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THE SCHAUDER ESTIMATE FOR KINETIC INTEGRAL EQUATIONS

CYRIL IMBERT AND LUIS SILVESTRE

We establish interior Schauder estimates for kinetic equations with integrodifferential diffusion. We study
equations of the form f; +v -V, f = L, f 4+ ¢, where L, is an integrodifferential diffusion operator of
order 2s acting in the v-variable. Under suitable ellipticity and Holder continuity conditions on the kernel
of £,, we obtain an a priori estimate for f in a properly scaled Holder space.

1. Introduction

We study kinetic equations with integral diffusion of the form
fi+tv-Vif = / (f' = HK (@, x,v,0)dv +colt, x, v). (1-1)
R4

Here, we used the notation from kinetic equations f = f (¢, x, v) and f' = f(z, x, v"). The main result
in this article is a Schauder estimate for equations of the form (1-1) whose kernels K, , , are elliptic and
Hoélder continuous.

Note that the integral diffusion term on the right-hand side of (1-1) acts on the velocity variable
only. The regularization effect on the x-variable is a consequence of the interaction between the integral
diffusion and the transport term. The equation (1-1) should be understood as a Kolmogorov-type
hypoelliptic integrodifferential equation. The diffusion is of fractional order. We work with Holder-
like spaces (given in Definition 2.3) that are adapted to the particular scaling of this equation in each
direction.

Our methods allow us to consider a very general class of kernels K. This is essential for the eventual
applications of our result to the Boltzmann equation, as in [Imbert and Silvestre 2019]. We start by
specifying our notion of ellipticity and Holder continuity for the kernel K. In (1-1), K (z, x, v, v’) denotes
a function that maps the variables (¢, x, v) into a nonnegative Radon measure K  ,) in R4 \ {0}:

K(t,x,v)(w) =K, x,v,v+w)
such that for all (¢, x, v), K x ) belongs to the following ellipticity class of kernels.

Definition 1.1 (the ellipticity class). Given the order 2s € (0, 2) and ellipticity constants 0 < A < A, we
say that a nonnegative Radon measure K in R? \ {0} belongs to the ellipticity class X when the following
conditions are met:

The authors would like to thank C. Mouhot for fruitful discussions. Silvestre is supported by NSF grant DMS-1764285.

MSC2020: 35K70, 35R09.
Keywords: kinetic integrodifferential equations, Schauder estimates.

171


http://msp.org/apde/
https://doi.org/10.2140/apde.2021.14-1
https://doi.org/10.2140/apde.2021.14.171
http://msp.org

172 CYRIL IMBERT AND LUIS SILVESTRE

e (symmetry) K (w) = K (—w).
e (upper bound) For all r > 0

/ |w|?K (w) dw < Ar¥=%, (1-2)
B,
« (coercivity estimate) For any R > 0 and ¢ € C?(Bg),

/ / o) — 92K (= v) dv’ dv = A f f o) — o2V — o2 v dv. (1-3)
BrxBpg Brj2xBgr)2

In case s < (0, %), we add the following nondegeneracy assumption to the kernel:

lilnfl / (w-e)l K (w)dw > Ar*™>. (1-4)
el=1Jp,

Remark 1.2. Strictly speaking, (1-2), (1-3) and (1-4) should be written with integrals on balls minus the
origin. It is customary to extend the measure K dw to have zero point mass at the origin. Other choices
do not make any difference since all our integrands equal zero at w = 0.

Remark 1.3. We write K to denote a nonnegative measure on R?. Even though we use the notation
K (v") dv’ as if this measure is absolutely continuous, it does not need to be. We abuse notation in this
way because it makes some formulas look simpler. For example, we write K (v’ — v) dv’ to denote the
measure in terms of the variables v’ and translated by v. Otherwise, for a measure u = K (w) dw, it
would typically be written d(z,u(v’)) which is arguably more confusing.

Remark 1.4. When s < % we complement the coercivity estimate (1-3) with the nondegeneracy as-
sumption (1-4). These two assumptions may be redundant. Indeed, for stable-like kernels of the form
Kw)=|w|~ " Za(w/|wl|), they are equivalent. This follows easily by computing the Fourier symbol of
the operator associated with K; see for example [Samorodnitsky and Taqqu 1994; Ros-Oton and Serra
2016]. For non-stable-like processes the situation is less clear. We do not know any example of a kernel K
satisfying the upper bound (1-2) that satisfies one of the assumptions in the coercivity estimate but not
the other. The nondegeneracy assumption (1-4) is typically much easier to check than the first coercivity

estimate (1-3).

For local equations, a Schauder estimate refers to an estimate in a Holder space when coefficients of
the equations are Holder continuous. For nonlocal equations, the regularity of the coefficients is replaced
with the Holder continuous dependence of the kernel with respect to the variable z = (¢, x, v).

Assumption 1.5 (Holder continuity of coefficients). Given z1 = (¢, X1, v1) and z5 = (t2, X2, v2), for any
r > 0 we have

f 1Koy () — Koy ()] w2 dw < Ao 2 dy (21, 22)°,
B,

where dy(z1, 22) stands for the kinetic distance; see Definition 2.1 below.

We can now state the Schauder estimate for the equations we consider.
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Theorem 1.6 (the Schauder estimate). Let 0 <y < min(l, 2s) and o = (25 /(1 +2s))y. Let K(t, x, v, V')
be a kernel such that the two following conditions hold true:

o (ellipticity) For each z = (t, x, v) € Q1, the kernel K,(w) = K (¢, x, v, v+ w) belongs to the class K
described in Definition 1.1.

o (Holder continuity) Assumption 1.5 holds.

Assume further that 2s +o ¢ {1,2}. If f € CZ ([—1, 0] x By x RY) solves (1-1) in Qy, then the following
estimate holds:

If le2teg, ) = CUS ey —1,01x By xre) T liclicgon)-
The constant C depends on d, s, A, A, and Ay.

We use the same notation as in [Imbert and Silvestre 2020]: Q, denotes the kinetic cylinder Q, :=
(—r%,0] x B,142 X B,.

Remark 1.7. The Holder norms C g”“ and Cy must be appropriately understood. They refer to the usual
notion of C**¢ and C* regularity with respect to the v-variable. The order of regularity in the other
directions is adjusted in terms of the invariant structure of the class of equations. On the one hand, the fact
that the diffusion is of order 2s yields an invariant scaling. On the other hand the equation enjoys Galilean
invariance, yielding a Lie group structure. We discuss other choices of distances and their differences in
Section 2F. Holder spaces are introduced in Definition 2.3 below. The subindex ¢ refers to the fact that
the Holder norm is taken with respect to a distance that is left-invariant by the Lie group structure.

Remark 1.8. Note that our theorem holds for & = (2s/(1 +2s))y < y. The distinction between these
two Holder exponents o and y comes from technical reasons related to the fact that the class of equations
is left-invariant, but not right-invariant with respect to the Lie group structure.

Remark 1.9. Note that the global C} norm of f cannot be replaced by its global L™ norm even in the
case of the space-homogeneous parabolic fractional heat equation. A solution f(¢, v) to

fi+(=A),f=0 inQy,

does not satisfy the estimate

I 2o, ) = ClF Lo (-1.01x By xRe)-

This is because f will not be better than Lipschitz in time, even though it will have more regularity in
space; see [Chang-Lara and Davila 2014, Section 2.4.1]. The Holder space C?”“ would impose C!
regularity in time for any o > 0.

Remark 1.10. Note that (1-1) does not have a structure compatible with the notion of weak solutions
in the sense of distributions. It is not an equation in divergence form. Our result in this paper is an
a priori estimate provided that all quantities involved make sense classically. It is possible to define
a weaker notion of solution of (1-1) in the viscosity sense, and presumably our result in Theorem 1.6
applies to that case as well. However, we do not pursue that direction in this paper since it would add
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some technical difficulties obfuscating the proofs. The result as currently stated is what we need for our
intended applications to the Boltzmann equation.

Remark 1.11. If we want our estimates to hold uniformly as s — 1, we would have to replace the
constant A in (1-3) by (1 — s)A. The results in this article hold in the local case s = 1 as well, with
considerably simplified proofs. It would apply to an equation of the form

Ji+v-Vif =aijt, x,v) 0y, [ +c(t, x,0).

Schauder estimates for these and more general equations have been studied before (see the next subsection).
Our approach is quite different from earlier works, starting from the fact that we use a different definition
of the Holder norm. In the case s = 1, some of the difficulties in the proofs presented here disappear.
The ellipticity class in Definition 1.1 would be replaced by the usual uniform ellipticity condition of the
coefficients a;;. Assumption 1.5 would translate as the Holder continuity assumption of these coefficients.
The section about weak limits of kernels would be unnecessary since it would be replaced by the simple
convergence of the matrix of coefficients. The majorant function defined in (3-3), which plays an
important role later in the proof of the Liouville theorem, would be irrelevant since the equation is
local. Consequently, the final estimate would be in terms of || f|| (g, instead of || f{lcr (—1,01x B, xR?)-
Moreover, (4-1) in the Liouville theorem could be written in terms of f directly, instead of introducing the
function g. The final result is an interior estimate for the Cf“‘ norm with s = 1. This norm is comparable
but contains more explicit information than the norms used previously in the literature; see the norm
| - ll24«.q in [Polidoro 2004].

1A. Schauder estimates for kinetic and nonlocal equations. Linear Kinetic equations of second order
are a particular instance of the more general theory of ultraparabolic equations of Kolmogorov type.
Results involving regularity estimates in Holder spaces for these equations appeared especially in the
late 1990s. See [Shatyro 1971; Manfredini 1997; Lunardi 1997; Eidelman et al. 1998; Di Francesco and
Polidoro 2006; Radkevich 2008], and the survey article [Polidoro 2004]. More recently in [Henderson and
Snelson 2020; Imbert and Mouhot 2018], Schauder estimates were applied to bootstrap higher-regularity
estimates for second-order models in kinetic theory, including the Landau equation with moderately
soft potentials. The Boltzmann equation can be written in the form (1-1) for a kernel K depending
on the solution itself; see [Silvestre 2016]. It is our intention to use the result of Theorem 1.6 to
derive higher-order regularity estimates for the noncutoff Boltzmann equation in [Imbert and Silvestre
2019].

Schauder estimates for integrodifferential equations have been obtained in recent years; see [Mikulevi-
cius and Pragarauskas 2014; Jin and Xiong 2015; Serra 2015a; 2015b; Imbert et al. 2018; Dong et al.
2018]. They have the well-known difficulty that the smoothness of the tails of the integrals outside of
the domain of the equation is difficult to control. There are two common workarounds that have been
used in the literature. One workaround that works well in the elliptic case is to impose some regularity in
the kernels K with respect to the variable of integration w. Another approach, arguably more delicate,
imposes extra regularity on the values of the function f outside of the domain. That is the case in [Serra
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2015a; 2015b; Dong et al. 2018] and it is also the approach we take here. In our kinetic setting, this
restriction goes a bit further by requiring the function f € CZ outside of Q1, with y > «.

In this paper, we use some key ideas that originated in [Serra 2015a] and simplify enormously the
general procedure to prove the Schauder estimates in the nonlocal setting. The key of the proof of
Theorem 1.6 is a combination of a blow-up technique (see Proposition 5.1) with a Liouville theorem (see
Theorem 4.1).

1B. Possible extensions and outstanding questions. It is most probably possible to extend Theorem 1.6
to higher values of y such that y ¢ N+ 2sN. It would require the extension of Assumption 1.5 for «
large, or a version of (4-1) involving higher-order incremental quotients. It would not be obvious how to
imply the result of Theorem 1.6 for higher values of y by simply taking derivatives. Knowing f € CZ
gives us a clean estimate for f; +v -V, f in Cé’_zs and 9,, f in CZ_]. These two derivatives do not solve
an equation like (1-1). One might attempt to apply hypoelliptic estimates to derive corresponding Holder
spaces for f; and 9,, f +t 9y, f. But then we would lose a fraction of the Holder exponent that goes
beyond the order of differentiation. This is somehow reflected in the final relation between « and y in the
statement of Theorem 1.6.

In the statement of Theorem 1.6, we make the assumption o < (2s/(1 + 2s))y. We know that the
theorem would not hold with & > . The range (2s/(1 + 2s))y < @ < y is currently unclear.

1C. Organization of the article. The article is organized as follows. In Section 2, Holder spaces adapted
to the study of kinetic equations are introduced. In particular, a kinetic degree of polynomials and
differential operators and a kinetic distance are defined. Section 3 is devoted to the study of integral
operators associated with the class K of elliptic kernels from Definition 1.1. We then state and prove a
Liouville-type theorem in Section 4. Finally, Section 5 is devoted to the proof of the main theorem. It is
done by contradiction through a blowup argument.

2. Kinetic Holder spaces

In this preliminary section, we mainly introduce the Holder spaces we need to derive the Schauder estimate
for kinetic integrodifferential equations. We first define a kinetic distance, then the kinetic degrees of
polynomials and differential operators. The definition of Holder spaces is then given and an interpolation
inequality is proved.

Rl+2d

2A. The kinetic distance. The following Lie group structure of plays a key role in all our compu-

tations. The product is defined as
(t1, x1, v1) 0 (2, X2, V2) = (t1 + 12, X1 + X2 + 12V, V] + V2).

Note that this product is not commutative. The class of equations we will be working with (as in (3-19))
are left-invariant, in the sense that if f(z) is a solution of (1-1), then fy(z) := f (2o o 2) is also a solution
of a similar equation with a translated right-hand side and a translated kernel in the same ellipticity class.
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There is also invariance by scaling. We define Sg(t, x, v) = (R*t, R'">x, Rv). If f(z) solves an
equation like (1-1), then f(Sgz) solves a similar equation with a scaled right-hand side and a scaled
kernel in the same ellipticity class.

Because of this property, it is good to work with a notion of distance, Holder norms, degree and
differential operators that are homogeneous respect to this kinetic scaling and are left-invariant by the
action of the Lie group.

Definition 2.1 (a left-invariant distance). Given two points z; = (¢, X1, v1) and zo = (f2, X2, v2) in R1+2d
we define the distance function

. . 1/(2s 1/(142s
d (21, 22) = min {max (|t — 12| 12 xy —x2 — (11 — )w|VIT) up —w), v — w))).
we

The subindex ¢ stands for left-invariant.
It is convenient to also have a notion of “norm” with the right scale invariance. We define

I, x, w1 = max{e| V3, VA2 ), 2-1)
Note that it is not an actual norm in the strictly mathematical sense of the term.

Here are some observations:

o The distance d; is left-invariant by the Lie group action in the sense that dy(z 0 21, z0 z2) = dy (21, 22)

for any z, 71, 2o € R1+%4,

« It is homogeneous with respect to scaling: dy(Sgz1, Srz2) = Rdi(z1, 22).

* We will see below in Proposition 2.2 that d, is indeed a distance when s > % in the sense that it satisfies
the triangle inequality. When s < %, the function dgs is a distance. We will still work with d, (as opposed
to df“) when s < % so that we keep a consistent scaling formula (as in the previous bullet point) throughout
the paper.

» There are other equivalent formulas to measure how far apart z; and z, are. We observe that

1
de(z1,22) ® llzy o z1l

a1

~|lzy oz

7 inﬂ_\{d |t> —t1|1/(23) + |x1 —x2+ (1 —tz)w|l/(]+2s) + vy —w| 4+ vy — w|.
we

None of the three formulas on the right-hand side are proper distances. However, since they give us a
good estimate for d;(z1, z2) we will use them whenever it is convenient.

« Note that the distance d, can be reformulated in the following way: dy(z1, z2) is the infimum value of
r > 0 so that both z; and z, belong to a cylinder Q,(z) for some z € R,

o Our usual definition for the cylinder Q, would not be affected significantly if we changed it to

O, ={(t,x,v):t <0and d,;(0, (¢, x,v)) <r}.
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Moreover, because of the Lie group invariance, we could also have, for zg = (¢, xo, vo),
0,(z0) ={z=(t,x,v) : 1 <19 and d¢(z0,2) <r}.

Proposition 2.2. The function d; : RI*24 % R1424 5 [0, 00) is a distance when s > % Fors < % the
function dg“‘ is a distance.

Proof. We start with the case s > % Because of the invariance by the Lie group action, we only need to
prove the triangle inequality when one of the three points is the origin. That is, given any z;, z, € R!*24
we must show that dy(z1, 0) +d¢ (0, z2) > dy (21, 22).
Let w;, wy € R be the points where the minimum in Definition 2.1 is achieved for z; and z, respectively.
That is,
de(z1,0) = max(|r1]"/ P, 1x1 w2, op —wil, Jwi),

de(z2,0) = max(|t2] @9, |xa + tawa|VIT29 vy — wa, Jwa)).

By definition, d;(z1, z2) is the minimum over all choices of w € R4 so it is less than or equal to the
value we get by setting w = w1 + wj:

/(142
de(z1, 22) < max(|t; — 12, |xy — x2 + (11 — 22) (w1 + w2) VT2 vy —wy —wyl, [v2 — wy — wa).

We now analyze every one of the four expressions inside the max.
Clearly, since 1/(2s) < 1, we have

11— 0]V < 1] + 1]V < di(21, 0) + di (22, 0).
Also, simply by the triangle inequality in R¢,

[v1 —wy —wa| < vy —wi| + |wz2| < de(z1,0) +de(22, 0).
Likewise,
vy —wy —wa| < [v2 —wa| + |wi| <de(z2,0) +di(z1,0).

The second argument in the max is the only one that requires a nontrivial analysis. We evaluate

et = x2 4 (01 = 2) (wi +wp)| V) = |1+ nwy) — (v + wd) + fwy — |V
< lde(z1, 0" +dp(z2, 0"
+de(z1,00%de(22, 0) + de(z2, 0 de (21, 0)]/ 1)
<di(z1,0) +d(z2, 0).
The last inequality follows from the following elementary calculus fact. For any a, b > 0 and p > 1, the

following inequality holds:
a'tP + b7 +aPb+ab? < (a+b)'TP. (2-2)

Clearly, in the last inequality, we applied (2-2) with a = d¢(z1, 0), b = d¢(z2, 0) and p = 2s.
The proof for the case s < % goes along the same lines, and we conclude the last inequality also
applying (2-2) with p =1/(2s). O
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2B. Kinetic degree of polynomials. We start by defining a modified notion of degree for a polynomial
p € R[¢, x, v]. This special degree, which we will call kinetic degree, matches the scaling of the equation.

In order to compute deg, p, every exponent of the variable ¢ should count times 2s, every exponent
of the variables x; counts times (1 4+ 2s) and the exponents of the variables v; count normally. More
precisely, if m € R[z, x, v] is a monomial, we define its kinetic degree, deg, m, to be the number « so
that m(Sgz) = R“m(2).

A polynomial p is always a finite sum of monomials. In general, we define the kinetic degree of a
polynomial p =) m; as the maximum of deg; m ; for all its monomial terms ;.

Note that the degree of a polynomial p € R[z, x, v] can be any number in the discrete set N + 2sN.

2C. Holder spaces. We now define a properly scaled version of Holder spaces.

Definition 2.3 (Holder spaces). For any a € (0, 00), we say that a function f : D — R is C{ at a point
70 € R'*24 if there exists a polynomial p € R[t, x, v] such that deg; p < « and for any z € D

| f(2) — p(2)| < Cde(z, 20)".

When this property holds at every point zg in the domain D, with a uniform constant C, we say f € Cy (D).
The seminorm [ f lce(p) is the smallest value of the constant C so that the inequality above holds for all
20,2 € D. The norm || f|lce(p) s [ fIce(p) + [f 1= (D)-
Remark 2.4. Note that dy, deg;, and therefore also Cy, depend on s implicitly.
Remark 2.5. With the above definition, when a € N+ 25N, the C; space corresponds to a Lipschitz-type
space instead of the classical C' space.

Using the invariance by left translations, we can rephrase the Holder regularity of f at zg in the
following way. There exists a polynomial py such that deg, po < « and, for all z € R'*2? such that
z0Z € D, we have

|f(z002) — po(2)| < Cllzl* (2-3)
In this case po(z) = p(zp o z), where p is the polynomial of Definition 2.3. If the polynomial pg is
given by
po(t,x,v) =ao+ait+axy-x+az-v+---,
it is easy to verify that ag = f(z0), a1 =0, f +vo- Vi f, aa =V, f andas =V, f.

As is standard for some proofs of the Schauder estimates, see for example Section 4 in [Gilbarg and
Trudinger 1998], we define the adimensional Holder spaces.

Definition 2.6 (adimensional Holder spaces). Given a kinetic cylinder Q C R'*?? and any o > 0, we
define

[fles,0 = sup a7 [f1cg s @)
zZ€

where
d; =di(9,0,2). (2-4)

Naturally, we also define || fllce (o) := Il fll>~(0) + [ flcz,(0)-
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Here, we used the notation 9, O, (to, xo, vo) := 9 Q- (o, X0, Vo) \ {t = 1to}.

2D. Holder norms and differential operators. The differential operators (9; +v - V,), 9y, and 9,, com-
mute with left translations. They do not commute with each other, and they do not keep the class of
equations invariant. The operators that commute with the class of equations are 9;, 9y, and 9,, + 70y,
which are the ones that commute with right translations (instead of left translations).

It may be convenient to define the kinetic degree of a differential operator. We say that the kinetic
degree of 9; + v - V, is 2s, the kinetic degree of 9, is (1 +2s) and the kinetic degree of 9,, is 1.

It is convenient to relate the definition of the Holder spaces C with these operators. The following
(deceivingly simple) lemma will be used repeatedly.

Lemma 2.7 (derivatives and kinetic Holder spaces). Let D = 9;+v-Vy, D =0y, or D =0,,. Let f bea
Cy function in a cylinder Q and let deg;, D = « with k < a. Then Df € C;™" and

[Dflce—+(g) S [flcz0)-
Before proving Lemma 2.7, we prove the following auxiliary lemma about polynomials.

Lemma 2.8. Let p(z) be a polynomial in t, x and v of kinetic degree k. Let us write p as

p(t’x’v)z Z Cljmj(Z),

jeN1+2d
where

() e pdO U Javt o

m;(z) :=1"x x5 vy vy

Assume that
sup |p(z)| < Cor”.

llzll<r
Then, for each j, we have
|aj | S Ccora—degk m; ,

where the constant C depends on deg; p and dimension only.

Proof. We observe that once we establish this lemma for » = 1, the other values of r follow by scaling.
The space of polynomials of kinetic degree k in R!™2¢ is finite-dimensional. Recall that all norms are
equivalent in spaces of finite dimension. The result for » = 1 follows easily by comparing the two norms
given by
pllt=supla;| and |[pll2= sup [p(2)I. (2-5)
J

lzll=<1
This concludes the proof of the technical lemma. (]

Proof of Lemma 2.7. Let zo and z; be two points in Q. Since f € Cy(Q), there exist polynomials go and
q1 of degree less than « so that, for all z so that zpoz € Q and z10z € Q,

|f(z002) —qo(2)| S Clizll®,
|f(z102) —q1 (@] < Clizll*,
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where C = [f]cg. We used the fact that dy is left-invariant and dy(z, 0) < ||z||. Let r = d¢(z0, z1) =

lzg Yoz1|l and let us pick any z so that ||z|| < r.' From the triangle inequality (modiﬁed with the power 2s

when s < %), we have IIZO_1 oz1 0zl &de(z0,2102) <di(z0,21) +de(z1, 21 02) < r. We apply the two

inequalities above for z;, lozio0zand z respectively to obtain

|f(z102) —qo(zy' 0z102)| S Cr°,
|f(zi02) —q1 ()| S Cr®.

Therefore, for all ||z|| <,

191(2) — qo(zy ' o z1 0 2)| S Cr°.
Let us write the coefficients of both polynomials g;(z) and go(z, o Z102):

qo(zy! 0z102) = ap(z1) +ai(z1)t +ax(z)x +azz)v+-- -,

q1(z) =bo+bit+byx +bsv+---.

The coefficients a;(z1) can be computed in terms of the coefficients of g and the value of z, Yozy. Itis
not hard to see that each coefficient is a polynomial in z; oz, and thus of z; whose degree is not larger
than deg; go minus the degree of the corresponding monomial. Applying Lemma 2.8, we see that

bj —aj(z))| < Cre .

Here k1 =deg; t =deg; (0; +v-Vy) =2s, kp =deg; x =deg; dy, = 1+2s and k3 =deg; v =deg; 9,, =1;
i.e., kj =« in short. Since by = (9; +v1V,) f(21), bo = Vi f(z1) and b3 =V, f(z1),1.e., bj = Df (z1)
in short, we have

sup{z1|Df (z1) —a;(z1)| : de(z0, 21) <r} < Cro*. o

Remark 2.9. Note we can also apply Lemma 2.8 to the other coefficients of the polynomial ¢;(z). If p,
is the polynomial expansion of f at z of kinetic degree less than « and it has the form

jo 1 J Jd . J J
po(t,x,v) = Zaj(z)tjoxll T
J

Then, by a direct computation, the coefficients a;(z) correspond to

(3 +v - V)0af} - afial - 0l f (2)
ko! - - kaa! .

aj(z) =

Note that (d; + v - V,) and 0,, do not commute.

it s slightly problematic when z( o z or z1 o z fall outside the domain Q. It can be handled as in the proof of Proposition 2.10
by using the equivalent norm in the space of polynomials of degree < « that considers only the points that fall inside the domain.
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2E. Interpolation inequalities. The usual interpolation estimates for Holder spaces will hold.

Proposition 2.10 (interpolation). Given o < ay < a3 so that oy = 0ay + (1 — 0)as, for any function
f € C(Q1) we have

0 1-6
[f]C?Z(Qn S [f]C(Zl(Ql)[f]C?3(Q1) + [f]C?l(QI)'

Also, for any function f € C;(Qy),
9 1-6
[Fegzion S e o) e g, T W it on-

Remark 2.11. We classically get from the previous estimates that for all ¢ > 0
[fleez o) S Celf o +elf e o)
[f]CZZ*(Ql) S C**S[f]CZI*(Ql) +8[f]CZi(Q1)'

Proof. We prove the first interpolation inequality. The second one follows as a consequence by scaling.
The statement says precisely that the function & — log[ f]ce is convex. This is a local property, so we
only need to prove it for a3 sufficiently close to ;. Because of this, it is enough to prove the interpolation
inequality assuming that (N + 2sN) N [¢), ®3) contains at most one element.

Let qzl, qz2 and q? be the polynomial expansions of f at z of kinetic degrees less than «, o and o3
respectively such that for all zo & € Q;

|f(z08) —ql(§)] < [flce§1% fori=1,2,3. (2-6)

The polynomials qzl, qz2 and qz3 are increasingly higher-order expansions at the same point z. Therefore,
q? contains all the terms in qzl plus perhaps higher-order ones. In the same way, q? contains all the terms
of q? plus perhaps higher-order ones. Because of our assumption that (N + 2sN) N [e], 3) has at most
one element, which we call @, there can be at most one degree of homogeneity in the difference between
the polynomials q; and q?. The polynomial q? coincides with either qg or qg depending on whether
o >oayora<ar. When (N4 2sN) N [ag, a3) = J, we have qz1 = q? = q?, which is easier to analyze.
Let us consider the case in which there is an @ and the polynomials are not equal.
Like in Lemma 2.8, we write
g€ =) aj(m;@),
ljl<a
where each m ; is a monomial.

Subtracting (2-6) for i = 1, 2, whenever zo & € O, we have

142 &) —q! &)= aj@m;()

ljl=a

<[l IEN + Lf Tees 611 (2-7)

From this inequality, we want to infer an estimate for ||qz3 — qzl ||. Let us first make some remarks about
the norm of a polynomial. The space of polynomials of kinetic degree less than «j3 is finite-dimensional.
So, all norms that we can write are equivalent. A natural choice is perhaps

llg |l = max{lg (&) : IE]l < 1}.
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If we change that radius 1 for any other universal constant, we would obtain an equivalent norm. Note

that translations of polynomials are also polynomials of the same degree. Therefore, for any two universal

constants ¢ and C, z; € Rt

max{|g )] : 1§l = Qc(z1)} ~ max{lg ()] : IE]l < Qc(z1)}.

The factors in &~ depend naturally on ¢ and C.
Coming back to (2-7), for any N € (0, 1] and z € O, let us pick some point §; € QO such that:

e &l < N.

e Whenever dy(£1,&) < cN, then ||€] < N and zo & € Q. Here c is a universal constant.

and deg, g < a3, we deduce that

It is not hard to see that for any z € Q1 such a &; exists (in fact plenty exist).
From (2-7) we get

sup (g2 =g E)] < [flear N + [ f s N
{§:de(61,6)<cN}

Since qz3 — qz1 is homogeneous of degree «,

sup (g =g @ = [flen N7+ [l N9
{&:de(S1/NE1,E)<c)
Since [|&1|| < N, we have ||S1,y&1]l < 1. From the triangle inequality (modiﬁed with power 2s when
s < ) there is a universal constant C so that if ||§|| < 1, then § € d,(S1/n&1,8) < C.
According to the discussion above, the fact that all norms are equivalent in the space of polynomials
implies that

g2 —qlll= sup I(g} —q)@)|
{&:N1&N=<1}

< sup (g2 — gD (&)l
{&:de(S1/NE1,6)<C)

~ [f CZ‘] Nal —a + [f]th}N(Xj;*C('
We now optimize for N € [0, 1] and obtain

lg? — gl STFI1° al[f +[f]Ca1,

where & = Oa; + (1 — 0)a.

Now we estimate f(zo0&) — qZ2 (§) using both [ ], c and [ f] - There are two cases dependmg on
whether ap > & or ap < «. The proofs are very similar, so let us do only the latter. In this case qZ = qz.
We have

[Flcer &N

f]c 1% + C( f]0a1 [f1a i [l IEN.

One can easily verify that the right-hand side is less than [ f ]‘9 o Lf ] ||§ |“2 for any value of ||£]|. Indeed,
if 1§11 = ([f] az/[flcaz)l/(“‘3 @) we have

[Pl 16N < LF Tgan LA 1ol NEN®2,

|f(zo&)—q (&) <
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Otherwise, we have
A1 G + (L T L+ LF D) IEN® S L 1o L 1 NE 1 L T D .

If wp > a, we would have qz = qZ and the term |qZ q' ()| < ([f]‘9 a [f] + [f a1)||§ & would ap-
pear on the first line of the inequality. If (N 4 2sN) N [ag, a3) = @ we have q = qZ = q and the
extra term involving &« would not be there. U

2F. Discussion about choices of distance. We use the distance dy, which is invariant by left translations
and by the scaling S. Let us analyze the consequences of this choice and compare with the other possible
choices.

We could define a distance d, that is invariant by right translations of the Lie group. It would be given by

dr(21,22) 1= inf max{lin — bl h — 1yl ey = x2+ Aoy — )P/, oy -y P51/

Moreover, it would be comparable to the following expressions:

-1
lz2ozy |,

dr(z1,22) ~ { llz1 025 |,
infrer{lta — h|Y @) + [h — 1|V + x) — x2 + h(vg — v2) VT2 4 v — vy}

Alternatively, we could ignore the Lie group structure and define a distance d; that only takes scaling
into account:

dg(z1,22) = ||lz1 — 22]l.

Here || - || stands for the scaled norm as in (2-1).
The most brutal choice would be to ignore both the Lie group action and scaling and use the plain
Euclidean distance in R'+2:

de(z1,22) = (It = o’ + [x1 = 02> + [v1 — w272,

The definition of Holder spaces (Definition 2.3) depends on the choice of distance. We can thus
consider the four possible candidates Cy, C, CY and C;. The distances are not equivalent, and these
four spaces are all different. Their only equivalence appears when measuring distances from the origin
d(0, 2) # dy(0, 2) # d.(0, z). Thus C7(0) = C}(0) = C¢(0) (by C
Cany at the point 0).

The class of equations (1-1) is invariant by left translations. Because of that, the norm d; is the

any (0) we mean the functions that are

most appropriate to work with. For example, if we proved an estimate for solutions of (1-1) of the sort
[flce©) S Ifli=(g,), it implies by simple translations that [ f]ce(g,,,) S II.flL=(g,)- This implication
does not hold true for CY (Q1,2), Cy (Q1/2) or CZ(Q1,2) (at least not true keeping the same exponent a).

In previous works, people have paid less attention to these distinctions. The results in [Golse et al.
2019; Imbert and Silvestre 2020] are oblivious of the choice of distance. That is because these results are
about an estimate in Holder spaces for an undetermined exponent @ > 0. For any pair of points z; and z;
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in Q1, the following inequality holds:
d\(z1, 22) < Cdy(z1, 22) /2D

where d; and d; are any two choices among dy, d,, d; and d,. Thus, the main theorems in [Golse et al.
2019; Imbert and Silvestre 2020] hold for the Cy’ norm defined in terms of any of these distances, modulo
adjustments of the constants and Holder exponent «.

For Schauder estimates, the distinction between different distances plays a crucial role. In this case we
want to obtain an estimate with the precise exponent C2*T% when the right-hand side is C%. It seems that
such an estimate can only be true with the distance d,.

For right-invariant Holder spaces CY in terms of d,, the corresponding statement of Lemma 2.7 would
be in terms of the operators 9;, 9y, and 9,, 4 t0dy,. These differential operators have the advantage that
they commute with (3-19). For regular Holder spaces C¢ or C, Lemma 2.7 would of course hold with
pure derivatives 0, d,, and 0,,.

Our Liouville theorem, Theorem 4.1, holds for any choice of distance dy, d, or d. This is because in
Step 1 of the proof we establish that the function is constant in x. After that, we ignore the x-coordinate
and the three distances are the same.

In the proof of Lemma 5.2, we select a sequence of functions f] that are scaled left-translations of a
sequence of solutions f;. If we used a different choice of distance that is not invariant by left translations,
we would not be able to conclude anything about their C# norms.

One needs to be careful throughout this paper to make sure we do not implicitly use the exact triangle
inequality for s < 1, we do not commute group operation o, and that we do not accidentally apply d, or
d, instead of d,.

3. Integral operators

This section is devoted to the integral operators

Lf(w)= /Rd(f(v') — YK —v)dv (3-1)

associated with fixed kernels K from the elliptic class IC given in Definition 1.1. We first explain when these
integral operators can be evaluated pointwise. We then turn to limits of kernels and integral operators. We
conclude this section by proving Holder estimates that will be used in the proof of the Schauder estimate.

3A. Evaluating operators pointwise. In this subsection, we discuss how to evaluate pointwise operators
associated with kernels in the elliptic class K. More precisely, we want to explain the conditions that a
function f : RY — R must meet in order for the integral in (3-1) to be well-defined at the point vg. On
one hand, it must be sufficiently regular so that the integral does not diverge in a neighborhood of vg. On
the other hand, it must also satisfy some growth conditions so that the integral does not diverge at infinity.
Let us split the domain of integration accordingly and analyze conditions for convergence of each part:

Lf(vo) =PV . (f (o +w) = f(vo) K (w) dw + /Rd\B (f (vo +w) — f(v0)) K (w) dw.
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When s > %, the first term must be understood in the principal value sense, even when f is smooth.
Using the symmetry condition K (w) = K (—w), we can symmetrize the integral and remove the principal
value:

PV . (f (wo+w) — f(vo) K(w) dw = % - (f (o +w) + f(vo —w) =2 f(vo)) K (w) dw.

Because of (1-2), this integral is classically computable when f € C®%(By(vy)) for some & > 0. Indeed,

% . | f (vo+w) + f(vo—w) —2f(vo) | K (w) dw < [ f]caste s, w)) (/B lw|* K (w) dw)

g A[f]C2:+s(B] (v9))* (3-2)
In order to analyze the tail of the integral, we introduce the function
Wy (r) :=sup{| f (V)] : v € Bar(v0) \ Br/2(vo)}- (3-3)

We observe that, because of (1-2), the function w,,, can be used to bound the tail of the integral. We state
the estimate in a lemma for later use.

Lemma 3.1. Let R > 0. Then

o0
/ fwo+w)K(w)dw < A/ wvo(r)r_l_z“' dr.
RI\Br R/2

Proof. Using the definition of w,,(r), we can write

/ f(v0+w)K(w)dw§/ min{a)vo(r):re [M,2|w|:|}K(w)dw
R\ Bg R\ By 2

2 2|w|
5/ {—/ a)vo(r)dr}K(w)dw
ri\Bx | 3lw| Jjwi 2
2w
5/ :/ wvo—(r)dr}l((w)dw
RA\Bg U/ |wl]/2 r

o
g/ {/ K (w) dw} Oulr) g,
R/2UJ By \B; 2 r
Using (1-2) yields the result. O

Summarizing, we have the estimate

o0
Lfwo) < A([f]cms(m) + / (1f o)l + @y, (r)r 72 dz). (3-4)
1
Moreover, the integral expression in (3-1) is classically computable whenever the right-hand side of the
inequality is finite.
3B. Weak limits of kernels. We now discuss how to pass to the limit in kernels. We first define the

notion of weak-x convergence and we then prove that the set X is compact for the corresponding topology.

Definition 3.2 (weak-* convergence of kernels). We say that a sequence K ; of Radon measures in R\ {0}
converges weakly-# to the Radon measure K, if for any continuous function ¢ : R¢ — R, compactly
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supported, whose support does not include the origin, we have

lim p(w)Kj(w)dw = / (W) Koo (w) dw.
R4 R4

j—00
Lemma 3.3 (closedness of K under weak-* limit). If the kernels K ; belong to the class K of Definition 1.1
and K j converges weakly-* to K, then K, also belongs to the class K.

Proof. The fact that K, is a nonnegative Radon measure is classical.

As far as the upper bound is concerned, it is enough to consider a cut-off function ¢, valued in [0, 1]
with ¢, =1 in B, \ B, and whose compact support is contained in B, \ B> for some &, n > 0. Then
we write

f wer (W) K j(w) dw < A(r +£)*>.
Rd
Passing to the limit as j — +o00, we get
/ P K o () o 5/ P, (w) K (w) dw < A+ 2>,
B/ \B, Rd

Since ¢ and n are arbitrary, K, satisfies the upper bound.
As far as the coercivity estimate is concerned, let R > 0 and ¢ € C%(Bg). Since K ; € K, we have

[ e -ewr e —varazi [ e - e -l a .
BrxBgR BraxBg2

For all r > 0, consider a cut-off function W, valued in [0, 1], ¥, =1 in B,); and ¥, = 0 outside B,.
Thanks to the uniform upper bound, we have

/ / U~ 0)lg) — ) PK; W — ) dv' dv S ARVl s .
BRXBR
Combining the two previous estimates, we get
// (1 =¥ —v)p®) —p)*K ;' —v)dv' dv

BRXBR

> A // lp(v) — )|V — v| 7472 dv' dv — O(F*%).
BRrj2XBRr)2

We can now pass to the limit as j — oo and obtain
// lo(v) — (V)P Koo (V' — 0)1jy—yjzrs2 dv dv

BRXBR

=4 / / lp(v) =9I — v~ dv'dv — 0.
BR/ZXBR/Z

Letting r — 0T yields the result. O

Lemma 3.4 (compactness of K for weak-* topology). If K is a sequence of kernels in the class K of
Definition 1.1, then it has a weak-x convergent subsequence.
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Proof. We split R? \ {0} into Ukez Cr with Cx = By \ By—1. The sequence of Radon measures {K j|c,};
in Cy is compact because of the Banach—Alaoglu theorem. Thanks to a diagonal argument, we can thus
extract a sequence {K;;)}; converging towards K, on each ring Cy. In particular, this sequence weakly-x
converges to K, in the sense of Definition 3.2. U

3C. Limits of operators.

Lemma 3.5 (limits of operators). Let 2 be an open bounded set of (—o0, 0] x RY x R?, and let K jand
fi:(=00,0] x R? x R? — R be sequences of kernels and functions respectively so that the following
conditions hold:

(1) Each K belongs to the class K.

(2) The sequence K; — K, weakly-* as j — oo.

(3) The sequence f; — f locally uniformly in (—oo, 0] x R? x R? as j — oo.
(4) The sequence f; is uniformly bounded in CEHU(Q) for some n > 0.

(5) There is a function w : [1, 00) — R so that floo w(P)r~172 dr < 400 and for every j € N,

forallr > 1, forallv € B, \ Byp, fj(t,x,v) <w(r).
Then we have

Lifj— Loof locally uniformly in Q as j — oo,
where L; is the integral operator corresponding to K ;; see (3-1).

Proof. Let ¢ > 0 be arbitrary.
We use the assumption (4) to bound the part of the integrals in £; f; and £ f around the origin. Thanks
to the symmetry assumption of the kernels,

'PVA (fj(v+w)—fj(v))Kj(w)dw‘=‘%fB (fiw+w)+ fi(v—w) =2f;(0)K;(w) dw

1
= 5Uilczn g, / lw|* K (w) dw
4 Bp
S Ap" < % provided that p is sufficiently small. (3-5)

We use the assumption (5) to bound the tails of the integrals. Note that for any (¢, x, v) € 2 and
r > diam(£2), we can obtain a common majorant function w, (r) for all functions f;, as in (3-3), by the
formula

wy(r) < o (r —diam(£2)) + || fjll L.

Using Lemma 3.1, for R sufficiently large,

o.¢]

/[R’\B (fitv+w) — fj()K;(w) dw‘ < (w(r —diam(R2)) + ||fj||Loo)r_‘_2S dr <

e
<.  (3-6)
R/2 8
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Using that K; € K and f; — f locally uniformly, for j sufficiently large

/ \ |fj(v+w)—fj(v)—f(v+w)+f(v)|Kj(w)dwSAfstfj—f||L°°(BR+Q)<§- (3-7)
Br\B,

Finally, since K; — K weakly-x, for j large

/B\B (fo+w)— f)(K;—K)dw <%. (3-8)

Note that because f is a continuous function on R'*29 the choice of j can be made uniform with respect
to the point z = (z, x, v) € Q by the argument that led to (3-7).

Adding up (3-5), (3-6), (3-7) and (3-8), we get that |£; f — L f| < & uniformly in €2 for j sufficiently
large. O

3D. Consequences of Assumption 1.5. We gather here some consequences of Assumption 1.5 that will
be used in the next subsection when deriving Holder estimates:

/ [ K, (w) — Ko, (w)| dw S Aode(z1, 22)%, (3-9)
[lwl=<I

[ 1K) = Kol dw S Aod . 2" (3-10)
lw|=1
Both inequalities are consequences of the fact that Assumption 1.5 implies that for all » > 0
/ 1K, (w) — Koy () dw S Agr > di (21, 22)%
Br\Br/2
To get (3-10), we use dyadic rings B+ \ Byx and sum over k.

3E. Holder estimates. We gather here estimates that will be used when proving the main Schauder
estimate; see the terms A and B on page 201.

Let us consider a sign-changing kernel K such that K (w) = K (—w) and it satisfies the upper bound,
for all r > 0,

/ lw]? K (w)| dw < Ar¥=>. (3-11)
B,
Let us study the corresponding integral operator

Lk f(2)= /(f(z (0,0, w)) = f()K(w) dw.

We start with a global estimate.

Lemma 3.6. Assume o < min(1, 2s). For any sign-changing symmetric kernel K satisfying (3-11), and
f € CHT(R'2), we have the estimate

[‘CK f]C‘;(RZ‘Hl) S A[f]cleJra(RZ(Hl)-
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Proof. Let us start by fixing some notation. As usual, we denote by p, the polynomial expansion of f
at z so that deg, p, < 2s +« and, for z, £ € R'24,

|f(z0&) — p(§)| < [f]cgs+a||5||2s+a-
Let us also write, for z, £, ¢ € R'*?,

Asf(2)=f(z0§)— f(2) and &;p.(§) = pzoc(§) — pz(§).
We must estimate the quantity
AeLi f(2) =Lk f(z08) — Lk f(2)
=/Rd[f(zof§0(0,0, w)) — f(z0(0,0,w)) — f(zo§) + f()]K(w) dw

_ /R BB 0 FOIK @) du.

Since a < min(1, 2s), proving an estimate for [k f]ce amounts to finding the right upper bound for
|Ae Lk f(2)].

We split the integral above into two subdomains: By and R?\ Bg. We will later choose R = ||£].

Estimating the integral in B, we symmetrize using that K (w) = K(—w) and

‘/B A©.0,w) f(2)K(w) dw‘ = VB [f(z0(0,0,w)) = f()]K (w) dw

1

2

/B [F (20 (0,0, w)) + £(z0 (0,0, —w)) — 2£(2)1K (w) dw|.

Here we use that

£ (z0(0,0, w)) = pz(0,0, w)| < [f]e2sse[w]>F.

The polynomial p, has kinetic degree smaller than 2s + «. The first-order terms in v cancel out by the
symmetrization. There may be second-order terms in v if 2s 4« > 2. There cannot be higher-order terms
in v with our restrictions on s and «. Any term involving ¢ and x vanishes when evaluating on (0, 0, w).
Thus, when 25 4+ o < 2 we continue, using the assumption (3-11), to get

| B0 @K@ | < flgee [ P gw) .
Br Br
§ [f]CZZH—aARa.

When 2s + o > 2, we cannot cancel out the second-order terms in v in the polynomial p.. Thus, in
that case the same computation leads to

wiw; K (w) dw)‘ S [f]CKzMAR“.

/ A©,0,w) f () K (w) dw — 3y, f(2) (/
Bgr B

R
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In the estimates above, the value of z € R'*?¢ is arbitrary. The inequalities hold for z o & just as well.
Therefore, applying Az we get

/ AeA,0,w) f(DK(w)dw| I [f]cg-v+aAR“
Br +|AeD* fIAR*™  (only relevant if 25 + o > 2)

S [f]cl%ﬁ»a (ARa
+ IEI*FT*2AR?>7%)  (only relevant if 2s +a > 2).

In the last inequality we used Lemma 2.7 for the case 2s +« > 2. Note that for any value of 2s + o, when
we choose R = ||&]| we will get

‘/B Ag A .0.w) f (@K (W) dw| S [f]caa AlIEN

Now we move on to estimate the part of the integral in R? \ Bg. We use the two inequalities

|f (20 &) = po(§) < [fleawa lENF, (3-12)

| f(z0&0 (0,0, w)) — Pro.0.u)((0, 0, w) ' 0 £0(0, 0, w))|
< [fle2+all 0,0, w)™ 0§ 0 (0,0, w)[*F. (3-13)

The second one naturally requires some further analysis. We observe that

0,0, w)"'0£0(0,0, w) = (&1, &2+ E1w, &).

Therefore
10,0, w)" Lo &0 (0,0, w)| SIEN+ (& 1wV < g] + &2/ TF2) ) VA2 (3-14)

We will split the integral in R? \ By as the sum of several terms:

/d [A: A0, f@IK(w)dw| < I1 + L+ I3 + 14,
R4\ Bg

where

I :=/ £ (z08) — pa(®) K (w) duw,

R\ Bg
b= /R g, 050 0.0.00) = (00,07 08 0 0.0, K ),
L= / 1500, P+ (€)= D0.0.0) f () K () duw,

RY\Bg

Iy = f | P20(0,0,u0 ((0, 0, w) ™" 0 £ 0.0, 0, w)) = P2o(0,0,u) (€)| K () dw.
RY\Bg
We bound I easily using (3-12) and (3-11):

It S [flesra AIEN TR (3-15)
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We bound I, following the procedure, but applying (3-14):

12 5 [f]c/?sw <A||E ||2S+OZR—O£ + ”é ||2S(2S+Ol)/(1+2S) /d |w|(2S+O()/(]+2S)K(w) dw)
R4\ Bg

rS [f]c?“"“A(lls ”23+aR—oz + ”%- ”23(2S+O{)/(1+2S)R(2‘Y+a)/(l+2S)—2S)‘ (3_16)
For the analysis of I3, we write p, as a sum of monomials:

pE= Y aj@mE.
deg, mj<2s+a
Moreover ap(z) = f(z) and
80.0w)Pz(§) = Z A©,0,waj(2)mj(§).
deg; m;<2s+a
From Lemma 2.7, we know that [a j]CZH—ot—degk m SIS ]sz. Note that 2s + « — deg, m; < 1 for any

monomial such that 0 < deg; m; < 2s + «. Thus,

23 — M .
180,00 P:E) = D00y f@I S [fleama Y w]Premdeamijjgdeam,
O<deg, mj<2s+a

Therefore,

LS[flewa ) ROTOEM|g|deam,
O<deg, m;j<2s+a

Regarding 14, note that since 2s +« < 1+ 2s, the polynomial p, cannot have a term that involves its
second component (x). Since (0, 0, w) ' o&0 (0,0, w) and £ differ only on their second component, we
actually have I, = 0.

When we choose R = ||&]|, the estimates of all terms are < A[f] e I€]1%, and therefore we conclude
the proof. U

We next derive a local estimate from the global one.

Lemma 3.7. Let o = (2s/(1 +2s))y with y < min(1, 2s). Then

[EKf]Cz'(Ql/z) = [f]cgw(Ql) + [f]C}f((fl,O]xleRd)-

Proof. Tt is enough to write Lx f(z) = L f(z) +C(2), where K (w) = 15, (w)K (w) and C(2) is L f (2)
with K(w) = (1 —1 B,)K(w) and p small. From the previous lemma, we have

[Lk flegoin S U carag,)-
Let us prove that
[Clez i S L ler (-1.01x i xre)- (-17)

In order to do so, we write, for z1, z2 € Q1,2,

C(z2) —C(z1) = / (f(z20(0,0, w)) = f(z2) = f(z10(0,0, w)) + f(z1)) K (w) dw

RY\B,
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and we first prove that

|f(z20(0,0,w)) = f(z2) = f(z1 00,0, w) + f @D S [fley (1 + w2 dy (21, 22)%. (3-18)

On the one hand, since f € Cy(Q1/2) and @ <y, we have

|f(z2) = f@DI S [flerde(zi, 22)%.
On the other hand, the C { regularity of f yields

£ (220 (0,0, w)) = f(z10(0,0, w))| < [flerde(z1 0 (0,0, w), 220 (0, 0, w))
S N10,0,w) ™ 0z5" 02100, 0, w)”.

We now compute (0, 0, —w) ozz’1 0210(0,0,w) = zz’l 0z1— (0, (t; — )w, 0) and get

10,0, w) " oz; 021 0(0,0, w)| S de(z1, 22) + |t — 1o/ IT2) g 1/(1H29)

S A+ w2y 2, 29)* /2

Combining the three previous estimates yields (3-18). Since fRd\B,,(l + Jw|?/AF2) K (w) dw S AC,,
thanks to assumption (1-2) and the fact that y < 2s, (3-18) implies (3-17). Il

3F. The local Holder estimate. The symmetry condition K (¢, x, v, v+ w) = K(t, x, v, v — w) corre-
sponds to equations in nondivergence form, in the sense that the integrodifferential operator has a structure
similar to that of elliptic equations of nondivergence form (as in a;;(z, x, v)d,, v; f). It is different from
the symmetry condition that would make the operator self-adjoint, that is, K (¢, x, v, v') = K (¢, x, V', v),
and corresponds to equations in divergence form. The weak Harnack inequality, in the style of De Giorgi,
obtained in [Imbert and Silvestre 2020] does not apply to (1-1) precisely because of this distinction of
symmetry assumptions. Our kernels K do not satisfy the cancellation conditions (1.6) and (1.7) from
[Imbert and Silvestre 2020].
The situation is simpler when we take a translation-invariant kernel K (w) and consider the equation

fi+tv-Vif=Lf+c(, x,v). (3-19)

It is an integrodifferential analog of an equation with constant coefficients. There is no distinction in
this case between divergence and nondivergence form. The kernel K (t,x,v,v) = K@ — v) satisfies
the symmetry condition (and thus also the cancellation condition) K (t,x,v,V) = K (t, x, v, v) for any
kernel K in K.

The regularity of the solution f to (3-19) is not important. It is straightforward to approximate any
(weak/viscosity) solution to (3-19) with C*° solutions by mollification. Indeed, if f solves (3-19), then
for any smooth compactly supported function ¢ : R'*?¢ — R, the function

o f(2) = fR e fE o

also solves (3-19) (perhaps in a slightly smaller domain depending on the support of ¢). Naturally, the
function ¢ x; f € C* whenever ¢ € C*. Taking ¢ to be an approximation of the unit mass at the origin,
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we approximate any solution of (3-19) by a smooth one. Therefore, we can safely assume, without loss
of generality, that every function is C* for the purposes of the results in this section.
We apply the main result from [Imbert and Silvestre 2020] to our setting.

Theorem 3.8 (local Holder estimate). Let L be an integral operator corresponding to a kernel in the class
K (as in Definition 1.1). Let f : (—1, 0] x By X RY — R be a function that solves (3-19) in Q1. Then, the
following estimate holds:

Lflcr 1) = CUL lze—1,01x B xRy €l (1)
Here § > 0 and C are constants depending only on dimension and the parameters A and A of Definition 1.1.

Remark 3.9. Note that Theorem 3.8 and its corollaries below hold for several different choices of the
distance function. See Section 2F.

Proof. The coercivity conditions in the definition of the class K of elliptic kernels slightly differ from
the coercivity condition imposed in [Imbert and Silvestre 2020]. Let f : RY — R be supported in some
ball B;. Then

—/fﬁfdv:%f (f' = 12K (v, v') dv' dv
= / / (F = FPK,0) dv' du
B

4R > Bag

R
2 ByrxByg

> &/ (f/—f)zlv—v/l_d_zsdv’dv—k/ fz(v){/ v/ — |92 dv’}dv
2 By RI\B, g

. ff(f/ Pl dv dv— A / o) dv,

-2
with A ~ R~2. The other conditions from [Imbert and Silvestre 2020] are satisfied straightforwardly
from our assumptions in Definition 1.1. U

Note that the right-hand side depends on the L> norm of f with respect to all values of v € R% This is
a common inconvenience with nonlocal equations. The result can be easily improved to allow functions f
that are unbounded as |v] — oo. Let wg be the majorant function as in (3-3), centered at the origin. That is,

wo(t,x,r)y= sup f(t, x,v).
veBy\By )2

We derive the following improvement of Theorem 3.8.

Corollary 3.10. Let L be an integral operator corresponding to a kernel in the class K (as in Definition 1.1).
Let f:(—1,0] x By x RY — R be a function that solves (3-19) in Q1. Then, the following estimate holds:

o
[f]cg@m)sC(nfnmgw||c||Loc(Q])+ sup / wo(z,x,nr—l—%dr).
te(—1,0],xeB; J1/2

Here § > 0 and C are constants depending only on dimension and the parameters A and A of Definition 1.1.



194 CYRIL IMBERT AND LUIS SILVESTRE

Proof. We consider a C* function 7 : R — [0, 1] so that n(w) =11if v € B3;; and n(v) = 0 when
v ¢ B>. We apply Theorem 3.8 to the localized function f(r, x, v) = f (¢, x, v)n(v). We must analyze
the equation that f satisfies. We compute directly £ f to get

fitv-Vof —Lf=E—h(t,x,v) in Qy,
where ¢ = nc¢ and

h(t,x,v) = / i, x,vV)Y(p) — DK (&, x,v,v)dv.
RI\B3/»
From Theorem 3.8, we have

1fllca 0y = 1010 = CULS Lo (=1,01x By xre) T lIcl Loy + 17 (01)- (3-20)

It is easy to see that

2
N oo =1.01x By xRe) = I lLoo(=1,00% By xBy) < 1 fllLoc0y) +CSUP/ wo(r)r 7 dr.
t,x J1
It only remains to prove that we have, for any v € By,
o0
|h(t, x, v)| < / ft, x, VYK, x,v,0)dv" Sl flleeo) + C/ wo(r)r =72 dr.
[v'[>3/2 1/2
Let us justify this inequality. Arguing as in Lemma 3.1, we have
/ ft,x, vV)K(t,x,v,v)dv
[v'|>3/2

5/ f(t,x,v/)K(t,x,v,v/)dv/—i—/ ft, x, vV)K(t, x,v,v)dv
3/2<v'|<7

|[v'|>7
< AN, x, )L B\Bs o) +/ ft, x, VYK, x,v,0)dv.
[v/—v|>6
Moreover,
/ ft, x, vV)K(t, x,v,0) dv/§/ inf wo(N)}K (1, x, v, v") dv’
[v'—v|>6 W —v|>6 r/4<|v—v[<3r/2
+00
wo(r

<f 10( )dr.

~ r +2s
We also have

14 +00
”f(t’ X, ')||L°°(B7\B3/z) 5 / a)()(}") dr ,S / 600(7‘)7'_1_25 dr. ]
3/4 172

For convenience, we also state the scaled version of the previous result.

Corollary 3.11. Let L be an integral operator corresponding to a kernel in the class IC (as in Definition 1.1).
Let f : (—R?, 0] x Bgi+2 x R be a function that solves (3-19) in Qg. Then, the following estimate holds:

oo
LF ez o sC(R—‘S||f||Loo<QR>+R%'—5||c||Loo<QR>+RZS“S P / antt-x. dr) '
1e(—R>,0],x€Bp142 Y R/2

Here § > 0 and C are constants depending only on dimension and the parameters A and A of Definition 1.1.
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4. Liouville theorem

This section is devoted to the statement and the proof of a theorem of Liouville type.

Theorem 4.1 (Liouville). Let 0 < y < min(1, 2s) and o = (2s/(1 4 2s))y. Assume that |25 +a| <
2s +a’ <2s +a and o — o' < 8, where § is the constant from Theorem 3.8.

Let f € C?jjca,((—oo, 0] x R? x R?) be a function that satisfies the following conditions:

(1) There is a constant C1 > 0 such that for all R > 1
[f1ct0p =< C R*+=B forall B €[0,2s +a'].
(1) For any & = (h,y,w) € R*24 ywith h < 0, we define g(z) := f(& oz) — f(z) or equivalently,
gt,x,v):=f@t+h,x+y+tw,v+w)— f(t, x,v). Then, g solves the equation
g +v-Vig=Lg in (—oo,O]x[R{ded, 4-1)
where L is the operator associated to some kernel K € IC as defined in (3-1).
Then f is a polynomial of kinetic degree smaller than 2s + «.

Remark 4.2. Note that the assumption (i) ensures that the tails of L£g are integrable. Indeed, let us take
B =y +¢e <min(l, 2s) for ¢ small. The assumption (i) tells us that

lg(2)| < Cllz" " o&oz|P ||z T F. (4-2)

Note that the condition # < min(l, 2s) ensures that the polynomial ¢ in the definition of [ f]c«(;) is the
constant g, (§) = f(2).

Observe that for z = (¢, x, v) and £ = (h, y, w), we have
lz" o & ozll = lI(h, y + 1w — hv, w)|| < &l + |(tw — hv)| /29 4-3)
< Ce(1+|r] 4w/ +2),
Recalling that 8 = y + ¢, we get
g(l‘, X, v) < C[ . 5(1 + |v|)()/+8)/(1+2.Y)+2S+(¥—)/—8
= Crrg (14 [0 = (o). (4-4)
The operator Lg is well-defined because this function w suffices to bound the expression (3-4). The
constant C; , ¢ depends on ¢, x, &, and the constant in the assumption (i) with 8 =y + €.

The tails of £ f may not be integrable, and therefore we can only make sense of the equation for g,
and not for f.

Remark 4.3. It is plausible that a version of this Liouville-type result holds also for higher values of «.
In that case, for (4-1) to make sense, we would have to make g a higher-order incremental quotient of f.

We start with a simpler Liouville-type result that is a consequence of the Holder estimate contained in
Theorem 3.8.
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Lemma 4.4 (Liouville). Let § be the constant from Theorem 3.8. Assume 3 < § and f is a solution to
(3-19) in (—o0, 0] x R? x R with ¢ = 0. Assume further that for all R > 1

I £llL=0r) < CRE.
Then f is constant.

Proof. We apply Corollary 3.11 in Qg and make R — 0. From our assumption on the growth of f, for
all (¢, x) € (—R%, 0] x Bgi+2 we have that o (¢, x, r) < rP. Thus, we have

/OO o(t,x,r)r 173 dr <RPE,
R/2
Then, Corollary 3.11 tells us that
[F1ctou < CRP.
Taking R — 00, the seminorm [ f] C3(Qy) CONVerges to zero, and then the function f must be constant. [J

Proof of Theorem 4.1. We first claim that it is enough to prove the result assuming that f € C*. Indeed,
if f is less regular, we can mollify it respecting the Lie group structure, and then apply the result to the
approximate function and pass to the limit.

The remainder of the proof proceeds in several steps.

Step 1: f is constant in x. Let y € R? and g(¢, x,v) := f(t,x — y,v) — f(t, x,v). We apply the
assumption (i) with 8 = 2s + «’. Note that 25 + o’ < 1 4 2s by assumption. We get

lgll Lo (g < Cily|®He)/ (1429 ga—a’, (4-5)

Since we assume that « — «’ < 8, we can apply Lemma 4.4 and we get that g is constant. Therefore, f
must be of the form

fl,x,v)=a-x+ f(t,v)
for some constant a € R?. However, the assumption (i) tells us that for all R > 1
osc f <20 fllz=p < CLRZT.
This is only possible if a = 0 (recall that a - x is a polynomial of order 1 4 2s > 25 + «). Thus, f is

independent of x and from now on we write f = f (¢, v).

Step 2: f; is constant. Observe that the kinetic order of 9, is 2s. Therefore, f; is well-defined since
fe C%j;rc"’,. Moreover, from the assumption (i) and Lemma 2.7, we deduce that

| fillLeor) < C1R*,

Uit gy S CIREP forall fe (0, /) (4-6)
Since f;(t, v) = limy_o(f(t + h, v) — f(¢,v)))/h, using (ii) we deduce that
8t(ft) = Efz-

We omitted the term v - V, f; because it is identically zero.



THE SCHAUDER ESTIMATE FOR KINETIC INTEGRAL EQUATIONS 197

Using the invariance of the equation by the Lie group action and the fact that f is independent of x,
we have that, for any (&, w) € [0, 00) X R4, the function

g:= filt +h,v+w)— f(t,v)
also solves
g =Lg.
Because of (4-6), with 8 = o, we get that

lglli=cop < Cill(h, 0, w)||* R*™*.

Thus, we obtain that g is constant applying Lemma 4.4. Therefore, f; must be of the form f;(¢, v) =
a - v+ bt + c. However, (4-6) implies that the kinetic degree of f; cannot be more than «, and therefore
f; is a constant.
Since f is independent of x and f; is constant, f has the form f =at + £ (v) for some constant a.
The function f satisfies
a=L f .

We are left to prove that f is a polynomial in v.

Step 3: f is a polynomial in v. The third step is divided into three cases depending on the integer part of
2s + «. Indeed, the maximum number of terms in the polynomial £ (v) will depend on 2s + « belonging
to one of the three possible ranges (0, 1), (1, 2) and (2, 3) (recall that 25 4 « is not an integer).

Let us start by assuming that 2s +« € (0, 1). Given any w € R4, we set g) = f(v + w) — f(v).
Applying the assumption (i), with 8 = 2s + o’ we get

lgllLoor < Cilw|® R*™*.
Moreover, g solves
0=_"Lg.

We apply Lemma 4.4 right away. We deduce that g is constant for any w € R% Therefore f has the form
f (v) = b - v+ c. However, the assumption (i) with 8 = 0 implies in this case that b =0, so f must be
constant. Therefore, in the case 2s + o € (0, 1) we conclude that f (¢, x, v) = at 4 ¢ for some constants a
and c. Thus, f is a polynomial of degree at most 2s.

In the case 2s +« € (1, 2) the function f must be differentiable in v because of the assumption (i)
applied with B € (1, 2s +«'). Thus, if we let f; = 8vjf we get that:

(i) There is a C; > 0 such that, for all 8 € [0,2s +a’ — 1] and R > 1,
[filcs e < CLRZ#FOTIP.
(ii") For any w € R?, we define
g) = fi(v+w) — fj(v).
Then, g solves
0="Lg.
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Therefore, we repeat the proof of the case 2s +a € (0, 1) for f; instead of f and get that each partial
derivative f; is constant. Therefore, in this case f must be an affine function in v.

Likewise, in the case 25 +« € (2, 3), we apply the argument for 2s +« € [1, 2) to each partial derivative
fi =0y, f In this case we obtain that each f; is affine, and therefore f must be a polynomial in v of
degree at most 2. U

5. Blowup argument

In this section, we prove that the Holder exponent of a solution of a linear equation of the form (1-1) can
be improved; moreover, the improvement is quantitative. The result is proved by blowup and compactness.
It is first proved for equation with “constant coefficients” (Proposition 5.1) and then proved in the general
case (Proposition 5.4).

Proposition 5.1 (improvement by blow up for “constant coefficients”). Ler « and o' be as in Theorem 4.1.
Assume that

fitv-Vif =Lk f=colt,x,v) inQy,

for some function co € C;(Q1) and some kernel K € K. Then

[f]C?‘Y'W(Q]/z) =< C(”CO”C?(Ql) + ||f||C§x+a/((7l,o]xBlXR‘I)),
where C only depends on d, s, a, o, A and A.

Before proving the proposition, we state a lemma corresponding to [Serra 2015a, Claim 3.2]. Its
adaptation to kinetic Holder spaces is straightforward.

Lemma 5.2 (from Cf, to Cf with 8 > B8). Let 0 < 8’ < B. Let v be the maximum number in N + 2sN
such that v < B. Assume that v < B’ < B. Let f be a continuous function in Cf ((—00, 0] x R? x RY)
and let Cy be such that

sup sup PP _ﬂ[f]Cf/(Q,(z)) < (Cy.

r>0 Z€Q1/2

Then [f]Cf(Ql/2
somer >0andz € Q).

) < Co. Moreover, if B ¢ N+ 2sN (and assuming f smooth), the supremum is attained at

We can now turn to the proof of Proposition 5.1.

Proof of Proposition 5.1. Without loss of generality, we normalize the problem so that

llcollcecgy <1 and 1.

|| f||Czs+a/((—1,0]><Bl XRd) =<
Under these conditions, we need to prove that || f || C2H(Q1) < 1. We proceed by contradiction. Assuming
the opposite, there would exist sequences f;, K; € K and c¢; such that

leillcecon <1, (5-1)

||f] ||Cgs+a,((—1,0]><BlXRd) S 19 (5_2)
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Ofj+v-Vifi—Ljfj=c; inQ, (5-3)
(sup sup r* [ f{lgaa (g (o) /1 F0OO aS j = 00, (5-4)
r>0 Z€Q1/2 ¢ 4

The last property holds since we cannot apply Lemma 5.2 uniformly. Thanks to Lemma 5.2, there exists
ri>0andz; € Ql/z such that

o' —a

. — a/_a . ’ —_—
Fi=sup sup =L ilepeet (g, =13

[f[] 2s+a’ e
r>02z€Q1 TACTT (Qr; ()

In particular, F; — 400 and r; — 07,
We define
(fj —qj)(zjoS,(z))
2 9
js+aFj

fi@ =

r

where g; denotes the polynomial expansion of f; at z; as in the definition of Cf”"/( Qr;(z;)). This
sequence fNJ satisfies the following properties:

: Lo —ar g ,
Since Fj = r; [f]]clzm 01, we have

[Fileaser g, = 1. (5-5)
e Since F; > r"‘/_"‘[fj]cgjw(Qr(zj)), for all r > r; we have
[.}Fj]cgs+a’(QR) <R forall R > 1.
* Because of the subtraction of the polynomial expansion ¢, we also have
IIijILw(QR) < R»** forall R > 1.
« By interpolation (Proposition 2.10) between the last two items, we deduce for all 8 € (0, 2s + o]

[J;J]Cf(QR) < R¥YF forall R > 1. (5-6)

For each choice of £ € (—o0, 0] x R? x R?, we define
gj(2) = fiE02) — fj ().

Condition (5-6) allows us to bound the growth of g;(z, x, v) as |v| — oo by a single majorant function
w(|v]) as in (4-4).
Because of (5-3), each function g; satisfies for j large enough (see the choice of R; below) the equation

~

08j+v-Vigj—Ljgj=Cj(§0z)—¢j(z) in Q;(0), (5-7)
where the operator £ ; corresponds to a scaled kernel K ; and the source term c; is scaled too,
Ej(w) = rj_stj (rjw),

i@ =r;“F;cj(zj0$,(2).



200 CYRIL IMBERT AND LUIS SILVESTRE

In particular, we choose the radius R; — +o00 such that Qg (z;) C Q1 and § oz € Q2;(0) for
2 € O, (0).
Because of (5-1), it is straightforward to verify that

16) (€ 02) = () lL~(0p S F} 'deE 0z, 2)* S F .

Therefore, the right-hand side of (5-7) converges to zero over any compact set.

We observe that all the kernels K ;j belong to the class K. Applying Lemma 3.4, they converge weakly-x
to a kernel K, up to a subsequence. Because of Lemma 3.3, K, € K.

We pick & > 0 so that |25 + | < 25 + & < 2s + «’. Because of the Arzela—Ascoli theorem, we take a
subsequence so that f] converges to some function f : (—oo, 0] x R? x R? locally in C?HE. This function
foo also satisfies (5-6).

Since all the f, are controlled by a single majorizer w, we can apply Lemma 3.5 and we have that the
corresponding function go, = lim g; solves the limit equation from (5-7),

01800 + V- Vigoo — Loogoo =0 in (=00, 0] X R? x R?.

We are then able to apply the Liouville theorem, Theorem 4.1, and get that g, is a polynomial.
However, we subtracted the polynomial expansion of f; in the definition of f ', forcing f ; to have a
vanishing polynomial expansion at 0 of order up to 2s+«’. Since fi = fooln C?HS and 2s+¢ > |2s+o,
all derivatives of f at the origin must be zero and therefore f, =0

This contradicts (5-5) and the proof is complete. (]

Remark 5.3. We would like to emphasize the importance of the majorant function w. In order to do so,
we point out that it is possible to follow the same outline of the proof by blowup to obtain the result of
Lemma 5.2 under more general assumptions, at the expense of a more complicated proof. Again, we
should not overlook the importance of the majorant function w. For example, with a more complicated
function w it is possible to derive an estimate of the form

||f||cl%x+a(Q1/2) < C(||f||czz.v+a’(Q]) F 1 ey (=1.01x By xRy T 1€l co((—1,01x By x4)) (5-8)

provided that @ < 2sy /(1 + 2s). However, (5-8) is not true for any y < «, even in the elliptic case.
If we tried to reproduce the proof of Lemma 5.2 for y < «, we would still have scaled functions f]
that converge locally uniformly to a function satisfying the assumption (i) in Theorem 4.1. We can still
construct the functions g; that converge uniformly to a function g~,. But unless we have an appropriate
control on the tails of the original functions f;, we cannot conclude that the limit function g, will satisfy
any equation.

We now extend the blowup lemma to the case of “variable coefficients”. In order to do so, we are
going to use Assumption 1.5 depending on a constant Ag > 0.

Proposition 5.4 (improvement by blowup for variable coefficients). Let «t, & be as in Theorem 4.1. Under
the assumptions of Theorem 1.6, we have

[flezstaig,m = CUf llcasar g, + Aol fllczeve g,y + (L A ll ey ((-1.01 8 xre) T lcollcgon),
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where the constant C depends on dimension, s, a, ', . and A.

Proof. Let n € C2°((—1, 0] x B; x R?). Assume that n = 1 in Q3/4 and that n(z) = 0 whenever z ¢ Q.
Let f (z) = n(2) f(2). Obviously, we have

”'7f||c§”°"((—1,0]xleRd) = C”f”C?*“'(Ql)‘

We want to estimate the right-hand side that would make f satisfy an equation as in (3-19). We freeze
coefficients first,

Ko(w) =K (0,0,0, w).

and let £y be the corresponding integrodifferential operator. A straightforward computation shows that,
for all z € Ql/z,

fi+v-Vif—Lof =c(2)+A®x) — B(2),

where
A(z) = /Rd(f(t,x, v+w)— f(t, x,v)[K(w) — Ko(w)] dw,
B(z) := / i, x,v+w)—n, x,v) ft, x,v+w)Ky(w) dw.
Rd
Lemma 5.5. [A@]cg0in S Aol ll 2t g,y + I ey ((—1,01% By xR

Proof. We write A(z1) — A(z2) = I + I, with
I = /(f(zz 0 (0,0, w)) = f (@) (K, (w) — Kz, (w)) dw,
I = /(f(m 0(0,0,w)) = f(z1) = f(220(0,0, w)) + f(22)) (K, (w) — Ko(w)) dw.
As far as I; is concerned, we write [; = 1" + I, with
"= /lezl(f(& (0,0, w)) — f(z2) (K, (w) — K, (w)) dw,
1" = /|w|51(f(zz 0 (0,0, w)) = f(z2)(Kz (w) — K, (w)) dw.
For the nonsingular part of /;, we simply write

] < I oo 1.0, <) / Kz, (w) = K, (w)] dw

[lw|>1

S Aol fll Lo (1,01 By xreyde (21, 22)%,

where we used (3-10), which is a consequence of Assumption 1.5.
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We now turn to [ li“. ‘We write

|1}") Sfll llf(zz<>(0,0, w)) = pz,((0, 0, w)[| K, (w) — Kz, (w)| dw

+ %/ » |2, (€0, 0, w)) + p,((0, 0, —w)) =2 f(z2)| K, (w) — Kz, (w)| dw

S [z f |w P FIK;, (w) — Koy (w)] dw

lwl=1

+ ||f||C3.g+a / |w|2|KZl (w) — K;,(w)|dw (only relevant if 2s + o > 2)
lwl<I

S Aol fllaede (21, 22)°

We used (3-9) which is a consequence of Assumption 1.5.
We now estimate /, thanks to Lemma 3.7. This achieves the proof of the lemma. U

We now estimate the C(Q1,2) norm of B.

Lemma 5.6. [Blcein S N ller ((—1,01% B, xr)-
Proof. For z1, 22 € Q1/2, we compute,
B(z1) — B(z2) = J1 + /2,

with

J1=/|| ]/4(77(210(0, 0, w)) = n(z1) —n(z20 (0,0, w)) +n(z2)) f (z1 0 (0, 0, w)) Ko(w) dw,

S = / (1(z20(0,0, w)) = n(22))(f(z1 0 (0,0, w)) — f(z20(0,0, w)))Ko(w) dw.
lw|>1/4
We turn to estimate J;. Since 7 is smooth, and in particular C}, we can apply Lemma 3.7 and get

IS f oo —1,01x By xreyde (215 22)%-

As far as J; is concerned, we get

121 = 2lInlloo[f1cy f 4de(Z1 0 (0,0, w), z20(0,0, w))" Ko(w) dw,
lw|>1/

using that o = 2sy /(1 + 2s),
2] S1flerde(zr, 202 S [ flerde(zr, z22)%
This achieves the proof of the estimate for B. O

Thanks to Lemmas 5.5 and 5.6, we conclude the proof of Proposition 5.4 by applying Proposition 5.1
to f (with @y replaced with Q1 5). Il

Proof of Theorem 1.6. Without loss of generality, we perform an initial scaling to make sure that the
constant Ag is small (it is a subcritical parameter).
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We will next prove the slightly stronger estimate

||f||cgf*+a(Q1) N ||f||c{([_1,o]xB]de) + ||C||C;{*(Q1)- (5-9)

Scaling and translating the estimate from Proposition 5.4, we get that for any cylinder Q,(z0) C Q1

2s+a 2s+a’ a 2s+a
1Y [f]C§S+a(Q/)/4(ZO)) SIO [f]C(gSJra/(Qp(ZO)) + (p AO)IO [f]cgs+”(Qp(Z0))
+ P Lf1er (- 1.01x By xme) F 1 Lo~ 1,01% B, xR
2 2s
+ 07 eolcz 0, on + 27 leolliLe(g, zo)-

For any zo in Q1, we choose p = dy(z0, 9Q1) < 1 so that Q,(z0) C Q1.
Note that Aop® < Ao and p” [f1cy (1,018 xre) = LF1ey ((—1,01x By xre)- We get

I ezsteion S [f]Cffj“'(Ql) + Aol fllezire g,y + 1 ller —1.018xrey F licllce, on-

We use the interpolation result of Proposition 2.10 (see Remark 2.11) to get

[z o)) = el ez + Cell fliL=con-

This achieves the proof of the main theorem. 0
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