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Entropic evidence for a Pomeranchuk effect in magic angle graphene
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In the 1950's, Pomeranchuk’ predicted that, counterintuitively, liquid *He may
solidify upon heating, due to a high excess spin entropy in the solid phase. Here, using
both local and global electronic entropy and compressibility measurements, we show
that an analogous effect occurs in magic angle twisted bilayer graphene’®. Near a
filling of one electron per moiré unit cell, we observe a dramatic increase in the
electronic entropy to about 1k per unit cell. This large excess entropy is quenched by
an in-plane magnetic field, pointing to its magnetic origin. A sharp drop in the
compressibility as a function of the electron density, associated with a reset of the
Fermi level back to the vicinity of the Dirac point, marks a clear boundary between
two phases. We map this jump as a function of electron density, temperature, and
magnetic field. This reveals a phase diagram that is consistent with a Pomeranchuk-
like temperature- and field-driven transition from a low-entropy electronic liquid to a
high-entropy correlated state with nearly-free magnetic moments. The correlated
state features an unusual combination of seemingly contradictory properties, some
associated with itinerant electrons, such as the absence of a thermodynamic gap,
metallicity, and a Dirac-like compressibility, and others associated with localized
moments, such as a large entropy and its disappearance with magnetic field.
Moreover, the energy scales characterizing these two sets of properties are very
different: whereas the compressibility jump onsets at T ~ 30K, the bandwidth of

magnetic excitations is ~ 3K or smaller. The hybrid nature of the new correlated state
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and the large separation of energy scales have key implications for the physics of

correlated states in twisted bilayer graphene.

Systems of strongly interacting fermions exhibit a competition between
localization, minimizing the potential energy, and itineracy, minimizing kinetic energy.
The advent of two-dimensional moiré systems, such as magic angle twisted bilayer
graphenez'6 (MATBG), allows studying this physics by controlling the ratio between the
electronic interactions and bandwidth in a highly tunable way. When this ratio is large,
electrons tend to localize and form Mott insulators’®. When the bandwidth dominates,
a Fermi liquid state is formed in which electrons are itinerant. MATBG is at the boundary
between these two extremes, showing a host of fascinating electronic phases, including

correlated insulators3'9’1°, Chern insulators“'ls, superconductors4’9’10, and

14,15 16-19

ferromagnets ™. Scanning tunneling spectroscopy and electronic compressibility

2021 indicate that in this system the strengths of the Coulomb interaction

measurements
and the kinetic energy are indeed comparable. In this regime, there is an inherent
tension between localized and itinerant descriptions of the physics. Moreover, the

22724 of the nearly-flat bands in MATBG implies that a simple

topological character
“atomic” description, in which electrons are localized to individual moiré lattice sites,
may not be appropriate. Instead, a picture analogous to that of quantum Hall
ferromagnetism has been proposed®’. Understanding this interplay between itineracy

and localization, and the new physics that emerges from it, remains a major challenge.

In this work we find that, surprisingly, the correlated state in MATBG above a filling
of one electron per moiré site has a hybrid nature, with some properties resembling
those of an itinerant system, and others resembling those of localized electrons. At
temperatures of a few Kelvin we measure unusually large excess entropy, which is
rapidly suppressed by a moderate in-plane magnetic field. This suggests that even at
such low temperatures, there are strongly fluctuating magnetic moments in the system,

a behavior typically associated with local moments. On the other hand, our
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measurements find that this state is metallic and has no thermodynamic gap, naturally

fitting an itinerant picture.

The presence of fluctuating moments at temperatures much below the electronic
bandwidth indicates the existence of a new, anomalously small energy scale associated
with the bandwidth of magnetic excitations, which is an order of magnitude smaller

than the scale where a jump appears in the compressibilityn’28

. This jump marks the
boundary between the new state at filling factor v > 4+1 and the state at lower
densities. By tracking the dependence of this boundary on temperature and magnetic

29732 5f the famous Pomeranchuk

field, we find that it exhibits an electronic analogue
effect’ in *He. In that system, a transition from a Fermi liquid to a solid occurs upon
increasing temperature, driven by the high nuclear spin entropy of the atoms in the
solid. Similarly, we find that the new state above v = +1 is favored relative to the
metallic state at v < +1 upon raising the temperature, due the former’s high magnetic
entropy. The transition near v = +1 can also be driven by an in-plane magnetic field
that polarizes the free moments. (A related effect near v = —1 was proposed very
recently, on the basis of transport measurements®.) The hybrid state observed here,
with itinerant electrons coexisting with strongly fluctuating magnetic moments, calls for
a new understanding of electron correlations in MATBG.

Our data is measured using two independent techniques on two conceptually
different devices. The bulk of the results are obtained from local measurements of the

Y\ ey . . .
>3 and compressibility using a scanning nanotube single-electron

electronic entropy
transistor (SET) on hBN-encapsulated twisted bilayer device (Device 1, Fig. 1a). We focus
on a large (5um X 4um) region with an extremely homogenous twist angle that is close
to the theoretical magic angle & = 1.130 4+ 0.005. Similar results are obtained from
global entropy measurements using a monolayer graphene sensor (Device 2, Fig. 3a).

Both methods have been described elsewhere?'®,

Electronic compressibility and transport
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The inverse compressibility, du/dn, measured in Device 1 at T = 15K as a
function of the filling factor, v = n/(n;/4) (where n,corresponds to four electrons per
moiré unit cell), is shown in Fig. 1b. As reported previously**, sharp jumps in du/dn are
observed close to integer Vv’s, reflecting Fermi surface reconstructions. These were
termed Dirac revivals since they were interpreted as resets of partially filled energy
bands back to near the Dirac point, leading to the decreased compressibility. The
cascade of revivals is already very prominent at this relatively high temperature.
Measurements of p,., vs. v at various temperatures (Fig. 1c) show insulating behavior at
v = 2,3 and semi-metallic behavior at v = 0. As previously noted*’, p,, shows a step-
like increase across v = 1, which gradually disappears with decreasing temperature,
markedly different than the behavior at other integer v's.

The unusual physics near v = 1 is revealed from the dependence of du/dn on
temperature, T, and parallel magnetic field, B. At low temperature and B, = OT (Fig.
2a), the jump in du/dn occurs at v slightly larger than 1. Increasing the temperature
moves the jump towards a lower v, and surprisingly, increases the magnitude of the
jump rather than smearing it. Similar measurement with B, = 12T at low T (Fig. 2b)
exhibits a much larger jump, which is also closer to v = 1. With increasing temperature,
this jump remains close to v =1, but oppositely to the By = 0T case, reduces its

amplitude and increases its width.

Local measurements of electronic entropy

The chemical potential, u(v,T) (measured relative to that at charge neutrality),
can be obtained by integrating du/dn over density (Fig. 2c,d). Visibly, u depends
strongly on T for a range of v's. This is clearly seen when we plot u vs. T at two
representative v's (Fig. 2c, inset). At v = 0.2, u is practically independent of T (blue). In
contrast, at v =0.9 (red) u is nearly constant until T ~ 4K, and then decreases
approximately linearly with T. At v > 1.15, u is again nearly temperature independent.

Comparing p at By = 0T (Fig. 2c) and B; = 12T (Fig. 2d) reveals a clear contrast:
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whereas for By = 0T, u is a decreasing function of temperature for 0.4 <v < 1.15, for
B, = 12T, u decreases with T for v < 0.9 and increases for v > 0.9.

These measurements allow us to directly determine the entropy of the system, by

ou

. . . d
integrating Maxwell’s relation: (—S) = —(
T oT

> )v, to obtain s(v,T) (where s is the
entropy per moiré unit cell). For more details on this procedure see Supplementary
Information section SI1. Fig. 2e shows s(v) at T = 10K (obtained from the slope of u vs.
T intherange T = 4.5K — 15K), for By = 0T, 4T, 8T, and 12T. At B = OT the entropy
is small at low V's, climbs close to v = 1, remains roughly constant between v = 1 and
2 at s = 1.2kg, drops rapidly near v = 2, and decreases towards zero after v = 3.
Clearly, the v dependence of the entropy is qualitatively different from that of the
compressibility: whereas the latter drops sharply near v =1 (Fig. 2a), the former
remains at a high value.

An important insight into the origin of this large entropy is given by its magnetic
field dependence. As seen in Fig. 2e, the entropy above v = 1 depends strongly on Bj.
In particular, at By = 12T, most of the entropy between v = 1 and 2 is quenched. The
inset shows s(B; = 0T) — s(B; = 12T) vs. v (the purple shading indicates errorbars;
see Supplementary Information SI1). The entropy difference increases sharply near
v = 1, reaching a maximum of 0.85 + 0.1k between v = 1 and 2. To appreciate the
significance of this value, recall that an entropy of kzIn(2) = 0.7kg corresponds to two
degenerate states on each moiré unit cell. Moreover, in a Fermi liquid, we would expect
a much weaker change of the entropy with B (Supplementary Information SI4), of the
order of kp times the ratio of the Zeeman energy (about 1meV at By = 12T) to the
bandwidth, estimated to be W ~ 30meV (see below). Finally, we observe that at
B, = 12T the entropy shows a cascade of drops following each integer v, similar to the
revival drops observed in the compressibility (Supplementary Info. SI5), reproduced by
the mean-field calculation (Supplementary Info. SI3). The dramatic quenching of entropy

by moderate B strongly suggests a magnetic origin.
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Global measurements of the entropy

To test the robustness of our results, we measured the entropy in a completely
different setup, in which a sheet of monolayer graphene senses the chemical potential
of MATBG, averaged over the entire device® (Fig. 3a). Fig. 3b shows the entropy
extracted in three different temperature ranges. We see (inset) that the globally
measured entropy for T = 4K — 16K is in good agreement with the locally measured
one over a similar range of temperatures, both in the overall shape, the magnitude of
s(v), and the detailed features. At elevated temperatures, the minimum in the entropy
at v =0 gradually fills in, evolving from a double-dome structure at low T
(corresponding to the valence and conduction flat bands) to a single dome at high T.
This dependence is qualitatively reproduced by a naive calculation for a system of non-
interacting electrons, whose density of states rises linearly from the charge neutrality
point until the band edges (Fig. 3c). The merging of the domes in s(v) occurs when the
temperature exceeds a fraction of the bandwidth. Calibrating the bandwidth using the
measured entropy at T = 55K gives W =~ 30meV (where W is the full bandwidth —
from valence band bottom to conduction band top), in rough agreement with STM*®™*°
and compressibility36 experiments. This free-electron picture is of course invalid at low
temperatures, where interactions are important. The measured s(v) in the valence
band is approximately a mirror image of s(v) in the conduction band (Fig. 3b), although
it is smaller and with less pronounced features. This is consistent with the weaker
du/dn revivals observed in the valence band relative to the conduction band®**°

(Supplementary Info. SI9).

Mapping the phase diagram

So far, we have shown a dramatic change in the magnetic entropy and
compressibility near v = 1. This change may be due to a continuous buildup of
electronic correlations. Alternatively, it can be interpreted as an underlying first-order

phase transition between two distinct phases. Naively, one would then expect a
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discontinuous jump in thermodynamic properties and hysteretic behavior across the
transition, which are not observed. However, we note that a true first-order phase
transition is forbidden in two dimensions in the presence of disorder or long-range
Coulomb interactions38, as these broaden the transition into a mesoscale coexistence
region (Supplementary Info. S10). Experimentally, although the revival transition is very
sharp and may be consistent with Coulomb- and/or disorder- smeared 1% order
transition, we cannot rule out a sharp crossover or a higher order phase transition.
Nevertheless, the sharpness of the rise of du/dn at the revival transition allows us to
precisely track its filling factor, v = vy(Fig. 4a), and map a phase diagram, which is
naturally explained when this feature is interpreted as a proxy for a first-order
transition.

The measured vi vs. By and T forms a surface in the (v,B;,T) space (Fig. 4b)
whose projections onto the (v, B}) and (v, T) are shown in Figs. 4c,d. At T = 2.8K and
at low Bj, vg depends weakly on By, but decreases linearly above B = 4T (Fig. 4c,
blue). A similar crossover is observed at higher temperatures, but with a crossover B
that increases with temperature. The T dependence of v at By = OT (Fig. 4d) is linear
at low temperatures and curves up at higher temperatures. As B increases, the curve
shifts towards smaller v’s, and simultaneously its slope at low temperatures changes
sign. At By = 12T, vy first increases with T, reaches a maximum at T =~ 9K, and then
decreases.

The phenomenology seen in Figs. 4b-d can be understood in terms of a first-order
phase transition at v = v between a Fermi liquid phase below vg, and a ‘free moment’
phase above it. The latter has a high concentration of free moments (about one per
moiré site), coexisting with a low density of itinerant electrons. Within this framework,
the shift of vp as a function of By and T reflects the magnetization and entropy
differences between the two neighboring phases.

At B, = 0T, the free moment phase has a higher entropy than the Fermi liquid,

due to thermal fluctuations of the moments. Hence, the former becomes entropically-



199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226

favorable at high temperatures. This explains the observed decrease of vp with
increasing T at low fields (Fig. 4d). Raising temperature at fixed v may therefore drive a
transition from the Fermi liquid to the free moments phase, an electronic analogue of
the Pomeranchuk effect. As B, increases and the Zeeman energy exceeds the
temperature, the moments become nearly fully polarized and their entropy is quenched
(as is observed directly in Fig. 2e). Consequently, at low temperatures and sufficiently
high fields, the Fermi liquid phase is favored by raising the temperature. The trend
reverses once the temperature exceeds the Zeeman energy. This explains the non-
monotonic behavior of vp as a function of T, seen at By = 12T in Fig. 4d. The main
features of the phase boundary are qualitatively reproduced in a thermodynamic model
of the two phases (Supplementary Info. SI7 and insets of Figs. 4b,c,d). Note that the
experiment probes moments that couple to in-plane field. This includes Zeeman-
coupled spins and may also include the valleys if their in-plane orbital moment is non-

Zero.

Discussion

The observation of free magnetic moments at surprisingly low temperatures has
profound implications for the physics of MATBG. Low energy magnetic fluctuations are
destructive for superconductivity and may be the limiting factor for the superconducting
T.. Moreover, increased scattering from fluctuating moments can account for the

“strange metal” behavior reported over a broad range of temperatures>>*°.

An important question raised by our observations regards the origin of the free
moments. Soft collective modes have been predicted in insulting states of MATBG> %,
but our experiments show metallic behavior near v = 1. Moreover, the energy scale
associated with the appearance of free moments is strikingly low (3K or less), much
below the microscopic energy scales in the system. Understanding the state nearv = 1,

that combines behaviors associated with electron localization and itineracy, and its

surprisingly low onset temperature, poses a key challenge for the theory of MATBG.
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Figure 1: Experimental setup and device characterization. a. A nanotube-based single
electron transistor (SET) is used to measure the local electronic compressibility and
entropy of magic angle twisted bilayer graphene (MATBG). The MATBG is encapsulated
between top and bottom h-BN layers (not shown) and has a metallic back-gate. By
monitoring the current through the SET, we track changes in the MATBG chemical
potential, du, in response to a density modulation, dn, produced by an a.c. voltage on
the back-gate®!, §Vg.. A d.c. back-gate voltage, Vy, sets the overall carrier density in
the MATBG, n. Some of the measurements are performed in a parallel magnetic field, B
(indicated). b. Inverse compressibility, du/dn, measured as a function of the moiré
lattice filling factor, v =n/(ng/4), at T = 15K (n, is the density that correspond to 4
electrons per moiré site). Measurements are done on a large spatial domain (~5um X
4um) throughout which the twist angle is extremely homogenous, 8 = 1.130° + 0.005
(measured by spatial mapping of the V. that corresponds to ng, as in Refs. 214 As
seen previously?!, a jump of du/dn appears near all integer filling factors. This jump
corresponds to a Fermi surface reconstruction, in which some combination of the
spin/valley flavors filling is reset back to near the charge neutrality point, and
correspondingly du/dn shows a cascade of sawtooth features as a function of density.
The trace is measured at T = 15K, showing that even at this high temperature this
sawtooth cascade is well developed c. Two-probe resistance, R, measured as a function
of v and temperature. Notice that unlike the inverse compressibility, which measures a
local quantity, the resistance gives an averaged result over domains with different twist
angle. Therefore, the resistance maxima are slightly shifted from the usual integer v
values, probably because another domain with a small difference in twist angle

dominates the transport characteristics globally.

Figure 2: Measurement of large magnetic entropy abovev =1. a. Inverse
compressibility, du/dn, as a function of v, nearv =1, measured at zero parallel

magnetic field, By = 0T, and at several temperatures. With increasing T, the jump in
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du/dn moves toward lower v and becomes stronger. b. Same measurement done
at By = 12T. Here, opposite to the zero-field case, increasing T reduces the magnitude
of the du/dn jump, as expected from thermal smearing. c. The chemical potential u(v)
(relative to that of the charge neutrality point) at By = 0T, obtained by integrating the
du/dn signal in panel a with respect to n. Inset: u(T,v) — u(T = 2.8K,v) forv =0.2
(blue) and v =0.9 (red). At v = 0.2 the chemical potential is nearly temperature
independent, whereas at v = 0.9 it is roughly constant until T ~ 4K and then start
decreasing approximately linearly with T. d. Similar to c, but at By = 12T. In contrast to
the zero-field case, here, below v = 0.9, u decreases with T while above v = 0.9 u
increases with T. e. The electronic entropy in units of kg per moiré unit cell, as a
function of v at T =~ 10K and at various parallel magnetic fields, B, = 0,4,8,12T. To
obtain the entropy we determine the partial derivative (a#/aT)v_B” from a linear fit to
the measured u vs. T in the range T = 4.5K — 15K. The entropy per moiré cell is then
obtained by integrating Maxwell’s relation: (0s/0v) 7, = —(0u/0T), 5, , over v (see
Supp Info. for details) . At By = 0 the entropy climbs rapidly near v = 1 to a value of
1.2kg per moiré cell. Inset: the difference between the entropies at low and high fields,

s(By = 0T) — s(B; = 12T). The purple shading shows the estimated error bar.

Figure 3: Temperature dependence of the Entropy. a. Experimental setup for
measuring the global entropy, averaged over the entire device®. The device consists of
MATBG and a monolayer graphene (MLG) sensor layer, separated by an ultrathin (1 nm)
layer of h-BN (not shown), as well as top and bottom metallic gates. By balancing the
electrochemical potential of the adjacent layers in the device, we can obtain the
relationship between the density and chemical potential of MATBG and MLG and the
gate voltages applied to the system. In the special case where the density of MLG is
zero, i.e. at its charge neutrality point, the chemical potential of MATBG is directly
proportional to the voltage applied to the top gate. This technique allows us to reliably

extract the chemical potential and entropy of MATBG at temperatures up to 70 K. b.
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The measured entropy, in units of kg per moiré unit cell, as a function of v at three
different temperature ranges (top legend). The entropy derivative, ds/dv, is obtained
from a linear fit to u vs. T in the corresponding temperature range, and is then
integrated over v to yield the entropy per moiré unit cell (similar to Fig. 2e). Inset:
comparison between the v dependences of the entropies, measured at the low
temperature range, obtained from local and global measurements. c. The entropy as a
function of v and T calculated for a system of four degenerate non-interacting Dirac
bands (whose density of states climbs linearly with energy from the Dirac point to the
end of the conduction or the valence band). The color-coded lines show the curves
whose temperatures correspond to the mean of the temperature ranges of the
experimental curves. The gray lines represent the entire evolution from zero
temperature to high temperature, where the entropy saturates on a value of
8In(2) = 5.5, where the factor 8 reflects the total number of energy bands. A
bandwidth of W = 30meVis chosen such that the calculated value of the entropy at the
highest temperature roughly matches the one obtained from the measured curve at the

same temperature.

Figure 4: Experimental phase diagram. a. The inverse compressibility, du/dn,
measured as a function of v near v = 1, at several values of parallel magnetic field, B).
We track the filling factor that corresponds to the center the jump in du/dn (labeled
Vg ). Visibly, the application of B pushes v; to lower values. b. Measured vy as a
function of By and T, plotted as dots in the (v, B, T) space (the dots are colored by their
temperature). The dashed lines are polynomial fits to the dots at constant Bj or
constant T. Inset: the same surface calculated from a simple model that assumes a
transition between a Fermi liquid and a metallic phase that contains one free moments
per moiré site (see text). c. Projection of the data in panel b onto the (v, B)) plane,
showing the dependence of vz on By for various temperatures. At low fields, vgis

independent of field but it becomes linear in By at high fields, a behavior expected from
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the field polarization of free moments (see text). Inset: curves calculated from the

model. d. Projection onto the (v,T) plane, showing the dependence of v on T for

various magnetic fields. At By = OT, vy is linear in T at small T ‘s and then curves up at

higher T’s. At high magnetic field, the dependence of vy on T becomes non-monotonic.

Inset: curves calculated from the model.

Data  availability: The data in the main text

https://github.com/erezberg/pomeranchuk data

The code used in this work is

https://github.com/erezberg/pomeranchuk tblg theory
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SI1. Extraction of the entropy

In both the local and global measurements, we determine the entropy using a Maxwell
relation, relating the partial derivatives of the entropy with respect to the filling factor to that
of the chemical potential with respect to temperature:

(05/0V)15, = —(01/9T)p,
where s is the entropy per moiré unit cell. In the global measurements, we probe the chemical
potential of the MATBG directly using a monolayer graphene sensor. The measurement
determines the chemical potential relative to that at the charge neutrality point (CNP):
Au(v,T,By) = u(v, T, By) — penp (T, By).

In the local measurements, we use a nanotube single electron transistor to measure the inverse

compressibility and integrate it over the density, to obtain the same quantity:

n
Au(v,T,By) = p(v,T,By) — uenp(T, By) = f (Ou/0n)p,rdn’.
0

In these measurements, the inverse compressibility is probed at typical frequencies of few
hundred Hz, and with an excitation §Vz; = 40mV on the back gate, chosen to be small enough
as to not smear essential features.

The entropy then follows from:

v v
s(v,T,By) = J; (0s/0V)rp, dv' = —fo (0u/9T)p, v dv’
The first term provides the v-dependent part of the entropy. The second one, which we do not
measure directly, adds a linear term in v. The value of this constant is determined by making
the assumption that inside the gap separating the conduction flat band and the higher

dispersive band, namely at v = 4, the electronic entropy is zero. To see why this assumption is
g _tg_
justified we note that inside a gap, the electronic entropy is given by s = 16kBWge 2kpT

(where W is the width of the flat band, and Ej; is the size of the gap to the dispersive band). Our
compressibility measures directly the size of the gap to be E; = 30meV, and estimate the

bandwidth to be of similar magnitude W = 30 — 40meV. The entropy in such gap at T = 10K
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is s = 4-10""kg, making our assumption well justified for the relevant temperatures reported

in the paper.

We note that the bandwidth of the flat bands obtained from this fit is significantly larger than
the theoretical predications, and that this is consistent with the large bandwidths observed in
all existing experiments: STM experiments (Ref 16-19 in the main text) give bandwidths in the
range of 22meV — 55mel/ and compressibility measurements (Ref 21, 26 in main text) give
40meV — 55meV. The somewhat larger estimate of bandwidth from compressibility, might
reflect the fact that when the mixing to the high-energy dispersive bands is not negligible, the

bandwidth extracted from compressibility may increase slightly by the effects of interactions.

Fig. S1a shows the derivative of the entropy per electron with respect to v for three different
temperature ranges, from the measurements done in Device 2. using the global
measurements. We removed a constant background in ds/dv (v) to account for the variation of
u with T at charge neutrality, such that the entropy at v = +4 is zero. For each temperature
range, 4 was assumed to be linearly dependent on T at a given v. The confidence bound of 95%
is shown for this linear fitting process. The entropy obtained after integration is shown in Fig.

S1b. The error highlighted bands show the propagated uncertainty in this integration process.
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Fig. S1: Extraction of entropy in Device 2 for different temperatures. (a) Derivative of entropy with respect to v

obtained from Maxwell’s relation (ds/0v)r, = —(0u/dT)p, for three temperature ranges spanning 4 K to 70 K.

(b) Entropy change As per moiré unit cell with respect to the band insulators at v = +4.

In the scanning SET measurements, we get an additional small component of parasitic
capacitance between the SET and the back-gate. This results from the fact that our SET scans at
a finite height (hundreds on nm's) above the MATBG. This parasitic capacitance adds a
background to the measured inverse compressibility of the order of du/dV < 107*. In the
estimation of the entropy this gets doubly integrated yielding a term that depends quadratically
on v. We remove this term by assuming that the entropy at v = 0 is also zero (in addition to
assuming it is zero at v = 4 as discussed above). As seen in the global entropy measurements
(Fig. 3b and S1b), the entropy curve that correspond to the temperature range T = 4K — 16K
(blue) shows that the entropy at v = 0 is smaller than 0.1kp. Since local entropy measurements

are performed only in this temperature range, the assumption that s = 0 at v = 0 is justified.

To determine the uncertainty in the local measurements of the entropy (Fig. 2e in the
main text), we first extract the noise level in our measured du/dn. We then add to our
measured compressibility signal randomly distributed noise with the experimental noise
variance and see how it changes the resulting entropy curve. Repeating this over a statistically
significant instances of random noise gives us the error bars in our determined entropy, which
are shown in Fig. S2, for the traces taken at different parallel magnetic fields (as in Fig. 2e in the

main text).
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Fig. S2: Errorbars of the measured local entropy. Solid lines show s vs. v for serval values of B. The shaded bands

around each curves give the 1 sigma errorbars (see the text in this Supplementary section for details).

SI2. Entropy of non-Interacting Dirac electrons

To get a rough understanding of the overall v dependence of the measured entropy at
high temperatures, it is useful to compare it to the entropy in a system of non-interacting Dirac
bands. The curves in Fig. 3¢ in the main text were obtained for such a model with the a single-
particle density of states that rises linearly from zero at the charge neutrality point up to the
band top and bottom at +WW /2, where W is the bandwidth. The density of states p(¢) for each

spin/valley flavor is given by:

p(e) =330 (5~ lel), )

where ©(x) is the Heaviside step function. The entropy per unit cell is then given by:
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sW,T) = —gskp [ dep(e){np(e) In[ng(e)] + [1 — np(e)]In[1 — np()]}.  (2)

Here, gr = 4 is the number of spin/valley flavors, np(¢) = 1/(1 + e(&=M/TY is the Fermi-Dirac
distribution, and the chemical potential is determined by solving the equation for the filling

factor v, given by:

V= gf[ffooo dep()ng(e) — 1], (3)

Solving Eq. (3) for u(v,T) and inserting the result into (2) gives s(v,T) shown in Fig. 3c of

the main text.

SI3. Entropy in mean-field Dirac revival model

In Refs."?, we have used a simple mean-field model to describe the Dirac revival
features in the compressibility. At zero temperature, this model features a cascade of phase
transitions upon increasing the electron density, where the spin and valley symmetries are
successively broken. At each transition, electrons of one flavor become more populated than
the others. The minority flavors’ densities reset to the vicinity of the charge neutrality point.
This causes a sharp drop in the density of states at the Fermi level, reviving the Dirac-like
density dependence of the inverse compressibility near each integer filling factor. Hence, we

termed this phenomenon “Dirac revival transitions”.

Here, we present a calculation of the entropy as a function of density and in-plane
magnetic field within the same mean-field model. The model consists of four flavors of
electrons (two valleys and two spins), each with a single-particle density of states p(g). The
interaction, of strength U, is assumed to be local in real space and featureless in flavor space.

The Hamiltonian is written as

H = Zk,a,n (gank - ﬂ)lp;nklpank + Hint, (4)
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where a ={K T,K |,K' T,K' 1} is a spin/flavor index, n = 1,2 labels the conduction and
valence bands, &4,k are the band dispersions (that are valley and n dependent but spin

independent), and the interaction Hamiltonian is given by:

U
Hint = 25 Xazp Ling k)6 Ok, +ko—ks—k, +G ¢;n1k1¢;n2k2¢ﬁn3k3¢an4k4- (5)

Here, N is the number of unit cells, and G is a reciprocal lattice vector. The interaction couples
only electrons of different spin/valley flavors, since it is assumed to be delta function-like in real
space. Then, by the Pauli principle, two electrons of the same spin and valley cannot occupy the
same point in real space, and do not interact. This captures the exchange part of the
interaction, which favors spin or valley polarization. Including an intra-flavor term J, as in Ref?.,

does not change the results for the entropy shown below.

We analyze the system within a Hartree-Fock mean-field approximation, allowing for an
arbitrary filling of each flavor, but no other form of broken symmetry. We use a mean-field

Hamiltonian of the form:

HMF = Zk,a,n (Sank I #a)lp;nklpank' (6)

with variational parameters p,, and minimize the grand potential of the trial density matrix

e—HMF/T

p= Tr[e=FmFIT] The variational grand potential per unit cell is given by

O = Za f e + 1) +5 Zawp Ve + V(g + 1) + T Hav (o + 1) (7)
where
f) =T [, dep(e)[log(1+e77 ) + 5L 0(-0)]
V() = [7, de p(e) (ssmmm — 0(-9))

Here, p(e) = %Zk(?(e — &) is the density of states of each flavor. Minimizing Eq. (6) with

respect to u,, we obtain a variational estimate for Q(y, T). The entropy can then be obtained
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a0 ) . . . . .
though s = — P Following Ref', we use a simple linear model for the density of states, given in

Eqg. (1). Using different models for the density of states does not alter the results qualitatively.

b [ B, = 0T
T = 14K
0.8+
2 0.6
=2
~
[Va)
0.4¢p 6K
0.2
2K
0 h
0 1 2 3 4
14 v

Figure S3: Mean-field calculation. a. Partial occupations v, of each valley/spin flavor as a function of total filling
factorv, at T = 0, B, = 0, showing a cascade of flavor symmetry breaking transitions near each integer filling. b.
Entropy as a function of v at By = 0, for different temperatures. The dips in the entropy correspond to the
resetting of some of the spin/valley flavors back to the charge neutrality point (v, = 0), while others are fully

filled. At these points the density of states at the Fermi level is minimal.

We expect that at low temperatures, this approximation, built on a density matrix

corresponding to a non-interacting Hamiltonian with self-consistently determined p,’s, will

2
exhibit an entropy that is essentially s = %Zap(u + uy)T. Hence, the entropy is proportional

to the total density of states at the Fermi level.

Fig. S3a shows the partial filling factors of each flavor as a function of the total filling
factor at zero temperature, choosing W = 2U = 300K. The results do not change qualitatively
for different values of U/W, as long as 2U and W are comparable™?. As seen in the figure, near
charge neutrality, all four flavors start filling equally as the density is raised. Before v =1 is
reached, a phase transition occurs, in which one flavor suddenly becomes more populated than

the others. When the majority flavor reaches v, = 1, the other flavors are reset to the vicinity
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of the charge neutrality point, and then begin filling again equally as the density is raised, until

another phase transition is encountered. This is the cascade of revivals described in Refs 2.

In Fig. S3b, we present the entropy per unit cell s(v, T) computed from the same model, as
a function of v for different temperatures. Thus, the entropy show clearly the revival
transitions, visible as sharp dips in the entropy near each integer filling. The dips are explained
by the fact that the total density of states at the Fermi level is minimal at these fillings. This v
dependence of the entropy resembles the one measured at a high field, By = 12T (Fig. 2e),
suggesting that the mean-field description captures the essential part of the physics there. On
the other hand, the entropy measured at B = OT (fig. 2e) is quantitatively different than the
one obtained here, emphasizing the imporant role of fluctuating free moments which are not

included in the mean-field model.

We note that the partial fillings as a function of v at the elevated temperatures are not strongly
modified compared to those at T = 0, shown in Fig. S3a, although the positions of the phase

transitions shift slightly with temperature.

Sl4. The effect of a magnetic field on the entropy in a mean-field model without
free spins

A Zeeman field can be included in the Hamiltonian (4) by adding the following term:

H; = —E; Zk,a,n Oq lp;nklpank' (8)

where E; = ugB, is the Zeeman energy, and g, is the spin projection of electrons of flavor a
along the magnetic field. To account for the Zeeman field in the mean-field calculation, we

replace u =» u + E;a, in Egs. (6) and (7).

The entropy vs. v at T = 10K in the presence of different in-plane magnetic fields is
shown in Fig. S4. As seen in the figure, the effect of a field of up to By = 12T is quite small,

decreasing the entropy by at most 0.1k relative to the B; = 0 value near the maxima of the
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entropy before the integer fillings. The change in the entropy away from the maxima due to the

field is even smaller.

Comparing the mean-field results to the experimentally measured entropy (Fig. 2e in
the main text), we see that the calculated entropy is in rough qualitative agreement with the
experimental one at By = 12T and T =~ 10K, showing a similar peak structure near each
integer filling. The overall magnitude of the calculated entropy at B, = 12T is also similar to the
measured one. However, the calculated entropy at B, = 0 is very different from the measured
entropy. In particular, unlike in the calculation, the measured entropy does not drop after
v = 1, but rather remains nearly constant at a high value. Moreover, the measured entropy is
strongly field dependent for v > 1, whereas the calculated one is weakly field dependent at all
v. We ascribe this failure of the mean-field model to the appearance of nearly-free magnetic
moments (as discussed in detail in the main text). These free moments, that onset nearv =1,
fluctuate strongly at low magnetic fields, an effect which is not captured in mean-field theory.
Upon applying a strong Zeeman field, these fluctuations are quenched (as seen experimentally

by the dramatic decrease in the entropy), and mean-field theory may be adequate.

0.8

T = 10K |B/[T]
0.7 1

0.6 1—12

).TF
= 0.5} . A ‘
= 0.4} \ 1
1
0.3} |
0.2V

0.1 L L L
0 1 2 3 1

Figure S4: Effect of an in-plane magnetic field on the entropy within the mean-field model. In this
calculation, the temperature is T = 10K. The different curves are for By = 0T, 6T, 12T. The entropy

depends only weakly on field, in contrast to the experiment. As explained above, the mean-field

approximation does not capture the strong magnetic fluctuations present in the experimentat v > 1.

10
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SI5. Tracking v using different features of the du/dn jump

In the main text, the transition from high to low compressibility near v = 1 was tracked by
following the midpoint of the rise in du/dn. Since the rise is fastest around its midpoint, this
procedure gives us excellent resolution in defining the filling factor that corresponds to this rise,
of about dvz~0.005. We note, however, that the overall width of the rise in filling factor can
be significantly larger, and in extreme cases can even reach Av = 0.2. It is thus necessary to
check whether tracking different features of the transition as a function of magnetic field or

temperature will lead to similar conclusions.

B =8TT=31K By =0T, T =124K

cem™?

dpfdn [10PmV - em 2

dp/dn [1072mV

h 0.7 08 09 1 L1 12 1.3 0.7 08 09 1 1.1 1.2 1.3

Fig. S5: du/dn rise at for different T, B,. a. Measured rise in du/dn near v =1 at By = 8T and T = 3.1K. b.
Same for By = 0T and T = 12.4K. The filling factors that correspond to the minimum and maximum of the rise,
Vinin @nd V., are identified using a fit to a 4™ order polynomial around the relevant regions (dashed purple). Also
labeled are the filling factors at the midpoint of the rise, vg, at quarter of the rise, vy,4, and at three quarters of

the rise, v5 4.

In Fig. S5 we show two examples: the first (panel a), measured at By = 8T and T = 3.1K,
shows a rather sharp rise. In the second (panel b), measured at By = 0T and T = 12.4K, the
rise is more gradual. In general, similar to what is shown in these two representative
measurements, we see that lower fields or higher temperatures smear the du/dn rise. To

check how sensitive are the results shown in Fig. 4 of the main text to the choice of the

11
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definition of the location on the rise in du/dn, we repeat the analysis with different criteria for
the chosen location. Since v,,;, and v,,, have large uncertainties, especially at high
temperatures and low fields, we follow instead the filling factors at one quarter of the rise, vy /4,
and three quarters of the rise, v3/,. The uncertainties in determining the latter are still low
enough to make significant observations, and their tracking can still identify whether the
observed features are tied to a specific part of the rise. Fig. S6 shows the extracted vg, vy /4,
V374 and Vg, an=o, plotted as a function of T at By = 0T and By = 12T. This figure should be
compared with Fig. 4d in the main text.

While there are quantitative difference between the curves obtained by the different
methods, we can see that in the overall dependence and the essential features in all the curves
agree. For example, we see that at By = 12T, independently of the method used, vy increases
with temperature at low temperatures, reaching a maximum, and then starts decreasing with

increasing temperature at high temperatures, where the crossover occurs at T = 9K.
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Fig. S6: Tracking different features of the du/dn rise near v = 1. a. Vg, b. Vg, /an=0, € V1/4, d. V3,4 (as

defined in Fig. S5 and in this section's text) as a function of B and T

SI6. Thermodynamic model for Fermi liquid to free moment phase transition

Here, we describe the simple thermodynamic model we used in the main text to

describe the first order phase transition.

The experiment is done under conditions where the temperature T, parallel magnetic
field By, and gate voltage v, are fixed. The appropriate thermodynamic potential to be

minimized under these conditions is the grand canonical potential, Q(vg, T, Bj). It is convenient
to express the gate voltage in terms of the equivalent filling factor, vy = icgvg (cg is the

geometric capacitance from the MATBG to the gate per moiré unit cell). For clarity, it is useful
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to derive the grand canonical potential starting from the free energy f, which is a function of

the filling factor v, and then obtain () by a Legendre transformation.

Our simple model postulates the existence of a first order transition between two
phases. The first phase is a relatively simple metallic phase, which we model as a Fermi liquid.
The second phase is characterized by the existence of free moments. This phase is also metallic,
although its density of states is lower than that of the first phase. We assume that in the second

phase, there is one free spin per unit cell, coexisting with metallic Fermi liquid electrons.

The free energies per moiré unit cell of the two phases are chosen as follows:

1 82 1 .TZ 'BZ B
fi(V,T,B”) =£i+_<_+_>vz —‘L[iv—yl__)(_l I _aiTln I:ZCOSh<MB ||)]
2\¢cy K; T

Here, i = 1,2 labels the two phases, ¢ and p; are reference energies and chemical

) d o I .
potentials, k; = (ﬁ) are the intrinsic compressibilities (or quantum capacitances), y; , are the
i

specific heat coefficients, y; are the Pauli contributions to magnetic susceptibility of the
itinerant electrons, and «a; are the concentrations of free spins per unit cell, taken to be a; = 0
and a, = 1 (the results do not depend sensitively on the value of «,, as long as it is of order
unity). We have assumed that the free spins have a gyromagnetic ratio g = 2.

We now carry out a Legendre transformation, 1 = f — ev,v, minimize () with respect to v,
and thus eliminate v in favor of v, = icgvg. Since in our experiment ez/cg is much larger than
1/x;, we keep only terms to lowest order in eZ—ii. The grand potentials of the two phases per
unit cell are:

2

le T2 ‘B2 B
Qu(vo, T, BY) = & — 5—v5 — Hivo — n A 4T [2cosh (MBT ")],
)

Here, & = ¢ — z%uiz. In terms of Q(v,, T, B;), the thermodynamic variables are given by:

where s and m are the entropy and in-plane magnetization per unit cell, respectively.
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The first order transition surface in the (v,,T,B;) parameter space is given by the
condition AQ(vy, T, By) = Q, — Q; = 0. The theoretical curves shown in Fig. 4 of the main text
were obtained using the following parameters: &, — & = 72K, u, —pu; = 64K, and y, —y; =
—0.0331K 1. The negative sign of ¥, — y; corresponds to the fact that the density of states of
itinerant carriers in the free moment phase is lower than that of the simple metallic phase. For
simplicity, we neglect the Pauli contribution y; to the magnetic susceptibility, which is negligible

compared to the free moment contribution.

Under these assumptions, the surface of the first order transition can be simply

expressed as:

Vi = ! {e” — £ —l(y —y)T** = T*In [2cosh<”BBlT>]}
0 1 — Uy 2 17502 1 T+ )

where vg, T*, and B} denote the equivalent filling factor, temperature, and magnetic field of a
point on the transition surface.
The Clausius-Clapeyron relations along the transition surface can be obtained by
differentiating A():
2

e
dAQ = —=—Avdvy — AsdT* — AmdB;.
2¢y

Here, Av =v, —v;, As = s, —s;,and Am = m, —m, are the jumps in the filling factor,

entropy, and magnetization across the transition, respectively. Along a vy = const. contour of

oT* _ Am
0B, As’

Vo

the transition surface, get the relation

which is the relation we used in SI7, with vy, T, and By identified as the filling factor (vg),

temperature, and magnetic field at the Dirac revival point.
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SI7. Anti-correlation between entropy and magnetization.

The jump in compressibility seen at vy is sharp, but not discontinuous, as one may naively
expect from a first order phase transition. Indeed, in the presence of long-range Coulomb
interactions and disorder in two dimensions, a first order transition is not expected to be sharp.
If we assume that the revival transition at v =1 represent a smeared first-order phase
transition, we can derive from the shape of the phase boundary the relation between
magnetization and entropy. We demonstrated this relation by analyzing the slope of the phase
boundary via the Clausius-Clapeyron equation: Am/As = —(dT/dB,),,. Here, As and Am are
the differences in the entropy and magnetization per moiré unit cell between the free moment
and the Fermi liquid phases, and (GT/(')B")VR is the derivative of the transition temperature
with respect to magnetic field at constant vi. To obtain the ratio Am/As we reconstruct such
equi-vg contours by fitting a polynomial surface in the B and T plane to the measured points,
and extract the slope of the contour lines at different points (Fig. S7). Consider point A in Fig.
S7: At this point, (8T /0By),,, = 0. The Clausius-Clapeyron equations then imply that Am =~ 0.
In contrast, at point B, the equal vy contours are nearly vertical, implying that As = 0. This
clear anti-correlation between As and Am follows naturally from our simple model, where both
As and Am originate from the same free moments, that are either strongly thermally
fluctuating, or polarized along the magnetic field. At point C, the contour has a positive slope,

from which we deduce that As < 0, Am > 0.
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Fig. S7: Anti-correlation between the entropy and magnetization as determined from the boundary surface
curvature. Measured v as a function of B and T (colored dots). The contours are obtained from a fit of these dots
to a polynomial surface (3rd order in T and 2" order in By). The slope of the contours in this (By, T) plane gives via
the Clausius-Clapeyron relation the ratio of the magnetization and entropy jumps across the transition, Am/As =
—(6T/aB”)VR. Visibly, in the point labeled A the contours are horizontal, implying Am = 0. At point B the contours
are vertical and thus As = 0. The crossover occurs along a diagonal line that correspond to the polarization of the
free moments. At point C, the contour has a positive slope, from which we deduce that As < 0, Am > 0.
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SI8. Comparison of transport measurements and compressibility.

Using the multilayer device shown in Fig. 3a, we can simultaneously obtain the transport
resistances and the chemical potential of MATBG. Fig. S8a shows the longitudinal resistance
R, versus v at different temperatures from 1K to 70K. The peaks in resistance near v = —1
denoted by the blue dots start appearing at a finite temperature of ~ 5K, and subsequently
move to lower absolute value of filling factor as the temperature increases. The Hall coefficient
and density, as shown in Fig. S8b and c, also show a similar trend. The shift of the resistive peak
at v = —1 has been attributed® to a Pomeranchuk-like mechanism, similar to the one near

v=1.

The shift of the peak at v = +1, on the other hand, is much smaller, as was also
observed in Device 1 shown in Fig. 1. Indeed, from our analysis in Fig. 4, the shift of the v = +1
state as a function of temperature is on the order of Av = 0.06, which might be shadowed in

the transport measurement by a moderate twist angle inhomogeneity on the order of £0.02°.
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SI19. Comparison of the temperature dependence of du/dn near v=1 and
v =-—1.

As discussed in the main paper there are qualitative similarities between the
measurements of the entropy in the electron and hole sides, although the system is far from
being electron-hole symmetric. In figure S8a we present a measurement of du/dn as a function
of filling factor for different temperatures, covering both the electron and hole sides. As can be
seen in the figure, an asymmetric “Dirac revival” jump in the compressibility is present in both
the electron and hole sides. However, while the jump of du/dn in the electron side is very
sharp and appears close to v = 1, in the hole side it is much broader, smaller in height, and
appears further away from v = —1. The fact that the Dirac revival features in the
compressibility is stronger and sharper on the electron side have already been observed in
earlier experiments’ over a wide range of twist angles.

Although the feature in the hole side is more smeared than that in the electron side, the
temperature dependencies of the two features are qualitatively similar: both become stronger
and move towards charge neutrality with increasing temperature (see also Fig. S8b). This
suggests that the underlying physics in the vicinity of v = +1 may be similar. However, the
reason for the large width of the feature on the hole side is currently unclear. Potential disorder
is expected to smear the electron and hole sides in a similar way, and therefore it cannot
explain the difference between the widths in the two sides. Angle disorder can also lead to a
spatial smearing of the local filling factor, v =n/(n,/4), by locally varying the density that
corresponds to full flat bands, n,. However, also this effect should be electron-hole symmetric
for v = 41, since the absolute value of the carrier density in these two filling factors is the
same. One can also clearly see that the combined effect of potential and angle disorder is
rather small, since even in their presence the jump of du/dn in v = +1 is very sharp. A possible
reason for the difference might be that the density jump between the two phases that are
involved in the transition is larger in the hole side than in the electron side, and therefore the
density range of mesoscale phase coexistence in the hole side is larger. However, this is purely
speculative, and more experiments would be needed to clarify the underlying reasons for the

differences between the physics in the conduction and valence flat bands.
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SI10. The nature of the revival transition nearv = 1

The central finding of this work is the identification of two regions in the phase diagram
with very distinct behaviors of the entropy. The jump in compressibility as a function of density
that separates the two regions is quite sharp; however, the jump is not infinitely sharp and is
not resolution limited. In addition, there is no sign of hysteresis between the two regions.
Therefore, strictly speaking, there is no first-order transition between the two regions. This is
not unexpected, since as we point out in the manuscript, first-order transitions are not allowed
in two dimensions in the presence of disorder and long-range Coulomb interactions. This is so
since in the vicinity of the transition the system always prefers to break up into mesoscopic
domains of the two phases, smearing the transition. The length scale over which the system
breaks up depends strongly on microscopic parameters. In similar systems where disorder
induces phase separation the typical spatial scale of the domains is of the order of tens of
nanometers (for a recent example see Ref *), well below our spatial resolution (which was
about 500nm in this experiment). Thus, although the transition is rather sharp we cannot rule
out the possibility that this is a sharp crossover rather than a 1* order phase transition. In our
experiment, there is no evidence for a spontaneously broken symmetry in the v > 1 phase at
temperatures T > 2.8 K. Conversely, at these temperatures the magnetic moments in this
phase are strongly fluctuating, showing no sign of long-range order. Thus, a smooth crossover
between the two phases is not forbidden and can be consistent with the data. Nevertheless,
since the crossover is quite rapid, it seems reasonable to interpret it as a slightly smeared
underlying first order transition, and we show that such an interpretation naturally explains the
dependence of the phase boundary on temperature and in-plane field.

A higher-order transition is also possible, but on theoretical grounds, we believe it is less
likely. A second-order transition can occur generically between two phases that are
distinguished by symmetry; however, as mentioned above, there is no direct evidence in our
experiment for spontaneous symmetry breaking at T > 2.8K. Alternatively, a second-order
transition may appear as a critical end point of a first order transition (as in a liquid-gas critical
point). However, this critical point requires fine tuning, and should appear as a point in the

(v, T) plane, rather than as a line.
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We also note that hysteretic behavior is not forbidden near specific phase transitions in
two-dimensions. For example, hysteresis was observed near v = —1 in references [10] and [13]
of the main paper. In those works, the system was measured in the presence of a perpendicular
magnetic field, while our experiments are performed in an in-plane field. In addition, the
hysteresis was observed there upon cycling the magnetic field (and not the density), whereas
our scans were only taken as a function of density. Finally, the hysteresis was visible only at low
temperatures (T < 1K), whereas our experiments are done at T > 2.8K.

Often, the existence of hysteresis is tied to the presence of an incompressible phase in the
system. In the vicinity of an incompressible phase and in the presence of disorder, it is well
known that the system breaks up in real space to incompressible and compressible regions.
Compressible islands that are surrounded by incompressible strips can have very long charging
times, and this leads to glassy behavior of the overall system. This can manifest itself in
hysteresis, as is seen, e.g., around quantum Hall gapped states (for a recent example, see Fig.

S5 in https://arxiv.org/pdf/2008.05466.pdf). On the other hand, if the phases that are involved

are compressible, charge can equilibrate rapidly. Thus, hysteresis that is related to the ability of
the charge degrees of freedom to equilibrate will happen only when a gapped phase is
involved. This could explain very nicely the difference between our experiment and those of
Refs. [10,13]: in these references, hysteresis is observed whenever a Chern insulator appears.
Since a Chern insulator is gapped, the formation of a real space mixture of a Chern insulator
and a compressible phase can cause hysteresis. In our experiment, in contrast, there is no
indication for a thermodynamic gap, and the two phases on either side of the transition are
clearly compressible, which can explain the absence of hysteresis in our case.

Hysteresis can, in principle, also arise due to the formation of a macroscopic collective
degrees of freedom, such as domain walls in a ferromagnet, whose equilibration time can be
very long. This situation arises naturally, for example, when there is a spontaneous breaking of
a discrete symmetry. However, in our experiment, performed at T > 2.8K, there is no

indication for such symmetry breaking.
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SI11. The entropy data at two temperature windows

The ~10K temperature range used for extracting the entropy in this paper was necessary
for obtaining low enough noise, such that the entropy curves have good significance. With our
existing signal-to-noise ratios it would be prohibitive to measure the detailed temperature
dependence of the entropy. Nevertheless, to check the consistency of our data we bin it below
into two temperature windows. Figure 9 shows the 'magnetic entropy', S(0T) — S(12T7),
similar to the one shown in the paper (Fig. 2e, inset), but now extracted from two separate
temperature windows: T = 3.5K — 9K and T = 9K — 16K. The shaded regions around each
curve show the error bars, determined in a similar manner to those in the main paper (as
described in the Supplementary Information section SI1). Notably, there are some differences
between the two curves. However, these differences are well within the error bars, and thus
we do not think one can assign a real significance to them. On the other hand, we can see that
the two entropy traces, obtained from the two different temperature windows, look overall
very similar. Specifically, both curves show a rather sharp increase of the 'magnetic entropy'
near v = 1 and a fast decrease near v = 2. This gives additional support to the robustness of
our observations, but also lends extra support to the observation that we made in the paper,
based on the mapping of the phase boundary (Fig. 4), that the 'magnetic entropy' appears

already at very low temperatures, of the order of few degrees Kelvin.
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Figure S9: Magnetic entropy from two temperature windows. a. The magnetic entropy, s(12T) — s(0T),

extracted from the slope of u vs. T taken at from two different temperature windows: T = 3.5 — 9K (blue) and
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T = 9 — 16K (red). The shaded regions indicate the error bars, determined along the same procedure used for Fig.

2e in the main paper, that is described in section SI1.
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