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Moiré superlattices1,2 have recently emerged as a novel platform where correlated physics 
and superconductivity can be studied with unprecedented tunability3–6. Although 
correlated effects have been observed in several other moiré systems7–17, magic-angle 
twisted bilayer graphene (MATBG) remains the only one where robust superconductivity 
has been reproducibly measured4–6. Here we realize a new moiré superconductor, magic-
angle twisted trilayer graphene (MATTG)18 with dramatically richer tunability in 
electronic structure and superconducting properties. Hall effect and quantum oscillations 
measurements as a function of density and electric field allow us to determine the system's 
tunable phase boundaries in the normal state. Zero magnetic field resistivity measurements 
then reveal that the existence of superconductivity is intimately connected to the broken 
symmetry phase emerging from two carriers per moiré unit cell. Strikingly, we find that 
the superconducting phase gets suppressed and bounded at the Van Hove singularities 
(VHs) partially surrounding the broken-symmetry phase, which is difficult to reconcile 
with weak-coupling BCS theory. Moreover, the extensive in situ tunability of our system 
allows us to achieve the ultra-strong coupling regime, characterized by a Ginzburg-Landau 
coherence length reaching the average inter-particle distance and very large 𝑻𝑻𝑩𝑩𝑩𝑩𝑩𝑩/𝑻𝑻𝑭𝑭 
ratios in excess of 0.1, where 𝑻𝑻𝑩𝑩𝑩𝑩𝑩𝑩 and 𝑻𝑻𝑭𝑭 are the Berezinskii–Kosterlitz–Thouless (BKT) 
transition and Fermi temperatures, respectively. These observations suggest that MATTG 
can be electrically tuned close to the two-dimensional BCS-BEC crossover. Our results 
establish a new generation of tunable moiré superconductors with the potential to 
revolutionize our fundamental understanding and the applications of strong coupling 
superconductivity. 

 

When two or more layers of 2D materials are stacked together, a moiré superlattice with reduced 
electronic bandwidth can arise from a small twist angle or lattice mismatch between the layers. 
In such flat band systems, electronic interactions play a dominant role, which has led to the 
observation of various correlated and topological phases3–17,19–23. The case of MATBG has 
attracted particular attention because of the intriguing superconducting phase it hosts4–6. While 
signatures of superconductivity have also been reported in other systems8,9,11,13,17,22,23, definitive 



evidence of superconductivity, encompassing the observation of zero resistance, sharply 
switching V-I characteristics, as well as Josephson phase coherence, has only been reproducibly 
demonstrated in MATBG to date. 

In this article, we report the realization of ultra-strong coupling superconductivity in a new 
magic-angle system, consisting of three adjacent graphene layers sequentially twisted by 𝜃𝜃 and 
−𝜃𝜃 (Fig. 1a)18. This new moiré superconductor, namely magic-angle twisted trilayer graphene 
(MATTG), exhibits a rich phase diagram and extra electric field tunability. The latter allows us 
to explore the interplay between correlated states and superconductivity beyond MATBG. Figure 
1b-c shows the calculated band structures of MATTG without and with an electric displacement 
field, D (Methods and Extended Data Figure 1). At zero D, MATTG has a set of flat bands, as 
well as gapless Dirac bands18,24–26. The flat bands can be mathematically reduced to MATBG-
like bands with an effective twist angle √2 ≈ 1.4 times smaller, while hybridization with the 
Dirac bands is prohibited by the mirror symmetry18,25,26. This reduction leads to a larger magic 
angle in MATTG, 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∼ 1.6°. When the mirror symmetry is broken by the application of D, 
the flat bands can hybridize with the Dirac bands (Fig. 1c), allowing us to control the bandwidth 
and interaction strength in the flat bands.  

Robust Superconductivity in MATTG 

We have fabricated three MATTG devices, all of which exhibit robust superconductivity 
(Methods and Extended Data Figure 2,3). Here we focus on the device with a twist angle 𝜃𝜃 =
1.57 ± 0.02°, i.e. particularly close to 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. The coexistence of Dirac bands and flat bands in 
MATTG can be directly observed in the transport data under perpendicular magnetic field B 
(Fig. 1d-e). Resistive states at integer fillings of the superlattice, 𝜈𝜈 = 4𝑛𝑛 𝑛𝑛𝑠𝑠⁄ = +1, ±2, +3, ±4 
appear as vertical features, regardless of D, where 𝑛𝑛 is the carrier density and 𝑛𝑛𝑠𝑠 = 8𝜃𝜃2/(√3𝑎𝑎2) 
is the superlattice density (𝑎𝑎 = 0.246 nm is the graphene lattice constant). At zero D, we find an 
extra set of quantum oscillations that emanates from the charge neutrality point (Fig. 1d), which 
vanishes when a moderate D is applied (Fig. 1e). These observations are consistent with a 
coexisting dispersive band tunable by D, as predicted by calculations (Fig. 1b-c). We further 
confirm the Dirac character of the dispersive band by measuring its quantum Hall sequence (Fig. 
1f). By tracking the Dirac Landau levels, we estimate the chemical potential 𝜇𝜇 in the flat bands 
as a function of 𝜈𝜈 (Methods). We find ‘pinning’ of the chemical potential near each integer 𝜈𝜈 
(Fig. 1g), indicating a cascade of phase transitions similar to observations in MATBG27–29. We 
estimate the many-body bandwidth of the flat bands to be around 100 meV (40 meV on the hole 
side and 60 meV on the electron side), relatively large compared to the 40~60 meV many-body 
bandwidth in MATBG27,29.  

When MATTG is doped near 𝜈𝜈 = ±2, we find robust superconducting phases. Figure 1h-i shows 
the superconducting domes in the hole-doped (near 𝜈𝜈 = −2) and electron-doped (near 𝜈𝜈 = +2) 
sides at optimal displacement fields. We find strong superconductivity with a 𝑇𝑇𝑐𝑐50% (Methods) of 
∼ 2.9 K and ∼ 1.4 K for the regions 𝜈𝜈 = −2 − 𝛿𝛿 and 𝜈𝜈 = +2 + 𝛿𝛿, respectively (0 < 𝛿𝛿 < 1),
and weaker superconductivity with 𝑇𝑇𝑐𝑐50% < 1 K for the 𝜈𝜈 = −2 + 𝛿𝛿 and 𝜈𝜈 = +2 − 𝛿𝛿 regions.
Figure 1j shows the voltage-current (Vxx-I) characteristics in the 𝜈𝜈 = −2 − 𝛿𝛿 dome as a function
of T, exhibiting clear BKT transition behaviour, from which we extracted  𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 ∼ 2.1 K.
Alternatively, the Halperin-Nelson fit30 of the longitudinal resistance Rxx versus T  (Fig. 1j top-
left inset) gives a consistent value of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 ∼ 2.25 K. The Vxx-I curve at the lowest temperature



shows a zero resistance plateau up to a critical current 𝐼𝐼𝑐𝑐 ∼ 600 nA, above which the system 
switches sharply to a resistive state. The sharp transitions and associated hysteresis (Extended 
Data Figure 4) are characteristic of robust superconducting behaviour, which cannot be 
accounted for by alternative mechanisms, such as Joule heating31. To further confirm the 
superconductivity, we measure the critical current in the 𝜈𝜈 = +2 + 𝛿𝛿 dome, near its boundary 
with the resistive feature, as a function of perpendicular magnetic field B. We find a clear 
Fraunhofer-like oscillation pattern (Fig. 1m), which can be explained by the interference between 
superconducting percolation paths separated by normal regions due to charge inhomogeneity, 
and constitutes a direct demonstration of Josephson phase coherence in MATTG. On the other 
hand, the B-dependence of 𝐼𝐼𝑐𝑐 at optimal doping, near 𝜈𝜈 = −2 − 𝛿𝛿, does not show a visible 
oscillatory behaviour, likely due to the lack of normal islands in this strong superconducting 
regime (Fig. 1k). Instead, we find a long superconducting ‘tail’ that remains up to 400 mT, 
suggesting a high critical magnetic field Bc2 at this density.  

Tunable Phase Boundaries 

MATTG exhibits a rich phase diagram as a function of 𝜈𝜈, D, T, and B. In particular, the 
prominent D dependence allows us to correlate the evolution of the superconducting phase 
boundaries with normal-state magnetotransport features, which can provide important insight 
into the nature of the superconductivity. Figure 2a shows Rxx as a function of 𝜈𝜈 and D. Various 
resistive features can be seen, especially at 𝜈𝜈 = 0, +1, ±2, +3, ±4, some of which have 
substantial D dependence (Extended Data Figure 5). In addition, there are zero resistance 
regions, shown in bright blue, denoting superconductivity. These superconducting regions are 
most prominent between |𝜈𝜈| = 2 and |𝜈𝜈| = 3, though they can also extend into neighbouring 
regions. The extended regions at small D could be due to the interplay with the Dirac bands. 

Figure 2b shows the normalized Hall density 𝜈𝜈𝐻𝐻 = 4𝑛𝑛𝐻𝐻/𝑛𝑛𝑠𝑠, where 𝑛𝑛𝐻𝐻 = −�𝑒𝑒 𝑑𝑑𝑅𝑅𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑
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, and 𝑅𝑅𝑥𝑥𝑥𝑥 
is the Hall resistance (Extended Data Figure 6). In MATTG, the Hall density exhibits three main 
types of behaviour characterized by a different dependence on 𝜈𝜈: ‘gap/Dirac’, ‘reset’, and ‘VHs’ 
(Van Hove singularity), as illustrated in Fig. 2d-f. The trajectories of these features are 
summarized in Fig. 2c, along with the phase boundaries of superconductivity. The first type, 
‘gap/Dirac’, denotes a continuous zero crossing of 𝜈𝜈𝐻𝐻 as 𝜈𝜈 is increased (Fig. 2d). This behaviour 
indicates that the Fermi level crosses a gap or Dirac-like point. The second type is a ‘reset’ to 
zero, i.e. 𝜈𝜈𝐻𝐻 drops/rises suddenly close to zero but it does not change sign, and it starts 
rising/dropping again in the same direction as it was before the ‘reset’ (see Fig. 2e for electron 
side). It is typically observed across certain integer filling factors in MATBG3,4, associated with 
the Coulomb-induced phase transitions27–29, and also occurs in MATTG near zero and small 
displacement fields. Both types of features occur only close to integer fillings 𝜈𝜈 = 0, ±1, ±2, …. 
In contrast, the third type of feature exhibits a divergent 𝜈𝜈𝐻𝐻 with a zero-crossing (Fig. 2f), which 
is associated with saddle-points on the Fermi surface known as Van Hove singularities. At a 
VHs, 𝜈𝜈𝐻𝐻 ceases to represent the number of carriers in the system, as the electrons no longer 
follow a closed semi-classical orbit. In 2D, the density of states (DOS) at a VHs diverges and, in 
general, there is no restriction on the density at which a VHs occurs. We find that experimentally 
they evolve and can merge with the other two types of features as D is varied.  

Remarkably, we find that superconductivity emanating from 𝜈𝜈 = ±2 is consistently suppressed 
upon reaching VHs, i.e. the superconductivity is ‘bounded’ by the VHs contours, as well as at the 
‘resets’ near 𝜈𝜈 = ±3. Figure 2g shows Rxx versus 𝜈𝜈 at 𝐷𝐷/𝜀𝜀0  = 0.64 V/nm (yellow dashed line in 



Fig. 2a), and on the same plot 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 versus 𝜈𝜈.  𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 falls to 0 K, and Rxx begins rising, as the VHs 
around 𝜈𝜈 = −2.9 (denoted by pink shade) is reached. To further confirm the occurrence of the 
VHs, we investigate the effective mass 𝑚𝑚∗ versus 𝜈𝜈, measured through quantum oscillations, at 
the same D (Methods and Extended Data Figure 7). It exhibits a divergent trend near the VHs, as 
expected in a 2D system. We note that the Hall density signature of the VHs bounding the 𝜈𝜈 =
−2 + 𝛿𝛿 superconducting dome appearing at high D, which has a relatively low 𝑇𝑇𝑐𝑐, requires a 
smaller magnetic field of 𝐵𝐵 = 0.1 ∼ 0.3 T to reveal it (Extended Data Figure 6).  

The observation that superconductivity vanishes right at the VHs is highly unusual. In BCS 
superconductors, the order parameter and related quantities (𝑇𝑇𝑐𝑐, 𝐼𝐼𝑐𝑐, etc.) are generally positively 
correlated with the DOS of the parent state at the Fermi level. This trend is directly seen in the 
weak-coupling BCS theory formula for 𝑇𝑇𝑐𝑐 ∼exp(−1/𝜆𝜆𝜆𝜆) (where 𝑁𝑁 is the DOS at the Fermi 
level), regardless of whether the coupling 𝜆𝜆 originates from electron-phonon coupling, spin 
fluctuations, or other mechanisms. In particular, a divergent DOS at a VHs has in fact been 
predicted to induce or enhance superconducting order in various systems32–34. Our observation of 
the opposite trend therefore indicates that the superconductivity in MATTG is unlikely to be 
consistent with conventional weak coupling BCS theory. We emphasize that this clear 
demonstration of a separation between strength of superconductivity and Fermi surface topology 
is accessible only in MATTG at large D, where a VHs can be tuned near the vicinity of the 
superconducting region. This does not occur at small D in MATTG, and this tunability is absent 
in MATBG.  

Ultra-Strong Coupling Superconductivity 

The wide tunability of the MATTG system allows us to investigate in detail the coupling 
strength of the superconducting state by measuring the Ginzburg-Landau coherence length 𝜉𝜉𝐺𝐺𝐺𝐺 as 
a function of various parameters. We first obtain a map of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 in the entire phase space of 𝜈𝜈 
and D to understand the evolution of the superconductivity (Fig. 3a). The zero-temperature 
superconducting coherence length 𝜉𝜉𝐺𝐺𝐺𝐺(0) can be determined by measuring the critical 
temperatures 𝑇𝑇𝑐𝑐 at different perpendicular magnetic fields B (Methods and Extended Data Figure 
8). We perform this analysis as a function of either 𝜈𝜈 or D, while the other parameter is kept 
fixed at the optimal point, and the extracted 𝜉𝜉𝐺𝐺𝐺𝐺 values are overlaid on the corresponding 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 
plots in Fig. 3b-c. We find that MATTG has an extremely short coherence length, reaching down 
to 𝜉𝜉𝐺𝐺𝐺𝐺(0) ∼ 12 nm near the optimal point, which is comparable to the interparticle distance. For 
comparison, in Fig. 3b-c we show the expected mean interparticle distance 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = |𝑛𝑛∗|−1/2, 
where 𝑛𝑛∗ = �|𝜈𝜈| − 2�𝑛𝑛𝑠𝑠/4 is the carrier density counting from 𝜈𝜈 = −2 (as suggested by both 
quantum oscillations and Hall density measurements, see Fig. 4 and Extended Data Figure 6). In 
the ‘underdoped’ region of the superconducting dome (−2.4 < 𝜈𝜈 < −2.15), we find that the 
coherence length is in fact bounded by the interparticle distance.  

These observations constitute a first indication that MATTG is a superconductor that can be 
tuned close to the BCS-BEC crossover. The saturation of 𝜉𝜉𝐺𝐺𝐺𝐺 at the interparticle distance 
suggests that a large fraction of the available carriers are condensed into Cooper pairs, i.e. 
𝑛𝑛𝑠𝑠𝑠𝑠/𝑛𝑛∗ ≲ 1, where 𝑛𝑛𝑠𝑠𝑠𝑠 is the superfluid density, in contrast to conventional superconductors 
where only a tiny fraction of electrons are condensed. This difference can be captured in the 
framework of the BCS-BEC crossover, as the system is tuned from the weak coupling regime 
(𝑇𝑇𝑐𝑐/𝑇𝑇𝐹𝐹 ≪ 0.1, where 𝑇𝑇𝐹𝐹 = 𝜋𝜋ℏ2𝑛𝑛∗/(𝑚𝑚∗𝑘𝑘𝐵𝐵) is the Fermi temperature (𝑘𝑘𝐵𝐵 is the Boltzmann 



constant and 𝑚𝑚∗ is the measured effective mass,) to the strong coupling regime (𝑇𝑇𝑐𝑐/𝑇𝑇𝐹𝐹 ≳ 0.1). 
To estimate how close MATTG near its optimal doping is to the BCS-BEC crossover, we 
measure the ratio 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 as a function of 𝜈𝜈 and D (Fig. 3d-e).  As true long-range order does 
not exist in 2D, in both the BCS and BEC limits the superfluid undergoes a BKT transition at 
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 ∝ 𝑛𝑛𝑠𝑠𝑠𝑠/𝑚𝑚∗35. We can therefore use the ratio 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 to quantify the superfluid fraction 
𝑛𝑛𝑠𝑠𝑠𝑠/𝑛𝑛∗ in both regimes. In the BCS-BEC crossover in two-dimensions, 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 has an upper 
bound of 0.12536. Remarkably, our experimentally extracted 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 indeed reaches values in 
excess of 0.1, with maximum values close to 0.125. This indicates that the superconductivity in 
MATTG is likely of strong coupling nature, and possibly close to the BCS-BEC crossover. For 
comparison with other strong 2D superconductors, the 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 ratio is ∼ 0.05 (𝑇𝑇𝑐𝑐/𝑇𝑇𝐹𝐹  ∼ 0.08) 
in MATBG4, and 𝑇𝑇𝑐𝑐/𝑇𝑇𝐹𝐹 ~0.04 in LixHfNCl37. Another strong 2D superconductor is monolayer 
FeSe grown on STO, for which very high 𝑇𝑇𝑐𝑐/𝑇𝑇𝐹𝐹 ratios, of order ∼ 0.1, have been reported38, 
though transport data show substantially broad R-T transitions, which may indicate a lower 
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 ratio38. 

Superconductivity Emerges from |𝝂𝝂| = 𝟐𝟐 Phase 

To gain further insight into the MATTG superconducting phase diagram, we analyze the type of 
carriers involved in the superconductivity. Figure 4a-b shows quantum oscillations 
measurements in the −4 < 𝜈𝜈 < 0 range, at large and small displacement field, respectively. The 
corresponding data for electrons, i.e. in the 0 < 𝜈𝜈 < +4 range, are shown in Fig. 4f-g.  At small 
D (including zero) there is a ‘reset’ at |𝜈𝜈| = 2, which is manifested as an outward-facing (away 
from 𝜈𝜈 = 0) Landau fan originating from |𝜈𝜈| = 2 (Fig. 4b,g). These fans end near |𝜈𝜈| = 3, where 
new outward fans start, consistent with the ‘resets’ occurring there (Fig. 2b-c), which indicates 
phase transitions to a different broken symmetry phase ground state27–29. At these small 𝐷𝐷 values, 
the superconductivity is restricted to the regions between |𝜈𝜈| = 2 and |𝜈𝜈| = 3 (Fig. 2a-c), a 
behaviour summarized in Fig. 4e. 

At large D, the phase diagram changes substantially (Fig. 2), where superconductivity is now 
bounded by VHs in some regions, and extra superconducting branches appear, particularly strong 
for 𝜈𝜈 = +2 − 𝛿𝛿 (Fig. 3a). These features are correlated with inward-facing (towards charge 
neutrality) fans starting to develop at |𝜈𝜈| = 2 (Fig. 4a,f), which meet the fans from 𝜈𝜈 = 0 (hole 
side) or 𝜈𝜈 = +1 (electron side) at VHs. This indicates that the states that result from the removal 
of electrons (holes) from 𝜈𝜈 = +2 (𝜈𝜈 = −2) remain adiabatically connected to the ground state at 
|𝜈𝜈| = 2, until the VHs is reached. This is different from the small D case, where the system 
immediately goes through a phase transition across the ‘resets’. The data at intermediate D are 
shown in Extended Data Figure 9. The evolution between the ‘reset’-type features and ‘VHs’-
type features might be related to a change in the bandwidth and band topology as the Dirac bands 
start to hybridize with the flat bands (Fig. 1b-c). As one possibility, it has been suggested that the 
positions of the VHs in the single-particle flat bands help determine the occurrence of a flavour 
symmetry breaking phase transition, as well as the filling factor at which they occur39. When a 
symmetry breaking occurs right at integer fillings, it appears as a ‘reset’; when it occurs slightly 
before the integer fillings, it appears as a ‘VHs’ feature in Hall density at the phase transition, 
followed by a ‘gap/Dirac’ feature at the integer filling39.  

For both cases, we find the superconductivity to be still bounded within the regions where the 
carriers are connected to the |𝜈𝜈| = 2 ground state, as summarized in Fig. 4c-d. These 
observations indicate that the many-body ground state emerging from the broken-symmetry 



phase transition at |𝜈𝜈| = 2 plays an essential role in forming robust superconductivity, since 
superconductivity appears as carriers are added to or subtracted from that state, and it vanishes 
when the normal state of the system changes to a different phase, either through a ‘reset’ to the 
|𝜈𝜈| = 3 broken-symmetry phase (at small D) or through a VHs to 𝜈𝜈 = 0, 𝜈𝜈 = +1, or |𝜈𝜈| = 4 
phases at high D. 

Our experiments point towards a strong-coupling mechanism for superconductivity that is deeply 
tied to the ground state at 𝜈𝜈 = ±2, and where the maximum 𝑇𝑇𝑐𝑐 is mostly determined by the 
carrier density rather than the precise structure of the DOS. At the same time, we also note that 
the presence of VHs can affect the phase transitions which underlie the symmetry broken phases. 
These observations should be taken into consideration in the development of theoretical models 
for moiré superconductors with ultra-strong coupling strength. A noteworthy question is: what 
makes MATBG and MATTG robust superconductors? One possibility is that they both have 
certain symmetry properties, in particular approximate 𝐶𝐶2  symmetry40. Interestingly, this 
symmetry is absent in other graphene-based moiré systems. We hope future investigations on 
other 𝐶𝐶2-symmetric moiré systems will determine if this symmetry is indispensable for the 
formation of strong coupling superconductivity in moiré flat bands.  
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Main Figure Legends 
Figure 1. Electronic structure and robust superconductivity in mirror symmetric magic-
angle twisted trilayer graphene (MATTG). (a) MATTG consists of three graphene monolayers 
stacked in a symmetric arrangement (by rotating with angles 𝜃𝜃 and −𝜃𝜃 sequentially between the 
layers). (b-c) Calculated band structure of MATTG at (b) zero and (c) finite perpendicular 
electric displacement field 𝐷𝐷/𝜀𝜀0 =0.2 V/nm for valley K (bands for valley K' can be obtained by 
time-reversal symmetry), showing flat bands and Dirac bands near the charge neutrality point. 
The colour represents the mirror symmetry character of the eigenstates, which varies from purple 
(symmetric) to orange (anti-symmetric, see Methods). Finite D lifts the mirror symmetry and 
hybridizes the flat and Dirac bands. (d-e) Magnetotransport data (derivative of Hall resistance Rxy 
over B) of MATTG at 𝐷𝐷/𝜀𝜀0 = 0 V/nm and 𝐷𝐷/𝜀𝜀0 = 0.54 V/nm, respectively. At D=0, we observe 
extra Landau levels demonstrating the presence of coexisting Dirac bands, which are lifted by 
the displacement field. (f) Longitudinal resistance Rxx and Hall conductivity 𝜎𝜎𝑥𝑥𝑦𝑦 as a function of 
inverse magnetic field 1/B, at moiré filling factor 𝜈𝜈 ≲ 4 as marked by the purple arrow above (d). 
The quantization of 𝜎𝜎𝑥𝑥𝑥𝑥 at 2, 6, 10, … 𝑒𝑒2

ℎ
 indicates the presence of the massless Dirac bands. (g) 

Estimated chemical potential as a function of 𝜈𝜈 extracted from the evolution of Dirac band 
Landau levels (see Methods), showing a pinning behaviour at all integer fillings. (h-i) Rxx versus 
𝑇𝑇 and 𝜈𝜈 showing the superconducting regions near 𝜈𝜈 = −2 and 𝜈𝜈 = +2, at 𝐷𝐷/𝜀𝜀0 = -0.44 V/nm 
and 𝐷𝐷/𝜀𝜀0 = 0.74 V/nm, respectively. (j) Vxx-I curves as a function of temperature at optimal 
doping in the 𝜈𝜈 = −2 − 𝛿𝛿 dome. The top-left inset shows a fit of Rxx-T data with the Halperin-
Nelson formula30 𝑅𝑅 ∝ exp[−𝑏𝑏/(𝑇𝑇 − 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵)1/2], which gives 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 ∼ 2.25 K. The bottom-right 
inset shows the Vxx-I curves in log-log scale, and the dashed line denotes where its slope is 
approximately 3 (𝑉𝑉𝑥𝑥𝑥𝑥 ∝ 𝐼𝐼3), indicating 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 ∼ 2.1 K. (k-m) Critical current versus magnetic field 
at (k) 𝜈𝜈 = −2.4, 𝐷𝐷/𝜀𝜀0 = -0.44 V/nm, and (m) 𝜈𝜈 = +2.22, 𝐷𝐷/𝜀𝜀0 = -0.44 V/nm. In (k), the 
critical current shows a long tail up to 400 mT, while (m) shows a clear Josephson interference 
pattern. 

Figure 2. MATTG phase diagrams. (a) Rxx at B = 0 T and (b) normalized Hall density 𝜈𝜈𝐻𝐻 =

4𝑛𝑛𝐻𝐻/𝑛𝑛𝑠𝑠 at B = ±1.5 T, versus 𝜈𝜈 and D, where the Hall density 𝑛𝑛𝐻𝐻 = −�𝑒𝑒 𝑑𝑑𝑅𝑅𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

�
−1

 and 𝑛𝑛𝑠𝑠 is the 
superlattice density. Data are taken at T = 70 mK. Superconductivity is represented by bright 
blue regions in (a). In the Hall density shown in (b), we find three types of features which are 
schematically sketched in (c) and denoted by ‘gap/Dirac’ (red), ‘reset’ (yellow), and ‘VHs’ (dark 
blue). The blue regions in (c) denote the superconducting phase as determined in (a). The 
branches near 𝜈𝜈 = −2 + 𝛿𝛿 at large D and the regions at small D, all denoted by light blue, 
correspond to very weak superconductivity. The behaviour of 𝜈𝜈𝐻𝐻 versus 𝜈𝜈 for each of these 
features is shown in (d-f). (d) At a ‘gap/Dirac’ feature, 𝜈𝜈𝐻𝐻 changes linearly with 𝜈𝜈 while crossing 
zero. (e) At a ‘reset’ feature, 𝜈𝜈𝐻𝐻 rapidly drops to zero but without changing sign (here shown for 
𝜈𝜈 > 0). (f) At a ‘VHs’ feature, 𝜈𝜈𝐻𝐻 diverges and changes sign at a Van Hove singularity. (g-h) 
Plots of (g) 𝑅𝑅𝑥𝑥𝑥𝑥 and BKT transition temperature 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵, and (h) effective mass 𝑚𝑚∗ as function of 
𝜈𝜈, taken at the displacement field indicated by the yellow dashed line in (a-b) (𝐷𝐷/𝜀𝜀0 = 0.64 



V/nm). 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 approaches zero and 𝑚𝑚∗ shows a peak around the VHs, which is represented by the 
pink region. 𝑚𝑚𝑒𝑒 is the electron mass. The dashed guidelines in (h) correspond to a logarithmic 
divergence in the DOS at the VHs. The error bars in (h) correspond to a confidence interval of 
0.9. 

Figure 3. Ultra-strong coupling superconductivity and proximity to the BCS-BEC 
crossover. (a) 3D map of the BKT transition temperature 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 versus 𝜈𝜈 and D. The optimal 
(𝜈𝜈𝑜𝑜𝑜𝑜𝑜𝑜, 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜/𝜀𝜀0) point corresponding to the maximum 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 is (-2.4, -0.44 V/nm). (b-c) Line cuts 
of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 and extracted Ginzburg-Landau coherence length 𝜉𝜉𝐺𝐺𝐺𝐺 versus (b) 𝜈𝜈, or (c) D, while the 
other variable is kept at the optimal value. The data points and error bars show 𝜉𝜉𝐺𝐺𝐺𝐺 extracted with 
𝑇𝑇𝑐𝑐30%, 𝑇𝑇𝑐𝑐40%, and 𝑇𝑇𝑐𝑐50% from top to bottom, respectively (see Methods for details). The red 
dashed lines show the expected interparticle distance 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = |𝑛𝑛∗|−1/2 for the carrier density 
𝑛𝑛∗, which starts counting from 𝜈𝜈 = −2, 𝑛𝑛∗ = �|𝜈𝜈| − 2�𝑛𝑛𝑠𝑠/4. The Ginzburg-Landau coherence 
length approaches the interparticle distance around the optimal point in the phase diagram where 
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 is the highest. The background colour plot shows Rxx versus T and 𝜈𝜈. (d-e) Effective mass, 
𝑚𝑚∗ in units of the electron mass, 𝑚𝑚𝑒𝑒 (upper panel) and the 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 ratio (lower panel) as a 
function of 𝜈𝜈 or D (same line cuts as in (b-c)). The Fermi temperature is calculated from 𝑇𝑇𝐹𝐹 =
𝜋𝜋ℏ2𝑛𝑛∗

𝑚𝑚∗𝑘𝑘𝐵𝐵
. Around optimal doping and displacement field, 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 approaches the blue dashed line, 

which represents the upper bound of 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 in the BCS-BEC crossover in 2D, whose value is 
0.125. The error bars correspond to a confidence interval of 0.9. 

Figure 4. Connection between superconductivity and carriers emerging from the |𝝂𝝂| = 𝟐𝟐 
phase. (a-b) Landau fan diagrams (Rxx versus 𝜈𝜈 and B, upper panel) and their Landau level 
designations (lower panel) in the hole-doped side (𝜈𝜈 < 0) for large D (𝐷𝐷/𝜀𝜀0 = -0.64 V/nm), and 
small D (𝐷𝐷/𝜀𝜀0 = 0 V/nm), respectively (see Extended Data Figure 9 for intermediate D). (f-g) 
Landau fan diagrams and designations in the electron-doped side (𝜈𝜈 > 0) at (f) 𝐷𝐷/𝜀𝜀0 = -0.77 
V/nm and (g) 𝐷𝐷/𝜀𝜀0 = 0 V/nm (see Extended Data Figure 9 for an intermediate D). The inset in 
(f) shows the derivative 𝑑𝑑𝑅𝑅𝑥𝑥𝑥𝑥/𝑑𝑑𝑑𝑑 of the zoom-in region denoted by the pink dashed rectangle in 
the upper panel. These Landau fans indicate that at small D, the carriers are always hole-like 
(electron-like) on the −4 < 𝜈𝜈 < 0 (0 < 𝜈𝜈 < 4) side, and ‘resets’ occur at 𝜈𝜈 = +1, ±2, ±3, 
similar to previous studies in MATBG. On the other hand, at large D, carriers with opposite 
polarity (i.e. electron-like at −4 < 𝜈𝜈 < 0 or hole-like at 0 < 𝜈𝜈 < 4) dominate near 𝜈𝜈 ≳ −4,−2 
(𝜈𝜈 ≲ +2, +4). The VHs are responsible for the transitions between carriers with different 
polarities. The ‘resets’ near |𝜈𝜈| = 3 are no longer present, and the outward-facing Landau fans 
from |𝜈𝜈| = 2 directly meet the inward-facing fans from |𝜈𝜈| = 4 at VHs. These behaviours of the 
carrier types and numbers are schematically summarized in (c-e), with superconducting regions 
denoted by purple shades. We find that superconductivity is only found in the regions where the 
carriers originate from the 𝜈𝜈 = ±2 states, i.e. when the Landau fan at that density converges 
towards 𝜈𝜈 = ±2. The high 𝜈𝜈 part in (c) and (f) is limited by the maximum gate value we can 
apply before leakage, but the trend of the carrier dynamics can be deduced from the Hall density 
map in Fig. 2b. [We note the at small D, there are slight shifts in 𝜈𝜈, which may be attributed to 
the interplay with the Dirac bands.] 

 

Methods 



Sample Fabrication 

Our samples consist of three sheets of monolayer graphene, with twist angles 𝜃𝜃 and −𝜃𝜃 for the 
top/middle and middle/bottom interfaces, respectively, which are then sandwiched between two 
hBN flakes 30~80 nm thick. We first exfoliate the hBN and graphene flakes on SiO2/Si 
substrates, and analyze these flakes with optical microscopy. The multilayer stack is fabricated 
using a dry pick-up technique, where a layer of poly(bisphenol A 
carbonate)(PC)/polydimethylsiloxane (PDMS) on a glass slide is used to pick up the flakes 
sequentially using a micro-positioning stage. To ensure the angle alignment between the 
graphene layers and to reduce strain, they are in situ cut from a single monolayer graphene flake 
using a focused laser beam27. The hBN flakes are picked up while heating the stage to 90 °C, 
while the graphene layers are picked up at room temperature. The resulting structure is released 
on the prepared hBN on Pd/Au stack at 175 °C. We define the Hall-bar geometry with electron 
beam lithography and reactive ion etching. The top gate and electrical contacts are thermally 
evaporated using Cr/Au. Schematics and optical picture of the finished devices are shown in 
Extended Data Figure 2. 

 

Measurement Setup 

Transport data are measured in a dilution refrigerator with a base electronic temperature of ~70 
mK. Current through the sample and the four-probe voltage are first amplified by 107 V/A and 
1000, respectively, using current and voltage pre-amplifiers, and then measured with SR-830 
lock-in amplifiers, synchronized at the same frequency between 1~20 Hz. Current excitation of 1 
nA or voltage excitation of 50 μV to 100 μV is used for resistance measurements. For dc bias 
measurements, we use a BabyDAC passing through a 10 MΩ resistor to provide the dc bias 
current, and measure the dc voltage by Keysight 34461A digital multimeter connected to the 
voltage pre-amplifier. 

 

Band Structure Calculation 

The band structures shown in Fig. 1b-c are calculated using the continuum model for twisted 
bilayer graphene2,41, extended with a third layer on the top with the same twist angle as the 
bottommost layer18,25,26,42. For simplicity, we neglect the direct coupling from topmost and 
bottommost layers, and we use off-diagonal and diagonal interlayer hopping parameters 𝑤𝑤 = 0.1 
eV and 𝑤𝑤′ = 0.08 eV, respectively, the latter value empirically accounting for a small relaxation 
of the lattice. We note that the Fermi velocity of the gapless Dirac bands using these parameters 
is the same as the monolayer graphene value.  

The colour of the curves in Fig. 1b-c represents the mirror symmetry character of the eigenstates, 
which we evaluate by projecting the wavefunction of the eigenstate in the topmost layer onto the 
bottommost layer and calculating its inner product with the wavefunction in the bottommost 
layer. This evaluates to 1 for a mirror symmetric eigenstate (coloured as orange) and -1 for a 
mirror antisymmetric eigenstate (coloured as purple), and between -1 and 1 for a non-symmetric 
state. We find that at zero displacement field, the flat bands have symmetry character of 1 and 
the Dirac bands have -1. In other words, the flat bands in MATTG arise from mirror symmetric 
hopping from the outer layers onto the center layer. Without a displacement field, the Dirac 



bands cannot couple to the flat bands due to this symmetry protection, though the electrons in the 
Dirac bands may still participate in the correlation-driven phenomena in the flat bands via 
Coulomb interactions. 

The effect of displacement field is taken into account by imposing an interlayer potential 
difference Δ𝑉𝑉 = 𝑑𝑑 ⋅ 𝐷𝐷/𝜀𝜀0, where 𝑑𝑑~0.3 nm is the interlayer distance. Due to the screening by 
the outer layers, the actual electric field between the layers will be less than the externally 
applied field. While we can qualitatively capture the effect of the external displacement field in 
this calculation, a self-consistent treatment is required to accurately solve such a problem, which 
is beyond the scope of this mostly experimental paper. We note that these calculations do not 
take into account high-order and non-local interlayer coupling terms, which create a more 
pronounced particle-hole asymmetry than shown here25,26,39,42,43. 

 

Stacking Alignment 

Twisted trilayer graphene (TTG) has an extra shift degree of freedom compared to twisted 
bilayer graphene (TBG). While the topmost and bottommost layers are not twisted with respect 
to each other, their relative stacking order can have a significant effect on the single-particle 
band structure. Among the configurations, the ones with A-tw-A stacking and A-tw-B stacking 
(‘tw’ denotes the middle twisted layer) have the highest symmetry, as shown in Extended Data 
Figure 1a-b. In particular, only A-tw-A stacking possesses a mirror symmetry and it was shown 
to have the lowest configuration energy among all possible stacking orders for a given twist 
angle25. Extended Data Figure 1c-f shows the calculated band structures of the A-tw-A and A-
tw-B configurations at zero and finite displacement fields. Furthermore, Extended Data Figure 
1g-j shows the calculated Landau level spectrum of the corresponding cases near charge 
neutrality44. In these calculations, we also included a small 𝐶𝐶3-symmetry breaking term45 to 
reproduce the 4-fold Landau level degeneracy observed in experiments (𝛽𝛽 = −0.01 following 
the conventions of Zhang et al45). We find that in the case of A-tw-A stacking, the Landau level 
sequence near charge neutrality is  ±2, ±6, ±10 … regardless of whether a displacement field is 
applied, while in the case of A-tw-B stacking the application of a displacement field leads to a 
complicated evolution of the Landau level that no longer follows the same sequence. The 
displacement field also induces a global bandgap in the A-tw-B configuration, while keeping A-
tw-A gapless. 

From our experimental observations, our MATTG samples are more likely to possess A-tw-A 
stacking than other configurations, for the following reasons. Firstly, unlike MATBG, we do not 
find an insulating state at 𝜈𝜈 = ±4 at any displacement field, suggesting that the system does not 
have a global energy gap. Secondly, as shown in Extended Data Figure 1k-m, the strongest 
Landau level sequence near the charge neutrality point is always ±2, ±6, ±10, ±14, … with or 
without displacement fields. Both of these findings are in agreement with the A-tw-A stacking 
case, as discussed above. We note that, while it is difficult to achieve exactly identical top and 
bottom angles, from our experiments it seems that a minor difference might not qualitatively 
affect the role of mirror symmetry. 

 

Chemical Potential Estimate 



As the coexisting flat bands and Dirac bands share the same chemical potential, we can utilize 
the transport features of the Dirac bands as shown in Fig. 1d to determine the 𝑛𝑛-𝜇𝜇 relationship in 
the flat bands. Specifically, at a finite magnetic field 𝐵𝐵 and in the absence of 𝐷𝐷, we assume that 
the flat bands host a charge density 𝑛𝑛𝑓𝑓 and the Dirac bands host a charge density 𝑛𝑛𝑑𝑑, such that 
𝑛𝑛 = 𝑛𝑛𝑓𝑓 + 𝑛𝑛𝑑𝑑.  

Under finite 𝐵𝐵, the Dirac bands are quantized into fourfold degenerate Landau levels labeled by 
index 𝑁𝑁 = 0, ±1, ±2, …. In transport data, if we designate the centers of 𝑅𝑅𝑥𝑥𝑥𝑥 peaks (see e.g. Fig. 
1f) as the center of N-th Landau level (not the Landau level gaps), 𝑛𝑛𝑑𝑑 and 𝜇𝜇𝑑𝑑   follow 

� 
𝑛𝑛𝑑𝑑  =

4𝑁𝑁𝑁𝑁
𝜙𝜙0

,

𝜇𝜇𝑑𝑑  = 𝑣𝑣𝐹𝐹√2𝑒𝑒ℏ𝑁𝑁𝑁𝑁 sgn(𝑁𝑁),
(1) 

where 𝜙𝜙0 = ℎ/𝑒𝑒 is the flux quantum and the factor 4 accounts for spin and valley degeneracies. 
sgn(𝑁𝑁) is the sign of 𝑁𝑁. We use a Fermi velocity 𝑣𝑣𝐹𝐹 = 106 m/s for this estimation. Since 𝑛𝑛𝑑𝑑 and 
𝜇𝜇𝑑𝑑 are only functions of 𝑁𝑁𝑁𝑁, they are known once we determine the Landau level index 𝑁𝑁, 
which is evident from the Hall conductivity in the gaps between them 𝜎𝜎𝑥𝑥𝑥𝑥 = 4 �𝑁𝑁 ± 1

2
� 𝑒𝑒2/ℎ (see 

Fig. 1f). Therefore, along the trajectory of N-th Landau level in a 𝑛𝑛-𝐵𝐵 map, we can determine the 
𝑛𝑛𝑓𝑓-𝜇𝜇𝑓𝑓 relationship for the flat bands as  

�
𝑛𝑛𝑓𝑓 = 𝑛𝑛 −

4𝑁𝑁𝑁𝑁
𝜙𝜙0

,

𝜇𝜇𝑓𝑓 =  𝑣𝑣𝐹𝐹√2𝑒𝑒ℏ𝑁𝑁𝑁𝑁 sgn(𝑁𝑁).
(2) 

We performed this extraction for |𝑁𝑁| = 1,2,3,4 and the results are consistent, as shown in Fig. 
1f. The estimated many-body bandwidth of the flat bands from this extraction is around 100 
meV, whereas that of MATBG is 40~60 meV27,29,46. This many-body bandwidth includes the 
Coulomb interaction, which is in principle larger in MATTG than in MATBG due to the smaller 
unit cell. 

 

Hall Density Analysis 

The Hall density in Fig. 2b is calculated from 𝑅𝑅𝑥𝑥𝑥𝑥 measured and anti-symmetrized at B = 1.5 T. 
The reason for choosing this magnetic field is to fully suppress the superconductivity at 𝜈𝜈 =
−2 − 𝛿𝛿, which has a relatively high critical magnetic field approaching 1 T because of the short 
Ginzburg-Landau coherence length. Extended Data Figure 6a-c show representative linecuts in 
the maps of 𝑅𝑅𝑥𝑥𝑥𝑥, 𝑅𝑅𝑥𝑥𝑥𝑥 and Hall density 𝜈𝜈𝐻𝐻, with the Hall features (‘gap/Dirac’, ‘reset’, or ‘VHs’) 
and superconducting regions annotated. While all major superconducting domes are bounded by 
the Hall features, we notice a few exceptions of weak superconductivity that are not bounded. 
For example, at zero displacement field (Extended Data Figure 6c), there is a weak signature of 
superconductivity beyond the reset around 𝜈𝜈 = −3.2, which has a small but nonzero resistance. 
We also note that in Fig. 2b, there are some small regions, right before 𝜈𝜈 = +1 and 𝜈𝜈 = +2 in 
some range of D, where there are signatures of a more complex behaviour in 𝜈𝜈𝐻𝐻, with VHs 



possibly very close to the ‘resets’. These regions need further investigation for a complete 
understanding. 

The weak superconducting region at 𝜈𝜈 = −2 + 𝛿𝛿 at large D is also seemingly not bounded by a 
VHs in the main Hall density plot taken at B=±1.5 T (see Fig. 2a-b). However, we find that 
signatures of VHs boundary can be identified if we measure the Hall density using a smaller B, 
as shown in Extended Data Figure 6d. By comparing to 𝑅𝑅𝑥𝑥𝑥𝑥 data shown in Extended Data Figure 
6e, we can see that although not perfectly matching, there is a clear correlation between the VHs 
and the superconductivity boundary. Furthermore, the Landau fans at finite D (Fig. 4a and 
Extended Data Figure 9a) show signatures of inward-facing fan at 𝜈𝜈 = −2 + 𝛿𝛿, supporting the 
existence of carriers from 𝜈𝜈 = −2. However, the inward fan as well as the superconductivity in 
this region appears to be extremely fragile, which might be related to why the VHs boundary is 
invisible when measured at higher B. 

𝑻𝑻𝒄𝒄 and Coherence Length Analysis 

The mean-field 𝑇𝑇𝑐𝑐 is extracted by first fitting the high-temperature part of the data to a straight 
line 𝑟𝑟(𝑇𝑇) = 𝐴𝐴𝐴𝐴 + 𝐵𝐵, and then find the intersection of 𝑅𝑅𝑥𝑥𝑥𝑥(𝑇𝑇) with 𝑝𝑝 ⋅ 𝑟𝑟(𝑇𝑇), where 𝑝𝑝 is the 
percentage of normal resistance (we use 50% unless otherwise specified). 

We extract the Ginzburg-Landau coherence length from the B-dependence of 𝑇𝑇𝑐𝑐, using the 
Ginzburg-Landau relation 𝑇𝑇𝑐𝑐/𝑇𝑇𝑐𝑐0  = 1 − [(2𝜋𝜋𝜉𝜉𝐺𝐺𝐺𝐺2 )/Φ0 ]𝐵𝐵⊥, where Φ0 = ℎ/2𝑒𝑒 is the 
superconducting flux quantum and 𝑇𝑇𝑐𝑐0 is the mean-field critical temperature at zero magnetic 
field (slightly higher than 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵). As shown in Extended Data Figure 8, the mean-field 𝑇𝑇𝑐𝑐 at 
different B is extracted at different percentages 𝑝𝑝 = 30%, 40%, and 50% of the normal resistance 
fit (shown as dashed lines). The insets show the extracted 𝑇𝑇𝑐𝑐 using different thresholds. The 
Ginzburg-Landau coherence length 𝜉𝜉𝐺𝐺𝐺𝐺 is then obtained from a linear fit of 𝑇𝑇𝑐𝑐 versus B, the x-
intercept of which is equal to Φ0/(2𝜋𝜋𝜉𝜉𝐺𝐺𝐺𝐺2 ). The different thresholds yield slightly different but 
consistent coherence length, which we plot as the data points (40%) and errorbars (50%, 30%) in 
Fig. 3b-c. Note that in the presence of charge and/or twist angle disorder, values for 𝜉𝜉𝐺𝐺𝐺𝐺 ,𝑇𝑇𝑐𝑐, and 
𝑇𝑇𝐵𝐵𝐾𝐾𝑇𝑇 should be interpreted as spatial averages of the corresponding local quantities.  

Effective Mass Analysis 

Effective mass of MATTG is extracted from the T-dependent quantum oscillations in a 
perpendicular magnetic field using the standard Lifshitz-Kosevich formula47. Extended Data 
Figure 7a-b show representative quantum oscillations at 𝜈𝜈 = −2.86 and 𝜈𝜈 = −2.5, respectively, 
at 𝐷𝐷/𝜀𝜀0 =-0.44 V/nm. Starting from raw resistance data 𝑅𝑅𝑥𝑥𝑥𝑥, we first remove a smooth 
polynomial background in 𝐵𝐵−1 and obtain Δ𝑅𝑅. We then select the most prominent peak/valley in 
Δ𝑅𝑅, and evaluate its change from the valley to the peak as a function of temperature, 𝛿𝛿𝛿𝛿(𝑇𝑇). We 
notice that in some curves, such as those shown in Extended Data Figure 7a-b, the high-field part 
of the oscillation is either split (Extended Data Figure 7a) or has a higher periodicity (Extended 
Data Figure 7b) than the fundamental frequency that corresponds to the carrier density, which we 
attribute to broken-symmetry states. We avoid using those peaks for extracting effective mass, as 



they tend to overestimate the effective mass 𝑚𝑚∗ and underestimate 𝑇𝑇𝐹𝐹. 𝛿𝛿𝛿𝛿(𝑇𝑇) is subsequently fit 
with the Lifshitz-Kosevich formula 

𝛿𝛿𝛿𝛿(𝑇𝑇) = 𝑏𝑏
𝑎𝑎𝑎𝑎

sinh𝑎𝑎𝑎𝑎
, (3) 

where 𝑎𝑎, 𝑏𝑏 are fitting parameters. The effective mass 𝑚𝑚∗ is then extracted from 

𝑚𝑚∗ =
ℏ𝑒𝑒𝐵𝐵

2𝜋𝜋2𝑘𝑘𝐵𝐵
𝑎𝑎, (4) 

where 𝐵𝐵 is the average of the peak and valley positions. The fit is shown in the insets of 
Extended Data Figure 7a-b, from which we obtain 𝑚𝑚

∗

𝑚𝑚𝑒𝑒
= 1.25 ± 0.13 and 𝑚𝑚

∗

𝑚𝑚𝑒𝑒
= 0.95 ± 0.03, 

respectively. Since 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 at these two points are 1.11 K and 2.09 K, respectively, the 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵/𝑇𝑇𝐹𝐹 
ratio is 0.041±0.004 and 0.100±0.003, respectively.  

For the effective mass data in Fig. 2h and Fig. 3d-e, we performed the extraction with less points 
in temperature, as exemplified in Extended Data Figure 7c-e. We manually select the peak/valley 
position (shown as triangles) for each density/displacement field, and the mass is obtained from 
the same fit as above, as shown in Extended Data Figure 7f. We have checked that this extraction 
is consistent with the extraction using more data points in T for the representative curves shown 
(Extended Data Figure 7a-b), which justifies the analysis with coarser data points in T. 
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Extended Data Figure Legends 
Extended Data Figure 1. Stacking order in MATTG. (a-b) Illustrations of (a) A-tw-A 
stacking and (b) A-tw-B stacking, where ‘tw’ denotes the middle twisted layer (L2, orange) and 
A/B represents the relative stacking order between the topmost (L3, green) and bottommost (L1, 
blue) layers. (c-f) Continuum-model band structures of (c-d) A-tw-A stacked and (e-f) A-tw-B 
stacked MATTG at zero and finite displacement fields. The twist angle is 𝜃𝜃 = 1.57° for all plots. 
(g-j) Calculated Landau level sequence corresponding to the bands in (c-f). The size of the dots 
represents the size of the Landau level gaps in the Hofstadter spectrum. For A-tw-A stacking, the 
major sequence of filling factors near the charge neutrality is ±2, ±6, ±10… regardless of the 
displacement field, while for A-tw-B stacking the Landau levels evolve into a symmetry-broken 
sequence that has 0, ±8 as the dominant filling factors with largest gaps in a finite displacement 
field. An anisotropy term of 𝛽𝛽=-0.01 is included in all of the above calculations (see Methods). 
(k-m) Experimentally measured Landau levels in MATTG near the charge neutrality. We find 
the strongest sequence of ±2, ±6, ±10… at both D=0 and 𝐷𝐷/𝜀𝜀0 = 0.77 V/nm, consistent with the 
A-tw-A stacking scenario. 

Extended Data Figure 2. Device schematics and device optical picture. (a) Our device 
consists of hBN encapsulated MATTG etched into a Hall bar, Cr/Au contacts on the edge, and 
top/bottom metallic gates. For transport measurements, we measure current I, longitudinal 
voltage Vxx, and transverse voltage Vxy, while tuning the density 𝜈𝜈 and displacement field D by 
applying top gate voltage Vtg and bottom gate voltage Vbg. (b) Optical picture of devices A and B. 
Device C is lithographically similar. 

Extended Data Figure 3. Robust superconductivity in other MATTG devices (device B and 
C). (a) Rxx-T curve, (b) Vxx-I and dVxx/dI-I curves, and (c) I-B map in device B with a smaller-
than-magic angle 𝜃𝜃 ∼ 1.44°. In this device, maximum 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 ∼ 0.73 K. The choice of 𝜈𝜈 is to 
display the Fraunhofer-like Josephson intereference, which demonstrates the superconducting 
phase coherence. (d-f) Similar plots as (a-c) for device C, with a twist angle 𝜃𝜃 ∼ 1.4°. Device C 
has a maximum 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 of ~0.68 K. (f) shows a regular B-suppression of Ic with B. Both devices 
show sharp peaks in dVxx/dI at their critical currents. 

Extended Data Figure 4. Vxx-I curves and critical current Ic in MATTG. (a) Forward (red) 
and backward (blue) sweeps of Vxx-I curves for the optimal point 𝜈𝜈 = −2.4 and 𝐷𝐷/𝜀𝜀0 = -0.44 
V/nm. Inset shows clear hysteresis loop in the curve at I = 550~600 nA. (b) Map of Ic versus 𝜈𝜈 
and D in the major superconducting regions. (c) Evolution of Ic over D at 𝜈𝜈 = −2.4, showing 
that Ic initially increases as finite D is applied, and quickly decreases beyond local maxima near 
|𝐷𝐷|/𝜀𝜀0 ∼ 0.48 V/nm. (d) Ic versus D at 𝜈𝜈 = +2.26 shows that the maximum Ic occurs near 
|𝐷𝐷|/𝜀𝜀0 ∼ 0.71 V/nm, after which Ic quickly decreases. The modulation of superconducting 
strength in D may be due to change in the band flatness, as well as the interactions with the 
electrons in the Dirac bands. (e-g) Vxx-I and dVxx/dI-I curves for certain points in superconducting 
domes near (e) 𝜈𝜈 = −2 + 𝛿𝛿, (f) 𝜈𝜈 = +2 − 𝛿𝛿, and (g) 𝜈𝜈 = +2 + 𝛿𝛿, all showing sharp peaks in 
dVxx/dI at the critical current. 



Extended Data Figure 5. Rxx versus 𝝂𝝂 at T = 70 mK, 5 K, and 10 K, measured at (a) 𝐷𝐷/𝜀𝜀0 =
 0.77 V/nm, (b) 𝐷𝐷/𝜀𝜀0 = 0.52 V/nm, (c) 𝐷𝐷/𝜀𝜀0 = 0.26 V/nm, and (d) 𝐷𝐷/𝜀𝜀0 = 0 V/nm, 
respectively. 

Extended Data Figure 6. Hall density analysis. (a-c) Linecuts of Rxx, Rxy, and 𝜈𝜈𝐻𝐻 (right axis) 
versus 𝜈𝜈 at representative D from high to zero, showing the bounding of major superconducting 
phases within the Hall density features. Vertical red, yellow, and dark blue bars denote 
‘gap/Dirac’, ‘reset’, and ‘VHs’ features, respectively, while the sky blue regions denote 
superconductivity. Purple dashed lines show the expected Hall density. We note that there are 
some small regions, right before 𝜈𝜈 = +1 and 𝜈𝜈 = +2, for certain D values, where there are 
signatures of a more complex behaviour in 𝜈𝜈𝐻𝐻, with VHs possibly very close to the ‘resets’, as 
shown in Fig. 2b. (d) Hall density 𝜈𝜈𝐻𝐻 extracted from smaller magnetic fields of B = 0.1~0.3 T 
reveals a VHs boundary close to the weak superconducting phase boundary near 𝜈𝜈 = −2 + 𝛿𝛿, 
which is absent in the Hall density shown in (a-c) and Fig. 2b extracted from a higher magnetic 
field of B = -1.5~1.5 T. (e) Rxx in the same region as shown in (d), where the superconducting 
boundary is close to the VHs. All measurements are performed at the base temperature T ~ 70 
mK. 

Extended Data Figure 7. Quantum oscillations and effective mass analysis. All data shown 
here are measured at 𝐷𝐷/𝜀𝜀0 = -0.44 V/nm. (a-b) Quantum oscillations at (a) 𝜈𝜈 = −2.86 and (b) 
𝜈𝜈 = −2.5 at different T. Gray dashed lines show the peaks used for analysis. Inset shows the fit 
to Lifshitz-Kosevich formula for the extraction of effective mass, yielding (a) 𝑚𝑚∗/𝑚𝑚𝑒𝑒 = 1.25 ±
0 .13 and (b) 𝑚𝑚∗/𝑚𝑚𝑒𝑒 = 0.95 ± 0.03. (c-d) Quantum oscillations sampled at coarser points in T 
for the same 𝜈𝜈 as in (a-b). Extracted effective mass values with these coarser points are (c) 
𝑚𝑚∗/𝑚𝑚𝑒𝑒 = 1.2 ± 0.2 and (d) 𝑚𝑚∗/𝑚𝑚𝑒𝑒 = 0.96 ± 0.09, matching the values from (a-b) within the 
uncertainty. (e) Quantum oscillations at 𝜈𝜈 = −2.4 (optimal doping). (f) Lifshitz-Kosevich fits for 
data shown in (c-e), showing 𝛿𝛿𝛿𝛿 normalized with its value at the lowest temperature. The peaks 
chosen for extraction are marked with triangles in (c-e). 

Extended Data Figure 8. Analysis of Ginzburg-Landau coherence length. (a-b) 
Superconducting transitions at perpendicular magnetic fields from B = 0 T to B = 0.2 T (40 mT 
between curves) for (a) 𝜈𝜈 = −2 − 𝛿𝛿 (𝜈𝜈 = −2.4) and (b) 𝜈𝜈 = −2 + 𝛿𝛿 (𝜈𝜈 = −1.84), from which 
the Ginzburg-Landau coherence length 𝜉𝜉𝐺𝐺𝐺𝐺 is extracted. 𝐷𝐷/𝜀𝜀0 = -0.44 V/nm for both plots. Inset 
shows 𝑇𝑇𝑐𝑐50%, 𝑇𝑇𝑐𝑐40%, and 𝑇𝑇𝑐𝑐30% as a function of B, from which we extracted the coherence length 
𝜉𝜉𝐺𝐺𝐺𝐺 as 9.4 nm, 12.4 nm, and 16.1 nm, respectively, for 𝜈𝜈 = −2 − 𝛿𝛿. For 𝜈𝜈 = −2 + 𝛿𝛿, we 
obtained 38.0 nm, 39.1 nm, and 37.1 nm, respectively. We note that for 𝜈𝜈 = −2 − 𝛿𝛿, the Rxx -T 
curves develop an extra transition (‘knee’) below Tc at finite B, which is possibly related to the 
melting transition between a vortex solid and a vortex liquid48. 

Extended Data Figure 9. Landau fans for intermediate D on the (a) hole-doped and (b) 
electron-doped sides. They show the evolution between small D and large D, which exhibits a 
hybridization of the features. (a) Landau fan diagram at 𝐷𝐷/𝜀𝜀0 = -0.34 V/nm for the hole-doped 
side shows the fans emanating from all integer fillings. Inward-facing fan from 𝜈𝜈 = −4 starts 
developing, which meets the outward-facing fan from 𝜈𝜈 = −3. Note also the appearance of an 
inward-facing fan from 𝜈𝜈 = −2, which meets the outward-facing fan from 𝜈𝜈 = −1. These 
observations agree with the formation of VHs around these two regions in the intermediate |𝐷𝐷|, 
where the electron-like carriers become hole-like, as illustrated in Fig. 4d, as well as identified in 
Fig. 2b. Small region of superconductivity starts appearing at 𝜈𝜈 = −2 + 𝛿𝛿 while the carriers 



from 𝜈𝜈 = −2 are present, as shown in Fig. 2a. (b) Landau fan diagram at 𝐷𝐷/𝜀𝜀0 = -0.52 V/nm on 
the electron-doped side shows similar VHs between 𝜈𝜈 = +1 ∼ 2, and 𝜈𝜈 = +3 ∼ 4. Similar to 
the hole-doped side, an inward-facing fan from 𝜈𝜈 = +2 develops and meets with the outward-
facing fan from 𝜈𝜈 = +1. The density range of the inward-facing fan encompasses the appearance 
of superconducting region at 𝜈𝜈 = +2 − 𝛿𝛿 at this D. 
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