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Abstract
We construct a family of representations of affine Hecke algebras, which depend on
a number of auxiliary parameters gi , and which we refer to as metaplectic represen-
tations. We realize these representations as quotients of certain parabolically induced
modules, and we apply the method of Baxterization (localization) to obtain actions of
corresponding Weyl groups on rational functions on the torus. Our construction both
generalizes and provides a conceptual proof of earlier results of Chinta, Gunnells, and
Puskas, which had depended on a crucial computer verification. A key motivation is
that when the parameters gi are specialized to certain Gauss sums, the resulting rep-
resentation and its localization arise naturally in the consideration of p-parts of Weyl
group multiple Dirichlet series. In this special case, similar results have been previ-
ously obtained in the literature by the studyof IwahoriWhittaker functions for principal
series of metaplectic covers of reductive p-adic groups. However this technique is not
available for generic parameters gi . It turns out that themetaplectic representations can
be extended to the double affineHecke algebra, where they sharemany important prop-
erties with Cherednik’s basic polynomial representation, which they generalize. This
allows us to introduce families of metaplectic polynomials, which depend on the gi ,
and which generalize Macdonald polynomials. In this paper we discuss in some detail
the situation for type A, which is of considerable interest in algebraic combinatorics.
We postpone some of the proofs, as well as a discussion of other types, to the sequel.
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1 Introduction

This paper contains two main results concerning a somewhat mysterious action of the
Weyl group of a reductive Lie group on the algebra of rational functions on its torus.
This action was first introduced in type A by Kazhdan and Patterson [24], and in full
generality by Chinta and Gunnells [15,16], who used it to obtain formulas for the local
parts (p-parts) ofWeyl groupmultipleDirichlet series. The action involves an integer n
and parameters g1, . . . , gn−1, which in the application are specialized to certain Gauss
sums; however it remains a group action even without this specialization. Chinta and
Gunnells verified this fact through a computer check and they asked for a conceptual
proof. Our first main result provides such a proof in complete generality. The key
role in the proof is played by a certain representation of the affine Hecke algebra
that we construct in Theorem 3.7 below, and which we refer to as the metaplectic
representation.

There is a striking analogy between the Chinta–Gunnells setting and the theory
of Macdonald polynomials [12,29,31]. The latter are a family of orthogonal polyno-
mials on the torus that depend on two or three “root-length” parameters, and which
generalize many important polynomials in representation theory and algebraic combi-
natorics, including spherical functions for real and p-adic groups. We show that there
is much more to this analogy. Our second main result is the construction of a fam-
ily of polynomials that we refer to as metaplectic polynomials. These depend on the
root-length parameters as well as the g1, . . . , gn−1, and are a common generalization
of nonsymmetric Macdonald polynomials [11,28] and of the p-parts of Weyl group
multiple Dirichlet series. A key point in our construction is extending the metaplectic
representation from the affine Hecke algebra to the double affine Hecke algebra.

In the present paper we introduce, without proofs, the metaplectic polynomials
in type A, where many of the essential ideas already appear. This is the setting of
[24] and of Macdonald’s book on symmetric functions [30], which is of considerable
independent interest in algebraic combinatorics. The consideration of the metaplectic
polynomials for arbitrary type requires some additional ideas. This will be presented
in a forthcoming paper [36], which will also include the detailed proofs.

1.1 The Chinta–Gunnells action

We recall now briefly the Chinta–Gunnells Weyl group action, referring the reader to
[4,5,9,14–16] and especially the survey [8] for the connection to Weyl group multiple
Dirichlet series. Let W be the Weyl group of an irreducible root system �, with
Coxeter generators {si }ri=1 corresponding to a choice of simple roots {αi }ri=1. Let
P be the weight lattice of �. The Weyl group canonically acts on the fraction field
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C(P) of the group algebra C[P] by field automorphisms. Chinta and Gunnells have
constructed a deformation of this action, which depends on the choice of aW -invariant
quadratic form Q : P → Q taking integer values on the root lattice Q of �, a natural
number n, and on parameters v, g0, . . . , gn−1 satisfying

g0 = −1, g j gn− j = v−1, j = 1, . . . , n − 1.

Let 0 ≤ rm ( j) ≤ m − 1 denote the remainder on dividing j by the natural number
m, and define g j for arbitrary j ∈ Z by setting g j = grn( j), letB (λ, μ) = Q (λ + μ)−
Q (λ)−Q (μ) be the bilinear form associated toQ, and putm (α) = n/ gcd (n,Q (α)).
It defines a new root system �m := {m(α)α}α∈�, which is either isomorphic to � or
to �∨. The weight lattice Pm ⊆ P of �m is

Pm = {λ ∈ P | B(λ, α
) ≡ 0 mod n ∀α ∈ �}

(see Lemma 2.2). Then the Chinta–Gunnells action σi = σ(si ) of the simple reflection
si ∈ W on C(P) is given by the formula

σi
(
f xλ

) := (si f )xsiλ

1 − vxm(αi )αi

[
x

−rm(αi )

(
−B(λ,αi )

Q(αi )

)
αi

(1 − v)

−vgQ(αi )−B(λ,αi )x
(1−m(αi ))αi

(
1 − xm(αi )αi

) ]
(1.1)

for f ∈ C(Pm) and λ ∈ P .
It is non-trivial to show that the formula (1.1) defines a representation of W . The

main issue is to verify that the braid relations are satisfied. Although this reduces to a
rank 2 computation, the calculations become rather formidable, and in [16] the details
are only presented for A2. Trying to find a natural interpretation of this representation
was one of the main motivations for our work.

Chinta and Gunnells [16] employed the action (1.1) to give an explicit construction
of the “local” parts of certainWeyl groupmultipleDirichlet series, and to establish thus
the analytic continuation and functional equations for these series. In this situation, the
gi are n-th order Gauss sums for the local field, and v = p−1 with p the cardinality
of the residue field. Subsequently, Chinta–Offen [18] for type A, and McNamara
[32] in general, showed that these local parts are essentially Whittaker functions for
principal series of certain n-fold “metaplectic” covers of quasi-split reductive groups.
The resulting explicit expression for the Whittaker function in terms of the action
(1.1) is the metaplectic generalization of the Casselman–Shalika formula. This result
is in line with the fact that multiple Dirichlet series should themselves be Whittaker
coefficients attached to metaplectic Eisenstein series [6,9].

Still more recently, Chinta–Gunnells–Puskas [17] have shown that the W -action
(1.1) gives rise to a Cherednik [12] type Demazure–Lusztig action of the Hecke
algebra of W . It leads to an expression of the metaplectic Whittaker functions in
terms of metaplectic Demazure–Lusztig operators. Their work was partly motivated
by Brubaker–Bump–Licata [7], who gave formulas for (nonmetaplectic) Iwahori–
Whittaker functions in terms of Hecke operators and nonsymmetric Macdonald
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polynomials. The recent work of Patnaik–Puskas [33] uses the Chinta–Gunnells–
Puskas Hecke algebra action to study metaplectic Iwahori–Whittaker functions. It
leads to a conceptual proof [33, App. B] that (1.1) defines a representation ofW when
the gi are n-th order Gauss sums for a local field, and v = p−1 with p the cardinality
of the corresponding residue field.

1.2 Our results

In Sects. 3 and 4, we give a uniform construction of a Weyl group representation
(Theorem 3.21) and an associated Hecke algebra representation (Theorem 4.2) that
generalize the Chinta–Gunnells [16] and Chinta–Gunnells–Puskas [17] representa-
tions, respectively. Our construction does not involve case-by-case considerations, and
it yields a representation for the generic Hecke algebra H(k), which has independent
Hecke parameters for each root length in �. Our method also allows us to incorporate
extra freedom in the definition of gi by allowing them to depend on the root length (see
Definition 3.5 of the representation parameters). The Chinta–Gunnells and Chinta–
Gunnells–Puskas representations are recovered in the equal Hecke and representation
parameter case of our constructions.

Our starting point was the observation that (1.1) has many features in common
with formulas obtained by the process of “Baxterization” [12]. The key idea behind
this process is that the group algebra of the affine Weyl group and the affine Hecke
algebra become isomorphic after a suitable localization, which allows one to relate
certain representations of the two algebras. This inspired our search for a natural
representation of the affine Hecke algebra whose associated localized affine Weyl
group representation produces (1.1) for its W -action. Its first form can be recovered
from the Chinta–Gunnells–Puskas Hecke algebra action as follows.

Note that the Chinta–Gunnells W -action (1.1) has an obvious extension to a rep-
resentation of the extended affine Weyl group W̃m := W � Pm with μ ∈ Pm acting
on C(P) by multiplication by xμ. Let H̃m(k) be the associated extended affine Hecke
algebra with single Hecke parameter k satisfying k2 = v. If the affine extension of the
Chinta–GunnellsW -action onC(P) arises from a H̃m(k)-action onC[P] by localiza-
tion, then the generators {Ti }ri=1 of the finite Hecke algebra H(k) act on C[P] by the
Chinta–Gunnells–Puskas metaplectic Demazure–Lusztig operators associated to σi
(cf. Proposition 4.1). It follows that the underlying H(k)-representation is equivalent
to the H(k)-representation on C[P] defined by

π(Ti )x
λ := (k − k−1)∇ i (x

λ) − kg−B(λ,αi )x
siλ, λ ∈ P, (1.2)

with ∇ i the following metaplectic version of the divided-difference operator

∇ i (x
λ) := xλ − xsiλ+rm(αi )((λ,α∨

i ))αi

1 − xm(αi )αi
.

But nowwewant to have an a priori proof that (1.2) defines a H(k)-action onC[P] and
conclude from it that (1.1) defines aW -action on C(P) via the localization technique.
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Although the formulas (1.2) are much simpler than (1.1), a direct case-by-case
check that it defines a H(k)-representation will be close to being as cumbersome as
for the Chinta–Gunnells action. Our first result is to circumvent the case-by-case check
by proving that π is isomorphic to a quotient of the induced module H̃m(k)⊗H(k) VC
for an appropriate H(k)-representation VC . This isomorphism in addition allows us
to generalize π and the Chinta–Gunnells Weyl group action to the context of generic
affine Hecke algebras.

The H(k)-representation VC is defined as follows. Let V = ⊕
λ∈P Cvλ be the

complex vector space with basis the weight lattice P . It has a natural left H(k)-module
structure reducing to the canonical C[W ]-module structure when k = 1 (see Lemma
3.1). We call V the reflection representation of H(k). For each W -invariant subset
D ⊆ P , the subspace VD := ⊕

λ∈D Cvλ is a H(k)-submodule of V . In particular,
V{0} is the trivial representation of H(k). The appropriate choice ofW -invariant subset
C of P in the above realization of π now turns out to be

C := {λ ∈ P | (λ, α∨) ≤ m(α) ∀ α ∈ �}.

Note that C contains a complete set of coset representatives of P/Pm .
The following trivial example is instructive to get a feeling for what is going on.

Suppose that m(α) = 1 for all α ∈ �. Then Pm = P and ∇ i is the standard divided-
difference operator on C[P]. In this case it is well known that (1.2) is equivalent to
the induced module H̃m(k)⊗H(k) V{0} by the Bernstein–Zelevinsky [27] presentation
of H̃m(k). The W -subset C in this case is oversized, with C \ {0} being the set of
nonzero minuscule weights in P .

In Sect. 5 we construct the metaplectic polynomials in type A. The extension
to arbitrary types will be treated in the forthcoming paper [36]. The GLr double
affine Hecke algebra H

(m) has generators T0, . . . , Tr−1, ω
±1, x±m

1 , . . . , x±m
r , with

T0, . . . , Tr−1, ω
±1. Coxeter type generators of a copy of the GLr affine Hecke algebra

in H
(m) (ω is the generator of the abelian group of group elements of length zero),

and T1, . . . , Tr−1, x
±m
1 , . . . , x±m

r Bernstein–Zelevinsky type generators of the second
copy of the GLr affine Hecke algebra in H

(m) (the x±m
j ( j = 1, . . . , r ) are generating

its commutative subalgebra). The metaplectic representation of the second copy of the
GLr affine Hecke algebra is acting on Laurent polynomials in x±1

1 , . . . , x±1
r , where

Ti for 1 ≤ i < r act by (1.2) and xν (ν ∈ mZ
r ) act by multiplication. It extends to a

representation π̂ ofH
(m), withω acting as a twisted-cyclic permutation of the variables

and T0 by an appropriate affine version of the metaplectic Demazure–Lusztig operator
(see Theorem 5.4). The representation π̂ is ametaplectic generalization of Cherednik’s
basic representation [12,31], which we call the metaplectic basic representation.

The GLr affine Hecke algebra generated by T0, . . . , Tr−1, ω
±1 in its Bernstein–

Zelevinsky presentation contains an abelian subalgebra generated by elements Y±mεi

(i = 1, . . . , r ). We define the metaplectic polynomials E (m)
μ (μ ∈ Z

r ) in Theorem 5.7
as the simultaneous eigenfunctions of π̂(Ymεi ) (i = 1, . . . , r ). It depends, besides the
standard Macdonald parameters, on the additional representation parameters g j . The
subfamily indexed bymZ

r recovers the nonsymmetric Macdonald polynomials in the
variables xm1 , . . . , xmr (see Remark 5.10). At the end of Sect. 5 we provide examples of
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GL3-metaplectic polynomials, highlighting some important phenomena. In a followup
paper [36] other important properties, such as triangularity and orthogonality will be
established in the context of arbitrary root systems.

1.3 The structure of the paper

Wenow briefly discuss the content of the paper.We introduce in Sect. 2 the appropriate
metaplectic structures on the root systems and affineWeyl andHecke algebras. Section
3 is devoted to the metaplectic representation theory of the affine Weyl groups and
generic affine Hecke algebras. We introduce the reflection representation in Sect. 3.1.
Section 3.2 forms the heart of our approach: we introduce the analogue of (1.2) for
generic Hecke and representation parameters and establish that it defines a representa-
tion of the generic affine Hecke algebra by identifying it with a quotient of the induced
module H̃m(k) ⊗H(k) VC (see Theorem 3.7). In Sect. 3.3 we explain the localization
technique and apply it to π (Theorem 3.7) to obtain the generalized Chinta–Gunnells
W -action (Theorem 3.21).

In Sect. 4 we form the associated metaplectic Demazure–Lusztig operators and
generalize some of the results from [17] to the setting of unequal Hecke and represen-
tation parameters. We also simplify some of the proofs from that paper by using the
standard symmetrizer and antisymmetrizer elements in the Hecke algebra. This allows
us to define a natural class of “Whittaker functions” for generic Hecke algebras. It is
natural to ask whether these more general functions arise as actual matrix coefficients
for some class of representations of p-adic groups. This question is of particular inter-
est since generic Hecke algebras have begun to play an increasing role in the study of
the Bernstein components within the categories of smooth representations of p-adic
groups, see, e.g., [10,21] and references therein.

In Sect. 5, we construct the metaplectic polynomials in type A. We begin by set-
ting up the notation and modifications specific to the GLr case. The double affine
Hecke algebra H

m is presented in Sect. 5.2, and the metaplectic basic representation
in Sect. 5.3. The characterization of the metaplectic polynomials as eigenfunctions of
the metaplectic operators π̂(Y ν) (ν ∈ mZ

r ) may be found in Sect. 5.4.We also discuss
the dependence on parameters, showing that we do not lose any generality by taking
the quadratic form Q to satisfy Q(α) = 1 for α a root. Finally, in the “Appendix”, we
provide a list of metaplectic polynomials for r = 3 and 1 ≤ m ≤ 5.

Let us concludewith remarking that the localization procedureweuse in this paper is
instrumental in Cherednik’s construction of quantum affineKnizhnik–Zamolodchikov
equations attached to affine Hecke algebra modules. Closely related to it is the role of
the localization procedure for type A in the context of integrable vertex models with
Uq(ŝln)-symmetry, in the special cases that the associated braid group action descends
to an affine Hecke algebra action, in which case the localization procedure is often
referred to as Baxterization (see, e.g., [12,37] and references therein). This is exactly
the context in which the metaplectic Whittaker function can be realized as a partition
function, the corresponding integrable model being “metaplectic ice”, see [1–3]. It is
an intriguing open question whether there is a conceptual connection with the current
interpretation of the Chinta–Gunnells action through localization.
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2 The extended affine Hecke algebra

2.1 The root system

Let E be an Euclidean space with scalar product (·, ·) and norm ‖ · ‖. Let � ⊂ E be
an irreducible reduced root system, and W ⊂ O(E) its Weyl group. The reflection in
α ∈ � is denoted by sα ∈ W , and its co-root is α∨ := 2α/‖α‖2.

Fix a base {α1, . . . , αr } of�. Let�+ be the corresponding set of positive roots and
write si := sαi for i = 1, . . . , r . Let

P := {λ ∈ V | (λ, α∨) ∈ Z ∀α ∈ �} =
r⊕

i=1

Z
i

be the weight lattice of � with 
i ∈ E the fundamental weights, defined by
(
i , α

∨
j ) = δi, j . Let

Q = Z� =
r⊕

i=1

Zαi

be the root lattice of �.

2.2 Themetaplectic structure

In the theory of metaplectic Whittaker functions, a new root system �m is attached to
the metaplectic covering data of the reductive group over the non-archimedean local
field, cf. [16,17] and references therein. We recall in this subsection this additional
metaplectic data on the root system.

Fix a W -invariant quadratic form Q : P → Q which takes integral values on Q
and write B : P × P → Q for the associated symmetric bilinear pairing

B(λ, μ) := Q(λ + μ) − Q(λ) − Q(μ), λ, μ ∈ P.

ThenQ(·) = κ
2‖·‖2 for some κ ∈ R

×, and henceB(λ, μ) = κ(λ, μ) for all λ,μ ∈ P .
In particular, for all λ ∈ P and α ∈ �,

B(λ, α)

Q(α)
= (λ, α∨). (2.1)

Let n ∈ Z>0 and define

m(α) := n

gcd(n,Q(α))
= lcm(n,Q(α))

Q(α)
∀α ∈ �.

Note that m : � → Z>0 is W -invariant.
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Set �m := {αm := m(α)α}α∈� ⊂ E . Then �m is a root system. In fact, if m is
constant then�m is isomorphic to�, while ifm is nonconstant then�m is isomorphic
to the co-root system �∨ = {α∨}α∈� (this follows from the definition of m(α) and
the fact thatQ(·) = κ

2‖ · ‖2). In particular, {αm
1 , . . . , αm

r } is a base of �m andW is the
Weyl group of �m .

Write Qm for the root lattice of �m and Pm for the weight lattice of �m . Since
(αm)∨ = m(α)−1α∨ for α ∈ �, we have

Qm =
r⊕

i=1

Zαm
i , Pm =

r⊕

i=1

Z
m
i

with 
m
i := m(αi )
i the fundamental weights of Pm .

Lemma 2.1 (a) For α ∈ � and λ ∈ P we have

B(λ, αm) = lcm(n,Q(α))
(
λ, α∨).

(b) For α ∈ � and λ ∈ P we have

B(λ, α) ≡ 0 mod n ⇔ (λ, α∨) ≡ 0 mod m(α).

Proof. (a) For λ ∈ P and α ∈ � we have

B(λ, αm) = m(α)B(λ, α)

= n B(λ, α)

gcd(n,Q(α))

= nQ(α)

gcd(n,Q(α))

B(λ, α)

Q(α)
= lcm(n,Q(α))(λ, α∨).

(b) For λ ∈ P and α ∈ � we have

B(λ, α) ≡ 0 mod n ⇔ Q(α)(λ, α∨) ≡ 0 mod n

⇔ (λ, α∨) ≡ 0 mod
n

gcd(n,Q(α))

⇔ (λ, α∨) ≡ 0 mod m(α).

Lemma 2.2

Pm = {λ ∈ P | (λ, α∨) ≡ 0 mod m(α) ∀α ∈ �}
= {λ ∈ P | B(λ, α) ≡ 0 mod n ∀α ∈ �}.

Proof The first equality follows from the fact that (αm)∨ = m(α)−1α∨ for α ∈ �.
The second equality follows immediately from part (b) of Lemma 2.1.
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2.3 The extended affine Hecke algebra

We start with the definition of the finite Hecke algebra. Let k : � → C
× be a

W -invariant function and write kα for the value of k at α ∈ �. Set ki := kαi for
i = 1, . . . , r .

Definition 2.3 The Hecke algebra H(k) associated to the root system � is the unital
associative algebra over C generated by T1, . . . , Tr with defining relations

(a) (Ti − ki )(Ti + k−1
i ) = 0 for i = 1, . . . , r ,

(b) For 1 ≤ i �= j ≤ r the braid relation Ti Tj Ti · · · = Tj Ti Tj · · · (mi j factors on
each side, with mi j the order of si s j in W ).

Define the length of w ∈ W by


(w) := #
(
�+ ∩ w−1�−)

.

For w = si1 . . . si
 (1 ≤ i j ≤ r ) a reduced expression of w ∈ W (i.e. 
 = 
(w)), set

Tw := Ti1 . . . Tit ∈ H(k).

The Tw (w ∈ W ) are well defined and form a linear basis of H(k).
We now introduce the extended affine Hecke algebra H̃m(k) associated to the finite

root system�m through its Bernstein–Zelevinsky presentation (see [27]). It contains as
subalgebras the finite Hecke algebra H(k) and the group algebra C[Pm] of the weight
lattice Pm of�m .Wewrite the canonical basis elements ofC[Pm] in exponential form
xμ (μ ∈ Pm), so that xμxν = xμ+ν and x0 = 1. The Weyl group W acts naturally on
C[Pm] by algebra automorphisms.

For 1 ≤ i ≤ r there exists a well defined linear operator ∇m
i on C[Pm] satisfying

∇m
i (xν) := xν − xsi ν

1 − xαm
i

for ν ∈ Pm (note that xν − xsi ν is divisible by 1 − xαm
i in C[Pm]). It is called the

divided difference operator associated to the simple root αm
i .

Definition 2.4 The extended affine Hecke algebra H̃m(k) is the unital associative
algebra over C generated by the algebras H(k) and C[Pm], with additional defining
relations

Ti x
ν − xsi νTi = (

ki − k−1
i

)∇m
i (xν) (2.2)

for i = 1, . . . , r and ν ∈ Pm .

It is well known that the multiplication map defines a linear isomorphism

C[Pm] ⊗ H(k)
∼−→ H̃m(k). (2.3)
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3 Metaplectic representations

3.1 The reflection representation of H(k)

Set

V :=
⊕

λ∈P

Cvλ.

It inherits a left W -action by the linear extension of the canonical action of W on P .
For a W -invariant subset D ⊂ P we write

VD :=
⊕

λ∈D
Cvλ

for the corresponding W -submodule of V . Then V = ⊕
λ∈P+ VOλ

with Oλ = Wλ

the W -orbit of λ in P and P+ ⊂ P the cone of dominant weights of � with respect
to the base {α1, . . . , αr }. In this subsection we deform the W -action on VD and V to
a H(k)-action.

Fix λ ∈ P+. The stabilizer subgroup

Wλ := {w ∈ W | wλ = λ}

is a standard parabolic subgroup of W . It is generated by the simple reflections si
(i ∈ Iλ), with Iλ the index subset

Iλ := {i ∈ {1, . . . , r} | siλ = λ}.

Note that VOλ
� C[W ] ⊗C[Wλ] C as W -modules, with C regarded as the trivial Wλ-

module. This description leads to a natural Hecke deformation of the W -action on
VOλ

as follows.
LetW λ be the minimal coset representatives ofW/Wλ, which can be characterized

by

W λ = {w ∈ W | 
(wsi ) = 
(w) + 1 ∀ i ∈ Iλ}.

For λ ∈ P+ let Hλ(k) ⊂ H(k) be the subalgebra generated by the Ti (i ∈ Iλ). It is
straightforward to check that the specialization Ti �→ ki (i ∈ Iλ) satisfies the braid
relations, and hence defines a one-dimensional Hλ(k)-module, which we denote Cλ.
Consider now the linear isomorphism

φλ : H(k) ⊗Hλ(k) Cλ
∼−→ VOλ

defined by φλ(Tw ⊗Hλ(k) 1) = vwλ for w ∈ W λ. Transporting the canonical H(k)-
module structure on H(k) ⊗Hλ(k) Cλ to VOλ

through the linear isomorphism φλ

turns VOλ
into a H(k)-module. The resulting direct sum H(k)-module structure on

V = ⊕
λ∈P+ VOλ

can be explicitly described as follows.
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Lemma 3.1 For μ ∈ P we have

Tivμ =

⎧
⎪⎨

⎪⎩

vsiμ if (μ, α∨
i ) > 0,

kivμ if (μ, α∨
i ) = 0,

(
ki − k−1

i

)
vμ + vsiμ if (μ, α∨

i ) < 0

for i = 1, . . . , r .

Proof Write μ = wλ with λ ∈ P+ and w ∈ W λ. We claim that

(1)
(
μ, α∨

i

)
> 0 ⇔ 
(siw) = 
(w) + 1 and siw ∈ W λ;

(2)
(
μ, α∨

i

) = 0 ⇔ 
(siw) = 
(w) + 1 and siw /∈ W λ;
(3)

(
μ, α∨

i

)
< 0 ⇔ 
(siw) = 
(w) − 1. In this case we have siw ∈ W λ.

Since each w ∈ W λ satisfies exactly one of these three conditions, it suffices to prove
the ⇐’s.
Case (1) 
(siw) = 
(w) + 1 and siw ∈ W λ. Then 
(siw) = 
(w) + 1 implies
w−1αi ∈ �+, hence (μ, α∨

i ) = (λ,w−1α∨
i ) ≥ 0. The assumption siw ∈ W λ implies

siwλ �= wλ, in particular (μ, α∨
i ) �= 0. Hence (μ, α∨

i ) > 0.
Case (2) 
(siw) = 
(w) + 1 and siw /∈ W λ. Then siw = ws j for some j ∈ Iλ by
[19, Lem. 3.2]. Hence siwλ = wλ and consequently (μ, α∨

i ) = 0 .
Case (3) 
(siw) = 
(w) − 1. Then (μ, α∨

i ) = (λ,w−1α∨
i ) ≤ 0 since w−1αi ∈ �−.

If siwλ = wλ then siw would be a representative of wWλ of smaller length than w,
which is absurd. Hence siwλ �= wλ, and consequently (μ, α∨

i ) < 0. If siw /∈ W λ

then the minimal length representativew′ ∈ W λ of the coset siwWλ has length strictly
smaller than 
(siw) = 
(w) − 1. But then wWλ contains an element of length strictly
smaller than 
(w), which is absurd. Hence siw ∈ W λ.

It is now easy to conclude the proof of the lemma:
Case (1) 
(siw) = 
(w) + 1 and siw ∈ W λ. Then

Tivμ = φλ

(
Ti Tw ⊗Hλ(k) 1

) = φλ

(
Tsiw ⊗Hλ(k) 1

) = vsiμ.

Case (2) 
(siw) = 
(w) + 1 and siw /∈ W λ. Let j ∈ Iλ such that siw = ws j . Note
that α j ∈ Wαi , hence ki = k j , and that 
(ws j ) = 
(w) + 1, so that Ti Tw = Tsiw =
Tws j = TwTj . Then

Tivμ = φλ

(
Ti Tw ⊗Hλ(k) 1

) = φλ

(
TwTj ⊗Hλ(k) 1

) = kivμ.

Case (3) l(siw) = l(w) − 1. Using T 2
i = (ki − k−1

i )Ti + 1 we get

Ti Tw = T 2
i Tsiw = (

ki − k−1
i

)
Tw + Tsiw

in H(k), and hence

Tivμ = (
ki − k−1

i

)
vμ + vsiμ

since siw ∈ W λ.
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3.2 Themetaplectic affine Hecke algebra representation

For s ∈ Z>0 and t ∈ Z let rs(t) ∈ {0, . . . , s − 1} be the remainder of t modulo s.
Define q, r : P → P by

r(λ) :=
r∑

i=1

rm(αi )

(
(λ, α∨

i )
)

i ,

q(λ) := λ − r(λ).

Lemma 3.2 q(P) ⊆ Pm.

Proof. For i = 1, . . . , r and λ ∈ P we have

(
q(λ), αm∨

i

) = m(αi )
−1(q(λ), α∨

i )

= m(αi )
−1((λ, α∨

i ) − rm(αi )((λ, α∨
i ))

) ∈ Z.

Let C[P] = span{xλ}λ∈P be the group algebra of the weight lattice P . The Weyl
group W acts naturally on C[P] by algebra automorphisms.

Note that the divided difference operator∇m
i featuring in the Bernstein–Zelevinsky

cross relations (2.2) of the extended affine Hecke algebra H̃(k) satisfies

∇m
i (xν) = xν − xsi ν

1 − xαm
i

=
(
1 − x−(ν,αm∨

i )αm
i

1 − xαm
i

)

xν, ν ∈ Pm

for i = 1, . . . , r .

Lemma 3.3 For i = 1, . . . , r there exists a unique linear map

∇ i : C[P] → C[P]

satisfying

∇ i (x
λ) :=

(
1 − x−(q(λ),αm∨

i )αm
i

1 − xαm
i

)

xλ (3.1)

for λ ∈ P. Furthermore,

∇ i |C[Pm ] = ∇m
i .

Proof. Note that ∇ i : C[P] → C[P] is a well defined linear operator by the previous
lemma. In fact,

∇ i (x
λ) :=

⎧
⎪⎨

⎪⎩

−xλ−αm
i − · · · − xλ−(q(λ),αm∨

i )αm
i , if (q(λ), αm∨

i ) > 0,

0 if (q(λ), αm∨
i ) = 0,

xλ + xλ+αm
i + · · · + xλ−(1+(q(λ),αm∨

i ))αm
i , if (q(λ), αm∨

i ) < 0.
(3.2)
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The second statement follows from the observation that

Pm = {λ ∈ P | q(λ) = λ}.

Remark 3.4 Note that the action of ∇ i can alternatively be described by

∇ i (x
λ) = xλ − xsiλ+(r(λ),αm∨

i )αm
i

1 − xαm
i

, λ ∈ P.

Write �m = �m
sh ∪ �m

lg for the division of �m into short and long roots, with the
convention �m = �m

lg if all roots have the same length. Write

size : �m → {sh, lg}

for the function on �m satisfying size(α) = sh iff α ∈ �m
sh . Write ksh and klg for the

value of k on �m
sh and �m

lg respectively.

Definition 3.5 (Representation parameters) Let g j (y) ∈ C
× for j ∈ Z and y ∈

{sh, lg} be parameters satisfying the following conditions:

(a) g j (y) = −1 if j ∈ nZ,
(b) g j (y) = grn( j)(y),
(c) g j (y)gn− j (y) = k−2

y if j ∈ Z \ nZ.

Remark 3.6 The special case where g j (y) = g j , i.e., the parameters do not depend on
root length, was considered in [15,16] and motivated the generalization above. In the
applications considered in those papers, the gi are taken to be certain Gauss sums.

Write λ for the class of λ ∈ P in the finite abelian quotient group P/Pm . By Lemma
2.2,

pi (λ) := −ki g−B(λ,αi )(size(α
m
i )) (3.3)

is a well defined function pi : P/Pm → C
× for i = 1, . . . , r . Note that pi (λ) = ki

if m(αi ) | (λ, α∨
i ) by Lemma 2.1(b). The following theorem is the main result of this

subsection.

Theorem 3.7 The formulas

π(Ti )x
λ := (

ki − k−1
i

)∇ i (x
λ) + pi (λ)xsiλ,

π(xν)xλ := xλ+ν
(3.4)

for λ ∈ P, i = 1, . . . , r and ν ∈ Pm turn C[P] into a left H̃m(k)-module.

Remark 3.8 (i) Note that C[Pm] ⊆ C[P] is a H̃m(k)-submodule with respect to the
action (3.4). The action on C[Pm] simplifies to

π(Ti )x
ν = (

ki − k−1
i

)∇m
i (xν) + ki xsi ν,

π(xμ)xν = xμ+ν
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for i = 1, . . . , r and μ, ν ∈ Pm . It follows that C[Pm] � H̃m(k) ⊗H(k) C0 as
H̃m(k)-modules. In particular for m ≡ 1 (which happens for instance when n = 1),
the representation π itself is isomorphic to H̃m(k) ⊗H(k) C0.
(ii) Let � be a lattice in E satisfying Q ⊆ � ⊆ P . Note that � is automatically
W -invariant. The lattice �0 := � ∩ Pm then satisfies Qm ⊆ �0 ⊆ Pm , and

�0 = {λ ∈ � | B(λ, α) ≡ 0 mod n ∀α ∈ �}

by Lemma 2.2. Furthermore, C[�] ⊆ C[P] is a H̃m(k,�0)-submodule for the
action (3.4), with H̃m(k,�0) the subalgebra of H̃m(k) generated by H(k) and
C[�0] := span{xν}ν∈�0 . We write π� : H̃m(k,�0) → End(C[�]) for the corre-
sponding representation map.

The remainder of this subsection is devoted to the proof ofTheorem3.7.The strategy
is to realize the H̃m(k)-module (π, C[P]) as a quotient of the induced H̃m(k)-module

NC := H̃m(k) ⊗H(k) VC

for an appropriate choice of W -invariant subset 0 ∈ C ⊆ P . Note that the subrep-
resentation N{0} is isomorphic to C[Pm] viewed as module over H̃m(k) by Remark
3.8(i).

The elements

xν ⊗H(k) vλ (ν ∈ Pm, λ ∈ C)

form a linear basis of NC and, by the Bernstein–Zelevinsky commutation relations
(2.2), the H̃m(k)-action on NC is explicitly given by

Ti
(
xν ⊗H(k) vλ

) = (
ki − k−1

i

)∇m
i (xν) ⊗H(k) vλ + xsi ν ⊗H(k) Tivλ,

xμ
(
xν ⊗H(k) vλ

) = xμ+ν ⊗H(k) vλ

(3.5)

for λ ∈ C , i = 1, . . . , r and μ, ν ∈ Pm .
Note that the group algebra C[P] := span{xλ}λ∈P is a free left C[Pm]-module via

the action

xν · xλ := xλ+ν, ν ∈ Pm, λ ∈ P.

This C[Pm]-module structure on C[P] coincides with the C[Pm]-structure that will
arise from the desired H̃m(k)-action (3.4) by restriction.

Let C ⊆ P be a W -invariant subset and let

c : C → C
×

be a (for the moment, arbitrary) non-vanishing complex-valued function on C .
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Definition 3.9 We write

ψc
C : NC → C[P]

for the morphism of C[Pm]-modules satisfying

ψc
C (xν ⊗H(k) vλ) := c(λ)−1xλ+ν, λ ∈ C, ν ∈ Pm .

We fix from now on the W -invariant subset C ⊆ P to be

C := {λ ∈ P | |(λ, α∨)| ≤ m(α) ∀α ∈ �}. (3.6)

Lemma 3.10 ψc
C : NC → C[P] is an epimorphism of C[Pm]-modules.

Proof. We need to show that ψc
C is surjective. Consider the action of W̃m = W � Pm

on P and E by reflections and translations. Since C is W -invariant it suffices to show
that each W̃m-orbit in P intersects C . We prove the stronger statement that each
W � Qm-orbit in P intersects C ∩ P+ in exactly one point.

Write

E+ := {v ∈ E | (v, α∨) ≥ 0 ∀α ∈ �+}

for the closure of the fundamental Weyl chamber of E with respect to �+. Let θm ∈
�m+ be the highest short root with respect to the base {αm

1 , . . . , αm
r } of �m . Then

θm∨ ∈ �m∨+ is the highest root of �m∨.
By [22, §4.3] each W � Qm-orbit in E intersects the fundamental alcove

Ao := {v ∈ E+ | (v, θm∨) ≤ 1}

in exactly one point. Hence eachW � Qm-orbit in P intersects Ao ∩ P in exactly one
point. Now note that

Ao ∩ P = {λ ∈ P+ | (λ, θm∨) ≤ 1}
= {λ ∈ P+ | (λ, αm∨) ≤ 1 ∀α ∈ �+}
= {λ ∈ P+ | (λ, α∨) ≤ m(α) ∀α ∈ �+}
= C ∩ P+.

The map ψc
C gives rise to an isomorphism

ψ
c
C : NC/ker(ψc

C )
∼−→ C[P] (3.7)

of C[Pm]-modules by Lemma 3.10. We now show how to fine-tune the normalizing
factor c so that the kernel ker(ψc

C ) ⊆ NC is in fact a H̃m(k)-submodule of NC . We
start with deriving some elementary properties of the metaplectic divided difference
operators ∇ i (i = 1, . . . , r ).
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Lemma 3.11 Let i ∈ {1, . . . , r}.
(i) For λ ∈ P and ν ∈ Pm we have

xλ∇m
i (xν) = ∇ i (x

λ+ν) − ∇ i (x
λ)xsi ν .

(ii) For λ ∈ P and ν ∈ Pm we have

xλ∇m
i (xν) =

⎧
⎪⎨

⎪⎩

∇ i (xλ+ν) − xλ+si ν if − m(αi ) ≤ (λ, α∨
i ) < 0,

∇ i (xλ+ν) if 0 ≤ (λ, α∨
i ) < m(αi ),

∇ i (xλ+ν) + xsi (λ+ν) if (λ, α∨
i ) = m(αi ).

Proof (i) This follows by a direct computation.
(ii) Note that

(
q(λ), αm∨

i

) =

⎧
⎪⎨

⎪⎩

−1 if − m(αi ) ≤ (λ, α∨
i ) < 0,

0 if 0 ≤ (λ, α∨
i ) < m(αi ),

1 if (λ, α∨
i ) = m(αi ),

hence

∇ i (x
λ) =

⎧
⎪⎨

⎪⎩

xλ if − m(αi ) ≤ (λ, α∨
i ) < 0,

0 if 0 ≤ (λ, α∨
i ) < m(αi ),

−xλ−αm
i = −xsiλ if (λ, α∨

i ) = m(αi ).

Now use (i).

The following lemma will play an important role in finding the proper choice of
normalizing factor c.

Lemma 3.12 For ν ∈ Pm, λ ∈ C and i = 1, . . . , r we have

ψc
C

(
Ti x

ν ⊗H(k) vλ

) = c(λ)−1((ki − k−1
i

)∇ i (x
λ+ν) + di (λ)xsi (λ+ν)

)

with di : C → C
× given by

di (λ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(λ)/c(siλ) if − m(αi ) ≤ (λ, α∨
i ) < 0,

kic(λ)/c(siλ) if (λ, α∨
i ) = 0,

c(λ)/c(siλ) if 0 < (λ, α∨
i ) < m(αi ),

ki − k−1
i + c(λ)/c(siλ) if (λ, α∨

i ) = m(αi ).

(3.8)

Proof By a direct computation using (3.5), we have

ψc
C (Ti x

ν ⊗H(k) vλ) = c(λ)−1(ki − k−1
i

)
xλ∇m

i (xν) + xsi νψc
C (1⊗H0(k) Tivλ) (3.9)
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for λ ∈ C and ν ∈ Pm . We analyze the right hand side using Lemma 3.1. We now
consider four cases.
Case 1: −m(αi ) ≤ (λ, α∨

i ) < 0.
Then

ψc
C (1 ⊗H(k) Tivλ) = c(λ)−1(ki − k−1

i

)
xλ + c(siλ)−1xsiλ.

Substituting into (3.9) and using Lemma 3.11 we get the desired formula

ψc
C (Ti x

ν ⊗H(k) vλ) = c(λ)−1
((
ki − k−1

i

)∇ i (x
λ+ν) + c(λ)

c(siλ)
xsi (λ+ν)

)
.

Case 2: (λ, α∨
i ) = 0.

Now we have

ψc
C (1 ⊗H(k) Tivλ) = c(λ)−1ki xλ = c(siλ)−1ki xsiλ.

Substituting into (3.9) and using Lemma 3.11 we now get the desired formula

ψc
C (Ti x

ν ⊗H(k) vλ) = c(λ)−1
((
ki − k−1

i

)∇ i (x
λ+ν) + ki

c(λ)

c(siλ)
xsi (λ+ν)

)
.

Case 3: 0 < (λ, α∨
i ) < m(αi ).

Then

ψc
C (1 ⊗H(k) Tivλ) = c(siλ)−1xsiλ.

Substitution into (3.9) and using Lemma 3.11 gives the desired formula

ψc
C (Ti x

ν ⊗H(k) vλ) = c(λ)−1
((
ki − k−1

i

)∇ i (x
λ+ν) + c(λ)

c(siλ)
xsi (λ+ν)

)
.

Case 4: (λ, α∨
i ) = m(αi ).

In this case

ψc
C (1 ⊗H(k) Tivλ) = c(siλ)−1xsiλ,

hence substitution into (3.9) and using Lemma 3.11 gives

ψc
C (Ti x

ν ⊗H0(k) vλ)= c(λ)−1
((
ki − k−1

i

)∇ i (x
λ+ν)+

(
ki − k−1

i + c(λ)

c(siλ)

)
xsi (λ+ν)

)
,

as desired.
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We now continue with the proof of Theorem 3.7. Define parameters h j (y) ∈ C
×

for j ∈ Z and y ∈ {sh, lg} by

h j (y) :=

⎧
⎪⎨

⎪⎩

ky if j ∈ nZ<0,

−k−1
y g j (y)−1 if j ∈ Z<0 \ nZ<0,

1 if j ∈ Z≥0.

Then h j (y) = h−n+ j (y) if j ∈ Z<0, and h j (y)h−sn− j (y) = 1 for j ∈ Z<0 \ nZ<0
and s ∈ Z>0 such that −sn < j < 0.

Choose c : C → C
× by

c(λ) :=
∏

α∈�+
hQ(α)(λ,α∨)(size(α

m)), λ ∈ C . (3.10)

Using
c(λ)

c(siλ)
= hQ(αi )(λ,α∨

i )

(
size

(
αm
i

))

h−Q(αi )(λ,α∨
i )

(
size

(
αm
i

)) , (3.11)

Equations (2.1), (3.8) and Lemma 2.1b one verifies that for i = 1, . . . , r and λ ∈ C ,

di (λ) =
{
h−Q(αi )rm(αi )((λ,α∨

i ))(size(α
m
i ))−1 if m(αi ) � | (λ, α∨

i ),

ki if m(αi ) | (λ, α∨
i ).

Rewriting in terms of the representation parameters g j (y) and using Lemma 2.1(b)
we get

di (λ) = pi (λ) (3.12)

for i = 1, . . . , r and λ ∈ C , with pi (λ) given by (3.3).
Now let Si : C[P] → C[P] be the linear map defined by

Si (x
λ) := (

ki − k−1
i

)∇ i (x
λ) + pi (λ)xsiλ, λ ∈ P,

then Lemma 3.12 and (3.12) show that for i = 1, . . . , r and λ ∈ C , ν ∈ Pm ,

Si
(
ψc
C (xν ⊗H(k) vλ)

) = ψc
C

(
Ti x

ν ⊗H(k) vλ

)
. (3.13)

Hence the kernel of the epimorphism ψc
C : NC � C[P] is a H̃m(k)-submodule. By

(3.13) it follows that the H̃m(k)-module structure onC[P], inherited from the quotient
H̃m(k)-module NC/ker(ψc

C ) by the C[Pm]-module isomorphism ψ
c
C (see (3.7)), is

explicitly given by (3.4). This completes the proof of Theorem 3.7.
In subsequent sections, we will work with some conjugations of π , so the following

lemma will be useful.

Lemma 3.13 Let � be a lattice in E satisfying Q ⊆ � ⊆ P. Let h ∈ H̃m(k,�0) and
μ ∈ P. Then x−μπ(h)xμ preserves C[�].
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Proof Since π(xν) for ν ∈ �0 commutes with multiplication by xμ, we need only
check that x−μπ(Ti )xμ preserves C[�] for 1 ≤ i ≤ r . Let λ ∈ �. By Theorem 3.7,
we have

x−μπ(Ti )(x
λ+μ) = x−μ(ki − k−1

i )∇ i (x
λ+μ) + x−μpi (λ + μ)xsi (λ+μ).

We have

x−μ+si (λ+μ) = xλ−(λ+μ,α∨
i )αi ∈ C[�],

since (λ + μ, α∨
i )αi ∈ Q. For the other term, by (3.1) and Lemma 3.2, we have

∇ i (x
λ+μ) = xλ+μg,

where g ∈ C[Qm]. So now x−μ∇ i (xλ+μ) ∈ C[�].

3.3 ThemetaplecticWeyl group representation

Let H̃m
loc(k)be algebra obtained by localizing the extended affineHecke algebra H̃m (k)

at the multiplicative subset C[Pm] \ {0} (which satisfies the right Ore condition).
The canonical algebra embedding C[Pm] ↪→ H̃m

loc(k) uniquely extends to an algebra
embeddingC(Pm) ↪→ H̃m

loc(k),withC(Pm) the quotient field ofC[Pm]. Furthermore,
the multiplication map (2.3) extends to a linear isomorphism

C(Pm) ⊗ H(k)
∼−→ H̃m

loc(k). (3.14)

The defining relations of H̃m
loc(k)with respect to the decomposition (3.14) are captured

by the extended cross relations

Ti f = (si f )Ti + (
ki − k−1

i

) (
f − si f

1 − xαm
i

)

for i = 1, . . . , r and f ∈ C(Pm), where we use the extension of the W -action on
C[Pm] to C(Pm) by field automorphisms.

If the multiplicity function k is identically equal to one then H̃m
loc(k) is isomorphic

to the semi-direct product algebra

W � C(Pm) := C[W ] ⊗ C(Pm)

with algebra structure given by (v ⊗ f )(w ⊗ g) := vw ⊗ (w−1 f )g for v,w ∈ W
and f , g ∈ C(Pm). We write gw for the element (1 ⊗ g)(w ⊗ 1) = w ⊗ w−1g in
W � C(Pm) if no confusion can arise.

Define for α ∈ � the c-functions cα = cmα ∈ C(Qm) by

cα := 1 − k2αx
αm

1 − xαm . (3.15)
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We write ci := cαi (i = 1, . . . , r ) for the c-functions at the simple roots. Note that
w(cα) = cwα for w ∈ W and α ∈ �.

By [23] we have the following result.

Theorem 3.14 There exists a unique algebra isomorphism

ϕ : W � C(Pm)
∼−→ H̃m

loc(k) (3.16)

given by ϕ( f ) = f for f ∈ C(Pm) and

ϕ(si ) := ki
ci
Ti + 1 − k2i

ci
(3.17)

for i = 1, . . . , r .

The ϕ(si ) are the so-called normalized intertwiners of the extended affine Hecke
algebra H̃m(k) (see [23] and, e.g., [12, §3.3.3]). They play an instrumental role in the
representation theory of H̃m(k).

Note that for i = 1, . . . , r we have

ϕ−1(Ti ) = ki + k−1
i ci (si − 1)

in W � C(Pm), which are the Demazure–Lusztig operators [27].

Remark 3.15 The localization isomorphism (3.16) extends to the double affine Hecke
algebra, see [12, §3.3.3]. In its most natural form it involves normalized intertwiners
dual to ϕ(si ), as well as an additional dual intertwiner naturally attached to the simple
affine reflection of the affine Weyl group W � Qm .

Definition 3.16 Let (ρ, M) be a left H̃m(k)-module. Write (ρloc, Mloc) for the asso-
ciated localized W � C(Pm)-module

Mloc := H̃m
loc(k) ⊗H̃m(k) M

with representation map ρloc : W � C(Pm) → End(Mloc) defined by

ρloc(X)
(
h ⊗H̃m (k) m

) := (ϕ(X)h) ⊗H̃m (k) m

for X ∈ W � C(Pm), h ∈ H̃m
loc(k) and m ∈ M .

Note thatMloc � C(Pm)⊗C[Pm ]M as vector spaceswith the isomorphismmapping
f h ⊗H̃m (k) m to f ⊗C[Pm ] ρ(h)m for f ∈ C(Pm), h ∈ H(k) and m ∈ M (the map
is well defined by the Bernstein–Zelevinsky presentation of H̃m

loc(k)).

Remark 3.17 Identifying M as subspace of Mloc by the linear embedding M ↪→ Mloc,
m �→ 1 ⊗H̃m(k) m, we have

ρloc(ϕ
−1(h))m = ρ(h)m, h ∈ H̃m(k), m ∈ M .
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Remark 3.18 ABethe integrable systemwith extended affineHecke algebra symmetry
is a H̃m(k)-module V endowed with the integrable structure obtained from the action
of the associated dual intertwiners on C(Pm) ⊗ V . The integrable structure is thus
encoded by solutions of (braid versions of) generalized quantum Yang–Baxter equa-
tions with spectral parameter. In the literature on integrable systems one sometimes
says that the integrable structure arises from Baxterizing the affine Hecke algebra
module structure on the quantum state space. See e.g. [37] for an example involving
the Heisenberg XXZ spin- 12 chain.

The intertwiners are also instrumental in the construction of the quantum affine KZ
equations, see, e.g., [12, §1.3.2].

Recall themetaplectic affineHecke algebra representation (π, C[P]) fromTheorem
3.7. In the following proposition we explicitly describe (πloc, C[P]loc).

Proposition 3.19 (i) C(P) = ⊕
λ∈P/Pm C(Pm)xλ.

(ii) C[P]loc � C(P) as vector spaces by

f h ⊗H̃m (k) g �→ f · π(h)g, f ∈ C(Pm), g ∈ C[P], h ∈ H(k).

(iii) The πloc-action of W � C(Pm) on C(P) (identifying C[P]loc with C(P) using
the linear isomorphism from (ii)) is explicitly given by

πloc(si )( f x
λ)=(si f )

((
(1 − k2i )x

−(q(λ),αm∨
i )αm

i

1 − k2i x
αm
i

)

xλ+
(
kipi (λ)(1 − xαm

i )

1 − k2i x
αm
i

)

xsiλ
)

,

πloc(g)( f x
λ) = g f xλ

for f , g ∈ C(Pm), λ ∈ P and i = 1, . . . , r (recall that pi (λ) is given by (3.3)).

Proof (i) Let G be the group of characters of the finite abelian group P/Pm . It acts
by field automorphisms on C(P) by

χ · xλ := χ(λ)xλ, λ ∈ P, χ ∈ G.

Decomposing C(P) in G-isotypical components yields

C(P) =
⊕

λ∈P/Pm

C(P)Gxλ,

with C(P)G the subfield of G-invariant elements in C(P). It remains to show that
C(P)G = C(Pm), for which it suffices to show that C[P]G = C[Pm]. The latter
follows from the fact that

pr(xλ) = δλ,0x
λ, λ ∈ P



47 Page 22 of 42 S. Sahi J.V. Stokman V. Venkateswaran

for the projection map pr : C[P] � C[P]G defined by

pr( f ) := 1

#G

∑

χ∈G
χ · f , f ∈ C[P].

(ii) Using (3.14) we get

C[P]loc = H̃m
loc(k) ⊗H̃m (k) C[P]

� C(Pm) ⊗C[Pm ] C[P] � C(P)

with the last isomorphism mapping f ⊗C[Pm ] g to f g for f ∈ C(Pm) and g ∈ C[P].
This is well defined and an isomorphism due to the second formula of (3.4) and due
to part (i) of the proposition. The result now immediately follows.
(iii) For f , g ∈ C(Pm) and λ ∈ P we have

πloc(g)( f x
λ) = πloc(g)

(
f ⊗H̃m (k) x

λ
)

= (g f ) ⊗H̃m(k) x
λ = g f xλ = πloc(g f )x

λ,

this establishes the second formula. For the first formula it then suffices to prove that

πloc(si )(x
λ) =

(
(1 − k2i )x

−(q(λ),αm∨
i )αm

i

1 − k2i x
αm
i

)

xλ +
(
kipi (λ)(1 − xαm

i )

1 − k2i x
αm
i

)

xsiλ (3.18)

for i = 1, . . . , r and λ ∈ P . By the first formula of (3.4) we have

πloc(si )x
λ = ki

ci
π(Ti )x

λ +
(

1 − k2i
ci

)

xλ

= ki
ci

(
(
ki − k−1

i

)
(
xλ − xλ−(q(λ),αm∨

i )αm
i

1 − xαm
i

)

+pi (λ)xsiλ
)

+
(

1 − k2i
ci

)

xλ.

Substituting the definition of the c-function ci (see (3.15)) gives

πloc(si )x
λ =

(
k2i − 1

)(
xλ − xλ−(q(λ),αm∨

i )αm
i
)+kipi (λ)

(
1 − xαm

i
)
xsiλ+(

1 − k2i
)
xλ

1 − k2i x
αm
i

.

Simplifying the expression gives (3.18).

Remark 3.20 Since q(0) = 0 and pi (0) = ki we have πloc(si )1 = 1. Hence C(Pm) is
a πloc-submodule of C(P) with theW � C(Pm)-action reducing to the standard one,

πloc(si ) f = si f , πloc(g) f := g f

for i = 1, . . . , r and f , g ∈ C(Pm).
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Recall the definition of the representation parameters g j (y) ( j ∈ Z, y ∈ {sh, lg}),
see Definition 3.5. We conjugate the πloc-action by a certain factor, in order to line it
up with the Weyl group action of Chinta–Gunnells [15,16].

Theorem 3.21 (Metaplectic Weyl group representation) The following formulas turn
C(P) into a left W � C(Pm)-module,

σ(si )( f x
λ) :=

(
1 − k2i

)
x (q(−λ),αm∨

i )αm
i

(
1 − k2i x

αm
i
) (si f )x

λ

+ k2i gQ(αi )−B(λ,αi )

(
size(αm

i )
)

(
1 − x−αm

i
)

(
1 − k2i x

αm
i
) (si f )x

αi+siλ,

σ (g)( f xλ) := g f xλ

(3.19)

for f , g ∈ C(Pm), λ ∈ P and i = 1, . . . , r .

Proof Write ρ := 1
2

∑
α∈�+ α and ρm := 1

2

∑
α∈�+ αm for the half sum of positive

roots of � and �m respectively. Then si (ρ) = ρ − αi and si (ρm) = ρm − αm
i , in

particular ρ = ∑r
i=1 
i ∈ P and

ρm =
r∑

i=1


m
i =

r∑

i=1

m(αi )
i ∈ Pm .

Consider now the action of W � C(Pm) on C(P) defined by

σ(X) f := xρ−ρm
πloc(X)(xρm−ρ f ), X ∈ W � C(Pm), f ∈ C(P). (3.20)

Then σ(g) f = g f for g ∈ C(Pm) and f ∈ C(P), and

σ(si )x
λ = (1 − k2i )x

−(q(λ+ρm−ρ),αm∨
i )αm

i

1 − k2i x
αm
i

xλ

−
(
kipi (λ − ρ)(1 − x−αm

i )

1 − k2i x
αm
i

)

xαi+siλ.

(3.21)

Note that

r(λ + ρm − ρ) = ρm − ρ − r(−λ)

since rs(t + s − 1) = s − 1 − rs(−t) for s ∈ Z>0 and t ∈ Z, hence

q(λ + ρm − ρ) = −q(−λ).

Furthermore,

−kipi (λ − ρ) = k2i gQ(αi )−B(λ,αi )

(
size

(
αm
i

))
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for λ ∈ P since −B(λ − ρ, αi ) = Q(αi ) −B(λ, αi ). Substituting these two formulas
in (3.21) gives the desired result.

As in Remark 3.8(ii), fix a lattice � ⊆ E satisfying Q ⊆ � ⊆ P and set �0 :=
� ∩ Pm . Then Qm ⊆ �0 ⊆ Pm and recall that �0 can alternatively be described as

�0 = {λ ∈ � | B(λ, α) ≡ 0 mod n ∀α ∈ �},

which places us directly in the context of [16]. Note that � and �0 are automatically
W -stable. In particular the subalgebra of W � C(Pm) generated by W and C(�0) is
isomorphic to the semi-direct product algebra W � C(�0).

Let C(�0) and C(�) be the subfields of C(P) generated by xν (ν ∈ �0) and xλ

(λ ∈ �) respectively. Similarly to Proposition 3.19(i) we have the decomposition

C(�) =
⊕

λ∈�/�0

C(�0)x
λ.

ThenC(�) ⊆ C(P) is aW �C(�0)-submodule with respect to the action σ . Writing

σ� : W � C(�0) → End(C(�))

for the resulting representation map, we get

Corollary 3.22 In the setup as above, the representation map σ� is explicitly given by

σ�(si )( f x
λ) :=

(
1 − k2i

)
x (q(−λ),αm∨

i )αm
i

(
1 − k2i x

αm
i
) (si f )x

λ

+ k2i gQ(αi )−B(λ,αi )

(
size

(
αm
i

))
(
1 − x−αm

i
)

(
1 − k2i x

αm
i
) (si f )x

αi+siλ,

σ (g)( f xλ) := g f xλ

(3.22)

for f , g ∈ C(�0), λ ∈ � and i = 1, . . . , r .

Remark 3.23 Consider the special case thatk : �m → C
× is constant and the represen-

tation parameters g j (y) satisfy g j (sh) = g j (lg) for all j ∈ Z. We call this the equal
Hecke and representation parameter case. Then σ� is exactly the Chinta–Gunnells
[15,16] Weyl group action. This is immediately apparent by comparing (3.22) with
[17, (7)] (the parameter v in [17] corresponds to k2). Note that our technique gives an
independent and uniform proof that the formulas of Chinta–Gunnells do indeed give
an action of the Weyl group.

Remark 3.24 Note that σ� reduces at n = 1 to the standard W -action. However, it is
in fact not the standard action on C(Pm), due to the fact that we have conjugated πloc
by xρ−ρm

(compare with Remark 3.20).
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Set �(w) := �+ ∩ w−1�− (w ∈ W ) and let w0 ∈ W be the longest Weyl group
element.

Definition 3.25 For λ ∈ P+ define W̃λ ∈ C(P) by

W̃λ :=
⎛

⎝
∏

α∈�+
cα

⎞

⎠
∑

w∈W
(−1)
(w)

⎛

⎝
∏

α∈�(w−1)

xαm

⎞

⎠ σ(w)
(
xw0λ

)
.

In the equal Hecke and representation parameter case, McNamara’s [32, Thm.
15.2] metaplectic Casselman–Shalika formula relates W̃λ to the spherical Whittaker
function of metaplectic covers of unramified reductive groups over local fields, see
also [17, Thm. 16]. It is a natural open problem what the corresponding representation
theoretic interpretation is of W̃λ in the unequal Hecke and/or representation parameter
case.

In the following sectionwewill obtain in Theorem 4.9 an expression of W̃λ in terms
of metaplectic analogues of Demazure–Lusztig operators, generalizing [17, Thm. 16].

4 Metaplectic Demazure–Lusztig operators

In the previous section we used the localization isomorphism ϕ : W � C(Pm)
∼−→

H̃m
loc(k) to obtain the metaplectic Weyl group representation σ from the metaplectic

affine Hecke algebra representation π . In this section we use the localization iso-
morphism to turn the metaplectic Weyl group representation σ into a localized affine
Hecke algebra representation involving metaplectic Demazure–Lusztig type opera-
tors. This leads to a generalization of some of the results in [17, §3] to unequal Hecke
and representation parameters, and simplifies some of the proofs in [17, §3].

Define the algebra map

τ : H̃m
loc(k) → End(C(P))

by τ := σ ◦ ϕ−1.

Proposition 4.1 For h ∈ H̃m(k) and g ∈ C[P], we have

τ(h)(g) = xρ−ρm
π(h)xρm−ρg.

In particular, the restriction of τ to H̃m(k) preserves C[P], and the restriction of τ to
H̃m(k,�0) preserves C[�].
Proof The formula follows from (3.20), Proposition 3.19(ii) and Remark 3.17, and
then the statements about restrictions follow from Theorem 3.7 and Lemma 3.13.

Proposition 4.2 We have

τ(Ti )( f x
λ) = ki f xλ + k−1

i ci
(
σ(si )( f x

λ) − f xλ
)
,

τ (g)( f xλ) = g f xλ
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for f , g ∈ C(Pm), λ ∈ P and i = 1, . . . , r .

Proof This is immediate from the fact thatϕ−1(Ti ) = ki+k−1
i ci (si−1) andϕ−1(g) =

g for i = 1, . . . , r and g ∈ C(Pm).

Define the linear operator

Ti := −kiτ
(
xρm

T−1
i x−ρm ) ∈ End(C(P)). (4.1)

Definition 4.3 We call Ti ∈ End(C(P)) (i = 1, . . . , r ) the metaplectic Demazure–
Lusztig operators.

By a direct computation,

Ti ( f ) = (
1 − k2i x

αm
i
)
(

f − xαm
i σ(si ) f

1 − xαm
i

)

− f , f ∈ C(P). (4.2)

They restrict to well-defined linear operators onC(�) for any lattice� in V satisfying
Q ⊆ � ⊆ P . In case of equal Hecke and representation parameters they reduce to the
Demazure–Lusztig operators [17, (11)].

Lemma 4.4 The metaplectic Demazure–Lusztig operator Ti stabilizesC[P] andC[�]
for i = 1, . . . , r .

Proof Follows from (4.1), Proposition 4.1, and Lemma 3.13.

The realization (4.1) of the Ti ’s through the H̃m
loc(k)-representation τ directly imply

that the metaplectic Demazure–Lusztig operators Ti (i = 1, . . . , r ) satisfy the braid
relations of W and the quadratic Hecke relations

T 2
i = (

k2i − 1
)
Ti + k2i , i = 1, . . . , r (4.3)

(this in particular provides an alternative and uniform proof of the braid relations and
quadratic Hecke relations of the metaplectic Demazure–Lusztig operators in [17], see
[17, Prop. 5(ii)] and formula (13) in [17, Prop. 7]). For w = si1 · · · sir ∈ W a reduced
expression we write Tw := Ti1 · · · Tir ∈ End(C(P)).

Remark 4.5 Using that σ(si ) f = xρ−ρm
πloc(si )(xρm−ρ f ) we have

x−ρτ
(
xρm

Ti x
−ρm )

(xρ f ) = ki f + k−1
i ci (πloc(si ) f − f ) = πloc

(
ϕ−1(Ti

))
f (4.4)

for f ∈ C(P). Hence

Ti = −ki xρ ◦ πloc
(
ϕ−1(T−1

i

)) ◦ x−ρ. (4.5)
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Remark 4.6 Let � be a lattice in E satisfying Q ⊆ � ⊆ P . The localization isomor-
phism ϕ restricts to an isomorphism of algebras

ϕ� : W � C(�0)
∼−→ H̃m

loc(k,�0),

with H̃m
loc(k,�0) the subalgebra of H̃m

loc(k) generated by H(k) and the quotient field
C(�0) of C[�0]. The algebra map

τ� : H̃m
loc(k,�0) → End(C(�))

defined by τ� := σ� ◦ ϕ−1
� then satisfies

τ�(Ti )( f x
λ) = ki f xλ + k−1

i ci
(
σ�(si )( f x

λ) − f xλ
)
,

τ�(g)( f xλ) = g f xλ

for f , g ∈ C(�0), λ ∈ � and i = 1, . . . , r , where �0 := � ∩ Pm . Note that

τ�(X) = τ(X)|C(�), X ∈ H̃m
loc(k,�0).

The metaplectic Demazure–Lusztig operators Ti then restrict to the following linear
operators on C(�),

Ti |C(�) = −kiτ�

(
Adxρm

(
T−1
i

))
,

where Adxρm ∈ Aut(H̃m
loc(k,�0)) is the restriction of the inner automorphism X �→

xρm
Xx−ρm

of H̃m
loc(k) to the subalgebra H̃m

loc(k,�0).

We now use these results to generalize results from [17, §3] to the case of
unequal Hecke and representation parameters. We first analyze certain symmetrizer
and antisymmetrizer elements in H̃m

loc(k).We then use themetaplecticWeyl group rep-
resentation σ to obtain generalizations of the formula [17, Thm. 16] for themetaplectic
Whittaker function.

Recall from Sect. 2.3 that k : � → C
× is a W -invariant function and k j := kamj

for j = 0, . . . , r . For w = si1 · · · sim ∈ W a reduced word (1 ≤ i j ≤ r ), we define

kw :=
m∏

j=1

ki j . (4.6)

Note that, in the special case that k is a constant function (the equal Hecke algebra
parameters case), we have kw = k
(w). Also let

W (k±2) :=
∑

w∈W
k±2

w . (4.7)
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Define the symmetrizer 1+ ∈ H(k) and antisymmetrizer 1− ∈ H(k) by

1+ :=
∑

w∈W
kwTw, 1− :=

∑

w∈W
(−1)l(w)k−1

w Tw. (4.8)

It is well known (see e.g., [23, 1.19.1] and [12]) that the symmetrizer 1+ and antisym-
metrizer 1− satisfy the following properties.

Proposition 4.7 We have the following identities in H(k):

Ti1± = ±k±1
i 1± = 1±Ti ,

12± = W (k±2)1±
(4.9)

for i = 1, . . . , r .

The equations Ti1± = ±k±1
i 1± for i = 1, . . . , r characterize 1± as an element in

H(k) up to a multiplicative constant. It follows from this observation that

1+ = k2w0

∑

w∈W
k−1

w T−1
w−1 , 1− = k−2

w0

∑

w∈W
(−1)
(w)kwT

−1
w−1 . (4.10)

The multiplicative constant is determined by comparing the coefficient of Tw0 in the
linear expansion in terms of the basis {Tw}w∈W of H(k).

Recall the definition (3.15) of the c-functions cα (α ∈ �).

Proposition 4.8 We have the following identities in W � C(Pm):

ϕ−1(1+) =
(

∑

w∈W
w

)
∏

α∈�+
c−α,

ϕ−1(1−) = k−2
w0

⎛

⎝
∏

α∈�+
cα

⎞

⎠
∑

w∈W
(−1)
(w)w.

Proof See [31, (5.5.14)].

We now obtain the following main result of this section.

Theorem 4.9 We have the following identity of operators in End(C(P)):

∑

w∈W
Tw =

⎛

⎝
∏

α∈�+
cα

⎞

⎠ xρm

(
∑

w∈W
(−1)
(w)σ (w)

)

x−ρm

=
⎛

⎝
∏

α∈�+
cα

⎞

⎠
∑

w∈W
(−1)
(w)

⎛

⎝
∏

α∈�(w−1)

xαm

⎞

⎠ σ(w).
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In particular, for λ ∈ P+ we have

W̃λ =
∑

w∈W
Tw(xw0λ).

Proof By (4.1) and (4.10) we have

∑

w∈W
Tw =

∑

w∈W
(−1)
(w)kwτ

(
xρm

T−1
w−1x

−ρm
)

= k2w0
τ

(
xρm

1−x−ρm
)

.

The first formula now follows directly using τ = σ ◦ϕ−1 and the previous proposition.
The second formula follows from the observation that

ρm − wρm =
∑

α∈�(w−1)

αm

for w ∈ W .

Corollary 4.10 Let � ⊂ E be a lattice satisfying Q ⊆ � ⊆ P. Then W̃λ ∈ C[�] for
λ ∈ �+ := P+ ∩ �.

Proof This follows from Lemma 4.4 and the previous theorem.

Remark 4.11 Note that the symmetric variant τ(1+)(xλ) of W̃λ for λ ∈ �+ may also
be of interest. These are polynomials (again by Lemma 4.4), symmetric with respect
to the Chinta–Gunnells W -action σ (by Proposition 4.8(a)), which reduce for m ≡ 1
to Hall–Littlewood polynomials [29, §10] (by e.g., Remark 3.20).

5 Metaplectic polynomials

In this section we present metaplectic variants of GLr Macdonald polynomials. Full
proofs and additional results will be provided in the forthcoming paper [36], in which
we will also introduce the metaplectic polynomials for arbitrary root systems.

5.1 Themetaplectic data (n,Q)

Let r ≥ 2. Fix the standard orthonormal basis {εi }ri=1 of R
r . The associated scalar

product is denoted by
(·, ·) and the corresponding norm by ‖ · ‖. Then

� = {εi − ε j }1≤i �= j≤r

is the root system of type Ar−1, with basis � of simple roots and associated set �+
of positive roots given by

� := {α1, . . . , αr−1} ⊂ �+ = {εi − ε j }1≤i< j≤r
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with αi := εi − εi+1. The associated highest root is θ = ε1 − εr . The root lattice is
Q := Z�, which is contained in the GLr weight lattice

⊕r
i=1 Zεi � Z

r . The Weyl
group is the symmetric group Sr in r letters.

LetQ : Z
r → Q be a non-zero Sr -invariant quadratic formwhich is integral-valued

on Q. Then

Q(γ ) = κ

2
‖γ ‖2 ∀ γ ∈ Q

for some nonzero integer κ = κQ (we suppress the dependence of κ onQ if it is clear
from the context). In particular, Q(α) = κ for all α ∈ �. Write

B(λ, μ) := Q(λ + μ) − Q(λ) − Q(μ), λ, μ ∈ Z
r

for the associated symmetric Sr -invariant bilinear form B : Z
r × Z

r → Q. By the
Sr -invariance of B we then have

B(λ, α) = κ
(
λ, α∨) ∀ λ ∈ Z

r , ∀α ∈ � (5.1)

(in the present context α∨ = α for α ∈ �, but we distinguish them in anticipation
of the results for arbitrary root systems in our followup paper [36]). In particular,
B(λ, α) ∈ Z for λ ∈ Z

r and α ∈ �.
Fix n ∈ Z>0 once and for all. Given a quadratic formQ as in the previous paragraph

with associated normalisation scalar κ = κQ, we define positive integers κ ′ = κ ′
Q and

m = mQ by

κ ′ := gcd(n, κ), m := n

κ ′ = n

gcd(n, κ)
. (5.2)

Note that m = n/gcd(n,Q(α)) for all α ∈ �, in particular �m = m�. Furthermore,

mZ
r ⊆ {λ ∈ Z

r | B(λ, α) ≡ 0 mod n ∀α ∈ �}.

Set F := C(q, k), and let K
(n) be the field extension of F obtained by adjoining

� n−1
2 � additional indeterminates g(n)

1 , . . . , g(n)

� n−1
2 �. Thus K

(n) = F for n = 1, 2.

For n ≥ 1 we now define representation parameters g(n)
j ∈ K

(n) for all integers
j ∈ Z as follows (it depends on a choice of a sign ε ∈ {±1} when n is even, which we
fix once and for all).We set g(n)

0 := −1. The representation parameters g(n)
j for indices

n
2 < j < n are defined by g(n)

j := k−2(g(n)
n− j )

−1. For n even, we set g(n)
n
2

:= ε−1k−1.

Finally, the representation parameters g(n)
j ∈ K

(n) are extended to indices j ∈ Z

by g(n)
j := g(n)

rn( j)
, with rn( j) ∈ {0, . . . , n − 1} the remainder modulo n. Note that

g(n)
j g(n)

n− j = k−2 in K
(n) for all j ∈ Z \ nZ, and g(n)

j = −1 if j ∈ nZ.

Lemma 5.1 There exists a unique F-homomorphism ικ : K
(m) ↪→ K

(n) mapping g(m)
j

to g(n)
κ j for all j ∈ Z.
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Proof This is an easy check.

We write K
(n,κ) for the image of K

(m) = K
(n/κ ′) under ικ : K

(m) ↪→ K
(n). It is the

subfield of K
(n) obtained by adjoining the elements g(n)

κ ′ j to F for 1 ≤ j < m
2 . Note

that K
(n,1) = K

(n).
We finish this subsection by introducing metaplectic analogues (p j )0≤ j<r of mul-

tiplicity functions. For λ ∈ Z
r write λ

m = λ + mZ
r for the class of λ in

(
Z/mZ

)r .
Then we define

p j : (
Z/mZ

)r → K
(n) (0 ≤ j < r)

by

pi (λ
m
) := −kg(n)

−B(λ,αi )
, p0(λ

m
) := −kg(n)

B(λ,θ)

for 1 ≤ i < r . By (5.1), the dependence of p j on the metaplectic data is a dependence

on (n, κ) (and ε if n is even). If we want to emphasize it, we will write p j = p(n,κ)
j

(we always suppress ε from the notations). Note that by (5.1), the functions p j take
values in the subfield K

(n,κ) of K
(n).

5.2 The double affine Hecke algebraH
(m)

Consider the extended affine Weyl group W (m) := Sr �mZ
r . We denote its elements

by στ(ν) (σ ∈ Sr , ν ∈ mZ
r ). We may also viewW (m) as the subgroup of affine linear

transformations of R
r of the form στ(ν) (σ ∈ Sr , ν ∈ mZ

r ), acting on R
r by

(στ(ν))(v) := σ(v + ν), v ∈ R
r , σ ∈ Sr , ν ∈ mZ

r .

View R
r ⊕R as the space of real-valued affine linear functionals on R

r by associating
to (v, x) ∈ R

r ⊕ R the affine linear functional R
r � u �→ (v, u) + x . The extended

affine Weyl group W (m) acts on R
r ⊕ R by

(στ(ν))(v, x) := (σv, x − (ν, v)).

The affine root system is

�̃(m) = {(mα, tm2) | α ∈ �, t ∈ Z} ⊂ R
r ⊕ R,

which is stabilized by W (m). We identify m� with the subset of affine linear roots
{(mα, 0)}α∈� in �̃(m). For a = (mα, tm2) ∈ �̃(m) let sa ∈ W (m) be the orthogonal
reflection in the affine hyperplane a−1(0). Then

sa = τ(−tmα∨)sα ∈ W (m)

with sα ∈ Sr the orthogonal reflection in the hyperplane α⊥ ⊂ R
r .
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Writeb(m)
0 := (−mθ,m2) andb(m)

i := mαi (1 ≤ i<r ). Then {b(m)
0 , b(m)

1 , . . . , b(m)
r−1}

is a set of simple roots for �̃(m). Write s(m)
j := sb j ∈ W (m) ( j = 0, . . . , r − 1) for the

associated simple reflections. Then

s(m)
0 = τ(mθ∨)sθ ,

and s(m)
i = sαi ∈ Sr (1 ≤ i < r ) are the simple neighbouring transpositions. Since

the latter do not depend on m, we will write si = s(m)
i for 1 ≤ i < r .

The subgroup W (m)
Cox := 〈s(m)

0 , . . . , s(m)
r−1〉 of W (m) is the affine Weyl group of type

Âr−1. Its defining relations in terms of the simple reflections are (s(m)
j )2 = 1 and the

type Âr−1 braid relations. Then W (m) � Z � W (m)
Cox, with 1 ∈ Z acting on W (m)

Cox by

s(m)
j �→ s(m)

j+1 (indices modulo r ), which corresponds under the isomorphism W (m) �
Z � W (m)

Cox with the extended affine Weyl group element

ω(m) := s1s2 · · · sr−1τ(mεr ).

Note that ω(m)(b(m)
j ) = b(m)

j+1 for 0 ≤ j < r (with the indices taken modulo r ).
We write xv (v ∈ R

r ) for the canonical basis of the group algebra F[Rr ] of R
r over

F, so that xuxv = xu+v and x0 = 1. We write for c ∈ Z and v ∈ R
r ,

x (v,c) = qcxv ∈ F[Rr ].

Let F[x±1] be the F-algebra of Laurent polynomials in x1, . . . , xr , viewed as the F-
subalgebra of F[Rr ] generated by Z

r ⊂ R
r via xi := xεi (1 ≤ i ≤ r ). The extended

affine Weyl group W (m) acts by F-algebra automorphisms on F[x±1] by

w
(
x (λ,c)) := xw(λ,c) (5.3)

for w ∈ W (m) and (λ, c) ∈ Z
r ⊕ Z. In particular, for λ ∈ Z

r , σ ∈ Sr and ν ∈ Z
r ,

(στ(ν))xλ = q−(ν,λ)xσλ. (5.4)

For λ ∈ Z
r we thus have

xω(m)λ = q−mλr xs1...sr−1λ, xs
(m)
0 λ = qm(λ,θ∨)xsθ λ

and xb
(m)
0 = qm

2
x−mθ .

Definition 5.2 The GLr double affine Hecke algebra H
(m) is the unital associative

F-algebra generated by T0, . . . , Tr−1, ω±1 and F[x±m] := F[x±m
1 , . . . , x±m

r ] with
defining relations:

(1) The type Âr−1 braid relations for T0, . . . , Tr−1.
(2) The Hecke relations (Tj − k)(Tj + k−1) = 0.
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(3) ωω−1 = 1 = ω−1ω and ωTj = Tj+1ω (indices modulo r ).
(4) The cross relations

Tj x
λ − xs

(m)
j λ Tj = (k − k−1)

⎛

⎝ xλ − xs
(m)
j λ

1 − xb
(m)
j

⎞

⎠ , ωxλ = xω(m)λω (5.5)

for λ ∈ mZ
r and 0 ≤ j < r .

Consider the subalgebras H̃ (m)
Y := F〈T0, . . . , Tr−1, ω

±1〉 and H (m) = F〈T1, . . . ,
Tr−1〉 of H

(m). The subalgebra H (m) is the finite Hecke algebra (of type Ar−1). A key
structure theoretic fact (see e.g. §3.2.1 in [12]) is that the elements

Yi := T−1
i−1 . . . T−1

1 ωTr−1 . . . Ti , i = 1, . . . , r . (5.6)

commute pairwise and are invertible in H̃ (m)
Y . The assignment

xν �→ Y ν := Y κ1
1 . . . Y κr

r , ν = mκ ∈ mZ
r

defines an injective algebra map F[x±m] ↪→ H̃ (m)
Y , whose image we denote by

F[Y±m]. The multiplication map

H (m) ⊗F F[Y±m] → H̃ (m)
Y , h ⊗ Y λ �→ hY λ

is a F-linear isomorphism. The defining relations of H̃ (m)
Y in terms of the subalgebras

H (m) and F[Y±m] are the Bernstein–Zelevinsky cross relations

TiY
μ − Y siμTi = (k − k−1)

(
Yμ − Y siμ

1 − Y−mαi

)

for 1 ≤ i < r and μ ∈ mZ
r .

Remark 5.3 Let δ : H
(m) → H

(m) be the F-linear antialgebra isomorphism satisfying
δ(Ti ) := Ti (1 ≤ i < r ), δ(Yμ) := x−μ and δ(xμ) := Y−μ for μ ∈ mZ

r . It provides
an anti-isomorphism between the subalgebras

H̃ (m)
X := F〈T1, . . . , Tr−1, x

±m
1 , . . . , x±m

r 〉

and H̃ (m)
Y . The corresponding Coxeter type presentation of H̃ (m)

X thus involves δ(T0)
and δ(ω−1) as the generator for the simple affine root and the element corresponding
to the generator of the affine Dynkin diagram automorphisms. Note that

δ(ω−1) = xm1 T1 . . . Tr−1

and that δ(ω−1)Y λ = qmλr Y s1···sr−1λδ(ω−1) for λ ∈ mZ
r in H

(m).
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5.3 Themetaplectic basic representation

Set tm(s) := s − rm(s) ∈ mZ. The metaplectic divided difference operators ∇(m)

j

(0 ≤ j < r ) are the F-linear operators on F[x±1] defined by

∇(m)

i (xλ) :=
(
1 − x−tm ((λ,α∨

i ))αi

1 − xmαi

)

xλ

and

∇(m)

0 (xλ) :=
(
1 − q−mtm (−(λ,θ∨))xtm (−(λ,θ∨))θ

1 − qm2x−mθ

)

xλ

for λ ∈ Z
r . Note that the ∇(m)

j |F[x±m ] are the usual divided-difference operators,

∇(m)

j (xλ) = xλ − xs
(m)
j λ

1 − xb
(m)
j

, λ ∈ mZ
r

for 0 ≤ j < r . For a field extension F ⊆ K, the K-linear extension of ∇(m)

j to a linear

operator on K[x±1] will also be denoted by ∇(m)

j .
Recall that the metaplectic data (n,Q) provide us with the nonzero integer κ :=

Q(α) (α ∈ �), from which κ ′ and m are determined by (5.2). In addition, we have
fixed a sign ε ∈ {±1} in case n is even, through the definition of the representation
parameter g(n)

n
2

= ε−1k−1.

Theorem 5.4 The formulas

π̂ (n,κ)(Tj )x
λ := (

k − k−1)∇m
j (xλ) + p(n,κ)

j (λ
m
)xs

(m)
j λ

,

π̂ (n,κ)(xμ)xλ := xλ+μ,

π̂ (n,κ)(ω)xλ := xω(m)λ

(5.7)

for j = 0, . . . , r − 1, μ ∈ mZ
r and λ ∈ Z

r turn K
(n,κ)[x±1] into a left H

(m)-module.
We write π̂ (m) := π̂ (m,1) (we suppress here the dependence on ε).

Proof Set

� := Z
r + Zn

with n := 1
r (ε1 + · · · + εr ). Note that � contains the weight lattice P of �. The

quadratic form Q has a unique extension to a Q-valued Sr -invariant quadratic form
� → Q, which we also denote by Q. We write B : � × � → Q for the associated
symmetric Sr -invariant bilinear form.
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Adjoin a r th root q
1
r of q to K

(n,κ) (by abuse of notation, we denote it again by
K

(n,κ)). Let K
(n,κ)[�] be the K

(n,κ)-submodule of K
(n,κ)[Rr ] := K

(n,κ) ⊗F F[Rr ]
generated by xλ (λ ∈ �). The extended affine Weyl group W (m) acts on K

(n,κ)[�] by
K

(n,κ)-algebra automorphisms by the formula (5.3). The K
(n,κ)-subalgebra K

(n,κ)[P]
generated by xλ (λ ∈ P) is a W (m)-submodule.

By Theorem 3.7 (which holds true with formal parameters), the first two lines of
(5.7),

π̂(Ti )x
λ := (

k − k−1)∇(m)

i (xλ) + p(n,κ)
i (λ

m
)xsiλ,

π̂(xμ)xλ := xλ+μ
(5.8)

for 1 ≤ i < r , μ ∈ mP and λ ∈ P define a representation

π̂ : H̃ (m)
X → EndK(n,κ)

(
K

(n,κ)[P]).

Using the decomposition

K
(n,κ)[�] =

⊕

s∈Z
xsnK

(n,κ)[P]

it extends to a representation π̂ : H̃ (m)
X → EndK(n,κ)

(
K

(n,κ)[�]) by π̂(h)
(
xsnxλ

) :=
xsnπ̂(h)xλ for h ∈ H̃ (m)

X , s ∈ Z and λ ∈ P . The formulas (5.8) are then valid for all
λ ∈ �. A direct check shows that the operators π̂(Tj ) and π̂(xμ) on K

(n,κ)[�] satisfy
the cross relation (5.5) for 1 ≤ j < r andμ ∈ mZ

r . Furthermore, direct computations
show that

p(n,κ)
j+1

(
(s1 · · · sr−1λ)

m) = p j (λ
m
),

π̂(ω)∇(m)

j = ∇(m)

j+1π̂(ω)

for λ ∈ Z
r and 0 ≤ j < r , hence π̂(ω)π̂(Tj ) = π̂(Tj+1)π̂(ω) as operators on

K
(n,κ)[x±1], with the indices modulo r . From this the defining double affine Hecke

algebra relations involving T0 are easily verified. The result now follows directly.

We call π̂ (n,κ) the metaplectic basic representation of the double affine Hecke
algebra H

(m).

Remark 5.5 (i) Since the double affine Hecke algebra H
(m) is defined over F, the

representation parameters should be thought of as representation parameters of the
representation π̂ (n,κ). Since the representation is defined over the subfield K

(n,κ) of
K

(n), the representation π̂ (n,κ) only depends on the representation parameters g(n)

κ ′ j
(1 ≤ j < m

2 ) and, if m is even, on ε.
(ii) It follows from

ικ
(
p(m,1)
j

(
λ
m)) = p(n,κ)

j

(
λ
m)
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for 0 ≤ j < r and λ ∈ Z
r that

ικ

(
∑

μ

cμx
μ

)

:=
∑

μ

ικ(cμ)xμ
(
cμ ∈ K

(m)
)

defines an isomorphism

ικ :
(
K

(m)[x±1], π̂ (m)
) ∼−→

(
K

(n,κ)[x±1], π̂ (n,κ)
)

of H
(m)-modules. In particular, (K(n,κ)[x±1], π̂ (n,κ)) only depends on ε if m is even.

(iii) π̂ (1) : H
(1) → EndF

(
F[x±1]) is Cherednik’s basic representation for GLr , see,

e.g., [12, §3.7] and [20].

By the second part of the remark, the dependence of the metaplectic basic represen-
tation on the metaplectic data is essentially only a dependence on m. The metaplectic
basic representation π̂ (m) can be recovered from π̂ (n) as follows.

By a direct check one verifies that the assignments

φκ ′(q) := qκ ′ 2
, φκ ′(Tj ) := Tj , φκ ′(ω) := ω, φκ ′(xλ) := xκ ′λ

for 1 ≤ i < r and λ ∈ mZ
r define a morphism φκ ′ : H

(m) → H
(n) of C(k)-algebras.

Note that φκ ′(Y λ) = Y κ ′λ for λ ∈ mZ
r .

Let jκ ′ : K
(m) ↪→ K

(n) be the C(q)-homomorphism mapping q to qκ ′ 2
and g(m)

j to

g(n)

κ ′ j for all j ∈ Z. Note the difference with ικ ′ : K
(m) → K

(n) (Lemma 5.1), which

fixes q. The image K
(n,κ ′)
j of the homomorphism jκ ′ : K

(m) → K
(n) is the subfield

of K
(n) obtained by adjoining qκ ′ 2

and g(n)

κ ′ j (1 ≤ j < m
2 ) to C(k). We now have the

following proposition.

Proposition 5.6 K
(n,κ ′)
j [x±κ ′ ] ⊆ K

(n)[x±1] is a (π̂n ◦ φκ ′ , H
m)-submodule. Then

jκ ′

(
∑

μ

cμx
μ

)

:=
∑

μ

jκ ′(cμ)xκ ′μ (
cμ ∈ K

(m)
)

defines an isomorphism

jκ ′ : (K(m)[x±1], π̂ (m))
∼−→ (K

(n,κ ′)
j [x±κ ′ ], π̂ (n) ◦ φκ ′)

of H
(m)-modules. In particular, (K

(n,n)
j [x±n], π̂ (n) ◦ φn) realizes Cherednik’s basic

representation π̂ (1) with the role of q replaced by qn
2
.
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5.4 Themetaplectic polynomials

We keep the notation from the previous subsections. In particular, (n,Q) is the fixed
metaplectic data and κ := Q(α) (α ∈ �), leading to the positive integers κ ′ and m by
(5.2); moreover the sign ε ∈ {±1} is fixed through the definition of the representation
parameter g(n)

n
2

:= ε−1k−1 if n is even.

The commuting linear operators π̂ (n,κ)(Yμ) ∈ EndK(n,κ)

(
K

(n,κ)[x±1]) (μ ∈ mZ
r )

are metaplectic analogues of Cherednik’s Y -operators. The following theorem estab-
lishes the existence of a family of Laurent polynomials which are simultaneous
eigenfunctions of the metaplectic Y -operators.

For μ ∈ Z
r define γ

(n,κ)
μ ∈ HomZ

(
mZ

r , K
(n)×)

by

γ (n,κ)
μ := q−μ

∏

α∈�+

(
σ (n,κ)((μ, α∨))

) α∨
m ,

with σ (n,κ) : Z → K
(n) defined by

σ (n,κ)(s) :=
{
k−1 if s ∈ mZ>0,

−kg−κs if s ∈ Z \ mZ>0.

In other words, the value
(
γ

(n,κ)
μ

)λ of γ
(n,κ)
μ at λ ∈ mZ

r is

(
γ (n,κ)
μ

)λ = q−(λ,μ)
∏

α∈�+

(
σ (n,κ)((μ, α∨))

) (λ,α∨)
m .

Note that γ (n,κ)
μ takes values in K

(n,κ).
The proof of the following theorem, including its extension to arbitrary root systems,

will be given in the forthcoming paper [36].

Theorem 5.7 There exists a unique family of Laurent polynomials {E (n,κ)
μ (x)}μ∈Zr in

K
(n,κ)[x±1] such that for μ ∈ Z

r ,

(i) For all λ ∈ mZ
r we have

π̂ (n,κ)(Y λ)E (n,κ)
μ (x) = (

γ (n,κ)
μ

)λ
E (n,κ)

μ (x).

(ii) The coefficient of xμ in the expansion of E (n,κ)
μ (x) in the monomial basis {xν}ν∈Zr ,

is one.

We will write E (n)
μ (x) := E (n,1)

μ (x) for μ ∈ Z
r .

Remark 5.8 Many key properties of Macdonald polynomials can be proved via the
technique of intertwiners, introduced in [25,26,34] for type A, in [13] for arbitrary
root systems and in [35] for the Koornwinder setting. In our forthcoming paper [36]
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we develop the metaplectic analog of the theory of intertwiners, which allows us to
prove the above result and also establish a key triangularity property of the polynomials
E (n)

μ (x).

The following proposition is a consequence of Remark 5.5(ii) and Proposition 5.6.

Proposition 5.9 For all μ ∈ Z
r ,

ικ
(
E (m)

μ (x)
) = E (n,κ)

μ (x),

jκ ′
(
E (m)

μ (x)
) = E (n)

κ ′μ(x).
(5.9)

By the first line of (5.9), the metaplectic polynomial E (n,κ)(x) essentially only
depends onm,q, k, the representation parameters g(n)

κ ′ j (1≤ j<m
2 ) and, ifm is even, on ε.

Remark 5.10 By Remark 5.5(iii), E (1)
μ (x) is the monic nonsymmetric Macdonald

polynomial of degreeμ (compared to the standard conventions on nonsymmetricMac-
donald polynomials as in e.g. [20], k2 corresponds to t). Furthermore, as a special case
of the second line of (5.9), E (n)

nμ (x) realizes the monic nonsymmetricMacdonald poly-

nomial of degreeμ ∈ Z
r in the variables xn1 , . . . , xnr , with the role of q replaced by q

n2 .

5.5 Appendix: Table of GL3 metaplectic polynomials

We give formulas for E (m)
λ (x), where 1 ≤ m ≤ 5 and λ ∈ Z

3 has weight at most

2. For convenience of notation, we write g j instead of g(m)
j . The technique used to

compute these polynomials will be provided in the forthcoming paper [36].

E (m)
(0,0,0)(x) = 1 (m ≥ 1)

E (m)
(1,0,0)(x) = x1 (m ≥ 1)

E (1)
(0,1,0)(x) = (k − 1) (k + 1)

k4q − 1
x1 + x2

E (2)
(0,1,0)(x) = (k − 1) (k + 1)

k
(
kq2 + ε

) x1 + x2

E (3)
(0,1,0)(x) = (k − 1) (k + 1) g1

k4g31q
3 + 1

x1 + x2

E (4)
(0,1,0)(x) = (k − 1) (k + 1) g1

k4g31q
4 + 1

x1 + x2

E (5)
(0,1,0)(x) = (k − 1) (k + 1) g1

k4g31q
5 + 1

x1 + x2

E (1)
(0,0,1)(x) = (k − 1) (k + 1)

qk2 − 1
x1 + (k − 1) (k + 1)

qk2 − 1
x2 + x3
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E (2)
(0,0,1)(x) = − (k − 1) (k + 1)

k
(
k + εq2

) x1 + (k − 1) (k + 1)

q2 + εk
x2 + x3

E (3)
(0,0,1)(x) = − (k − 1) (k + 1) g21

k2g31q
3 + 1

x1 + (k − 1) (k + 1) g1
k2g31q

3 + 1
x2 + x3

E (4)
(0,0,1)(x) = − (k − 1) (k + 1) g21

k2g31q
4 + 1

x1 + (k − 1) (k + 1) g1
k2g31q

4 + 1
x2 + x3

E (5)
(0,0,1)(x) = − (k − 1) (k + 1) g21

k2g31q
5 + 1

x1 + (k − 1) (k + 1) g1
k2g31q

5 + 1
x2 + x3

E (1)
(0,1,1)(x) = (k − 1) (k + 1)

qk2 − 1
x1x2 + (k − 1) (k + 1)

qk2 − 1
x3x1 + x3x2

E (2)
(0,1,1)(x) = − (k − 1) (k + 1)

k
(
k + εq2

) x1x2 + (k − 1) (k + 1)

q2 + εk
x3x1 + x3x2

E (3)
(0,1,1)(x) = − (k − 1) (k + 1) g21

k2g31q
3 + 1

x1x2 + (k − 1) (k + 1) g1
k2g31q

3 + 1
x3x1 + x3x2

E (4)
(0,1,1)(x) = − (k − 1) (k + 1) g21

k2g31q
4 + 1

x1x2 + (k − 1) (k + 1) g1
k2g31q

4 + 1
x3x1 + x3x2

E (5)
(0,1,1)(x) = − (k − 1) (k + 1) g21

k2g31q
5 + 1

x1x2 + (k − 1) (k + 1) g1
k2g31q

5 + 1
x3x1 + x3x2

E (1)
(1,0,1)(x) = (k − 1) (k + 1)

k4q − 1
x1x2 + x3x1

E (2)
(1,0,1)(x) = (k − 1) (k + 1)

k
(
kq2 + ε

) x1x2 + x3x1

E (3)
(1,0,1)(x) = (k − 1) (k + 1) g1

k4g31q
3 + 1

x1x2 + x3x1

E (4)
(1,0,1)(x) = (k − 1) (k + 1) g1

k4g31q
4 + 1

x1x2 + x3x1

E (5)
(1,0,1)(x) = (k − 1) (k + 1) g1

k4g31q
5 + 1

x1x2 + x3x1

E (m)
(1,1,0)(x) = x1x2 (m ≥ 1)

E (1)
(2,0,0)(x) = x21 + q (k − 1) (k + 1)

qk2 − 1
x1x2 + q (k − 1) (k + 1)

qk2 − 1
x3x1

E (m)
(2,0,0)(x) = x21 (m ≥ 2)

E (1)
(0,2,0)(x) = (k − 1) (k + 1)

(
qk2 − 1

) (
qk2 + 1

) x21 + (k − 1) (k + 1)
(
k4q2 + qk2 − q − 1

)

(
qk2 + 1

) (
qk2 − 1

)2 x1x2
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+ (k − 1)2 (k + 1)2 q
(
qk2 + 1

) (
qk2 − 1

)2 x3x1 + x22 + q (k − 1) (k + 1)

qk2 − 1
x3x2

E (2)
(0,2,0)(x) = (k − 1) (k + 1)

(
q2k2 − 1

) (
q2k2 + 1

) x21 + x22

E (3)
(0,2,0)(x) = (k − 1) (k + 1) g21

k2g31 + q6
x21 + x22

E (4)
(0,2,0)(x) = (k − 1) (k + 1)

k
(
q8k + ε

) x21 + x22

E (5)
(0,2,0)(x) = (k − 1) (k + 1) g2

k4g32q
10 + 1

x21 + x22

E (1)
(0,0,2)(x) = (k − 1) (k + 1)

(kq − 1) (kq + 1)
x21 + (q + 1) (k − 1)2 (k + 1)2

(kq − 1) (kq + 1)
(
qk2 − 1

) x1x2

+ (q + 1) (k − 1) (k + 1)

(kq − 1) (kq + 1)
x3x1 + (k − 1) (k + 1)

(kq − 1) (kq + 1)
x22

+ (q + 1) (k − 1) (k + 1)

(kq − 1) (kq + 1)
x3x2 + x23

E (2)
(0,0,2)(x) = (k − 1) (k + 1)

(
kq2 − 1

) (
kq2 + 1

) x21 + (k − 1) (k + 1)
(
kq2 − 1

) (
kq2 + 1

) x22 + x23

E (3)
(0,0,2)(x) = − (k − 1) (k + 1) g1

k4g31 + q6
x21 + (k − 1) (k + 1) k2g21

k4g31 + q6
x22 + x23

E (4)
(0,0,2)(x) = − (k − 1) (k + 1)

k
(
εq8 + k

) x21 + (k − 1) (k + 1)

q8 + εk
x22 + x23

E (5)
(0,0,2)(x) = − (k − 1) (k + 1) g22

k2g32q
10 + 1

x21 + (k − 1) (k + 1) g2
k2g32q

10 + 1
x22 + x23

Remark 5.11 We mention a few general properties of the metaplectic polynomials
which can be observed in the table above.

(1) The following are monic nonsymmetric Macdonald polynomials: E (1)
λ (x) (for

any λ), E (2)
(2,0,0)(x), E

(2)
(0,2,0)(x), and E (2)

(0,0,2)(x) (see Remark 5.10). In particular,
the formulas given above for these polynomials match the ones provided in the
appendix of [20] (with k2 replaced by t).

(2) More generally, for any a ∈ Z≥1, the metaplectic polynomial E (am)
aλ (x) may be

obtained from E (m)
λ (x) via the substitutions xi → xai , q → qa

2
and g(m)

j →
g(am)
aj . This follows directly from Proposition 5.9 with κ ′ = a. We list the pairs

(
E (a)

λ (x), E (am)
mλ (x)

)
from the table with a �= 1 for which this applies:

(a)
(
E (2)

(0,0,0)(x), E
(4)
(0,0,0)(x)

)

(b)
(
E (2)

(1,0,0)(x), E
(4)
(2,0,0)(x)

)
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(c)
(
E (2)

(0,1,0)(x), E
(4)
(0,2,0)(x)

)

(d)
(
E (2)

(0,0,1)(x), E
(4)
(0,0,2)(x)

)
.

(3) For GL3, we have

Cm+ = Cm ∩ P+ = {λ ∈ Z
3 : λ1 ≥ λ2 ≥ λ3, λ1 − λ3 ≤ m}

(see (3.6) for the definition ofCm). Ifλ ∈ Cm+ , themetaplectic polynomial E (m)
λ (x)

is equal to the monomial xλ. This will be proved in the followup paper [36] in
the context of arbitrary root systems. Note that this result applies to the following
polynomials listed above: E (m)

(0,0,0)(x), E
(m)
(1,0,0)(x), E

(m)
(1,1,0)(x) (any m ∈ Z≥1) and

E (m)
(2,0,0)(x) (any m ∈ Z≥2). Note that for λ ∈ mZ

3 ∩ Cm+ , this recovers the well-
known fact that the nonsymmetric Macdonald polynomial corresponding to the
minuscule weight λ is a monomial.
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