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Abstract

We consider the problem of estimating overlapping community memberships
in a network, where each node can belong to multiple communities. More
than a few communities per node are difficult to both estimate and inter-
pret, so we focus on sparse node membership vectors. Our algorithm is
based on sparse principal subspace estimation with iterative thresholding.
The method is computationally efficient, with computational cost equivalent
to estimating the leading eigenvectors of the adjacency matrix, and does not
require an additional clustering step, unlike spectral clustering methods. We
show that a fixed point of the algorithm corresponds to correct node mem-
berships under a version of the stochastic block model. The methods are
evaluated empirically on simulated and real-world networks, showing good
statistical performance and computational efficiency.
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1 Introduction

Networks have become a popular representation of complex data that
appear in different fields such as biology, physics, and the social sciences. A
network represents units of a system as nodes, and the interactions between
them as edges. A network can encode relationships between people in a so-
cial environment (Wasserman and Faust, 1994), connectivity between areas
of the brain (Bullmore and Sporns, 2009) or interactions between proteins
(Schlitt and Brazma, 2007). The constant technological advancements have
increased our ability to collect network data on a large scale, with potentially
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millions of nodes in a network. Parsimonious models are needed in order to
obtain meaningful interpretations of such data, as well as computationally
efficient methods.

Communities are a structure of interest in the analysis of networks, ob-
served in many real-world systems (Girvan and Newman, 2002). Usually,
communities are defined as clusters of nodes that have stronger connections
to each other than to the rest of the network. Finding these communities
allows for a more parsimonious representation of the data which is often
meaningful in the system of interest. For example, communities can repre-
sent functional areas of the brain (Schwarz et al., 2008; Power et al., 2011),
political affinity in social networks (Adamic and Glance, 2005; Conover et al.,
2011; Latouche et al., 2011), research areas in citation networks (Ji and Jin,
2016), and many others.

The stochastic block model (SBM) (Holland et al., 1983) is a simple
statistical model for a network with communities, well understood by now;
see Abbe (2017) for a review. Under the SBM, a pair of nodes is connected
with a probability that only depends on the community memberships of
these nodes. The SBM allows to represent any type of connectivity structure
between the communities in the network, such as affinity, disassortativity, or
core-periphery (see for example Cape et al. 2019). While the SBM itself is
too simple to capture some aspects of real-world networks, many extensions
have been proposed to incorporate more complex structures such as hubs
(Ball et al., 2011), or nodes that belong to more than one community (Airoldi
et al., 2009; Latouche et al., 2011; Zhang et al., 2020), which lead to models
with overlapping communities.

Overlapping community models characterize each node by a membership
vector, indicating its degree of belonging to different communities. While in
principle all entries of a membership vector can be positive (Airoldi et al.,
2009), a sparse membership vector is more likely to have a meaningful inter-
pretation. At the same time, allowing for a varying degree of belonging to a
community adds both flexibility and interpretability relative to binary mem-
bership overlapping community models such as Latouche et al. (2011). In
this paper, we focus on estimating sparse overlapping community member-
ship vectors with continuous entries, so that most nodes belong to only one
or few communities, and the degree to which they belong to a community can
vary. The sparsest case where each node belongs to exactly one community
corresponds to the classic community detection setting, and its success in
modeling and analyzing real-world networks in many different fields (Porter
et al., 2009) supports the sparse nature of community memberships.
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Existing statistical models for overlapping community detection include
both binary membership models, where each node either belongs to a com-
munity or does not (e.g., Latouche et al. 2011), and continuous membership
models which allow each node to have a different level of association with
each community (Airoldi et al., 2009; Ball et al., 2011; Psorakis et al., 2011;
Zhang et al., 2020). Binary memberships are a natural way to induce spar-
sity, but the binary models are less flexible, and fitting them be computa-
tionally intensive since they involve solving a discrete optimization problem.
On the other hand, continuous memberships are not able to explicitly model
sparsity, and the resulting estimates often assign most of the nodes to many
or even all communities. To obtain sparse memberships, an ad hoc post-
processing step can be applied (Gregory, 2010; Lancichinetti et al., 2011),
but is likely to lead to a less accurate fit to the data. Another approach
to induce sparse memberships is to incorporate sparsity-inducing priors into
the model, for example via the discrete hierarchical Dirichlet process (Wang
and Blei, 2009) or the Indian buffet process (Williamson et al., 2010) that
have been introduced in the topic modeling literature.

The problem of estimating overlapping community memberships has
been approached from different perspectives; see for example (Xie et al.,
2013; da Fonseca Vieira et al., 2020), and references in Section 4.3. In par-
ticular, spectral methods for community detection are popular due to their
computational scalability and theoretical guarantees (Newman, 2006; Rohe
et al., 2011; Lyzinski et al., 2014; Le et al., 2017). Many statistics net-
work models make a low-rank assumption on the matrix P = E[A] that
characterizes the edge probabilities, and in most models with communities
the principal subspace of P contains the information needed to identify the
communities. Spectral methods for community detection exploit this fact
by computing an eigendecomposition of the network adjacency matrix A,
defined by Aij = 1 if there is an edge from i to j and 0 otherwise, fol-
lowed by a post-processing step applied to the leading eigenvectors to re-
cover memberships. Several approaches of this type have been recently de-
veloped, with different ways of clustering the rows of the leading eigenvectors
(Zhang et al., 2020; Rubin-Delanchy et al., 2017; Jin et al., 2017; Mao et al.,
2017; Mao et al., 2018, 2020).

In contrast to other spectral methods, here we present a new approach
for detecting overlapping communities based on estimating a sparse basis for
the principal subspace of the network adjacency matrix in which the pattern
of non-zero values contains the information about community memberships.
Our approach can be seen as an analogue to finding sparse principal compo-
nents of a matrix (Jolliffe et al., 2003; Zou et al., 2006; Ma, 2013), but with
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the important difference that we consider a non-orthogonal sparse basis of
the principal subspace to allow for overlaps in communities. Our method has
thus the potential to estimate overlapping community memberships more ac-
curately than traditional spectral methods, with the same low computational
cost of computing the leading eigenvectors of a matrix. We will demonstrate
this both on simulated networks with overlapping and non-overlapping com-
munities, and on real-world networks.

2 A Sparse Non-Orthogonal Eigenbasis Decomposition

As mentioned in the introduction, we consider binary symmetric adja-
cency matrices A ∈ {0, 1}n×n, with no self-loops, i.e., Aii = 0. We model
the network as an inhomogeneous Erdös-Rényi random graph (Bollobás
et al., 2007), meaning that the upper triangular entries of A are indepen-
dent Bernoulli random variables with potentially different edge probabilities
Pij = P(Aij = 1) for i, j ∈ [n], i < j, contained in a symmetric probability
matrix P ∈ R

n×n.
Our goal is to recover an overlapping community structure in A by es-

timating an appropriate sparse basis of the invariant subspace of P. The
rationale is that when P is even approximately low rank, most relevant in-
formation on communities is contained in the leading eigenvectors of P, and
can be retrieved by looking at a particular basis of its invariant subspace.
We will assume that rank of P is K < n. The principal subspace of P can
be described with a full rank matrix V ∈ R

n×K , with columns of V forming
a basis of this space. Most commonly, V is defined as the K leading eigen-
vectors of P, but for the purposes of recovering community membership, we
focus on finding a sparse non-negative eigenbasis of P, that is, a matrix V
for which Vik ≥ 0 for all i ∈ [n], k ∈ [K] and P = VU� for some full rank
matrix U ∈ R

n×K . Note that this is different from the popular non-negative
matrix factorization problem (Lee and Seung, 1999), as we do not assume
that U is a non-negative matrix nor do we try to estimate it.

If P has a sparse non-negative basis of its principal subspace V ∈ R
n×K ,

this basis is not unique, as any column scaling or permutation of V will
give another non-negative basis. Among these, we are interested in finding
a sparse non-negative eigenbasis V, since we will relate the non-zeros of V
to community memberships. The following proposition provides a sufficient
condition for identifiability of the non-zero pattern in V up to a permutation
of its columns. The proof is included in the Appendix.

Proposition 1. Let P ∈ R
n×n be a symmetric matrix of rank K. Suppose

that there exist a matrix V ∈ R
n×K that satisfies the next conditions:
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– Eigenbasis: V is a basis of the column space of P, that is, P = VU�,
for some U ∈ R

n×K .

– Non-negativity: The entries of V satisfy Vik ≥ 0 for all i ∈ [n], k ∈ [K]

– Pure rows: For each k = 1, . . . ,K there exists at least one row ik of V
such that Vikk > 0 and Vikj = 0 for j �= k.

If another matrix ˜V ∈ R
n×K satisfies these conditions, then there exists a

permutation matrix Q ∈ {0, 1}K×K , Q�Q = IK , such that

supp(V) = supp(˜VQ),

where supp(V) = {(i, j)|Vij �= 0} is the set of non-zero entries of V.

We connect a non-negative non-orthogonal basis to community mem-
berships through the overlapping continuous community assignment model
(OCCAM) of Zhang et al. (2020), a general model for overlapping com-
munities that encompasses, as special cases, multiple other popular over-
lapping models (Latouche et al., 2011; Ball et al., 2011; Jin et al., 2017;
Mao et al., 2018). Under OCCAM, each node is associated with a vector
zi = [zi1, . . . , ziK ]� ∈ R

K , i = 1, . . . , n, where K is the number of communi-
ties in the network. Given Z = [z1 · · · zn]

� ∈ R
n×K and parameters α > 0,

Θ ∈ R
n×n and B ∈ R

K×K to be explained below, the probability matrix
P = E[A] of OCCAM can be expressed as

P = αΘZBZTΘ. (2.1)

For identifiability, OCCAM assumes that α and all entries of Θ, B and
Z are non-negative, Θ is a diagonal matrix with diag(Θ) = θ ∈ R

n and
∑n

i=1 θi = n, ‖zi‖2 =
(
∑K

j=1 z
2
ij

)1/2
= 1 for all i ∈ [n], and Bkk = 1

for all k ∈ [K]. In this representation, the row zi of Z is viewed as the
community membership vector of node i. A positive value of zik indicates
that node i belongs to community k, and the magnitude of zik determines
how strongly. The parameter θi represents the degree correction for node
i as in the degree-corrected SBM (Karrer and Newman, 2011) allowing for
degree heterogeneity and in particular “hub” nodes, common in real-world
networks. The scalar parameter α > 0 controls the edge density of the entire
graph.

One can obtain the classical SBM as a special case of OCCAM by further
requiring each zi to have only one non-zero value and setting θi = 1 for all
i ∈ [n]. Keeping only one non-zero value in each row of Z but allowing
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the entries of θ to take positive values, one can recover the degree-corrected
SBM (Karrer and Newman, 2011). More generally in OCCAM, nodes can
belong to multiple communities at the same time. Each row of Z can have
multiple or all the entries different from zero, indicating the communities to
which the node belong.

Equation 2.1 implies that under OCCAM the probability matrix P has a
non-negative eigenbasis given by V = ΘZ. The following proposition shows
the converse result, namely, that any matrix P that admits a non-negative
eigenbasis can be represented as in Eq. 2.1, which motivates the interpre-
tation of the non-zero entries of a non-negative eigenbasis as indicators of
community memberships.

Proposition 2. Let P ∈ R
n×n be a symmetric real matrix with rank(P) =

K. Suppose that there exists a full-rank nonnegative matrix V ∈ R
n×K and

a matrix U such that P = VU�. Then, there exists a non-negative diagonal
matrix Θ ∈ R

n×n, a non-negative matrix Z ∈ R
n×K with

∑K
k=1 Z

2
ik = 1 for

each i ∈ [n], and a symmetric matrix B ∈ R
K×K such that

P = ΘZBZ�Θ.

Moreover, if V satisfies the conditions of Proposition 1, then supp(V) =
supp(ZQ) for some permutation Q ∈ R

K×K ,Q�Q = I.

In short, Proposition 2 states a non-negative basis of the probability ma-
trix P can be mapped to overlapping communities as in Eq. 2.1. Moreover,
under the conditions on this eigenbasis stated in Proposition 1, the commu-
nity memberships can be uniquely identified. These conditions are weaker
than the ones in Zhang et al. (2020) since we are only interested in com-
munity memberships and not in identifiability of the other parameters; note
that we do not aim to fit the OCCAM model, which is computationally much
more intensive than our approach here. Other conditions for identifiability
of overlapping community memberships have been presented in the litera-
ture (Huang and Fu, 2019), but the pure row assumption in Proposition 1
is enough for our purpose of estimating sparse memberships.

3 Community Detection via Sparse Iterative Thresholding

Our goal is to compute an appropriate sparse basis of the principal sub-
space of A which contains information about the overlapping community
memberships. Spectral clustering has been popular for community detec-
tion, typically clustering the rows of the leading eigenvectors of A or a
function of them to assign nodes to communities. Spectral clustering with
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overlapping communities typically gives a continuous membership matrix,
which can then be thresholded to obtain sparse membership vectors; how-
ever, this two-stage approach is unlikely to be optimal in any sense, and
some of the overlapping clustering procedures can be computationally ex-
pensive (Zhang et al., 2020; Jin et al., 2017). In contrast, our approach of
directly computing a sparse basis of the principal subspace of A avoids the
two-stage procedure and thus can lead to improvements in both accuracy
and computational efficiency.

Sparse principal component analysis (SPCA) (Jolliffe et al., 2003; Zou
et al., 2006) seeks to estimate the principal subspace of a matrix while incor-
porating sparsity constraints or regularization on the basis vectors. In high
dimensions, enforcing sparsity can improve estimation when the sample size
is relatively small, and/or simplify the interpretation of the solutions. Many
SPCA algorithms have been proposed to estimate eigenvectors of a matrix
under sparsity assumptions (see for example Amini and Wainwright 2008;
Johnstone and Lu 2009; Vu and Lei 2013; Ma 2013).

Our goal is clearly related to SPCA since we are interested in estimating
a sparse basis of the principal subspace of P, but an important difference
is that our vectors of interest are not necessarily orthogonal; in fact orthog-
onality is only achieved when estimated communities do not overlap, and
is thus not compatible with meaningful overlapping community estimation.
For non-overlapping community detection, however, there is a close connec-
tion between a convex relaxation of the maximum likelihood estimator of
communities and a convex formulation of SPCA (Amini and Levina, 2018).

Orthogonal iteration is a classical method for estimating the eigenvec-
tors of a matrix; see for example Golub and Van Loan (2012). Ma (2013)
extended this method to estimate sparse eigenvectors by an iterative thresh-
olding algorithm. Starting from an initial matrix V(0) ∈ R

n×K , the general
form of their algorithm iterates the following steps until convergence:

1. Multiplication step:
T(t+1) = AV(t). (3.1)

2. Regularization step:

U(t+1) = R(T(t),Λ), (3.2)

where R : Rn×K → R
n×K is a regularization function and Λ ∈ R

n×K

a matrix of regularization parameters.

3. Identifiability step:

V(t+1) = U(t+1)W(t+1), (3.3)
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where W(t+1) is a K ×K matrix.

An example of a convergence criterion may be stopping when the distance
between subspaces generated by V(t) and V(t+1) is small. For two full-rank
matrices U, Ũ ∈ R

n×K , the distance between the subspaces generated by the
columns of U and Ũ is defined through their orthogonal projection matrices

R = U(U�U)−1U� and R̃ = Ũ(Ũ
�
Ũ)−1Ũ

�
as

dist(U, Ũ) = ‖R− R̃‖,

where ‖ · ‖ is the matrix spectral norm (see Golub and Van Loan (2012),
Section 2.5.3).

Let ̂V be the value of V(t) at convergence, and let ˜V be the n × K
matrix of the K leading eigenvectors of A. The algorithm provides a generic
framework for obtaining a basis ̂V that is close to ˜V, and the regularization
step can be customized to enforce some structure in ̂V. In each iteration,
the multiplication step (3.1) reduces the distance between the subspaces
generated byV(t) and ˜V (Theorem 7.3.1 of Golub and Van Loan (2012)), and
then the regularization step (3.2) forces some structure in V(t). Ma (2013)
focused on sparsity and regularized with a thresholding function satisfying
|[R(T,Λ)]ik −Tik| ≤ Λik and [R(T,Λ)]ik1(|Tik| ≤ Λik) = 0 for all Λik > 0
and i ∈ [n], k ∈ [K], which includes both hard and soft thresholding. If
the distance between U(t) and V(t) is small, then the distance between V(t)

and Ṽ keeps decreasing until a certain tolerance is reached (Proposition
6.1 of Ma (2013)). Finally, the last step in Eq. 3.3 ensure identifiability.
For example, the orthogonal iteration algorithm uses the QR decomposition
Q(t)R(t) = U(t) and sets V(t) = U(t)R(t)−1

, which is an orthogonal matrix.
We will use the general form of the algorithm presented in Eqs. 3.1-3.3 to

develop methods for estimating a sparse eigenbasis of A, by designing reg-
ularization and identifiability steps appropriate for overlapping community
detection.

3.1. Sparse Eigenbasis Estimation We propose an iterative threshold-
ing algorithm for sparse eigenbasis estimation when the basis vectors are not
necessarily orthogonal. Let V(t) be the estimated basis at iteration t. For
identifiability, we assume that this matrix has normalized columns, that is,

‖V(t)
·,k‖2 = 1 for each k ∈ [K], where V·,k denotes the k-th column of V. Our

algorithm is based on the following heuristic. Suppose that at some iteration
t, V(t) is close to the basis of interest. The multiplication step in Eq. 3.1
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moves V(t) closer to ˜V, the K-leading eigenspace of A, but the entries of
T(t+1) = AV(t) and V(t) are not necessarily close. Hence, before applying
the regularization step, we introduce a linear transformation step that re-
turns T(t+1) to a value that is close to V(t) entry-wise. This transformation
is given by the solution of the optimization problem

Γ(t+1) = argmin
Γ∈RK×K

‖V (t)Γ−T(t+1)‖2F ,

which has a closed form solution, Γ(t+1) =
[

(V(t))�V(t)
]−1

(V(t))�T(t+1).

Define

˜T
(t+1)

= T(t+1)
(

Γ(t+1)
)−1

.

After this linear transformation, we apply a sparse regularization to ˜T
(t+1)

,
defined by a thresholding function S with parameter λ ∈ [0, 1),

[

S(˜T, λ)
]

ik
=

{

˜Tik if ˜Tik > λmaxj |˜Tij |,
0 otherwise.

(3.4)

The function S applies hard thresholding to each entry of the matrix ˜T
with a different threshold for each row, to adjust for possible differences
in the expected degree of a node. The parameter λ controls the level of
sparsity, with larger values of λ giving more zeros in the solution. Finally,
the new value of V is obtained by normalizing the columns, setting U(t+1) =

S(˜T(t+1)
, λ) and

V
(t+1)
ik =

1

‖U(t+1)
·,k ‖2

U
(t+1)
ik ,

for each i ∈ [n] and k ∈ [K].
We stop the algorithm after the relative difference in spectral norm be-

tween V(t) and V(t+1) is smaller than some tolerance ε > 0, that is,

‖V(t+1) −V(t)‖
‖V(t)‖

< ε.

These steps are summarized in Algorithm 1.
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The following proposition shows that when Algorithm 1 is applied to the
expected probability matrix P that has a sparse basis, then there exists a
fixed point that has the correct support. In particular, this implies that for
the expected probability matrix of an OCCAM graph defined in Eq. 2.1,
the entries of this fixed point coincide with the support of the overlapping
memberships of the model. The proof is given on the Appendix.

Proposition 3. Let P ∈ R
n×n be a symmetric matrix with rank(P) =

K < n, and suppose that there exists a non-negative sparse basis V of the
principal subspace of P. Let ˜V be a matrix such that ˜V·,k = 1

‖V ·,k‖2V·,k for

each k ∈ [K], and v∗ = min{Vik/‖Vi·‖∞|(i, k) ∈ supp(V)}. Then, for any
λ ∈ [0, v∗), the matrix ˜V is a fixed point of Algorithm 1 applied to P.

When the algorithm is applied to an adjacency matrix A, the matrix V
is not exactly a fixed point, but the norm of the difference between V and
V(1) will be a function of the distance between the principal subspaces of A
and P. Concentration results (Le et al., 2017) ensure that A is close to its
expected value P, specifically, ‖A−P‖ = O(

√
d) (where ‖ · ‖ is the spectral

norm of a matrix) with high probability as long as the largest expected
degree d = maxi∈[n]Pij satisfies d = Ω(log n). If the K leading eigenvalues
of V are sufficiently large, then the principal subspaces of A and P are close
to each other (Yu et al., 2015),

3.1.1. Community Detection in Networks with Homogeneous Degrees.
Here, we present a second algorithm for the estimation of sparse community
memberships in graphs for homogeneous expected degree of nodes within a
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community. Specifically, we focus on graphs for which the expected adja-
cency matrix P = E[A] has the form

P = ZBZ�, (3.5)

where Z ∈ R
n×K is a membership matrix such that ‖Zi,·‖1 =

∑K
k=1 |Zik| =

1, and B ∈ R
K×K is a full-rank matrix. This model is a special case of

OCCAM, when the degree heterogeneity parameter Θ in Eq. 2.1 is constant
for all vertices. In particular, this case includes the classic SBM (Holland et al.,
1983) when the memberships do not overlap.

To enforce degree homogeneity, we add an additional normalization step,
so that the matrix Ẑ has rows with constant norm ‖Ẑi,·‖1 = 1 as in Eq. 3.5.
In practice we observed that this normalization gives very accurate results in
terms of community detection. After the multiplication stepT(t) = AV(t−1),
the columns of T(t) are proportional to the norm of the columns V(t−1),
which is in turn proportional to the estimated community sizes. In order to
remove the effect of this scaling with community size, which is not meaningful
for community detection, we normalize the columns of V(t−1), and then
perform the thresholding and the row normalization step as before. These
steps are summarized in Algorithm 2.

The next theorem shows that in the case of the planted partition SBM,
a matrix with the correct sparsity pattern is a fixed point of Algorithm 2.
Note that since the algorithm does not assume that each node belongs to
a single community, this result not only guarantees that there exist a fixed
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point that correctly cluster the nodes into communities, as typical goal of of
community detection, but also that is able to distinguish if a node belongs
to more than one community or not. The proof is given on the appendix.

Theorem 1. Let A be a network generated from a SBM with K com-
munities of sizes n1, . . . , nK , membership matrix Z and connectivity matrix
B ∈ [0, 1]K×K of the form

Brs =

{

p, if r = s,
q, if r �= s,

for some p, q ∈ [0, 1], p > q. Suppose that for some λ∗ ∈ (0, 1) and some
c1 > 2,

λ∗p− q > c1

√

log(Kn)

mink nk
, (3.6)

Then, for any λ ∈ (λ∗, 1), Z is a fixed point of Algorithm 2 with probability
at least 1− nc1−1.

3.2. Selecting the Thresholding Parameter Our algorithms require two
user-supplied parameters: the number of communities K and the threshold
level λ. The parameter λ controls the sparsity of the estimated basis V̂.
In practice, looking at the full path of solutions for different values of λ
may be informative, as controlling the number of overlapping memberships
can result in different community assignments. On the other hand, it is
practically useful to select an appropriate value λ that provides a good fit to
the data. We discuss two possible techniques for choosing this parameter,
the Bayesian Information Criterion (BIC) and edge cross-validation (ECV)
(Li et al., 2020). Here we assume that the number of communitiesK is given,
but choosing the number of communities is also an important problem, with
multiple methods available for solving it (Wang and Bickel, 2017; Le and
Levina, 2015; Li et al., 2020). If computational resources allow, K can be
chosen by cross-validation along with λ.

The goodness-of-fit can be measured via the likelihood of the model for
the graph A, which depends on the probability matrix P = E[A]. Given ̂V,
a natural estimator for P is the projection of A onto the subspace spanned
by ̂V, which can be formulated as

̂P = argmin
P

‖A−P‖2F

subject to P = ̂VB̂V
�
, B ∈ R

K×K . (3.7)
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This optimization problem finds the least squares estimator of a matrix con-
strained to the set of symmetric matrices with a principal subspace defined
by ̂V, and has a closed-form solution, stated in the following proposition.

Proposition 4. Let ̂P be the solution of the optimization problem (3.7),
and suppose that ̂Q ∈ R

n×K is a matrix with orthonormal columns such that
̂V = ̂Q̂R for some matrix ̂R ∈ R

K×K . Then,

̂P = ̂Q
(

̂Q
�
ÂQ

)

̂Q
�
.

The Bayesian Information Criterion (BIC) (Schwarz, 1978) provides a
general way of choosing a tuning parameter by balancing the fit of the model
measured with the log-likelihood of A, and a penalty for the complexity of
a model that is proportional to the number of parameters. The number
of non-zeros in V given by ‖V‖0 can be used as a proxy for the degrees of
freedom, and the sample size is taken to be the number of independent edges
in A. Then the BIC for a given λ can be written as

PBIC(λ) = −2�(̂Pλ) + ‖̂Vλ‖0 log(n(n− 1)/2), (3.8)

where ̂Pλ is the estimate for P defined in Proposition 4 for ̂Vλ.
The BIC criterion (3.8) has the advantage of being simple to calculate,

but it has some issues. First, the BIC is derived for a maximum likeli-
hood estimator, while ̂P is not obtained in this way, and this is only a
heuristic. Further, the least squares estimator ̂P is not guaranteed to re-
sult in a valid estimated edge probability (between 0 and 1). A possible
practical solution is to modify the estimate by defining ˜P ∈ [0, 1]n×n as
˜Pij = min(max(̂Pij , ε), 1− ε) for some small value of ε ∈ (0, 1).

Another alternative for choosing the tuning parameter is edge cross-
validation (CV). Li et al. (2020) introduced a CV method for network data
based on splitting the set of node pairs N = {(i, j) : i, j ∈ {1, . . . , N}} into L
folds. For each fold l = 1, . . . , L, the corresponding set of node pairs Ωl ⊂ N
is excluded, and the rest are used to fit the basis V. Li et al. (2020) pro-
pose to use a matrix completion algorithm based on the rank K truncated
SVD to fill in the entries missing after excluding Ωl, resulting in a matrix
̂Ml ∈ R

n×n. Then, for a given λ we estimate ̂Vλ, and use Proposition 4 to
obtain an estimate ̂Pλ(̂M

(l)) of P. The error on the held-out edge set is
measured by

PCV(A, ̂Pλ(̂Ml); Ωl) =
1

|Ωl|
∑

(i,j)∈Ωl

(Aij − P̂λ(M̂l)ij)
2, (3.9)
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and the tuning parameter λ is selected to minimize the average cross-validation
error

PCV(λ) =
1

L

L
∑

l=1

PCV(A, ̂Pλ(̂Ml);Ωl).

The edge CV method does not rely in a specific model for the graph,
which can be convenient in the settings mentioned before, but its computa-
tional cost is larger. In practice, we observe that edge CV tends to select
more complex models in which nodes are assigned to more communities than
the solution selected with BIC (see Section 4.2).

4 Numerical Evaluation on Synthetic Networks

We start with evaluating our methods and comparing them to bench-
marks on simulated networks. In all scenarios, we generate networks from
OCCAM, thus edges of A are independent Bernoulli random variables, with
expectation given by Eq. 2.1. We assume that each row vector zi ∈ R

K of
Z = [z1, . . . , zn]

� satisfies ‖zi‖1 = 1, so each node has the same expected
degree. To better understand what affects the performance, we evaluate the
methods by varying one parameter from the following list at a time; all of
them affect the difficulty of detecting overlapping communities.

a) Fraction of nodes belonging to more than one community p̃ (the higher
p̃, the more difficult the problem). For a given p̃ ∈ [0, 1), we select p̃n
nodes for the overlaps, and assign the rest to only one community,
distributed equally among all the communities. For most of the exper-
iments we use K = 3 communities, and 1/4 of the overlapping nodes
are assigned to all communities with zi = [1/3, 1/3, 1/3]T , while the
rest are assigned to two communities j, k, with zij = zik = 1/2, equally
distributing these nodes on all pairs (j, k). When K > 3, we only as-
sign the nodes to one or two communities following the same process,
but we do not include overlaps with more than three communities.

b) Connectivity between communities ρ (the higher ρ, the more difficult
the problem). We parameterize B as

B = (1− ρ)IK + ρ1K1�K ,

and vary ρ in a range of values between 0 and 1.

c) Average degree of the network d (the higher d, the easier the problem).
For a given average degree d, we set α in Eq. 2.1 so that the expected
average degree 1

n1
�
nE[A]1n is equal to d.



Overlapping Community Detection... 15

d) Node degree heterogeneity (the more heterogeneous the degrees, the
harder the problem). This is controlled by parameter θ = diag(Θ),
and in most simulations we set θi = 1 ∀i ∈ [n] so all nodes have the
same degree, but in some scenarios we also introduce hub nodes by
setting θi = 5 with probability 0.1 and θi = 1 with probability 0.9.

e) Number of communities K (the larger K, the harder the problem).
For all values of K, we maintain communities of equal size.

In most scenarios, we fix n = 500, andK = 3. All simulation settings are run
50 times, and the average result together with its 95% confidence band are
reported. An implementation of the method in R can be found at https://
github.com/jesusdaniel/spcaCD.

Our main goal is to find the set of non-zero elements of the membership
matrix. Many measures can be adopted to evaluate a solution; here we use
the normalized variation of information (NVI) introduced by Lancichinetti
et al. (2009), which is specifically designed for problems with overlapping
clusters. Given a pair of binary random vectors X,Y of length K, the
normalized conditional entropy of X with respect to Y can be defined as

Hnorm(X|Y ) =
1

K

K
∑

k=1

H(Xk|Yk)
H(Xk)

,

where H(Xk) is the entropy of Xk and H(Xk|Yk) is the conditional entropy
of Xk given Yk, defined as

H(Xk) = −P (Xk=0) logP (Xk=0)− P (Xk=1) logP (Xk=1) (4.1)

H(Xk, Yk) = −
1

∑

a=0

1
∑

b=0

P (Xk = a, Yk = b) logP (Xk = a, Yk = b) (4.2)

H(Xk|Yk) = H(Xk, Yk)−H(Yk),

and the normalized variation of information between X and Y is defined as

N(X|Y ) = 1−min
σ

1

2
(Hnorm(σ(X)|Y ) +Hnorm(Y |σ(X))) , (4.3)

where σ is a permutation of the indexes to account for the fact that the binary
assignments can be equivalent up to a permutation. The NVI is always a
number between 0 and 1; it is equal to 0 when X and Y are independent,
and to 1 if X = Y .
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For a given pair of binary membership matrices Z and ˜Z with binary
entries indicating community memberships, we can use the rows of replace
the probabilities in Eqs. 4.1 and 4.2 with the sample versions using the rows
of ˜Z and Z, that is

P̂ (Xk = a) =
1

n

n
∑

i=1

1{˜Zik = a}, P̂ (Yk = b) =
1

n

n
∑

i=1

1{Zik = b},

P̂ (Xk = a, Yk = b) =
1

n

n
∑

i=1

1{˜Zik = a,Zik = b},

for a, b ∈ {0, 1}.
4.1. Choice of Initial Value We start from comparing several initializa-

tion strategies:

– An overlapping community assignment, from the method for fitting
OCCAM.

– A non-overlapping community assignment, from SCORE (Jin, 2015),
a spectral clustering method designed for networks with heterogeneous
degrees.

– Multiple random non-overlapping community assignments, with each
node randomly assigned to only one community. We use five different
random values and take the solution corresponding the smallest error
as measured by Eq. 3.7.

We compare these initialization schemes with fixed n = 500, K = 3,
d = 50, and varying between-community connectivity ρ and the fraction of
overlapping nodes p̃. For both our methods (SPCA-eig and SPCA-CD), we
fit solution paths over a range of values λ = {0.05, 0.1, . . . , 0.95}, and report
the solution with the highest NVI for each of the methods (note that we are
not selecting λ in a data-driven way in order to reduce variation that is not
related to initialization choices).

Figure 1 shows the results on initialization strategies. In general, all
methods perform worse as the problem becomes harder, and the non-random
initializations perform better overall; the multiple random initializations are
also sufficient for the easier case of few nodes in overlaps. For the rest of
the paper, unless explicitly stated, we use the non-overlapping community
detection solution (SCORE) to initialize the algorithm, given its good per-
formance and low computational cost.
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Figure 1: Performance measured by NVI under different initialization strate-
gies (OCCAM, SCORE and five random initial values). The errors are plot-
ted as a function of connectivity between communities ρ for three different
values of the overlap p̃

4.2. Choosing the Threshold The tuning parameter λ controls the spar-
sity of the solution, and hence the fraction of pure nodes. Since community
detection is an unsupervised problem, it may be useful in practice to look at
the entire path over λ and consider multiple solutions with different levels
of sparsity (see Section 5.1). However, we may also want to choose a sin-
gle value of λ that balances a good fit and a parsimonious solution. Here,
we evaluate the performance of the two strategies for choosing λ proposed
in Section 3.2, BIC and CV, using the same simulation setting than the
previous section.

Figure 2 shows the average performance measured by NVI of the two
tuning methods. The BIC tends to select sparser solutions than CV, and
hence when the true membership matrix is sparse (few overlaps), BIC out-
performs CV, but with more overlap in communities, CV usually performs
better, specially for SPCA-CD. Since there is no clear winner overall, we use
BIC in subsequent analysis, because it is computationally cheaper.

4.3. Comparison with Existing Methods We compare our proposal to
several state-of-the-art methods for overlapping community detection. We
use the same simulation settings as in the previous section (n = 500 andK =
3), including sparser scenarios with d = 20, and networks with heterogeneous
degrees (d = 50 and 10% of nodes are hubs).

We select competitors based on good performance reported in previous
studies. As representative examples of spectral methods, we include OC-
CAM fitted by the algorithm of Zhang et al. (2020) and Mixed-SCORE (Jin
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Figure 2: Performance of two tuning methods, BIC and CV, as measured
by NVI. The errors are plotted as a function of connectivity between com-
munities ρ for three different values of the overlap p̃

et al., 2017). We also include the EM algorithm for the BKN model (Ball
et al., 2011) and the overlapping SBM of Latouche et al. (2011) (OSBM),
and Bayesian non-negative matrix factorization (BNMF) by Psorakis et al.
(2011). For methods that return a continuous membership assignment (OC-
CAM, BKN and Mixed-SCORE), we follow the approach of Zhang et al.
(2020) and set to zero the values of the membership matrix Ẑ that are
smaller than 1/K.

Figure 3 shows the average NVI of these methods as a function of ρ un-
der different scenarios. Most methods show an excellent performance when
ρ = 0, but as the between-community connectivity increases, the perfor-
mance of all methods deteriorate. Our methods (SPCA-CD and SPCA-eig)
generally achieve the best performance when the fraction of nodes in over-
laps is either 0 or 10%, and are highly competitive for 40% in overlaps as
well. OCCAM performs well, which is reasonable since the networks were
generated from this model, but it appears that in most cases we are able
to fit it more accurately. Mixed-SCORE has a good performance with no
overlaps, but deteriorates quicker than other methods with the introduction
of overlaps. We should keep in mind that OCCAM and Mixed-SCORE are
designed for estimating continuous memberships, and the threshold of 1/K
to obtain binary memberships might not be optimal. While non-overlapping
community detection methods can be alternatively used for the scenario
when there is only a single membership per node, our methods are able
to accurately assign the nodes to a single community without knowing the
number of memberships.
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Figure 3: Performance of different methods for overlapping community de-
tection measured by NVI, as a function of ρ, for different amounts of overlaps
(columns) and node degrees (rows)

4.4. Computational Efficiency Scalability to large networks is an im-
portant issue for real data applications. Spectral methods for overlapping
and non-overlapping community detection are very popular, partly due to
its scalability to large networks. The accuracy of those methods usually
depends on the clustering algorithm, which in practice might require multi-
ple initial values to get an accurate result. In contrast, our methods based
on sparse principal component analysis directly estimate the membership
matrix without having to estimate the eigenvectors or perform a clustering
step. Although the accuracy of our methods does depend on the tuning
parameter λ, the algorithms are robust to the choice of this parameter and
provide good solutions over a reasonably wide range.
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To compare computation efficiency empirically, we simulated networks
with different number of communities (K = 3, 6 and 10) and increased the
number of nodes while keeping the average degree fixed to d = 50, with 10%
overlapping nodes. For simplicity, we used a single fixed value λ = 0.6 for
our methods. We initialized SPCA-CD with a random membership matrix,
and SPCA-eig with the SPCA-CD as starting point, and therefore report
the running time of SPCA-eig as the sum of the two. We compare the per-
formance of our methods with OCCAM, which uses a k-medians clustering
to find the centroids of the overlapping communities. Since k-medians is
computationally expensive and is not able to handle large networks, we also
report the performance of OCCAM with the clustering step performed with
k-means instead. Additionally, we report the running time of calculating
the K leading eigenvectors of the adjacency matrix, which is a starting step
required by spectral methods. All simulations are run using Matlab R2015a.
The leading eigenvectors of the adjacency matrix are computed using the
standard Matlab function eigs(·,K).

The performance in terms of time and accuracy of different methods is
shown in Fig. 4. Our methods based on SPCA incur a computational cost
similar to that calculating the K leading eigenvectors of the adjacency ma-
trix, and when the number of communities is not large, our methods perform
even faster. The original version of OCCAM based on k-medians clustering
is limited in the size of networks it can handle, and when using k-means the
computational cost is still larger than SPCA. Our methods produce very ac-
curate solutions in all the scenarios considered, while OCCAM deteriorates
when the number of communities increases. Note that in general the perfor-
mance of all methods can be improved by using different random starting
values, either for clustering in OCCAM or for initializing our methods, but
this will increase the computational cost; choosing tuning parameters, if the
generic robust choice is not considered sufficient, will do the same.

5 Evaluation on Real-World Networks

In this section, we evaluate the performance of our methods on several
real-world networks. Zachary’s karate club network (Zachary, 1977) and the
political blog network (Adamic and Glance, 2005) are two classic examples
with community structure, and we start with them as an illustration. We
then compare our method with other state-of-the-art overlapping community
detection algorithms on the popular benchmark dataset focused specifically
on overlapping communities (McAuley and Leskovec, 2012), which contains
many social ego-networks from Facebook, Twitter and Google Plus. Finally,
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Figure 4: Performance of different methods in terms of running time (top
row) and NVI (bottom row) as a function of the size of the network n
for varying number of communities. We compare SPCA-CD and SPCA-eig,
OCCAM with two different clustering options (k-means and k-medians), and
the computational cost of calculating the K leading eigenvectors (eig(K))

we use our methodology to identify communities in a novel dataset consist-
ing of Twitter following relationship between national representatives in the
Mexican Chamber of Deputies.

5.1. Zachary’s Karate Club Network Zachary (1977) recorded the real-
life interactions of 34 members of a karate club from a period of two years.
During this period, the club split into two factions due to a conflict between
the leaders, and these factions are taken to be the ground truth communities.

We fit our methods to the karate club network, and if we use either BIC
or CV to choose the optimal threshold parameter, the solution consists of two
community with only pure nodes and matches the ground truth. This serves
as reassurance that our method will not force overlaps on the communities
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when there are not actually there. In contrast, OCCAM assigns 17 nodes
(50%) to both communities, and mixed-SCORE assigns 26 (76%).

If we look at the entire path over the threshold parameter λ, we can
also see which nodes are potential overlaps. Both our methods can identify
community memberships, but SPCA-eig also provides information on the
degree-correction parameter. In Fig. 5, we examine the effect of the thresh-
old parameter λ on SPCA-eig solutions. The plots show the paths of the
node membership vectors as a function of λ. Each panel corresponds to one
of the columns of the membership matrix, the colors indicate the true fac-
tions, and the paths of the faction leaders are indicated with a dashed line.
The y-axis shows the association of the node to the corresponding commu-
nity, with membership weighted by the degree-corrected parameter. In each
community, the nodes with the largest values of y are the faction leaders,
which are connected to most of the nodes in the faction. For larger values of
λ, all nodes are assigned to pure communities corresponding to true factions,
but as λ decreases the membership matrix contains more non-zero values.

5.2. The Political Blogs Network The political blogs network (Adamic
and Glance, 2005) represents the hyperlinks between 1490 political blogs
around the time of the 2004 US presidential election. The blogs were manu-
ally labeled as liberal or conservative, which is taken as ground truth, again

Figure 5: Node membership paths in each discovered community (left and
right) as a function of the thresholding parameter λ. Colors represent ground
truth, and the dashed line represents the leader of each faction. The dashed
vertical lines correspond to the values of λ chosen by BIC (blue) and CV
(red). As the thresholding parameter decreases, the membership matrix
becomes sparser and nodes appear on both communities
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without any overlaps. This dataset is more challenging for community de-
tection than the karate club network, due to the high degree heterogeneity
(Karrer and Newman, 2011). Following the literature, we focus on the largest
connected component of the network, which contains 1222 nodes, and con-
vert the edges to undirected, so Aij = 1 if either blog i has an hyperlink to
blog j or vice versa.

Figure 6 shows the plot of the political blog network membership paths
using Algorithm 2 as a function of λ and colored by the ground truth la-
bels. Using the tuning parameter selected by BIC, the algorithm assigns
only 29 nodes to both communities. Other overlapping community methods
assigned many more nodes to both communities: 229 (19%) for OCCAM,
and 195 (16%) for mixed-SCORE. To convert the estimated solution into
non-overlapping memberships in order to compare with the ground truth,
each node is assigned to the community corresponding to the largest entry
on the corresponding row, resulting in 52 misclustered nodes, a result similar
to other community detection methods that are able to operate on networks
with heterogeneous node degrees (Jin, 2015). The membership paths that
correspond to these misclustered nodes are represented with dashed lines.
The fact that most of the overlapping nodes discovered by the algorithm
were incorrectly clustered supports the idea that these are indeed overlap-
ping nodes, as the disagreement between the unsupervised clustering result

Figure 6: Node membership paths in the two discovered communities (left
and right) as a function of the thresholding parameter λ. Colors represent
ground truth, and the dashed lines represent misclassified nodes. Most of
the misclassified nodes are identified as overlapping. The black vertical lines
correspond to the values of λ chosen by BIC
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and the label given by the authors might indicate that these are nodes with
no clear membership.

5.3. The SNAP Social Networks Social media platforms provide a rich
source of data for the study of social interactions. McAuley and Leskovec
(2012) presented a large collection of ego-networks from Facebook, Google
Plus and Twitter. An ego-network represents the virtual friendships or
following-follower relationships between a group of people that are connected
to a central user. Those platforms allow the users to manually label or clas-
sify their friends into groups or social circles, and this information can be
used as a ground truth to compare the performance of methods for detect-
ing communities. In Zhang et al. (2020), several state-of-the-art overlap-
ping community detection methods were compared on these data, show-
ing a competitive performance of OCCAM. We again include OCCAM and
Mixed-SCORE as examples of spectral methods for overlapping community
detection. We obtained a pre-processed version of the data directly from
the first author of Zhang et al. (2020); for the details on the pre-processing
steps, see Section 6 of Zhang et al. (2020).

Table 1 shows the average performance measured by NVI for the com-
munity detection methods we compared. For our methods, the value of λ
was chosen by BIC, like in simulations. For OCCAM and mixed-SCORE,
we thresholded continuous membership assignments at 1/K. Our methods
(SPCA-eig and SPCA-CD) show a slightly better performance than the rest
of the methods in the Facebook networks. SPCA-CD performs better than
other methods on the Twitter networks, but SPCA-eig does not perform bet-
ter than OCCAM. For Google Plus networks, OCCAM and mixed-SCORE
have a clear advantadge. Figure 7 presents a visualization of the distribution
of of several network summary statistics for each social media platform. It
suggests that Google Plus networks might be harder because they tend to
have more overlaps between communities, although they also tend to have
more nodes. Facebook networks, in contrast, have higher modularity values

Table 1: Average performance measured by NVI (with standard errors in
parentheses) of overlapping community detection methods on SNAP ego-
networks
Dataset SPCA-Eig SPCA-CD OCCAM M-SCORE
(sample size)

Facebook (6) 0.573 (0.090) 0.588(0.088) 0.548 (0.118) 0.493 (0.137)
Google Plus (39) 0.408 (0.047) 0.427 (0.048) 0.501(0.039) 0.475 (0.039)
Twitter (168) 0.435 (0.021) 0.477(0.021) 0.450 (0.021) 0.391 (0.020)
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Figure 7: Histograms of summary statistics for SNAP ego-networks. McAuley
and Leskovec (2012). The histograms show the number of nodes (n), Newman-
Girvan modularity, density (number of edges divided by n2), overlap size
(percentage of nodes with overlapping memberships) and degree heterogene-
ity measured by the standard deviation of node degrees divided by n)

and smaller overlaps, and thus should be easier to cluster. In general, all
methods perform reasonably, with SPCA-CD given the best overall perfor-
mance Facebook and Twitter networks, and OCCAM being overall best on
Google Plus. This is consistent with what we observed in simulations and
what we would expect by design: our methods are more likely to perform
better than others when membership vectors are sparse.

5.4. Twitter Network of Mexican Representatives We consider the Twit-
ter network between members of the Mexican Chamber of Deputies (the
lower house of the Mexican parliament), from the LXIII Legislature for the
period of 2015-2018. The network captures a snapshot of Twitter data from
December 31st, 2017, and has 409 nodes corresponding to the representa-
tives with a valid Twitter handle. Two nodes are connected by an edge if at
least one of them follows the other on Twitter; we ignore the direction. Each
member belongs to one of eight political parties or is an independent, result-
ing in K = 9 true communities; see Fig. 8. The data can be downloaded
from https://github.com/jesusdaniel/spcaCD/data.

We apply Algorithm 1 to this network, using 20-fold edge cross-validation
to estimate the number of communities and choose thresholding parameters.
Figure 9 shows the average MSE across all the folds, minimized when K =
10. However, solutions corresponding to all K from 8 to 11 are qualitatively
very similar, the only difference being that the largest parties (PRI and
PAN) get split into smaller communities, with clusters containing the most
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Figure 8: Twitter network of Mexican Chamber of Deputies from 2017.
Left: party affiliations (true communities); right: output of Algorithm 1
with estimated K = 10

popular members of each party, and/or factions within a party that are more
connected to some of the other parties.

A comparison between the estimated membership vectors and party af-
filiations reveals that our algorithm discovers meaningful overlapping com-
munities. Table 2 compares the estimated overlapping memberships with
the party labels, by counting the number of nodes that are assigned to a

Figure 9: Average cross-validation mean squared error (MSE) over 20 cross-
validation folds as a function of the number of communities (the error bars
indicate two standard errors)
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Table 2: Each entry indicates the number of nodes from the party (row)
assigned to a given community (column)

Estimated communities

Party (#nodes) 1 2 3 4 5 6 7 8 9 10

MC (16) 0 0 0 0 14 0 16 0 0 0
MORENA (37) 1 0 1 9 4 0 2 0 34 1
NA (9) 2 0 4 1 8 0 9 0 0 1
PAN (84) 0 53 2 0 2 49 3 1 0 0
PES (5) 0 0 2 0 3 0 5 0 0 1
PRD (44) 2 1 3 42 2 0 2 0 0 3
PRI (185) 133 1 52 3 71 3 12 53 2 59
PVEM (27) 1 0 27 0 3 1 0 1 0 0
Independent (2) 1 0 0 0 1 0 1 1 0 0

Nodes are counted multiple times if they were assigned to more than one community

given community (recall that each node can be assigned to more than one
community) and belong to a specific party. Some of the communities con-
tain representatives from two or more different parties, which is a reflection
of coalitions and factions. For example, the majority of nodes in commu-
nity 3 belong to either PRI or PVEM, which formed a coalition during the
preceding election in 2015. On the other hand, nodes from MORENA in
community 4 were members of PRD before MORENA was formed in 2014.
The plot on the right in Fig. 8 also shows a significant overlap between these
parties.

Exploring individual memberships reveals that the number of commu-
nities a node is assigned to seems associated with its overall popularity in
the network. For example, the node with the largest number of community
memberships (7 in total) is the representative with the largest degree in the
network, while the second largest number of memberships (5 in total) is the
president of the Chamber of Deputies in 2016.

6 Discussion

We presented an approach to estimate a regularized basis of the principal
subspace of the network adjacency matrix, and showed that its sparsity pat-
tern encodes the community membership information. Varying the amount
of regularization controls the sparsity of the node memberships and allows to
one to obtain a family of solutions of increasing complexity. These methods
show good accuracy in estimating the memberships, and are computationally
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very efficient allowing to scale well to large networks. Our present theoretical
results are limited to fixed points of the algorithms; establishing theoretical
guarantees in more general settings as analyzing conditions for convergence
to the fixed point are left for future work.

Spectral inference has been used for multiple tasks on networks: com-
munity detection (Lei and Rinaldo, 2015; Le et al., 2017), hypothesis testing
(Tang et al., 2017), multiple network dimensionality reduction (Levin et al.,
2017) and network classification (Arroyo and Levina, 2020). While the prin-
cipal eigenspace of the adjacency matrix can provide the information needed
for these problems, our results suggest that regularizing the eigenvectors can
lead to improved estimation and computation in community detection; ex-
ploring the effects of this type of regularization in other network tasks is a
promising direction for future work.
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latouche, p, birmelé, e. and ambroise, c (2011). Overlapping stochastic block models
with application to the french political blogosphere. The Annals of Applied Statistics,
309–336.

le, c m and levina, e (2015). Estimating the number of communities in networks by
spectral methods. arXiv :1507.00827.

le, c m, levina, e and vershynin, r (2017). Concentration and regularization of random
graphs. Random Structures & Algorithms 51, 3, 538–561.

lee, d d and seung, h s (1999). Learning the parts of objects by non-negative matrix
factorization. Nature 401, 6755, 788–791.

lei, j and rinaldo, a (2015). Consistency of spectral clustering in stochastic block models.
The Annals of Statistics 43, 1, 215–237.

levin, k, athreya, a, tang, m, lyzinski, v and priebe, c e (2017). A central limit
theorem for an omnibus embedding of random dot product graphs. arXiv:1705.09355.

li, t, levina, e and zhu, j (2020). Network cross-validation by edge sampling. Biometrika
107, 2, 257–276.

lyzinski, v, sussman, d l, tang, m, athreya, a and priebe, c e (2014). Perfect cluster-
ing for stochastic blockmodel graphs via adjacency spectral embedding. Electronic
Journal of Statistics 8, 2, 2905–2922.

ma, z (2013). Sparse principal component analysis and iterative thresholding. The Annals
of Statistics, 41, 2, 772–801.



30 J. Arroyo and E. Levina

mao, x, sarkar, p and chakrabarti, d (2017). On mixed memberships and symmetric
nonnegative matrix factorizations. PMLR, p. 2324–2333.

mao, x, sarkar, p and chakrabarti, d (2018). Overlapping clustering models, and one
(class) svm to bind them all, p. 2126–2136.

mao, x, sarkar, p and chakrabarti, d (2020). Estimating mixed memberships with
sharp eigenvector deviations. Journal of the American Statistical Association. (just-
accepted), 1–24.

mcauley, j j and leskovec, j (2012). Learning to discover social circles in ego networks.,
2012, p. 548–56.

newman, mark ej (2006). Finding community structure in networks using the eigenvectors
of matrices. Physical Review E 74, 3, 036104.

porter, m a, onnela, j.-p. and mucha, p j (2009). Communities in networks. Notices of
the AMS 56, 9, 1082–1097.

power, j d, cohen, a l, nelson, s m, wig, g s, barnes, k a, church, j a, vogel,
a c, laumann, t o, miezin, f m and schlaggar, b l (2011). Functional network
organization of the human brain. Neuron 72, 4, 665–678.

psorakis, i, roberts, s, ebden, m and sheldon, b (2011). Overlapping community de-
tection using bayesian non-negative matrix factorization. Physical Review E 83, 6,
066114.

rohe, k, chatterjee, s and yu, b (2011). Spectral clustering and the high-dimensional
stochastic blockmodel. Ann. Statist. 39, 4, 1878–1915.

rubin-delanchy, p, priebe, c e and tang, m (2017). Consistency of adjacency spectral
embedding for the mixed membership stochastic blockmodel. arXiv:1705.04518.

schlitt, t and brazma, a (2007). Current approaches to gene regulatory network mod-
elling. BMC Bioinformatics 8, Suppl 6, S9.

schwarz, g (1978). Estimating the dimension of a model. The Annals of Statistics 6, 2,
461–464.

schwarz, a j, gozzi, a and bifone, a (2008). Community structure and modularity in
networks of correlated brain activity. agnetic Resonance Imaging 26, 7, 914–920.

tang, m, athreya, a, sussman, d l, lyzinski, v, park, y and priebe, c e (2017). A
semiparametric two-sample hypothesis testing problem for random graphs. Journal
of Computational and Graphical Statistics 26, 2, 344–354.

vu, v q and lei, j (2013). Minimax sparse principal subspace estimation in high dimen-
sions. The Annals of Statistics 41, 6, 2905–2947.

wang, c and blei, d (2009). Decoupling sparsity and smoothness in the discrete hier-
archical Dirichlet process. Advances in Neural Information Processing Systems 22,
1982–1989.

wang, yx r and bickel, p j (2017). Likelihood-based model selection for stochastic block
models. The Annals of Statistics 45, 2, 500–528.

wasserman, s and faust, k (1994). Social network analysis: Methods and applications, 8.
Cambridge University Press, Cambridge.

williamson, s, wang, c, heller, k a and blei, d m (2010). The ibp compound dirichlet
process and its application to focused topic modeling. Omnipress, Madison, p. 1151–
1158.

xie, j, kelley, s and szymanski, b k (2013). Overlapping community detection in net-
works: The state-of-the-art and comparative study. ACM Computing Surveys 45, 4,
1–35.

yu, y, wang, t and samworth, r j (2015). A useful variant of the Davis–Kahan theorem
for statisticians. Biometrika 102, 2, 315–323.



Overlapping Community Detection... 31

zachary, w w (1977). An information flow model for conflict and fission in small groups.
Journal of Anthropological Research 33, 4, 452–473.

zhang, y, levina, e and zhu, j (2020). Detecting Overlapping Communities in Networks
Using Spectral Methods. SIAM Journal on Mathematics of Data Science 2, 2, 265–
283.

zou, h, hastie, t and tibshirani, r (2006). Sparse principal component analysis. Journal
of Computational and Graphical Statistics 15, 2, 265–286.

Appendix

Proof of Proposition 1. Because V and ˜V are two bases of the
column space of P, and rank(P) = K, then P = VU� = ˜V˜U

�
for some full

rank matrices U, ˜U ∈ R
n×K and therefore

V = ˜V(˜U
�
U)(U�U)−1. (A.1)

Let (˜U
�
U)(U�U)−1 = Λ. We will show that Λ = QD for a permutation

matrix Q ∈ {0, 1}K×K and a diagonal matrix D ∈ R
K×K , or in other words,

this is a generalized permutation matrix.

Let θ, ˜θ ∈ R
n and Z, ˜Z ∈ R

n×K such that θi =
(

∑K
k=1V

2
ik

)1/2
, ˜θi =

(

∑K
k=1

˜V
2

ik

)1/2
, and Zik = Vik/θi if θi > 0, and Zik = 0 otherwise (similarly

for ˜Z). Denote by S1 = (i1, . . . , iK) to the vector of row indexes that satisfy
Vijj > 0 and Vijj′ = 0 for j′ �= j, and j = 1, . . . , j (these indexes exist by

assumption). In the same way, define S2 = (i′1, . . . , i
′
K) such that ˜Vi′jj

> 0

and ˜Vijj′ = 0 for j′ �= j. j = 1, . . . , j. Denote by ZS to the K ×K matrix
formed by the rows indexed by S. Therefore

ZS1 = IK = ˜ZS2 .

Write Θ = diag(θ) ∈ R
n×n and ˜Θ = diag(˜θ) ∈ realn×n. From Eq. A.1 we

have

(ΘZ)S2 = ( ˜Θ˜Z)S2Λ = ˜ΘS2,S2
˜ZS2Λ = ˜ΘS2,S2Λ ,

where ΘS,S is the submatrix of Θ formed by the rows and columns indexed
by S. Thus,

Λ = ( ˜Θ
−1

S2,S2
ΘS2,S2)ZS2 ,

which implies that Λ is a non-negative matrix. Applying the same to the
equation (ΘZ)S1Λ

−1 = ( ˜Θ˜Z)S1 , we have

Λ−1 = (Θ−1
S1,S1

˜ΘS1,S1)
˜ZS1 .
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Hence, both Λ and Λ−1 are non-negative matrices, which implies that Λ is a
positive generalized permutation matrix, so Λ = QD for some permutation
matrix Q and a diagonal matrix D with diag(D) > 0.

Proof of Proposition 2. Let θ ∈ R
n be a vector such that θ2

i =
∑K

k=1 V
2
ik, and define Z ∈ R

n×K such that Zik = 1
θi
Vik, for each i ∈ [n], k ∈

[K]. Let B = (V�V)−1VTU. To show that B is symmetric, observe that
VU� = P = P� = UV�. Multiplying both sides by V and V�,

V�VU�V = V�UV�V,

and observing that (V�V)−1 exists since V is full rank, we have

U�V(V�V)−1 = (V�V)−1V�U,

which implies that B� = B. To obtain the equivalent representation for P,
form a diagonal matrix Θ = diag(θ). Then ΘZ = V, and

ΘZBZ�Θ=V[(VTV)−1VTU]V� = V(VTV)−1VTVU� = VU�=P.

Finally, under the conditions of Proposition 1, V uniquely determines the
pattern of zeros of any non-negative eigenbasis ofP, and therefore supp(V) =
supp(ΘZQ) = supp(ZQ) for some permutation Q.

Proof of Proposition 3. Suppose that P = VU� for some non-
negative matrix V that satisfies the assumptions of Proposition 1. Let D ∈
realK such that Di = ‖V·k‖2 and D = diag(D). Then P = ˜VDU�. Let
V(0) = ˜V be the initial value of Algorithm 1. Then, observe that

T(1) = P˜V = ˜VDUT
˜V,

˜T
(1)

= T(1)
[

˜V
�
T(1)

]−1
(˜V

T
˜V)

= ˜VD(UT
˜V)

(

UT
˜V
)−1

D−1(˜V
�
˜V)−1(˜V

�
˜V)

= ˜V.

Suppose that λ ∈ [0, v∗). Then, λmaxj∈[K] |˜V| < ˜Vik for all i ∈ [n], k ∈ [K]

such that Vik > 0, and hence U(1) = S(˜V, λ) = ˜V. Finally, since ‖˜V·,k‖2 =
1 for all k ∈ [K], then V(1) = ˜V.
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Proof of Theorem 1. The proof consists of a one-step fixed point
analysis of Algorithm 2. We will show that if Z(t) = Z, then Z(t+1) = Z

with high probability. LetT = T(t+1) = AZ be value after the multiplication
step. Define C ∈ R

K×K to be the diagonal matrix with community sizes on

the diagonal, Ckk = nk = ‖Z·,k‖1. Then ˜T = ˜T
(t+1)

= TC−1. In order for
the threshold to set the correct set of entries to zero, a sufficient condition
is that in each row i the largest element of ˜T i,· corresponds to the correct
community. Define Ck ⊂ [n] as the node subset corresponding to community
k. Then,

˜Tik =
1

nk
Ai,·Z ·,k =

1

nk

∑

j∈Ck

Aij .

Therefore ˜Tik is a sum of independent and identically distributed Bernoulli
random variables. Moreover, for each k1 and k2 in [K], ˜Tik1 and ˜Tik2 are
independent of each other.

Given a value of λ ∈ (0, 1), let

Ei(λ) = {λ|˜T iki | > |˜T ikj |, i ∈ Cki∀kj �= ki}

be the event that the largest entry of ˜Ti· corresponds to ki, that is, the entry
corresponding to the community of node i, and all the other indexes in that

row are smaller in magnitude than λ|˜Tiki |. Let U = U(t+1) = S(˜T(t+1)
, λ)

be the matrix obtained after the thresholding step. Under the event E(λ) =
⋂n

i=1 Ei(λ), we have that ‖Ui,·‖∞ = Uiki for each i ∈ [n], and hence

Uik =

{

Uiki if k = ki,
0 otherwise.

Therefore, under the event E(λ), the thresholding step recovers the correct
support, so Z(t+1) = Z.

Now we verify that under the conditions of Theorem 3.6, the event E(λ)
happens with high probability. By a union bound,

P(E(λ)) ≥ 1−
n
∑

i=1

P(Ei(λ)C) ≥ 1−
n
∑

i=1

∑

j �=ki

P(˜Tij > λ˜Tiki). (A.2)
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For j �= ki, ˜Tij − λ˜Tiki is a sum of independent random variables with
expectation

E

[

˜Tij − λ˜Tiki

]

=
1

nj

∑

j∈Cj
E[Aij ]−

λ

nki

∑

j∈Cki

E[Aij ]

= q − λ
nki − 1

nki

p. (A.3)

By Hoeffding’s inequality, we have that for any τ ∈ R,

P

(

̂Tij − λ̂Tiki ≥ τ + E

[

̂Tij − λ̂Tiki

])

≤ 2 exp

⎛

⎝

−2τ2

1
nj

+ λ2

nki

⎞

⎠

≤ 2 exp

(

−2nminτ
2

1 + λ2

)

≤ 2 exp
(

−nminτ
2
)

,

where nmin = mink∈[K] nk. Setting

τ = −E

[

̂Tij − λ̂Tiki

]

≥ λ∗p− q − 1

nki

p

and using Eq. A.3 and 3.6, we obtain that for n sufficiently large,

P

(

̂Tij > λ̂Tiki

)

≤ 2 exp

⎛

⎝−nmin

⎛

⎝c1

√

log(Kn)

mink nk
− p

nk

⎞

⎠

2⎞

⎠

≤ 2 exp

(

−nmin

(

(c1 − 1)
log(Kn)

nmin

))

=
2

(Kn)c1−1
.

Combining with the bound (A.2), the probability of event E(λ) (which im-
plies that Z(t+1) = Z) is bounded from below as

P(E(λ)) ≥ 1− n(K − 1) min
i∈[n],k∈[K]

P

(

̂Tij > λ̂Tiki

)

≥ 1− 2(K − 1)n

(Kn)c1−1

≥ 1− 2

Kn(c1−2)
.
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Therefore, with high probability Z is a fixed point of the Algorithm 2 for
any λ ∈ (λ∗, 1).

Proof of Proposition 4. Observe that

‖A− ̂VB̂V
�‖2F = Tr(A�A)− 2Tr(̂V

�
A�

̂VB) + Tr(B�
̂V
�
̂VB̂V

�
̂V)

= ‖B− (̂V
�
̂V)−1

̂V
�
ÂV(̂V

�
̂V)−1‖2F + C,

where C is a constant that does not depend on B. Therefore ̂B

̂P = argmin
B∈RK×K

‖A− ̂VB̂V
�‖2F

= ̂V(̂V
�
̂V)−1

̂V
�
ÂV(̂V

�
̂V)−1

̂V
�
.

Suppose that ̂V = ̂Q̂R for some matrix Q with orthonormal columns of size
n×K. Then, ̂R is a full rank matrix, and therefore

(̂V
�
̂V)−1 = ̂R

−1
(̂Q

�
̂Q)−1(̂R�)−1.

Using this equation, we obtain the desired result.
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