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ABSTRACT9

Magic-angle twisted bilayer graphene (MATBG) has recently emerged as a highly10

tunable two-dimensional (2D) material platform exhibiting a wide range of phases,11

such as metal, insulator, and superconductor states. Local electrostatic control over12

these phases may enable the creation of versatile quantum devices that were previ-13

ously not achievable in other single material platforms. Here, we engineer Josephson14

junctions and tunneling transistors in MATBG, defined solely by electrostatic gates.15

Our multi-gated device geometry offers independent control of the weak link, barri-16

ers, and tunneling electrodes. These purely 2D MATBG Josephson junctions exhibit17

nonlocal electrodynamics in a magnetic field, in agreement with the Pearl theory18

for ultrathin superconductors. Utilizing the intrinsic bandgaps of MATBG, we also19

demonstrate monolithic edge tunneling spectroscopy within the same MATBG de-20

vices and measure the energy spectrum of MATBG in the superconducting phase.21

Furthermore, by inducing a double barrier geometry, the devices can be operated as a22

single-electron transistor, exhibiting Coulomb blockade. With versatile functionality23

encompassed within a single material, these MATBG tunneling devices may find appli-24

cations in graphene-based tunable superconducting qubits, on-chip superconducting25

circuits, and electromagnetic sensing.26

Tunneling devices are ubiquitous in modern electronics, with applications ranging from tun-27

neling diodes to magnetic tunnel junctions and superconducting Josephson Junctions (JJ). These28

devices typically involve heterojunctions of different materials to achieve conducting electrodes in29

series with a weak link or insulating barrier6,7. In superconducting circuits, state-of-the-art JJs30
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utilizing oxide tunnel barriers often suffer from disorder and localized states in the noncrystalline31

barriers8. Semiconductor-based JJs necessarily involve heterojunctions, and thus potentially non-32

ideal interfaces, but offer some advantages for integrated electronics, such as partial tunability of33

the semiconducting weak link9,10. While this offers a number of different operation regimes, the34

ability to independently tune the electrodes into different phases would enable an exponentially35

larger number of tunable configurations, qualitatively changing the nature of the device in situ.36

A superconducting junction made of a single clean material, which simultaneously offers a high37

degree of tunability both in the weak link and in the superconducting electrodes themselves, is38

therefore highly desirable, but has not been realized to date.39

The recent discovery of correlated insulators and superconductivity in MATBG accessible via40

electrostatic doping1–4 makes this possible, introducing MATBG as an unexplored material plat-41

form for superconducting electronics. In twisted bilayer graphene, a moiré pattern emerges from42

the coupling between two vertically-stacked graphene lattices with a relative twist angle11. Near43

the first ‘magic-angle’, a nearly-flat electronic structure12,13 leads to a large density of states and44

electron localization in real space around the AA-stacked regions1,2,14, resulting in strong electronic45

interactions and emergent many-body correlated states. Using electrostatic gating, a plethora of46

possible regimes, including p-n junctions, superconducting regions, metallic leads, and insulating47

islands, among others, become accessible in a single device, making this system attractive both for48

scientific and technological applications. We exploit this unprecedented tunability to create an all-49

in-one device that can be used both for superconducting electronics and normal-state operations,50

bridging the fields of tunable van der Waals materials and superconducting circuits. This could51

open the door towards fully integrated superconducting electronics, where entire circuits are made52

out of a single material with local gates and customizable coupling within and between each of the53

electronic components.54

In this Letter, we demonstrate the versatility of multiply-gated MATBG devices. We report55

on fully tunable lateral JJs, where both the superconducting electrodes and the weak link can56

be locally controlled. Such JJs additionally provide definitive evidence of superconducting phase57

coherence in MATBG. Independent control of the weak link is performed via applying a top gate58

voltage, achieving a junction that can be continuously switched from insulating, metallic, to su-59

perconducting regimes, generating a tunable critical supercurrent. In the same multi-gated devices60

we obtain spectroscopic evidence of the superconducting gap in MATBG by utilizing its intrinsic61

bandgaps to create lateral tunneling barriers. Finally, inducing barriers on either side of a narrow62

MATBG strip allows us to transform the device into a single-electron transistor displaying periodic63
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Coulomb diamonds.64

HIGHLY TUNABLE JOSEPHSON JUNCTIONS65

To demonstrate these effects, we have measured three superconducting devices labeled A, B, and66

C. All devices were fabricated using the tear-and-stack dry-transfer technique1,15,16 (see Methods).67

Here, we focus on device A with a twist angle 0.95◦±0.02◦. The entire device is gated by the68

back gate, while the top gate is patterned into a narrow strip (∼160 nm) at the center of the69

device to enable independent control of the region underneath it (Figure 1a). Fig. 1b shows the70

temperature dependence of the resistance of device A at the optimal doping with Vtg = 0 V, and71

back gate Vbg = −1.4 V (corresponding to the blue square in Fig. 1c), displaying a superconducting72

transition at Tc ∼ 0.85 K, as estimated from 50% of the normal state resistance. The non-linear73

I-V curves captured near optimal doping (Fig. 1c inset) display zero resistance up to a critical74

current Ic ≈ 35 nA.75

To map out the complex electrostatic response of these devices, we now explore the complete76

dual-gate parameter space available, which exhibits a number of different insulating, metallic, and77

superconducting states. Using the back gate and narrow top gate together, we can define three78

separate regions within the same device with independent phases in series. In each region of the79

MATBG, when the four-fold valley and spin-degenerate bands are fully filled or fully depleted at80

densities n = ±ns, where ns = 4/A and A is the area of the moiré unit cell, the system behaves as81

a band insulator16–18. In the following, we denote the insulator at −ns as I, and the insulator at82

ns as I’. Correlated insulator states are observed at n = ±ns/2, and we denote them as C (−ns/2)83

and C’ (ns/2), respectively. Similarly, S and S’ denote the superconducting states near ∓ns/2,84

respectively. Let us also denote D as the charge neutrality (Dirac) point, and n (n’) the normal85

metallic states at fillings n < −ns (n > ns), when the higher energy dispersive bands become86

populated by holes (electrons). Metallic states are also observed throughout the flat bands, away87

from charge neutrality and the correlated fillings, denoted as N. Fig. 1d shows a vertical line cut88

of the resistance map at Vtg = 0 V. The transition between the different series combinations of89

the central and outside regions are readily seen from the horizontal and diagonal features of the90

Vtg-Vbg resistance map (Fig. 1c). We interpret the diagonal features (dependent on both Vtg and91

Vbg) as stemming from the dual-gated region beneath the top gate, and the horizontal features92

(independent of Vtg) as coming from the regions outside the top-gated area. The intersection93

between a few horizontal (red) and diagonal (green) lines are labeled with black circles in Fig. 1c.94
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FIG. 1: Device ’A’ structure and transport characterization . (a) Schematic illustration: A narrow
top gate (∼160 nm wide) controls the electronic state of the region underneath. (b) Resistance vs.
temperature curve measured at the blue square in panel (c). Upper left inset: optical image
of the final device. A back gate (BG) tunes the electron density in the overlapping region of
the MATBG. The narrow top gate (TG) controlling the electronic state of the weak link can be
seen at the center of the device. A bias voltage Vbias is applied between the drain and source
electrodes, and the 4-probe resistance Rxx = Vxx/I is measured. The scale bar corresponds to
4 µm. Lower right inset: moiré pattern in twisted bilayer graphene. The displayed twist angle is
enlarged for clarity with respect to the first magic angle θ ≈ 1.1◦. The moiré wavelength is given
by λm = a/[2 sin(θ/2)], where a = 0.246 nm is the lattice constant of monolayer graphene, and
θ is the twist angle. (c) Resistance as a function of the back gate and the top gate. The dark
regions correspond to the superconducting states. Horizontal dashed lines and labels in red denote
features induced by the back gate, and diagonal lines and labels in green denote features under the
influence of both the top and the back gates. White labels of the form SXS or S’XS’ indicate that
at these points the source and drain are in S or S’ state while the top-gated region is in the X=I’,
C’, D, S, S’, C, or I state. Color-coded triangles indicate the points at which Fraunhofer patterns
are taken in Fig. 2. Inset: Current-Voltage curves measured at Vbg = −1.6 V, Vtg = 0 V at different
temperatures. (d) Line-cut in panel (c) along Vtg = 0. I = Full filling band insulating state, S =
Superconducting, C = Correlated Insulator at Half Filling, D = Dirac (charge neutrality) point.
Primes denote positive fillings (i.e., electron doping). (e) Resistance as a function of current bias

and top gate voltage, for Vbg = −1.8 V in the superconducting state.
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For example, DDD denotes the coincidence of the Dirac points in all three regions, whereas DC’D95

occurs when the central region enters the C’ correlated insulator state and the outside regions are96

at charge neutrality, and similarly for other intersections of the dashed lines. More interesting97

device behavior is obtained by doping away from the horizontal lines in the dual-gate map. For98

instance, supercurrent through a variable Josephson junction is observed across the device if we99

use Vbg to globally tune the MATBG into S and use Vtg to form a weak link with the central region100

in an insulating state (diagonal labels in Fig. 1c) such as C’, or close to the resistance maxima of101

states I and I’ (before the sample becomes fully insulating). Figure 1e illustrates the wide region102

of supercurrent observed (dark blue), whereas the ability to continuously vary the barrier strength103

with Vtg is indicated by the evolution of the critical current (where the differential resistance104

becomes finite). We can turn off the supercurrent completely by gating the central region deep105

into the insulating state (beyond full filling). In this regime the superconducting coherence across106

the junction is lost, and a dissipative junction is obtained.107

NONLOCAL JOSEPHSON EFFECT108

Next we address the expected behavior for 2D JJs in the presence of magnetic flux. 2D su-109

perconductors screen external magnetic fields in a fundamentally different way from their bulk110

(3D) counterparts. In ultra-thin superconductors where the film thickness is less than the London111

penetration depth λ, the characteristic length that governs the spatial magnetic field distribution112

is given by the Pearl length5 Λ = 2λ2/d� λ, where d is the film thickness. In the case of MATBG,113

the thickness is less than 1 nm and the Pearl length can reach macroscopic dimensions, exceeding114

the dimensions of the device itself. Under such conditions, the screening currents cannot effectively115

expel the external magnetic field (illustrated in Fig. 2a), in striking contrast with bulk samples116

(Fig. 2b). The origin of this effect can be understood by recognizing that the self-field of the117

screening current in a thin-film superconductor scales as w
ΛB, where w is the lateral dimension118

of the sample and B is the external magnetic field19. When w � Λ, the self-field is therefore119

negligible compared to the external field, allowing finite field penetration.120

The distribution of Josephson current and magnetic flux in a JJ is altered in the 2D limit as121

well. In a bulk JJ, the magnetic field only penetrates a distance ∼ λ into the superconductor and122

is therefore mostly confined within the junction barrier. The phase difference across the junction123

is a simple function that only depends on λ and B. On the other hand, for edge-type Josephson124

junctions in ultra-thin films, the magnetic field distribution is not confined to the tunneling barrier125
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(Fig. 2c). An additional distinction between bulk and edge-type 2D JJs is that the Josephson126

electrodynamics are nonlocal in the 2D case, that is, the magnetic flux in the junction results from127

a non-negligible superconducting phase gradient in both 2D superconducting regions6,20–22.128

In Fig. 2c-d, we simulate the magnetic field and the screening currents in a bulk JJ and a 2D129

JJ with similar dimensions as device A, placed in an external magnetic field B = B0ẑ
19,23,24. From130

the magnetic field distribution, we can obtain the distribution of the phase difference across the131

junction which gives rise to the Fraunhofer interference pattern (SI section IX). Our calculated132

field dependence of the maximum supercurrent in the 2D JJ, in agreement with previous analytical133

and numerical predictions19,23–25, differs noticeably from the typical Fraunhofer pattern of bulk134

junctions in two ways (Fig. 2e). First, the high-field periodicity ∼ 1.8Φ0/w
2 depends solely on135

the geometry of the sample and is usually much smaller than the bulk periodicity Φ0/w(a + 2λ),136

where a is the length of the weak link itself. Second, unlike the bulk case, the zeros of Ic(B) for137

edge-type thin-film junctions are not equidistant at low-fields.138

We now present measurements to test these predictions experimentally. Based on the analyt-139

ical expression 1.8Φ0/w
2, we expect an interference period ∼1.7 mT in device A (w ≈ 1.5 µm).140

We first gate the device into the SIS regime, pushing the middle region as far as possible into the141

insulating region while maintaining superconducting coherence across the junction (Fig. 3a). We142

observe field-induced oscillations in the critical current with a periodicity of ∼1–1.5 mT for the143

finest oscillations. An approximation of the bulk formula Φ0/wl using l ≈ a gives a periodicity144

of 8.5 mT, significantly larger than the measured oscillation period. However, our measured pe-145

riodicity of ∼1–1.5 mT is clearly in agreement with the simulations (Fig. 2e) and consistent with146

the Pearl regime governing the ultrathin superconducting electrodes. This anomalous periodicity147

is further corroborated by devices B and C (Figs. S5,S7). Critical current oscillations with similar148

periodicity are also observed close to the SC’S (Fig. 3b) and SI’S (Fig. 3c) configurations. Slight149

deviations from ideal Fraunhofer behavior and differences between each pattern may be attributed150

to inhomogeneities and asymmetries across each junction. Josephson oscillations with correlated151

insulator barriers are weaker in comparison to the SIS and SI’S configurations, possibly due to152

smaller bandgaps in C, C’ compared to I, I’, as determined by thermal activation1. Overall, a153

weak link between superconducting regions is achievable in this geometry using different insulating154

phases. Alternatively, if we bring the weak link into the SS’S regime, the oscillations in the critical155

current disappear (Fig. 3d). Another piece of evidence for the nonlocal Josephson effect21 is the156

resistance as a function of the magnetic field and temperature of the junction close to the SIS157

regime (Fig. 3f). The oscillation period does not change as the temperature approaches Tc. This is158
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in contrast to the expected behavior in the local regime where, since λ(T ) diverges as T → Tc, one159

expects the oscillation period, which is inversely proportional to λ, to be progressively suppressed160

with temperature26.161

In the SnS regime, we find oscillatory behavior of the critical current with respect to Vtg (Fig.162

3e). We attribute this to a Fabry-Pérot-like resonance from the interfaces between the dual-gated163

region and the singly gated regions, which occurs in high-quality devices close to the ballistic164

transport regime27,28. In a JJ, Ic and the normal state resistance RN typically scale inversely165

with each other (the Ambegaokar-Baratoff relationship6). When the Fabry-Pérot resonance of the166

electron wave becomes prominent, RN and Ic are periodically modulated by
√
n+ ns. We observe167

the resonance only in the SnS regime, likely due to the low effective mass and high mobility in the168

dispersive band at n < −ns.169

TUNNELING SPECTROSCOPY IN THE SUPERCONDUCTING REGIME170

We now turn our attention to devices B and C with the structure shown in Fig. 4a. Instead171

of the narrow top gate in device A, here we pattern two isolated top gates separated by a narrow172

gap, allowing us to realize a p-n junction. In Fig. 4b, we show the simulated charge carrier density173

distribution across a gate-defined p-n junction (relative to −ns) in a scenario similar to device174

B (SI section X). The density evolves continuously and crosses the value n = −ns at a position175

between the left gated and right gated regions. Due to quantum capacitance effects in MATBG,176

a narrow region is kept inside the bandgap at −ns and acts as a tunneling barrier. If we put one177

side of the junction in the S state, we then realize an nIS configuration, enabling edge tunneling178

spectroscopy into the S state, where the tunneling current flows between the 1D edge along the n-I179

boundary and the 1D edge along the I-S boundary. Using this configuration, in Fig. 4c-f we show180

tunneling spectra of MATBG in the superconducting regime.181

The data show clear spectroscopic evidence of a superconducting gap, including well-defined182

coherence peaks and a minimum at zero bias. We fit the spectral lineshape to a model for the183

quasiparticle density of states in an nIS junction to obtain a quantitative measure of the gap.184

Choosing the simplest such model, that of a conventional isotropic s-wave order parameter6, we185

incorporate the effects of thermal and lifetime broadening, and extract a gap of ∆fit = 44 µeV at186

T = 95 mK for device B, and ∆fit = 51 µeV at T = 100 mK for device C (see SI section XII). The187

tunneling conductance minimum and coherence peaks are well captured by this fit, including the188

absence of a hard gap due to thermal broadening at the lowest experimental temperature. We note189
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FIG. 3: Nonlocality and tunability of MATBG Josephson junctions. (a-d) Measured Fraunhofer
pattern in device A (a) close to SIS regime, (b) SC’S regime, (c) SI’S regime, and (d) SS’S regime.
Color-coded triangles correspond to those in Fig. 1c. Inset in (d) shows a linecut across the red
dashed line at B = 0 T. The two pairs of peaks in the curve correspond to the critical currents of
the S and S’ states, respectively (green arrows in main panel). (e) Fabry-Pérot-like oscillations in
the critical current. (f) Resistance as a function of magnetic field and temperature of the junction

close to the SIS regime.

that, microscopically, the density distribution is more intricate than the ideal nIS profile due to190

the nature of the edge tunneling scheme (Fig. 4b). The energy spectra may include a contribution191

from proximitized normal regions Ñ between the superconductor and the insulating state (resulting192

in an nIÑS distribution), in addition to other weaker superconducting states, thus leading to an193

underestimation of the superconducting gap. Taking the ∆fit = 51 µeV for device C as a lower194

bound for the superconducting gap at zero temperature (∆fit . ∆0), we can estimate an associated195

transition temperature from the BCS approximation Tc & ∆fit/(1.764kB) ≈ 340 mK. This value196
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is reasonable considering the transition temperature extracted from 50% of the normal-state resis-197

tance at a nearby doping value, ∼400 mK (see SI section VIII). However, we emphasize that such198

a fitting procedure cannot distinguish the symmetry of the superconducting order parameter in199

our data, as there is significant spectral broadening due to temperature, disorder, and the lateral200

junction geometry. In fact, we have found equally good quality fits using other non s-wave order201

parameters. Direct measurements of the pairing symmetry in MATBG remain a fundamental yet202

unresolved question in the field, and these device structures may be adapted to shed light on this203

topic.204

As the temperature is increased above ∼300 mK (for both devices B and C), the coherence peaks205

are significantly broadened due to thermal excitations. As the temperature is further increased,206

the dip at Vbias = 0 is suppressed and eventually disappears, indicating that the system is no longer207

superconducting. Similarly, by applying a perpendicular magnetic field at base temperature, the208

coherence peaks are also suppressed at B ≈ 50 mT for device B (B ≈ 100 mT for device C),209

comparable to the upper critical field observed in transport in magic-angle devices with similar210

Tc
2. The closing of the gap and suppression of the coherence peaks with temperature and magnetic211

field further support a superconducting origin for the observed gap. A portion of the tunneling212

minimum at zero bias persists to much larger magnetic fields, however, a similar tunneling minimum213

is observed above the critical field for a wide range of densities outside of the superconducting214

dome, without associated coherence peaks at zero field (Fig. S9), and thus arises from a distinct215

mechanism. Such a suppression in the tunneling spectra may be related to the Efros-Shklovskii-216

type Coulomb gap that arises at the Fermi level due to localization in disordered semiconducting217

thin films29,30, or alternatively, it may result from electronic interactions during the tunneling218

process31–33. Although we consistently observe a suppression in the tunneling conductance at zero219

bias for all three measured devices, further detailed studies are required to determine the precise220

origin of this spectral feature.221

SINGLE-ELECTRON TRANSISTOR REGIME222

Further exploiting the flexibility of the split-gate geometry, we can create a single-electron223

transistor (SET) within the same multipurpose devices. To achieve this, we tune the left and right224

top gates to bring the two sides of the device into metallic states with densities n < −ns. The225

central narrow region, being singly gated, is brought into the density range −ns < n < −ns/2.226

With similar arguments as those mentioned above, two insulating plateaus with n = −ns form227
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carrier density distribution in the p-n junction regime performed for device B (device C analogous).
The left half is brought into the superconducting state S at n ≈ −0.6ns, while the right half is
brought into a normal metallic regime with density n ≈ −1.4ns (all densities are for hole doping
and thus are all negative). In the central region of the device, the density passes through the band
insulator I (n = −ns), thus creating a tunneling barrier. (c) Raw tunneling spectra as a function
of temperature, from 0.095 K to 1.295 K for device B. The black dashed line is a theoretical fit
to the quasiparticle density of states (SI section XII), yielding an extracted gap ∆fit = 44 µeV
(with negligible broadening). (d) Magnetic field dependence of the edge tunneling spectra, from
0 T to 0.8 T for device B. (e) Similarly, tunneling spectra as a function of temperature and (f)
perpendicular magnetic field for device C, with the left half of the device in the superconducting
state S at n ≈ −0.775ns, and the right half at a density n ≈ −1.2ns. The dashed line is the
theoretical fit giving an extracted corresponding gap ∆fit = 51 µeV (with Dynes broadening 15 µeV).

around the central region of the sample, resulting in an isolated island in the middle. Fig. 5a228

illustrates such an nINIn configuration, as seen from above, and the calculated charge carrier229

density distribution. At low temperatures (kBT � e2/CΣ, where CΣ is the total capacitance of230

the island) and with large tunneling resistance (Rtunnel � h/e2), electron tunneling is allowed only231

if there are available discrete energy levels between the Fermi energies of the source and the drain232

(Fig. 5b), whereas the Coulomb blockade effect prohibits tunneling otherwise (Fig. 5c)6,34.233
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FIG. 5: Electrostatically defined single-electron transistor and Coulomb blockade in MATBG. (a)
Gating scheme of the device and simulation of the charge density across the sample. Two effective
insulating barriers emerge, and the central island can be operated as a single-electron transistor.
(b-c) Schematic space-energy diagram of a single-electron transistor in the (b) conducting and
(c) Coulomb blockade regimes. µL and µR are the chemical potentials of the source and drain
electrodes, respectively. (d) Conductance versus back gate voltage Vbg, while the two top gates
keep the densities on the source and drain at n ≈ −1.1ns. (e) Fourier transform of the two-probe
tunneling current, showing a single peak at 116 V−1. (f) Differential conductance as a function of
back gate voltage and source-drain bias voltage. Pronounced Coulomb diamonds, corresponding
to the absence of tunneling current, are observed. In this scan, only the back gate is swept while
both top gates are fixed. (g) Schematic of the Coulomb diamonds (see main text). N denotes the
number of electrons in the central island. The mismatch of the periodicities in panels (d-e) and
panels (f-g) is attributed to cross-coupling of the top gates and is discussed in SI section VII (we
have added a tilde in the x-axis label of panel (d) to avoid possible confusion). All the data in this

figure correspond to device B.
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In Fig. 5d, we measure the tunneling conductance of the gate-defined single-electron transistor234

as the back gate voltage is varied, keeping the source and drain densities fixed. The signal displays235

fine, reproducible oscillations as a function of the back gate voltage. A Fourier transform of the236

measured tunneling current reveals a single periodicity (Fig. 5e). Figure 5f shows the differential237

conductance in a narrower range of back gate voltages, as a function of the source-drain bias238

voltage. We observe well-developed Coulomb diamonds with zero conductance in the blockaded239

regime. These observations are in agreement with a single-electron transistor with capacitances240

Cg = 40 aF, C1 ≈ C2 = 110 aF, CΣ = 310 aF (see SI section VII for definitions), as shown in Fig.241

5g. Thus we find that the band insulator in MATBG provides a suitable barrier for SET physics in242

graphene with appropriate local gating, adding to the broad tunability of these MATBG devices.243

CONCLUSIONS244

The unprecedented tunability of MATBG together with local electrostatic gating in this work245

enables complete control of the weak link and junction electrodes, independently. With this ver-246

satile platform, we demonstrate multiple Josephson junctions with differing barrier strength and247

character, edge-tunneling spectroscopy of the superconducting state, and robust SET physics in a248

double-barrier configuration. While multiple devices are presented here, critically, all three afore-249

mentioned experiments are achievable in a single device geometry. Gate-defined tunnel junctions250

present a significant advance toward probing the superconducting order parameter in MATBG,251

and will inspire further advances for exploring physics within the expanding class of moiré sys-252

tems. Furthermore, these multipurpose devices establish a clear path toward gate-defined circuits253

with MATBG in future 2D integrated electronics, with potential applications in low-temperature254

circuits, quantum computing, and electromagnetic sensing.255
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METHODS355

Fabrication and measurements356

Our devices comprise a 4-layer van der Waals heterostructure placed in between two metallic357

gates, as illustrated in Fig. 1a and Fig. 4a of the main text. All devices were fabricated using the358

tear-and-stack dry-transfer technique1,15,16, which enables us to achieve high-quality devices with359

clean interfaces and twist angles close to the first magic angle, θ ≈ 1.1◦. From bottom to top, they360
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all have a gold/palladium (60/40) back gate, a bottom hexagonal boron nitride substrate (hBN),361

MATBG, a top hBN, and a gold top gate. Device A has a narrow top gate, while devices B and362

C have two top gates separated by a narrow gap. All the two-dimensional materials are obtained363

via mechanical exfoliation on a SiO2/Si chip, and high-quality flakes are carefully selected using364

optical microscopy and atomic force microscopy.365

The van der Waals heterostructure is assembled via a modified polymer-based dry pick up and366

transfer technique. A poly(bisphenol A carbonate) (PC) thin film (Fluka Analytical, part number367

181641) covering a polydimethylsiloxane (PDMS) 2 mm x 2 mm piece, lying on a glass slide and368

mounted on a custom-made micro-positioning stage, is used to successively pick up the topmost369

hBN and the graphene sheets with high success rates. The hBN flake is picked up by heating the370

substrate in contact with PC up to 110◦C. Graphene is torn in half at room temperature by the371

van der Waals forces between the hBN and the region of the graphene flake in contact with the372

hBN. The remaining half of the graphene is rotated to angle close to 1.1◦ and then picked up. The373

full stack is then released onto the previously prepared bottom hBN on a metallic back gate, by374

melting the PC at 170◦C. Finally, the PC film is dissolved in a chloroform bath.375

The first step of fabrication is an etching step in order to minimize relaxation of the graphene376

layers during subsequent steps. The geometry of this etch mask is larger than the actual final377

device, but must lie (at least partially) on the inner part of the two graphene layers, while leaving378

a path for the top gate.379

Then the device is again patterned by electron-beam lithography to define the edge contacts.380

Following another reactive ion etching, the device is mounted on a tilted rotating stage and edge-381

contacted by thermally evaporated chromium/gold36. Liftoff is performed in acetone at room382

temperature. To define the narrow top gate (device A), or two top gates (devices B and C),383

one more electron beam lithography, thermal evaporation, and liftoff steps are needed. Finally,384

the device geometry is defined via reactive ion etching, followed by an oxygen plasma etching to385

remove possible graphene or graphite residues shorting the contacts. We illustrate in Fig. S1 the386

fabrication sequence for device A as a paradigmatic example of one of our top gated devices.387

After mounting the finalized device on a chip carrier and wire-bonding it, the device is mea-388

sured in a Triple-Axis Dilution Refrigerator with base temperature around 70 mK. All data were389

acquired using standard low-frequency lock-in techniques. Both the current flowing through the390

sample and the four-probe voltages are amplified during measurements using a current pre-amplifier391

and a voltage pre-amplifier, respectively, and then measured using different SR-830 lock-in ampli-392

fiers that are all synchronized to a frequency of 1 Hz ∼ 20 Hz. The sample resistance is obtained393
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by dividing the four-probe voltage Vxx by the current flowing through the sample I (excitation394

current Iac ≈ 1 nA). Around 50% of the measured devices fabricated following this procedure dis-395

played correlated insulating states at half-filling and superconductivity. For the other devices, the396

twist angle typically deviated from the magic-angle (θ ≈ 1.1◦), and displayed transport signatures397

characteristic of lower or larger twist angle devices.398
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I. FABRICATION AND MEASUREMENTS

Our devices comprise a 4-layer van der Waals heterostructure placed in between two metallic

gates, as illustrated in Fig. 1a and Fig. 4a of the main text. From bottom to top, they all have a

gold/palladium (60/40) back gate, a bottom hexagonal boron nitride substrate (hBN), MATBG,

a top hBN, and a gold top gate. Device A: bottom hBN 28 nm, top hBN 25 nm. Device B: bottom

hBN 55 nm, top hBN 26 nm. Device C: bottom hBN 50 nm, top hBN 50 nm. Device A has a

narrow top gate, while devices B and C have two top gates separated by a narrow gap. All the

two-dimensional materials are obtained via mechanical exfoliation on a SiO2/Si chip, and high-

quality flakes are carefully selected using optical microscopy and atomic force microscopy. First,

∼30 nm-thick back gates are patterned with e-beam lithography and thermal evaporation of Cr

and Pd/Au. Heat annealing in forming gas (H2/Ar) is employed to clean the gates. All gates are

first inspected optically and then via AFM to confirm their thickness, guarantee they do not show

traces of organic residues, and check they are flat without visible inhomogeneities. After that, a

bottom hBN flake is placed on top of each local metallic gate, and heat annealed again to remove

possible residues from the removal of polymer. An AFM “tip cleaning” [1, 2] can be optionally

performed to “broom” the remaining polymer residues off the hBN.

The van der Waals heterostructure is assembled via a modified polymer-based dry pick up and

transfer technique. A poly(bisphenol A carbonate) (PC) thin film (Fluka Analytical, part number

181641) covering a polydimethylsiloxane (PDMS) 2 mm x 2 mm piece, lying on a glass slide and

mounted on a custom-made micro-positioning stage, is used to successively pick up the topmost

hBN and the graphene sheets with high success rates. The hBN flake is picked up by heating the

substrate in contact with PC up to 110◦C. Graphene is torn in half at room temperature by the

van der Waals forces between the hBN and the region of the graphene flake in contact with the

hBN. The remaining half of the graphene is rotated to angle close to 1.1◦ and then picked up. The

full stack is then released onto the previously prepared bottom hBN on a metallic back gate, by

melting the PC at 170◦C. Finally, the PC film is dissolved in a chloroform bath for 5 minutes.

The device geometry is designed using a CAD software, based on the optical and AFM mi-

crographs of the stack (Fig. S1c), keeping only the cleanest and bubble-free parts of the twisted

bilayer region. The first step of fabrication is an etching step in order to minimize relaxation of the

graphene layers during subsequent steps. The etch mask is electron-beam lithographically defined

via Poly(methyl methacrylate) (PMMA 950A5 from Microchem). The geometry of this etch mask

is larger than the actual final device, but must lie (at least partially) on the inner part of the two
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graphene layers, while leaving a path for the top gate.

Then the device is again patterned by electron-beam lithography (double layer resist PMMA

495A5/ PMMA 950A2) to define the edge contacts. Following another reactive ion etching,

the device is mounted on a tilted rotating stage and edge-contacted by thermally evaporated

chromium/gold (2 nm and around 65 nm∼90 nm, respectively)[3]. Liftoff is performed in acetone

for several hours at room temperature (Fig. S1e). To define the narrow top gate (device A)

(∼160 nm wide and 25 nm thick), or two top gates (devices B and C), one more electron beam

lithography, thermal evaporation, and liftoff steps are needed (Fig. S1f). Finally, the device geom-

etry is defined via reactive ion etching with PMMA etch mask similar to the one described above,

followed by an oxygen plasma etching to remove possible graphene or graphite residues shorting

the contacts. We illustrate in Fig. S1 the fabrication sequence for device A as a paradigmatic

example of one of our top gated devices.

After mounting the finalized device on a chip carrier and wire-bonding it, the device is mea-

sured in a Triple-Axis Dilution Refrigerator with base temperature around 70 mK. All data were

acquired using standard low-frequency lock-in techniques. Both the current flowing through the

sample and the four-probe voltages are amplified during measurements using a current pre-amplifier

and a voltage pre-amplifier, respectively, and then measured using different SR-830 lock-in ampli-

fiers that are all synchronized to a frequency of 1 Hz ∼ 20 Hz. The sample resistance is obtained

by dividing the four-probe voltage Vxx by the current flowing through the sample I (excitation

current Iac ≈ 1 nA). Around 50% of the measured devices fabricated following this procedure dis-

played correlated insulating states at half-filling and superconductivity. For the other devices, the

twist angle typically deviated from the magic-angle (θ ≈ 1.1◦), and displayed transport signatures

characteristic of lower or larger twist angle devices.

II. LANDAU FAN DIAGRAMS

The magnetotransport data allow us to determine the twist angle of devices A, B, and C, as

shown in Fig. S2. The details of the twist angle extraction can be found in our previous works

[4–7].

The errors in the angle can be estimated by visually inspecting how well the Landau levels at

the Dirac point, ±ns/2, and ±ns fit to the expected Landau fans of a given twist angle. Device A

has an estimated twist angle of 0.95◦ ±0.02, device B has a twist angle 1.2◦ ±0.05, and device C

has a twist angle 0.98◦ ±0.02.
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a b c d

e f g

Figure S1. Fabrication steps of device A. (a) Optical image of the graphene flake. (b) Resulting stack

(blue line indicates the top hBN, green line the bottom hBN, red line the original graphene (but after tearing

apart) and black line the second piece of graphene). (c) Design of the stack, based on optical images and

AFM amplitude images. (d) Stack after the first broad etching. (e) Optical image after evaporation of the

contacts. (f) Optical micrograph after evaporation of the top gate. The finalized image is shown in panel

(g). Device A is the lower hall-bar device. The upper device has an L-shaped top gate (not narrow, nor

with a gap), and will be reported elsewhere. All scale bars are 8 microns.

III. ADDITIONAL FRAUNHOFER PATTERNS FOR DEVICE A

Figure S3a shows the magnetic field dependence of a horizontal line cut in Fig. 1c of the main

text for Vbg = −1.6 V, which gates the source/drain regions into the superconducting state. The

vertical red lines label the electronic state of the region under the narrow top gate. By fixing

the density at one of those top gates or close-by values, and the back gate such that the rest of

the junction is in the superconducting state, our devices can realize a tunable Josephson junction.

Figure S3b displays the resistance as a function of top gate and current bias for the back gate in

the superconducting state.
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Figure S2. Landau fan diagrams of devices A, B and C. (a) Resistance vs. back gate voltage

and perpendicular magnetic field with no top gate voltage applied, at base temperature for device A. (b)

Resistance vs. top gates voltages (both connected together) and perpendicular magnetic field at 0.3 K, for

device B. The back gate voltage is swept simultaneously to the top gates from −4 V to 5 V for each line. (c)

Resistance vs. top gates voltages (both connected together) for device C, with top gates both swept from

−3.2 V to 3.2 V and simultaneously back gate swept from −8.8 V to 8.1 V at 1 K. Red arrows denote the

position of the charge neutrality point for each device, and the blue arrows denote the extracted position of

n = ±ns.
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Figure S3. Supplementary Fraunhofer patterns for device A. (a) Magnetic field dependence of a

horizontal linecut in Fig. 1c of the main text. The back gate is fixed at Vbg = −1.6 V, corresponding to the

back gated region in the superconducting state. The states I, S, C, S’, I’ and D are labeled (see main text

for definitions). (b) Resistance as a function of current bias and top gate voltage, for Vbg = −1.8 V in the

superconducting state. The barrier strength of the junction is continuously tuned by the top gate voltage.

Figure reproduced from Fig. 1e of the main text. (c) Interference pattern of the junction when the narrow

top gated region is in the S state and the rest of the device in the superconducting state (SSS configuration),

corresponding to Vtg = 0 V. (d) A similar experiment can be realized for the device in the superconducting

state in the electron side, in an S’SS’ junction.

Here, we show additional Josephson effect measurements, specifically in the SSS and S’SS’

regimes, in addition to the ones shown in the main text. In particular, in principle if we switch

the top gate voltage to 0 V, the entire device becomes superconducting. In this SSS case (see

Fig. S3c), we do not observe a clear Fraunhofer-like pattern. The small oscillations in the critical

current may arise from inhomogeneity in the device. It is also possible to realize a junction with

the superconducting electrodes on the electron doping (S’) by putting Vbg = 3.2 V, and use the top

gate to bring the narrow region into S state, i.e. an S’SS’ junction (similar to main text Fig. 3d,

but swapping the S and S’ states). Measurement in this regime is shown in Fig. S3d.
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Figure S4. Anomalous Fraunhofer pattern in device A (a) Magnetic field dependence of a horizontal

linecut in Fig. 1c of the main text with the back gate fixed at Vbg = −1.4 V. (b) Interference pattern showing

a periodicity ∼10 mT (� 1.5 mT reported in the other interference patterns), resembling the Fraunhofer

pattern of classical bulk Josephson junctions. We attribute this anomalously large periodicity to disorder

at that particular voltages, and the close proximity of this scan to the insulating state as seen in panel (a).

(c) Interference pattern at the same back gate voltage, and with a top gated region close to the Dirac point,

displaying a periodicity of a few mT.

We note that no in-gap features, such as multiple Andreev reflections in the SNS regime (which

would appear as local minima within the superconducting gap in dVbias/dI versus Vbias at fractions

of the superconducting gap 2∆ [8]) have been observed in our samples. This might be due to the

fact the gap is small compared to the spectral resolution of our measurement.

IV. ANOMALOUS PATTERN IN DEVICE A

We have argued in the main text that the oscillation period goes as ∼ Φ0/w
2 for Josephson

junctions in ultrathin films. However, we find that at one particular top and back gate voltage,

the periodicity is anomalously larger than the above value by ∼6 times. This may be attributed to

an inhomogeneous distribution of current across the junction due to twist angle disorder, so that

the effective junction width is much smaller than the width of the sample. Fig. S4b shows the Rxx

data at this gate configuration.

For comparison, we also include a Fraunhofer pattern with the same back gate voltage but a

different top gate voltage (close to the charge neutrality point), displaying an interference pattern

with a similar oscillation period compared with the ones in Fig. 3a-c of the main text.
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V. TRANSPORT CHARACTERIZATION OF DEVICE B

Device B shows a similar Josephson effect as device A, despite the different device structure

(shown in Fig. 4a of the main text). Fig. S5a shows the 4-probe Rxx resistance as a function

of Vbg and Vtg (the two top gates are connected together). The Vtg − Vbg map for device B is

fundamentally different compared the one for device A (see Fig. 1c of the main text). The top

gate of device B covers most of the device except a narrow region of a few tens of nm at the center

of the device (designed to be ∼135 nm), in contrast to device A where the top gate only covers

a narrow region at the center of the device. The horizontal features correspond to the sole effect

of the back gate in the gapped region between the two top gates. Tilted features with a negative

slope are associated with a constant density in the dual gated regions. The dark region indicates

the superconducting phase. It corresponds to a density range spanning around the half-filling state

for holes, n = −ns/2± δ (following the notation of Cao et. al. [9]).

Figure S5b displays the R-T curve in the superconducting state of device B, which shows a

transition at 0.55 K, as estimated from 50% of the normal-state resistance value. Fitting the data

to the Halperin-Nelson formula R ∝ exp[−b/(T − TBKT)1/2], we extract TBKT = 0.3 K [10]. The

I-V curves are shown in Fig. S5c, for Vtg = −2.7 V, Vbg = −2.18 V. The critical current is ∼20 nA.

Figure S5d shows the Fraunhofer pattern measured in device B in the SCS regime. The pe-

riodicity is approximately 3 mT, consistent with the estimate from theory of ultrathin Josephson

junctions [11] (w ≈ 1.1 µm in device B, the expected periodicity is around 1.8Φ0/w
2 ≈ 3 mT).

Noticeably, the tunability of the barrier strength of the weak link in the configuration with two

top gates is intrinsically much weaker than for the narrow top gate configuration, due to the edge

capacitance effects from the top gates. We attribute this effect to the cross-doping of the weak link

caused by the stray field from the top gates (even though the top gates are not placed directly above

the weak link). We note that in this device, we did not find any double periodicity as observed

in device A. In addition, the field dependence of the critical currents do not reach zero, which we

attribute to the nonuniform Josephson coupling across the interface [12].

Similar to Fig. 3f in the main text for device A, in Fig. S5e we show the resistance as a

function of temperature and magnetic field for device B, for the same configuration as in Fig. S5d.

Consistent with device A, the oscillation period is invariant with temperature, which is consistent

with the nonlocal electrostatic regime governing our samples [13].
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Figure S5. Transport characterization of device B. (a) Resistance as a function of top gates (both

connected in parallel) and back gate. (b) Resistance vs. temperature trace. Device B shows a Tc ∼

0.55 K (Vtg,both = −2.58 V, Vbg = −2.4 V). Black dotted lines show the fit to Halperin-Nelson formula R ∝

exp[−b/(T−TBKT)1/2], giving TBKT = 0.3 K [10]. (c) Current–voltage (Vxx–I) curves in the superconducting

region (Vbg = −2.18 V, Vtg,both = −2.7 V). (d) Characteristic interference pattern of device B for a region

close to the SCS configuration, taken at the position of the green cross in panel (a). (e) Resistance as a

function of magnetic field and temperature of the junction close to the SCS regime, for the same densities

as the interference pattern shown in panel (d) (Vtg = −1.35 V, Vbg = −3.98 V).

VI. EVIDENCE OF SUPERCONDUCTING GAP AND SINGLE-ELECTRON

TRANSISTOR BEHAVIOR IN DEVICE A

Fig. S6 shows the possible coexistence of single-electron transistor (SET) behavior and super-

conducting tunneling in device A. At low bias voltages, we find Coulomb diamonds, while at larger

bias voltages we find features consistent with tunneling spectra into the superconducting gap.

We attribute this unusual coexistence to the relatively low tunneling resistance of the insulating

barriers R . h/e2.

For small drain-source voltage biases, device A can be brought close to an SET regime by setting
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the back gate electrode to a density beyond the superlattice density for holes, and then tuning the

top gate such that the central ‘island’ is in a superconducting state near n = −ns/2. Because of the

continuity of the charge density, two insulating regions in the superlattice gap n = −ns appear and

provide a tunneling barrier connecting the electrodes to the central ‘island’ (in a similar fashion as

in Fig. 5 of the main text), thus creating a junction of the form nISIn.

Figure S6a shows the four-probe differential resistance as a function of the top gate voltage for

a fixed back gate and bias voltage (Vbg = −4 V, Vbias,applied = 40 µV). We perform the Fourier

transform of these oscillations (see inset Fig. S6a) and find a prominent peak at a frequency of

around 600 V−1, corresponding to a periodicity of 1/600 = 1.7 mV. If we sweep the bias voltage

between the electrodes, we indeed observe Coulomb diamonds with periodicity ∼1.7 mV (Fig. S6b).

We note that the quality of the diamonds are not as good as in device A, which might be due to

the low resistance of the insulating barriers.

On the other hand, at higher biases we find the tunneling spectra to be qualitatively similar to

the edge tunneling spectra we found in devices B and C. In device A, we cannot achieve an NIS

configuration since the left and right parts of the junction cannot be independently controlled (see

Fig. 1a of main text for a scheme of device A). However, in the same nISIn configuration as the

SET regime above (Vtg = 2.8 V, Vbg = −4.5 V), we find two prominent coherent peaks at higher

bias voltages. The behavior of the tunneling spectra of device A as a function of temperature and

magnetic field (Fig. S6c-d) are similar to the ones reported in the main text for devices B and C. The

tunneling peaks are progressively suppressed when the temperature is increased, and become almost

flat above 1.5 K. However, quantitative analysis of the gap size is unreliable since the alignment of

the chemical potential of the N, S, and N regions is unknown. In a perpendicular magnetic field,

the coherence peaks are suppressed, while the zero-bias anomaly persists, as discussed in the main

text for devices B and C.

VII. SET OSCILLATION FREQUENCY

We note that the periodicity reported in Fig. 5d,e and the periodicity of the Coulomb diamonds

in Fig. 5f (∼4 mV) of the main text are not equal. While none of the qualitative observations we

have made are affected, quantitatively, we attribute such a mismatch to the influence of the top

gates in the central ‘island’ of the SET (meaning that the two top gates have significant coupling

to the ‘island’). In particular, Fig. 5d is taken by sweeping the back gate and correcting the top

gate voltage on the right and left parts of the device to keep the densities constant, while Fig. 5f
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Figure S6. Evidence of superconducting gap and single-electron transistor behavior in device

A. (a) Differential conductance as a function of top gate voltage, for two different Rxx pairs of contacts

in blue and red (Vtg ∼ 2 V, Vbg = −4 V). The signal is periodic across most of the range, with frequency

f ≈ 600 V−1. The inset shows the Fourier transform of the previous signal, for the region 1.9544 V < Vtg <

2.09 V (region selected from the local Fourier transform to display the sharpest peak for easy read-out of the

frequency, without loss of generality). (b) Coulomb diamonds at small Vbias (Vbg = −4.5 V). (c) Differential

resistance as a function of bias voltage and temperature (Vtg = 2.8 V, Vbg = −4.5 V). (d) Differential

resistance as a function of bias voltage and perpendicular magnetic field (Vtg = 2.8 V, Vbg = −4.5 V).
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has been obtained with fixed top gates (over a much narrower range of back gate voltages than

Fig. 5d). To avoid possible confusion, we have labeled the x-axis of Fig. 5f of the main text with

a tilde, where the top gates are compensating at each point for the back gate voltage to keep the

density constant in the left and right parts of the device.

With one electron per period, one expects the periodicity in the back gate voltage to be given

by ∆Vbg = e/Cbg, with e the elementary charge and Cbg the back gate capacitance. One can

approximate, in a first approach, Cbg ≈
εrε0wL

d
, with εr ≈ 2.7 (found to be the value that best fits

from our Landau fans), w ≈ 0.9µm (total width of device at the constriction), L ≈ 135 nm (width

of the ‘island’ as designed by electron beam lithography, corresponding to the gap between the two

top gates), and d ≈ 55 nm (hBN thickness). Using these values, we obtain ∆Vbg ≈ 3 mV, which

matches relatively well with the value extracted from the Coulomb blockade diamonds ( ≈ 4 mV),

given that the exact geometry of the “island” is not known a priori.

Our observations can be faithfully simulated (Fig. 5g of the main text) with an ideal single-

electron transistor with capacitances Cg = 40 aF, C1 = 110 aF, CΣ = 310 aF, where Cg is the gate

capacitance, CΣ = C1 + C2 + Cg + C0, C0 is the stray capacitance, and C1, C2 are the drain and

source capacitances [14]. Such values are in qualitative agreement with electrostatic simulations

of capacitors with similar geometry. The displayed lines correspond to the discrete energy levels

at the island being aligned with one of the chemical potentials of the electrodes. For a given

discrete energy level at the constriction, the range of back gate voltages for which the current can

flow increases linearly with increasing bias voltage [15], resulting in the characteristic Coulomb

diamonds. Their slope is associated with the capacitances (negative slope = −0.35 = −Cg/C1,

positive slope = 0.2 = Cg/(CΣ−C1), and the x-axis separation between two consecutive diamonds

is ∆Vbias = 4 mV = e/Cg). In the extreme case where C0 = 0, we get C2 = 160 aF, C1 = 110 aF.

In the symmetric case where C2 = C1 = 110 aF, we get C0 = 50 aF. Within the diamonds shaded

in blue (and corresponding to the situation in Fig. 5c of the main text), no electron can tunnel

through the island between the electrodes.

VIII. TRANSPORT CHARACTERIZATION OF DEVICE C

Figure S7 shows the characterization of device C. The device structure of this sample is similar

to that of device B (see Fig. 4a of the main text), with a 120 nm gap between the top gates. All

features reported in the manuscript are qualitatively reproduced in this device. The R-T curve is

shown in Fig. S7k, with a superconducting transition around Tc ∼ 0.4 K as extracted from 50% of
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the normal-state resistance value, and TBKT = 0.19 K. The Fraunhofer patterns have a periodicity

of ∼3 mT. The envelope of the oscillaton has a substantially different morphology than for devices

A and B, which we attribute to a different microscopic current distribution. The measurement of

Coulomb diamonds in the SET regime shows a nonuniform periodicity, which might be explained

by the presence of two quantum dots due to inhomogeneity in the sample [15, 16].

IX. SIMULATION OF BULK AND PLANAR JOSEPHSON JUNCTIONS IN THE

PRESENCE OF AN EXTERNAL MAGNETIC FIELD

We simulate the behavior of magnetic fields inside bulk and a 2D Josephson Junctions [11, 17–

19], placed in an external magnetic field B = B0ẑ, to evaluate the field dependence of the maximum

supercurrent both in bulk junctions and in planar 2D edge-type Josephson Junctions, given the

geometry of our device A (simulation performed using w = 1.5 µm (width of junction in y), and

L = 2.15 µm (half-length in x)). For a bulk superconductor, the magnetic field Bz satisfies the

screened Poisson equation ∇2Bz −
1

λ2
Bz = 0 where λ is the penetration depth. The solution in

a general case is an exponential decay with characteristic scale λ, and therefore in a bulk JJ the

magnetic flux only penetrates in a region within 2λ centered around the junction. On the other

hand, the characteristic length in a 2D superconductor is the Pearl length Λ = 2λ2/d, where d is

the film thickness. In a perpendicular magnetic field, the thin slab is no longer capable of expelling

the magnetic field at the center and the magnetic field will penetrate the sample almost uniformly

through vortices. In particular, when the length scales are much smaller than the Pearl length,

w,L � λ2

d
, the second term of the equation can be dropped and the Poisson equation dominates

the magnetic field distribution in ultrathin films ∇2Bz = 0 [17].

In our simulation, we numerically solve for the z direction magnetic field H(x, y) in the two

extreme cases of an infinitely thick bulk junction and an ultrathin junction. H satisfies ∇2H −
1
λ2
H = 0 in the bulk case and ∇2H = 0 in the 2D case. At the upper and lower boundaries

y = ±W/2 and at the junction x = 0, we set Dirichlet boundary conditions H = H0 (H0 is the

externally applied field). On the left and right boundaries x = ±L, we set Neumann boundary

conditions ∂xH = 0. In the bulk case, we use a penetration depth of λ = 100 nm. In Fig. 2c and

2d of the main text, we show the result of the simulation of the magnetic field distribution for a

Josephson Junction with the junction at x = 0. The color scale represents the relative amplitude

of Bz = µ0Hz inside the superconducting electrodes, i.e., the amount of magnetic field penetrating

the sample. The solution is of the form Bz ∼ e−y/λ with an exponential dropping of the field for the
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Figure S7. Characterization of device C. (a) Vtg-Vbg map of the resistance. The two top gates are

connected together. (b) Zoom-in and rotated scan of the lower quadrant under the negative diagonal of the

previous map. The x-axis denotes the density of the top gated parts (in units of the filling factor n/ns), and

the vertical axis is directly related to the back gate (with a shift to account for intrinsic doping), therefore

proportional to the density in the narrow central region (transformation given by Vtg,left = 8n1/ns−n2+1.8,

Vtg,right = 8n3/ns − n2 + 1.8 Vbg = n2 − 0.9; note here both top gates are connected together and thus

n1/ns = n3/ns). (c) n2 vs B sweep at optimal doping n1/ns = −0.69. The periodicity as a function of

the magnetic field is constant throughout n2, as also shown in several interference patterns in Fig. (e)-(h).

(d) R vs T curve for n2 = −0.8 V and n1/ns = −0.699. Black dotted lines show the fit to Halperin-Nelson

formula R ∝ exp[−b/(T − TBKT)1/2], giving TBKT = 0.19 K [10]. (i) Coulomb diamonds for device C

(Vtg,both = −4.8V ). The alternation of diamonds of different sizes could be an indication of two quantum

dots in parallel.
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bulk Josephson junction. On the other hand, for the 2D superconductor, the solution is essentially

uniform, which indicates that the magnetic field is not screened by the 2D superconductor. From

the Maxwell equation, current density is j = ∇×H, which translates to (jx, jy) = (∂yHz,−∂xHz).

Therefore, the contour lines of Hz are parallel to the screening current flow. Once again we see

that in the bulk sample the screening currents are mostly confined at a distance λ from the edges,

whereas they spread across most of the sample in the ultrathin case.

This discrepancy in magnetic field screening has an important impact on the Josephson relation-

ship of the junction. In a wide junction, the total critical current can be computed by integrating

Ic =
∫ w/2
−w/2 ic(y) cos γ(y)dy, where ic(y) is the Josephson current density and γ(y) is the phase

difference across the junction. For the bulk case, the phase γ(y) winds as γ(y) = γ0 +
2π

φ0
2Bλ · y

(we assume the length of the junction in x is negligible), which gives the well-known Fraunhofer

pattern with a periodicity ∆B =
φ0

2wλ
. These formulae reflect that the magnetic field penetrates

only in a distance of 2λ near the junction. For the 2D case, on the other hand, since the mag-

netic field is no longer localized at the junction, in general the phase difference γ(y) cannot be

analytically written down. Instead, we obtain γ(y) by numerically integrating the relationship

∂yγ(y) = −4πµ0λ2

φ0
jy(0

+, y) (take λ → ∞ in 2D limit) [17]. The periodicity ∆B is no longer

constant in this case, but can be approximated at larger fields as ∆B ′ ∼ 1.8φ0

w2
[11, 20].

X. SIMULATION OF THE CHARGE DISTRIBUTION AND THE APPEARANCE OF

INSULATING BARRIERS FOR THE TUNNELING AND THE SINGLE-ELECTRON

TRANSISTOR

At the magic angle, the band structure of TBG exhibits bandgaps on the order of ∼30 meV at

densities n = ±ns [4]. In this work, we exploit these superlattice gaps as in-situ tunneling barriers

for tunneling spectroscopy of the superconducting gap and the single-electron transistor.

In the case of the tunneling spectroscopy configuration, as shown in Fig. 4 of the main text,

one side of the sample is set to a density larger than the superlattice gap, and the other side to a

density lower than the superlattice gap. Therefore we expect to have at least one point in space at

which the density equals the superlattice density and thus is insulating. If quantum capacitance

effects are taken into account, the density will in fact have a plateau at the superlattice density. In

order to simulate this phenomenon, we self-consistently solve the electrostatic model governed by

a Poisson equation with a nonlinear boundary condition. In the dielectric, electrostatic potential

satisfies ∇2V = 0. The boundary conditions are taken to be V = Vg1 at the left top gate, V = Vg2
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Figure S8. Simulation of the potential for the Tunneling (a) and SET (b) configurations. Two

top gates are added at y=100 nm for positive and negative x axis, and a back gate at y=0, setting the

boundary conditions Vg1, Vg2 and Vg0 (see main text). The dashed line at y = 50 nm denotes the MATBG.

at the right top gate, V = Vg0 at the back gate. Side boundaries are set to Neumann conditions

∂xV = 0.

Since the MATBG is grounded, it has zero electrochemical potential at any point on it µ(n(x))−

V (x) = 0, where n(x) = [E+
y (x) − E−y (x)]/e is the electron charge density, and µ(n) is the

chemical potential of MATBG. The boundary condition at the MATBG is therefore VTBG(x) =

µ

(
1

e
(∂yV

+ − ∂yV −)

)
[21]. Here, E± and V ± are the electric field and electric potential above

and below TBG respectively. To capture the fundamental features with minimal complexity, we

assume a band gap of 30 meV and parabolic bands with effective masses m1 = 0.4me for n > −ns

and m2 = 0.05me for n < −ns. The problem is solved with an iterative method. In each iter-

ation, V n
TBG is calculated from V n

TBG = µ

(
1

e
(∂yV

n−1,+ − ∂yV n−1,−)

)
, and the Poisson equation

∇2V = 0 is solved using boundary condition V n
TBG to obtain V n.

For the tunneling spectroscopy configuration (displayed in Fig. 4 of the main text), we use the

values Vg1 = 3 V, Vg2 = −3 V, and Vg0 = 0 V (see Fig. S8a). This results in the density induced

in the twisted bilayer graphene displayed in Fig. 4b of the main text, and a barrier width on the

order of 10 nm. An analogous procedure is performed for the SET configuration (Fig. S8b) with

Vg1 = 6 V, Vg2 = 6 V, and Vg0 = −5 V. The resulting density is displayed in Fig 5a of the main
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text.

XI. FURTHER ANALYSIS OF THE TUNNELING SPECTRA IN DEVICES B AND C

Fig. S9 shows the tunneling spectra for device C at a fixed back gate (Vbg = −1.2 V) and

fixed top right gate voltage (Vtg,right = −7.5 V), while varying the top left gate voltage. In this

configuration, we observe tunneling from a region in the normal state with density n3/ns ≈ −1.2ns

into different regions on the left side of the device (I, S, C, metallic region with hole doping in

between D and C, D, and C’), via the insulating barrier I (in a similar fashion as shown in Fig 4b

of the main text). Spectra are plotted for zero magnetic field (solid lines) and in a perpendicular

magnetic field of 0.2 T (dashed lines). Tunneling peaks fitting the phenomenology of supercon-

ducting coherence peaks (represented in black, with a thicker trace) are only observed at densities

near the superconducting state (Vtg,left = −4.1 V, corresponding to the configuration SIn where

the left part of the device is at a density n1/ns ≈ −0.775ns). The coherence peaks disappear in

the presence of a perpendicular magnetic field (denoted by the double-headed arrows in Fig. S9),

as explained in the main text.

For both devices B and C, four different pieces of evidence support the conclusion that the

tunneling spectra shown in Fig. 4 indeed correspond to the superconducting gap of MATBG. First,

the 4-terminal transport obtained at the same densities display zero or close to zero resistance.

Second, the shape of the coherence peaks surrounding the spectroscopic gap fits well to our model

for the superconducting quasiparticle density of states. Third, the coherence peaks disappear

with temperature in the appropriate range. Finally, the coherence peaks disappear in a magnetic

field (although there is an unrelated conductance minimum surviving at much higher fields, as

explained in the main text, attributed to a separate mechanism). We also reiterate, from Fig. S9,

that the only densities at which coherence peaks are observed coincide with densities at which the

superconducting state is observed in transport.

XII. FITS TO THE TUNNELING DATA

Theoretical fits to the tunneling data shown in Fig. 4 of the main text were performed using a

simple model for the tunneling conductance between a metal and a superconductor [22]. This model

involves the product of the quasiparticle density of states in the superconductor and a constant
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Figure S9. Tunneling spectra across the different states in MATBG. (a) Linecut in the back gate-

top gate map for device C at Vbg = −1.2 V. Labels in red denote features induced by the top gate gates,

following the convention of the main text. (b) Tunneling spectra for device C. The back gate (Vbg = −1.2 V)

and top right gate (Vtg,right = −7.5 V) voltages are fixed, and the top left gate voltage is varied. This allows

tunneling from the right region in the normal state n with density n3/ns ≈ −1.2ns into different regions on

the left side of the device (I, S, C, N, D, and C’), via the insulating barrier I. Spectra are shown in zero

magnetic field (solid lines) and in a perpendicular magnetic field of 0.2 T (dashed traces).

density of states with the derivative of the Fermi occupation function,

dI

dV
∝
∫ ∞
−∞

dE Ns(E)
df

dV
, (1)

for f(E) =
[
exp

(
E−eV
kBT

)
+ 1
]−1

at temperature T and bias voltage V = Vbias (the constant density

of states in the normal metal is a constant prefactor and is ignored here). The quasiparticle density

of states at zero temperature is given by [23],

Ns(E) = N0 Re
E√

E2 −∆2
k

, (2)
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as a function of temperature for device C.

with ∆k = ∆ for an isotropic (s-wave) gap ∆, and with the substitution E → E+ iΓ incorporating

a phenomenological quasiparticle lifetime broadening, Γ (Dynes broadening). At temperatures well

above the superconducting transition, the tunneling spectra in devices B and C exhibit background

curvature attributable to details of the normal metal density of states and the tunneling barrier. To

isolate the superconducting part of the tunneling data, we perform a background correction before

fitting the data to Eq. 1. This is carried out by first fitting a polynomial function, (dI/dV )poly,

to a tunneling spectrum acquired at a sufficiently high temperature for each device (where the

changes in spectroscopic behavior begin to saturate with increasing temperature), and then divid-

ing away this smooth background function (dI/dV )sub = (dI/dV )raw/(dI/dV )poly such that the

background-corrected data (dI/dV )sub do not contain the curvature observed at high temperatures

(see Fig. S11a). The differential conductance in Eq. 1 is then fit to the background-corrected tun-

neling data taken at the lowest temperature with ∆ and Γ as free parameters, along with T , to

account for a potentially elevated electron temperature, and an overall scale factor. The data shown

in the main text are raw data, without any background correction. To show the correspondence

between the fits to the superconducting (SC) part of tunneling spectrum and the raw data, we in-

clude the polynomial background in the plotted fits by multiplying each fit by the polynomial part
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Figure S11. Fitting procedure for tunneling data from device C (a) Raw tunneling data and (b)

background-corrected data with s-wave and BTK fits superimposed. Best-fit parameters are ∆ = 51 µeV,

T = 113 mK, and Γ = 14 µeV in both cases, with all values of Z ≥ 1.1 fitting equally well in the BTK

case. An anisotropic d-wave fit, using ∆k = ∆ cos(2θ), also produces a high-quality fit with amplitude

∆ = 64 µeV, T = 152 mK and Γ ≈ 0. Although the underlying quasiparticle densities of states Ns(E) differ

substantially (inset, shown with same axis limits as (a)-(b)), the two fits are indistinguishable at the finite

temperatures of the experiment.

extracted from the data at high temperature, (dI/dV )fit = (dI/dV )SC× (dI/dV )poly. Employing a

similar fitting procedure using the standard Blonder-Tinkham-Klapwijk (BTK) relation [24] (with

E → E + iΓ) rather than Eq. 2 also fits the data nicely (see BTK fit in Fig. S11b). Using the

BTK formula, we find similar ∆ and Γ values and a dimensionless barrier strength value Z > 1,

indicating a low-transparency barrier between the normal metal and superconducting regions. The

value Z > 1 supports our conclusion that the barrier region is indeed in the tunnel coupling limit,

enabling our spectroscopic analysis of the superconducting gap.

Though the fits described here employ an isotropic assumption for the order parameter, we

must emphasize that the quality of these fits do not preclude order parameters with other symme-

tries. For instance, we find that a modification of Eq. 2 using the substitution ∆k = ∆ cos(2θ) and

integrating over the polar angle Ns(E) = (1/π)
∫
dθNs(E, θ), a model for a nodal order param-

eter with dx2−y2 symmetry (d-wave), fits our tunneling data equally well (Fig. S11b). An order

parameter with dxy symmetry (∆k = ∆ sin(2θ)) produces an identical tunneling spectrum. While
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both the isotropic and d-wave fits appear to match the data, note that the implied quasiparticle

densities of states Ns(E) differ substantially in the two cases (see inset of Fig. S11b). However,

these differences are obscured in our experiment by thermal and lifetime broadening, preventing

us from determining the symmetry of the underlying order parameter.

One might also wonder whether the temperature dependence of these curves could provide

additional information about the symmetry of the superconducting order parameter. Although

we do expect differences in both the shape of the spectrum and in the temperature dependence

of the magnitude of the order parameter as a function of temperature ∆(T), there are at least

three reasons that this analysis fails in practice: (1) The shape of the expected dI/dV curves

at higher temperatures are nearly indistinguishable due to thermal broadening. (2) We do not

have an independent measure of the electronic temperature in the MATBG, and therefore an

accurate measure of (T) is not possible (e.g. to compare the shape of these curves). (3) The

edge-tunneling process may include tunneling into a thin, proximitized metal region between the

insulator and superconductor that produces an underestimation of the true bulk value of the gap

in the superconductor. To support this, we have performed further calculations to investigate

whether it would be possible to distinguish between s-wave and d-wave order parameters from

the temperature dependence of the spectral curves from device C. In Figure S12, we show (a) our

background corrected data, (b) a model for the temperature dependence of an s-wave spectrum

including thermal broadening and (c) a similar model for a d-wave gap. The two models are based

on the tunneling current expressions given in SI Eqs. (1) and (2), using the approximate formula

[25],

∆(T ) = ∆(0) tanh (πkbTc/∆(0)
√
a(T/Tc − 1)), (3)

with ∆(0) = 51 µeV and Tc = 0.85 K (in reasonable agreement with our transport data given the

broadness of the superconducting transition and the uncertainty in the determination of the exact

electronic temperature of the system) to determine the evolution of the gap with temperature,

using a matching set of temperatures to those measured in the experiment. Thermal broadening

is included via the Fermi occupation function in Eq. 1 and quasiparticle lifetime broadening is set

to Γ = 14 µeV for the s-wave model and Γ ≈ 0 for the d-wave model, as in the best fits from

Fig. S11 at 100 mK. Using these parameters we find the best agreement with our experimental

curves over the full temperature range and conclude that, based on this model, thermal broadening

prevents distinguishing the spectral curves within the range of temperatures available in our system.

Moreover, a possible mismatch between the measured temperature of our Cernox thermometer and



22

0.2 0.1 0.0 0.1 0.2
Vbias…(mV)

20

40

60

80

100

120

140

dI
/d
V

…(
S)

a

T= 0.1…K
T= 0.2…K
T= 0.3…K
T= 0.4…K
T= 0.5…K

T= 0.6…K
T= 0.7…K
T= 0.8…K
T= 0.9…K
T= 1…K

0.2 0.1 0.0 0.1 0.2
Vbias…(mV)

20

40

60

80

100

120

140
b

0.2 0.1 0.0 0.1 0.2
Vbias…(mV)

20

40

60

80

100

120

140
c

Ns(E) Ns(E)(T)

0.85…K

51…eV

(T)

0.85…K

51…eV

Figure S12. Temperature evolution of the superconducting gap for device C. (a) Background

corrected data, (b) a model for the temperature dependence of an s-wave tunneling spectrum including

thermal broadening and (c) a similar model for a d-wave gap. The details of the models and the background

subtraction are explained in the text.

the electronic temperature in the MATBG further complicates this analysis. For instance, while

the s-wave and d-wave models shown for T = 0.1 K in panels (b) and (c) of Fig. S12 differ

slightly, a more accurate best-fit analysis (as shown in Fig. S12) shows that the d-wave model is

nearly indistinguishable from the s-wave model even if the electronic temperature is elevated only

slightly (e.g. ∼150 mK in the best fit analysis). It would therefore be difficult to draw a conclusion

distinguishing between these two superconducting (or other) order parameters based on our present

measurements. Nevertheless, future spectroscopic measurements from tunneling in similar devices

may uncover additional details of the superconductivity in MATBG.
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