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Abstract: Strongly interacting electrons in solid-state systems often display tendency towards 15

multiple broken symmetries in the ground state. The complex interplay between different order 
parameters can give rise to a rich phase diagram. Here, we report on the identification of 
intertwined phases with broken rotational symmetry in magic-angle twisted bilayer graphene 
(TBG). Using transverse resistance measurements, we find a strongly anisotropic phase located 
in a ‘wedge’ above the underdoped region of the superconducting dome. Upon its crossing with 20

the superconducting dome, a reduction of the critical temperature is observed. Furthermore, the 
superconducting state exhibits an anisotropic response to a direction-dependent in-plane 
magnetic field, revealing a nematic pairing state across the entire superconducting dome. These 
results indicate that nematic fluctuations might play an important role in the low-temperature 
phases of magic-angle TBG, and pave the way for using highly-tunable moiré superlattices to 25

investigate intertwined phases in quantum materials.

One Sentence Summary: Magic-angle graphene exhibits competing quantum phases with 
broken rotational symmetry, a hallmark present in many exotic quantum materials.

30

Main Text: 

Spontaneous symmetry breaking is a ubiquitous process that occurs at all length scales in nature
(1), from the endowment of mass to elementary particles through the Higgs mechanism, the 
emergence of ferromagnetism and superconductivity in mesoscopic and macroscopic systems, all 
the way to the creation of stars and galaxies in the early universe. In a solid-state system, besides 35

time-reversal and gauge symmetries, there are certain discrete symmetries imposed by the 
underlying crystal lattice. However, these symmetries can be spontaneously broken when many-
body electron-electron interactions in the system are significant. Studying these broken-
symmetry states is fundamental to elucidate the various phases in these many-body systems (2,
3). One example is an electronic nematic phase, where the discrete rotational symmetry of the 40



Submitted Manuscript: Confidential

2

lattice is spontaneously broken due to electron correlations, while lattice translational and time-
reversal symmetries are preserved (4, 5). The resulting anisotropy of the system is in turn 
manifested in the spin, charge, and lattice degrees of freedom, and can be measured via 
scattering, transport and scanning probe experiments (6–11).

When a correlated system has multiple broken-symmetry phases, their relationship often goes 5

beyond mere competition, giving rise to a complex phase diagram of intertwined phases (12–14).
For example, in the underdoped region of the phase diagram of certain cuprate superconductors, 
a depletion in the critical temperature Tc is found near p 1/8, where p is the hole doping
concentration(15). This observation is typically attributed to the competition between 
superconductivity and a stripe phase that has spin and/or charge ordering (3, 15, 16). Charge 10

order and superconductivity may also intertwine to form a pair density-wave state (13, 17).
Another example of intertwined order is a nematic superconducting state, which simultaneously 
breaks lattice rotational and gauge symmetries. Nematic pairing states have been reported in 
certain iron pnictides and in doped Bi2Se3, as revealed by thermal, magnetic, and transport 
measurements (18–24), although their microscopic origin is still unclear.15

The recent discovery of correlated insulator and superconducting behaviors (25, 26) in two-
dimensional (2D) graphene superlattices brings the possibility of studying correlated 
superconducting materials with unprecedented tunability and richness. Twisted 2D materials 
exhibit long-range moiré patterns in real space that can be tuned by the twist angle (Fig. 1A). In 
twisted bilayer graphene (TBG) near the first magic-angle 1.1°, the interlayer hybridization 20

results in nearly-flat bands at low energies, in which the electrons are localized in real space (Fig. 
1A) (27–29). Near half-filling of the nearly-flat bands, emergent correlated insulator behavior 
and superconductivity have been demonstrated (25, 26, 30). In this work we study the interplay 
between the superconducting phase and other many-body phases in magic-angle TBG. 
Compared to conventional materials, a major advantage of magic-angle TBG is that the band 25

filling can be continuously tuned by electrostatic gating instead of chemical doping, so that 
different phases can be accessed in a single device.

In this article, we investigate the phase diagram of magic-angle TBG in detail, focusing 
particularly on anisotropic properties in the superconducting and normal phases. We uncover an 
anisotropic in-plane electrical transport in magic-angle TBG at low temperatures using 30

longitudinal and transverse resistivity measurements. In addition, we reveal an anisotropic in-
plane critical field and an anisotropic response of the superconducting critical current to an in-
plane magnetic field. Our results show that magic-angle TBG can spontaneously break lattice 
rotational symmetry in both the normal and superconducting phases, although the anisotropic 
properties of these two states are manifested in different observables, suggesting that the origins 35

of these two anisotropic states might be different.

Characterization of Magic-angle Graphene

Using the previously developed ‘tear and stack’ dry-transfer technique (31, 32), we fabricate 
high quality encapsulated TBG devices with twist angles around the first magic angle 1.1°40

(see Supplementary Materials and Fig. S1 for Landau fan diagram). The main devices we report 
about are devices A and B, with twist angles of = 1.09° and = 1.08°, respectively. We also 
have a third device C with = 1.07° shown in the Supplementary Materials, which exhibits very 
similar behavior as devices A and B. The low-energy bands in TBG are four-fold degenerate 
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(due to spin and valley degrees of freedom) and can sustain an electron density of ns = 4/A,
where A is the area of a moiré unit cell. This density corresponds to filling four electrons or holes 
per moiré unit cell. Near the first magic angle, correlated states can form at integer electron 
fillings of the moiré superlattice, i.e. when n = ±ns/4, ±ns/2, ±3ns/4. This is believed to be a 
consequence of the fact that the electronic interactions become comparable to the bandwidth of 5

the nearly-flat bands. In the resistivity measurements of device A shown in Fig. 1B, we indeed 
find an enhancement of the resistivity xx at all these integer fillings. A superconducting dome is 
recognizable upon hole-doping of the -ns/2 insulating state, at temperatures below 2.5 K. Fig. 1C
shows the xx(T) curves of device A and device B at their optimal doping levels (highest Tc),
where T is the sample temperature. Both devices exhibit a Tc in the range of 2.5~3 K (at 50%10

normal resistance), which is among the highest in our MATBG devices (see. Fig. 1E). Figure 1D
shows the evolution of the V-I curves with temperature. From the log-log plot shown in the inset, 
we can extract the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature to be TBKT 2.2
K. Devices A and B have in fact some of the highest transition temperatures among all reported 
magic-angle TBG devices so far (see Table S1 and Fig. S4), as evident from the Tc statistics 15

shown in Fig. 1E, as well as devices reported in the literature (26, 30, 33).

Anisotropic Behavior in the Normal Phase

Figs. 2A and 2B show the resistivity versus gate-induced density, n, and temperature, T, maps of 
devices A and B, respectively, in the vicinity of -ns/2. We find that in both devices the -ns/220

region of the phase diagram has a rather complicated structure. As can be seen in Figs. 2A and 
2B, there are two resistive features in the normal state: one ‘wedge’-like feature above the 
superconducting dome (near -1.5×1012 cm-2 for device A and -1.4×1012 cm-2 for device B) that 
bends at elevated temperatures, and one resistive feature on the right-hand side of the dome (near 
-1.3×1012 cm-2 for both devices). While the latter feature corresponds to the -ns/2 state similar to 25

the correlated states previously reported in magic-angle TBG (25, 26, 30, 33), the wedge-like 
feature creates a noticeable ‘kink’ (i.e. decrease in Tc) where it intersects with the 
superconducting dome. To further probe the resistive wedge-like feature, we apply a small 
perpendicular magnetic field to fully suppress superconductivity, as shown in Figs. 2C and 2D.
Line cuts of the resistivity versus temperature at the densities corresponding to the ‘kinks’ of Tc30

are compared in Figs. 2E and 2F for the two devices. It can be clearly seen that when 
superconductivity is suppressed, the resistive wedge-like feature turns insulating upon 
approaching zero temperature. A small magnetic field thus results in a superconductor-to-
insulator transition at this density. In Fig. 2G, we show the gradual suppression of Tc by the 
perpendicular magnetic field from zero to 180 mT in device A. We find that above about 90 mT,35

the superconducting dome splits at n -1.54×1012 cm-2 into two domes. This density 
approximately coincides with the density where the wedge-like feature extrapolates to zero 
temperature. The separated domes are centered at around -1.52×1012 cm-2 and -1.67×1012 cm-2

respectively. The position of the splitting point corresponds to 15±5% hole doping with respect 
to the correlated insulator state. These findings are reminiscent of the behavior in certain 40

underdoped cuprates near 1/8 doping (3, 15, 16, 34).

To gain more insight into the possible origin of the resistive wedge-like feature, we measure the 
transverse voltage across the sample at zero magnetic field, which gives us the transverse 
resistance Rxy = Vy/Ix (35, 36). In an anisotropic conductor in two dimensions, the 2-by-2
resistivity tensor has two diagonal components = diag{ 1, 2}. If the major axis of the 45
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anisotropy (usually one of the crystal axis) is not aligned with the reference frame of the tensor, 
the off-diagonal terms of the resistivity tensor are proportional to ( 1- 2)sin(2 ), where is the 
angle between the anisotropy axis and the reference x-axis (see Supplementary Materials for 
derivation).  As a result, when an electrical current Ix flows in the x direction, a transverse 
voltage Vy appears across the edges perpendicular to the y axis, giving a nonvanishing Rxy = Vy/Ix5

( 1- 2)sin(2 ), as long as sin(2 ) 0 and 1 2. The first condition is assumed to be true in 
our experiment, since the lattice orientation is random with respect to the sample edge. 
Consequently, a non-vanishing transverse resistance in our experiment implies anisotropic 
resistivity, 1 2, and therefore the breaking of the six-fold rotational symmetry of TBG. Note 
that this transverse voltage is fundamentally different from the Hall effect since time-reversal 10

symmetry is not broken. In order to quantitatively analyze the transverse voltage, we need to 
remove any residual longitudinal component that might appear in the transverse voltage due to 
imperfect alignment of the four-probe voltage contacts and/or sample inhomogeneity (see also 
Supplementary Materials) (35). Fig. 3A shows the raw Rxx and Rxy measured for device A near 
the wedge-like feature, as shown in Fig. 2A. At high temperatures (40 K), where the anisotropies 15

associated with electron correlation effects are presumably overwhelmed by thermal fluctuations, 
both Rxx and Rxy are linear in T and proportional to each other: Rxy -0.05Rxx (35). To correct for 
this background signal that is likely a result of the imperfect voltage probe alignment, we 
subtract this Rxx component from Rxy so that at the highest temperature of 40 K the net signal is 
zero. This corrected transverse voltage Rxy

cr = Rxy - (n)Rxx, where (n) is a density-dependent 20

numerical factor typically within ±0.1, constitutes an accurate measure of the resistivity 
anisotropy (purple curve in Fig. 3A). We note that, while no signal is present at higher 
temperatures, below 6 K there is a significant negative peak in Rxy

cr, which indicates the onset of 
anisotropy at this temperature.

The gate and temperature dependence of the anisotropy, shown in Figs. 3B and 3C for zero 25

magnetic field and B = 0.5 T (see Supplementary Materials), clearly reveals a prominent
anisotropy ‘wedge’ as well. The transverse voltage measured at B  = 0.5 T is symmetrized with 
data measured at B  = -0.5 T to remove the contribution from the Hall voltage. Here we plot the 
normalized quantity Rxy

cr/Rxx, which is approximately proportional to the anisotropy ratio ( 1-
2)/( 1+ 2) (see Supplementary Materials). We also mark out the superconducting dome in Fig. 30

3B and 3C. Immediately above the superconducting dome on the ‘underdoped’ side (lower |n|), 
we find a strong transverse voltage signal with a sign change at around -1.59×1012 cm-2 (see 
Supplementary Materials Fig. S2 for the entire range of density). The position of the anisotropy 
wedge matches well with the resistive wedge-like feature that we observed in Fig. 2A. The sign 
change indicates that the anisotropy changes from 1 > 2 to 1 < 2 (or vice versa). In B  = 0.5 T35

(Fig. 3C), the anisotropy wedge with negative values of Rxy
cr persists to zero temperature, 

consistent with the behavior of the resistive wedge-like feature in Fig. 2B as well. On the other 
hand, we notice that the anisotropy with positive Rxy

cr near -1.65×1012 cm-2 disappears as 
superconductivity is suppressed by the magnetic field, which might be explained by the vestigial 
order from the nematic superconductivity that will be discussed in the next section.40

Nematic Superconducting State

A natural question to ask is whether the superconducting phase exhibits any anisotropic 
properties as well. To investigate this, we measure the angle-dependent in-plane magnetic field 
response of the superconducting phase. In magic-angle TBG, the superconductivity is suppressed 45
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by an in-plane magnetic field of the same order of magnitude as the Pauli paramagnetic limit
(26). Using a vector magnet in a dilution refrigerator, we apply a magnetic field B// up to 1 T in 
an arbitrary direction within the sample plane (see Fig. 4A for illustration). We compensate for 
possible sample tilt by applying a small out-of-plane magnetic field, so that the magnetic field is 
parallel to the sample to within |B | < 2 Mt at |B//| = 1 T, which is much less than the 5

perpendicular critical magnetic field of our devices (see Supplementary Materials and Fig. S3 for 
detailed calibration procedure, and see Fig. S5 for the perpendicular critical magnetic field of 
devices A and B). Figure 4B shows an example of the resistivity versus in-plane magnetic field 
magnitude |B//| and angle B (with respect to the length of the Hall bar, see Fig. 4A). A two-fold 
anisotropic suppression of the superconductivity can be clearly seen. We have checked that the 10

direction of the current flow is not correlated with the anisotropy direction, and therefore the 
anisotropic Lorentz force contribution can be excluded (see Supplementary Materials Fig. S6). 
The anisotropy is not aligned with the length or width of the Hall bar either (see Supplementary 
Materials Fig. S6).

The two-fold anisotropy of the in-plane magnetotransport response points towards nematicity 15

that is intrinsic to the superconducting phase, since it breaks the six-fold rotational symmetry of 
the moiré superlattice. We have systematically studied this nematic behavior across the entire 
superconducting dome of device B. In Figs. 4E to 4R we show polar maps of the magneto-
resistivity at different carrier densities and temperatures in the hole-doping and electron-doping 
superconducting domes as labeled in Fig. 4C. At all densities except those in Figs. 4N and 4R,20

we find elliptic contours that have major/minor axis ratio up to ~3. Note that we chose to always 
measure near Tc, since deep inside the superconducting dome the in-plane critical field is usually 
larger than 1 T and cannot be measured in our setup. However, we have confirmed the 
nematicity in the T  Tc region by simultaneously applying a small perpendicular field to 
partially suppress the superconducting state (see Supplementary Materials Fig. S7). At the 25

densities corresponding to Figs. 4N and 4R, which are outside the superconducting regions, the 
anisotropy is essentially nonexistent. In general, the two-fold anisotropy occurs inside the broad 
transition from superconducting to normal state as a function of B//, suggesting that it is a 
property intrinsic of the superconducting fluctuations (37), since the normal state does not show 
any anisotropy in the in-plane magnetoresistance (see Fig. S9). In device A, we have also 30

observed similar two-fold anisotropic in-plane critical field (Fig. 4D). The critical magnetic field 
Bc,// along the major axis extrapolated to zero temperature exceeds that along the minor axis by 
40~80% in this device.

Figure 4S shows the evolution of the magnitude and of the director of the nematic component of 
the superconducting state in device B as a function of carrier density and temperature. Our data 35

shows that the nematic director, as measured by the angle of rotation of the ellipse's major axis, 
does not appear to be exactly locked to any particular spatial axis, but instead evolves 
continuously with carrier density and temperature. In particular, in the superconducting dome on 
the hole-doping side of -ns/2, the direction of the major axis varies slowly within -10~+20° in the 
density range of -1.70×1012 ~ -1.45×1012 cm-2 (corresponding to the ellipses from Figs. 4E to 40

4H), while in the range of -1.45×1012 ~ -1.25×1012 cm-2 (from Figs. 4I to 4M) the major axis 
rotates quickly with the carrier density. From Figs. 4i to 4m, the major axis rotates by ~90°. We 
note that the latter range of density again coincides with the resistive wedge-like feature for 
device B, as shown from Figs. 2B and 2D. The smaller superconducting dome on the electron-
doping side near -1.20×1012 cm-2 exhibits significant nematicity as well (Figs. 4P and 4Q), with a 45

director pointing from 120° to 160°. As we explain below, the fact that the nematic director 
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changes direction as a function of doping and temperature makes it unlikely that the 
superconducting anisotropy is simply a response to strain present in the sample. On the contrary, 
this observation is consistent with spontaneous rotational symmetry-breaking characteristic of an 
intrinsic nematic superconductor.

5

Anisotropic Response of the Superconducting Gap

The observation of nematicity puts certain constraints on possible pairing symmetries of the 
superconducting order parameter (14, 38, 39). One can obtain information about the 
superconducting gap by measuring the critical current Ic. Here, by measuring Ic of device B in 
the presence of in-plane magnetic fields, we demonstrate that the nematicity is not only 10

manifested in the resistivity measurements, but also creates an anisotropic modulation of the 
superconducting gap. Figures 5A-B show the waterfall plots of differential resistance dVxx/dIbias

versus dc bias current Ibias at two carrier densities, in an in-plane magnetic field |B//| = 1 T along 
different directions indicated by the colors. At the carrier density in Fig. 5B, the plot shows two 
critical currents at 110 nA and 210 nA respectively, which might be due to domains in the device 15

with different twist angles or nematic directors. Interestingly, at both carrier densities the critical 
current shows significant two-fold modulation by the in-plane magnetic field direction B. The 

B-dependence can be fit by a sinusoidal function cos2( B- B0) (Fig. 5C), where B0 is the 
direction of the major axis.  The modulation amplitude as a function of the in-plane field 
magnitude is shown in the inset of Fig. 5C, and follows an approximately quadratic power law 20

dependence.

An anisotropic response in the critical current may originate from (i) the superconducting gap 
and/or (ii) anisotropic properties of the underlying normal state resistance (Rn). Although we 
have shown that the normal state exhibits considerable resistivity anisotropy at densities near the 
wedge-like feature in Fig. 3, we argue here that the anisotropic response of the critical current is 25

not a result of the anisotropy of Rn. First, Fig. 5A is measured at a density for which there is 
essentially no resistivity anisotropy in the normal state (Rxy

cr/Rxx = -0.007 at the lowest T in Fig. 
3C), while Fig. 5B is measured at one with significant anisotropy in the normal state (Rxy

cr/Rxx

/Rxx = -0.325 at the lowest T in Fig. 3C). However, the modulation of the critical current at these 
two densities shows similar magnitudes. Second, an anisotropy in the resistivity tensor may not 30

necessarily imply a large anisotropic response of the resistivity versus in-plane magnetic field. In 
fact, as we show in the Supplementary Material Fig. S9, inside the wedge-like feature in the 
normal state in device A, we could not measure significant anisotropic response to the in-plane 
field. Thus, these results suggest that the anisotropic response of the critical current might not be 
directly related to the resistivity anisotropy of the normal state and hence may originate from an 35

anisotropic superconducting gap.

To discuss the mechanism by which the in-plane field couples to the superconducting gap, we 
note that if the former couples solely to the spin degree of freedom (and thus the gap is only 
suppressed by the Zeeman coupling), spin-orbit interaction must be introduced to explain the 
dependence of Ic on the direction of B//. However, the intrinsic spin-orbit coupling in graphene-40

based systems is known to be very weak. We might consider the following mechanism to 
reconcile these facts. As illustrated in Fig. 1A, the unit cell of magic-angle TBG has a length 
scale of a~14 nm. Despite the separation between the graphene sheets in TBG being merely 
~0.3 nm, an in-plane magnetic field penetrating them induces a small but non-negligible 
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magnetic flux in the cross-section of the unit cell with an area S ~ a , which modifies the Fermi 
contours. To demonstrate this effect, we numerically calculated the Fermi contours at -ns/2 for B//

= 0 and B// = 1 T along the x direction using the Bistritzer-MacDonald continuum model (28).
Figs. 5D and 5E show the original and modified Fermi contours for the K and K’ valleys 
respectively. As can be seen from the contours, a noticeable shift is induced by the in-plane 5

magnetic field. The K/K’ valley degeneracy is lifted by the momentum shift between the two 
layers introduced by the in-plane field, which is proportional to e //, a substantial shift given the 
small size of the Brillouin zone. If one assumes that only electrons with opposite momentum and 
valley are allowed to form Cooper pairs in the superconducting phase, the two states from 
opposite valleys would be at slightly different energies when an in-plane field is applied, which 10

serves to suppress the superconductivity in a similar fashion as the paramagnetic (Zeeman) effect 
in the case of spins. To more intuitively demonstrate this, Fig. 5F shows the de-pairing energy 
along the Fermi contour E(k) = EK’(k) - EK(-k). It is strongly directional dependent and has a 
similar order of magnitude as the Zeeman energy at B//=1 T (g BB// where g = 2, B is 
the Bohr magneton). The de-pairing energy exhibits a six-fold variation with respect to the 15

direction of the in-plane magnetic field, while the nematic component of the superconducting 
order can further spontanously break this symmetry down to the observed two-fold symmetry
(37, 38, 40). A small strain can further assist to pin down the nematic domain along a given 
direction.

20

Discussion

Our measurements reveal two distinct anisotropic states in the phase diagram of magic-angle 
TBG: a normal-state wedge-like feature above the superconducting dome and a nematic pairing 
state. As shown by the longitudinal resistivity and transverse voltage measurements presented in 
Fig. 2 and Fig. 3, the wedge-like feature is associated with a zero-temperature insulating phase 25

that shows significant resistivity anisotropy, indicative of broken six-fold lattice rotational 
symmetry. Thus, this normal state phase might be either an electronic nematic state or an 
electronic smectic state i.e. a charge or spin density-wave that, in addition to rotational 
symmetry, also breaks translational lattice symmetry. In either case, the rotational symmetry-
breaking can be described by a two-component 3-state Potts nematic order parameter (40, 41).30

Electronic correlations might be important for the formation of such a state. Twisted bilayer 
graphene is well-known to exhibit van Hove singularities (vHs), which in general do not occur 
exactly at half-filling (42, 43). Near the vHs, it has been theoretically shown that the significant 
nesting between the K- and K’-valley Fermi contours might induce density wave ordering (39).
Remarkably, recent scanning tunneling experiments have identified prominent rotational-35

symmetry-broken features in the normal state local density of states (44–46). Alternatively, 
strong-coupling models can also yield nematic and density-wave states (47, 48). For the 
superconducting phase, it remains to be seen whether its nematic character, as revealed by the 
measured in-plane anisotropy of the critical field, can be reconciled with s-wave pairing. 
Alternatively, this behavior could be explained in terms of a two-component p-wave/d-wave gap, 40

indicative of an unconventional pairing mechanism (49).

A crucial question is whether the anisotropies observed here have intrinsic or extrinsic origins. 
The fact that we do not observe multiple nematic domains within the same device implies that 
some degree of residual strain is present. The issue is whether this strain is the sole cause of the 
anisotropy (extrinsic origin), or whether it is mainly pinning one of the three underlying nematic 45
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domains (intrinsic origin). To address this, we note that such a residual strain should be a 
property of the device, and thus should be present at all temperatures and doping. In contrast, as 
shown in Fig. 3, the onset of the normal-state anisotropy is restricted to a narrow doping range 
and to temperatures below 10 K. Furthermore, the resistance anisotropy is on the order of one in 
the ‘wedge’-like feature (see Fig. 3B). Such a large effect would be difficult to be explained by a 5

reasonably sized residual strain.

While these quantitative arguments rely on the amplitude of the anisotropy, a more direct 
argument against an extrinsic origin can be made from the direction of the anisotropy. Our 
measurements in the superconducting state clearly show a rotation of the nematic director (Figs.
4E to 4R, and 4S). In the 3-state Potts model, the three states correspond to the three nearest-10

neighbor directions in the moiré superlattice (40). Here, strain acts as a conjugate field to the 
nematic order parameter, similarly to how a magnetic field acts on a ferromagnet. If the strain is 
‘parallel’ to one of the three anisotropy directions, the corresponding nematic director is favored 
over the other two. As a result, the nematic director is fixed at all temperatures. If the strain is 
‘anti-parallel’ to a direction, the other two directions become favored. Consequently, as the 15

temperature is lowered towards the nematic state, the nematic director continuously rotates from 
the disfavored direction to one of the two favored directions (40). Importantly, this can only 
happen if nematic order is spontaneous, i.e. if it is an intrinsic instability of the system, as it is 
supported by a phenomenological calculation shown in the Supplementary Material. Therefore, 
the continuous rotation of the nematic director in our observation indicates that the anisotropy of 20

the superconducting state is more likely to be intrinsic, as an extrinsic origin would result in a 
fixed orientation. 

Another possible source of anisotropy is twist angle variations across the device, which could 
create an inhomogeneous distribution of strain (50). While further studies are needed, we note 
that such an inhomogeneous strain would act as a random field to the Potts-nematic order 25

parameter, which might affect the nematic properties in 2D (51). However, the fact that we do 
not see different nematic domains across our device seems to suggest that the global residual 
strain is probably dominating over the local strain caused by twist angle fluctuations.

The various phases discussed throughout this article are summarized in Fig. 6 (see 
Supplementary Materials and Fig. S8 for the extracted nematicity temperature Tnem). The fact 30

that an anisotropic response to an in-plane magnetic field is seen only in the superconducting 
state, but not in the wedge-like feature, suggests that the origins of nematicity in the normal and 
superconducting states are likely different. This is also consistent with the fact that these two 
orders compete, as evident from the suppression of Tc when the wedge-like feature intersects 
with the superconducting dome. However, since both phases break the same six-fold lattice 35

rotational symmetry, the order parameters of these two phases can interact beyond mere 
competition, which may be responsible for the rapid change of the ellipse direction in the 
coexisting region of the phase diagram (see Supplementary Material). Moreover, normal-state 
nematic fluctuations may play an important role in favoring a superconducting ground state that 
is also nematic. While the onset of nematicity and of superconductivity seem very close in our 40

experiment (see Supplementary Material), it is possible that the nematic order in magic-angle 
TBG persists even above Tc, a phenomenon known as vestigial nematic order (12, 14, 41).
Interestingly, in Fig. 3B, there is a region just above the superconducting dome with positive 
transverse voltage signal at n -1.65×1012 cm-2 and T 2 K. This not only has opposite sign than 
the anisotropy of the wedge-like state, but it also disappears when superconductivity is 45



Submitted Manuscript: Confidential

9

suppressed (Fig. 3C). Thus, this feature might be explained by a vestigial nematic order that 
forms prior to the condensation of Cooper pairs (12, 14, 41). Scanning probe experiments are 
encouraged in the future to confirm this nematic phase above the superconducting transition.

In summary, our experiments extend the already rich phase diagram of magic-angle TBG to 
include a nematic superconducting state and an anisotropic normal state above the ‘underdoped’5

part of the superconducting dome. The competition between them results in a reduction of Tc and 
in a fast rotation of the nematic director of the superconducting state. Our results pioneer the 
study of competing/intertwined quantum phases in a highly tunable two-dimensional correlated 
platform, which in turn may shed more light onto the unconventional superconductivity in iron-
based compounds, doped Bi2Se3 and other nematic superconductors.10
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Fig. 1. Characterization and statistics of magic-angle twisted bilayer graphene (TBG) devices. 30

(A) Illustration of the moiré pattern in magic-angle TBG. The color scale shows the normalized 
local density in the flat bands when the twist angle is close to magic angle. The twist angle of the 
displayed pattern is enlarged for clarity. (B) Resistivity of device A (twist angle = 1.09°)
versus gate induced carrier density and temperature, showing correlated features at all integer 
electron fillings of the superlattice. Superconductivity is found at hole-doping of the -ns/2 35

insulator with critical temperature ~2.5 K. (C) Resistivity versus temperature for devices A and 
B, with twist angles = 1.09° and = 1.08°, respectively, at their optimal doping concentrations. 
Inset shows the forward and backward sweeps of the V-I curves in device B which exhibit a 
significant hysteresis. (D) Temperature dependence of the V-I curves measured in device B. Inset 
shows the log-log plot of the I > 0 part of the data. The Berezinskii-Kosterlitz-Thouless transition 40

temperature TBKT 2.2 K is identified where the slope of the curve crosses d(log Vxx)/d(log I) = 3 
(equivalent to Vxx I3). (E) Statistics of optimal doping Tc in 14 of the magic-angle TBG devices 
we have measured. We find that the trend of Tc peaks around 1.1°, the theoretically predicted 
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first magic-angle in TBG. The green data points are from devices exhibiting substantial disorder, 
hence the large error bars in the twist angle determination. This disorder may be responsible for 
the relatively low Tc. The orange and purple bars denote the range of twist angles where we have 
observed anisotropic normal state and nematic superconductivity, respectively. The latter has 
been seen in all the devices where it was investigated (see Table S1 in Supplementary Materials), 5

and hence we have added dashed purple lines to the edge of the purple line to indicate that those 
devices might likely also exhibit nematic superconductivity.

Fig. 2. Competing phases near the superconducting domes of magic-angle TBG. (A-B)
Resistivity versus gate-induced carrier density and temperature for device A and device B, 
respectively.  (C-D) Same measurement but in a perpendicular magnetic field of 0.5 T. (E-F)10

Line cuts of resistivity versus temperature for devices A and B at 0 T and 0.5 T at the densities 
indicated by the dashed lines in (A-D), showing a superconductor-to-insulator transition induced 
by the magnetic field. In both devices, we find a wedge-like feature above the superconducting 
dome in addition to the -ns/2 correlated state. This feature shifts noticeably towards negative 
relative densities at elevated temperatures. At zero magnetic field, the wedge-like feature 15

disappears into the superconducting dome and creates a ‘kink’ on the Tc(n) curve, while in 0.5 T
it persists down to the lowest temperatures and turns into an insulator. The gray circles in (A-D)
indicate the resistivity maxima associated with the wedge-like feature at different temperatures. 
(G) Evolution of Tc of device A in a perpendicular magnetic field up to 0.18 T. Each contour line 
is Tc (10% normal resistance) versus carrier density at the magnetic field indicated by the color 20

shading. The yellow band represents the approximate position of the wedge-like feature. At B  =
0.09 T (orange curve), the Tc-kink touches zero at the same density where the wedge-like feature 
extrapolates to zero temperature. Above this field, the superconducting dome splits into two 
domes roughly centered at -1.52×1012 cm-2 and -1.67×1012 cm-2, respectively.

Fig. 3. Normal-state anisotropy in magic-angle TBG device A. (A) Illustration of how we extract 25

the resistivity anisotropy by measuring the transverse resistance. Inset shows the actual device 
configuration that we used to obtain the data, where black arrows indicate current source and 
drain. Rxx, Rxy label the leads on which longitudinal and transverse resistances are measured, 
respectively. The purple trace, Rxy

cr, is the transverse resistance corrected for leads misalignment 
(see Supplementary Materials). n = -1.53×1012 cm-2 in this measurement. (B-C) Anisotropy ratio 30

versus carrier density and temperature at zero magnetic field and B  = 0.5 T, respectively (see 
Supplementary Materials). The circles in (B) and the dashed line in (C) outline the approximate 
shape of the superconducting dome (at zero field). We find the strongest anisotropy near the kink 
in Tc at n = -1.54×1012 cm-2, coinciding with the resistive wedge-like feature we identified in Fig. 
2A and 2G.35

Fig. 4. Evidence for nematic superconductivity in magic-angle TBG. (A) Definition of the in-
plane field angle B with respect to the device orientation. B = 0 (x-axis) is defined as the source-
drain direction of the Hall bar device. (B) Resistivity as a function of B for different magnitudes 
of the in-plane magnetic field, showing a clear two-fold anisotropy. Measurement is taken at n =
-1.18×1012 cm-2 and T = 70 mK. (C) Detailed view of the superconducting domes in device B, 40

showing a large and a small superconducting dome on the p-side and n-side of the insulating 
state. (D) Critical in-plane magnetic field Bc,// versus temperature along the major and minor axis 
of the two-fold anisotropy, measured in device A at carrier densities of -1.44×1012 cm-2, -
1.42×1012 cm-2, -1.40×1012 cm-2 and -1.23×1012 cm-2 respectively (from right to left). (E-R) Polar 



Submitted Manuscript: Confidential

16

maps of the anisotropic response of the resistivity across the superconducting domes in device B. 
The carrier densities and temperatures at which (E-R) are measured correlate with the labels in 
(C). (S) For device B, we extracted the magnitude (represented by height) and the polar angle of 
the major axis maj (represented by the color, see Supplementary Materials for details) of the 
nematicity at different densities and temperatures, with |B//| = 1 T. The data for different 5 

temperatures are shifted vertically for clarity. Inside the region shaded in purple, the critical in-
plane magnetic field is larger than 1 T and cannot be measured in our setup. In the density range 
of -1.45×1012 ~ -1.2×1012 cm-2, the anisotropy polar angle maj rotates rapidly with the carrier 
density, possibly due to the competition with the wedge-like feature we identified in Fig. 2 and 
Fig. 3. 10

Fig. 5. Anisotropic response of the superconducting critical current. (A-B) Differential resistance 
dVxx/dIbias versus bias current Ibias as a function of the orientation of the in-plane magnetic field at 
two carrier densities. The orientation is indicated by the color, differing by 15° between adjacent 
curves, which are vertically shifted for clarity. (C) Modulation of the larger critical current in (B)
by in-plane magnetic fields with different orientations and magnitudes. A sinusoidal function is 15

used to fit the data (see main text). The inset shows the modulation amplitude (peak-peak) as a 
function of the field magnitude, which can be fit by a power law c  |B//| with 2.1. (D-E)
Calculated Fermi contour of = 1.09° TBG at Bx = 0 and Bx = 1 T around K and K’ valleys 
respectively. (F) Energy splitting between states at opposite momentum and opposite valleys 
along the Fermi surface (k) = EK’(k) - EK(-k) at Bx = 1 T. For comparison, the Zeeman splitting 20

BB at B = 1 T for g = 2 is . The gray hexagons in (D-F) denote the moiré Brillouin 
zone. 

Fig. 6. Summary of various competing phases we identified in this article. In the underdoped 
side of the superconducting dome, we find a normal state anisotropic phase that, at low 
temperatures, competes with superconductivity, creating a depression in the Tc curve. In the 25

superconducting state we find nematicity, manifested in its response to in-plane magnetic fields. 
By comparing the extracted nematicity temperature Tnem to Tc we find that the entire 
superconducting dome exhibits nematicity, which suggests that the nematicity is intrinsic to the 
superconductivity and points towards a possible unconventional pairing symmetry. The dashed 
area denotes the competing region between the two states, where a reduction in Tc as well as a 30

strong rotation of the nematicity axis are seen.
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