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Abstract: Strongly interacting electrons in solid-state systems often display tendency towards
multiple broken symmetries in the ground state. The complex interplay between different order
parameters can give rise to a rich phase diagram. Here, we report on the identification of
intertwined phases with broken rotational symmetry in magic-angle twisted bilayer graphene
(TBG). Using transverse resistance measurements, we find a strongly anisotropic phase located
in a ‘wedge’ above the underdoped region of the superconducting dome. Upon its crossing with
the superconducting dome, a reduction of the critical temperature is observed. Furthermore, the
superconducting state exhibits an anisotropic response to a direction-dependent in-plane
magnetic field, revealing a nematic pairing state across the entire superconducting dome. These
results indicate that nematic fluctuations might play an important role in the low-temperature
phases of magic-angle TBG, and pave the way for using highly-tunable moiré superlattices to
investigate intertwined phases in quantum materials.

One Sentence Summary: Magic-angle graphene exhibits competing quantum phases with
broken rotational symmetry, a hallmark present in many exotic quantum materials.

Main Text:

Spontaneous symmetry breaking is a ubiquitous process that occurs at all length scales in nature
(1), from the endowment of mass to elementary particles through the Higgs mechanism, the
emergence of ferromagnetism and superconductivity in mesoscopic and macroscopic systems, all
the way to the creation of stars and galaxies in the early universe. In a solid-state system, besides
time-reversal and gauge symmetries, there are certain discrete symmetries imposed by the
underlying crystal lattice. However, these symmetries can be spontaneously broken when many-
body electron-electron interactions in the system are significant. Studying these broken-
symmetry states is fundamental to elucidate the various phases in these many-body systems (2,
3). One example is an electronic nematic phase, where the discrete rotational symmetry of the
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lattice is spontaneously broken due to electron correlations, while lattice translational and time-
reversal symmetries are preserved (4, 5). The resulting anisotropy of the system is in turn
manifested in the spin, charge, and lattice degrees of freedom, and can be measured via
scattering, transport and scanning probe experiments (6—11).

When a correlated system has multiple broken-symmetry phases, their relationship often goes
beyond mere competition, giving rise to a complex phase diagram of intertwined phases (/2—74).
For example, in the underdoped region of the phase diagram of certain cuprate superconductors,
a depletion in the critical temperature 7. is found near p = 1/8, where p is the hole doping
concentration(/5). This observation is typically attributed to the competition between
superconductivity and a stripe phase that has spin and/or charge ordering (3, 15, 16). Charge
order and superconductivity may also intertwine to form a pair density-wave state (13, 17).
Another example of intertwined order is a nematic superconducting state, which simultaneously
breaks lattice rotational and gauge symmetries. Nematic pairing states have been reported in
certain iron pnictides and in doped Bi>Ses, as revealed by thermal, magnetic, and transport
measurements (/8—24), although their microscopic origin is still unclear.

The recent discovery of correlated insulator and superconducting behaviors (23, 26) in two-
dimensional (2D) graphene superlattices brings the possibility of studying correlated
superconducting materials with unprecedented tunability and richness. Twisted 2D materials
exhibit long-range moiré patterns in real space that can be tuned by the twist angle (Fig. 1A). In
twisted bilayer graphene (TBG) near the first magic-angle 6 = 1.1°, the interlayer hybridization
results in nearly-flat bands at low energies, in which the electrons are localized in real space (Fig.
1A) (27-29). Near half-filling of the nearly-flat bands, emergent correlated insulator behavior
and superconductivity have been demonstrated (25, 26, 30). In this work we study the interplay
between the superconducting phase and other many-body phases in magic-angle TBG.
Compared to conventional materials, a major advantage of magic-angle TBG is that the band
filling can be continuously tuned by electrostatic gating instead of chemical doping, so that
different phases can be accessed in a single device.

In this article, we investigate the phase diagram of magic-angle TBG in detail, focusing
particularly on anisotropic properties in the superconducting and normal phases. We uncover an
anisotropic in-plane electrical transport in magic-angle TBG at low temperatures using
longitudinal and transverse resistivity measurements. In addition, we reveal an anisotropic in-
plane critical field and an anisotropic response of the superconducting critical current to an in-
plane magnetic field. Our results show that magic-angle TBG can spontaneously break lattice
rotational symmetry in both the normal and superconducting phases, although the anisotropic
properties of these two states are manifested in different observables, suggesting that the origins
of these two anisotropic states might be different.

Characterization of Magic-angle Graphene

Using the previously developed ‘tear and stack’ dry-transfer technique (37, 32), we fabricate
high quality encapsulated TBG devices with twist angles around the first magic angle 6 = 1.1°
(see Supplementary Materials and Fig. S1 for Landau fan diagram). The main devices we report
about are devices A and B, with twist angles of 8 = 1.09° and 6 = 1.08°, respectively. We also
have a third device C with = 1.07° shown in the Supplementary Materials, which exhibits very
similar behavior as devices A and B. The low-energy bands in TBG are four-fold degenerate
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(due to spin and valley degrees of freedom) and can sustain an electron density of n, = 4/4,
where A4 is the area of a moiré unit cell. This density corresponds to filling four electrons or holes
per moiré unit cell. Near the first magic angle, correlated states can form at integer electron
fillings of the moiré superlattice, i.e. when n = +ny/4, +ny/2, +3ny/4. This is believed to be a
consequence of the fact that the electronic interactions become comparable to the bandwidth of
the nearly-flat bands. In the resistivity measurements of device A shown in Fig. 1B, we indeed
find an enhancement of the resistivity px. at all these integer fillings. A superconducting dome is
recognizable upon hole-doping of the -#y/2 insulating state, at temperatures below 2.5 K. Fig. 1C
shows the p.(T) curves of device A and device B at their optimal doping levels (highest T¢),
where 7 is the sample temperature. Both devices exhibit a 7. in the range of 2.5~3 K (at 50%
normal resistance), which is among the highest in our MATBG devices (see. Fig. 1E). Figure 1D
shows the evolution of the V-I curves with temperature. From the log-log plot shown in the inset,
we can extract the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature to be Tsxr ~ 2.2
K. Devices A and B have in fact some of the highest transition temperatures among all reported
magic-angle TBG devices so far (see Table S1 and Fig. S4), as evident from the 7. statistics
shown in Fig. 1E, as well as devices reported in the literature (26, 30, 33).

Anisotropic Behavior in the Normal Phase

Figs. 2A and 2B show the resistivity versus gate-induced density, 7, and temperature, 7, maps of
devices A and B, respectively, in the vicinity of -ny/2. We find that in both devices the -ny/2
region of the phase diagram has a rather complicated structure. As can be seen in Figs. 2A and
2B, there are two resistive features in the normal state: one ‘wedge’-like feature above the
superconducting dome (near -1.5x10'? cm™ for device A and -1.4x10'? cm™ for device B) that
bends at elevated temperatures, and one resistive feature on the right-hand side of the dome (near
-1.3x10'? cm™ for both devices). While the latter feature corresponds to the -n,/2 state similar to
the correlated states previously reported in magic-angle TBG (23, 26, 30, 33), the wedge-like
feature creates a noticeable ‘kink’ (i.e. decrease in 7¢) where it intersects with the
superconducting dome. To further probe the resistive wedge-like feature, we apply a small
perpendicular magnetic field to fully suppress superconductivity, as shown in Figs. 2C and 2D.
Line cuts of the resistivity versus temperature at the densities corresponding to the ‘kinks’ of 7%
are compared in Figs. 2E and 2F for the two devices. It can be clearly seen that when
superconductivity is suppressed, the resistive wedge-like feature turns insulating upon
approaching zero temperature. A small magnetic field thus results in a superconductor-to-
insulator transition at this density. In Fig. 2G, we show the gradual suppression of 7. by the
perpendicular magnetic field from zero to 180 mT in device A. We find that above about 90 mT,
the superconducting dome splits at # ~ -1.54x10'2 cm into two domes. This density
approximately coincides with the density where the wedge-like feature extrapolates to zero
temperature. The separated domes are centered at around -1.52x10'2 cm™ and -1.67x10'2 cm™
respectively. The position of the splitting point corresponds to 15+5% hole doping with respect
to the correlated insulator state. These findings are reminiscent of the behavior in certain
underdoped cuprates near 1/8 doping (3, 15, 16, 34).

To gain more insight into the possible origin of the resistive wedge-like feature, we measure the
transverse voltage across the sample at zero magnetic field, which gives us the transverse
resistance Ry, = V,/I: (35, 36). In an anisotropic conductor in two dimensions, the 2-by-2
resistivity tensor has two diagonal components p = diag{p1, p2}. If the major axis of the
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anisotropy (usually one of the crystal axis) is not aligned with the reference frame of the tensor,
the off-diagonal terms of the resistivity tensor are proportional to (pi- p2)sin(26), where 6 is the
angle between the anisotropy axis and the reference x-axis (see Supplementary Materials for
derivation). As a result, when an electrical current /; flows in the x direction, a transverse
voltage V), appears across the edges perpendicular to the y axis, giving a nonvanishing R, = V,/I;
X (p1- p2)sin(20), as long as sin(26) # 0 and p1#p>. The first condition is assumed to be true in
our experiment, since the lattice orientation is random with respect to the sample edge.
Consequently, a non-vanishing transverse resistance in our experiment implies anisotropic
resistivity, p1 # p2, and therefore the breaking of the six-fold rotational symmetry of TBG. Note
that this transverse voltage is fundamentally different from the Hall effect since time-reversal
symmetry is not broken. In order to quantitatively analyze the transverse voltage, we need to
remove any residual longitudinal component that might appear in the transverse voltage due to
imperfect alignment of the four-probe voltage contacts and/or sample inhomogeneity (see also
Supplementary Materials) (35). Fig. 3A shows the raw R, and Ry, measured for device A near
the wedge-like feature, as shown in Fig. 2A. At high temperatures (40 K), where the anisotropies
associated with electron correlation effects are presumably overwhelmed by thermal fluctuations,
both Ry and Ry, are linear in 7 and proportional to each other: Ry, = -0.05R. (35). To correct for
this background signal that is likely a result of the imperfect voltage probe alignment, we
subtract this R, component from R, so that at the highest temperature of 40 K the net signal is
zero. This corrected transverse voltage R, = Ry, - a(n)Rxx, Where a(n) is a density-dependent
numerical factor typically within 0.1, constitutes an accurate measure of the resistivity
anisotropy (purple curve in Fig. 3A). We note that, while no signal is present at higher
temperatures, below 6 K there is a significant negative peak in R\, which indicates the onset of
anisotropy at this temperature.

The gate and temperature dependence of the anisotropy, shown in Figs. 3B and 3C for zero
magnetic field and B1 = 0.5 T (see Supplementary Materials), clearly reveals a prominent
anisotropy ‘wedge’ as well. The transverse voltage measured at B1= 0.5 T is symmetrized with
data measured at B1=-0.5 T to remove the contribution from the Hall voltage. Here we plot the
normalized quantity Ry,“/Rx., which is approximately proportional to the anisotropy ratio (p1-
p2)/(p1+p2) (see Supplementary Materials). We also mark out the superconducting dome in Fig.
3B and 3C. Immediately above the superconducting dome on the ‘underdoped’ side (lower |n|),
we find a strong transverse voltage signal with a sign change at around -1.59x10'? cm™ (see
Supplementary Materials Fig. S2 for the entire range of density). The position of the anisotropy
wedge matches well with the resistive wedge-like feature that we observed in Fig. 2A. The sign
change indicates that the anisotropy changes from p1 > p2to p1 < p2 (or vice versa). In B1=0.5T
(Fig. 3C), the anisotropy wedge with negative values of Ry, persists to zero temperature,
consistent with the behavior of the resistive wedge-like feature in Fig. 2B as well. On the other
hand, we notice that the anisotropy with positive Ry, near -1.65x10'? cm™ disappears as
superconductivity is suppressed by the magnetic field, which might be explained by the vestigial
order from the nematic superconductivity that will be discussed in the next section.

Nematic Superconducting State

A natural question to ask is whether the superconducting phase exhibits any anisotropic
properties as well. To investigate this, we measure the angle-dependent in-plane magnetic field
response of the superconducting phase. In magic-angle TBG, the superconductivity is suppressed
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by an in-plane magnetic field of the same order of magnitude as the Pauli paramagnetic limit
(26). Using a vector magnet in a dilution refrigerator, we apply a magnetic field Byup to 1 T in
an arbitrary direction within the sample plane (see Fig. 4A for illustration). We compensate for
possible sample tilt by applying a small out-of-plane magnetic field, so that the magnetic field is
parallel to the sample to within [B1| <2 Mt at |By| =1 T, which is much less than the
perpendicular critical magnetic field of our devices (see Supplementary Materials and Fig. S3 for
detailed calibration procedure, and see Fig. S5 for the perpendicular critical magnetic field of
devices A and B). Figure 4B shows an example of the resistivity versus in-plane magnetic field
magnitude |By| and angle 8z (with respect to the length of the Hall bar, see Fig. 4A). A two-fold
anisotropic suppression of the superconductivity can be clearly seen. We have checked that the
direction of the current flow is not correlated with the anisotropy direction, and therefore the
anisotropic Lorentz force contribution can be excluded (see Supplementary Materials Fig. S6).
The anisotropy is not aligned with the length or width of the Hall bar either (see Supplementary
Materials Fig. S6).

The two-fold anisotropy of the in-plane magnetotransport response points towards nematicity
that is intrinsic to the superconducting phase, since it breaks the six-fold rotational symmetry of
the moiré superlattice. We have systematically studied this nematic behavior across the entire
superconducting dome of device B. In Figs. 4E to 4R we show polar maps of the magneto-
resistivity at different carrier densities and temperatures in the hole-doping and electron-doping
superconducting domes as labeled in Fig. 4C. At all densities except those in Figs. 4N and 4R,
we find elliptic contours that have major/minor axis ratio up to ~3. Note that we chose to always
measure near 7¢, since deep inside the superconducting dome the in-plane critical field is usually
larger than 1 T and cannot be measured in our setup. However, we have confirmed the
nematicity in the 7 < 7. region by simultaneously applying a small perpendicular field to
partially suppress the superconducting state (see Supplementary Materials Fig. S7). At the
densities corresponding to Figs. 4N and 4R, which are outside the superconducting regions, the
anisotropy is essentially nonexistent. In general, the two-fold anisotropy occurs inside the broad
transition from superconducting to normal state as a function of By, suggesting that it is a
property intrinsic of the superconducting fluctuations (37), since the normal state does not show
any anisotropy in the in-plane magnetoresistance (see Fig. S9). In device A, we have also
observed similar two-fold anisotropic in-plane critical field (Fig. 4D). The critical magnetic field
B. along the major axis extrapolated to zero temperature exceeds that along the minor axis by
40~80% in this device.

Figure 4S shows the evolution of the magnitude and of the director of the nematic component of
the superconducting state in device B as a function of carrier density and temperature. Our data
shows that the nematic director, as measured by the angle of rotation of the ellipse's major axis,
does not appear to be exactly locked to any particular spatial axis, but instead evolves
continuously with carrier density and temperature. In particular, in the superconducting dome on
the hole-doping side of -n,/2, the direction of the major axis varies slowly within -10~+20° in the
density range of -1.70x10'>~ -1.45x10'2 cm™ (corresponding to the ellipses from Figs. 4E to
4H), while in the range of -1.45x10'2 ~-1.25x10'2 cm™ (from Figs. 41 to 4M) the major axis
rotates quickly with the carrier density. From Figs. 4i to 4m, the major axis rotates by ~90°. We
note that the latter range of density again coincides with the resistive wedge-like feature for
device B, as shown from Figs. 2B and 2D. The smaller superconducting dome on the electron-
doping side near -1.20x10'? cm exhibits significant nematicity as well (Figs. 4P and 4Q), with a
director pointing from 120° to 160°. As we explain below, the fact that the nematic director
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changes direction as a function of doping and temperature makes it unlikely that the
superconducting anisotropy is simply a response to strain present in the sample. On the contrary,
this observation is consistent with spontaneous rotational symmetry-breaking characteristic of an
intrinsic nematic superconductor.

Anisotropic Response of the Superconducting Gap

The observation of nematicity puts certain constraints on possible pairing symmetries of the
superconducting order parameter (/4, 38, 39). One can obtain information about the
superconducting gap by measuring the critical current /.. Here, by measuring /. of device B in
the presence of in-plane magnetic fields, we demonstrate that the nematicity is not only
manifested in the resistivity measurements, but also creates an anisotropic modulation of the
superconducting gap. Figures SA-B show the waterfall plots of differential resistance d Vix/dZpias
versus dc bias current /»i4s at two carrier densities, in an in-plane magnetic field |By| =1 T along
different directions indicated by the colors. At the carrier density in Fig. 5B, the plot shows two
critical currents at 110 nA and 210 nA respectively, which might be due to domains in the device
with different twist angles or nematic directors. Interestingly, at both carrier densities the critical
current shows significant two-fold modulation by the in-plane magnetic field direction 5. The
Op-dependence can be fit by a sinusoidal function cos2(6s-0p0) (Fig. 5C), where Opo is the
direction of the major axis. The modulation amplitude as a function of the in-plane field
magnitude is shown in the inset of Fig. 5C, and follows an approximately quadratic power law
dependence.

An anisotropic response in the critical current may originate from (i) the superconducting gap 4
and/or (ii) anisotropic properties of the underlying normal state resistance (R,). Although we
have shown that the normal state exhibits considerable resistivity anisotropy at densities near the
wedge-like feature in Fig. 3, we argue here that the anisotropic response of the critical current is
not a result of the anisotropy of R,. First, Fig. 5A is measured at a density for which there is
essentially no resistivity anisotropy in the normal state (R, "/Rx= -0.007 at the lowest 7 in Fig.
3C), while Fig. 5B is measured at one with significant anisotropy in the normal state (R.)“"/Rx
/R =-0.325 at the lowest T in Fig. 3C). However, the modulation of the critical current at these
two densities shows similar magnitudes. Second, an anisotropy in the resistivity tensor may not
necessarily imply a large anisotropic response of the resistivity versus in-plane magnetic field. In
fact, as we show in the Supplementary Material Fig. S9, inside the wedge-like feature in the
normal state in device A, we could not measure significant anisotropic response to the in-plane
field. Thus, these results suggest that the anisotropic response of the critical current might not be
directly related to the resistivity anisotropy of the normal state and hence may originate from an
anisotropic superconducting gap.

To discuss the mechanism by which the in-plane field couples to the superconducting gap, we
note that if the former couples solely to the spin degree of freedom (and thus the gap is only
suppressed by the Zeeman coupling), spin-orbit interaction must be introduced to explain the
dependence of /. on the direction of B). However, the intrinsic spin-orbit coupling in graphene-
based systems is known to be very weak. We might consider the following mechanism to
reconcile these facts. As illustrated in Fig. 1A, the unit cell of magic-angle TBG has a length
scale of a~14 nm. Despite the separation between the graphene sheets in TBG being merely
0~0.3 nm, an in-plane magnetic field penetrating them induces a small but non-negligible
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magnetic flux in the cross-section of the unit cell with an area S ~ ad, which modifies the Fermi
contours. To demonstrate this effect, we numerically calculated the Fermi contours at -ny/2 for B/
=0and By=1 T along the x direction using the Bistritzer-MacDonald continuum model (28§).
Figs. 5D and 5E show the original and modified Fermi contours for the K and K’ valleys
respectively. As can be seen from the contours, a noticeable shift is induced by the in-plane
magnetic field. The K/K’ valley degeneracy is lifted by the momentum shift between the two
layers introduced by the in-plane field, which is proportional to edBy;, a substantial shift given the
small size of the Brillouin zone. If one assumes that only electrons with opposite momentum and
valley are allowed to form Cooper pairs in the superconducting phase, the two states from
opposite valleys would be at slightly different energies when an in-plane field is applied, which
serves to suppress the superconductivity in a similar fashion as the paramagnetic (Zeeman) effect
in the case of spins. To more intuitively demonstrate this, Fig. 5F shows the de-pairing energy
along the Fermi contour 4E(k) = Ex(k) - Ex(-k). It is strongly directional dependent and has a
similar order of magnitude as the Zeeman energy at B/=1 T (gusB/~115 peV, where g =2, ugis
the Bohr magneton). The de-pairing energy exhibits a six-fold variation with respect to the
direction of the in-plane magnetic field, while the nematic component of the superconducting
order can further spontanously break this symmetry down to the observed two-fold symmetry
(37, 38, 40). A small strain can further assist to pin down the nematic domain along a given
direction.

Discussion

Our measurements reveal two distinct anisotropic states in the phase diagram of magic-angle
TBG: a normal-state wedge-like feature above the superconducting dome and a nematic pairing
state. As shown by the longitudinal resistivity and transverse voltage measurements presented in
Fig. 2 and Fig. 3, the wedge-like feature is associated with a zero-temperature insulating phase
that shows significant resistivity anisotropy, indicative of broken six-fold lattice rotational
symmetry. Thus, this normal state phase might be either an electronic nematic state or an
electronic smectic state — i.e. a charge or spin density-wave that, in addition to rotational
symmetry, also breaks translational lattice symmetry. In either case, the rotational symmetry-
breaking can be described by a two-component 3-state Potts nematic order parameter (40, 41).
Electronic correlations might be important for the formation of such a state. Twisted bilayer
graphene is well-known to exhibit van Hove singularities (vHs), which in general do not occur
exactly at half-filling (42, 43). Near the vHs, it has been theoretically shown that the significant
nesting between the K- and K’-valley Fermi contours might induce density wave ordering (39).
Remarkably, recent scanning tunneling experiments have identified prominent rotational-
symmetry-broken features in the normal state local density of states (44—46). Alternatively,
strong-coupling models can also yield nematic and density-wave states (47, 48). For the
superconducting phase, it remains to be seen whether its nematic character, as revealed by the
measured in-plane anisotropy of the critical field, can be reconciled with s-wave pairing.
Alternatively, this behavior could be explained in terms of a two-component p-wave/d-wave gap,
indicative of an unconventional pairing mechanism (49).

A crucial question is whether the anisotropies observed here have intrinsic or extrinsic origins.
The fact that we do not observe multiple nematic domains within the same device implies that
some degree of residual strain is present. The issue is whether this strain is the sole cause of the
anisotropy (extrinsic origin), or whether it is mainly pinning one of the three underlying nematic
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domains (intrinsic origin). To address this, we note that such a residual strain should be a
property of the device, and thus should be present at all temperatures and doping. In contrast, as
shown in Fig. 3, the onset of the normal-state anisotropy is restricted to a narrow doping range
and to temperatures below 10 K. Furthermore, the resistance anisotropy is on the order of one in
the ‘wedge’-like feature (see Fig. 3B). Such a large effect would be difficult to be explained by a
reasonably sized residual strain.

While these quantitative arguments rely on the amplitude of the anisotropy, a more direct
argument against an extrinsic origin can be made from the direction of the anisotropy. Our
measurements in the superconducting state clearly show a rotation of the nematic director (Figs.
4E to 4R, and 4S). In the 3-state Potts model, the three states correspond to the three nearest-
neighbor directions in the moiré superlattice (40). Here, strain acts as a conjugate field to the
nematic order parameter, similarly to how a magnetic field acts on a ferromagnet. If the strain is
‘parallel’ to one of the three anisotropy directions, the corresponding nematic director is favored
over the other two. As a result, the nematic director is fixed at all temperatures. If the strain is
‘anti-parallel’ to a direction, the other two directions become favored. Consequently, as the
temperature is lowered towards the nematic state, the nematic director continuously rotates from
the disfavored direction to one of the two favored directions (40). Importantly, this can only
happen if nematic order is spontaneous, i.e. if it is an intrinsic instability of the system, as it is
supported by a phenomenological calculation shown in the Supplementary Material. Therefore,
the continuous rotation of the nematic director in our observation indicates that the anisotropy of
the superconducting state is more likely to be intrinsic, as an extrinsic origin would result in a
fixed orientation.

Another possible source of anisotropy is twist angle variations across the device, which could
create an inhomogeneous distribution of strain (50). While further studies are needed, we note
that such an inhomogeneous strain would act as a random field to the Potts-nematic order
parameter, which might affect the nematic properties in 2D (57). However, the fact that we do
not see different nematic domains across our device seems to suggest that the global residual
strain is probably dominating over the local strain caused by twist angle fluctuations.

The various phases discussed throughout this article are summarized in Fig. 6 (see
Supplementary Materials and Fig. S8 for the extracted nematicity temperature 7yen). The fact
that an anisotropic response to an in-plane magnetic field is seen only in the superconducting
state, but not in the wedge-like feature, suggests that the origins of nematicity in the normal and
superconducting states are likely different. This is also consistent with the fact that these two
orders compete, as evident from the suppression of 7. when the wedge-like feature intersects
with the superconducting dome. However, since both phases break the same six-fold lattice
rotational symmetry, the order parameters of these two phases can interact beyond mere
competition, which may be responsible for the rapid change of the ellipse direction in the
coexisting region of the phase diagram (see Supplementary Material). Moreover, normal-state
nematic fluctuations may play an important role in favoring a superconducting ground state that
is also nematic. While the onset of nematicity and of superconductivity seem very close in our
experiment (see Supplementary Material), it is possible that the nematic order in magic-angle
TBG persists even above 7¢, a phenomenon known as vestigial nematic order (12, 14, 41).
Interestingly, in Fig. 3B, there is a region just above the superconducting dome with positive
transverse voltage signal at n = -1.65x10'> cm™ and T = 2 K. This not only has opposite sign than
the anisotropy of the wedge-like state, but it also disappears when superconductivity is
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suppressed (Fig. 3C). Thus, this feature might be explained by a vestigial nematic order that
forms prior to the condensation of Cooper pairs (12, 14, 41). Scanning probe experiments are
encouraged in the future to confirm this nematic phase above the superconducting transition.

In summary, our experiments extend the already rich phase diagram of magic-angle TBG to
include a nematic superconducting state and an anisotropic normal state above the ‘underdoped’
part of the superconducting dome. The competition between them results in a reduction of 7. and
in a fast rotation of the nematic director of the superconducting state. Our results pioneer the
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study of competing/intertwined quantum phases in a highly tunable two-dimensional correlated
platform, which in turn may shed more light onto the unconventional superconductivity in iron-
based compounds, doped Bi>Ses and other nematic superconductors.
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Fig. 1. Characterization and statistics of magic-angle twisted bilayer graphene (TBG) devices.
(A) Tllustration of the moiré pattern in magic-angle TBG. The color scale shows the normalized
local density in the flat bands when the twist angle is close to magic angle. The twist angle of the
displayed pattern is enlarged for clarity. (B) Resistivity of device A (twist angle 6 = 1.09°)
versus gate induced carrier density and temperature, showing correlated features at all integer
electron fillings of the superlattice. Superconductivity is found at hole-doping of the -n,/2
insulator with critical temperature ~2.5 K. (C) Resistivity versus temperature for devices A and
B, with twist angles 6 = 1.09° and 6 = 1.08°, respectively, at their optimal doping concentrations.
Inset shows the forward and backward sweeps of the V-I curves in device B which exhibit a
significant hysteresis. (D) Temperature dependence of the V-I curves measured in device B. Inset
shows the log-log plot of the 7> 0 part of the data. The Berezinskii-Kosterlitz-Thouless transition
temperature Tpxr = 2.2 K is identified where the slope of the curve crosses d(log Vix)/d(log I) =3
(equivalent to Vi o P). (E) Statistics of optimal doping 7. in 14 of the magic-angle TBG devices
we have measured. We find that the trend of 7t peaks around 1.1°, the theoretically predicted
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first magic-angle in TBG. The green data points are from devices exhibiting substantial disorder,
hence the large error bars in the twist angle determination. This disorder may be responsible for
the relatively low 7. The orange and purple bars denote the range of twist angles where we have
observed anisotropic normal state and nematic superconductivity, respectively. The latter has
been seen in all the devices where it was investigated (see Table S1 in Supplementary Materials),
and hence we have added dashed purple lines to the edge of the purple line to indicate that those
devices might likely also exhibit nematic superconductivity.

Fig. 2. Competing phases near the superconducting domes of magic-angle TBG. (A-B)
Resistivity versus gate-induced carrier density and temperature for device A and device B,
respectively. (C-D) Same measurement but in a perpendicular magnetic field of 0.5 T. (E-F)
Line cuts of resistivity versus temperature for devices A and B at 0 T and 0.5 T at the densities
indicated by the dashed lines in (A-D), showing a superconductor-to-insulator transition induced
by the magnetic field. In both devices, we find a wedge-like feature above the superconducting
dome in addition to the -n,/2 correlated state. This feature shifts noticeably towards negative
relative densities at elevated temperatures. At zero magnetic field, the wedge-like feature
disappears into the superconducting dome and creates a ‘kink’ on the 7.(n) curve, while in 0.5 T
it persists down to the lowest temperatures and turns into an insulator. The gray circles in (A-D)
indicate the resistivity maxima associated with the wedge-like feature at different temperatures.
(G) Evolution of T¢ of device A in a perpendicular magnetic field up to 0.18 T. Each contour line
is 7¢ (10% normal resistance) versus carrier density at the magnetic field indicated by the color
shading. The yellow band represents the approximate position of the wedge-like feature. At B1=
0.09 T (orange curve), the 7,-kink touches zero at the same density where the wedge-like feature
extrapolates to zero temperature. Above this field, the superconducting dome splits into two
domes roughly centered at -1.52x10'2 cm? and -1.67x10'2 cm™, respectively.

Fig. 3. Normal-state anisotropy in magic-angle TBG device A. (A) Illustration of how we extract
the resistivity anisotropy by measuring the transverse resistance. Inset shows the actual device
configuration that we used to obtain the data, where black arrows indicate current source and
drain. Ry, Ry, label the leads on which longitudinal and transverse resistances are measured,
respectively. The purple trace, Ry, is the transverse resistance corrected for leads misalignment
(see Supplementary Materials). n = -1.53x10'?> cm™ in this measurement. (B-C) Anisotropy ratio
versus carrier density and temperature at zero magnetic field and B1= 0.5 T, respectively (see
Supplementary Materials). The circles in (B) and the dashed line in (C) outline the approximate
shape of the superconducting dome (at zero field). We find the strongest anisotropy near the kink
in T, at n = -1.54x10'? cm™, coinciding with the resistive wedge-like feature we identified in Fig.
2A and 2G.

Fig. 4. Evidence for nematic superconductivity in magic-angle TBG. (A) Definition of the in-
plane field angle 63 with respect to the device orientation. 6p= 0 (x-axis) is defined as the source-
drain direction of the Hall bar device. (B) Resistivity as a function of #p for different magnitudes
of the in-plane magnetic field, showing a clear two-fold anisotropy. Measurement is taken at n =
-1.18x10"? cm™ and T = 70 mK. (C) Detailed view of the superconducting domes in device B,
showing a large and a small superconducting dome on the p-side and n-side of the insulating
state. (D) Critical in-plane magnetic field B/ versus temperature along the major and minor axis
of the two-fold anisotropy, measured in device A at carrier densities of -1.44x10'2 cm?, -
1.42x10'2 em™, -1.40x10'2 cm™ and -1.23x10'? cm™ respectively (from right to left). (E-R) Polar
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maps of the anisotropic response of the resistivity across the superconducting domes in device B.
The carrier densities and temperatures at which (E-R) are measured correlate with the labels in
(C). (S) For device B, we extracted the magnitude (represented by height) and the polar angle of
the major axis Onq; (represented by the color, see Supplementary Materials for details) of the
nematicity at different densities and temperatures, with |B,| =1 T. The data for different
temperatures are shifted vertically for clarity. Inside the region shaded in purple, the critical in-
plane magnetic field is larger than 1 T and cannot be measured in our setup. In the density range
of -1.45%x10'? ~ -1.2x10'? cm2, the anisotropy polar angle &y rotates rapidly with the carrier
density, possibly due to the competition with the wedge-like feature we identified in Fig. 2 and
Fig. 3.

Fig. 5. Anisotropic response of the superconducting critical current. (A-B) Differential resistance
dVx/dlpias versus bias current Ipias as a function of the orientation of the in-plane magnetic field at
two carrier densities. The orientation is indicated by the color, differing by 15° between adjacent
curves, which are vertically shifted for clarity. (C) Modulation of the larger critical current in (B)
by in-plane magnetic fields with different orientations and magnitudes. A sinusoidal function is
used to fit the data (see main text). The inset shows the modulation amplitude (peak-peak) as a
function of the field magnitude, which can be fit by a power law A1. « |B;|* with a = 2.1. (D-E)
Calculated Fermi contour of 8 = 1.09° TBG at By=0 and By= 1 T around K and K’ valleys
respectively. (F) Energy splitting between states at opposite momentum and opposite valleys
along the Fermi surface AE(k) = Ex:(k) - Ex(-k) at B,=1 T. For comparison, the Zeeman splitting
gupBat B=1T forg=21s 115 peV. The gray hexagons in (D-F) denote the moiré¢ Brillouin
zone.

Fig. 6. Summary of various competing phases we identified in this article. In the underdoped
side of the superconducting dome, we find a normal state anisotropic phase that, at low
temperatures, competes with superconductivity, creating a depression in the 7. curve. In the
superconducting state we find nematicity, manifested in its response to in-plane magnetic fields.
By comparing the extracted nematicity temperature 7yen to 7. we find that the entire
superconducting dome exhibits nematicity, which suggests that the nematicity is intrinsic to the
superconductivity and points towards a possible unconventional pairing symmetry. The dashed
area denotes the competing region between the two states, where a reduction in 7. as well as a
strong rotation of the nematicity axis are seen.
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1 Sample Fabrication

We fabricate high quality magic-angle twisted bilayer graphene (TBG) devices using a pre-
viously developed ’tear & stack‘ technique, detailed in [32] and Refs. [31, 52]. Specifi-
cally, monolayer graphene and hexagonal boron nitride (h-BN, ~50 nm thick) are exfoliated on
Si0,/Si substrated, annealed at 350 °C (only for h-BN) and examined using optical microscopy
and atomic force microscopy. A PC/PDMS polymer stack on a glass slide mounted on a micro-
positioning stage is used to pick up a h-BN flake. Then we use the van der Waals force between
h-BN and graphene to tear a graphene flake. The substrate is rotated by 6 ~ 1.2°, and the other
piece of graphene is then picked up, creating the desired TBG structure. The resulting stack is
encapsulated with another h-BN flake of similar thickness, and put onto a Cr/PdAu gate evapo-
rated and lift-off on another SiO,/Si substrate. The device geometry is defined by electron-beam
lithography and reactive ion etching, which only leaves behind regions free of any bubbles or
wrinkles. Electrical connections to the TBG are made by one-dimensional edge contacts [53].

2 Measurement Setup and Data Analysis

We perform transport measurements using low-frequency lock-in amplifiers with excitation fre-
quency between 2 Hz to 10 Hz and excitation current [, ~ 1nA. The sample resistance is
obtained by dividing the four-probe voltage V,, by the current flowing through the sample I,
independently measured by two lock-in amplifiers. For transverse voltage measurements, a
third lock-in is used to measure V.

The twist angles of the devices are determined from the magnetotransport data (the Landau
fan diagram). The details are described in the Methods section of our previous works [25, 26].
The error bars in Fig. 1E are estimated by visually inspecting how well the Landau levels
emanating from the Dirac point, +n,/2 and +n; fit to the expected Landau fan of a given twist
angle.

3 Additional Data and Discussion

3.1 Landau Fan Diagram

To demonstrate the high quality and similarity in device A and device B that we discussed
throughout the manuscript, in Fig. S1 we show the Landau fan diagram of device A measured
at low temperatures. The Landau fan diagram of device B can be found in Fig. 1 of Ref. [50],
which is measured on the same device. Note that in Ref. [50], the twist angle is determined to
be & = 1.06°, while in this work we assign a value of § = (1.08 & 0.03)°. In both devices A
and B, we observe 4-fold degenerate Landau levels at the charge neutrality, which break down
to two-fold or one-fold at high fields. We also observe two-fold degenerate levels emanating
from +n, /2, consistent with the original report in magic-angle TBG [26].
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Figure S1: Landau fan diagram of device A, measured at the base temperature 7' = 70 mK.

3.2 Normal-state anisotropy measured through transverse voltage

In Fig. 3 we use transverse voltage measurements to infer possible anisotropy in the resistivity
tensor when T' > T,. Specifically, an anisotropic 2D conductor has different resistivity along

its principle axis
p1 0
= , 1
p (0 p2) (1)

where p; # py. In a reference frame that is rotated from the principle axis by 6, the resistivity
tensor transforms as

/ <%(p1 + p2) + 2(p1 — p2) cos(20) 2(p1 — p2) sin(26) )

P A @) ket dor - peosize) P

Therefore, the off-diagonal term p, = pl, is proportional to the anisotropy in resistivity p; — ps.
This term can be experimentally observed in the transverse voltage configuration by measuring
R,, = V,/1,, similar to Hall effect measurement except that no external magnetic field is ap-
plied. In actual devices, however, 2, is frequently measured to be non-zero even in isotropic
materials due to 1?,, mix-in. This can for example occur due to imperfect alignment of the
transverse voltage probes, obscuring the anisotropic signal by introducing a large background
[35]. The mix-in results in a component in 12, that is proportional to I?,, at all temperatures. To
account for this, we assume that the device is isotropic at high temperatures, so that p;5 is zero,
and then estimate the contribution from the R, mix-in by dividing the measured R,, over 12,
at this temperature for each density n, obtaining the ratio a(n) = R,y (Timax)/Ruow(Tmax). As-
suming the mix-in is temperature independent, we subtract the contribution proportional to R,
at all temperatures. This corrected R,, is denoted as RS, (n,T) = Ryy(n, T) — a(n) Ry (n, T),
which by definition satisfies R (T = Ty,ax) = 0. Finally, we normalize the corrected quantity

C
Yy



by R,., which is approximately related to the anisotropy as

R, Wopr—p2 . W Ap .
oy L PR gin(20) & — =L sin(26), 3
Rye L p1+p2 Sin(26) L 2p sin(26) ©)

provided that p; — po < p1,p2. L and W are the length and width of the sample respec-
tively. Unless the device is coincidentally aligned with the anisotropy axis such that § = 0,
this normalized quantity is characteristic of the anisotropy ratio %’. It should be noted that this
measurement always tends to underestimate the anisotropy, since | sin(26)| < 1.

In a perpendicular magnetic field, the transverse voltage will attain an additional Hall com-
ponent proportional to 5, . To probe the normal-state anisotropy in a small perpendicular mag-
netic field, we measure R, at both B, and —B and take the average between them. The R,,
signal symmetrized in this fashion would in principle contain no Hall voltage and is attributed
only to the anisotropy.

In addition to the vicinity of the superconducting domes, we measured the transverse voltage
in the entire flat-band densities —ny < n < ng, up to 40 K. As shown in Fig. S1, we find that
there is considerable anisotropy near +n,/2 and +3n/4 as well, which might be related to the
same type of phase that is responsible for the anisotropy near —n /2. Noticeably, near the Dirac
point (n = 0) there is a diffuse triangular region with weak anisotropy that changes direction as
n crosses zero. This phenomena might be related to the recently proposed nematic topological
semimetallic behavior near the charge neutrality point of TBG. [56] Recent scanning tunneling

experiments also show evidence of C'3-symmetry breaking near the charge neutrality of magic-
angle TBG [45].

3.3 Compensation for device tilt in in-plane magnetic field measurements

The in-plane field behavior of the TBG devices is measured in an American Magnetics Inc.
3-axis vector magnet with maximum x/y fields of 1'T. When loading samples into the cryostat,
however, it is hardly possible to perfectly align the sample plane to the x-y field plane. Typically
the sample is tilted by about 1° to 2° with respect to the field plane.

To calibrate and compensate for this tilt, we use the superconductivity of magic-angle TBG
itself to act as a perpendicular magnetic field sensor. Near the edge of the superconducting dome
(where superconductivity barely survives), the resistance of the device is highly sensitive to the
variation in perpendicular magnetic field and therefore can be used as a reference to nullify the
residual perpendicular magnetic field, accurate to 1 mT to 2mT. Figure S2a shows examples of
resistance versus B curves at various (B,, B,). Sharp reductions of the resistance can be seen
in each curve, the center of which we identify as the ‘true’ zero magnetic field at each (B,, B,)
point.

We use a two-step procedure to calibrate the sample tilt:

1. Global rough calibration. We measure the perpendicular magnetic field B, at which the
resistance is minimized, at a number of points (B,, B, ), and fit the loci of the minima to

4
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Figure S2: Normal-state anisotropy via transverse voltage measurements in device A. (a)
R;ry /R, ratio in device A across the entire density range —n, < n < n, at zero magnetic
field. (b) Same measurement, performed at B, = 0.3 T.

a function in the form of B, = aB, + bB, + c, to obtain the tilted plane of the sample.
Figure S2(b) shows an example of such a plane fit, with an adjusted R? of 0.9884 and
maximal deviation of 6.6 mT from the data.

2. Fine calibration. Using the plane-fit value obtained from the global calibration, random

5
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Figure S3: (a) Example curves of normalized R,, used for calibrating offset in perpendicular
magnetic field taken at various in-plane fields and temperatures. (b) Example of planar fitting
that we use to globally correct for the sample tilt. In this example 24 points are taken in the
B, — B, plane, and for each point a calibration similar to those shown in (a) is performed
and the minimum is plotted in the graph. The plane shown in the graph is a least-square fit
of the minima to a plane, aB, + 0B, + c. The coefficients are fit to be a = —0.02999,b =
0.003 625, c = 0.001 658 T, with an adjusted R* of 0.9884. These values correspond to a tilt
angle of about 1.7° from the B, — B, plane.



Device Twist Angle | 7. (50 %) | Anisotropy/Comments
M1 (1.16 £0.04)° | 091K SC
M2 (1.03£0.03)° | 1.99K SC
M3 (1.10 £ 0.05)° | 0.69K Disordered
M4 (1.06 £0.03)° | 2.98K
M6 (Device B) | (1.08 £0.03)° | 3.14K SC, Normal
M7 (Device A) | (1.09 £0.02)° | 2.70K SC, Normal
M8 (1.08 £0.10)° | 0.40K Disordered
M9 (1.18 £0.04)° | 0.35K
M10 (0.98 £0.03)° | 0.46K
M12 (0.95+0.02)° | 0.85K SC
M13 (1.20 +0.05)° | 0.57K
M15 (0.98+0.02)° | 0.26K
M16 (1.024+0.03)° | 0.70K
MI18 (Device C) | (1.07 £0.02)° | 2.71K SC, Normal

Table S1: List of superconducting magic-angle TBG devices.

deviations by more than 5mT from the ‘true’ zero field value still occur, either due to
a change in magnetization of the cryostat or tilting/tipping of the sample holder due to
magnetic forces. Therefore we perform an additional fine correction around the plane-fit
value, whenever B, or B, is changed. The principle is the similar: we take a fine scan
of B, around the plane-fit value and find the minimum in R,,. This procedure greatly
reduces the residual field to < 2mT at the cost of increased measurement time. Any
systematic error from the sample tilt is in principle eliminated in this step.

3.4 Statistics of Superconducting Devices

Table S1 lists the twist angle and T, (50 % normal resistance) at optimal doping of all super-
conducting magic-angle TBG devices we have measured. We show the resistance-temperature
(R..-T) curves for all these listed devices at their optimal doping in Fig. S4. T is obtained by
first fitting the high temperature part of the R,,-1 curve to a straight line AT + B, then find
the temperature where R,.(T) = 0.5(AT + B). In the last column in Table S1, we also list
what type of anisotropy (SC and/or normal state) we measured in each device. The relevant
anisotropy/nematicity data are presented in Section 4. Among these devices, M3 and M8 have
relatively large twist angle disorder and relatively low 7. accordingly. These points are shown
in green color in Fig. 1E in the main text.
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Figure S4: Resistance-temperature curves for the magic-angle TBG devices listed in Table S1.

3.5 Perpendicular Critical Magnetic Field of devices A and B

Figure S5 shows the resistivity p,, in device A and B versus carrier density and perpendicular
magnetic field B . The maximum critical perpendicular magnetic field of device A is ~ 0.2 T,
and that of device B is ~ 0.3 T. Therefore, any residual perpendicular field < 2m'T that results
from imperfect sample tilt correction is much smaller than the critical perpendicular magnetic
field and is unlikely to be sufficient to account for the observed two-fold anisotropy.

3.6 Nematicity versus Current Flow Direction

To rule out the possibility that the in-plane field anisotropy is related to the current flow direction
(due to Lorentz force acting on the electron movement for example), we measure the anisotropy
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Figure S5: The resistivity p,, for (a) device A and (b) device B as functions of carrier density n
and perpendicular magneticfield B respectively. Measurements are performed at 7' = 70 mK.

for two perpendicular current flow directions and find that the anisotropy axis is invariant, and
not aligned to either of flow directions. We measure the two-probe conductance of the device
along = and y directions as illustrated in Fig. S6a and b respectively. The in-plane field magni-
tude is fixed at B = 1T while its orientation is rotated. In both cases, we observe maximum
conductance (major axis) along the direction A ~ 135°, which is neither along = (0°) nor y
(90°) axis of the Hall bar. This experiment confirms that the spontaneous symmetry-breaking is
intrinsic to TBG instead of being determined by the sample geometry or by the external current.

3.7 Nematicity vs. Temperature and Perpendicular Field

To demonstrate the nematicity across the entire superconducting dome, we have measured the
Byj-0 g maps of resistivity across the superconducting dome at six different temperatures, 0.07 K,
04K, 09K, 1.7K, 2.3K and 4 K respectively. As the temperature is raised, the magnitude
of the nematicity in general decreases. We analyze the in-plane magneto-transport data by
comparing the resistance measured at |B)| = 1T along different directions. We extract the
anisotropy magnitude, defined as A = (Pmax — Pmin)/(Pmax + Pmin ), as well as the azimuthal
angle of the major axis 0,,,; along which the resistivity is lowest. These results are summarized
in Fig. 4S, with the anisotropy magnitude and the major axis angle represented by the height
and the color of the bars respectively, at each of the measured temperatures.

In Fig. 4S, in a range of densities near the optimal doping density, —1.6 x 1072 cm ™2, the
nematicity cannot be measured because the critical magnetic field is higher than the maximum
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Figure S6: Change in two probe conductance of device B when it is sourced from (a) the x
direction and (b) the y direction of the Hall-bar sample, in an in-plane magnetic field with the
same magnitude of |Bj| = 1T but pointing to the direction indicated by the polar angle. The
carrier density is taken at five different values in the underdoped region of the p-side supercon-
ducting dome (see Fig. 4C for reference of what those carrier densities correspond to in the
phase diagram).

field we can apply (1T in any in-plane direction). The resistivity is universally small up to
B = 1T and thus preventing us from extracting the magnitude and axis of the anisotropy.
However, the nematicity at these densities near optimal doping can still be demonstrated if
we reduce the superconducting gap size by either raising the temperature or applying a small
perpendicular field, so that we could reach the critical magnetic field within 1 T. Fig. S7 shows
such experiments performed in device B. In both cases of Fig. S7a and b, when temperature
is at base and no perpendicular field is applied (the lowest and darkest curve in each plot), the
resistivity is very low (close to the instrumentation noise floor) and does not exhibit significant
anisotropy with respect to 5. However if we raise the temperature (Fig. S7a) or apply a small
perpendicular magnetic field (Fig. S7b) so that the superconductivity is partially suppressed,
we can then observe the two-fold anisotropy versus 6g.

In Fig. S8, we overlay the extracted nematicity temperature 7}, on top of the supercon-
ducting critical temperature 7. (at 10 % normal resistance). To obtain Ty, versus density, we
set a threshold for the anisotropy magnitude of Ay, = 0.1 and find the carrier density that satis-
fies the condition A = Ay, at each of the measured temperatures (no carrier density is found at
4 K satisfying this condition). The anisotropy in the ellipses would be barely visible if A < Ayy,.

From this plot, it is evident that the nematicity essentially persists as long as the supercon-

10
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Figure S7: Nematicity as a function of temperature and perpendicular magnetic field in device
B. The curves are the resistivity as a function of in-plane field direction 6, as (a) temperature
is raised or (b) a small perpendicular field is applied. The in-plane field magnitude is fixed at
at |B||\ = 1T. In (a), the perpendicular field is zero and in (b), the temperature is at the lowest
temperature 70 mK.

ductivity still exists. At several points, T},.p, is even higher than 7%, which we attribute to the
broad superconducting transition at these densities. We find that varying the threshold Ay, will
slightly change the shape of the 7}, curve, but our conclusion that 7}, roughly follows 7
remains unchanged.

3.8 In-plane Field Response at the Wedge-like Feature

In the main text, we discussed two types of broken rotational symmetry phases: anisotropic re-
sistivity at the wedge-like feature above the superconducting dome, as well as the nematicity in
the superconducting state. We argue that these two phases are distinct and might have different
origins. To see this, we show the in-plane field nematicity measurements at two points inside
the wedge-like feature in Fig. S9. At both points in the phase diagram, we cannot observe sig-
nificant modulation of the resisitivity by the in-plane magnetic field, albeit the resistivity tensor
of the similar device A has been shown to exhibit siginificant anisotropy inside the wedge-like
feature right above the superconducting transition. This result indicates that an anisotropic re-
sistivity tensor does not necessarily give rise to anisotropic response to the in-plane field in the
normal state. The vice versa case is also true from the measurements we have shown in Fig. SA
and 5B: anisotropic response to the in-plane field can occur at a point in the phase diagram that

11
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Figure S8: Nematicity temperature 7)., overlaid on the superconducting dome. The color
map is the same data presented in Fig. 2B in the normal state for showing the position of the
wedge-like feature and correlated insulator state.

does not exhibit normal-state anisotropy.

4 Additional Anisotropy Data

In this section, we present additional data that we measured in the normal state and supercon-
ducting anisotropy of MATBG. In particular, in device C with a twist angle of (1.07 £ 0.02)°
(see Table S1), which is very close to device A and B shown in the main text, we also find a
similar ‘wedge’-like feature on the underdoped side of the superconducting dome, as well as ne-
maticity in the superconducting state. Fig. S10 shows the normal state anisotropy and nematic
superconductivity in device C. Between —1.5 x 102 cm™2 and —1.4 x 102 cm ™2, we find the
‘wedge’-like resistive state, which has a significant anisotropy as manifested in the transverse
voltage measurement. Remarkably, this ‘wedge’ fully suppresses superconductivity in the small
density range where it is present, compared to the partial suppression of 7. in devices A and

12
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Figure S9: In-plane field response in the wedge-like feature in device B. Curves in (b) and (c)
are the resisitivity versus in-plane field orientation and magnitude at two different points in the
phase diagram, as indicated in (a). In both cases, we find no prominent two-fold symmetry in
the in-plane field response.

B. In a small magnetic field, the ‘wedge’ feature turns into an insulator, similarly to the other
devices. Devices A,B,C are the only devices in which we have found clear evidence for the
‘wedge’-like feature, and they all lie within the narrow range of twist angles (1.07 + 0.03)°. In
addition, during the prepration of this manuscript we became aware of Ref. [58], in which two
of their MATBG devices (device 2 and device 3 at (1.04 £ 0.02)° and (1.09 £ 0.02)° respec-
tively) with close-by twist angles also showed similar resistive wedge features in the n-7" phase
diagram. Therefore, we believe that the normal-state anisotropy in the ‘wedge’ region is a dis-
tinct feature of MATBG that occurs when the twist angle is in the range of about (1.07 = 0.03)°.

On the other hand, the nematic superconductivity appears to be a more ubiquitous phenom-
ena across the entire range of twist angles where superconductivity emerges. Fig. S11 shows
the H., anisotropy, similar to Fig. 4E to 4R, measured at representative densities in devices M7
(device A), M12, M1, and M2, respectively. As can be seen, all these devices exhibit nematicity,
albeit their twist angles span from 0.95° to 1.16°. By observing nematic superconductivity in
total six devices across the wide range of twist angles, we conclude that the nematicity is more
likely to be intrinsic to the superconductivity, as opposed to present for only a small range of
twist angles. We believe that the nematic symmetry of the pairing state component should be
taken into consideration for understanding the superconducting order parameter of MATBG in
general.

13
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Figure S10: Anisotropy in device C with a twist angle of 1.07°. (a-b) p,, and Ry, measured
in device C as a function of n and 7. An anisotropic ‘wedge’-like feature is observed between
—1.5x 102 ecm~2 and —1.4 x 10'2 cm~2, which fully suppresses the superconductivity in this
density range. (c-d) Same measurements as in (a-b) butin B, = 0.5T. (e-f) Nematic super-
conductivity measured at the red triangles indicated in (a).

S Phenomenological analysis of the nematicity

The Ginzburg-Landau free-energy density for a superconducting order parameter A = (A, Ay)

that transforms as the E representation (i.e. d-wave/p-wave) of the D3 space group is given by
[59]:

Uu
fso =r (A1 +180P) + 5 (180 +]2)°
K.
+ Ky 0,01 + 0,0 + Ky |0,09 — 0,07 + 73 [10:41 = 9, As* + 0,25 + 8,A4 ]
- g [(IA1|2 — Ao+ (A A + A”{Azf] + 2 (A +i0g)° (A} +iA3)° + hee]

3
4

Here, r o< T' — 1., where T, is the mean-field superconducting transition temperature;
K is a superconducting stiffness; g > 0 ensures that the ground state is the nematic one, i.e.
A = A(cosby, sinfy); u > g ensures that the functional is bounded; and the sixth-order term
restricts 6, to three values (modulo-7). The superconducting nematic order parameter ®, =

14
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Figure S11: Nematic superconductivity in devices M7 (device A), M12, M1, M2. Each plot
shows the resistivity versus in-plane magnetic field at a representative density in their respective
superconducting domes.

(P 5, Oo ) arises as a composite order parameter — for instance, by performing a Hubbard-
Stratonovich decoupling of the quartic term that has the coefficient g [41, 14]:

D15 =g (|A° = [As]%)
Dy = g (A1AS + ATA,) @)

As discussed elsewhere [41, 14], ®, can spontaneously order on its own and give rise to
a vestigial nematic phase, i.e. a phase where (®;) # 0 but (A;) = 0. In our case, since
strain is assumed to be present, one expects ® to be non-zero above 7. This not only selects
A = A (cos 0, sin §;) as the ground state, but it also gives rise to the following term in the free
energy:

feoupl = —®,A? cos (20, — 20") (6)
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where we parametrized ®; = P (cos 26, sin26). Minimization of this term gives 6, = 6,
i.e. the relative amplitude of the two components of A in the ground state is determined by the
superconducting nematic director ¢/, which is set above 7. in the presence of strain.

By fixing the value of 6,, one obtains an anisotropic superconducting susceptibility .
The latter can be readily obtained from the quadratic terms in Eq. (4). Performing a Fourier
transformation, we find:

;' (g)=A [7’ + Koq* + Kq* cos (20, — 2@)] (7)

where K, = Bt8248s jr = K1ioK2 - 4 > () is a constant, and tan ¢ = g,/q,. Now, as argued
in the main text, because orbital effects are expected to be significant even in the presence of
an in-plane magnetic field, we assume that the anisotropy in H. can be related to the anisotropy
of the superconducting susceptibility. Since the contours of Eq. (7) give ellipses that make an
angle 6, with respect to the ¢, axis, we therefore expect that measurements of the in-plane H.
will also produce ellipses oriented according to the angle #,. This reasoning is similar to that
proposed in Ref. [40] to explain the observed critical field anisotropy in doped BisSes — note,
however, that in that case the critical field is given simply by H.s.

We now discuss how 6, is affected by uniaxial strain applied along an axis rotated o with
respect to the x axis. We focus on the free energy of the composite order parameter ®, =
O, (cos 26, sin26); since 5 = 6., we will drop the prime hereafter. Following the results of
Ref. [39], the free energy of the nematic superconducting order parameter in the presence of
strain ¢ is:

% Pl + % ®3 cos 60, — A\e®, cos (20, — 2a) (8)

Here, a, u, v, A are phenomenological parameters. Note that v selects three possible values
for 6, (modulo-): v > 0 chooses 0, = %, 7, %’T, whereas v < 0 chooses 6, = 0, , %’r Hence,
d, is a 3-state Potts model order parameter.

The key point, as discussed in Ref. [39], is that if the system is in the nematic disordered
state (@ > 0), we can restrict the free-energy analysis to the quadratic level and minimize it with
respect to 6 and @, finding either 0, = a (if Ae > 0) or 6 = 7 + « (if Ae < 0). Thus, if the
anisotropy in H. seen in the experiment was caused solely by strain, we would expect it to be
unchanged as function of doping, since A¢ is a property of the device.

The situation changes if the nematic order parameter is not simply induced by the strain, but
would spontaneously onset even in the absence of strain. In this case, as discussed in Ref. [39],
one can approximate ®, by a constant ¢, and minimize the last two terms of the free energy (8)
with respect to 6,:

a
nem:_(I)2
f 2 S+

sin 66, = (%jg) sin (26, — 2a) )

The result is that, depending on the relative sign between ~ and \e, the angle 6, will change
as the magnitude of the nematic order parameter @, changes. A changing ¢ is presumably
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Figure S12: Superconducting nematic director ; as function of the normalized strain parameter

‘j‘% for the cases 7 < 0 (left panel) and v > 0 (right panel). Here, « = 0, i.e. strain is applied
0

along the z axis.

what happens as the superconducting dome is traversed by varying the doping concentration.

For concreteness, let us consider the simpler case in which the strain is applied along one of
the high-symmetry directions of the moiré superlattice, say o = 0. Fig. S12 shows the solution
of Eq. (9) as function of the parameter hﬁg for fixed v < 0 (left panel) and fixed v > 0
(right panel). In the left panel, we see that when Ae > 0, 6, is pinned at O for any value of ®.
However, when \e < 0, 6, rotates from 7/2 to either 7/3 or 27/3 as @, increases. The right
panel illustrates the corresponding behavior for v > 0. Thus, the experimental observation that
0, rotates as a function of doping provides strong evidence in favor of the scenario in which the
superconducting nematic order would be present even in the absence of strain. In this regard,
strain is selecting a nematic domain rather than being the driving force behind the anisotropy.

While a complete description of the experimental observations regarding the doping de-
pendence of 6, is beyond the scope of our phenomenological approach, it is interesting to fur-
ther discuss what can cause the rapid rotation of 6, in the doping range —1.45 x 10*? cm™2
to —1.25 x 10" cm~2(Figs. 41 to 4M in the main text). This is the same region of the phase
diagram where the wedge-like feature intercepts the superconducting dome. As explained in
the main text, the wedge-like state has a nematic component ®,, = ®,, (cos 26,,, sin26,,). This
nematic component, which is presumably independent from the superconducting nematic order
parameter ®, couples to the latter in a similar way as strain does:

faem = —AD, @, cos (26, — 20,,) (10)

Now, if 6, is alligned with the strain~ direction for all temperatures, then ®,, combines with
¢ to form an effective strain e.¢ = € + % ®,,. Thus, if X and )\ have opposite signs, a finite P,
could cause a sign change in Ae 4. This in turn would cause 6, to jump from 0 to 7 /3 (or from
7 to 27/3), and then rotate continuously towards 7 /2, as shown in the left panel of Fig. S12 .
Of course, if the strain is not precisely aligned with one the high-symmetry directions, the jump
would be replaced by a smooth behavior. It is interesting that this sequence of rotations seems
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to be realized in the doping range —1.45 x 102 cm™2 to —1.25 x 10'2 cm 2, where normal-

state and superconducting nematicities coexist. As shown in Figs. 4I to 4M of the main text
(see also Fig. 6), starting from the highest doping concentration and moving towards —n/2,
the major axis of the H, ellipse seems to rotate by 7/2. It would be interesting to perform
STM measurements to further map the orientation of the nematic director and correlate it with
residual strains present in the device.

This analysis reveals how the nematic order parameter associated with the wedge-like fea-
ture, ®,,, affects the director of the superconducting nematic ground state. More generally,
®, = (@1, D,2) couples to A = (A;, Ay) in two rather distinct ways. Symmetry consider-
ations restrict the Landau free-energy expansion to:

Fscmnem = o1 (D21 4+ D2,) (AL + |Ax) 40 [@n (|A7 = |Ao*) + Dz (A1 A + ATAY)]
(11)
The first term is just the standard biquadratic coupling between ordered states that break
different symmetries. The second term, which is essentially just a rewritten form of Eq. (10),
is a linear-quadratic coupling that reflects the fact that the two ordered states share one similar
broken symmetry, namely, three-fold rotations. The first term implies phase competition when
a1 > 0, since nematic order would cause a suppression in the superconducting 7... One of the
effects of the second term is to correlate the nematic directors of the wedge-like feature and
of the superconducting state, as discussed above. However, even when there is no long-range
nematic order in the normal state — i.e. outside the wedge-like region in the phase diagram —
this term can significantly impact the nature of the superconducting ground state. In this regime,
one can integrate out the Gaussian normal-state nematic fluctuations and obtain the following
contribution to the superconducting free energy:

r Oé%Xnem
fsc = 5

Here, xnem 1S the nematic susceptibility associated with the wedge-like feature. Comparing
to Eq. (4), we conclude that the normal-state nematic fluctuations favor the nematic ground
state, as opposed to the time-reversal symmetry-breaking ground state (p + ip or d + id) that
would be favored if g < 0 in Eq. (4). A similar effect was identified in tetragonal systems with
nearly-degenerate s-wave and d-wave superconducting instabilities in Ref. [57]. Similarly, Ref.
[38] found that unidirectional charge-density wave fluctuations also favor a nematic supercon-
ducting ground state. Indeed, in the case where the wedge-like feature is associated with charge
density-wave order, ®,, can be expressed as a composite charge order parameter.

(180 = 122P)” + (2145 + A7A.) (12)
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