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Regularity for the Boltzmann equation
conditional to macroscopic bounds
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Abstract. The Boltzmann equation is a nonlinear partial differential equation that plays a central
role in statistical mechanics. From the mathematical point of view, the existence of global smooth
solutions for arbitrary initial data is an outstanding open problem. In the present article, we review
a program focused on the type of particle interactions known as non-cutoff. It is dedicated to
the derivation of a priori estimates in C°°, depending only on physically meaningful conditions.
We prove that the solution will stay uniformly smooth provided that its mass, energy and entropy
densities remain bounded, and away from vacuum.
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1. Introduction

In this work, we study a priori estimates on the regularity of solutions to the Boltzmann
equation,

O0f +v-Vof =0 f) (1.1)

The Boltzmann equation describes the dynamics of a dilute gas. The nonnegative
function £: [0, 00) x R? x R4 — [0, 0o) encodes the density of particles which at time
have position x and velocity v. The left hand side of the equation, pure transport, denotes
the fact that particles travel in straight lines in the absence of external forces. The right-
hand side, the Boltzmann collision operator Q( f, f), corresponds to the fluctuations in
velocity that result from particle interactions. Our regularity estimates apply to a type of
collision operators known as non-cutoff, i.e. where long range grazing collisions play a
crucial role.

The kinetic description of gas dynamics is intermediate between the microscopic
scale, associated to the trajectory of each individual particle, and the macroscopic scale
associated to fluid mechanics, such as the Euler or Navier—Stokes equations. In kinetic
equations, the density function f encodes the state of a gas, the position and velocity of
its particles for each time, but only in a statistical way.

The equation was initially studied by Maxwell and Boltzmann by the end of the 19
century. As one of the fundamental equations from statistical mechanics, it has received
substantial interest from the mathematical community through the years. There are varied
mathematical problems that result from the study of the Boltzmann equation. Animportant
line of research is on the rigorous derivation of the equations of fluid mechanics from it.
It is also natural to study the well posedness of the initial value problem, and it involves
different problematics. In this program, we are concerned with regularity estimates for the
solutions, which are intimately related to the classical solvability of the equation. As we
discuss below, finding smooth solutions unconditionally, for any initial data, appears to
be completely out of reach with current techniques. Our results are on a priori regularity
estimates conditional to certain macroscopic bounds on physically meaningful quantities.

1.1. The collision operator. The Boltzmann collision operator has two terms: a gain
term and a loss term. The loss term represents the fact that a particle with velocity v may
collide with another one and change its velocity to something else. Conversely, the gain
term accounts for collisions of other particles, with different velocities, that result in new
particles with velocity v.
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The Boltzmann collision operator is an integro-differential operator acting on the
function f(¢, x, -) for fixed values of ¢ and x. Its most common form is

0(f. f) = //R o (D0 = 02 1) B(ve = vl.cos6) dodu. (1)

where cos 0 = ﬁ:z*l -0. The nonnegative function B is referred to as the collision kernel.
*

The velocities v, v«, v” and v/, are pre- and post-collisional velocities. Particles with
velocities v and v, collide and immediately switch their velocities to v’ and v, with a
rate given by B. Conversely, particles with velocities v and v/, may collide and turn their
velocities to v and v4 at the same rate. The kernel B denotes this rate by which velocities
v and v, deviate to v” and v/, after a collision.

We consider elastic collisions that conserve momentum and energy. It is represented

by the following two relations between pre- and post-collisional velocities.
Vo= 4, (1.3)
[0 + v = [0 + VL. '

Consequently, the segments v v, and v’ v/, are two diameters of the same sphere in R¢.
For any given v, we can parametrize all possible values of v, v’ and v/, through the value
of v, € R? and a unit vector o denoting the direction of v’ from the center of the sphere,

, V4 ve v — vk
v = o,
2 2
, V4 ve |V — vy
v, = — o
2 2

This explains the parametrization of the integral in (1.2).

Several different collision kernels B can be considered. A model where particles
bounce each other like billiard balls leads to B = c|v — v«/| for some constant ¢ > 0. A
model where particles repel each other by a power law potential when they are sufficiently
close leads to a collision kernel B that is singular around 6 = 0. Moreover, in that case,
B is not integrable with respect to . The integral in (1.2) still makes sense thanks to the
cancellation in the factor ( f'(v.) f(v')— f(v«) f(v)) as v’ — v. Note that the gain and loss
terms, both integrate to 4-0co. The non-integrability of B might be considered a difficulty
in the analysis of the equation. It is common to tame this singularity by considering only
collision kernels B that are integrable. This integrability condition for B takes the name
Grad’s cutoff assumption.

For the purpose of this work, it is essential that we do not make Grad’s cutoff
assumption. The singularity in B around 6 = 0 is what drives the regularization effects
in the equation that we exploit to obtain our a priori estimates. We focus on the standard
family of non-cutoff collision kernels, of the form

B(r,cos0) = r”b(cosf) with b(cosf) a |sin(0/2)|"@ D72 (1.4)

with y > —d and s € (0, 1).

Our regularity results are restricted to the range of parameters y + 2s € [0, 2]. This
includes cases usually referred to as hard potentials (y > 0) and moderately soft potentials
(y € [-2s,0)). See Section 12.2 for a discussion of open problems outside this range.
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1.2. Conserved quantities and entropy. The dynamics of the Boltzmann equation
conserve the total mass, energy and momentum of the solution. That is

(mass) = // f(t,x,v)dvdx = // fo(x,v)dvdx,
R4 xR4 R4 xR4
(momentum) = // f(t, x,v)vdvdx = // So(x,v)vdvdx,
R4 xR4 R4 xR4

(energy) = // £t x,v)|v]*dvdx = // fo(x,v)|v|*dvdx,
R4 xR4 R4 xR4

where fo(x,v) = (0, x,v).
In addition to these three conserved quantities, a remarkable property of Boltzmann’s
collision operator is the fact that the total entropy of solutions decreases with time,

(entropy) = /f flog f(t,x,v)dvdx < // folog fo(x,v)dvdx. (1.5)
R4 xR4 R4 xRd

1.3. The hydrodynamic limit. We define the mass, momentum, energy and entropy
densities as the functions corresponding to the conserved quantities described above but
without integrating in the space variable x. That is

pax)i= [ fxod,
p(t, u(t, x) = /Rd £t x, v)v dv,

elt, x) := /Rd £t x, v)|v)? dv,

h(t, x) = /Rd flog f(t,x,v)dv.

The temperature density 6(z, x) is usually defined as

e

1 1
0(t,x) := 3(; — |u|2) = 3_;0/Rd f(t, x,v)|v—ul*dv.

The values of p, u, e, h and 6 are the macroscopic quantities corresponding to a
solution f to the Boltzmann equation. In certain asymptotic regimes, they formally
converge to solutions to classical hydrodynamic equations like the Euler and Navier—
Stokes (see [13]). More precisely, for a small parameter ¢ > 0, we consider the Boltzmann
equation with enhanced collisions,

df +vVef = 20U 1) (16

and a family of solutions f* to the equation (1.6) with the same initial data. As & — 0,
the solutions are expected to converge to Maxwellian functions in v whose corresponding
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hydrodynamic quantities satisfy the compressible Euler equations

dep+ V- (pu) =0,
d(pu) + V- (pu ® u) + V(pb) = 0, (1.7)
3 (p(Jul*> +360)) + V- (pu(Jul> + 56)) = 0.

Moreover, the limit of the entropy density satisfies & = plog(p?/3/6) and
0th + V- (uh) <0.

For ¢ > 0 small (but not quite zero), the hydrodynamic quantities solve certain local
conservation laws. Up to a first order approximation, they solve a compressible Navier—
Stokes system with a viscosity term depending on &.

The kinetic function f provides a more detailed description of the state of the fluid than
the hydrodynamic quantities alone. Yet, the hydrodynamic quantities are all that might
be observable from a macroscopic point of view. Because the compressible Euler and
Navier-Stokes equations arise as asymptotic regimes, one may wonder if any mechanism
that produces a singularity in the flow of the hydrodynamic equations would be reproduced
in the kinetic framework of the Boltzmann equation as well.

It is well known that, in the compressible Euler equations, shock singularities can
emerge from the flow even if the initial data is smooth and away from vacuum. A shock
singularity is a discontinuity in the solution of the equations, in a way that the values of
all functions involved in the system stay bounded uniformly up to the singularity. The
existence of shock singularities is classical and easy to verify in one dimensional profiles.
The density also stays away from vacuum. In the three dimensional setting, a well known
result by Sideris [92] shows the development of singularities for the compressible Euler
equations. Even though his result does not describe the precise type of singularity that
emerges, the proof suggests that it may be a shock. In recent years, the emergence of shock
singularities for the compressible Euler equations and their stability has been studied in
different scenarios (see [20,21,34,76]). We will not see singularities in kinetic equations
as a result of shocks, because the function f allows for different velocities to coexist at
the same point in space. Likewise, shock singularities will not be observed in the Navier—
Stokes equations since the diffusion would smooth out any bounded solution that stays
away from vacuum.

There are other types of singularities for hydrodynamic equations where at least one
of the values p(t, x), u(t, x) or 8(¢, x) becomes unbounded in some finite time. Another
possible singular behavior would be when p flows to zero (creating vacuum) or the
temperature 6 becomes zero somewhere (corresponding to unbounded entropy). There
is a couple of very recent papers, [79] and [80], where the authors construct a stable
implosion singularity for the compressible Euler and Navier—Stokes equations. Recall
that the compressible Euler and Navier—Stokes equations correspond to the asymptotic
behavior of (1.6) for small €. Unlike the case of shock singularities, there is no apparent
incompatibility between implosion singularities and the flow of the Boltzmann equation. It
is conceivable that there may exist some solution to the Boltzmann equation that flows into
a singularity, whose associated hydrodynamic quantities resemble the singular solution
in [79] near the implosion point. It is currently difficult to assert whether this type of
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singular solutions exist. Either a rigorous construction or an impossibility proof seems
complicated, requires further work, and probably new ideas.

The study of hydrodynamic equations presents great mathematical difficulties. The
Boltzmann equation keeps track of more information and is more complex than the
compressible Euler or Navier—Stokes equations. It is to be expected that the study of the
Boltzmann equation, its well posedness, regularity of solutions, and possible singularities,
will include, at least, similar difficulties. Given a smooth initial data fy, away from
vacuum, and with appropriate decay as |v| — 0o, the question of existence of a smooth
solution of the Boltzmann equation (1.1) is an outstanding open problem for any choice
of a physical collision operator Q. Given our current understanding of the related
hydrodynamic models, and the extra complexity of the Boltzmann equation, the question
of well posedness! for (1.1) appears to be completely out of reach.

1.4. The conditional regularity program. Given the insurmountable difficulties of
studying the existence of smooth solutions to (1.1) in general, it makes sense to study
their conditional regularity. In the program reviewed in this note, we assume point-wise
bounds on the hydrodynamic quantities: mass density, energy density and entropy density,
described in the previous subsection. Conditional to these bounds, we prove C *° estimates
for the solution f to the Boltzmann equation (1.1). By assuming that the hydrodynamic
quantities stay bounded, we remove some of the difficulties of hydrodynamic equations,
and we focus on the new regularization effects that are characteristic of the kinetic scale.

More precisely, we make the following assumption: there exist positive constants
mo, My, Eo, Hp such that for all (z, x),

mo < [ f(t,x,v)dv < My,
R4
/ f(t,x,v)|v]*>dv < Ey, (H)
R4

/ flog f(t,x,v)dv < H,.
R4

The lower bound m( on the mass density prevents the formation of vacuum regions.
The upper bound Hy on the entropy density prevents the concentration of the function f
as a singular measure. In particular, the upper bound on the entropy density, together with
the other upper bounds, prevents the temperature to reach absolute zero.

We stress that a justification that the assumption (H) holds for general solutions of (1.1)
seems to be far out of reach at the moment. If an implosion singularity with a similar
structure as in [80] was possible for the Boltzmann equation, then the assumption (H) may
fail for such solutions.

We will see that as long as (H) is true, solutions of the Boltzmann equation remain
smooth. It is the reason why we claim that a singularity is always macroscopically
observable. We now state our main theorem, which we proved in [61] and whose proof
relies on the series of articles [60, 62, 63].

Here, we mean unconditional well posedness far from equilibrium.



Regularity for the Boltzmann equation 7

Theorem 1.1 (Global regularity estimates). Let f be a solution to the Boltzmann equa-
tion (1.1). Assume that f is periodic in space, the collision kernel is of the form (1.4) and
Y + 25 € [0,2]. If (H) holds, then for any multi-index k € N'724 any time t > 0 and
any decay rate g > 0,

1(1 + [0 DX £l Loo(qeryxr xR ) < Chogre- (1.8)

Here D¥ is an arbitrary derivative of f of any order, in t, x and/or v.

When y > 0, the constants Cy 4 ; depend only on k, q and t, and the constants m,
My, Eg and Hy from (H), and the parameters s, y from the assumption (1.4) on the
collision kernel, and dimension d.

When y < 0, the constants Cy 4 . depend in addition on the pointwise decay of the
initial data fy. That is, on the constants N, with r > 0, given by

Ny :=sup (1 + [v])" fo(x,v) foreachr > 0. (1.9)
X,V

Theorem 1.1 provides an a priori estimate on the smoothness and decay of the solutions
of the Boltzmann equation without cutoff, provided that (H) holds.

Note the difference between the cases y > 0 (hard potentials) and y < 0 (soft
potentials). In the case of hard potentials, all the bounds depend on the quantities in (H)
and the parameters of the equation only. Both the smoothness and the decay estimates
are self-generated for positive time. In the case of soft potentials, the equation does
not force a fast decay at infinity, but it only propagates it. Our estimates depend on the
(pointwise) decay of the initial data. Note also that in both cases our estimates remain
uniform as t — oo.

The assumption that f is periodic in space is a convenient way for us to avoid the extra
difficulties of analyzing the boundary behavior of kinetic equations in bounded domains.
Our estimates do not depend on the size of the period. It would be straight forward to
reproduce the estimates in Theorem 1.1 if instead of periodicity in x, we assume that
f(t, x,v) converges to a fixed Maxweillian as |x| — oo.

Theorem 1.1 provides a priori estimates for classical (smooth) solutions. In order to
avoid gratuitous technical difficulties, we work with a very strong notion of solution. We
start with a function f that is C* with respect to all variables and, moreover, for every
q > 0, (1 4+ |v])? f(z, x, v) converges to zero as |v| — oo uniformly in x and z. This is
merely a qualitative assumption. The estimates in Theorem 1.1 are independent of any
norm quantifying smoothness or decay for f. The question of whether the estimates of
Theorem 1.1 would hold for any weaker notion of solution is discussed in Section 11.

1.5. Previously known regularity estimates. The first progress toward understanding
the regularization effect of the Boltzmann equation without cutoff appeared in the form of
entropy dissipation estimates. As we mentioned before, the total entropy is nonincreasing
in time. The entropy dissipation equals minus its derivative

d
D) := _d_l//Rded flog f dvdx.
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In [3], they showed that the entropy dissipation is bounded below by a weighted fractional
Sobolev norm minus lower order terms.

DO 2 IV 12 g qoi<ry = CIS 17

where L} denotes the weighted norm L'(R4 x R?,(1 + |v[?)dx dv). This entropy

dissipation estimate effectively provides the regularity estimate \/7 € Ltz,x H3, at least
for small velocities. It is the first indication of a regularization effect of the Boltzmann
equation in the non-cutoff case.

In [3], they also obtain some form of a coercivity estimate for the Boltzmann collision
operator Q(f, f) (under rather restrictive assumptions on B), and the cancellation lemma
which will be used later in this paper to compute the lower order term in (2.8).

The coercivity estimates for the Boltzmann collision operator were subsequently
improved in several papers including [1,2,4,5,9,32,48,54,85].

The coercivity estimate is the main tool to obtain global smooth solutions for the
non-cutoff Boltzmann equation in the space homogeneous regime. The first result of this
kind was by Desvillettes and Wennberg [38] for a rather restrictive family of collision
kernels B. Later on, He improves the result in [53] to include the natural non-cutoff
collision kernels provided only y + 2s > 0. See also [4,5, 10,32,36,57, 82,83, 102] for
other results in the space homogenous regime. Note that due to the conservation of mass
and energy, and the monotonicity of entropy, our condition (H) always holds true in the
space homogeneous setting, for any initial data with finite mass, energy and entropy.

For the space in-homogeneous Boltzmann equation without cutoff, we only know the
existence of smooth solutions if the initial data is sufficiently close to a Maxwellian with
respect to a suitable norm. See [7-9,47]. A sharp analysis on the asymptotic behavior
as |v| — oo for the coercivity estimate plays a key role in the proof of [47].

The well posedness of the equation for short time is obtained in [83] for initial data fy
with Gaussian decay as |[v| — oo. In [84] and [55], they develop the local well posedness
theory for initial data fy that decays only algebraically as |v| — oo.

Regularity results for the inhomogeneous non-cutoff Boltzmann equation far from
equilibrium and beyond the coercivity estimates are very scarce. The most relevant results
in the literature are given in [6] and [33]. They prove C° regularity estimates for any
solution f to the Boltzmann equation (1.1) whose mass density is bounded below and
with five derivatives (in all directions with respect to x and v) in a weighted L? space with
infinite moments. Our condition (H) is naturally much less restrictive and arguably more
physically meaningful.

Concerning unconditional regularity estimates for solutions to the non-cutoff
Boltzmann equation (1.1), far from equilibrium, the only result we are aware of is
by Arsenio and Masmoudi [12], in a fractional Sobolev space with a low order of
differentiability. They show that f/(1 + f) € Wtf)’fv,loc, for every p € [1,d/(d — 1))
and s > 0 depending on p.

1.6. Other related results. Here, we discuss briefly a few other results for the Boltzmann
equations where the conditional regularity of solutions is applied.

There is a well known result by Desvillettes and Villani [37] about the long term
behavior of solutions to the Boltzmann equation, in the non-cutoff case. It says that
solutions converge to equilibrium as # — oo provided that they stay uniformly smooth and
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bounded below by a fixed Maxwellian function. Any conditional regularity result, like
originally the one in [6], improves the result in [37] by reducing its regularity assumption.
After our Theorem 1.1, the condition to apply the theorem of Desvillettes and Villani
in [37] becomes simply that (H) holds. We discuss it further in Section 11.

There is a recent result by Duan, Liu, Sakamoto and Strain [41] where they construct
global mild solutions to the Boltzmann equation without cutoff, whose initial data is close
to equilibrium in a suitable norm. Interestingly, these solutions are not a priori very
smooth, but one can verify that our assumption (H) holds. Thus, we can deduce the C*°
smoothness and decay of the solutions in [41] as a consequence of Theorem 1.1. We also
discuss this application in Section 11.

1.7. Notation. We use this section both to clarify our choices of notation, and also as a
form of glossary of symbols. We list the places in which most symbols used throughout
this paper are defined.

We typically use the letters 7 € R for time, x € R? for space and v € R for velocity.
We also use z € R1*24 for z = (¢, x, v).

We write a < b to denote that there exists a constant C (depending on the parameters
that are appropriate for each scope) so thata < Ch. We write a ~ b to express thata < b
anda = b.

In the rest of this section we refer to objects that will be defined later on in this text.
It makes little sense to read it linearly. It can be useful to come back here whenever the
reader wants to remember the meaning of some symbol.

The integro-differential operator £k is defined in (4.2) with respect to some kernel
K(t, x,v,v"). Ttis a fractional order diffusion operator in the velocity variable. It is equal
to some integral involving the values of f(¢, x,v’) and K(¢, x, v, v’) for fixed ¢ and x.
The same formula makes sense for f = f(v) and K = K(v, v’) independent of ¢ and x.

The class of kinetic intego-differential equations of order 2s is invariant by a special
scaling Sg and the Galilean Lie group structure (R!'+24 o) defined in Section 5.1.

The Holder norms € are invariant by the scaling Sg and the Galilean group structure.
They are defined in Section 5.3.

The kinetic cylinders Q1 = (—1,0] x By x By and Qr(z¢) = {zoo Sr(z) : z € 01}
are defined in Section 5.2.

1.8. Organization of the article. After this introduction, in Section 2, we analyze
the structure of the Boltzmann equation. We describe the collision operator Q(f, f)
as a nonlinear integro-differential operator, and we relate it to the study of nonlocal
elliptic operators. We also compare the Boltzmann equation with some basic hypoelliptic
equations.

In Section 3, we outline all the steps involved in the proof of Theorem 1.1. Section 4
sets up the foundation for working with kinetic integro-differential equations that will be
needed later. Sections 6 to 10 provide some details for each of the ingredients listed before
in Section 3. We provide references to the original papers in each case.

In Section 11, we describe two implications of Theorem 1.1: a continuation criteria
and an improvement of the conditions for convergence to equilibrium. We also discuss
its applicability to weak solutions. We finish the paper with a collection of related open
problems in Section 12.
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2. Structure of the diffusion

2.1. A hypoelliptic structure. The study of regularity properties of solutions of the
Boltzmann equation necessarily starts with the study of the structure of the diffusion. The
regularization effect of the equation is driven by the fact that the collision operator is
diffusive with respect to the velocity variable. For non-cutoff collision kernels as in (1.4),
the collision operator turns out to be a nonlinear integro-differential operator of order 2s.
The collision operator produces some regularization with respect to the velocity variable.
This diffusion in “v” combined with the transport in “x” gives rise to a hypoelliptic
structure that regularizes the solution in all variables.

In order to understand how the diffusion in velocity combined with the transport in
space produces a regularization effect in all directions, it is better to start with a simpler
toy model. If we replace the collision operator Q( f, ) with the Laplacian of f with
respect to v, we arrive at the following equation

0f +v-Vif =Ayf 2.1)

In 1934, Kolmogorov computed explicitly in [71] the fundamental solution for this
equation. This kernel is a C * function with rapid decay at infinity both in v and x. It turns
out that the Kolmogorov equation (2.1) enjoys similar regularization properties as the usual
heat equation. Such an effect is a consequence of the combination of two mechanisms.
The diffusion in the velocity variable v regularizes the solution in this variable and the
free streaming operator d; + v - Vy transfers regularity in v into regularity in the (¢, x)
variables. This remarkable observation is the starting point of the hypoellipticity theory
developed by Hormander from 1967.

In the Boltzmann equation, the collision operator is an integro-differential nonlinear
diffusion. Its closest linear analog would be the fractional Kolmogorov equation,

0 f+v-Vef +(=A); f=0. (2.2)

The fractional Kolmogorov equation also enjoys similar regularizing properties. Its
corresponding fundamental solution is C°, but it decays polynomially at infinity,
much like the fundamental solution corresponding to the fractional heat equation. The
Boltzmann equation is a nonlinear variant of (2.2). From this point of view, it is natural
to expect regularity estimates by using tools from hypoelliptic and integro-differential
equations.

2.2. Non-local diffusions. Motivated by probabilistic models involving discontinuous
stochastic processes, since the beginning of the 21% century there was an explosion of
results in the area of nonlocal diffusions. Basically, a linear parabolic integro-differential
equation is an equation of the form

a f(t,v) = /]Rd [f(tw) - f(t,v)]K(t,v,w) dw. (2.3)

Here K is a nonnegative kernel function satisfying some nondegeneracy and symmetry
assumptions. This type of equations can be studied in the context of parabolic equations.



Regularity for the Boltzmann equation 11

They satisfy similar characteristic properties: maximum principles, energy dissipation
inequalities, regularization effects, etc. Some of the landmark results that make it possible
to study the regularity of nonlinear parabolic equations were reproduced in the nonlocal
setting. They include:

* the Harnack inequality of De Giorgi, Nash and Moser [14, 18,23,25,44,65,68,72];
* the Krylov—Safonov Harnack inequality [15-19,24,31,66,67,75,89,93,94,97];
¢ the Schauder estimates [40, 58,64, 81,91].

The diversity of results in this area is explained in part by the richness of the family of
equations. While a classical second order diffusion is characterized simply by a positive
definite matrix of coefficients at each point, the integro-differential diffusion is defined
in terms of a whole kernel function K(, v, -), giving much more flexibility in terms of
possible structural assumptions.

The primal example of an integro-differential operator is the fractional Lapla-
cian (—A)*, which corresponds to the kernel

K(t,v,w) = cqslv—w| 79728
for some positive constant ¢4 ; only depending on dimension and s. In the context of
general integro-differential equations, one must start by making sense of the notions
of uniform ellipticity, smoothness of coeflicients, divergence form, non-divergence
form, weak solutions, viscosity solutions, etc. The following dictionary provides a
basic understanding of the different assumptions for integro-differential diffusions that
correspond to common structural conditions for second order elliptic operators.

* Uniform ellipticity of order 2s corresponds to the bounds
Ao —w| ™72 < K(1,v,w) < Alv — w| 74728

for two positive constants A, A. That is, the kernel should be comparable with that of the
fractional Laplacian.

* Equations in divergence form correspond to the symmetry condition
K(t,v,w) = K(t,w, v).

In this case, the diffusion operator is self-adjoint in L2.

* Equations in non-divergence form correspond to the different symmetry condition
K(t,v,v+h) = K(t,v,v—h).

In this case, the diffusion operator evaluates to zero when applied to an affine function,

and evaluates to a locally bounded value when applied to a smooth function.

These definitions are the starting point for understanding parabolic integro-differential
equations. However, as we will see in the rest of this article, the conditions on the
kernel K can be significantly relaxed for each of the three notions above.
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2.3. The non-local diffusion of the Boltzmann equation. The collision operator Q( f, f)
in the Boltzmann equation is a nonlinear integro-differential diffusion in the velocity
variable. However, looking at the expression (1.2), there is no apparent similarity with the
equation (2.3). We resort to Carleman coordinates [28,29] in order to rewrite Q( f, f) as
an integro-differential diffusion with an f-dependent kernel, plus a lower order term.

To avoid clutter, we omit writing explicitly the time ¢ and space x variables in every
formula. Every expression we write is evaluated for each fixed value of ¢ and x.

We reparametrize the integral in (1.2) in terms of w := v/, —v and v’. The identities (1.3)
are equivalent to

w L (W —v),

Ve =0 + w.

Figure 1. On the left hand side, pre- and post-collisional velocities are parametrized by v, v« € R4
and 0 € dBj. On the right hand side, Carleman coordinates are shown: velocities are parametrized
byv,v' € R andw L (v/ — v).

In terms of these variables, and taking into account the Jacobian of this change of
variables, the operator Q( f, f) from (1.2) becomes

o= [ ( [ e - @)
R4 wL{v/—v} J

. B(|'l) —'U*|,C089)m

= A{{d (f(v/)Kf(v,v’)—f(v)Kf(v’,v)) dv’,

[ — vy |74 F2 dw) dvl,

where the kernel K s depends on the function f through the following explicit formula
(see [95]),

d—1

Ks(v,v') = F(v+ w)B(r,cos )r 42 dw (2.4)

|v/ - v| wlv'—v
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with

w—(v=v)  w+@'-v)
[w—@—v)|  [w+@-v)["

{rZ — |v/_v|2 4 |U)|2,

cosf =

Under the non-cutoff assumption (1.4), the kernel K ; satisfies,

K, v') ~|v— v’|—d—2~‘{/ f 4+ w)|w) T+ dw}. (2.5)
wlv' —v

The sign ~ means that the kernel K ¢ is bounded from below and from above by the right
hand side, up to a constant only depending on B.

We observe in the formula (2.5) that if the factor inside the brackets on the right hand
side is ~ 1, that is to say is bounded from above and below by positive constants, then
the kernel Ky is uniformly elliptic. However, we cannot ensure such a property based
only on the hydrodynamic conditions in (H). Our kernel K ¢, a priori, may be a lot more
degenerate than those considered in the earlier literature on integro-differential equations.
There is no pointwise lower or upper bound for K ¢ that can be deduced from (H).

The well known cancellation lemma, which appeared for the first time in [3], tells us
that

/ (Kf(v/,v)—Kf(v,v’))dv/:cb/ f(v+ w)|w]” dw
R4 R4

for some constant ¢; > 0 only depending on the collision kernel B. The operator Q( f, f)
can thus be rewritten under the following form

OUf. /) =Lk, f+ f(f *enl-I)

with Ky given by (2.5) above. We write £ x to denote an integro-differential operator
in v associated to a kernel K,

) = [ (F0) = F)K. )

The term £k , f is anonlinear (since K s depends on f') integro-differential diffusion.
The term f(f * cp| - |¥) is of lower order. The integro-differential diffusion leads the
smoothing effect of the equation.

In order to apply ideas from the area of integro-differential equations in the context of
the Boltzmann equation, there are several difficulties that we must overcome. In particular,
we must answer the following questions.

(1) In what way is the kernel K ¢ elliptic? Can we generalize regularity results for integro-
differential equations to possibly degenerate kernels like the ones for the Boltzmann
equation?

(2) Is the Boltzmann kernel K f in divergence or non-divergence form?

(3) Is it possible to generalize the regularity results for integro-differential parabolic
equations to the hypoelliptic setting of kinetic equations?



14 C. Imbert and L. Silvestre

In the next subsection, we will discuss the precise way in which the kernel K s is
elliptic, only in terms of the parameters of (H). A first regularity result for parabolic
integro-differential equations with such irregular kernels appeared in [89] in the form of a
Krylov—Safonov type theorem. A version of De Giorgi-Nash—Moser theorem for kinetic
integro-differential equations with possibly degenerate kernels appeared in [63].

The Boltzmann kernel K ¢ is naturally in non-divergence form, since the identity

Kw,v+h)=K@w,v—nh)

is evident from its explicit formula. The difference K (v, v")— K (v’, v) satisfies cancellation
conditions that allow us to also work with £x as an integro-differential operator in
divergence form plus a lower order correction.

In [63] and [62], we develop integro-differential kinetic versions of the Giorgi—Nash—
Moser theorem and of the Schauder estimates, making use of the hypoelliptic relationship
between the integral diffusion and the transport terms. These are results for general kinetic
integro-differential equations that were developed with the explicit purpose of applying
them to our program of conditional regularity for the Boltzmann equation. We explain
them in Sections 6 and 7

2.4. Non-degeneracy cones. The lower bound for the mass density of f in (H), combined
with the upper bound for the energy density, tells us that there is certain amount of mass
inside a ball {|v| < R} (for R depending on m¢ and Eg). Moreover, the upper bound Hy
on entropy tells that this mass cannot concentrate in a set of measure zero. A quantification
of this reasoning gives us that, for every value of ¢ and x,

W, u, R>0 / {f =6 0{v| <R} = p.

In words, for every value of # and x, there exists a set of positive measure and localized
around the origin where the function f is bounded from below. This set allows us to
obtain a lower bound for the diffusion kernel K s in some directions. Indeed, from any
arbitrary point v, there is a symmetric cone of directions whose perpendicular planes will
intersect the set { / > £} on a set with #¢~! positive Hausdorff measure. This is what
we call the nondegeneracy cone of K ¢ at v (See Figure 2). This cone is characterized by
the fact that (v' — v)/|v’ — v| € A(v) for a certain subset A(v) of the unit sphere ¢!,
We have

Kr(,v") > A(v) [v —v'[79725  whenever v’ € v + RA(v), (2.6)

for A(v) ~ (1 + |v|)¥T25F! > 0 depending on v and the constants from (H). Note
that the nondegeneracy cone depends on the function f and on the point v € R¢. The
nondegeneracy cones rotate and stretch in some directions when we move the point v.
The lower bound K(v,v’) > Alv — v/|7425, in the usual ellipticity condition for
integro-differential equations, holds only when v’ belongs to the nondegeneracy cone
emanating from v. This is the only non-degeneracy condition that we can deduce from (H).
The usual uniform ellipticity condition for integro-differential equations consists also
of an upper bound for the form K (v, v') < A|v—v'|~¢725. A pointwise upper bound like
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Br N

Here K r(v,v') is
bounded from below

f =4

\ A(v) is contained in dB;

Figure 2. Non-degeneracy cone. It is made of lines passing through v of velocities v’ such that
Kz (v, v’) is bounded from below. In particular, it is centered at v. It is generated in terms of the
dark green set { f > £} N Br. A generic line of the cone (shown in red on the figure) is made of
velocities v’ such that the perpendicular plane {v + w : w L v’ — v} (shown in dashed red on the
figure) significantly intersects the dark green set { f > £} N Bg. See (2.5). This figure is adapted
from [95], see also [61].

that cannot be deduced from (H). Instead, we can deduce an upper bound in the following
averaged sense. For every r > 0, we have

/ K@, v+ w)|w|*dw < A(v)r?=2s. 2.7
B,

Here, the value of A(v) ~ (1 + |v|)”T2* depends only My and E, in (H), provided that
y + 2s € [0,2]. Note that both parameters A(v) and A(v) in (2.6) and (2.7) depend on v.
They are locally uniformly bounded, but they do not stay bounded as |v| — oo.

The conditions (2.6) and (2.7) are weaker than the usual pointwise bounds

A —v'[7972 < K(v,v') < Al — /|79

that appear in the earlier literature as a notion of uniform ellipticity appropriate for integro-
differential equations.

2.5. Structure of the Boltzmann equation. The nonlinear integro-differential structure
of the Boltzmann equation that we discussed so far can be summarized in the following
formula,

Wf+v-Vif = Lk, f + f(frenl-l) (28)
———— —— N ——— —
free transport non-local diffusion, lower order term

non-degenerate
in several directions
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We know that the diffusion is non-degenerate only in the cone of directions discussed
in Section 2.4. As we will see, this cone of non-degeneracy is large enough to produce
a regularizing effect in the velocity variable v. We stress the fact that it is Condition (H)
that ensures the existence of such cones of non-degeneracy.

3. Global regularity estimates: a warm-up tour

The present section is dedicated to the presentation, in a few paragraphs, of the steps
involved in the proof of Theorem 1.1. We describe the path from the assumption (H) all
the way to the a priori estimates for all derivatives of f.

Our program combines several ingredients. We summarize them in the following list.

* Pointwise upper bounds that show an arbitrarily fast polynomial decay as |v| — oo.

* A weak Harnack inequality for kinetic integro-differential equations: it gives us local
C*? estimates for some « > 0 (possibly small).

* The Schauder estimates for kinetic integro-differential equations: they give us local
C 2512 estimates for some (small) & > 0.

* A change of variables to adjust the ellipticity of the operators as |v| — oo: it turns our
local Holder and Schauder estimates into global ones.

* An iterative gain in regularity, by successively applying the Schauder estimates to
derivatives of solutions, to obtain C *° estimates.

In this section, we briefly outline what each step does, and how they combine to
produce a proof of Theorem 1.1. We give a more detailed explanation of each of these
ingredients in later sections.

3.1. Pointwise decay estimates in the velocity variable. Before studying the derivatives
of a solution, we are interested in its fast decay with respect to the velocity variable.

In [95], the second author of this paper showed that the condition (H) suffices to obtain
an a priori estimate in L* for the solution f, in terms of the constants from (H) only,
provided that y + 25 > 0 and y < 2. For the range of parameters y + 2s € [0,2], in
our joint work with Clément Mouhot [60], we improve the upper bound by proving that
solutions decay at an arbitrary algebraic rate as |[v| — oo. More precisely, given any
solution f of (1.1), with a non-cutoff collision kernel as in (1.4), if (H) holds, then for
any value of ¢ > 0 and t > 0, there is a constant Cy such that

Sup (1+ )| f (. x, )] < Co. (3.1)
(t,x,v)€[r,TIxR4 xR4

The constant Cy depends only on the parameters of (H) when y > 0 (the so-called “hard
potentials” case). In the case of y < 0, it is necessary to impose that the initial datum
fo(x,v) = f(0,x,v) enjoys a fast decay in v. The corresponding constant Cy then also
depends on the constants measuring this decay. In that sense, we say that the bounds (3.1)
are self generated for hard potentials (y > 0), and they are propagated from the initial data
for (moderately) soft potentials (y < 0).
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The structure of the proof is inspired by the classical idea of barrier functions in
elliptic PDEs. We set up a contradiction by evaluating the equation at the first point of
contact between the solution f and an upper barrier. However, the upper barrier is not a
super-solution of any particular equation. The contradiction is based on purely nonlocal
considerations in the spirit of [93] or the nonlinear maximum principles in [35].

We give a more detailed description of this result in Section 8.

3.2. A Holder modulus of continuity. Once the bound (3.1) is established, we are
interested in estimating some Holder modulus of continuity for the solution, with respect
to all its variables. This will be done through a weak Harnack inequality, in the style of
De Giorgi, for general kinetic integro-differential equations. In [63], we study equations
of the form,

df +v-Vof =Lxf +h (3.2)

where

Lk f(v) =P.V. /Rd [f(t.x.0) = f(t.x,v)]K(t,x,v,v) dv’.

The kernel K needs to satisfy only some mild notion of ellipticity (implied by (2.6)
and (2.7) in the case of Boltzmann equation) and cancellation conditions. The source
function % needs to be bounded. The Holder regularity of the solution u is obtained by
following a variant of De Giorgi’s method. Neither the kernel K, nor the source function #,
need to be linked to the solution f by any additional formula. Because of that, a local
Holder regularity estimate for an equation of the form (3.2) is more general, and implies
in particular a local Holder regularity estimate for the Boltzmann equation (2.8).

Not long before our work in [63], the Harnack inequality, and consequential Holder
estimates, as in the theorem of De Giorgi, Nash and Moser, were obtained in the context
of kinetic equations with second order diffusion with rough coefficients (see [46, 86, 100,
101]). They apply to equations of the form

O f +v-Vuf =0y [ai(t.x,v)dy, f] +h. (3.3)

where the coefficients a;; are assumed to be uniformly elliptic (i.e. AI < {a;;} < Al for
some constants A > A > 0), but they are not required to satisfy any smoothness condition.

The equation (3.3) would be hypoelliptic in the sense of Hormander if its coefficients
were smooth. In the present case, the coeflicients a;; are merely bounded and measurable
with respect to ¢, x and v. Our result in [63] about an equation of the form (3.2) was
motivated by these results for (3.3), and in particular by [46].

As we mentioned it in Section 2.2, there are several results available for integro-
differential versions of the De Giorgi—Nash—Moser theorem. Our result in [63] can be
described as an integro-differential version of the main result in [46]. However, we face
some very specific difficulties.

(1) We deal with kernels that are significantly more singular than in the earlier literature.
The conditions (2.6) and (2.7) only provide a very mild form of ellipticity.

(2) The integral operator in the Boltzmann equation has the symmetry structure charac-
teristic of equations in non-divergence form. In order to adapt to that, we substitute the
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natural symmetry condition,
K, x,v,v) = K(,x,v,v),

by the following weaker cancellation condition. For all r € (0, 1)

‘ / (K(t,x, v,v") — K(t,x,v, v)) | <Cr? (3.4)
By (v)

and ‘/ (K(Z,x,v,v/)_K(t,x,v/! v))(v’_v)dv/ SCrl—Zs' (3.5)
By (v)

In the context of the Boltzmann equation, the fact that the first inequality holds is a
reformulation of the classical cancellation lemma from [3]. The second cancellation
property seems to be new.

(3) The compactness argument which is at the core of the proof in [46] cannot possibly be
adapted to integro-differential equations of order less than one. In that case, we construct
special barrier functions and use some ideas that originated in the work of Krylov and
Safonov for parabolic equations in non-divergence form. More precisely, we adapt their
well known covering technique that they call the growing ink spots lemma.

In a later paper [98], Logan Stokols shows that a considerably simpler proof can be
given when the kernels K are assumed to be symmetric (i.e. K(¢, x,v,v") = K(¢, x, v’, v))
and uniformly elliptic in the most classical sense:

Ao =792 < K(t, x,v,0") < Ajv—v/[7972,

Such a result, however, cannot be used to derive Holder estimates for the Boltzmann
equation.

The precise statement of our result, and more details on its proof, will be given in
Section 6.

3.3. Gain of 2s derivatives through Schauder’s approach. The classical Schauder
theory gives us an estimate of the C2T® norm of solutions to linear uniformly elliptic
equations with C% coefficients and C* source terms.

Linear kinetic equations with second order diffusion are a particular case of the
more general theory of ultraparabolic equations of Kolmogorov type. The Schauder
theory for this type of equations was developed mostly in the late 1990s and early 2000s.
See [39,43,77,78,87,88], and the survey article [90]. In particular, it applies to equations
of the form

O f +v-Vaf = aij(t,x,v)y0, [ +h, (3.6)

when the coefficients a;; are uniformly elliptic and these functions together with the source
term & are Holder continuous.

The Schauder estimates are a powerful tool to bootstrap higher regularity estimates
once an initial Holder estimate is established for a nonlinear parabolic equation. A
nonlinear equation can often be written as a parabolic or elliptic equation whose coefficients
depend on the solution itself. If we know a Hélder modulus of continuity for the solution,
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it may imply a Holder bound for the coefficients. The Schauder estimates then give us
a C 2™ estimate for the solution. We thus know that the coefficients are even more regular,
and we iterate. In other words, the Schauder estimate allows one to gain two derivatives:
starting from the control of the modulus of continuity of the solution, we reach a control
of the modulus of continuity of second order derivatives.

In [62], we obtain Schauder estimates for kinetic integro-differential equations of the
form (3.2). The method of our proofis very different from the earlier work on ultraparabolic
equations. Instead, we borrow ideas from the blow-up technique developed by Joaquim
Serra [91] for integro-differential equations.

Classical Schauder theory for parabolic equations involves Holder spaces whose
definition encodes the parabolic scaling, through the introduction of a parabolic distance.
Turning to kinetic equations with nonlocal diffusion in the velocity variable, a new scaling
appears naturally that is different for time, space and velocity. The class of equations
is not translation invariant anymore, but rather Galilean invariant. The Holder spaces
must take these invariances into consideration. The success of an appropriate Schauder
theory depends a great deal on finding the right definition for kinetic Holder spaces and
an appropriate kinetic distance. These concepts, together with the precise formulation of
the kinetic integro-differential Schauder estimates, will be given in Sections 5 and 7.

Applying this Schauder theory to the Boltzmann equation is then possible [62]. Like we
described in the general framework above, the Schauder estimates are applied iteratively
to gain higher regularity estimates starting from the initial Holder estimate. In each
application of the kinetic integro-differential Schauder estimates, we gain 2s derivatives
in velocity, 1 derivative in time, and 2s/(1 + 2s) derivatives in space.

3.4. Bootstrap. The application of the kinetic integro-differential version of the
De Giorgi—Nash—Moser theory developed in [63] gives us localized Hdolder estimates
for the solution of the Boltzmann equation (1.1). They apply provided that v is contained
in some bounded ball Bg. This is because the ellipticity properties of the kernel K given
in (2.6) and (2.7) degenerate as |v| — oo.

In order to improve this initial regularity estimate by successive application of the
Schauder estimates, it is necessary to turn our local Holder estimates into global ones.
Inspired by an idea in [26], we devised in [61] a change of variables that transforms the
kinetic integro-differential equation into one whose ellipticity parameters are uniform in v.
This change of variables allows us to turn the local regularity estimates, from De Giorgi
and Schauder theories, into global ones that hold for all velocities. It provides a key
ingredient for the proof of Theorem 1.1 in [61].

The application of the Schauder estimates, together with the change of variables, gives
us a global gain of regularity. We gain 2s derivatives in velocity, 1 derivative in time, and
2s/(1 + 2s) derivatives in space. Then we compute an equation for discrete incremental
quotients of the solution, and apply the Schauder estimates again. An iteration of this
procedure leads to the C°° estimates in Theorem 1.1. In each iteration, we gain a certain
fractional number of derivatives in v, x and r. However, we also loose a decay power.
More precisely, an upper bound for (d;)™ f that decays like < (1 + |v|)™7 will depend
on an earlier upper bound on (3;)” ! f that decays like < (1 + |v])~9, for some § > ¢.
Since we start with upper bounds that decay arbitrarily fast in (3.1), the iteration continues
forever.
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We explain the change of variables in Section 9 and the iteration procedure finalizing
the proof of Theorem 1.1 in Section 10.

4. Generic kinetic equations with integral diffusion

The study of general kinetic equations with integral diffusion plays a important role in the
derivation of the global regularity estimates stated in Theorem 1.1. A kinetic equation
with integral diffusion takes the following form,

dif +v-Vaf =Zxf +h, 4.1)

where the integral diffusion &£ ¢ depends on a kernel K and is given by the formula,

Lxf(v) =P.V. /]Rd [f(t.x,0) = f(t.x,v)]K(t,x,v,0)dv’. 4.2)

The integral diffusion operator &£ g acts similarly as a classical diffusion operator in
the v variable but it is nonlocal, of fractional order. It can be compared with a second
order operator in divergence form 9y, (a;; (¢, x, v)dy, /) or one in non-divergence form
aij(t,x,v)0y;y; f. Classical second order elliptic operators are studied using different
tools depending on these two structures. Test functions and estimates in Sobolev spaces
are typical of operators in divergence form, whereas barrier functions and comparison
principles are typical of equations in non-divergence form. For integro-differential
equations, the operators are always written with the same formula above. The divergence
vs non-divergence structures are determined by two alternative symmetry assumptions on
the kernel K:

e Divergence: K(t,x,v,v") = K(¢, x,v’,v).
* Non-divergence: K(¢,x,v,v 4+ w) = K(t,x,v,v — w).

The kernel Ky corresponding to the Boltzmann equation (as in (2.4)) is naturally in
non-divergence form. In general, we have K r(¢,x,v,v") # Ks(t,x,v’,v). This is
an obstruction in order to apply divergence techniques. However, the Boltzmann kernel
satisfies the cancellation conditions (3.4) and (3.5), that are a weaker form of the divergence
symmetry assumption. It turns out that these cancellation conditions suffice in order to
derive the most crucial estimate for equations in divergence form: the De Giorgi—Nash—
Moser (weak) Harnack inequality.

The reader should not be misled into thinking that any result for an equation of the
form (4.1) would apply to linear equations only. A nonlinear kinetic equation, like the
Boltzmann equation, also has the form (4.1) with the bonus piece of information that the
kernel K and the source term £ are related to the solution f by certain formulas. Any
a priori estimate for solutions of (4.1), that depends on minor assumptions on K and £,
will provide us with estimates in particular for the Boltzmann equation as part of a more
general family of equations. The key is to analyze the equation (4.1) with minimalistic
assumptions on the kernel K and the source term /, so that we can verify those assumptions
in the case of the Boltzmann equation depending only on the hydrodynamic bounds in (H).
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We develop two fundamental regularity techniques in the context of generic kinetic
integral equations like (4.1). The weak Harnack inequality in the spirit of De Giorgi
gives us Holder continuity estimates for f in terms of quantitative bounds for K and &
only. It applies to equations in divergence form, that in our context appears in the form
of the cancellation conditions (3.4) and (3.5). The Schauder estimates give us regularity
estimates in higher order Holder spaces, once we have an initial Holder continuity estimate
for the source term and the kernel. Schauder estimates apply naturally to equations in
non-divergence form.

4.1. Ellipticity conditions. The notion of ellipticity for integro-differential operators is
more subtle than for second order differential equations. A classical second order operator
involves a matrix of coefficients multiplying the second derivatives of a function, and
could be written in divergence or non-divergence form. The ellipticity in the classical
case reduces simply to upper and lower bounds on the matrix of coefficients. An integro-
differential operator like £ is defined in terms of a nonnegative kernel K, which is
typically singular around the origin. It should be thought of as a nonlocal diffusion
operator in the variable v, which is applied for every fixed value of ¢t and x. With this point
of view, we state the ellipticity assumptions for kernels K(v, v’) depending on v and v’
only. Ultimately, we will require our full kernel K(z, x, v, v’) to satisfy these conditions
uniformly in 7 and x.

The first notion of ellipticity that appeared in the literature of nonlocal equations consist
in a pointwise comparability between K (v, v’) and the kernel of the fractional Laplacian.
The majority of the results on regularity of nonlocal equations that appeared between the
years 2000 and 2015 depend on the assumption:

Ao —v'[7972 < K(,v') < Alv — /| 79725,

In the case of the Boltzmann equation, there is no way to establish these bounds for the
kernel K ¢ of (2.4) in terms of the parameters of (H) only. So, we are forced to consider
more general ellipticity conditions, that are harder to work with.

Instead of the pointwise upper bound K (v, v') < A|v — v’|~4725, we require that this
bound holds on average only. That is, we require that for all r > 0,

/ K@, v)jv—v']?dv’ < Ar?™2s, 4.3)
By (v)

for every v in the domain of the equation.

In terms of the lower bound, as we described in Section 2.4, the pointwise lower bound
for the Boltzmann equation holds on a symmetric cone of nondegeneracy emanating
from each point v. That is, for every v in the domain of the equation, there exists a
subset A C S9! so that

|Algpa—1 = p. A=—A K@, v+w)>Alw|[79 ifw/|lw| € A. (4.4)
One may argue that (4.4) does not seem to be such a weaker replacement of the lower

bound K (v, v’) > A|lv—v'|~%72% as (4.3) is of the upper bound K (v, v) < Ajv—v'|~4725,
Indeed, it is not clear what the sharpest notion of ellipticity should be. The important
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feature of (4.3) and (4.4) is that they can be verified to hold for the Boltzmann kernel K 5
of (2.4) with parameters A > 0, A and p > 0 depending on the constants of (H) only.

Requiring that (4.3) and (4.4) hold with uniform constants & > 0, A > 0 and A,
for every (t, x, v) in the domain of the equation, is a notion of uniform ellipticity that is
weaker than the usual assumptions in the literature. It is the assumption we will work
with, in order to be able to apply our general estimates to the Boltzmann equation.

The ellipticity conditions (4.3) and (4.4) must be accompanied with symmetry
assumptions depending on whether we want to apply methods from divergence or non-
divergence equations. In the case of non-divergence equations, we would require the
following symmetry condition

non-divergence symmetry condition: K(v,v + w) = K(v,v — w). 4.5)

Naturally, the condition (4.5) should hold for every ¢, x and v in the domain of the equation.
We recall that we are omitting writing the # and x dependence on K since the operator £ g
is applied for each fixed value of 7 and x.

Luckily, the expression (2.4) for the kernel of the Boltzmann equation satisfies the
non-divergence symmetry condition (4.5). The Schauder estimate (described below in
Section 7) requires this symmetry condition, and will apply to the Boltzmann equation.

The natural symmetry condition to apply methods for equations in divergence form
would be K(v,v") = K(v', v). Indeed, a characteristic property of second order operators
in divergence form (of the form 9;a;;0; f) is that they are self-adjoint in L2. It is easy
to see that £ g will be self-adjoint if and only if K(v,v’) = K(v’, v). Unfortunately, this
symmetry condition does not hold for the Boltzmann kernel K s of (2.4). Thus, we are
forced to consider a more general condition, that is naturally harder to work with. To that
aim, we state the following cancellation conditions: there exist a constant A so that for
all v in the domain of the equation the following inequalities hold for all r € (0, 1),

< Ar72,

‘/l; ®) (K. v) = K@, v)) dvf

(4.6)

if s > 1/2, < Ar'=2,

/ (K(v,v") — K(v',v)) (v — ') dv’
By (v)

Note that for s € (0, 1/2) there is only one cancellation condition, whereas for s € [1/2, 1)
both inequalities are supposed to hold. In fact, for s € (0, 1/2), the second cancellation
condition follows as a consequence of the first one, combined with (4.3).

There are a few extra inequalities that are a consequence of the ellipticity conditions
(4.3) and (4.4) and the symmetry conditions (4.6). First of all, the upper bound (4.3) can
be rephrased (by adjusting the constant A as necessary) in any of the following equivalent
alternative formulations,

/ K(v,v")dv' < Ar—2*,
Boy (v)\Br(v)

/ K, v')ydv' < Ar=2s,
R4\By (v)
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Combining (4.3) with the first inequality in (4.6), we get also, for all r € (0, 1),

/ K@ v)|lv—v'[2dv’ < Ar27%,
Br(v)

for a constant A depending on A.
The conditions (4.3) and (4.6) imply that the operator &£ x maps H*® into H™*. The
following result is proved in [63].

Proposition 4.1. Assume K is a kernel for which (4.3) and (4.6) hold for every v € R¥.
Then, for any pair of functions f,g € H*(R%),

| x g = CIf sy Nels oo

for a constant C depending on A, s and dimension only.

Proposition 4.1 indicates that it is fair to think of the operator £g as a nonlocal
operator of order 2s. Its ellipticity is justified by the following proposition.

Proposition 4.2. Assume K is a kernel for which (4.4) holds for every v € R2. Then, for
every f € H*(R?), we have

I, ) = FORKE) a0 d = L f By

for a constant ¢ > 0 depending on u, A, s and dimension only.

The following identity follows by a straight forward manipulation of the integral
expression of (4.2) and applying Fubini’s theorem.

1
- [« dv =~ ) - *K(v,v)dv'd
Jeexnra=3[[ 176 serK@) @ a

+ %/]Rd (/]Rd KW, v)—K(v,v/)dv’)f(v)zdv.

Note that the last term on the right hand side vanishes if the kernel satisfies the symmetry
condition K (v, v") = K(v’,v). Otherwise, the cancellation condition (4.6) together with
the upper bound (4.3) allow us to bound this term as < || f ||i2 Thus, Proposition 4.2
provides a coercivity estimate for the operator £ g in terms of || f'|| ;s minus a lower order
correction.

Proposition 4.2 is proved in [30] under more general conditions.

Naturally, when the conditions (4.3), (4.4) and (4.6) hold only on some subdomain
of R?, then appropriately localized versions of Propositions 4.1 and 4.2 hold as well.

Note that Propositions 4.1 and 4.2 apply to generic integro-differntial operators of the
form 4.2. We can verify that when K is the kernel associated to the Boltzmann equation (as
in (2.4)), the assumptions (4.3), (4.4) and (4.6) hold locally only in terms of the constants
in (H), but they do not hold uniformly for all velocities in R¢.
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5. Cylinders and Holder spaces

5.1. Invariant transformations. Here, we study the transformations that keep the class
of equations of the form (4.1) invariant. We describe two types of transformations: scaling
and Galilean translations.

We first describe the scaling of the equation. Given any r > 0, let us define

Sr:R2d+1 —)R2d+1
by the following formula
Syt x,v) = (%t r'2x, rv).

Suppose that f is a solution of the equation (4.1) in some domain. Then, we verify
by a direct computation that for any constants a, r > 0, the function

Jar(t,x,0) :=af(S:(t,x,v))

solves an equation of the same form in an appropriately scaled domain with the modified
kernel
K, (2, x,0,0") := rd P2 K25, r 125 x o, r0'),

and the modified source term
har(t,x,v) :=ah(S,(t, x,v)).

The importance of the choice of exponents in S, is that if the kernel K satisfies the
ellipticity conditions (4.3) and (4.4), then K, also satisfies the same conditions with the
same constants. In the space-homogeneous case (that is, when f does not depend on x),
if s = 1, the scaling S, coincides with the usual parabolic scaling (¢, v) — (r2t,rv). The
scaling exponent we write here is properly adjusted to operators of order 2s and kinetic
equations.

The cancellation condition (4.6) is not exactly preserved by the scaling since the
restriction r € (0, 1) in (4.6) would become r € (0, 1/7) after the transformation S7. In
fact, the condition (4.6) is subcritical since it becomes stronger as we focus on small scales
with ¥ < 1.

Because of the v-dependence in the second term in (4.1), the class of equations is
not translation invariant in the usual way. Instead, it is Galilean invariant. For a given
2o = (to. X0, Vo) € R'*24 let us consider the Lie group operator

zgo (t,x,v) = (to +t,x0 + x + tvg, vo + V).

The correction term ¢ vy in the x variable accounts for the change of the position coordinate
when passing from a motionless frame to another one moving at a constant speed vg. If f
is a solution of the equation (4.1) in some domain, we consider its Galilean translation.
The function

Jzo(t.x,v) = f(z0 0 (¢, x.v))
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solves an equation of the same form with the modified kernel
K (1, x,v,0") := K(zg 0 (t,x,v),v9 + V),
and the modified source term
hzo(t, x,v) = h(zo o (£, x,v)).

Again, the domain of the equation has to be translated accordingly. When the kernel K
satisfies any one of the conditions (4.3), (4.4), (4.5) and/or (4.6), the same holds for K.

5.2. Cylinders. Givenr >0and zo € R'*2¢ and in view of the scaling S,: R' 724 R !+24
and the Galilean invariance z > zg o z, both defined above, it is natural to define cylinders
Q1 (zo) centered at z¢ of radius r > 0 as follows,

0,(z0) ={z00Sr(2) : z € (—1,0] x By x By}.
If zg = (to, X0, Vo), it is equivalent to the following definition
0r(z0) ={(t. x,v) eR'™2? : 25 <1 —1,,<0, |x—xo—(t—to)vo| <r'*?*, [v—vo| <r}.

Like in parabolic theory, the reference point zq for the cylinder is at the final time #y. The
cylinder Q,(zp) includes points at earlier times than #y but not on its future.

5.3. Kinetic Holder spaces. Here, we describe an appropriate notion of Holder space
that is adapted to the scaling and Galilean invariance of the equations.

In order to provide a proper definition of Holder spaces with any exponent o > 0,
we must start with a modified notion of degree for polynomials in R[¢, x,v]. Given a
nonzero monomial m € R[t, x, v], the kinetic degree degy;, m is the number x so that
for all z € R'*24_ r > 0, we have m(S,(z)) = r“m(z). For a general polynomial
p = Y. my, the kinetic degree degy;, p is defined as the maximal kinetic degree of the
monomials 7.

Roughly speaking, every exponent of ¢ counts as 2s, every exponent of x; counts
as 1 + 2s and every exponent of v; counts as 1. A monomial

m(t, x,v) = atkoxlf‘ .. .xsd v]f‘”'l .. v];"
has kinetic degree equal to
2sko + (1 +25)(ky + -+ + ka) + (ka1 + -+ + k2q).
We notice that the kinetic degree of a nonzero polynomial can be any number of the
discrete set N + (2s)N. We adopt the convention that the kinetic degree of the zero

polynomial equals —oo.
With the definition of kinetic degree at hand, we can now define kinetic Holder spaces.
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Definition 5.1 (Holder spaces). Given a € (0, +00) and a open set D C R'*24 we say
that a function f: D — R is a-Holder continuous in D if there is some constant C so that
for any kinetic cylinder Q,(zy), there exists some polynomial p of kinetic degree strictly
smaller than « such that

| f(z) — p(z)| < Cr® forallz € Q,(z¢9) N D.

The set of a-Holder continuous functions f: D — R is denoted by € (D). The least
positive constant C so that the inequality above holds is denoted by [ f ]*gzt( D)-

Note that with the definitions above, given any continuous function f: D — R, the
seminorm [ f ]82( p) is precisely the supremum norm:

[f]*eg(D) = SEP | /1.
We also define the norms

1/ gy := [f ez ) + [fleo(p)-

We write the subindex £ in €} to stress the fact that these norms are left-invariant by
the action of the Galilean group, and not right-invariant.

The €} semi-norms encode a Holder continuity behavior that is compatible with the
scaling and the Galilean invariances of the equation described above. For a function f(v)
that depends on v only, they would coincide with the usual C% norms. For a function f(¢)
that depends only on ¢, it would rather correspond to the C*/%) norm. And for a
function f(x), depending only on x, it would correspond to the C%/(+2%) norm. The
€/ norm is left-invariant by the action of the Galilean Lie group. It is nof right-invariant.

Kinetic Holder norms satisfy many of the same formal relationships as the usual Holder
norms. For example, the following interpolation inequality (proved in [62]) looks very
much like the classical one.

Proposition 5.1 (Interpolation inequalities). Given 0 < a1 < oy < a3 So that oy =
Oy + (1 — B)as, a cylinder Q,(z¢) and a function f € ‘6213(Qr(zo)),
0 1-60 —(ax—ay)
Ulee2 (0, zon = Vet g, zop et 0, con T [/Tect o, zon
for some constant ¢ only depending on dimension.

It is also true that if f € €F, then derivatives of f will belong to a Holder space with
a smaller exponent. In this case, we must account for differential operators that are left
invariant by the Lie group, and their kinetic degree should be properly accounted for.

Proposition 5.2. Let f € C*(Q) for some kinetic cylinder Q. Then:
e Ifao>2s5,(0; +v-Vy)f € C* 2 and

[0 + v - V) flee—250) < [flce(g)-
o Ifa>1+2s 0y f€C* ' and

[3)“ f]cct—l—zs(Q) 5 [f]ca(Q)
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e Ifa>10yf € ce 1 and
[0v, flee—1(0) < [flce(g)-

Note that the statement of Proposition 5.2 involves the operator (d; + v- V) and not the
plain time derivative d;. The time derivative is not left-invariant by the Lie group structure
(it is right-invariant). In practice, one can still compute an estimate for the Holder norm
of d; f in a bounded cylinder by combining the first two bullet points in Proposition 5.2
and the triangle inequality. However, such an estimate would depend on the size of the
cylinder, and the Holder exponent will not be better than o« — 1 — 2s.

These basic properties of kinetic Holder spaces are stated and proved in [62]. Some
further analysis of Holder norms is continued in [61].

6. Holder estimates via De Giorgi’s method

In the study of regularity estimates for elliptic and parabolic quasilinear equations (away
from equilibrium), the first step is usually to apply the method of De Giorgi, Nash and
Moser. The key of this theorem is that it has no regularity requirement for the coefficients
of the equation. In a quasilinear equation, the coefficients depend on the solution itself.
Thus, at the beginning of our analysis we typically have little or no information on how
smooth these coefficients might be. The Boltzmann equation, as described in (2.8), can
be thought of as a quasilinear evolution equation. It is however not an ordinary parabolic
equation, but a kinetic and nonlocal one.

In this section we describe a local Holder estimate, in the style of the classical theorems
of De Giorgi, Nash, and Moser, but this time for non-local kinetic equations. The precise
statement is the following.

Theorem 6.1 (Local Holder estimate). Let f be a bounded function that solves (4.1)
in Q1 = (—1,0] x By X By. Assume that the kernel K is a nonnegative function defined
in(—1,0]x By x By x R 5o that (4.3), (4.4) and (4.6) hold. Then, f is Holder continuous
in the cylinder Q 1/, with

[fleg01/) = CIf lLoo(-1.01x8, xray + Ihllcocay))-

for some constants C and o > 0 depending on dimension, (a lower bound for) s, and the
ellipticity parameters |, A and A.

Note that the L° norm of f in the right hand side is evaluated in the set (—1, 0] x
B; x R¥, eventhough the equation needs to hold in Q1 = (—1,0] x B; x B; only. This
is a common theme in nonlocal equations. The operator &£ takes into account the values
of f for every v’ € R?. The first term in the right hand side of the inequality allows us to
control the tails of the integral in the expression (4.2) for £x.

The symmetry condition (4.6) together with the upper bound on the kernel (4.3) allow
us to properly understand the weak solutions of the equation in the sense of distributions
via Proposition 4.1. In this case, it would not be a problem to state Theorem 6.2 for
bounded weak solutions f.
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Theorem 6.1 should be considered as a kinetic, integro-differential, version of the well
known theorem by De Giorgi, Nash and Moser. We can also say that it is an integro-
differential version of the more recent estimate in [46]. The cancellation condition (4.6)
is a weaker form of the symmetry condition that corresponds to equations in divergence
form.

Note that no smoothness assumption is imposed on either the kernel K or the source
function 4. The Holder estimate for f depends only on quantitative conditions on K
and h. As we discussed above (see Section 3), the kernel K ¢ of the Boltzmann equation
given in (2.4) automatically satisfies (4.3), (4.4) and (4.6) for v € Bp, for any bounded
value of R, with parameters p, A and A depending on the constants in (H). As a
consequence, Theorem 6.1 implies that any solution of the Boltzmann equation that
satisfies the hydrodynamic condition (H) will be locally Holder continuous. We need
further work (described in Section 9) in order to obtain a Holder estimate that holds
uniformly for large velocities.

The rest of Section 6 is devoted to outline the steps of the proof of Theorem 6.1. It
is somewhat technical and it may be difficult to follow for the readers that are unfamiliar
with (at least) De Giorgi’s method for parabolic equations [74]. A reader that is willing to
take Theorem 6.1 for granted, can safely skip to Section 7 at this point.

6.1. The weak Harnack inequality. Theorem 6.1 is a consequence of the following
weak Harnack inequality.

Theorem 6.2 (Weak Harnack inequality). There exist radii 0 < ro < 1 < Ry, only
depending on dimension and s, and two positive constants € (small) and C (large), only
depending on dimension, s and ellipticity constants |1, A, A, such that any non-negative
super-solution f of (4.1)in Qe := (—1,0] X BR(1)+zs X BRy»

atf +v 'fo = chf +h in Qextv
where K satisfies (4.3), (4.4) and (4.6) and h € L*°(Qex), satisfies
1
( fé(2) dz) < thi(inf f+ ||h||Loo(Qexl))
0~ ot

where QF = (—rg*,0] x Br(§+2s X Bryand Q= = (—1,—1 + r2%] x Bra+2x X By,.

!
ro RO

Figure 3. The geometric setting of the weak Harnack inequality.

t e (—1,0]




Regularity for the Boltzmann equation 29

It is well known, in different contexts, that the weak Harnack inequality implies the
Holder estimate of Theorem 6.1. The weak Harnack inequality is applied iteratively to
obtain a decay of the oscillation of the function at a sequence of scales around a point.
In this case, we have to adapt this classical procedure to the context of kinetic cylinders,
and accounting for the nonlocality of the diffusion operator £ . There is no major new
obstruction to prove that Theorem 6.2 implies Theorem 6.1. The difficult part is to prove
Theorem 6.2.

De Giorgi’s method has two main parts. The first one is typically presented as a control
of the L> norm of a solution to an elliptic or parabolic PDE in terms of its 2 norm. The
second part is an iterative improvement of oscillation leading to the Holder continuity of
that solution. Both parts will look very different in our context. One can still argue that
the first part of our proof is inspired by the first part of De Giorgi’s method. The second
part of our proof, however, uses ideas from the proof of Krylov and Safonov for parabolic
equations in non-divergence form [73].

6.2. The first lemma of De Giorgi. The very first ingredient that one needs for
De Giorgi’s proof is arelation known as Cacciopoli’s inequality. Itis essentially alocalized
version of the energy dissipation inequality that applies to nonnegative sub-solutions of
the equation.

Let us start by analyzing the norms of f that we can control by the energy dissipation.
If we multiply the equation (4.1) by f and integrate using the coercivity property of
Proposition 4.2, we get

T
s[upT] 1@ )7, + /0 I f,- ‘)||2Lsz < | foll3> + (lower order terms). ~ (6.1)
tefo, X

We were intentionally vague about the domains of the norms. They depend on the
domain of the equation. Naturally, there are also some boundary terms involved when the
equation (4.1) holds in a bounded domain. These boundary terms may be a complicated
due to the nonlocality of the diffusion operator &£ x. Let us ignore them at this point.

The energy dissipation estimate (6.1) provides us with an improvement of differen-
tiability with respect to the v-variable. Indeed, it involves the H* norm in this variable.
In order to carry out De Giorgi’s method, we will need to turn the estimate (6.1) into an
estimate for || f|| L’ for some p > 2. The estimate (6.1) does not suffice for that because
it does not encode any regularization with respect to the variable x.

Now, we need to invoke the hypoelliptic nature of the equation (4.1). A standard idea
in kinetic equations would be to apply averaging lemmas to achieve this (as in [98] or [46]).
We take a more classical approach, which is inspired by [86]. We plug the function f into
the fractional Kolmogorov equation (2.2).

O f +v-Vaf + (D) f = (D) f + 2Lk [ +h. 62)

Admittedly, at first sight this idea looks artificial. There is no cancellation in the right hand
side. The gain comes from the observation that the right hand side involves fractional
differentiation with respect to the v variable only, and these are the directions where we
got some regularity estimates from the energy dissipation (6.1). We can derive various
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estimates thanks to our precise knowledge of the fractional Kolmogorov equation. It has
a semi-explicit kernel from which we can compute exactly its regularization effects in all
directions.

From the inequality (6.1) we get an estimate for || f|| L2 ()" Combining this estimate

with Proposition 4.1, we deduce that the right hand side in (6.2) is in L7 ,(H,*). Then
we can estimate the Lf” «,v orm of the convolution of this right hand side with the kernel
of the fractional Kolmogorov equation. The fractional Kolmogorov equation is invariant
by the same group of scaling and Galilean transformations as our class of kinetic nonlocal
equations. We know an explicit formula for its solution. This formula encodes the
hypoelliptic interaction between the kinetic transport terms and the fractional diffusion in
the velocity variable.

Ultimately, the computation described above leads to an estimate of the Lf” x,y norm
of f, for some p > 2, in terms of its Ltz’x,v norm. Applying this estimate to proper
truncations of the solution f and following De Giorgi’s iteration leads to the following
version of De Giorgi’s first lemma.

Lemma 6.3. Ler f:[—1,0]xB;xR? — [0, 00) be a super-solution of the equation in Q1,
Wf+v-Vif =Lk f=0 inQ.

There exists an g9 > 0 (depending only on dimension and the ellipticity parameters) so
that if

[{f <2} N Q1] < o,

then f > 1in Qq/z.

Lemma 6.3 is a simplified version of [63, Lemma 6.6]. Lemma 6.3 is a lower bound
for nonnegative super-solutions of the equation. It differs from the classical presentation
of De Giorgi’s first lemma as an upper bound for sub-solutions. It would be possible to
write an upper bound for sub-solutions under the stronger assumptions K ~ |v —v’|~¢~25
(see [98]), but it is impossible under our less restrictive hypothesis on the kernel. This
has already been observed in the context of parabolic integro-differential equations with
degenerate kernels (see [42]).

Let us compare Lemma 6.3 with Theorem 6.2. Their geometric settings are of course
different, but we can see some similarity when we state them in the following way.

* Lemma 6.3 says that if f < I at any pointin 05, then
S =230 01| =[01] — 0.
e Theorem 6.2 (with i = 0) says that if £ < 1 at any pointin Q T, then
f=AnQ gAY

forall A > 0.

Theorem 6.2 is effectively an upper bound for the measure of the level sets |{ f > A}|NQ~,

for A large, for any super-solution of the equation so that f < 1 at some pointin Q.
The second part of De Giorgi’s proof consists of an estimate of the measure between

two level sets of the solution f. Ultimately, it leads to a decay estimate for the
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measure |{ f > A}| for large A’s. The classical method by De Giorgi involves an explicit
computation relating the measure of level sets of a function with its ' norm. In [23],
the authors follow an alternative idea for integro-differential equations using an estimate
depending essentially on a lower bound on the kernel K > [v/ — v|~¢725. In [46],
De Giorgi’s original computation is replaced with an elegant compactness argument.
None of those ideas apply in our context. The compactness argument in [46] can be
applied to integro-differential equations, after working out several technical difficulties,
but only in the case s > 1/2. For s < 1/2, we employ a completely different approach
inspired by the ideas of Krylov and Safonov in [73]. Our method for s < 1/2 applies in the
full range s € (0, 1) if we assume in addition the non-divergence symmetry condition (4.5).

The Boltzmann kernel K ¢ defined in (2.4) always satisfies (4.5). Thus, the method
to prove Theorem 6.2 inspired by the ideas of Krylov and Safonov suffices for the whole
range of parameters. In [63], we also describe the method inspired by the ideas in [46],
that works only for s > 1/2, because it allows us to remove the assumption (4.5) in the
statement of Theorem 6.2 for general kinetic integro-differential equations.

6.3. The propagation lemma. Lemma 6.3 involves a lower bound in the small kinetic
cylinder Q/,. One can effortlessly scale Lemma 6.3 torelate the level set { f > 2}N 0, (2)
with the minimum of f in Q,/»(z), provided that the equation holds in Q,(z) and f
is nonnegative everywhere. Our next objective is to extend the set where we take the
minimum of f to a larger kinetic cylinder than Q,/,(z). This is achieved through the use
of explicit barrier functions described in the following lemma.

Lemma 6.4 (barrier functions). Let t > 0, R > 1, and T > 0 be arbitrary parameters.
There exist 0 > 0 and Ry > R > 0 depending on these parameters, dimension, s and the
ellipticity constants in (4.3), (4.4) so that the following statement is true.

There exists a function ¢: [0, 00)xR% xR¢ — [0, 1] satisfying the following properties.

e ¢ € CVLl. Moreover, ¢ is C® in the set {¢p > 0}.

* For any kernel K that satisfies (4.3) and (4.4) (and also (4.5) in the case s > 1/2), we
have

8,q0+v~Vx<p—§CK<pfOin[O,oo)x]RdX]Rd.

* ¢(0,x,v) > 0onlyif (x,v) € By x B;.

* o(t,x,v) >0 if(t,x,v) € [t,T] x Bpi+2s X Bpg.

* ¢(t,x,v) =0ift €[0,T] and (x,v) ¢ Bgi+2s X Bg,.
1

The function ¢ is used as a lower barrier. It allows us to propagate a lower bound
for a super-solution f on {0} x B,i+2s X B, to an arbitrarily large kinetic cylinder
[t, T] X B(gyy1+2s X BRry, provided that the equation holds in a suitable larger domain
containing [0, T'] X B(g, »y1+2s X BR;r-

The proof of Lemma 6.4 consists of a more or less explicit computation. It is another
proof where the hypoellipticity of the equation plays arole. This time, in a more crude and
explicit manner. The computation leading to Lemma 6.4 is explained in [63, Section 7].

By scaling and translating this construction, we derive the following corollary.
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Corollary 6.5. Given Ry > 0 and ro > 0 such that Ry —ro > Rirg, let Qexy and Q™ be
as in Theorem 6.2, see Figure 3. Let f be a super-solution

f+v-Vof —Lxf >0 in Qe

Assume that K satisfies (4.3) and (4.4). We also assume (4.5) when s > 1/2. If f > A
in Qr(zo) for some cylinder Q,(z¢) contained in Q~, then for any arbitrarily large
constants T and R as in Lemma 6.4, there exists 6 > 0 such that

f =04 inty, min(ty + Trzs,())] X B(Rr)1+25 X Bry.
Moreover, the factor 6 > 0 depends on T, R, d, s and the ellipticity parameters of the
kernel K.

We can further combine Corollary 6.5 with Lemma 6.3 and get

Corollary 6.6. Let f be a super-solution
3;f+v-fo—§CKf ZOll’l Qext~

Assume that K satisfies (4.3) and (4.4). We also assume (4.5) when s > 1/2. Assume
also that for some cylinder Q,(zo) contained in Q~,

[{f = A4}N 0r(z0)| = (1 —€0)|Orl.
Then
flt.x,v) = 04 in[to.to + Tr*] x Bgyyi+2s X Bry.
Here, 0, T, R, Qext and Q~ are as in Corollary 6.5.

Corollary 6.6 tells us a nontrivial relation between the level sets { f > A} and { f > 0A}.
It implies Theorem 6.2. However, this implication is nontrivial. It depends on a special
covering argument inspired in the crawling ink-spots lemma from [73], that we describe
below.

Here is a further corollary that will be used in the proof of Theorem 6.2.

Corollary 6.7. Let a kernel K satisfy (4.3) and (4.4) and, when s > 1/2, let it also
satisfy (4.5). There exists a constant r1 > 0, that only depends on dimension d, s and the
ellipticity parameters of K, such that for all super-solution f of

O f+v-Viof —Lxf >0 in Qe
such that ming+ f* <1, if there exists some cylinder Q,(zo) contained in Q™ such that,
S = AN 0r(z0)| = (1 —e0)| O/,

thenr < ry.

Corollary 6.7 is an immediate consequence of Corollary 6.6. Indeed, if r was large,
Corollary 6.6 would imply that f > 1in Q.
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6.4. Ink-spots. The following lemma is a type of covering result known as the ink-spots
lemma.

Lemma 6.8 (Ink-spots). Let E C F C Bj be two measurable sets. Assume that for some

constant § > 0,
|E| < (1—=6)|B1]

and whenever there is any ball B C By such that
|EN Bl = (1-46)|B],
we must have B C F. Then, the following inequality holds
|E| = (1 —cd)|F|

for some constant ¢ > 0 depending on dimension only.

Figure 4. The set I’ (greenish color) looks like the result of a growing ink stain which started as £
(dark color).

Lemma 6.8 is used to obtain the decay of level sets in the elliptic version of the weak
Harnack inequality by Krylov and Safonov. It is relatively easy to prove Lemma 6.8 as a
consequence of Vitali’s covering lemma.

In [73], Krylov and Safonov describe a modification of Lemma 6.8 that is suitable for
parabolic equations. They call it the crawling ink-spots lemma. In that case E C F are
sets in space-time. They assume that whenever there is a parabolic cylinder where E is
very concentrated, then an enlarged version of that cylinder, that takes place later in time,
is contained in F.

We need to further modify the covering lemma in [73] to fit the setting of kinetic
equations. In order to state our kinetic version of the ink-spots lemma, we start with
defining the stacked cylinder. Given any kinetic cylinder Q = Q,(z¢) (asin Section (5.2)),
we define Q™ as

O™ :={(t,x,v): 0 <t—tg <mr?, |v—vo| <r |x—xo—(—to)vo| < (m+2)r'+25}.
Note that #y is the final time for Q and the initial time for Q. The lapse of Q™ is m
times the lapse of Q. Moreover, the space width of Q™ is enlarged by a factor (m + 2)
with respect to the space width of Q.
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The following result is our kinetic version of the ink-spots lemma. It is proved in [63,
Section 10].

Lemma 6.9 (Kinetic crawling ink-spots). Let E C F be two measurable sets. We make

the following assumptions for some § € (0, 1) and some r1 > 0.

s ECO.

» Whenever a kinetic cylinder Q C Qg satisfies |Q N E| = (1 —6)|Q|, then Q™ C F
and also Q = Q,(z) for some r < ry.

Then
E| <™

1
+ (1=e8)(1F N Q1] + Cmr®).
m

With these ingredients, we can outline the proof of Theorem 6.2.

Sketch of proof of Theorem 6.2 for h = 0. Assume f(z) < 1 for some point z € Q.
We need to prove that
{f = AnQ7| s Ao

This decay follows by a simple iteration once we established the inequality

Kf = AN Q™[ = (1—ce)l{f =04} N 07|,

for 0A > 2, 6 and ¢y as in Corollary 6.6, and ¢ as in Lemma 6.9.
This inequality between level sets follows from Lemma 6.9 applied to

E={f>04A'NnQ~ and F={f>AN0O".

The assumptions of Lemma 6.9 are fulfilled thanks to Corollaries 6.6 and 6.7. O

7. The Schauder estimate

This section is devoted to the Schauder theory for kinetic equations in non-divergence form
with Holder continuous coefficients. We consider a function f that solves (4.1) with a
Holder continuous source term /2 and akernel K that satisfies the ellipticity conditions (4.3)
and (4.4) together with the non-divergence symmetry condition (4.5).

We must first make sense of the notion of Hélder continuous coefficients for a
kernel K (¢, x,v,v’). We add the following assumption, which depends on a parameter
o’ € (0, min(1, 2s)).

Assumption 7.1 (Holder continuity of the kernel in (¢, x, v)). There exists a positive con-
stant Ao such that whenever zy = (¢1, X1, v1) and zp = (f3, X2, v2) belong to Q1N Q;(zp),
for any kinetic cylinder Q,(z¢), then

Vp >0, / |K(t1, x1, 01,01 + w) — K(t2, X2, 02,02 + w)||w|2dw < Aopz_zsr“/.
By

With this notion of C%’ Hélder coefficients, we are ready to state the Schauder estimates
for general kinetic integro-differential equations.
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Theorem 7.1 (The Schauder estimate). Let s € (0,1), @ € (0, min(1,2s)) and o’ =
250/ (1 +25). Let K: Q1 x R? — R be a nonnegative kernel such that (4.3), (4.4), (4.5)
and Assumption 7.1 hold true. Let h: Q1 — R be «’-Hoélder continuous. Assume further
that 2s + o' ¢ {1,2}.

If f satisfies (4.1) in Q1, then

ezt g,y = UL e romem ey + Mhlleg o).

The constant C only depends on dimension, the order 2s of the integral diffusion, ellipticity
constants i, A, A and Ay from Assumption 7.1.

A slightly more general version of Theorem 7.1 is obtained in [58].

Since we do not assume the cancellation condition (4.6), the notion of weak solutions in
the sense of distributions does not make sense in the generality of Theorem 7.1. This is the
same situation as in the classical Schauder estimates for elliptic PDEs in non-divergence
form. The natural framework under which the Schauder estimates apply is that of viscosity
solutions. Such a generalization would involve only some minor technical adjustments to
our current proof. Likewise, if we assume in addition that the cancellation condition (4.6)
holds (which is true in the case of the Boltzmann equation), then Theorem 7.1 would extend
to weak solutions in the sense of distributions without any major additional difficulty.

To prove Theorem 7.1, we first analyze the simpler case where K depends only
on (v/ — v). Then, we apply an interpolation inequality to account for the variations of
the kernel, similarly as in the classical proof of the Schauder estimates. Note that if K
depends only on (v” — v), Assumption 7.1 automatically holds with Ay = 0.

The case K = K(v' — v) is proved using a blow-up technique, following closely the
ideas by Serra [91]. We set up the requirements for an iterative proof of the regularity
result. We proceed by contradiction by negating the main estimate. A blow-up limit
leads to certain ancient solution of the equation. The contradiction is reached through a
Liouville type result that rules out such a solution.

In the rest of this section, we outline the ideas involved in the proof of Theorem 7.1.
The uninterested reader may move directly to Section 8.

7.1. A Liouville type result. A simple form of Liouville theorem that one can state for
kinetic integro-differential equations is the following: every bounded solution of (4.1),
with 4 = 0, in (—o0, 0] % R? x R4, under the assumptions of Theorem 6.1, must be
constant. The proof of this statement is simply to apply Theorem 6.1 in Q g for large R’s.
We obtain that the Holder seminorm of f in Qg is < R™®. We deduce that f is
constant taking R — c0. A slightly more detailed analysis of the inequalities of this proof
reveals that the boundedness hypothesis can be relaxed to a slow enough algebraic rate.
Let us state it in the following proposition.

Proposition 7.2 (Liouville — I). Let f be a solution of (4.1), with h = 0, in Qe =
(—o00,0] x RY x RY, where K satisfies (4.3), (4.4) and (4.6). Assume further that

I fllcoop = CU + R)’,

for some constant C and some § > 0 smaller than the Holder exponent « in Theorem 6.1.
Then f is constant.
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For the proof of Theorem 7.1, we need to allow more growth at infinity for the
solution f. The precise form of the Liouville theorem that we use is the following. It
applies to a kernel K = K(v’ — v) that depends on (v’ — v) only.

Proposition 7.3 (Liouville — IT). Let o € (0, min(1,2s)) and o/ = %a and B such
that

[2s +a']| <2s+B <2s+a and o —B <3,
where § > 0isthe Holder exponent in Theorem6.1. Let [ be a function in ‘Gﬁiﬂ ((—00,0]
x R? x R?) satisfying the following conditions.

(1) There exists a constant C1 > 0 such that for all R > 0,

/ , 2s+a’—B’.
VB €[0,2s + B, [f]féi o = C1R ;

(2) Forany &€ = (h,y,w) € R'""24 with h < 0, the function g(z) := f(£ 0 z) — f(2)
solves
0:g +v-Vyg—Lxkg =0 in(—00,0] x R4 x R9,

where K = K(v — V') satisfies (4.3), (4.4), and (4.5).
Then f is a polynomial of kinetic degree smaller than 2s + o'.

One advantage of kernels that depend on (v’ — v) only is that they are in divergence
and non-divergence form at the same time. Indeed, if K = K (v’ — v) satisfies (4.5), then
it also satisfies (4.6) with A = 0. In this case, £ g is comparable to a second order elliptic
operator with constant coefficients.

Note that in the statement of Proposition 7.3, we do not require f to be the solution
of an equation. The equation is imposed on its increments g. The growth at infinity
for the function f would make the nonlocal operator £ f undefined. Indeed, with the
assumptions of Proposition 7.3, for any fixed value of ty, x¢, vg, we only have

2s5+a’
| £ (to, x0, V") — f(t0, X0, v0)| < Croxgw0 (1 + [0'])7° 7%

With this growth at infinity, the tail of the integral in (4.2) diverges. We state the equation
for g, and not for f, because the equation for f may not make sense.

The proof of Proposition 7.3 consists in applying Proposition 7.2 to various increments
of f. The first step is to take increments in space £ = (0, y, 0). These values of ¢ are in
the center of the Galilean Lie group, so all the computations work like one would expect.
Applying Proposition 7.2 to g, with £ = (0, y, 0), we conclude that the function f must
be constant in x. Once we established that f must be constant in x, the statement of
Proposition 7.3 reduces to a Liouville theorem for parabolic integro-differential equations.
The rest of the proof continues by applying Proposition 7.2 to increments of f in ¢ and v.
The details of the proof are given in [62, Section 4].

7.2. The blow-up argument. In this paragraph, we briefly explain how to derive the
Schauder estimate from the Liouville type result in the “constant coefficient case”, that is
to say when the kernel K depends only on (v' — v).
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Sketch of the proof of Theorem 7.1 for K = K(v' — v). Following Serra [91], the core of
the proof of the Schauder estimate consists in proving that for some 8 smaller than o', the
following estimate holds true,

[fleztet (g, = (Illeg o) + 1/ ezt (1 018, xR (7.1

Using the interpolation inequalities from Proposition 5.1 together with some control on
the tails of the integral operator, yields the Schauder estimate as stated in Theorem 7.1.
Let us focus on the derivation of the previous estimate.

Since we assumed 2s + o’ is not an integer, let us pick 8 so that

[2s +a'] <25+ B <2s+d.
Note that since &’ = 2sa/(1 + 2s5) with @ < min(1, 2s), we know further that
(N+2sN)N[2s+ B,2s +a'] = 0.
By an appropriate normalization, we assume without loss of generality that

1Plleg @1y + I/ ez (1,012 xRy = 1

and we aim at bounding [ f ]7342”“' ) from above.

Q12
Since (N + 2sN) N [2s + B,2s + ') = @, we are able to estimate the seminorm

in C25%" if we establish the following inequality
[f]tf”ﬁ(Qr(z)) < Cor** forallze Q1/2.r > Osuch that Q,(z) C Q.

Indeed, this inequality implies [ ]‘Cl?‘“”"/ ©1)>) < Cop.

Since we work with a snlooth2 solution f, we know that the following maximum is
achieved at some point z € Q1 and r € (0,1/2].

B—a’ .
max r [f]o2s+8 =: Cy.
r>0.2€01/2.0,(:)C0; C e
We must prove that Cy is bounded from above in terms of d, s and the ellipticity parameters
only.
The proof proceeds by contradiction. We assume that there exist sequences f; €
€2 P ((=1,0) x By x RY), h; € €¥'(01), K; € X such that

175lleg @iy + 1 /i llezs+8 (1 o1xBy xmay = 1 (7.2
0 +v-Vx)f; — Lk, fj = hy,
sup B [fj]fferﬁ(Qr(z)) /400 asj — +oo.

r>0,2€01,2,0r(2)CQ01

Above, we observed that, for each j, the supremum is reached at some r; > 0 and
zj € Q1/2. We can see that necessarily r; — 0 as j — o0 in the above sequence.

2The qualitative smoothness assumption on f* simplifies the proof but is not strictly necessary.
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In order to derive a contradiction, we rescale the sequence of functions { f; } to map its

values in O, (z;) to the values of fj in Q1, to normalize the ‘€zs+ﬂ—norm of fJ in O,

and by removing the polynomial part ¢; (of kinetic degree strlctly smaller than 2s + ).
Recalling that S, denotes the natural scaling associated with the class of equations we
work with, let f; be defined for all z € Q; by,

= (fi—q)(z;05,(2)
fi(z) = T ,

where

7
F] T rj [f]]'ezs'i‘ﬁ(grj (Z]))

It then satisfies || fj = 1and

”82”3 ()

VR e[l corj], [f/]‘(?o(QR) = R¥T,
VR e [1,Csrj_1]v [f1]~62Y+ﬁ(Q ) = = RPHE,

The constant ¢g > 0 in the previous estimates only depends on s. It is chosen so that
ifz; € Q1/2then Q¢ (z;) C Q1.

The remainder of the proof consists in getting a limit fo, of the (sub)sequence of { ]71-}
and to apply the Liouville theorem to the function fo,. We prove that the increments
of foo satisfy an equation, and Proposition 7.3 implies that the blow-up limit f has to be
a polynomial of degree less than 25 + «’. However, the polynomial expansion at the origin
is zero for each f; by construction. We conclude that f, has to vanish, contradicting

||f00||€§S+B(Q1) =1 O

8. Pointwise upper bounds

In this section we describe the pointwise upper bounds for the Boltzmann equation that
we obtained in [60], and we briefly described in Section 3.1.

Theorem 8.1 (Pointwise upper bounds). Lety € (—d, 1], s € (0, 1) such thaty + 25 €]0, 2]
and let B be a collision kernel of the non-cutoff form (1.4). Let [ be a solution of the
Boltzmann equation (1.1) in (0, T) x T4 xR? such that (0, x,v) = fo(x,v)in T xR?
and (H) holds. We obtain the following estimates.

(1) Propagation of upper bounds. There exists a decay rate gy depending on s, y, d and
the parameters in (H) so that for any q > qo, if fo < C(1 + |v|)™? for some C > 0,
then there exists a constant N depending on C, d, s, d and the parameters in (H)
such that

Viel0,T], xe T veRY, f(t,x,v) <N(1+v])?
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(2) Generation of upper bounds for hard potentials. Assume y > 0. For any q > 0, there
exist constants N and 8 > 0, depending on d, s, d, q and the parameters in (H) only,
such that

Viel0,T], xe T veRY f(t,x,v) < NI+t P)(1+ )™

(3) Generation of upper bounds for soft potentials. Assume y € [—2s,0]. There exists a
constant N, depending on d, s, d and the parameters in (H) only, such that

g —d—1-497
Vie[o.Tl, xeT9 veR?,  f(t.x,v) < N(1+175)(1+ )77,

Unlike the Holder estimates in Theorem 6.1, or the Schauder estimates in Theorem 7.1,
the upper bounds in Theorem 8.1 do not apply to generic integro-differential equations.
They are specific to the Boltzmann equation (1.1) with the collision operator Q( f, f) and
the non-cutoff kernel of the form (1.4), for solutions satisfying the assumption (H).

The proof of Theorem 8.1 has the basic structure of a classical barrier argument for
parabolic PDEs. We postulate that

ft,x,v) < U(t,v) := NA@®)(1 + [v]) 7.

We pick A(t) to be constant for the proof of the propagation of the upper bounds, and to
be of the form A(¢) = (1 + t~#) for the generation of upper bounds. In either case, the
inequality holds trivially at the initial time. If the conclusion of the theorem was false,
there would be a first crossing point (¢g, X, Vo) so that

f(to, x0,v0) = Ulto, vo),
f(t,x,v) <U(t,v) whenevert <ty.

At this first crossing point, the conditions above imply the following relations for the
derivatives of f

0; f(to, X0, v0) = 0:U(ty, vo).
Vy f(to, X0, v9) = VxU(tg,v9) = 0.

Unlike the classical method of barrier functions, there is no straight forward relationship
between Q(f, f) and Q(U,U) at the first crossing point (¢, xg, v9). The inequality
Lk ,U > Lk, f holds at (1, xo, vo), but is not enough for the proof of our result.
Instead, we shall use the inequality: £ (fo, X0, v) < U(to, v), for all v € R?, together with
the upper bounds on mass and energy in (H), and perform a delicate analysis of the quadratic
integral operator Q( f, f) to deduce a (negative) upper bound for Q( f, f)(to, X0, vo). This
is the key computation that leads to the proof of Theorem 8.1, and it is purely nonlocal.
In particular, the same reasoning as in the proof of Theorem 8.1 does not work with the
Landau equation (see [26] for a result on upper bounds for the Landau equation using
different methods).

The precise computation for estimating the value of Q(f, f)(%o, X0, Vo) relies on the
integro-differential structure of the collision operator,

Q(f. f)(to. x0,v0) = Lk , f(to. X0, o) + f(to. X0, v0)(f (20, X0.") * cu| - ") (vo).
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We take advantage of the cone of nondegeneracy described in Subection 2.4 and the upper
bounds on mass and energy in (H). The integral structure of £k , allows us to immediately
transfer the information given by the bounds M, and Ej in (H) to an estimate of the value
of £ K, at the point (#9, Xg, Vo). There is no analog of this method for the usual, local,
partial differential equations.

This is the only step in our program where we use the periodicity assumption of f with
respect to the x variable. It is used for convenience and only to ensure the existence of the
first crossing point (¢, xo, vg). There are many alternative structures for global solutions
7100, T] x R? x R? — [0, 00) that may also be considered. Note that our estimates do
not depend on the length of the period.

From all the steps in our regularity program, Theorem 8.1 is the only one which would
be hard to generalize to weak solutions. The idea of evaluating the equation at the first
crossing point is not compatible with the notion of solution in the sense of distributions.
The natural generalized framework for this method is that of viscosity sub-solutions, as
developed by Crandall and Lions for first order, elliptic and parabolic equations. The
notion of viscosity solutions have not attracted practically any attention in the context
of the Boltzmann equations to date. The definition of viscosity super-solutions is given
in [59]. The definition of viscosity sub-solution, is identical to the one of super-solution
but with reversed inequalities. The definition would only make sense for a solution f that
is at least locally bounded, so it would still be quite restrictive in terms of the qualitative
properties of the solutions we start with.

9. The change of variables

After getting the upper bounds of Theorem 8.1, the Holder estimate from Theorem 6.1 and
the Schauder estimates from Theorem 7.1 imply local Holder bounds for the Boltzmann
equation as soon as we verify that their hypothesis hold for the Boltzmann kernel K s
of (2.4) in terms of the parameters of (H) only.

Like we explained in Section 2.4, the cone of nondegeneracy in condition (4.4) is
automatically satisfied by the kernel Ky of the Boltzmann equation provided that we
restrict our attention to some bounded set of velocities v € Bg. In that case, we have
that the set A = A(v) C S~ is symmetric with respect to the origin and concentrated
in a band of width < (1 + |v|)™! around the equator perpendicular to v. Its measure
is~ (1+ |v|)~!, and

(v —v)

Ky, v') = A(1+ |v|)1+y+2s|v/ — 7972, whenever T~

eA. (.1

Naturally, the condition (4.4) is satisfied for K 7, but only if we restrict our analysis to
some bounded set of velocities v € Br. We make the same observation for the other
conditions (4.3) and (4.6). For example, the following inequality is proved in [95], which
justifies that (4.3) holds for v € Bpg:

/ K(U, U/) dv’ 5 R—2s(/ f(U + w)|w|y+2s dw) < CR—Zs(l + |v|)y+2s’
RI\Bg R4

for a constant C depending only on My and Ey in (H), provided that y + 2s € [0, 2].
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A similar inequality holds for (4.6). Therefore, Theorem 6.1 applies locally to any
solution of the Boltzmann equation that satisfies (H). It tells us that any such solution is
Hélder continuous in (7, 00) x R? x By, for any positive time r > 0 and any bounded value
for R. Now we would like to apply our Holder estimate for f to deduce Assumption 7.1
for K, and in that way be able to apply the Schauder estimates of Theorem 7.1. Later
on, we would want to keep applying the Schauder estimates to increments and derivatives
of f to deduce higher regularity. However, in order to do so, it is essential to obtain global
Holder and Schauder estimates, that are not restricted to bounded velocities only. That
difficulty is overcome by the change of variables described in this section.

For any value of vy ¢ By, we define the linear transformation Ty by the formula

a
Tyy(avg + w) := —vg + w whenever w L vy.

[vol

Note that Ty maps the unit ball B into an ellipsoid that is flattened by the factor 1/|vg|
in the direction of vg. If vg € By, we simply take Ty, to be the identity. Given any
zo = (to, X0, Vo), we further define

T i=2zoo0 (|v0|_y_23t, |v0|_y_23Tv0x, Tvov).
Here, o is the Galilean group operator in R'*2¢_ This transformation T2, maps Q; into
a neighborhood of z that is scaled anisotropically, by flattening the direction of vg.

-~

Tro 1
D TN

Figure 5. The linear transformation Jz, maps the velocities inside the unit ball B to the velocities
inside an ellipsoid centered at vop.

When f is a solution to the Boltzmann equation, then fz)=f (724(2)) solves a
modified equation in Q

hf+v-Vof —2Lg, f=h
where _ B
h(z) = clvo| 77X f(2)(f *u |- 1")(T202),
and 3
Kys(t,x,0,0") = |vo| 7 K(Tzyz, vo + TyyV').

The benefit of this transformed equation is that the kernel K satisfies the ellipticity
conditions (4.3), (4.4) and (4.6) in Q1 with constants depending on the parameters of (H)
but independent of the value of |vg|. Thus, Theorems 6.1 and 7.1 are applied to f in O
with fixed parameters. Then, from the explicit change of variables, we deduce explicit
Holder estimates that hold globally for v € R¥.
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The formula for the change of variables is motivated by the nondegeneracy cone
described above. Since the set 4 is concentrated in a band of width ~ (1 + |v|)~! around
the equator perpendicular to v, the purpose of the linear transformation 7, is of course to
stretch this band to make it of width ~ 1. Then, the factor |vg| ™" ~2* applied to the time
and space variables normalizes the lower bound (9.1) by removing the factor that depends
on (1 4 |v[). The change of variables 77, by design, transforms the estimate (9.1) into the
condition (4.4) for K in Q1, for values of  and A that are uniform with respect to |vg]|. It
is remarkable that the same transformation 77, also give us (4.3) and (4.6) for K in 0y,
in terms of M and Ey of (H), uniformly in |vg| as well.

Lemma 9.1. Ler f:[0,T] x R? x R? be a nonnegative function satisfying (H). Let K
be the kernel described above. Then K satisfies (4.3), (4.4) and (4.6) with constants
depending on the parameters in (H), s, y and dimension, but not on z.

The proof of Lemma 9.1 is given in [61]. It involves relatively lengthy technical
computations.

With Lemma 9.1 at hand, the Holder estimate from Theorem 6.1, becomes an explicit
global Holder estimate for solutions of the Boltzmann equation. The Schauder estimates
from Theorem 7.1 give us explicit higher order estimates for the solutions to the Boltzmann
equation with an explicit (although somewhat complicated) asymptotic behavior for large
velocities. The same logic can be applied to practically any local regularity estimate.
For example combining Proposition 4.2 with the change of variables of Lemma 9.1, we
recover the sharp coercivity estimate with respect to the anisotropic distance of Gressman
and Strain [48].

10. The bootstrap argument

The last step in the proof of Theorem 1.1 is to iteratively obtain estimates in higher
and higher order Holder norms by applying the Schauder estimates to increments and
derivatives of the solution f of equation (1.1).

In order to keep track of global Holder norms that decay as |v| — oo, we introduce
the following definition.

[flecg, @e.r1xrd xR '= sup { (1 + |U|)q[f]€g(Q,(z)) :
re(0,1]and O,(z) C [t, T] x RY x Rd}.

The seminorm [-]ng encodes a decay of the form (1 + [v[)™ for the [-]eg norm
as |v| — oo.

The upper bound of Theorem 8.1 gives us literally an a priori estimate for
Lf ]ng([r,T]de «Rrd) for every value of ¢ > 0. Next, we apply the Holder estimates

of Theorem 6.1 combined with the change of variables of Section 9. We obtain the
following conclusion (see [61, Proposition 7.1]).

Proposition 10.1. Let f:[0,T] x R? x R4 — [0, 00) be a solution to (1.1) so that (H)
holds. Then, forq > d + y + 2s, we have,

[f]cg"qﬂur = C[f]C?!q([t,T]de xRd)

for some a > 0 and C that depend on the parameters of (H), d, s and y only.
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Proposition 10.1 improves the upper bounds from Theorem 8.1 into a global Holder
estimate.

Since the kernel K y depends on the function f through the formula (2.4), a regularity
estimate for f translates into certain kind of regularity for K y. The Holder estimate of
Proposition 10.1 implies that Assumption 7.1 holds (at least locally) for the kernel K .

The next step is to improve the smoothness of f by applying the Schauder estimate,
first to f itself, and then to its increments and derivatives. The following proposition is
the result of combining Theorem 7.1 with the change of variables of Section 9. We state
it in terms of a generic function g because we will apply it to g = f and also to g equal
to several combinations of derivatives and increments of /. The next proposition is taken
from [61, Proposition 7.5].

Proposition 10.2. Let £:[0,T] x R? x R? — [0, 00) be a solution to (1.1) so that (H)
holds. Let g, h:[0, T] x R? x R? — [0, 00) so that the following equation holds

08 +v-Vyg—Lk, g =h

Lett > 0, o € (0, min(1,2s)), and &' = 25/(1 + 25) a. The following inequality holds

(s ]cjijf o' ([7,T]xR4 xR9)

= C(”g”Cg‘.q_,_zs_i_a((o,T]dex]Rd) + ”h”Cg.;+2s+a((0’T]XRdXRd))’

where the constant C depends on the parameters in (H), d, s, y and q.

Thus, we can summarize the first three steps of the proof of Theorem 1.1 as the
following.

(1) Apply Theorem 8.1 to obtain an a priori estimate for || f ”C,? ([o.T]xRd xRd > for any
.q ’
values of t > 0 (arbitrarily small) and g > 0 (arbitrarily large).

(2) Apply Proposition 10.1 to obtain an a priori estimate for || ||cg ([e.T]xR4 xRd)> fOT
-q ’

some small « > 0 and for any values of t > 0 (arbitrarily small) and ¢ > 0 (arbitrarily
large).

(3) Apply Proposition 10.2, with g = fand h = (f *, |- |¥) f, to obtain an a priori

estimate for || f|| 25 (. T]xR xRY)’ for an even smaller ¢’ > 0, and for any values
-q >

of T > 0 (arbitrarily small) and g > 0 (arbitrarily large).

The next steps in order to complete the proof of Theorem 1.1 is to apply Proposition 10.2
with g equal to incremental quotients and derivatives of the solution f. To that end, we
have to compute the equation satisfied by each of these functions. In each case there
are a number of error terms that are absorbed into the right hand side 4. The precise
computations are carried out in [61], together with several technical estimates relating the
Holder norms C l?‘ q with the Boltzmann collision operator Q, derivatives and incremental
quotients.
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11. Possible generalizations and implications

In this section, we review some of the natural implications of Theorem 1.1 and discuss
their possible generalizations.

11.1. A continuation criteria. A continuation criteria can easily be derived by
combining Theorem 1.1 with a compatible short time existence result. Indeed, the short-
time existence result says that a smooth solution exists for some period of time depending
on some regularity norm of the initial data. Theorem 1.1 says that for as long as (H) holds,
then no regularity norm of the solution will blow up. Consequently, the smooth solution
can be extended indefinitely.

The existence of smooth solutions for a short period of time for the non-cutoff
Boltzmann equation was first established in [6] for initial data with five derivatives in Lk)C
and Gaussian decay (in the L? sense). This result is not compatible with our Theorem 1.1
because we cannot ensure the persistence of the Gaussian decay. Our upper bounds
in Theorem 8.1 ensure the persistence of arbitrarily large algebraic decay rate, but not
precisely the Gaussian decay.

The first short time existence result that requires an algebraic decay rate for the initial
data was given in [84] for s € (0,1/2) and y € (—3/2,0]. More recently, the result
was extended to the full range of parameters in [55]. These results are compatible with
Theorem 1.1. Thus, we effectively get the following continuation condition.

Corollary 11.1. Assume that £ (0, T)xR? xR4 — [0, 00) is a smooth function, periodic
in x, so that (1 + |v|)? f(t, x, v) is bounded for all ¢ > 0, and f satisfies the Boltzmann
equation (1.1). If such a solution f cannot be continued to a larger time interval, then
one of the following events must occur:

lim inf/ f(t,x,v)dv =0,

t—>T xeR4
hm sup / f(t,x,v)dv = 400,
T xerd
lim sup / [v]? f(t, x,v)dv = 400,
t— xeRd R4
11m sup / flog f(t,x,v)dv = 4o0.
T yerd

Our Theorem 1.1 gives us the extra piece of information that the estimate (1.8) holds
uniformly for all times (away from zero). Thus, any solution f for which (H) holds is
uniformly smooth as ¢t — oo.

In a very recent preprint [56], Henderson, Snelson and Tarfulea relax the continuation
criteria of Corollary 11.1 to only an upper bound for the mass or energy densities. They
assume that the initial value f; is bounded below in a solid ball somewhere (which is
always true if fy is continuous and not identically zero). By a barrier argument, they
propagate this lower bound to all positive times and all other points in space. In this
way, they prove that a lower bound for the mass density holds for all time, even though
it might degenerate as t — oo. They also use this lower barrier to establish the cone of
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nondegeneracy for the kernel K ¢ as in (2.6). They observe that the only place where we
crucially use the upper bound for the entropy in our program was in establishing this cone
of nondegeneracy. In this way, they are able to improve Corollary 11.1 and deduce that if
a singularity ever occurs at time 7" for the Boltzmann equation without cutoff, then one of
the following two events must occur:

lim sup f(t,x,v)dv = o0,
t—>Tx€Rd R4

lim sup / [v|? f(t, x,v)dv = +o0.
R4

=T yerd

Note that using the methods in [56], we cannot obtain global regularity estimates that
are uniform for all time, depending only on an upper bound for the mass and energy
estimates. Their estimates hold in any interval of time (¢, x, v) € [0, T'] x RY x R4, but
they degenerate as 7 — oo.

11.2. Convergence to equilibrium. A very well known result by L. Desvillettes and
C. Villani [37] says that the solution f to the Boltzmann equation (1.1) converges to a
Maxwellian provided that the following two conditions hold.

(1) The function f is C°° with uniform bounds as t — oo.
(2) The function f is bounded below by a fixed Maxwellian.

Our Theorem 1.1 says that the first condition of the Theorem of Desvillettes and Villani
holds as soon as (H) holds. The Maxwellian lower bound is obtained also as a consequence
of (H) in our joint work with Clément Mouhot [59]. Thus, combining all these results,
(H) becomes the only condition necessary to deduce the convergence to equilibrium of the
solution f ast — oo.

11.3. Weak solutions. Our Theorem 1.1 is stated as an a priori estimate for smooth
classical solutions. It is natural to wonder if the same regularity estimates would hold for
weak solutions as well. But what is a weak solution exactly?

The term weak solution typically means that the function f is not necessarily smooth,
and the equation is to be understood in the sense of distributions. This notion of solution, in
the sense of distributions, works very well for many linear equations (like the Laplace, heat
or wave equations). However, it fails miserably for most nonlinear equations. For example,
it is well known that solutions in the sense of distributions have very undesirable properties
for nonlinear conservation law equations, including non-uniqueness. Entropy solutions is
the right notion of solution for scalar conservation laws. Distributional solutions are also
completely unsuitable for the study of the Hamilton-Jacobi equations, or fully nonlinear
parabolic equations. In these latter cases, the right notion of solution is in the viscosity
sense.

It is currently very unclear what kind of generalized solution we should study for the
Boltzmann equation (1.1). There is no notion of weak solution for which we can prove
both existence and uniqueness in fair generality.

The only global existence result, far from equilibrium, known so far for the non-cutoff
Boltzmann equation (1.1) is that of Alexandre and Villani [11]. They prove the existence
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of a renormalized solution with defect measure. The uniqueness of solutions of this kind
is not known, and arguably not expected.

It is still an open problem to determine whether the result of Theorem 1.1 holds for the
class of solutions defined by Alexandre and Villani. What we mean is that if f is a (not
necessarily smooth) renormalized solution with defect measure so that (H) holds almost
everywhere, then one might expect f to be necessarily smooth and satisfy the estimates
in Theorem 1.1.

Using entropy dissipation estimates from [3], we see that for any renormalized
solution f of (1.1) for which the assumption (H) holds almost everywhere, we have
\/7 € Ltz’ x H3 1oc- The main difficulty for moving forward with our regularity program is
in establishing the upper bounds of Theorem 8.1. In its proof, we evaluate the equation at
a single point, where the function f would first cross certain upper barriers.

Except from the upper bounds of Theorem 8.1, the other steps of the proof are relatively
easy to adapt to weak solutions. We commented in Sections 6 and 7 how the Holder and
Schauder estimates would be extended to weak solutions.

It is debatable whether it is interesting to explore the applicability of Theorem 1.1 to
an intermediate kind of solution. That is, to a notion of solution stronger than that of
Alexandre and Villani, but weaker than classical smooth solutions. In terms of our proofs,
there seems to be no major obstruction to extend Theorem 1.1 to hold for solutions in the
sense of distributions that are bounded with a decay of the form f < C(1 + |v|)?° foragg
large enough as described in [60, Section 5]. Naturally, the regularity estimates would not
depend on this constant C.

11.4. Mild solutions. Even though we work with a very strong notion of solution,
Theorem 1.1 can be applied for any class of solution where we can establish stability.
We mean any class of solutions where we can approximate the initial data with a smooth
function and pass to the limit. A great example is the global mild solutions to the
Boltzmann equation (1.1) without cutoff constructed by Duan, Liu, Sakamoto and Strain
in [41].

These solutions stay close to a Maxwellian in a suitable norm that does not impose
any regularity with respect to the v variable. In this perturbative regime, they establish
the global well posedness of the problem. A priori, these solutions could be very rough,
but it can be verified by a direct computation that they satisfy our assumption (H). We
explain here how to apply Theorem 1.1 to conclude that they are actually C*°.

If the initial data fy is smooth and rapidly decaying as |v| — oo, in addition to
satisfying the hypothesis in [41], the continuation criteria tells us that it can only blow
up when one of the conditions in Corollary 11.1 holds. The smooth solution with initial
data fy must coincide with the solution constructed in [41] for as long as this smooth
solution exists, since uniqueness holds in both regimes. But the solution constructed
in [41] satisfies (H) globally, so it can never blow up. Thus, it will be a global smooth
solution and the estimates in Theorem 1.1 will hold.

If the initial data fy satisfies the hypothesis of [41] but is not smooth, we can
approximate it with a sequence f; of smooth ones, and rapidly decaying. For each f;,
the solution f¢ is C°*° and the result of our Theorem 1.1 holds. Our estimates for f do not
depend quantitatively on the smoothness of f;. Thus, we get uniform regularity estimates
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that pass to the limit and apply for any (non-smooth) initial data f,. We can legitimately
take the limit as &¢ — 0 thanks to the well posedness result in [41].

We should point out that when y < 0, the assumptions in [41] do not imply our decay
condition (1.9). Thus, for y < 0, we would only apply the result of Theorem 1.1 to the
solutions in [41] if the initial data satisfies (1.9) in addition to their assumptions.

Remark 11.1. It is conceivable that under the strong moment estimates from [41],
pointwise upper bounds should follow as in Theorem 8.1 without any additional hypothesis
on fo even for y < 0. However, it does not follow directly from any result currently in the
literature.

12. Open problems

Some open questions were already discussed in the previous section, including the possible
extension of the estimates in Theorem 1.1 to renormalized solutions with defect measure.
In this last section, we propose several other open problems related to the material in this
survey.

12.1. Control on the hydrodynamic quantities. The most obvious open problem after
Theorem 1.1 is whether the hypothesis in (H) can be ensured in any way. This would
imply the unconditional global solvability of the Boltzmann equation. It is a remarkable
open problem. In the first chapter of [99], Cédric Villani recounts a lively discussion
with Clément Mouhot from several years ago about this issue. Based on the discussion
included in the introduction of this survey, we believe that the global existence of smooth
solutions to the non-cutoff Boltzmann equation is an open problem that, if true, would be
harder to prove than the global solvability of the Navier—Stokes equations (also if true).
The latter is one of the famous Millennium problems.

A more plausible project in the near term would be to remove or weaken some of the
conditions in (H). The well known Prodi—Serrin condition for the Navier—Stokes equation
suggests that maybe only an upper bound in some suitable L7 space would suffices for the
mass, energy and/or entropy densities. Perhaps only a subset of the inequalities from (H)
suffice to obtain Theorem 1.1. There are several possibilities. We do not have any precise
conjecture in this direction.

12.2. Very soft potentials. The non-cutoff collision kernel (1.4) makes sense for s € (0, 1)
and y > —d. Yet, we only present our results in the range y + 2s € [0,2]. The case
y 4+ 2s > 2 is covered in [27]. The case y + 2s < 0 remains open and would require new
ideas.

The case y + 2s < 0 is commonly referred to as very soft potentials. In particular,
y = —3 and s — 1 corresponds to the Landau-Coulomb equation in three dimensions
which is most relevant for the study of plasma dynamics. Our proof of the upper bounds
in Theorem 8.1 fails in this range.

When y 425 < 0, regularity estimates fail even for the space-homogeneous Boltzmann
equation. We do not currently know any global L estimate for the solution f of the
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non-cutoff Boltzmann equation when y 4 25 < 0, even in the space-homogeneous case
and for initial data fy in the Schwartz class.
The main difficulty for the very soft potential range is to control the lower order term

in (2.8), that is
f) (/ Fv—w)wl” dw),
]Rd

with the diffusion term £k , /. Naturally, the more negative y is, the more singular the
lower order term in (1.1) becomes. The cone of nondegeneracy described in Section 2.4,
together with the upper bounds on mass, energy and entropy, allows us to control this
lower order term with £k , f only when y + 25 > 0. It seems that in order to succeed
in proving an L estimate for y + 2s < 0, we would need some further understanding
on £ , f sharper than the information we get from its cone of nondegeneracy.

The problem of L°° bounds for very soft potentials is also open in the context of the
space homogenous Landau equation. See for example [45,49,96].

12.3. Bounded domains.. We stated Theorem 1.1 for periodic boundary conditions in
the space variable x. It would be straight forward to extend the result to other variants
of space domains without boundary. For example, we may assume that as |x| — oo the
solution f(¢, x,v) converges uniformly to a fixed Maxwellian M (v). Our proof would
work mutatis mutandis under this alternative formulation.

The case of domains with boundary is of course of physical relevance. Several
types of boundary conditions are considered in the literature of kinetic equations: diffuse
reflection, specular reflection and bounce back reflection. An extension of Theorem 1.1
for solutions f in a bounded domain in space, with any of these boundary conditions,
requires further work. There are several subtleties involved on the effects of the boundary
on the regularity of f. See for example [50-52,69,70], for analysis of boundary effects
on solutions of the Boltzmann equation. No analysis has been made yet concerning the
possibility to extend some form of Theorem 1.1 to any domain with boundary, for any of
the physical boundary conditions.

Another possibility would be to extend the result of Theorem 1.1 as an interior
regularity condition. That is, if a function f:[0,7] x @ x R? — [0, c0) solves the non-
cutoff Boltzmann equation (1.1) and satisfies (H), we would expect the same estimates
of Theorem 1.1 to hold in any subdomain of the form [z, T] x K x R¢ for any t > 0
and K compactly contained in €2. This is an open problem in a bounded domain that is
independent of the subtleties involved in the analysis of physical boundary conditions.

12.4. Holder estimates for Kinetic equations with diffusion in non-divergence form.
Our theorem 6.1 is a kinetic non-local version of the classical result of De Giorgi, Nash and
Moser. There is no regularity assumption on the kernel K. The cancellation condition (4.6)
is a nonlocal form of the divergence structure of elliptic operators. A natural question
is: can we replace the cancellation condition (4.6) by the non-divergence symmetry
condition (4.5)?

The Boltzmann kernel K ¢ naturally satisfies the symmetry condition (4.5). It also
satisfies the cancellation condition (4.6), but it takes more trouble to verify it. The reason
why we presented Theorem 6.1 under the cancellation condition (4.6) instead of the
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symmetry condition (4.5) is simply because that is what we are able to prove. It does not
mean that the alternative is false. In fact, we believe it is probably true as well.

The reason why we succeed to prove Theorem 6.1 under the cancellation condition (4.6)
but not under the symmetry condition (4.5) has its roots in the study of kinetic equations
with second order diffusion.

Let us recall the setting of the classical Holder estimates for parabolic equations with
rough coefficients. The theorem of De Giorgi, Nash and Moser gives us estimates in
Holder spaces for solutions of an equation of the form

U — Oy; (ai_/ (t,x)axju) =0,

only under the uniform ellipticity assumption A/ < {a;;} < AI. There is also an
analogous result by Krylov and Safonov for parabolic equations in non-divergence form

Uy —a,-j(t,x)axixju =0.

The techniques involved in the proofs of the theorem of De Giorgi, Nash and Moser are
very different from those involved in the proof of the theorem by Krylov and Safonov. A
kinetic version of these two types of equations would be

(divergence form) 0 f + v Vi f =0y (a;j(t,x,0)3,;)f =0,
(non-divergence form) 9, f 4+ v - Vi f —ajj(t, x,v)dy,y; f = 0.

In either case, we should assume the uniform ellipticity condition:
Al <Haij(t,x,v)} < Al

No further smoothness assumptions should be made on the coefficients. One would expect
that if the equation holds in a kinetic cylinder Q1, then the following estimate holds

I/ g1 = Cllf lcoy):

Such an estimate is known to be true in the divergence case (see [46, 100, 101]).
However, it is still an open problem for the non-divergence case.

12.5. Coercivity estimates for integro-differential operators. In Proposition 4.2, we
describe a coercivity estimate for the Boltzmann collision operator. This coercivity
condition is well known and has a long history in the Boltzmann literature. The upper
bound on the entropy in (H) can be replaced by a lower bound on the temperature tensor,
or a more general condition described in [48]. However, these results do not follow from
the general condition in [30] and rely on the specific structure of the Boltzmann kernel K ¢
described in (2.4).

The result in [30] is a coercivity estimate for general integro-differential operators of
the form £ g as in (4.2), not necessarily related to the Boltzmann equation. The question
is to determine simple sufficient conditions on a kernel K(v,v’) so that the following
inequality holds for some constant ¢ > 0.

[ o= rerkewa =iz, (2.1
R4 xR4
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It is obvious that (12.1) holds when K(v,v) = |[v/ — v|~¢~25. Proposition 4.2 says
that (12.1) follows as a consequence of (4.4). The assumptions in [30] are more general,
but there are still some simple cases where (12.1) holds even though the assumptions
in [30] do not apply. The simplest example, in two dimensions, is to consider

Lf =—((=011)" + (=022)°) f.

This operator corresponds to a kernel K consisting of a singular measure concentrated on
vy — v} = 0and v, — v = 0. It is easy to verify that in this case

—/Rd(iif)fdv 2 If 1R,

however, the kernel in & is a singular measure. It is equal to zero almost everywhere.
A general condition that has been suggested is the following: there exists A > 0 so
that for every v € ]Rd, r>0ande € S9! we have

/ [V —v)- e]iK(v, v)dv' > Ar?T2,
By (v)

This condition is satisfied by every kernel that is currently known to satisfy (12.1). Whether
it actually implies (12.1) is still an open problem. See [42] and [22] for more references
concerning this question.

12.6. Regularity estimates for moderately soft potentials whose initial data does
not decay. In the case of moderately soft potentials (y € [—2s,0]), our estimates in
Theorem 1.1 depend on the decay of the initial data fy though the values of N,. We
require (1.9) to hold for every r > 0.

We do not expect to have any gain of moments in the case of soft potentials. Without
the assumption (1.9), we only expect a moderate decay for large velocities at positive time,
as described in the third case of Theorem 8.1.

It is natural to wonder whether C *° regularity estimates may hold in the case y < 0,
for solutions that do not enjoy a fast decay for large velocities. The iteration leading to our
proof of Theorem 1.1 does not suffice to prove it. In each step we gain some differentiation
at the expense of some decay power. If we do not start by a fast decay as in (1.9), our
iteration would stop after finitely many steps.

12.7. Conditional propagation of regularity for the cutoff Boltzmann equation. With
the cutoff assumption on the collision kernel B, there is no regularization effect in the
Boltzmann equation. However, it is still plausible to expect propagation of regularity. If
the initial data fp is smooth and rapidly decaying as |v| — oo, it is conceivable that the
solution of the Boltzmann equation (1.1) with cutoff stays smooth for as long as (H) holds,
at least in the case of hard potentials.

This problem is of a very different nature compared with the regularization estimates
studied in these notes. We have not done any work on the cutoff case so far.
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