\alpha)T$. Hence, the entropy is proportional
 158 to the total density of states at the Fermi level.

159 Fig. S3a shows the partial filling factors of each flavor as a function of the total filling
 160 factor at zero temperature, choosing $W = 2U = 300K$. The results do not change qualitatively
 161 for different values of U/W , as long as $2U$ and W are comparable^{1,2}. As seen in the figure, near
 162 charge neutrality, all four flavors start filling equally as the density is raised. Before $\nu = 1$ is
 163 reached, a phase transition occurs, in which one flavor suddenly becomes more populated than
 164 the others. When the majority flavor reaches $\nu_\alpha = 1$, the other flavors are reset to the vicinity

165 of the charge neutrality point, and then begin filling again equally as the density is raised, until
166 another phase transition is encountered. This is the cascade of revivals described in Refs ^{1,2}.

167 In Fig. S3b, we present the entropy per unit cell $s(\nu, T)$ computed from the same model, as
168 a function of ν for different temperatures. Thus, the entropy show clearly the revival
169 transitions, visible as sharp dips in the entropy near each integer filling. The dips are explained
170 by the fact that the total density of states at the Fermi level is minimal at these fillings. This ν
171 dependence of the entropy resembles the one measured at a high field, $B_{\parallel} = 12\text{T}$ (Fig. 2e),
172 suggesting that the mean-field description captures the essential part of the physics there. On
173 the other hand, the entropy measured at $B_{\parallel} = 0\text{T}$ (fig. 2e) is quantitatively different than the
174 one obtained here, emphasizing the important role of fluctuating free moments which are not
175 included in the mean-field model.

176 We note that the partial fillings as a function of ν at the elevated temperatures are not strongly
177 modified compared to those at $T = 0$, shown in Fig. S3a, although the positions of the phase
178 transitions shift slightly with temperature.

179 [SI4. The effect of a magnetic field on the entropy in a mean-field model without
180 free spins](#)

181 A Zeeman field can be included in the Hamiltonian (4) by adding the following term:

182

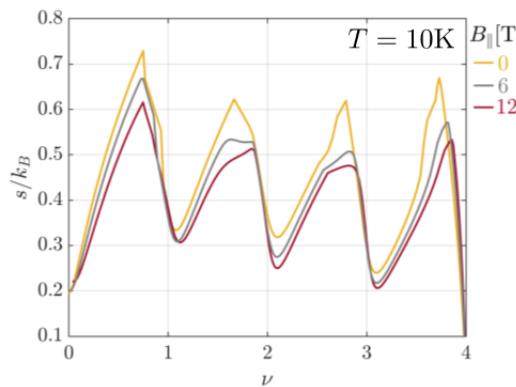
183
$$H_Z = -E_Z \sum_{\mathbf{k}, \alpha, n} \sigma_{\alpha} \psi_{\alpha n \mathbf{k}}^{\dagger} \psi_{\alpha n \mathbf{k}}, \quad (8)$$

184 where $E_Z = \mu_B B_{\parallel}$ is the Zeeman energy, and σ_{α} is the spin projection of electrons of flavor α
185 along the magnetic field. To account for the Zeeman field in the mean-field calculation, we
186 replace $\mu \rightarrow \mu + E_Z \sigma_{\alpha}$ in Eqs. (6) and (7).

187 The entropy vs. ν at $T = 10\text{K}$ in the presence of different in-plane magnetic fields is
188 shown in Fig. S4. As seen in the figure, the effect of a field of up to $B_{\parallel} = 12\text{T}$ is quite small,
189 decreasing the entropy by at most $0.1k_B$ relative to the $B_{\parallel} = 0$ value near the maxima of the

190 entropy before the integer fillings. The change in the entropy away from the maxima due to the
191 field is even smaller.

192 Comparing the mean-field results to the experimentally measured entropy (Fig. 2e in
193 the main text), we see that the calculated entropy is in rough qualitative agreement with the
194 experimental one at $B_{\parallel} = 12\text{T}$ and $T \approx 10\text{K}$, showing a similar peak structure near each
195 integer filling. The overall magnitude of the calculated entropy at $B_{\parallel} = 12\text{T}$ is also similar to the
196 measured one. However, the calculated entropy at $B_{\parallel} = 0$ is very different from the measured
197 entropy. In particular, unlike in the calculation, the measured entropy does not drop after
198 $\nu = 1$, but rather remains nearly constant at a high value. Moreover, the measured entropy is
199 strongly field dependent for $\nu > 1$, whereas the calculated one is weakly field dependent at all
200 ν . We ascribe this failure of the mean-field model to the appearance of nearly-free magnetic
201 moments (as discussed in detail in the main text). These free moments, that onset near $\nu = 1$,
202 fluctuate strongly at low magnetic fields, an effect which is not captured in mean-field theory.
203 Upon applying a strong Zeeman field, these fluctuations are quenched (as seen experimentally
204 by the dramatic decrease in the entropy), and mean-field theory may be adequate.



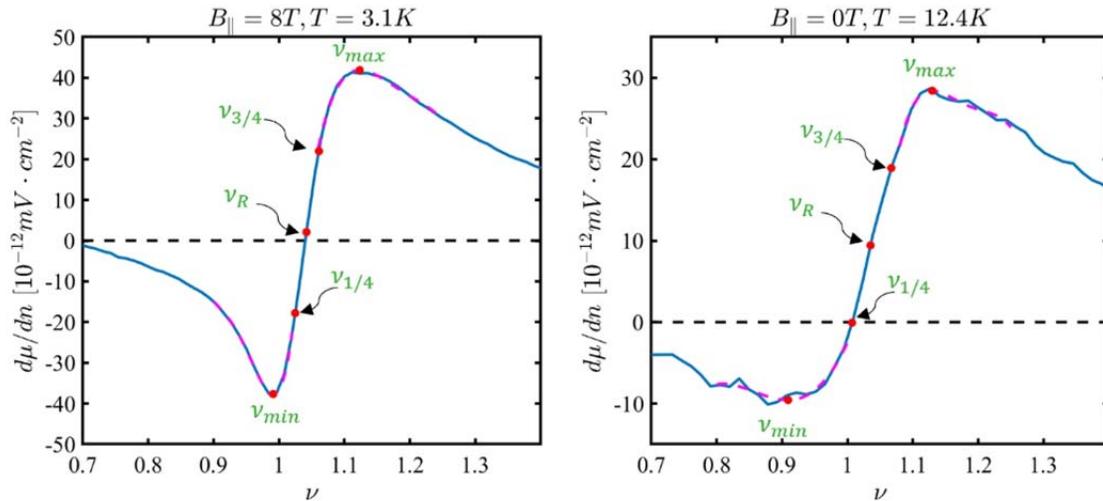
205
206 **Figure S4: Effect of an in-plane magnetic field on the entropy within the mean-field model.** In this
207 calculation, the temperature is $T = 10\text{K}$. The different curves are for $B_{\parallel} = 0\text{T}, 6\text{T}, 12\text{T}$. The entropy
208 depends only weakly on field, in contrast to the experiment. As explained above, the mean-field
209 approximation does not capture the strong magnetic fluctuations present in the experiment at $\nu > 1$.

210

211 SI5. Tracking ν_R using different features of the $d\mu/dn$ jump

212 In the main text, the transition from high to low compressibility near $\nu = 1$ was tracked by
 213 following the midpoint of the rise in $d\mu/dn$. Since the rise is fastest around its midpoint, this
 214 procedure gives us excellent resolution in defining the filling factor that corresponds to this rise,
 215 of about $\delta\nu_R \sim 0.005$. We note, however, that the overall width of the rise in filling factor can
 216 be significantly larger, and in extreme cases can even reach $\Delta\nu \approx 0.2$. It is thus necessary to
 217 check whether tracking different features of the transition as a function of magnetic field or
 218 temperature will lead to similar conclusions.

219



220

221

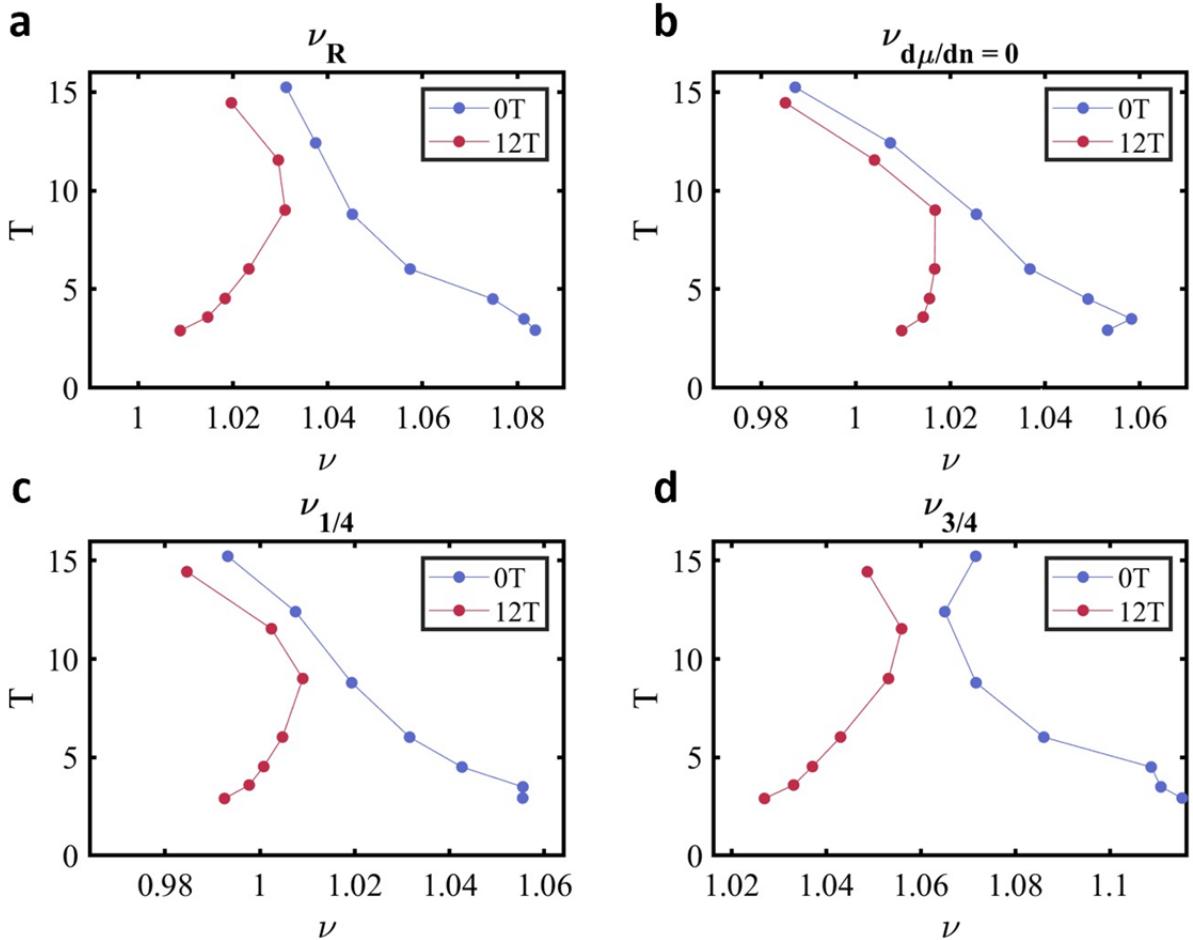
222 **Fig. S5: $d\mu/dn$ rise at for different T, B_{\parallel} .** **a.** Measured rise in $d\mu/dn$ near $\nu = 1$ at $B_{\parallel} = 8T$ and $T = 3.1K$. **b.**
 223 Same for $B_{\parallel} = 0T$ and $T = 12.4K$. The filling factors that correspond to the minimum and maximum of the rise,
 224 ν_{min} and ν_{max} are identified using a fit to a 4th order polynomial around the relevant regions (dashed purple). Also
 225 labeled are the filling factors at the midpoint of the rise, ν_R , at quarter of the rise, $\nu_{1/4}$, and at three quarters of
 226 the rise, $\nu_{3/4}$.

227

228 In Fig. S5 we show two examples: the first (panel a), measured at $B_{\parallel} = 8T$ and $T = 3.1K$,
 229 shows a rather sharp rise. In the second (panel b), measured at $B_{\parallel} = 0T$ and $T = 12.4K$, the
 230 rise is more gradual. In general, similar to what is shown in these two representative
 231 measurements, we see that lower fields or higher temperatures smear the $d\mu/dn$ rise. To
 232 check how sensitive are the results shown in Fig. 4 of the main text to the choice of the

233 definition of the location on the rise in $d\mu/dn$, we repeat the analysis with different criteria for
234 the chosen location. Since ν_{min} and ν_{max} have large uncertainties, especially at high
235 temperatures and low fields, we follow instead the filling factors at one quarter of the rise, $\nu_{1/4}$,
236 and three quarters of the rise, $\nu_{3/4}$. The uncertainties in determining the latter are still low
237 enough to make significant observations, and their tracking can still identify whether the
238 observed features are tied to a specific part of the rise. Fig. S6 shows the extracted ν_R , $\nu_{1/4}$,
239 $\nu_{3/4}$ and $\nu_{d\mu/dn=0}$, plotted as a function of T at $B_{\parallel} = 0\text{T}$ and $B_{\parallel} = 12\text{T}$. This figure should be
240 compared with Fig. 4d in the main text.

241 While there are quantitative difference between the curves obtained by the different
242 methods, we can see that in the overall dependence and the essential features in all the curves
243 agree. For example, we see that at $B_{\parallel} = 12\text{T}$, independently of the method used, ν_R increases
244 with temperature at low temperatures, reaching a maximum, and then starts decreasing with
245 increasing temperature at high temperatures, where the crossover occurs at $T \approx 9\text{K}$.



246

247 **Fig. S6: Tracking different features of the $d\mu/dn$ rise near $\nu = 1$.** **a.** ν_R , **b.** $\nu_{d\mu/dn=0}$, **c.** $\nu_{1/4}$, **d.** $\nu_{3/4}$ (as
248 defined in Fig. S5 and in this section's text) as a function of B_{\parallel} and T .

249 SI6. Thermodynamic model for Fermi liquid to free moment phase transition

250 Here, we describe the simple thermodynamic model we used in the main text to
251 describe the first order phase transition.

252 The experiment is done under conditions where the temperature T , parallel magnetic
253 field B_{\parallel} , and gate voltage ν_g are fixed. The appropriate thermodynamic potential to be
254 minimized under these conditions is the grand canonical potential, $\Omega(\nu_g, T, B_{\parallel})$. It is convenient
255 to express the gate voltage in terms of the equivalent filling factor, $\nu_0 = \frac{1}{e} c_g \nu_g$ (c_g is the
256 geometric capacitance from the MATBG to the gate per moiré unit cell). For clarity, it is useful

257 to derive the grand canonical potential starting from the free energy f , which is a function of
 258 the filling factor ν , and then obtain Ω by a Legendre transformation.

259 Our simple model postulates the existence of a first order transition between two
 260 phases. The first phase is a relatively simple metallic phase, which we model as a Fermi liquid.
 261 The second phase is characterized by the existence of free moments. This phase is also metallic,
 262 although its density of states is lower than that of the first phase. We assume that in the second
 263 phase, there is one free spin per unit cell, coexisting with metallic Fermi liquid electrons.

264 The free energies per moiré unit cell of the two phases are chosen as follows:

$$f_i(\nu, T, B_{\parallel}) = \varepsilon_i + \frac{1}{2} \left(\frac{e^2}{c_g} + \frac{1}{\kappa_i} \right) \nu^2 - \mu_i \nu - \frac{\gamma_i T^2}{2} - \frac{\chi_i B_{\parallel}^2}{2} - \alpha_i T \ln \left[2 \cosh \left(\frac{\mu_B B_{\parallel}}{T} \right) \right].$$

265 Here, $i = 1, 2$ labels the two phases, ε_i and μ_i are reference energies and chemical
 266 potentials, $\kappa_i = \left(\frac{dn}{d\mu} \right)_i$ are the intrinsic compressibilities (or quantum capacitances), $\gamma_{1,2}$ are the
 267 specific heat coefficients, χ_i are the Pauli contributions to magnetic susceptibility of the
 268 itinerant electrons, and α_i are the concentrations of free spins per unit cell, taken to be $\alpha_1 = 0$
 269 and $\alpha_2 = 1$ (the results do not depend sensitively on the value of α_2 , as long as it is of order
 270 unity). We have assumed that the free spins have a gyromagnetic ratio $g = 2$.

271 We now carry out a Legendre transformation, $\Omega = f - e\nu_g \nu$, minimize Ω with respect to ν ,
 272 and thus eliminate ν in favor of $\nu_0 = \frac{1}{e} c_g \nu_g$. Since in our experiment e^2/c_g is much larger than
 273 $1/\kappa_i$, we keep only terms to lowest order in $\frac{c_g}{e^2 \kappa_i}$. The grand potentials of the two phases per
 274 unit cell are:

$$\Omega_i(\nu_0, T, B_{\parallel}) = \tilde{\varepsilon}_i - \frac{1}{2} \frac{e^2}{c_g} \nu_0^2 - \mu_i \nu_0 - \frac{\gamma_i T^2}{2} - \frac{\chi_i B_{\parallel}^2}{2} - \alpha_i T \ln \left[2 \cosh \left(\frac{\mu_B B_{\parallel}}{T} \right) \right].$$

275 Here, $\tilde{\varepsilon}_i = \varepsilon_i - \frac{c_g}{2e^2} \mu_i^2$. In terms of $\Omega(\nu_0, T, B_{\parallel})$, the thermodynamic variables are given by:

$$276 \nu = -\frac{c_g}{e^2} \frac{\partial \Omega}{\partial \nu_0}, S = -\frac{\partial \Omega}{\partial T}, m = -\frac{\partial \Omega}{\partial B_{\parallel}},$$

277 where s and m are the entropy and in-plane magnetization per unit cell, respectively.

278 The first order transition surface in the $(\nu_0, T, B_{\parallel})$ parameter space is given by the
 279 condition $\Delta\Omega(\nu_0, T, B_{\parallel}) = \Omega_2 - \Omega_1 = 0$. The theoretical curves shown in Fig. 4 of the main text
 280 were obtained using the following parameters: $\tilde{\varepsilon}_2 - \tilde{\varepsilon}_1 = 72\text{K}$, $\mu_2 - \mu_1 = 64\text{K}$, and $\gamma_2 - \gamma_1 =$
 281 -0.0331K^{-1} . The negative sign of $\gamma_2 - \gamma_1$ corresponds to the fact that the density of states of
 282 itinerant carriers in the free moment phase is lower than that of the simple metallic phase. For
 283 simplicity, we neglect the Pauli contribution χ_i to the magnetic susceptibility, which is negligible
 284 compared to the free moment contribution.

285 Under these assumptions, the surface of the first order transition can be simply
 286 expressed as:

$$\nu_0^* = \frac{1}{\mu_2 - \mu_1} \left\{ \tilde{\varepsilon}_2 - \tilde{\varepsilon}_1 - \frac{1}{2} (\gamma_2 - \gamma_1) T^{*2} - T^* \ln \left[2 \cosh \left(\frac{\mu_B B_{\parallel}^*}{T^*} \right) \right] \right\}$$

287 where ν_0^* , T^* , and B_{\parallel}^* denote the equivalent filling factor, temperature, and magnetic field of a
 288 point on the transition surface.

289 The Clausius-Clapeyron relations along the transition surface can be obtained by
 290 differentiating $\Delta\Omega$:

$$d\Delta\Omega = -\frac{e^2}{2c_g} \Delta\nu d\nu_0^* - \Delta s dT^* - \Delta m dB_{\parallel}^*.$$

291

292 Here, $\Delta\nu = \nu_2 - \nu_1$, $\Delta s = s_2 - s_1$, and $\Delta m = m_2 - m_1$ are the jumps in the filling factor,
 293 entropy, and magnetization across the transition, respectively. Along a $\nu_0^* = \text{const.}$ contour of
 294 the transition surface, get the relation

$$\left(\frac{\partial T^*}{\partial B_{\parallel}^*} \right)_{\nu_0^*} = -\frac{\Delta m}{\Delta s},$$

295 which is the relation we used in SI7, with ν_0^* , T^* , and B_{\parallel}^* identified as the filling factor (ν_R),
 296 temperature, and magnetic field at the Dirac revival point.

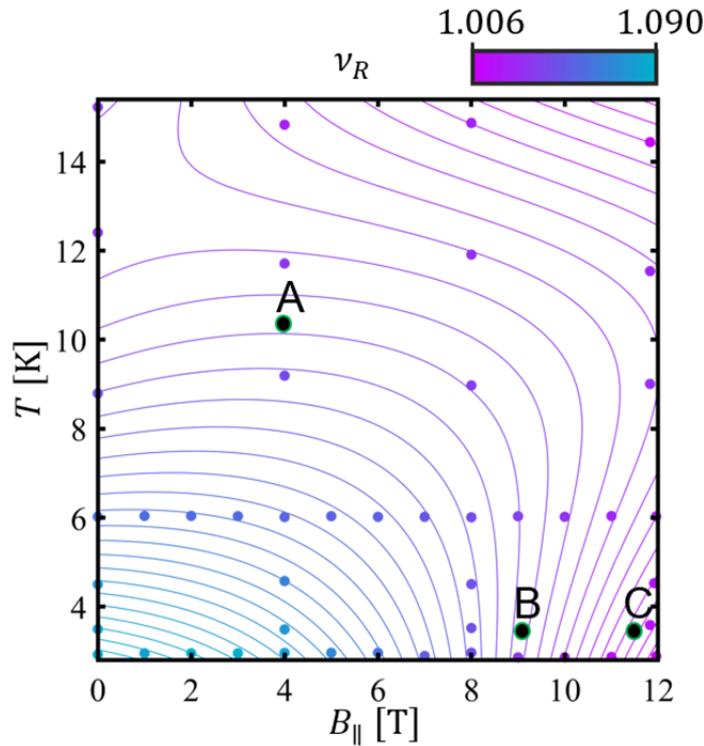
297

298 SI7. Anti-correlation between entropy and magnetization.

299 The jump in compressibility seen at ν_R is sharp, but not discontinuous, as one may naively
300 expect from a first order phase transition. Indeed, in the presence of long-range Coulomb
301 interactions and disorder in two dimensions, a first order transition is not expected to be sharp.
302 If we assume that the revival transition at $\nu = 1$ represent a smeared first-order phase
303 transition, we can derive from the shape of the phase boundary the relation between
304 magnetization and entropy. We demonstrated this relation by analyzing the slope of the phase
305 boundary via the Clausius-Clapeyron equation: $\Delta m / \Delta s = -(\partial T / \partial B_{\parallel})_{\nu_R}$. Here, Δs and Δm are
306 the differences in the entropy and magnetization per moiré unit cell between the free moment
307 and the Fermi liquid phases, and $(\partial T / \partial B_{\parallel})_{\nu_R}$ is the derivative of the transition temperature
308 with respect to magnetic field at constant ν_R . To obtain the ratio $\Delta m / \Delta s$ we reconstruct such
309 equi- ν_R contours by fitting a polynomial surface in the B_{\parallel} and T plane to the measured points,
310 and extract the slope of the contour lines at different points (Fig. S7). Consider point A in Fig.
311 S7: At this point, $(\partial T / \partial B_{\parallel})_{\nu_R} \approx 0$. The Clausius-Clapeyron equations then imply that $\Delta m \approx 0$.
312 In contrast, at point B, the equal ν_R contours are nearly vertical, implying that $\Delta s \approx 0$. This
313 clear anti-correlation between Δs and Δm follows naturally from our simple model, where both
314 Δs and Δm originate from the same free moments, that are either strongly thermally
315 fluctuating, or polarized along the magnetic field. At point C, the contour has a positive slope,
316 from which we deduce that $\Delta s < 0, \Delta m > 0$.

317

318



319 **Fig. S7: Anti-correlation between the entropy and magnetization as determined from the boundary surface**
 320 **curvature.** Measured ν_R as a function of B_{\parallel} and T (colored dots). The contours are obtained from a fit of these dots
 321 to a polynomial surface (3rd order in T and 2nd order in B_{\parallel}). The slope of the contours in this (B_{\parallel}, T) plane gives via
 322 the Clausius-Clapeyron relation the ratio of the magnetization and entropy jumps across the transition, $\Delta m / \Delta s =$
 323 $-(\partial T / \partial B_{\parallel})_{\nu_R}$. Visibly, in the point labeled A the contours are horizontal, implying $\Delta m \approx 0$. At point B the contours
 324 are vertical and thus $\Delta s \approx 0$. The crossover occurs along a diagonal line that corresponds to the polarization of the
 325 free moments. At point C, the contour has a positive slope, from which we deduce that $\Delta s < 0$, $\Delta m > 0$.

326

327

328

329 [SI8. Comparison of transport measurements and compressibility.](#)

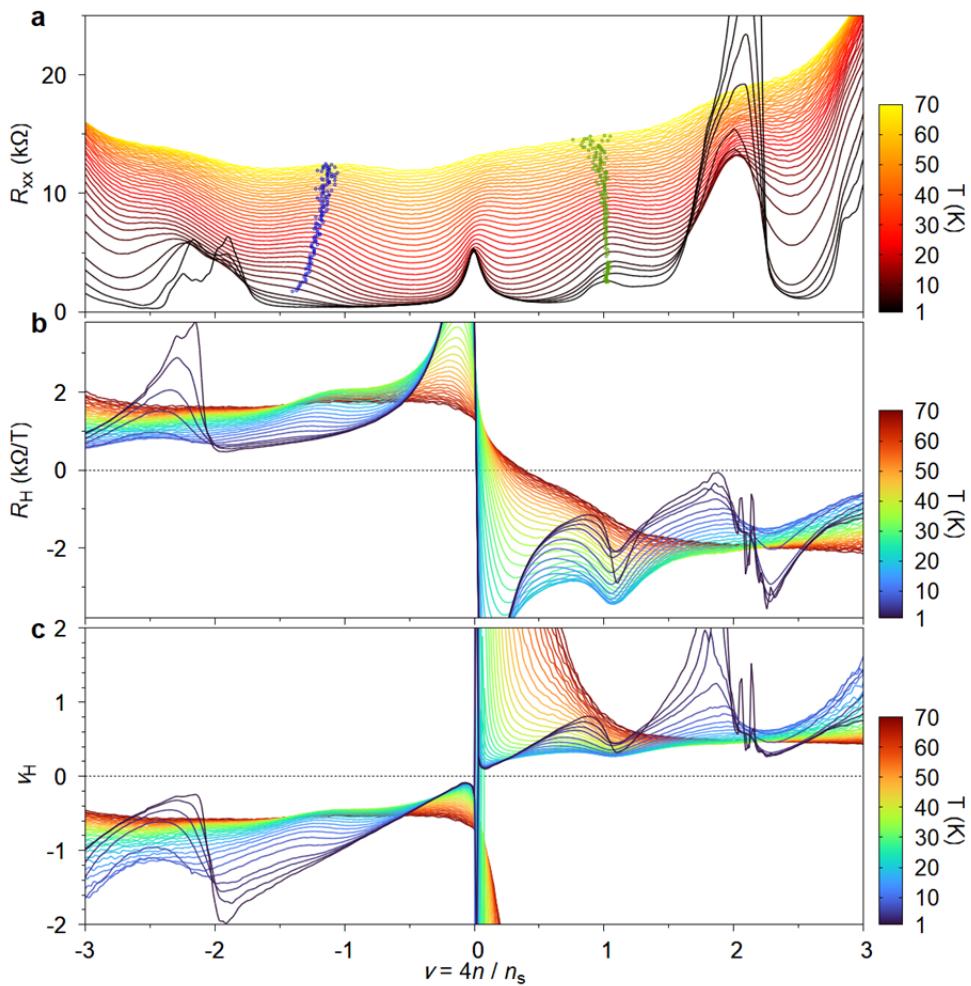
330 Using the multilayer device shown in Fig. 3a, we can simultaneously obtain the transport
331 resistances and the chemical potential of MATBG. Fig. S8a shows the longitudinal resistance
332 R_{xx} versus ν at different temperatures from 1K to 70K. The peaks in resistance near $\nu = -1$
333 denoted by the blue dots start appearing at a finite temperature of $\sim 5\text{K}$, and subsequently
334 move to lower absolute value of filling factor as the temperature increases. The Hall coefficient
335 and density, as shown in Fig. S8b and c, also show a similar trend. The shift of the resistive peak
336 at $\nu = -1$ has been attributed³ to a Pomeranchuk-like mechanism, similar to the one near
337 $\nu = 1$.

338

339 The shift of the peak at $\nu = +1$, on the other hand, is much smaller, as was also
340 observed in Device 1 shown in Fig. 1. Indeed, from our analysis in Fig. 4, the shift of the $\nu = +1$
341 state as a function of temperature is on the order of $\Delta\nu = 0.06$, which might be shadowed in
342 the transport measurement by a moderate twist angle inhomogeneity on the order of $\pm 0.02^\circ$.

343

344



345

Figure S8: Transport characterization of MATBG from 1 – 70K. (a) Longitudinal resistance R_{xx} versus ν . Blue and green dots mark the peaks in resistance near $\nu = \pm 1$ after a linear background is removed at each temperature. (b-c) Hall coefficient $R_H = dR_{xy}/dB$ and the corresponding Hall density $\nu_H = (-\frac{1}{R_H e})/(\frac{n_s}{4})$ in the same range of temperatures and densities.

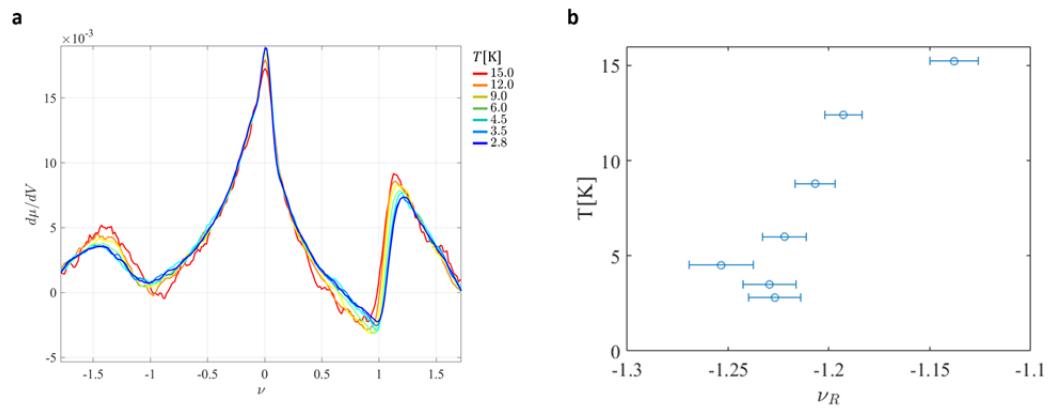
346

347

348 SI9. Comparison of the temperature dependence of $d\mu/dn$ near $\nu = 1$ and
349 $\nu = -1$.

350 As discussed in the main paper there are qualitative similarities between the
351 measurements of the entropy in the electron and hole sides, although the system is far from
352 being electron-hole symmetric. In figure S8a we present a measurement of $d\mu/dn$ as a function
353 of filling factor for different temperatures, covering both the electron and hole sides. As can be
354 seen in the figure, an asymmetric “Dirac revival” jump in the compressibility is present in both
355 the electron and hole sides. However, while the jump of $d\mu/dn$ in the electron side is very
356 sharp and appears close to $\nu = 1$, in the hole side it is much broader, smaller in height, and
357 appears further away from $\nu = -1$. The fact that the Dirac revival features in the
358 compressibility is stronger and sharper on the electron side have already been observed in
359 earlier experiments¹ over a wide range of twist angles.

360 Although the feature in the hole side is more smeared than that in the electron side, the
361 temperature dependencies of the two features are qualitatively similar: both become stronger
362 and move towards charge neutrality with increasing temperature (see also Fig. S8b). This
363 suggests that the underlying physics in the vicinity of $\nu = \pm 1$ may be similar. However, the
364 reason for the large width of the feature on the hole side is currently unclear. Potential disorder
365 is expected to smear the electron and hole sides in a similar way, and therefore it cannot
366 explain the difference between the widths in the two sides. Angle disorder can also lead to a
367 spatial smearing of the local filling factor, $\nu = n/(n_s/4)$, by locally varying the density that
368 corresponds to full flat bands, n_s . However, also this effect should be electron-hole symmetric
369 for $\nu = \pm 1$, since the absolute value of the carrier density in these two filling factors is the
370 same. One can also clearly see that the combined effect of potential and angle disorder is
371 rather small, since even in their presence the jump of $d\mu/dn$ in $\nu = +1$ is very sharp. A possible
372 reason for the difference might be that the density jump between the two phases that are
373 involved in the transition is larger in the hole side than in the electron side, and therefore the
374 density range of mesoscale phase coexistence in the hole side is larger. However, this is purely
375 speculative, and more experiments would be needed to clarify the underlying reasons for the
376 differences between the physics in the conduction and valence flat bands.



379 **Figure S8: Comparison of the temperature dependence of $d\mu/dn$ near $\nu = 1$ and $\nu = -1$.** **a.** $d\mu/dn$ measured
 380 as a function of ν at various temperatures. **b.** The filling factor that corresponds to revival transition near $\nu = -1$,
 381 ν_R , determined by the deflection point of the rise in $d\mu/dn$, plotted as a function of temperature.

382 SI10. The nature of the revival transition near $\nu = 1$

383 The central finding of this work is the identification of two regions in the phase diagram
384 with very distinct behaviors of the entropy. The jump in compressibility as a function of density
385 that separates the two regions is quite sharp; however, the jump is not infinitely sharp and is
386 not resolution limited. In addition, there is no sign of hysteresis between the two regions.
387 Therefore, strictly speaking, there is no first-order transition between the two regions. This is
388 not unexpected, since as we point out in the manuscript, first-order transitions are not allowed
389 in two dimensions in the presence of disorder and long-range Coulomb interactions. This is so
390 since in the vicinity of the transition the system always prefers to break up into mesoscopic
391 domains of the two phases, smearing the transition. The length scale over which the system
392 breaks up depends strongly on microscopic parameters. In similar systems where disorder
393 induces phase separation the typical spatial scale of the domains is of the order of tens of
394 nanometers (for a recent example see Ref ⁴), well below our spatial resolution (which was
395 about 500nm in this experiment). Thus, although the transition is rather sharp we cannot rule
396 out the possibility that this is a sharp crossover rather than a 1st order phase transition. In our
397 experiment, there is no evidence for a spontaneously broken symmetry in the $\nu > 1$ phase at
398 temperatures $T > 2.8$ K. Conversely, at these temperatures the magnetic moments in this
399 phase are strongly fluctuating, showing no sign of long-range order. Thus, a smooth crossover
400 between the two phases is not forbidden and can be consistent with the data. Nevertheless,
401 since the crossover is quite rapid, it seems reasonable to interpret it as a slightly smeared
402 underlying first order transition, and we show that such an interpretation naturally explains the
403 dependence of the phase boundary on temperature and in-plane field.

404 A higher-order transition is also possible, but on theoretical grounds, we believe it is less
405 likely. A second-order transition can occur generically between two phases that are
406 distinguished by symmetry; however, as mentioned above, there is no direct evidence in our
407 experiment for spontaneous symmetry breaking at $T > 2.8$ K. Alternatively, a second-order
408 transition may appear as a critical end point of a first order transition (as in a liquid-gas critical
409 point). However, this critical point requires fine tuning, and should appear as a point in the
410 (ν, T) plane, rather than as a line.

411 We also note that hysteretic behavior is not forbidden near specific phase transitions in
412 two-dimensions. For example, hysteresis was observed near $\nu = -1$ in references [10] and [13]
413 of the main paper. In those works, the system was measured in the presence of a perpendicular
414 magnetic field, while our experiments are performed in an in-plane field. In addition, the
415 hysteresis was observed there upon cycling the magnetic field (and not the density), whereas
416 our scans were only taken as a function of density. Finally, the hysteresis was visible only at low
417 temperatures ($T < 1\text{K}$), whereas our experiments are done at $T > 2.8\text{K}$.

418 Often, the existence of hysteresis is tied to the presence of an incompressible phase in the
419 system. In the vicinity of an incompressible phase and in the presence of disorder, it is well
420 known that the system breaks up in real space to incompressible and compressible regions.
421 Compressible islands that are surrounded by incompressible strips can have very long charging
422 times, and this leads to glassy behavior of the overall system. This can manifest itself in
423 hysteresis, as is seen, e.g., around quantum Hall gapped states (for a recent example, see Fig.
424 S5 in <https://arxiv.org/pdf/2008.05466.pdf>). On the other hand, if the phases that are involved
425 are compressible, charge can equilibrate rapidly. Thus, hysteresis that is related to the ability of
426 the charge degrees of freedom to equilibrate will happen only when a gapped phase is
427 involved. This could explain very nicely the difference between our experiment and those of
428 Refs. [10,13]: in these references, hysteresis is observed whenever a Chern insulator appears.
429 Since a Chern insulator is gapped, the formation of a real space mixture of a Chern insulator
430 and a compressible phase can cause hysteresis. In our experiment, in contrast, there is no
431 indication for a thermodynamic gap, and the two phases on either side of the transition are
432 clearly compressible, which can explain the absence of hysteresis in our case.

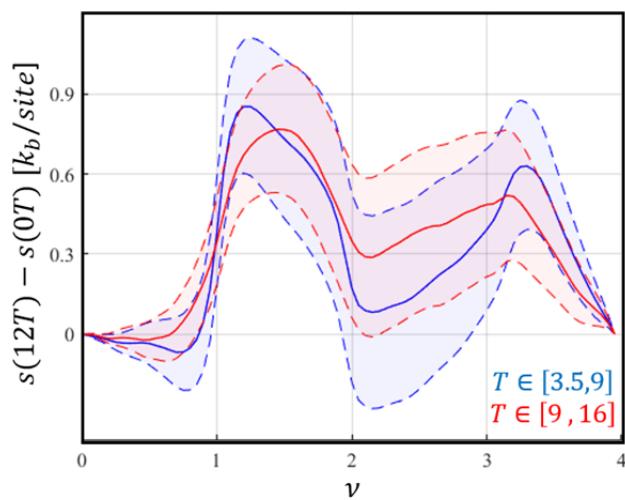
433 Hysteresis can, in principle, also arise due to the formation of a macroscopic collective
434 degrees of freedom, such as domain walls in a ferromagnet, whose equilibration time can be
435 very long. This situation arises naturally, for example, when there is a spontaneous breaking of
436 a discrete symmetry. However, in our experiment, performed at $T > 2.8\text{K}$, there is no
437 indication for such symmetry breaking.

438
439

440 [SI11. The entropy data at two temperature windows](#)

441 The $\sim 10K$ temperature range used for extracting the entropy in this paper was necessary
 442 for obtaining low enough noise, such that the entropy curves have good significance. With our
 443 existing signal-to-noise ratios it would be prohibitive to measure the detailed temperature
 444 dependence of the entropy. Nevertheless, to check the consistency of our data we bin it below
 445 into two temperature windows. Figure 9 shows the 'magnetic entropy', $S(0T) - S(12T)$,
 446 similar to the one shown in the paper (Fig. 2e, inset), but now extracted from two separate
 447 temperature windows: $T = 3.5K - 9K$ and $T = 9K - 16K$. The shaded regions around each
 448 curve show the error bars, determined in a similar manner to those in the main paper (as
 449 described in the Supplementary Information section SI1). Notably, there are some differences
 450 between the two curves. However, these differences are well within the error bars, and thus
 451 we do not think one can assign a real significance to them. On the other hand, we can see that
 452 the two entropy traces, obtained from the two different temperature windows, look overall
 453 very similar. Specifically, both curves show a rather sharp increase of the 'magnetic entropy'
 454 near $\nu = 1$ and a fast decrease near $\nu = 2$. This gives additional support to the robustness of
 455 our observations, but also lends extra support to the observation that we made in the paper,
 456 based on the mapping of the phase boundary (Fig. 4), that the 'magnetic entropy' appears
 457 already at very low temperatures, of the order of few degrees Kelvin.

458



459

460

461 **Figure S9: Magnetic entropy from two temperature windows.** a. The magnetic entropy, $s(12T) - s(0T)$,

461 extracted from the slope of μ vs. T taken at from two different temperature windows: $T = 3.5 - 9K$ (blue) and

462 $T = 9 - 16K$ (red). The shaded regions indicate the error bars, determined along the same procedure used for Fig.
463 2e in the main paper, that is described in section SI1.

464

465 1. Zondiner, U. *et al.* Cascade of phase transitions and Dirac revivals in magic-angle
466 graphene. *Nature* **582**, 203–208 (2020).

467 2. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour Hund's
468 Coupling, Correlated Chern Gaps, and Diffusivity in Moir'e Flat Bands. *Arxiv* 2008.12296
469 (2020).

470 3. Saito, Y. *et al.* Isospin Pomeranchuk effect and the entropy of collective excitations in
471 twisted bilayer graphene. *ArXiv* 2008.10830 (2020).

472 4. Tilak, N. *et al.* Flat band carrier confinement in magic-angle twisted bilayer graphene.
473 *preprint at ResearchSquare* (2020). doi:10.21203/rs.3.rs-88276/v1

474