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Moiré superlattices'> have recently emerged as a novel platform where correlated physics
and superconductivity can be studied with unprecedented tunability® . Although
correlated effects have been observed in several other moiré systems’ 7, magic-angle
twisted bilayer graphene (MATBG) remains the only one where robust superconductivity
has been reproducibly measured* °. Here we realize a new moiré superconductor, magic-
angle twisted trilayer graphene (MATTG)'® with dramatically richer tunability in
electronic structure and superconducting properties. Hall effect and quantum oscillations
measurements as a function of density and electric field allow us to determine the system's
tunable phase boundaries in the normal state. Zero magnetic field resistivity measurements
then reveal that the existence of superconductivity is intimately connected to the broken
symmetry phase emerging from two carriers per moiré unit cell. Strikingly, we find that
the superconducting phase gets suppressed and bounded at the Van Hove singularities
(VHs) partially surrounding the broken-symmetry phase, which is difficult to reconcile
with weak-coupling BCS theory. Moreover, the extensive in situ tunability of our system
allows us to achieve the ultra-strong coupling regime, characterized by a Ginzburg-Landau
coherence length reaching the average inter-particle distance and very large Tggr/Tr
ratios in excess of 0.1, where Tggr and T are the Berezinskii—Kosterlitz—Thouless (BKT)
transition and Fermi temperatures, respectively. These observations suggest that MATTG
can be electrically tuned close to the two-dimensional BCS-BEC crossover. Our results
establish a new generation of tunable moiré superconductors with the potential to
revolutionize our fundamental understanding and the applications of strong coupling
superconductivity.

When two or more layers of 2D materials are stacked together, a moiré superlattice with reduced
electronic bandwidth can arise from a small twist angle or lattice mismatch between the layers.
In such flat band systems, electronic interactions play a dominant role, which has led to the
observation of various correlated and topological phases®!”1%23, The case of MATBG has
attracted particular attention because of the intriguing superconducting phase it hosts* . While
signatures of superconductivity have also been reported in other systems®%11:13:17:22.23 " definitive



evidence of superconductivity, encompassing the observation of zero resistance, sharply
switching V-1 characteristics, as well as Josephson phase coherence, has only been reproducibly
demonstrated in MATBG to date.

In this article, we report the realization of ultra-strong coupling superconductivity in a new
magic-angle system, consisting of three adjacent graphene layers sequentially twisted by 6 and
—0 (Fig. 1a)'®. This new moiré superconductor, namely magic-angle twisted trilayer graphene
(MATTG), exhibits a rich phase diagram and extra electric field tunability. The latter allows us
to explore the interplay between correlated states and superconductivity beyond MATBG. Figure
1b-c shows the calculated band structures of MATTG without and with an electric displacement
field, D (Methods and Extended Data Figure 1). At zero D, MATTG has a set of flat bands, as
well as gapless Dirac bands'®?+26. The flat bands can be mathematically reduced to MATBG-

like bands with an effective twist angle V2 ~ 1.4 times smaller, while hybridization with the
Dirac bands is prohibited by the mirror symmetry'®2>26, This reduction leads to a larger magic
angle in MATTG, Oparr¢ ~ 1.6°. When the mirror symmetry is broken by the application of D,
the flat bands can hybridize with the Dirac bands (Fig. 1¢), allowing us to control the bandwidth
and interaction strength in the flat bands.

Robust Superconductivity in MATTG

We have fabricated three MATTG devices, all of which exhibit robust superconductivity
(Methods and Extended Data Figure 2,3). Here we focus on the device with a twist angle 8 =
1.57 £ 0.02°, i.e. particularly close to 8y 477¢- The coexistence of Dirac bands and flat bands in
MATTG can be directly observed in the transport data under perpendicular magnetic field B
(Fig. 1d-e). Resistive states at integer fillings of the superlattice, v = 4n/ng = +1,12,+43,+4
appear as vertical features, regardless of D, where n is the carrier density and n, = 80%/(v/3a?)
is the superlattice density (a = 0.246 nm is the graphene lattice constant). At zero D, we find an
extra set of quantum oscillations that emanates from the charge neutrality point (Fig. 1d), which
vanishes when a moderate D is applied (Fig. 1e). These observations are consistent with a
coexisting dispersive band tunable by D, as predicted by calculations (Fig. 1b-c). We further
confirm the Dirac character of the dispersive band by measuring its quantum Hall sequence (Fig.
1f). By tracking the Dirac Landau levels, we estimate the chemical potential u in the flat bands
as a function of v (Methods). We find ‘pinning’ of the chemical potential near each integer v
(Fig. 1g), indicating a cascade of phase transitions similar to observations in MATBG?*’ %, We
estimate the many-body bandwidth of the flat bands to be around 100 meV (40 meV on the hole
side and 60 meV on the electron side), relatively large compared to the 40~60 meV many-body
bandwidth in MATBG?"°.

When MATTG is doped near v = +2, we find robust superconducting phases. Figure 1h-i shows
the superconducting domes in the hole-doped (near v = —2) and electron-doped (near v = +2)
sides at optimal displacement fields. We find strong superconductivity with a T2°% (Methods) of
~ 29K and ~ 1.4 K for the regions v = =2 — § and v = +2 + §, respectively (0 < § < 1),
and weaker superconductivity with T?%% < 1K forthe v = —2 + § and v = +2 — § regions.
Figure 1j shows the voltage-current (¥x-I) characteristics in the v = —2 — § dome as a function
of T, exhibiting clear BKT transition behaviour, from which we extracted Tggr ~ 2.1 K.
Alternatively, the Halperin-Nelson fit*° of the longitudinal resistance R. versus T (Fig. 1j top-
left inset) gives a consistent value of Tggr ~ 2.25 K. The V-1 curve at the lowest temperature



shows a zero resistance plateau up to a critical current I, ~ 600 nA, above which the system
switches sharply to a resistive state. The sharp transitions and associated hysteresis (Extended
Data Figure 4) are characteristic of robust superconducting behaviour, which cannot be
accounted for by alternative mechanisms, such as Joule heating®'. To further confirm the
superconductivity, we measure the critical current in the v = +2 + § dome, near its boundary
with the resistive feature, as a function of perpendicular magnetic field B. We find a clear
Fraunhofer-like oscillation pattern (Fig. 1m), which can be explained by the interference between
superconducting percolation paths separated by normal regions due to charge inhomogeneity,
and constitutes a direct demonstration of Josephson phase coherence in MATTG. On the other
hand, the B-dependence of I, at optimal doping, near v = —2 — §, does not show a visible
oscillatory behaviour, likely due to the lack of normal islands in this strong superconducting
regime (Fig. 1k). Instead, we find a long superconducting ‘tail’ that remains up to 400 mT,
suggesting a high critical magnetic field B.: at this density.

Tunable Phase Boundaries

MATTG exhibits a rich phase diagram as a function of v, D, T, and B. In particular, the
prominent D dependence allows us to correlate the evolution of the superconducting phase
boundaries with normal-state magnetotransport features, which can provide important insight
into the nature of the superconductivity. Figure 2a shows Rxx as a function of v and D. Various
resistive features can be seen, especially at v = 0, +1, £2, +3, 4, some of which have
substantial D dependence (Extended Data Figure 5). In addition, there are zero resistance
regions, shown in bright blue, denoting superconductivity. These superconducting regions are
most prominent between |v| = 2 and |v| = 3, though they can also extend into neighbouring
regions. The extended regions at small D could be due to the interplay with the Dirac bands.

-1
Figure 2b shows the normalized Hall density vy = 4ny/ng, where ny = — (e dg%) , and Ry,

is the Hall resistance (Extended Data Figure 6). In MATTG, the Hall density exhibits three main
types of behaviour characterized by a different dependence on v: ‘gap/Dirac’, ‘reset’, and ‘VHs’
(Van Hove singularity), as illustrated in Fig. 2d-f. The trajectories of these features are
summarized in Fig. 2¢, along with the phase boundaries of superconductivity. The first type,
‘gap/Dirac’, denotes a continuous zero crossing of vy as v is increased (Fig. 2d). This behaviour
indicates that the Fermi level crosses a gap or Dirac-like point. The second type is a ‘reset’ to
zero, i.e. vy drops/rises suddenly close to zero but it does not change sign, and it starts
rising/dropping again in the same direction as it was before the ‘reset’ (see Fig. 2e for electron
side). It is typically observed across certain integer filling factors in MATBG>*, associated with
the Coulomb-induced phase transitions?’ >, and also occurs in MATTG near zero and small
displacement fields. Both types of features occur only close to integer fillings v = 0, +1, 2, ....
In contrast, the third type of feature exhibits a divergent vy with a zero-crossing (Fig. 2f), which
is associated with saddle-points on the Fermi surface known as Van Hove singularities. At a
VHs, vy ceases to represent the number of carriers in the system, as the electrons no longer
follow a closed semi-classical orbit. In 2D, the density of states (DOS) at a VHs diverges and, in
general, there is no restriction on the density at which a VHs occurs. We find that experimentally
they evolve and can merge with the other two types of features as D is varied.

Remarkably, we find that superconductivity emanating from v = £2 is consistently suppressed
upon reaching VHs, i.e. the superconductivity is ‘bounded’ by the VHs contours, as well as at the
‘resets’ near v = 3. Figure 2g shows Rxx versus v at D /ey = 0.64 V/nm (yellow dashed line in



Fig. 2a), and on the same plot Tggr versus v. Tggr falls to 0 K, and R.x begins rising, as the VHs
around v = —2.9 (denoted by pink shade) is reached. To further confirm the occurrence of the
VHs, we investigate the effective mass m* versus v, measured through quantum oscillations, at
the same D (Methods and Extended Data Figure 7). It exhibits a divergent trend near the VHs, as
expected in a 2D system. We note that the Hall density signature of the VHs bounding the v =
—2 + & superconducting dome appearing at high D, which has a relatively low T, requires a
smaller magnetic field of B = 0.1 ~ 0.3 T to reveal it (Extended Data Figure 6).

The observation that superconductivity vanishes right at the VHs is highly unusual. In BCS
superconductors, the order parameter and related quantities (T, I, etc.) are generally positively
correlated with the DOS of the parent state at the Fermi level. This trend is directly seen in the
weak-coupling BCS theory formula for T, ~exp(—1/AN) (where N is the DOS at the Fermi
level), regardless of whether the coupling A originates from electron-phonon coupling, spin
fluctuations, or other mechanisms. In particular, a divergent DOS at a VHs has in fact been
predicted to induce or enhance superconducting order in various systems*24. Our observation of
the opposite trend therefore indicates that the superconductivity in MATTG is unlikely to be
consistent with conventional weak coupling BCS theory. We emphasize that this clear
demonstration of a separation between strength of superconductivity and Fermi surface topology
is accessible only in MATTG at large D, where a VHs can be tuned near the vicinity of the
superconducting region. This does not occur at small D in MATTG, and this tunability is absent
in MATBG.

Ultra-Strong Coupling Superconductivity

The wide tunability of the MATTG system allows us to investigate in detail the coupling
strength of the superconducting state by measuring the Ginzburg-Landau coherence length &;; as
a function of various parameters. We first obtain a map of Tk in the entire phase space of v
and D to understand the evolution of the superconductivity (Fig. 3a). The zero-temperature
superconducting coherence length &;; (0) can be determined by measuring the critical
temperatures T, at different perpendicular magnetic fields B (Methods and Extended Data Figure
8). We perform this analysis as a function of either v or D, while the other parameter is kept
fixed at the optimal point, and the extracted &;; values are overlaid on the corresponding Tyt
plots in Fig. 3b-c. We find that MATTG has an extremely short coherence length, reaching down
to ;. (0) ~ 12 nm near the optimal point, which is comparable to the interparticle distance. For
comparison, in Fig. 3b-c we show the expected mean interparticle distance dpqrticie = 1" |=1/2,

where n* = ||v| — 2|ns /4 is the carrier density counting from v = —2 (as suggested by both
quantum oscillations and Hall density measurements, see Fig. 4 and Extended Data Figure 6). In
the “‘underdoped’ region of the superconducting dome (—2.4 < v < —2.15), we find that the
coherence length is in fact bounded by the interparticle distance.

These observations constitute a first indication that MATTG is a superconductor that can be
tuned close to the BCS-BEC crossover. The saturation of &;; at the interparticle distance
suggests that a large fraction of the available carriers are condensed into Cooper pairs, i.e.
ngr/n" < 1, where ngy is the superfluid density, in contrast to conventional superconductors
where only a tiny fraction of electrons are condensed. This difference can be captured in the
framework of the BCS-BEC crossover, as the system is tuned from the weak coupling regime
(T,/Tr < 0.1, where Tr = mh?n*/(m*kg) is the Fermi temperature (kg is the Boltzmann



constant and m* is the measured effective mass,) to the strong coupling regime (T, /Tr = 0.1).
To estimate how close MATTG near its optimal doping is to the BCS-BEC crossover, we
measure the ratio Tggr /T as a function of v and D (Fig. 3d-e). As true long-range order does
not exist in 2D, in both the BCS and BEC limits the superfluid undergoes a BKT transition at
Tgxr * ngs/ m*¥. We can therefore use the ratio Tgir/Tr to quantify the superfluid fraction
nsr/n* in both regimes. In the BCS-BEC crossover in two-dimensions, Tgkr/Tr has an upper
bound of 0.125%. Remarkably, our experimentally extracted Tyt /Tr indeed reaches values in
excess of 0.1, with maximum values close to 0.125. This indicates that the superconductivity in
MATTG is likely of strong coupling nature, and possibly close to the BCS-BEC crossover. For
comparison with other strong 2D superconductors, the Tggr/Tr ratio is ~ 0.05 (T, /T ~ 0.08)
in MATBG?*, and T, /T ~0.04 in LixHfNCI*’. Another strong 2D superconductor is monolayer
FeSe grown on STO, for which very high T, /T ratios, of order ~ 0.1, have been reported?®,
though transport data show substantially broad R-T transitions, which may indicate a lower
Tgr/Tr ratio™.

Superconductivity Emerges from |v| = 2 Phase

To gain further insight into the MATTG superconducting phase diagram, we analyze the type of
carriers involved in the superconductivity. Figure 4a-b shows quantum oscillations
measurements in the —4 < v < 0 range, at large and small displacement field, respectively. The
corresponding data for electrons, i.e. in the 0 < v < +4 range, are shown in Fig. 4f-g. At small
D (including zero) there is a ‘reset’ at |[v| = 2, which is manifested as an outward-facing (away
from v = 0) Landau fan originating from |v| = 2 (Fig. 4b,g). These fans end near |v| = 3, where
new outward fans start, consistent with the ‘resets’ occurring there (Fig. 2b-c), which indicates
phase transitions to a different broken symmetry phase ground state?’?°. At these small D values,
the superconductivity is restricted to the regions between |v| = 2 and |v| = 3 (Fig. 2a-c), a
behaviour summarized in Fig. 4e.

At large D, the phase diagram changes substantially (Fig. 2), where superconductivity is now
bounded by VHs in some regions, and extra superconducting branches appear, particularly strong
forv = +2 — § (Fig. 3a). These features are correlated with inward-facing (towards charge
neutrality) fans starting to develop at |v| = 2 (Fig. 4a,f), which meet the fans from v = 0 (hole
side) or v = +1 (electron side) at VHs. This indicates that the states that result from the removal
of electrons (holes) from v = +2 (v = —2) remain adiabatically connected to the ground state at
|v| = 2, until the VHs is reached. This is different from the small D case, where the system
immediately goes through a phase transition across the ‘resets’. The data at intermediate D are
shown in Extended Data Figure 9. The evolution between the ‘reset’-type features and ‘VHs’-
type features might be related to a change in the bandwidth and band topology as the Dirac bands
start to hybridize with the flat bands (Fig. 1b-c). As one possibility, it has been suggested that the
positions of the VHs in the single-particle flat bands help determine the occurrence of a flavour
symmetry breaking phase transition, as well as the filling factor at which they occur®. When a
symmetry breaking occurs right at integer fillings, it appears as a ‘reset’; when it occurs slightly
before the integer fillings, it appears as a ‘“VHs’ feature in Hall density at the phase transition,
followed by a ‘gap/Dirac’ feature at the integer filling®°.

For both cases, we find the superconductivity to be still bounded within the regions where the
carriers are connected to the |v| = 2 ground state, as summarized in Fig. 4c-d. These
observations indicate that the many-body ground state emerging from the broken-symmetry



phase transition at |[v| = 2 plays an essential role in forming robust superconductivity, since
superconductivity appears as carriers are added to or subtracted from that state, and it vanishes
when the normal state of the system changes to a different phase, either through a ‘reset’ to the
|v| = 3 broken-symmetry phase (at small D) or througha VHstov =0,v = +1,or |v| = 4
phases at high D.

Our experiments point towards a strong-coupling mechanism for superconductivity that is deeply
tied to the ground state at v = +2, and where the maximum T, is mostly determined by the
carrier density rather than the precise structure of the DOS. At the same time, we also note that
the presence of VHs can affect the phase transitions which underlie the symmetry broken phases.
These observations should be taken into consideration in the development of theoretical models
for moiré superconductors with ultra-strong coupling strength. A noteworthy question is: what
makes MATBG and MATTG robust superconductors? One possibility is that they both have
certain symmetry properties, in particular approximate C, symmetry*’. Interestingly, this
symmetry is absent in other graphene-based moiré¢ systems. We hope future investigations on
other C,-symmetric moiré systems will determine if this symmetry is indispensable for the
formation of strong coupling superconductivity in moir¢ flat bands.
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Main Figure Legends

Figure 1. Electronic structure and robust superconductivity in mirror symmetric magic-
angle twisted trilayer graphene (MATTG). (a) MATTG consists of three graphene monolayers
stacked in a symmetric arrangement (by rotating with angles 8 and —6 sequentially between the
layers). (b-c) Calculated band structure of MATTG at (b) zero and (c) finite perpendicular
electric displacement field D /ey =0.2 V/nm for valley K (bands for valley K' can be obtained by
time-reversal symmetry), showing flat bands and Dirac bands near the charge neutrality point.
The colour represents the mirror symmetry character of the eigenstates, which varies from purple
(symmetric) to orange (anti-symmetric, see Methods). Finite D lifts the mirror symmetry and
hybridizes the flat and Dirac bands. (d-e) Magnetotransport data (derivative of Hall resistance Ruy
over B) of MATTG at D/ey = 0 V/nm and D /g, = 0.54 V/nm, respectively. At D=0, we observe
extra Landau levels demonstrating the presence of coexisting Dirac bands, which are lifted by
the displacement field. (f) Longitudinal resistance R« and Hall conductivity oy, as a function of

inverse magnetic field 1/B, at moir¢ filling factor v < 4 as marked by the purple arrow above (d).
2
The quantization of Oxy at 2,6,10, ... % indicates the presence of the massless Dirac bands. (g)

Estimated chemical potential as a function of v extracted from the evolution of Dirac band
Landau levels (see Methods), showing a pinning behaviour at all integer fillings. (h-1) Rxx versus
T and v showing the superconducting regions near v = —2 and v = +2, at D /¢, = -0.44 V/nm
and D /ey = 0.74 V/nm, respectively. (j) Vxx-I curves as a function of temperature at optimal
doping in the v = —2 — § dome. The top-left inset shows a fit of R.w-T data with the Halperin-
Nelson formula®® R o« exp[—b /(T — Tgxr)*/?], which gives Tgxr ~ 2.25 K. The bottom-right
inset shows the Vi-I curves in log-log scale, and the dashed line denotes where its slope is
approximately 3 (Vi o I3), indicating Tgxr ~ 2.1 K. (k-m) Critical current versus magnetic field
at(k)v=-24,D/ey =-0.44 V/nm, and (m) v = +2.22, D /g, = -0.44 V/nm. In (k), the
critical current shows a long tail up to 400 mT, while (m) shows a clear Josephson interference
pattern.

Figure 2. MATTG phase diagrams. (a) R« at B=0 T and (b) normalized Hall density vy =

-1
4ny/ng at B=+1.5T, versus v and D, where the Hall density ny = — (e %) and ny is the

superlattice density. Data are taken at 7= 70 mK. Superconductivity is represented by bright
blue regions in (a). In the Hall density shown in (b), we find three types of features which are
schematically sketched in (¢) and denoted by ‘gap/Dirac’ (red), ‘reset’ (yellow), and ‘“VHs’ (dark
blue). The blue regions in (c) denote the superconducting phase as determined in (a). The
branches near v = —2 + § at large D and the regions at small D, all denoted by light blue,
correspond to very weak superconductivity. The behaviour of vy versus v for each of these
features is shown in (d-f). (d) At a ‘gap/Dirac’ feature, vy changes linearly with v while crossing
zero. (e) At a ‘reset’ feature, vy rapidly drops to zero but without changing sign (here shown for
v > 0). (f) Ata ‘“VHs’ feature, vy diverges and changes sign at a Van Hove singularity. (g-h)
Plots of (g) R,, and BKT transition temperature Tggr, and (h) effective mass m* as function of
v, taken at the displacement field indicated by the yellow dashed line in (a-b) (D /g, = 0.64



V/nm). Tgxr approaches zero and m* shows a peak around the VHs, which is represented by the
pink region. m, is the electron mass. The dashed guidelines in (h) correspond to a logarithmic
divergence in the DOS at the VHs. The error bars in (h) correspond to a confidence interval of
0.9.

Figure 3. Ultra-strong coupling superconductivity and proximity to the BCS-BEC
crossover. (a) 3D map of the BKT transition temperature Tggr versus v and D. The optimal
(Vopt> Dopt/€0) point corresponding to the maximum Ty is (-2.4, -0.44 V/nm). (b-c) Line cuts
of Tgxr and extracted Ginzburg-Landau coherence length &, versus (b) v, or (c) D, while the
other variable is kept at the optimal value. The data points and error bars show &;; extracted with
T30% TA0% and T2°% from top to bottom, respectively (see Methods for details). The red
dashed lines show the expected interparticle distance dpgyticre = |1° |=1/2 for the carrier density

n*, which starts counting fromv = =2, n* = ||v| — 2|ns /4. The Ginzburg-Landau coherence
length approaches the interparticle distance around the optimal point in the phase diagram where
Tgkr 1s the highest. The background colour plot shows Ry versus 7 and v. (d-e) Effective mass,
m* in units of the electron mass, m, (upper panel) and the Tggr /T ratio (lower panel) as a

function of v or D (same line cuts as in (b-c)). The Fermi temperature is calculated from T =
wh2n*
m*k,B
which represents the upper bound of Tgx/Tr in the BCS-BEC crossover in 2D, whose value is
0.125. The error bars correspond to a confidence interval of 0.9.

. Around optimal doping and displacement field, Tgxr/TF approaches the blue dashed line,

Figure 4. Connection between superconductivity and carriers emerging from the |v| = 2
phase. (a-b) Landau fan diagrams (Rxx versus v and B, upper panel) and their Landau level
designations (lower panel) in the hole-doped side (v < 0) for large D (D /gy = -0.64 V/nm), and
small D (D /gy = 0 V/nm), respectively (see Extended Data Figure 9 for intermediate D). (f-g)
Landau fan diagrams and designations in the electron-doped side (v > 0) at (f) D /g, = -0.77
V/nm and (g) D /gy, = 0 V/nm (see Extended Data Figure 9 for an intermediate D). The inset in
(f) shows the derivative dR,.,/dB of the zoom-in region denoted by the pink dashed rectangle in
the upper panel. These Landau fans indicate that at small D, the carriers are always hole-like
(electron-like) on the —4 < v < 0 (0 < v < 4) side, and ‘resets’ occur at v = +1,+2, +3,
similar to previous studies in MATBG. On the other hand, at large D, carriers with opposite
polarity (i.e. electron-like at —4 < v < 0 or hole-like at 0 < v < 4) dominate near v = —4, —2
(v < +2,+4). The VHs are responsible for the transitions between carriers with different
polarities. The ‘resets’ near |v| = 3 are no longer present, and the outward-facing Landau fans
from |v| = 2 directly meet the inward-facing fans from |v| = 4 at VHs. These behaviours of the
carrier types and numbers are schematically summarized in (c-e), with superconducting regions
denoted by purple shades. We find that superconductivity is only found in the regions where the
carriers originate from the v = +2 states, i.e. when the Landau fan at that density converges
towards v = +2. The high v part in (c) and (f) is limited by the maximum gate value we can
apply before leakage, but the trend of the carrier dynamics can be deduced from the Hall density
map in Fig. 2b. [We note the at small D, there are slight shifts in v, which may be attributed to
the interplay with the Dirac bands.]

Methods



Sample Fabrication

Our samples consist of three sheets of monolayer graphene, with twist angles 8 and —6 for the
top/middle and middle/bottom interfaces, respectively, which are then sandwiched between two
hBN flakes 30~80 nm thick. We first exfoliate the hBN and graphene flakes on SiO2/Si
substrates, and analyze these flakes with optical microscopy. The multilayer stack is fabricated
using a dry pick-up technique, where a layer of poly(bisphenol A
carbonate)(PC)/polydimethylsiloxane (PDMS) on a glass slide is used to pick up the flakes
sequentially using a micro-positioning stage. To ensure the angle alignment between the
graphene layers and to reduce strain, they are in sifu cut from a single monolayer graphene flake
using a focused laser beam?’. The hBN flakes are picked up while heating the stage to 90 °C,
while the graphene layers are picked up at room temperature. The resulting structure is released
on the prepared hBN on Pd/Au stack at 175 °C. We define the Hall-bar geometry with electron
beam lithography and reactive ion etching. The top gate and electrical contacts are thermally
evaporated using Cr/Au. Schematics and optical picture of the finished devices are shown in
Extended Data Figure 2.

Measurement Setup

Transport data are measured in a dilution refrigerator with a base electronic temperature of ~70
mK. Current through the sample and the four-probe voltage are first amplified by 10’ V/A and
1000, respectively, using current and voltage pre-amplifiers, and then measured with SR-830
lock-in amplifiers, synchronized at the same frequency between 1~20 Hz. Current excitation of 1
nA or voltage excitation of 50 uV to 100 uV is used for resistance measurements. For dc bias
measurements, we use a BabyDAC passing through a 10 MQ resistor to provide the dc bias
current, and measure the dc voltage by Keysight 34461 A digital multimeter connected to the
voltage pre-amplifier.

Band Structure Calculation

The band structures shown in Fig. 1b-c are calculated using the continuum model for twisted
bilayer graphene’*!, extended with a third layer on the top with the same twist angle as the
bottommost layer'®2>2642_ For simplicity, we neglect the direct coupling from topmost and
bottommost layers, and we use off-diagonal and diagonal interlayer hopping parameters w = 0.1
eV and w' = 0.08 eV, respectively, the latter value empirically accounting for a small relaxation
of the lattice. We note that the Fermi velocity of the gapless Dirac bands using these parameters
is the same as the monolayer graphene value.

The colour of the curves in Fig. 1b-c represents the mirror symmetry character of the eigenstates,
which we evaluate by projecting the wavefunction of the eigenstate in the topmost layer onto the
bottommost layer and calculating its inner product with the wavefunction in the bottommost
layer. This evaluates to 1 for a mirror symmetric eigenstate (coloured as orange) and -1 for a
mirror antisymmetric eigenstate (coloured as purple), and between -1 and 1 for a non-symmetric
state. We find that at zero displacement field, the flat bands have symmetry character of 1 and
the Dirac bands have -1. In other words, the flat bands in MATTG arise from mirror symmetric
hopping from the outer layers onto the center layer. Without a displacement field, the Dirac



bands cannot couple to the flat bands due to this symmetry protection, though the electrons in the
Dirac bands may still participate in the correlation-driven phenomena in the flat bands via
Coulomb interactions.

The effect of displacement field is taken into account by imposing an interlayer potential
difference AV = d - D/¢,, where d~0.3 nm is the interlayer distance. Due to the screening by
the outer layers, the actual electric field between the layers will be less than the externally
applied field. While we can qualitatively capture the effect of the external displacement field in
this calculation, a self-consistent treatment is required to accurately solve such a problem, which
is beyond the scope of this mostly experimental paper. We note that these calculations do not
take into account high-order and non-local interlayer coupling terms, which create a more
pronounced particle-hole asymmetry than shown here?>-26-3%4243,

Stacking Alignment

Twisted trilayer graphene (TTG) has an extra shift degree of freedom compared to twisted
bilayer graphene (TBG). While the topmost and bottommost layers are not twisted with respect
to each other, their relative stacking order can have a significant effect on the single-particle
band structure. Among the configurations, the ones with A-tw-A stacking and A-tw-B stacking
(‘tw’ denotes the middle twisted layer) have the highest symmetry, as shown in Extended Data
Figure 1a-b. In particular, only A-tw-A stacking possesses a mirror symmetry and it was shown
to have the lowest configuration energy among all possible stacking orders for a given twist
angle®. Extended Data Figure 1c-f shows the calculated band structures of the A-tw-A and A-
tw-B configurations at zero and finite displacement fields. Furthermore, Extended Data Figure
1g-j shows the calculated Landau level spectrum of the corresponding cases near charge
neutrality**. In these calculations, we also included a small C3-symmetry breaking term* to
reproduce the 4-fold Landau level degeneracy observed in experiments (f = —0.01 following
the conventions of Zhang et al*’). We find that in the case of A-tw-A stacking, the Landau level
sequence near charge neutrality is +2, +6, +10 ... regardless of whether a displacement field is
applied, while in the case of A-tw-B stacking the application of a displacement field leads to a
complicated evolution of the Landau level that no longer follows the same sequence. The
displacement field also induces a global bandgap in the A-tw-B configuration, while keeping A-
tw-A gapless.

From our experimental observations, our MATTG samples are more likely to possess A-tw-A
stacking than other configurations, for the following reasons. Firstly, unlike MATBG, we do not
find an insulating state at v = +4 at any displacement field, suggesting that the system does not
have a global energy gap. Secondly, as shown in Extended Data Figure 1k-m, the strongest
Landau level sequence near the charge neutrality point is always +2,+6, £10, £14, ... with or
without displacement fields. Both of these findings are in agreement with the A-tw-A stacking
case, as discussed above. We note that, while it is difficult to achieve exactly identical top and
bottom angles, from our experiments it seems that a minor difference might not qualitatively
affect the role of mirror symmetry.

Chemical Potential Estimate



As the coexisting flat bands and Dirac bands share the same chemical potential, we can utilize
the transport features of the Dirac bands as shown in Fig. 1d to determine the n-u relationship in
the flat bands. Specifically, at a finite magnetic field B and in the absence of D, we assume that
the flat bands host a charge density ny and the Dirac bands host a charge density ng, such that

n = nf + ng.

Under finite B, the Dirac bands are quantized into fourfold degenerate Landau levels labeled by
index N = 0,+£1, £2, .... In transport data, if we designate the centers of R, peaks (see e.g. Fig.
1f) as the center of N-th Landau level (nof the Landau level gaps), n; and py follow

_4NB
b0 (1)
Ug = vpV2ehNB sgn(N),

ng

where ¢y = h/e is the flux quantum and the factor 4 accounts for spin and valley degeneracies.
sgn(N) is the sign of N. We use a Fermi velocity v = 10® m/s for this estimation. Since n,; and
Uq are only functions of NB, they are known once we determine the Landau level index N,

which is evident from the Hall conductivity in the gaps between them oy, = 4 (N + %) e?/h (see
Fig. 1f). Therefore, along the trajectory of N-th Landau level in a n-B map, we can determine the
ng-Uy relationship for the flat bands as

4NB

b0 (2)
K = vpV2ehNB sgn(N).

Tlf=7’l—

We performed this extraction for |[N| = 1,2,3,4 and the results are consistent, as shown in Fig.
1f. The estimated many-body bandwidth of the flat bands from this extraction is around 100
meV, whereas that of MATBG is 40~60 meV?"?%%, This many-body bandwidth includes the
Coulomb interaction, which is in principle larger in MATTG than in MATBG due to the smaller
unit cell.

Hall Density Analysis

The Hall density in Fig. 2b is calculated from R,, measured and anti-symmetrized at B= 1.5 T.
The reason for choosing this magnetic field is to fully suppress the superconductivity at v =

—2 — §, which has a relatively high critical magnetic field approaching 1 T because of the short
Ginzburg-Landau coherence length. Extended Data Figure 6a-c show representative linecuts in
the maps of Ry, Ry, and Hall density vy, with the Hall features (‘gap/Dirac’, ‘reset’, or ‘VHs”)
and superconducting regions annotated. While all major superconducting domes are bounded by
the Hall features, we notice a few exceptions of weak superconductivity that are not bounded.
For example, at zero displacement field (Extended Data Figure 6¢), there is a weak signature of
superconductivity beyond the reset around v = —3.2, which has a small but nonzero resistance.
We also note that in Fig. 2b, there are some small regions, right before v = +1 and v = +2 in
some range of D, where there are signatures of a more complex behaviour in vy, with VHs



possibly very close to the ‘resets’. These regions need further investigation for a complete
understanding.

The weak superconducting region at v = —2 + § at large D is also seemingly not bounded by a
VHs in the main Hall density plot taken at B=+1.5 T (see Fig. 2a-b). However, we find that
signatures of VHs boundary can be identified if we measure the Hall density using a smaller B,
as shown in Extended Data Figure 6d. By comparing to R,, data shown in Extended Data Figure
6e, we can see that although not perfectly matching, there is a clear correlation between the VHs
and the superconductivity boundary. Furthermore, the Landau fans at finite D (Fig. 4a and
Extended Data Figure 9a) show signatures of inward-facing fan at v = —2 + §, supporting the
existence of carriers from v = —2. However, the inward fan as well as the superconductivity in
this region appears to be extremely fragile, which might be related to why the VHs boundary is
invisible when measured at higher B.

T, and Coherence Length Analysis

The mean-field T, is extracted by first fitting the high-temperature part of the data to a straight
line r(T) = AT + B, and then find the intersection of R, (T) with p - v(T), where p is the
percentage of normal resistance (we use 50% unless otherwise specified).

We extract the Ginzburg-Landau coherence length from the B-dependence of T,, using the
Ginzburg-Landau relation T, /T,, = 1 — [(2mé2,)/®o |B,, where ®, = h/2e is the
superconducting flux quantum and T, is the mean-field critical temperature at zero magnetic
field (slightly higher than Tggr). As shown in Extended Data Figure 8, the mean-field T, at
different B is extracted at different percentages p = 30%, 40%, and 50% of the normal resistance
fit (shown as dashed lines). The insets show the extracted T, using different thresholds. The
Ginzburg-Landau coherence length &;; is then obtained from a linear fit of T, versus B, the x-
intercept of which is equal to ®,/(2m&2,). The different thresholds yield slightly different but
consistent coherence length, which we plot as the data points (40%) and errorbars (50%, 30%) in
Fig. 3b-c. Note that in the presence of charge and/or twist angle disorder, values for é;;, T,, and
Tkt should be interpreted as spatial averages of the corresponding local quantities.

Effective Mass Analysis

Effective mass of MATTG is extracted from the 7-dependent quantum oscillations in a
perpendicular magnetic field using the standard Lifshitz-Kosevich formula*’. Extended Data
Figure 7a-b show representative quantum oscillations at v = —2.86 and v = —2.5, respectively,
at D /ey =-0.44 V/nm. Starting from raw resistance data R, we first remove a smooth
polynomial background in B~! and obtain AR. We then select the most prominent peak/valley in
AR, and evaluate its change from the valley to the peak as a function of temperature, SR(T). We
notice that in some curves, such as those shown in Extended Data Figure 7a-b, the high-field part
of the oscillation is either split (Extended Data Figure 7a) or has a higher periodicity (Extended
Data Figure 7b) than the fundamental frequency that corresponds to the carrier density, which we
attribute to broken-symmetry states. We avoid using those peaks for extracting effective mass, as



they tend to overestimate the effective mass m* and underestimate Tr. SR(T) is subsequently fit
with the Lifshitz-Kosevich formula

aT
SR(T) =b , 3
0 sinh aT )
where a, b are fitting parameters. The effective mass m* is then extracted from
. heB @
m= 2m2kpg @

where B is the average of the peak and valley positions The fit is shown in the insets of
Extended Data Figure 7a-b, from which we obtain ™ =1.25+40.13 and = = 0.95 + 0.03,

Mme

respectively. Since Tggr at these two points are 1. 11 K and 2.09 K, respectively, the Tggr/Tr
ratio is 0.041+£0.004 and 0.100+0.003, respectively.

For the effective mass data in Fig. 2h and Fig. 3d-e, we performed the extraction with less points
in temperature, as exemplified in Extended Data Figure 7c-e. We manually select the peak/valley
position (shown as triangles) for each density/displacement field, and the mass is obtained from
the same fit as above, as shown in Extended Data Figure 7f. We have checked that this extraction
is consistent with the extraction using more data points in 7 for the representative curves shown
(Extended Data Figure 7a-b), which justifies the analysis with coarser data points in 7.
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Extended Data Figure Legends

Extended Data Figure 1. Stacking order in MATTG. (a-b) Illustrations of (a) A-tw-A
stacking and (b) A-tw-B stacking, where ‘tw’ denotes the middle twisted layer (L2, orange) and
A/B represents the relative stacking order between the topmost (L3, green) and bottommost (L1,
blue) layers. (c-f) Continuum-model band structures of (c-d) A-tw-A stacked and (e-f) A-tw-B
stacked MATTG at zero and finite displacement fields. The twist angle is 8 = 1.57° for all plots.
(g-j) Calculated Landau level sequence corresponding to the bands in (c-f). The size of the dots
represents the size of the Landau level gaps in the Hofstadter spectrum. For A-tw-A stacking, the
major sequence of filling factors near the charge neutrality is +2, +£6, =10... regardless of the
displacement field, while for A-tw-B stacking the Landau levels evolve into a symmetry-broken
sequence that has 0, +8 as the dominant filling factors with largest gaps in a finite displacement
field. An anisotropy term of 5=-0.01 is included in all of the above calculations (see Methods).
(k-m) Experimentally measured Landau levels in MATTG near the charge neutrality. We find
the strongest sequence of £2, +6, +10... at both D=0 and D /&, = 0.77 V/nm, consistent with the
A-tw-A stacking scenario.

Extended Data Figure 2. Device schematics and device optical picture. (a) Our device
consists of hBN encapsulated MATTG etched into a Hall bar, Cr/Au contacts on the edge, and
top/bottom metallic gates. For transport measurements, we measure current /, longitudinal
voltage Vxx, and transverse voltage Vxy, while tuning the density v and displacement field D by
applying top gate voltage Viz and bottom gate voltage Vie. (b) Optical picture of devices A and B.
Device C is lithographically similar.

Extended Data Figure 3. Robust superconductivity in other MATTG devices (device B and
O). (a) Ru-T curve, (b) Vix-I and dVx/dI-I curves, and (c) I-B map in device B with a smaller-
than-magic angle 8 ~ 1.44°. In this device, maximum Tggr ~ 0.73 K. The choice of v is to
display the Fraunhofer-like Josephson intereference, which demonstrates the superconducting
phase coherence. (d-f) Similar plots as (a-c) for device C, with a twist angle 8 ~ 1.4°. Device C
has a maximum Tggr of ~0.68 K. (f) shows a regular B-suppression of /c with B. Both devices
show sharp peaks in dVx/d/ at their critical currents.

Extended Data Figure 4. VI curves and critical current I. in MATTG. (a) Forward (red)
and backward (blue) sweeps of Vx:-I curves for the optimal point v = —2.4 and D /g, = -0.44
V/nm. Inset shows clear hysteresis loop in the curve at / = 550~600 nA. (b) Map of /. versus v
and D in the major superconducting regions. (¢) Evolution of /c over D at v = —2.4, showing
that /. initially increases as finite D is applied, and quickly decreases beyond local maxima near
|D|/gg ~ 0.48 V/nm. (d) I versus D at v = +2.26 shows that the maximum /c occurs near
|ID|/&y ~ 0.71 V/nm, after which /. quickly decreases. The modulation of superconducting
strength in D may be due to change in the band flatness, as well as the interactions with the
electrons in the Dirac bands. (e-g) Vxx-I and dVx/dI-I curves for certain points in superconducting
domesnear (e)v=—-24+6,(f)v =42 —4,and (g) v = +2 + 3§, all showing sharp peaks in
dVx/dl at the critical current.



Extended Data Figure 5. R« versus v at T=70 mK, 5 K, and 10 K, measured at (a) D /¢, =
0.77 V/nm, (b) D /ey = 0.52 V/nm, (c) D /&gy = 0.26 V/nm, and (d) D /&y = 0 V/nm,
respectively.

Extended Data Figure 6. Hall density analysis. (a-c) Linecuts of R.x, Ry, and vy (right axis)
versus V at representative D from high to zero, showing the bounding of major superconducting
phases within the Hall density features. Vertical red, yellow, and dark blue bars denote
‘gap/Dirac’, ‘reset’, and ‘VHs’ features, respectively, while the sky blue regions denote
superconductivity. Purple dashed lines show the expected Hall density. We note that there are
some small regions, right before v = +1 and v = +2, for certain D values, where there are
signatures of a more complex behaviour in vy, with VHs possibly very close to the ‘resets’, as
shown in Fig. 2b. (d) Hall density vy extracted from smaller magnetic fields of B=0.1~0.3 T
reveals a VHs boundary close to the weak superconducting phase boundary near v = —2 + 4,
which is absent in the Hall density shown in (a-c) and Fig. 2b extracted from a higher magnetic
field of B =-1.5~1.5 T. (e) Rx in the same region as shown in (d), where the superconducting
boundary is close to the VHs. All measurements are performed at the base temperature 7' ~ 70
mK.

Extended Data Figure 7. Quantum oscillations and effective mass analysis. All data shown
here are measured at D /ey, = -0.44 V/nm. (a-b) Quantum oscillations at (a) v = —2.86 and (b)

v = —2.5 at different 7. Gray dashed lines show the peaks used for analysis. Inset shows the fit
to Lifshitz-Kosevich formula for the extraction of effective mass, yielding (a) m*/m, = 1.25 +
0.13 and (b) m*/m, = 0.95 %+ 0.03. (c-d) Quantum oscillations sampled at coarser points in 7
for the same v as in (a-b). Extracted effective mass values with these coarser points are (c)
m*/m, = 1.2 + 0.2 and (d) m*/m, = 0.96 + 0.09, matching the values from (a-b) within the
uncertainty. (¢) Quantum oscillations at v = —2.4 (optimal doping). (f) Lifshitz-Kosevich fits for
data shown in (c-¢), showing R normalized with its value at the lowest temperature. The peaks
chosen for extraction are marked with triangles in (c-e).

Extended Data Figure 8. Analysis of Ginzburg-Landau coherence length. (a-b)
Superconducting transitions at perpendicular magnetic fields from B=0T to B=0.2 T (40 mT
between curves) for (a)v=—-2—-3§ (v =—2.4)and (b)v = -2 + § (v = —1.84), from which
the Ginzburg-Landau coherence length &, is extracted. D /g, = -0.44 V/nm for both plots. Inset
shows T20%, T#0% and T.39% as a function of B, from which we extracted the coherence length
¢cp @s 9.4 nm, 12.4 nm, and 16.1 nm, respectively, forv = =2 — §. Forv = =2 + §, we
obtained 38.0 nm, 39.1 nm, and 37.1 nm, respectively. We note that for v = —2 — §, the Ru -T
curves develop an extra transition (‘knee’) below 7¢ at finite B, which is possibly related to the
melting transition between a vortex solid and a vortex liquid*®.

Extended Data Figure 9. Landau fans for intermediate D on the (a) hole-doped and (b)
electron-doped sides. They show the evolution between small D and large D, which exhibits a
hybridization of the features. (a) Landau fan diagram at D /gy = -0.34 V/nm for the hole-doped
side shows the fans emanating from all integer fillings. Inward-facing fan from v = —4 starts
developing, which meets the outward-facing fan from v = —3. Note also the appearance of an
inward-facing fan from v = —2, which meets the outward-facing fan from v = —1. These
observations agree with the formation of VHs around these two regions in the intermediate |D|,
where the electron-like carriers become hole-like, as illustrated in Fig. 4d, as well as identified in
Fig. 2b. Small region of superconductivity starts appearing at v = —2 + § while the carriers



from v = —2 are present, as shown in Fig. 2a. (b) Landau fan diagram at D /¢y, = -0.52 V/nm on
the electron-doped side shows similar VHs between v = +1 ~ 2, and v = +3 ~ 4. Similar to
the hole-doped side, an inward-facing fan from v = +2 develops and meets with the outward-
facing fan from v = +1. The density range of the inward-facing fan encompasses the appearance
of superconducting region at v = +2 — § at this D.
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Extended Data Figure 3
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Extended Data Figure 4
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Extended Data Figure 6
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Extended Data Figure 7
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Extended Data Figure 8
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Extended Data Figure 9
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