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Abstract—We consider the problem of finding nearly optimal
solutions of optimization problems with random objective
functions. Such problems arise widely in the theory of random
graphs, theoretical computer science, and statistical physics.
Two concrete problems we consider are (a) optimizing the
Hamiltonian of a spherical or Ising p-spin glass model, and
(b) finding a large independent set in a sparse Erdos-Renyi
graph. Two families of algorithms are considered: (a) low-
degree polynomials of the input—a general framework that
captures methods such as approximate message passing and
local algorithms on sparse graphs, among others; and (b)
the Langevin dynamics algorithm, a canonical Monte Carlo
analogue of the gradient descent algorithm (applicable only
for the spherical p-spin glass Hamiltonian).

We show that neither family of algorithms can produce
nearly optimal solutions with high probability. Our proof uses
the fact that both models are known to exhibit a variant of the
overlap gap property (OGP) of near-optimal solutions. Specif-
ically, for both models, every two solutions whose objective
values are above a certain threshold are either close or far
from each other. The crux of our proof is the stability of both
algorithms: a small perturbation of the input induces a small
perturbation of the output. By an interpolation argument, such
a stable algorithm cannot overcome the OGP barrier.

The stability of the Langevin dynamics is an immediate
consequence of the well-posedness of stochastic differential
equations. The stability of low-degree polynomials is estab-
lished using concepts from Gaussian and Boolean Fourier
analysis, including noise sensitivity, hypercontractivity, and
total influence.
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polynomials; Langevin dynamics; p-spin glass; independent set

I. INTRODUCTION

In this paper, we study the problem of producing near-
optimal solutions of random optimization problems by poly-
nomials of low degree in the input data. We prove that no
low-degree polynomial can succeed at achieving a certain
objective value in two optimization problems: (a) optimizing
the Hamiltonian of the (spherical or Ising) p-spin glass
model, and (b) finding a large independent set in a sparse
Erdös-Rényi graph, with high probability in the realization

of the problem. We rule out polynomials of degree as large as
cn for the p-spin glass models and as large as cn/ log n for
the independent set problem for some constant c, provided
the algorithm is assumed to succeed modulo exponentially
small in n probability, where n is the problem dimension.
More generally, we provide a tradeoff between the degree
of polynomials that we rule out and the success probability
assumed. For the spherical p-spin model, we also give a
lower bound against Langevin dynamics.

Our motivation for focusing on “low-degree” approxi-
mations is two-fold. Firstly, from an approximation theory
perspective, producing near-optimal solutions by a polyno-
mial in the input is very natural. Indeed, in many problems
of interest the best known polynomial-time algorithms can
be placed within the family of low-degree methods. For
example, in the settings we consider here, the best known
polynomial-time optimization results can be captured by
the approximate message passing (AMP) framework [1],
[2] (for the p-spin) and by the class of local algorithms
on sparse graphs [3] (for the independent set problem), re-
spectively. Both of these families of algorithms are captured
by constant-degree polynomials; see the full version of this
paper [4] for more details. For spherical p-spin glass models,
earlier work of [5] introduced an algorithm which performs
as well as AMP; we expect this algorithm to also fall into
the family of low-degree methods, but verifying this is less
clear. Secondly, a recent line of work [6], [7], [8], [9] on the
sum-of-squares hierarchy has produced compelling evidence
that the power of low-degree polynomials is a good proxy
for the intrinsic computational complexity of a broad class
of hypothesis testing problems. Below, we briefly review this
theory of low-degree polynomials in hypothesis testing.

The low-degree framework was initiated in [7], [8], [9]
to study computational hardness in hypothesis testing prob-
lems. Specifically, this line of work has focused on high-
dimensional testing problems where the goal is to deter-
mine whether a given sample (e.g., an n-vertex graph) was
drawn from the “null” distribution Qn (e.g., the Erdös-Rényi



model) or the “planted” distribution Pn (e.g., a random graph
with planted structure such as a large clique or a small cut).
Through an explicit and relatively straightforward calcula-
tion, one can determine whether there exists a (multivariate)
polynomial f (in the entries of the observed sample) of a
given degree D = D(n) that can distinguish Pn from Qn (in
a particular sense) [7], [8], [9]. A conjecture of Hopkins [9]
(inspired by [6], [7], [8]) postulates that for “natural” high-
dimensional testing problems, if there is a polynomial-time
algorithm to distinguish Pn,Qn (with error probability o(1))
then there is also an O(log n)-degree polynomial that can
distinguish Pn,Qn. One justification for this conjecture is its
deep connection with the sum-of-squares (SoS) hierarchy—
a powerful class of meta-algorithms—and in particular the
pseudo-calibration approach [6], which suggests that low-
degree polynomials are as powerful as any SoS algorithm
(see [8], [9], [10] for details). Another justification for the
conjecture is that O(log n)-degree polynomials can capture a
very broad class of spectral methods (see [11, Theorem 4.4]
for specifics), which in turn capture the best known algo-
rithms for many high-dimensional testing problems (e.g.,
[12], [13], [8]). For many classical statistical tasks—planted
clique, sparse PCA, community detection, tensor PCA,
etc.—it has indeed been verified that O(log n)-degree poly-
nomials succeed (at testing) in the same parameter regime
as the best known polynomial-time algorithms (e.g., [7], [8],
[9], [14], [11], [15]). (Oftentimes, the hypothesis testing
variants of these types of problems seem to be equally
hard as the more standard task of recovering the planted
signal.) Lower bounds against low-degree polynomials are
one concrete form of evidence that the existing algorithms
for these problems cannot be improved (at least without
drastically new algorithmic techniques). For more details on
the low-degree framework for hypothesis testing, we refer
the reader to [9], [11].

One goal of the current work is to extend the low-
degree framework to the setting of random optimization
problems. This includes defining what it means for a low-
degree polynomial to succeed at an optimization task, and
giving techniques by which one can prove lower bounds
against all low-degree polynomials. One difference between
the optimization and testing settings is that many existing
optimization algorithms can be represented as constant-
degree polynomials (see the full version [4]), instead of the
O(log n)-degree required in the testing case. A substantial
difficulty that we face in the optimization setting is that,
in contrast to the testing setting, it does not seem possible
to prove lower bounds against low-degree polynomials via
a straightforward explicit calculation. To overcome this, our
proofs take a more indirect route and leverage a certain struc-
tural property—the overlap gap property (OGP)—of the
optimization landscape, combined with stability properties
of low-degree polynomials. We also use similar techniques
to give lower bounds against Langevin dynamics, a canonical

Monte Carlo analogue of gradient descent; while this is not
a low-degree polynomial (due to its continuous-time nature),
it is similar in spirit and has similar stability properties.

While the OGP has been used to rule out various classes of
other algorithms previously (see below), its usage in our cur-
rent setting presents some substantial technical difficulties
which we need to overcome. Roughly speaking, the property
states that for every pair of nearly-optimal solutions x1
and x2, their normalized overlap (normalized inner product)
measured with respect to the ambient Hilbert space must
lie in a disjoint union of intervals [0, ν1] ∪ [ν2, 1]. This
property extends to the case of families of instances as well
in the sense that even if one considers a natural interpolation
between two independent instances of the problem, for every
two members of the interpolated family and every pair of
solutions x1, x2 which are near optimizers for these two
members, respectively, it is still the case that the overlap of
x1 and x2 belongs to [0, ν1] ∪ [ν2, 1]. The main idea of the
proof from OGP is based on the contradiction argument.
If the result of the algorithm is known to be stable then,
denoting by x(t) the result of the algorithm corresponding
to the interpolation step t, it should be the case that the
overlap between x(0) and x(t) changes “continuously”. At
the same time we show separately that the starting solution
x(0) and terminal solution x(1) have an overlap at most ν1,
and thus at some point the overlap between x(0) and x(t)
belongs to (ν1, ν2), which is a contradiction.

Establishing stability for low-degree polynomials and
Langevin dynamics is quite non-trivial and constitutes the
key technical contribution of the paper. For the case of
polynomials, these stability results harness results from
Gaussian and Boolean Fourier analysis. We prove two sepa-
rate variants of this stability result, depending on whether the
random input is Gaussian- or Bernoulli-distributed. A key
technical result in the Gaussian case is Theorem 3.1 in the
full version [4] which informally states that if we have two
ρ-correlated random instances X and Y of a random tensor,
and f is a vector-valued low-degree polynomial defined on
such tensors, then the distance ‖f(X)− f(Y )‖2 is unlikely
to exceed a certain value which depends continuously on
ρ. In particular this distance is small when ρ ≈ 1. Proving
this result relies on a well-known consequence of hypercon-
tractivity for low-degree polynomials, and basic properties
of Hermite polynomials (the orthogonal polynomials of
the Gaussian measure). In the case of Bernoulli-distributed
inputs, we prove a related stability result (Theorem 4.2 in the
full version [4]) which shows that when the input variables
are resampled one at a time, the output of a vector-valued
low-degree polynomial will never change significantly in
one step, with nontrivial probability. The proof involves
the notion of total influence from Boolean analysis, as
well as a direct proof by induction on the dimension. The
proof of stability for Langevin dynamics is based on the
continuous dependence of stochastic differential equations



on their coefficients.
The OGP emerged for the first time in the context of spin

glass theory and random constraint satisfaction problems. It
was first proven implicitly in [16], [17], and [18]. These
papers established that the set of satisfying assignments
of a random K-SAT formula partitions into clusters above
a certain clause-to-variables density. This was postulated
as evidence of algorithmic hardness of finding satisfying
assignments for such densities. Implicitly, the proof reveals
that the overlaps of satisfying assignments exhibit the OGP,
and clustering is inferred from this. It is worth noting that
while OGP implies the existence of clusters, the converse
is not necessarily the case, as one can easily construct
a clustered space of solutions with overlaps spanning the
entire interval [0, 1]. A direct algorithmic implication of the
OGP was shown for the first time in [19], where OGP
was proven to be a barrier for local algorithms—defined
as the so-called factors of i.i.d. (FIID)—designed to find
large independent sets in sparse Erdös-Rényi graphs. The
OGP was used to show that, asymptotically, these algorithms
cannot find independent sets larger than a multiplicative
factor 1/2 + 1/(2

√
2) ≈ 0.85 of optimal. The present paper

recovers this result as a special case, since (as we discuss
in the full version [4]) local algorithms can be captured
by constant-degree polynomials. The lower bound against
local algorithms was improved by [20] to a multiplicative
factor of 1/2. This is the best possible since 1/2-optimal
independent sets can be found by local algorithms; more
precisely, this was shown in [3] for the case of random
regular graphs, but a similar result is expected to hold for
sparse Erdös-Rényi graphs as well (although we are not
aware of any literature formally verifying this). It is not
clear how to improve the multiplicative factor in the lower
bound to 1/2 for low-degree polynomials, as [20] uses a
more sophisticated variant of OGP than we use here. Several
subsequent papers used OGP to rule out various classes of
algorithms, including local algorithms for finding large cuts
in random hypergraphs [21], random walk–based algorithms
(WALKSAT) [22], and AMP-type algorithms for optimizing
the Hamiltonian of the Ising p-spin model [23]. The current
work draws inspiration from a key idea in [21], [23], namely
that a particular variant of OGP—the same variant that we
use in the current work—implies failure of any sufficiently
“stable” algorithm.

We emphasize that the class of algorithms ruled out
by the lower bounds in this paper (namely, low-degree
polynomials) not only captures existing methods such as
AMP and local algorithms, but contains a strictly larger
(in a substantial way) class of algorithms than prior work
on random optimization problems. We now illustrate this
claim in the setting of the p-spin optimization problem. The
best known polynomial-time algorithms for optimizing the
p-spin Hamiltonian are captured by the AMP framework [1],
[2]. Roughly speaking, AMP algorithms combine a linear

update step (tensor power iteration) with entry-wise non-
linear operations. For a fairly general class of p-spin opti-
mization problems (including spherical and Ising mixed p-
spin models), it is now known precisely what objective value
can be reached by the best possible AMP algorithm [2].
While this may seem like the end of the story, we point out
that for the related tensor PCA problem—which is a variant
of the p-spin model with a planted rank-1 signal—AMP is
known to be substantially sub-optimal compared to other
polynomial-time algorithms [24]. None of the best known
polynomial-time algorithms [24], [12], [13], [25], [26], [27]
use the tensor power iteration step as in AMP, and there is
evidence that this is fundamental [28]; instead, the optimal
algorithms include spectral methods derived from different
tensor operations such as tensor unfolding [24], [12] (which
can be interpreted as a higher-order “lifting” of AMP [25]).
These spectral methods are captured by O(log n)-degree
polynomials. With this in mind, we should a priori be
concerned that AMP might also be sub-optimal for the (non-
planted) p-spin optimization problem. This highlights the
need for lower bounds that rule out not just AMP, but all low-
degree polynomial algorithms. While the lower bounds in
this paper do not achieve the precise optimal thresholds for
objective value, they rule out quite a large class of algorithms
compared to existing lower bounds for random optimization
problems.

We refer the reader to the full version of this paper [4]
for a more detailed discussion of how various optimization
algorithms can be approximated by low-degree polynomials.

Notation: We use ‖ · ‖2 and 〈·, ·〉 to denote the standard
`2 norm and inner product of vectors. We also use the same
notation to denote the Frobenius norm and inner product
of tensors. We use the term polynomial both to refer to
(multivariate) polynomials Rm → R in the usual sense, and
to refer to vector-valued polynomials Rm → Rn defined as
in (3). We abuse notation and use the term degree-D polyno-
mial to mean a polynomial of degree at most D. A random
polynomial has possibly-random coefficients, as defined in
Section II-A1. We use Ac to denote the complement of an
event A. Unless stated otherwise, asymptotic notation such
as o(1) or Ω(n) refers to the limit n → ∞ with all other
parameters held fixed. In other words, this notation may hide
constant factors depending on other parameters such as the
degree d in the independent set problem.

II. MAIN RESULTS

A. Optimizing the p-Spin Glass Hamiltonian

The first class of problems we consider here is opti-
mization of the (pure) p-spin glass Hamiltonian, defined as
follows. Fix an integer p ≥ 2 and let Y ∈ (Rn)⊗p be a
p-tensor with real coefficients. For x ∈ Rn, consider the
objective function

Hn(x;Y ) =
1

n(p+1)/2
〈Y, x⊗p〉. (1)



Note that all homogeneous polynomials of degree p (in the
variables x) can be written in this form for some Y . We
focus on the case of a random coefficient tensor Y . In this
setting, the function Hn is sometimes called the Hamiltonian
for a p-spin glass model in the statistical physics literature.
More precisely, for various choices of a (compact) domain
Xn ⊂ Rn, we are interested in approximately solving the
optimization problem

max
x∈Xn

Hn(x;Y ) (2)

given a random realization of the coefficient tensor Y with
i.i.d N (0, 1) entries. Here and in the following we let PY
denote the law of Y . (When it is clear from context we omit
the subscript Y .)

We begin first with a simple norm constraint, namely, we
will take as domain Sn = {x ∈ Rn : ‖x‖2 =

√
n}, the

sphere in Rn of radius
√
n. We then turn to understanding

a binary constraint, namely where the domain is the dis-
crete hypercube Σn = {+1,−1}n. Following the statistical
physics literature, in the former setting, we call the objective
the spherical p-spin glass Hamiltonian and the latter setting
the Ising p-spin glass Hamiltonian.

In both settings, quite a lot is known about the maximum.
It can be shown [29], [30] that the maximum value of Hn

has an almost sure limit (as n → ∞ with p fixed), called
the ground state energy, which we will denote by Ep(S) for
the spherical setting and Ep(Σ) for the Ising setting. Explicit
variational formulas are known for Ep(S) [31], [30], [32]
and Ep(Σ) [33], [34].

Algorithmically, it is known how to find, in polynomial
time, a solution of value E∞p (S) − ε or E∞p (Σn) − ε
(respectively for the spherical and Ising settings) for any
constant ε > 0 [5], [1], [2]. In both the spherical and Ising
settings, these constants satisfy E∞2 = E2 and E∞p < Ep
for p ≥ 3. In other words, it is known how to efficiently
optimize arbitrarily close to the optimal value in the p = 2
case, but not when p ≥ 3.

1) Low-Degree Polynomial Algorithms: Our goal here is
to understand how well one can optimize (2) via the output
of a vector-valued low-degree polynomial in the coefficients
Y . To simplify notation we will often abuse notation and
refer to the space of p-tensors on Rn by Rm ∼= (Rn)⊗p

where m = np.
We say that a function f : Rm → Rn is a polynomial of

degree (at most) D if it may be written in the form

f(Y ) = (f1(Y ), . . . , fn(Y )), (3)

where each fi : Rm → R is a polynomial of degree at most
D.

We will also consider the case where f is allowed to
have random coefficients, provided that these coefficients
are independent of Y . That is, we will assume that there is
some probability space (Ω,Pω) and that f : Rm ×Ω→ Rn

is such that f(·, ω) is a polynomial of degree at most D for
each ω ∈ Ω. We will abuse notation and refer to this as a
random polynomial f : Rm → Rn.

Our precise notion of what it means for a polynomial to
optimize Hn will depend somewhat on the domain Xn. This
is because it is too much to ask for the polynomial’s output
to lie in Xn exactly, and so we fix a canonical rounding
scheme that maps the polynomial’s output to Xn. We begin
by defining this notion for the sphere: Xn = Sn.

The spherical case: We will round a polynomial’s
output to the sphere Sn by normalizing it in the standard
way. To this end, for a random polynomial f : Rm → Rn
we define the random function gf : Rm → Sn ∪ {∞} by

gf (Y, ω) =
√
n

f(Y, ω)

‖f(Y, ω)‖2
,

with the convention gf (Y, ω) =∞ if f(Y, ω) = 0.

Definition II.1. For parameters µ ∈ R, δ ∈ [0, 1], γ ∈ [0, 1],
and a random polynomial f : Rm → Rn, we say that f
(µ, δ, γ)-optimizes the objective (1) on Sn if the following
are satisfied when (Y, ω) ∼ PY ⊗ Pω:
• E
Y,ω
‖f(Y, ω)‖22 = n (normalization).

• With probability at least 1− δ over Y and ω, we have
both Hn(gf (Y, ω);Y ) ≥ µ and ‖f(Y, ω)‖2 ≥ γ

√
n.

Implicitly in this definition, the case f(Y, ω) = 0 must occur
with probability at most δ. The meaning of the parameters
(µ, δ, γ) is as follows: µ is the objective value attained after
normalizing the polynomial’s output to the sphere, and δ
is the algorithm’s failure probability. Finally, γ is involved
in the norm bound ‖f(Y, ω)‖2 ≥ γ

√
n that we need for

technical reasons. Since the domain is Sn, f is “supposed to”
output a vector of norm

√
n. While we do not require this to

hold exactly (and have corrected for this by normalizing f ’s
output), we do need to require that f usually does not output
a vector of norm too much smaller than

√
n. This norm

bound is important for our proofs because it ensures that a
small change in f(Y, ω) can only induce a small change in
gf (Y, ω).

We now state our main result on low-degree hardness of
the spherical p-spin model, with the proof deferred to the
full version [4].

Theorem II.2. For any even integer p ≥ 4 there exist
constants µ < Ep(S), n∗ ∈ N, and δ∗ > 0 such that
the following holds. For any n ≥ n∗, any D ∈ N, any
δ ≤ min{δ∗, 14 exp(−2D)}, and any γ ≥ (2/3)D, there is
no random degree-D polynomial that (µ, δ, γ)-optimizes (1)
on Sn.

A number of remarks are in order. First, this result exhibits
a tradeoff between the degree D of polynomials that we can
rule out and the failure probability δ that we need to assume.
In order to rule out polynomials of any constant degree,



we need only the mild assumption δ = o(1). On the other
hand, if we are willing to restrict to algorithms of failure
probability δ = exp(−cn) (which we believe is reasonable
to expect in this setting), we can rule out all polynomials
of degree D ≤ c′n for a constant c′ = c′(c). It has
been observed in various hypothesis testing problems that
the class of degree-nδ polynomials is at least as powerful
as all known exp(nδ−o(1))-time algorithms [9], [11], [15].
This suggests that optimizing arbitrarily close to the optimal
value in the spherical p-spin (for p ≥ 4 even) requires fully
exponential time exp(n1−o(1)).

The best known results for polynomial-time optimization
of the spherical p-spin were first proved by [5] but can also
be recovered via the AMP framework of [2]. As discussed in
the full version [4], these AMP algorithms can be captured
by constant-degree polynomials. Furthermore, the output of
such an algorithm concentrates tightly around

√
n and thus

easily satisfies the norm bound with γ = (2/3)D required
by our result. We also expect that these AMP algorithms
have failure probability δ = exp(−Ω(n)); while this has not
been established formally, a similar result on concentration
of AMP-type algorithms has been shown in [23].

Our results are limited to the case where p ≥ 4 is even and
µ is a constant slightly smaller than the optimal value Ep(S).
These restrictions are in place because the OGP property
used in our proof is only known to hold for these values
of p and µ. If the OGP were proven for other values of p
or for a lower threshold µ, our results would immediately
extend to give low-degree hardness for these parameters (see
Theorem 3.6 in the full version [4]). Note that we cannot
hope for the result to hold when p = 2 because this is a
simple eigenvector problem with no computational hardness:
there is a constant-degree algorithm to optimize arbitrarily
close to the maximum (see the full version [4]).

The Ising case: We now turn to low-degree hardness
in the Ising setting, where the domain is the hypercube:
Xn = Σn. In this case, we round a polynomial’s output to
the hypercube by applying the sign function. For x ∈ R, let

sgn(x) =

{
+1 if x ≥ 0
−1 if x < 0,

and for a vector x ∈ Rn let sgn(x) denote entry-wise
application of sgn(·). We now define our notion of near
optimality for a low-degree polynomial.

Definition II.3. For parameters µ ∈ R, δ ∈ [0, 1], γ ∈ [0, 1],
η ∈ [0, 1], and a random polynomial f : Rm → Rn, we say
that f (µ, δ, γ, η)-optimizes the objective (1) on Σn if the
following are satisfied.

• E
Y,ω
‖f(Y, ω)‖22 = n (normalization).

• With probability at least 1 − δ over Y and ω,
we have both Hn(sgn(f(Y, ω));Y ) ≥ µ and
|{i ∈ [n] : |fi(Y, ω)| ≥ γ}| ≥ (1− η)n.

The interpretation of these parameters is similar to the
spherical case, with the addition of η to take into account
issues related to rounding. More precisely, as in the spherical
case, µ is the objective value attained after rounding the
polynomial’s output to the hypercube, and δ is the failure
probability. The parameters γ, η are involved in an additional
technical condition, which requires f ’s output not to be
too “small” in a particular sense. Specifically, all but an
η-fraction of the coordinates of f ’s output must exceed γ in
magnitude. The need for this condition in our proof arises
in order to prevent a small change in f(Y, ω) from inducing
a large change in sgn(f(Y, ω)).

We have the following result on low-degree hardness in
the Ising setting. The proof is deferred to the full version [4].

Theorem II.4. For any even integer p ≥ 4 there exist
constants µ < Ep(Σ), n∗ ∈ N, δ∗ > 0, and η > 0 such
that the following holds. For any n ≥ n∗, any D ∈ N, any
δ ≤ min{δ∗, 14 exp(−2D)}, and any γ ≥ (2/3)D, there is
no random degree-D polynomial that (µ, δ, γ, η)-optimizes
(1) on Σn.

This result is very similar to the spherical case, and the
discussion following Theorem II.2 also applies here. The
best known algorithms for the Ising case also fall into the
AMP framework [1], [2] and are thus captured by constant-
degree polynomials. These polynomials output a solution
“close” to the hypercube in a way that satisfies our technical
condition involving γ, η. As in the spherical case, the case
p = 2 is computationally tractable; here it is not a simple
eigenvector problem but can nonetheless be solved by the
AMP algorithm of [1], [2].

2) Langevin Dynamics and Gradient Descent: One nat-
ural motivation for understanding low-degree hardness is
to investigate the performance of natural iterative schemes,
such as power iteration or gradient descent. In the spherical
p-spin model, the natural analogue of these algorithms (in
continuous time) are Langevin dynamics and gradient flow.
While these are not directly low-degree methods, the overlap
gap property can still be seen to imply hardness for these
results in a fairly transparent manner.

To make this precise, let us introduce the following.
Let Bt denote spherical Brownian motion. (For a textbook
introduction to spherical Brownian motion see, e.g., [35].)
For any variance σ ≥ 0, we introduce Langevin dynamics
for Hn to be the strong solution to the stochastic differential
equation

dXt = σdBt +∇Hn(Xt;Y )dt,

with X0 = x, where here ∇ denotes the spherical gradi-
ent. Note that since Hn(x;Y ) is a polynomial in x, Hn

is (surely) smooth and consequently the solution is well-
defined in the strong sense [35]. The case σ = 0 is referred
to as gradient flow on the sphere.

In this setting, it is natural to study the performance with



random starts which are independent of Y , e.g., a uniform
at random start. In this case, if the initial distribution is
given by X0 ∼ ν for some ν ∈ M1(Sn), the space of
probability measures on Sn, we will denote the law by Qν .
In this setting we have the following result which is, again,
a consequence of the overlap gap property.

Theorem II.5. Let p ≥ 4 be even. There exists µ < Ep(S)
and c > 0 such that for any σ ≥ 0, T ≥ 0 fixed, n sufficiently
large, and ν ∈ M1(Sn), if Xt denotes Langevin dynamics
for Hn(·;Y ) with variance σ and initial data ν, then

PY ⊗Qν(Hn(XT ;Y ) ≤ µ) ≥ 1− exp(−cn).

In particular, the result holds for νn = Unif(Sn), the
uniform measure on Sn.

The proof can be found in the full version [4]. To our knowl-
edge, this is the first proof that neither Langevin dynamics
nor gradient descent reach the ground state from the uniform
distribution as a random start. We note furthermore, that
the above applies even to T ≤ c′ log n for some c′ > 0
sufficiently small.

There has been a tremendous amount of attention paid to
the Langevin dynamics of spherical p-spin glass models. It
is impossible here to provide a complete reference though
we point the reader here to the surveys [36], [37], [38],
[39]. To date, much of the analysis of the dynamics in the
non-activated regime considered here (n → ∞ and then
t→∞) has concentrated on the Crisanti–Horner–Sommers–
Cugiandolo–Kurchan (CHSCK) equations approach [40],
[41]. This approach centers around the analysis of a system
of integro-differential equations which are satisfied by the
scaling limit of natural observables of the underlying system.
While this property of the scaling limit has now been shown
rigorously [42], [43], there is limited rigorous understanding
of the solutions of the CHSCK equations beyond the case
when p = 2. A far richer picture is expected here related to
the phenomenon of aging [38], [44].

More recently a new, differential inequality–based ap-
proach to understanding this regime was introduced in [45],
which provides upper and lower bounds on the energy level
reached for a given initial data. That being said, this upper
bound is nontrivial only for σ sufficiently large.

We end by noting that overlap gap–like properties, namely
“free energy barriers” have been used to develop spectral
gap estimates for Langevin dynamics which control the
corresponding L2-mixing time [46], [47]. In [47], it was
shown that exponentially-small spectral gaps are connected
to the existence of free energy barriers for the overlap, which
at very low temperatures can be shown to be equivalent to
a variant of the overlap gap property in this setting. To
our knowledge, however, this work is the first approach
to connect the behavior of Langevin dynamics in the non-
activated regime (n→∞ and then t→∞) that utilizes the
overlap distribution. Finally we note here that the overlap

gap property has been connected to the spectral gap for local,
reversible dynamics of Ising spin glass models in [47] as
well as to gradient descent and approximate message passing
schemes in [23].

B. Maximum Independent Set Problem in Sparse Random
Graphs

We now consider the problem of finding a large inde-
pendent set in a sparse random graph. Here, we are given
the adjacency matrix of an n-vertex graph, represented as
Y ∈ {0, 1}m where m =

(
n
2

)
. We write Y ∼ G(n, d/n) to

denote an Erdös-Rényi graph on n nodes with edge prob-
ability d/n, i.e., every possible edge occurs independently
with probability d/n. We are interested in the regime where
first n → ∞ (with d fixed) and then d → ∞. A subset of
nodes S ⊆ [n] is an independent set if it spans no edges, i.e.,
for every i, j ∈ S, (i, j) is not an edge. Letting I(Y ) denote
the set of all independent sets of the graph Y , consider the
optimization problem

max
S∈I(Y )

|S| (4)

where Y ∼ G(n, d/n).
As n→∞ with d fixed, the rescaled optimum value of (4)

is known to converge to some limit with high probability:

1

n
max
S∈I(Y )

|S| → αd,

as shown in [48]. The limit αd is known to have the
following asymptotic behavior as d→∞:

αd = (1 + od(1))
2 log d

d
,

as is known since the work of Frieze [49]. The best known
polynomial-time algorithm for this problem is achieved by
a straightforward greedy algorithm which constructs a 1/2-
optimal independent set, i.e., an independent set of size
log d
d n asymptotically as n→∞ and then d→∞.
We will study the ability of low-degree polynomials to

find a large independent set. It is too much to ask for
a polynomial to exactly output the indicator vector of an
independent set, so we fix the following rounding scheme
that takes a polynomial’s output and returns an independent
set. Recall the terminology for random polynomials defined
in Section II-A1.

Definition II.6. Let f : {0, 1}m → Rn be a random poly-
nomial. For Y ∈ {0, 1}m, and η > 0, let V ηf (Y, ω) ∈ I(Y )
be the independent set obtained by the following procedure.
Let

A = {i ∈ [n] : fi(Y, ω) ≥ 1},

Ã = {i ∈ A : i has no neighbors in A in the graph Y },

and
B = {i ∈ [n] : fi(Y, ω) ∈ (1/2, 1)}.



Let

V ηf (Y, ω) =

{
Ã if |A \ Ã|+ |B| ≤ ηn,
∅ otherwise.

In other words, f should output a value ≥ 1 to indicate
that a vertex is in the independent set and should output
a value ≤ 1/2 to indicate that it is not. It is allowed to
make up to ηn “errors”, each of which can either be a
vertex for which the output value lies in (1/2, 1), or a
vertex that violates the independent set constraint. Vertices
that violate the independent set constraint are thrown out,
and if too many errors are made then the empty set ∅ is
returned. For our proofs it is crucial that this definition of
V ηf ensures that a small change in f(Y, ω) cannot induce
a large change in the resulting independent set V ηf (Y, ω)
(without encountering the failure event ∅).

We now formally define what it means for a polynomial
to find a large independent set.

Definition II.7. For parameters k ∈ N, δ ∈ [0, 1], γ ≥ 1,
η > 0, and a random polynomial f : {0, 1}m → Rn, we say
that f (k, δ, γ, η)-optimizes (4) if the following are satisfied.
• E
Y,ω
‖f(Y, ω)‖22 ≤ γk.

• With probability at least 1− δ over Y and ω, we have
|V ηf (Y, ω)| ≥ k.

The parameter k denotes the objective value attained (after
rounding), i.e., the size of the independent set. For us, k
will be a fixed multiple of log d

d n, since this is the scale
of the optimum. The parameter δ is the algorithm’s failure
probability. Note that if f were to “perfectly” output the
{0, 1}-valued indicator vector of a size-k independent set,
then we would have ‖f(Y, ω)‖22 = k. The parameter γ
controls the degree to which this can be violated. Finally, η
is the fraction of “errors” tolerated by the rounding process
V ηf .

We now state our main result of low-degree hardness of
maximum independent set, with the proof deferred to the
full version [4].

Theorem II.8. For any α > 1 + 1/
√

2 there exists d∗ > 0
such that for any d ≥ d∗ there exist n∗ > 0, η > 0, and
C1, C2 > 0 such that the following holds. Let n ≥ n∗,
γ ≥ 1, and D ≤ C2n

γ logn , and suppose δ ≥ 0 satisfies

δ < exp (−C1γD log n) .

Then for k = α log d
d n, there is no random degree-D

polynomial that (k, δ, γ, η)-optimizes (4).

This shows that low-degree polynomials cannot find an
independent set of size (asymptotically) exceeding (1 +
1/
√

2) log d
d n, which is roughly 85% of the optimum. This is

the threshold above which OGP can be shown using a first
moment argument as in [19].

If γ is a constant, Theorem II.8 gives a similar tradeoff
between D and δ as our results for the p-spin model,

although here there is an extra factor of log n. If we
are willing to restrict to algorithms of failure probability
δ = exp(−cn) then we can rule out all polynomials of
degree D ≤ c′n/ log n for a constant c′ = c′(c). As in the p-
spin model, this suggests that exponential time exp(n1−o(1))
is needed in order to find an independent set larger than
(1 + 1/

√
2) log d

d n.
As discussed in the introduction, the best known

polynomial-time algorithm can find an independent set 1/2
as large as the optimum (asymptotically), and we expect
this can also be achieved by a local algorithm (although this
has only been shown rigorously for regular graphs). Any
such local algorithm can be represented as a constant-degree
polynomial (see the full version [4]). We expect that this
polynomial satisfies our technical assumptions with param-
eters k = (1 + od(1)) log d

d n, γ = O(1), δ = exp(−Ω(n)),
and any constant η > 0 (although we have not included a
formal proof of this).

C. The Overlap Gap Property

As discussed in the introduction, the preceding results will
follow due to certain geometric properties of the super-level
sets of the objectives. The main property is called the overlap
gap property (OGP). Let us begin by defining this formally
in a general setting.

Definition II.9. We say that a family of real-valued functions
F with common domain X ⊂ Rn satisfies the overlap gap
property for an overlap R : X ×X → R≥0 with parameters
µ ∈ R and 0 ≤ ν1 < ν2 ≤ 1 if for every f1, f2 ∈ F and
every x1, x2 ∈ X satisfying fk(xk) ≥ µ for k = 1, 2, we
have that R(x, y) ∈ [0, ν1] ∪ [ν2, 1].

For ease of notation, when this holds, we simply say that F
satisfies the (µ, ν1, ν2)-OGP for R on X . Furthermore, as it
is often clear from context, we omit the dependence of the
above on R.

While the definition above might be satisfied for trivial
reasons and thus not be informative, it will be used in this
paper in the setting where ‖x‖22 ≤ n for every x ∈ X ,
R(x1, x2) = |〈x1, x2〉|/n, and with parameters chosen so
that with high probability µ < supx∈X H(x) for every H ∈
F . Thus, in particular R(x1, x2) ≤ 1 for every x1, x2 ∈ X ,
and µ measures some proximity from optimal values for
each objective function H . The definition says informally
that for every two µ-optimal solutions with respect to any
two choices of objective functions, their normalized inner
product is either at least ν2 or at most ν1.

In the following, we require one other property of func-
tions, namely separation of their superlevel sets.

Definition II.10. We say that two real-valued functions
f, g with common domain X are ν-separated above µ with
respect to the overlap R : X×X → R≥0 if for any x, y ∈ X
with f(x) ≥ µ and g(y) ≥ µ, we have that R(x, y) ≤ ν.



This property can be thought of a strengthening of OGP for
two distinct functions. In particular, the parameter ν will
typically equal the parameter ν1 in the definition of OGP.

Let us now turn to stating the precise results regarding
these properties in the settings we consider here. It can be
shown that the overlap gap property holds for p-spin glass
Hamiltonians in both the spherical and Ising settings with
respect to the overlap R(x, y) = 1

n |〈x, y〉|. More precisely,
let Y be i.i.d. N (0, 1) and let Y ′ denote an independent
copy of Y . Consider the corresponding family of real-valued
functions

A(Y, Y ′) (5)
= {cos(τ)Hn(· ;Y ) + sin(τ)Hn(· ;Y ′) : τ ∈ [0, π/2]}.

We then have the following, which will follow by combining
bounds from [32], [33]. The second result is a restatment
of [23, Theorem 3.4]. The proof can be found in the full
version [4].

Theorem II.11. Take as overlap R(x, y) = 1
n |〈x, y〉| and

let Y and Y ′ be independent p-tensors with i.i.d. N (0, 1)
entries. For every even p ≥ 4 there exists an ε > 0 such
that the following holds:

1) For the domain Sn, there are some 0 ≤ ν1 < ν2 ≤ 1
and some c > 0 such that the following holds with
probability at least 1− exp(−cn):
• A(Y, Y ′) has the overlap gap property for R with

parameters (Ep(S)− ε, ν1, ν2).
• Hn(· ;Y ) and Hn(· ;Y ′) are ν1-separated above
Ep(S)− ε with respect to R.

2) For the domain Σn, there are some 0 ≤ ν1 < ν2 ≤ 1
and some c > 0 such that the following holds with
probability at least 1− exp(−cn):
• A(Y, Y ′) has the overlap gap property for R with

parameters (Ep(Σ)− ε, ν1, ν2).
• Hn(· ;Y ) and Hn(· ;Y ′) are ν1-separated above
Ep(Σ)− ε with respect to R.

Let us now turn to the maximum independent set problem.
Let us begin by first observing that we may place this family
of optimization problem on a common domain. To this end,
consider as domain, the Boolean hypercube Bn = {0, 1}n.
Note that by viewing a vector x as the indicator function of
the set S = S(x) := {i : xi = 1}, we have a correspondence
between the points x ∈ Bn and subsets of the vertex set [n].
Let m =

(
n
2

)
, let Y ∈ {0, 1}m denote the adjacency matrix

of some graph on [n] vertices, and consider the function
F (x;Y ) given by

F (x;Y ) = |S(x)| · 1{S(x) ∈ I(Y )}.

The maximum independent set problem for Y can then be
written in the form

max
x∈Bn

F (x;Y ).

Let us now construct the analogue of the family A(Y, Y ′)
from (5) in this setting.

Definition II.12. For Y, Y ′ ∈ {0, 1}m, the path from Y to
Y ′ is Y = Z0 → Z1 → · · · → Zm = Y ′ where (Zi)j = Yj
for j > i and (Zi)j = Y ′j otherwise. The path is denoted by
Y 7→ Y ′.

Here (and throughout) we have fixed an arbitrary order by
which to index the edges of a graph (the coordinates of Y ).

Now let Y, Y ′ ∈ {0, 1}m be (the adjacency matrices
of) independent G(n, d/n) random graphs. We can then
consider the family of functions

F(Y, Y ′) = {F (· ;Z) : Z is on the path Y 7→ Y ′}. (6)

We can now state the relevant overlap gap property.

Theorem II.13. For any α > 1+1/
√

2 there exist constants
0 ≤ ν̃1 < ν̃2 ≤ 1 and d∗ > 0 such that for any constant d ≥
d∗, the following holds. If Y, Y ′ ∼ G(n, d/n) independently,
the following holds with probability at least 1−exp(−Ω(n)).
• The family of functions F from (6) with domain X =
Bn satisfies the overlap gap property with overlap
R(x1, x2) = 1

n |〈x1, x2〉| and parameters µ = k :=

α log d
d n, ν1 = ν̃1

k
n , ν2 = ν̃2

k
n with probability at least

1− exp(−Ω(n)).
• Furthermore, the functions F (· ;Y ) and F (· ;Y ′) are
ν1-separated above µ.

Above (and throughout), Ω(n) pertains to the limit n→∞
with α, d fixed, i.e., it hides a constant factor depending on
α, d. Note that here the overlap is simply the (normalized)
cardinality of the intersection of the two sets: R(x1, x2) =
1
n |S(x1) ∩ S(x2)|.

The proof of Theorem II.13—which is deferred to the full
version [4]—is an adaptation of the first moment argument
of [19]: we compute the expected number of pairs of inde-
pendent sets whose overlap lies in the “forbidden” region,
and show that this is exponentially small.
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and complexity of spin glasses,” Comm. Pure Appl. Math.,
vol. 66, no. 2, pp. 165–201, 2013.

[32] W.-K. Chen and A. Sen, “Parisi formula, disorder chaos and
fluctuation for the ground state energy in the spherical mixed
p-spin models,” Communications in Mathematical Physics,
vol. 350, no. 1, pp. 129–173, 2017.



[33] A. Auffinger and W.-K. Chen, “On the energy landscape of
spherical spin glasses,” Advances in Mathematics, vol. 330,
pp. 553–588, 2018.

[34] A. Jagannath and S. Sen, “On the unbalanced cut problem
and the generalized Sherrington-Kirkpatrick model,” arXiv
preprint arXiv:1707.09042, 2017.

[35] E. P. Hsu, Stochastic analysis on manifolds, ser. Graduate
Studies in Mathematics. American Mathematical Society,
Providence, RI, 2002, vol. 38.

[36] J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and
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