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Abstract
In this paper, we study a first-order inexact primal-dual algorithm (I-PDA) for solv-
ing a class of convex-concave saddle point problems. The I-PDA, which involves a
relative error criterion and generalizes the classical PDA, has the advantage of solv-
ing one subproblem inexactly when it does not have a closed-form solution. We show
that the whole sequence generated by I-PDA converges to a saddle point solution
withO(1/N) ergodic convergence rate, where N is the iteration number. In addition,
under a mild calmness condition, we establish the global Q-linear convergence rate
of the distance between the iterates generated by I-PDA and the solution set, and the
R-linear convergence speed of the nonergodic iterates. Furthermore, we demonstrate
that many problems arising from practical applications satisfy this calmness condi-
tion. Finally, some numerical experiments are performed to show the superiority and
linear convergence behaviors of I-PDA.
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1 Introduction

In this paper, we propose a first-order inexact primal-dual algorithm (I-PDA) for
solving the following saddle point problem:

min
x∈X

max
y∈Y

L(x, y) := f (x) + 〈Kx, y〉 − g(y), (1)

where X and Y are two finite-dimensional real vector spaces endowed with the inner
product 〈·, ·〉 and norm ‖ · ‖ = √〈·, ·〉, K : X → Y is a bounded linear operator
with the operator norm ‖K‖ = L, f : X → (−∞, ∞] and g : Y → (−∞, ∞]
are proper lower semicontinuous (l.s.c.) convex functions. The convex-concave sad-
dle point problem (1) often arises from a wide range of applications such as finding
a saddle point of the Lagrangian function for a convex optimization with linear con-
straints, image processing, and machine learning problems, see, e.g., [3, 4, 15, 18,
37]. Besides, it is well known that (1) is equivalent to the primal and dual problem:

min
x∈X

f (x) + g∗(Kx) and min
y∈Y

f ∗(−K∗y) + g(y),

where f ∗ and g∗ are the Fenchel conjugate [32] of the functions f and g, respec-
tively. Hence, problem (1) or its equivalent forms have been widely studied in the
literature, see, e.g., [7–10, 26, 35].

The classical PDA for solving problem (1), which was designed by Chambolle
and Pock [4] and He and Yuan [18], can be read as:

where τ, σ > 0 play the role of step sizes in the subproblems (2a) and (2c) respec-
tively, and γ ∈ [0, 1] is a parameter. This scheme was mainly motivated by the
classical Arrow-Hurwicz method [1] and the primal-dual hybrid gradient method [37]
which is the special case of (2) with γ = 0. The convergence of PDA (2) has been
well studied in [4, 5, 18]. Since then, many variants of PDA have been developed,
such as extending the value range of γ [3, 18, 19], finding the suitable step sizes by
line search strategy [21], solving the subproblems inexactly [20, 27], and solving the
subproblems stochastically when the dual variable is separable [6]. In addition, there
are some papers focusing on nonconvex settings [22, 33].

When the proximal operators of f and g are easy to compute, PDA (2) is efficient.
However, when applying PDA (2) to solve some problems in practical applications,
such as the �1 regularized sparse recovery problem [24, 34, 36] and the constrained
TV-�2 image restoration problem [16, 23], one of the subproblems in the PDA (2)
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usually does not possess closed-form solutions and some inner-iterative methods
should be introduced to evaluate the proximal operator [20]. Therefore, for practical
use of PDA, it is important to guarantee the effectiveness of PDA with approximate
solutions of subproblems in (2) while still ensure global convergence and conver-
gence rate as those of exact PDA. Along this line of research, Rasch and Chambolle
[27] introduced four types of approximation for computing the proximal operator
based on certain absolute error condition. Instead of solving the subproblems directly,
they assumed that the dual problems of these subproblems can be solved by some
iterative methods to a summable error tolerance. Global convergence and conver-
gence rate of the proposed methods were then analyzed under different combinations
of approximate subproblem solutions. Recently, Jiang et al. [20] proposed two types
of inexact criteria for PDA, namely the absolute and relative error criterion. The
absolute error criterion constructs an absolute summable tolerance sequence before
implementing the method, while the relative one involves a single parameter rang-
ing in [0, 1). When these criteria are satisfied, it is shown that any cluster point of
the generated iterates will be a solution of (1). However, this convergence result is
weaker than that of the standard exact PDA where the whole generated sequence can
converge.

In the literature, there are many variants and applications of either exact or inex-
act versions of PDA. However, we do not see any inexact PDA using relative error
criterion theoretically ensures the convergence of the whole iterate sequence as guar-
anteed by the exact PDA. In addition, only a few works studied the linear convergence
rate. It has shown in [4, 5, 18] that when γ = 1, the primal-dual gap of the ergodic
sequence generated by exact PDA (2) enjoys an O(1/N) convergence rate, where
N is the iteration number. Chambolle and Pock [4, 5] showed that when f (or g)
is strongly convex, the O(1/N2) convergence rates for the nonergodic sequence and
primal-dual gap of ergodic sequence can be obtained by dynamic selection of the
combination parameter γ at each iteration. Moreover, when both f and g are strongly
convex, the R-linear convergence rates for the nonergodic iterates and primal-dual
gap of the ergodic iterates can be obtained. Malitsky and Pock [21] showed that the
previous convergence rate results can be also maintained under proper line search
strategy, except the linear convergence rate. Rasch and Chambolle [27] proved that
all the convergence rate results can be achieved by solving the subproblems inexactly
under the same strongly convex assumptions on the objective functions. However,
there are some drawbacks in the existing linear convergence results. Firstly, the exist-
ing linear convergence is mainly based on the strong convexity of the objective
function [4, 5, 27], which is not satisfied by many problems in practical applica-
tions. Secondly, existing results only establish the R-linear convergence rate [4, 5,
27], which is weaker than the Q-linear convergence rate that we will establish for the
inexact PDA (I-PDA) developed in this paper. Thirdly, the current linear convergence
rate of inexact PDA with strongly convex assumptions on the objective function is
only established under the absolute summable error criterion, while we will show
the linear convergence of our I-PDA a relative error criterion under a mild calmness
assumption.

In this paper, we propose a new I-PDA which solves one of the subproblems inex-
actly to an adaptive accuracy relative to the total optimality error of the original
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problem. We show that this I-PDA will still maintain the same global convergence
and convergence rate of exact PDA although one of the subproblems is solved
inexactly. Without loss of generality, we assume that the proximal operator of f

possesses a closed-form solution, i.e., the exact solution of the subproblem (2a)
can be obtained, while some iterative methods should be applied to compute the
proximal operator of g, i.e., the subproblem (2c) can only be solved inexactly to
the required adaptive accuracy. Unlike the convergence result in [20], we show the
whole iterate sequence generated by I-PDA will converge to a saddle point solu-
tion of (1) and the primal-dual function value gap at the ergodic iterates possesses
a O(1/N) convergence rate. Under a mild calmness condition, we further estab-
lish the global Q-linear convergence rate for the distance between iterates generated
by I-PDA and the solution set, and the R-linear convergence for the nonergodic
iterates. Moreover, we show that many practical problems in applications actually
satisfy the calmness condition, although the function f or g in the objective func-
tion is not strongly convex. Some numerical experiments on these practical problems
are also performed to demonstrate the effectiveness and linear convergence rate of
I-PDA.

The rest of this paper is organized as follows. In Section 2, we introduce some
notations and recall some basic concepts and results. In Section 3, we present the
framework of I-PDA with a relative error criterion and analyze its global conver-
gence. Under a mild calmness condition, the Q-linear convergence and R-linear
convergence properties of the iterates generated by I-PDA are discussed in Section 4.
In Section 5, we provide some practical examples in applications that satisfy the
calmness condition. Some numerical experiments are conducted in Section 6 to
demonstrate the efficiency and linear convergence rate of I-PDA. Finally, we draw
some conclusions in Section 7.

2 Preliminaries

In this section, we summarize some basic concepts that will be useful in the subse-
quent sections and recall the first-order optimality condition of problem (1). Besides,
we formalize the inexact solution of the subproblem.

2.1 Notations and basic concepts

We use N, R+, and Rn to denote the set of natural number, nonnegative real number,
and n-dimensional Euclidean space, respectively. For a real number c and a set V ,
cV is defined by cV := {cv | v ∈ V }. For a function f : X → R ∪ {∞}, the domain
of f is defined by domf := {x ∈ X | f (x) < ∞}. f is lower semicontinuous (l.s.c.)
if f (x) ≤ lim infy→x f (y) and it is proper if domf �= ∅. The Fenchel conjugate [32]
of a function f : X → [−∞, ∞] is denoted by f ∗, that is:

f ∗(v) := sup
x∈X

{〈v, x〉 − f (x)}.
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For a proper, convex and l.s.c. function f : X → (−∞, ∞], its subdifferential at x

is denoted by ∂f (x) = {d | f (z) ≥ f (x) + 〈z − x, d〉, ∀ z ∈ X }, and for any y ∈ X
and σ > 0, its proximal operator [25] proxσf is given by:

proxσf (y) = arg min
x∈X

{
f (x) + 1

2σ
‖x − y‖2

}
.

If f is the indicator function δC of the closed convex set C, then proxf (·) = ΠC(·),
the projection operator onto the set C. For a linear operator K , its adjoint operator
is denoted as K∗. If S is a self-adjoint (not necessarily positive definite) linear oper-
ator, we use ‖x‖2S to denote 〈x, Sx〉. For a closed convex set C ⊂ X , we denote
dist(x, C) = minz∈C{‖x − z‖} and distG(x, C) = minz∈C{‖x − z‖G} when G is a
self-adjoint and positive definite linear operator. We also use I to denote the iden-
tity operator. For a self-adjoint and positive definite linear operator G, we say a
sequence {uk} ⊂ U converge to û ∈ U Q-linearly under G-norm, if there exist a
scalar ξ ∈ (0, 1) and k̄ ∈ N such that:

‖uk+1 − û‖G ≤ ξ‖uk − û‖G, ∀ k ≥ k̄.

Moreover, if there exists a nonnegative scalar sequence {wk} such that:
‖uk − û‖G ≤ wk,

where {wk} converges to zero Q-linearly, we say the sequence {uk} converge to û

R-linearly under G-norm.
The pair (x̂, ŷ) defined on X × Y is called a saddle point of problem (1) if it

satisfies the following inequalities:

L(x̂, y) ≤ L(x̂, ŷ) ≤ L(x, ŷ), ∀ x ∈ X , ∀ y ∈ Y .

Alternatively, we can rewrite these inequalities as:

{
f (x) − f (x̂) + 〈x − x̂, K∗ŷ〉 ≥ 0, ∀ x ∈ X ,

g(y) − g(ŷ) + 〈y − ŷ, −Kx̂〉 ≥ 0, ∀ y ∈ Y . (3)

Note that the inequality system (3) on (x̂, ŷ) can be also reformulated as the
following KKT system: {

0 ∈ ∂f (x̂) + K∗ŷ,

0 ∈ ∂g(ŷ) − Kx̂.
(4)

We denote the solution set to the KKT system (4) by Û and assume Û is nonempty in
this paper.

Let U := X ×Y and u := (x, y) ∈ U . For any u ∈ U , we define the KKTmapping
R : U → U as:

R(u) :=
(

x − proxf (x − K∗y)

y − proxg(y + Kx)

)
. (5)

Since the proximal operator of a proper convex function is Lipschitz continuous with
unit Lipschitz constant, the mapping R(·) is continuous on U . Obviously, for any
u ∈ U , we have u ∈ Û if and only if R(u) = 0.

Now we recall the definition of locally upper Lipschitz continuity [29].
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Definition 1 Let BY be the unit ball in Y . Then, the multivalued mapping F : X ⇒
Y is locally upper Lipschitz continuous at x0 ∈ X with modulus κ0 > 0, if there
exists a neighborhood V of x0 such that:

F(x) ⊆ F(x0) + κ0‖x − x0‖BY , ∀ x ∈ V .

For a multivalued mapping F : X ⇒ Y , it is said to be piecewise polyhedral, if its
graph, denoted as GphF , is the union of finitely many polyhedral sets. Robinson [30]
showed that if F is piecewise polyhedral, then it is locally upper Lipschitz continuous
at any x0 ∈ X with modulus κ0 independent of x0.

A proper l.s.c. convex function f : X → (−∞, ∞] is called piecewise linear-
quadratic if its domain is the union of finitely many polyhedral sets and f is an affine
or a quadratic function on each of these polyhedral sets. A piecewise linear mapping
is also piecewise polyhedral. Furthermore, we summarize several useful results in the
following lemma, whose proof can be found in [31].

Lemma 1 Let f : X → (−∞, ∞] be a proper l.s.c. convex function. Then f is
piecewise linear-quadratic if and only if the graph of ∂f is piecewise polyhedral. f is
piecewise linear-quadratic if and only if f ∗ is piecewise linear-quadratic. Moreover,
f is piecewise linear-quadratic function if and only if the proximal mapping of f is
piecewise linear.

The following definition of calmness is given in [11].

Definition 2 Let (x0, y0) ∈ GphF . The multivalued mapping F : X ⇒ Y is calm
at x0 for y0 with modulus κ0 ≥ 0, if there exists a neighborhood V of x0 and a
neighborhood W of y0 such that:

F(x) ∩ W ⊆ F(x0) + κ0‖x − x0‖BY , ∀x ∈ V .

If F : X ⇒ Y is the subdifferential of a convex piecewise linear-quadratic func-
tion f , it follows from Lemma 1 that F is piecewise polyhedral. Then, as discussed
in [30], we know that F is locally upper Lipschitz continuous at any x0 ∈ X with
modulus κ0 independent of x0. Furthermore, according to Definitions 1 and 2, we can
deduce that for any (x0, y0) ∈ GphF , F is calm at x0 for y0 with modulus κ0 > 0
independent of the choice of (x0, y0).

2.2 Inexact subproblem solution

We assume that there exists an iterative method G which can be used to solve the
proximal mapping related to the y-subproblem in our I-PDA. Formally, we have the
following assumption.
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Assumption 1 Suppose G is an iterative method having the following properties:
for any ȳ ∈ Y and σ > 0, G can generate an infinite sequence (yl, el) ∈ Y × Y ,
l = 0, 1, 2, . . ., satisfying:

lim
l→∞ el = 0 and el ∈ ∂y

[
g(y) + 1

2σ
‖y − ȳ‖2

]
y=yl

.

Note that Assumption 1 implies there exists an iterative method G that can be used
to solve the y-subproblem in our I-PDA to any required accuracy (more details can
be seen in Algorithm 1). Similar assumptions are also used in [13, 14, 20]. However,
if the proximal mapping in the y-subproblem of I-PDA has a closed-form solution or
can be solved exactly easily, we can regard the subproblem solution is simply given
by the first iteration by G , i.e., y1 = proxτg(ȳ) and e1 = 0.

Note that the iterates {yl} generated by G converge to proxτg(ȳ). In fact, it follows
from Assumption 1 that yl = proxτg(ȳ + σel). Since the proximal operator of a
proper convex l.s.c. function is nonexpansive, we have ‖yl − proxτg(ȳ)‖ ≤ σ‖el‖.
Combining this with liml→∞ el = 0, we obtain that the sequence {yl} generated by
G converges to proxτg(ȳ).

3 An inexact primal-dual algorithm

In this section, we first propose our inexact PDA (I-PDA) with a relative-error crite-
rion for solving the y-subproblem. Then, we show the global convergence and give
the convergence rate result of the proposed algorithm.

Throughout this paper, we assume the solution set of problem (1) is nonempty and
the parameters in Algorithm 1 satisfy τσL2 < 1. We first denote the self-adjoint
operators H : Y → Y and G : X × Y → X × Y , respectively, as:

H :=
(
1

σ
I − τKK∗

)−1

and G :=
( 1

τ
I −K∗

−K 1
σ
I

)
. (6)

Then, for any (x, y) ∈ X × Y , we define ϕ : X × Y → R as:

ϕ(x, y) := 1

τ
‖x‖2 − 2〈x, K∗y〉 + 1

σ
‖y‖2 = ‖(x, y)‖2G. (7)

Since τσL2 < 1, H is well defined and positive definite and G defined in (6) is also
positive definite. Hence, for any (x, y) ∈ X × Y , there exist two positive constants
β1 and β2 such that:

β1

(
‖x‖2 + ‖y‖2

)
≤ ϕ(x, y) ≤ β2

(
‖x‖2 + ‖y‖2

)
, (8)
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where β1 and β2 are the smallest and largest eigenvalues of G, respectively. So, we
can define a distance function distG(·, Û) : U → R+ such that for any point u =
(x, y) ∈ U , its distance to the set Û is defined as:

distG(u, Û) := min
(x̂,ŷ)∈Û

‖(x − x̂, y − ŷ)‖G = min
(x̂,ŷ)∈Û

√
ϕ(x − x̂, y − ŷ).

Now, our I-PDA using a relative error criterion for solving the y-subproblem is given
in Algorithm 1.

For I-PDA, we have the following comments. One observation is that the evalu-
ation of Hek , which involves solving linear system, needs to be calculated at each
iteration. When the dimension of Y is small, one may pre-compute the Cholesky fac-
torization of I − τσKK∗ and then the evaluation of Hek can be done efficiently by
simply performing backward and forward substitution. When the dimension of X is
small, one could pre-compute the Cholesky factorization of I − τσK∗K and apply
the Sherman-Morrison formula to compute Hek efficiently. On the other hand, when
K possesses certain structure, such as the block circulant structure often arising from
image processing, the evaluation of Hek could be also done quite efficiently. In the
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case of expensive evaluation of Hek , an alternative strategy might be to replace the
criterion (10) by:

‖ek‖2 ≤ (η2/σ)λmin(I − στKK∗)ϕ(xk − x̃k, yk − ỹk), (17)

where λmin(·) means the minimum eigenvalue of a matrix, and compute dk
1 , d

k
2 , and

αk by:

dk
1 = 1

τ
(xk − x̃k) − K∗(yk − ỹk), (18)

dk
2 = −K(xk − x̃k) + 1

σ
(yk − ỹk) + ek, (19)

αk = 〈xk − x̃k, dk
1 〉 + 〈yk − ỹk, dk

2 〉
‖dk

1‖2 + ‖dk
2‖2

. (20)

The criterion (17) is an overestimate of the error and hence, stronger than (10). As a
result, similar to Theorems 1 and 2 given in Sections 3 and 4, the global convergence
and convergence rates with this modification can be established under 2-norm.

In step 2 of Algorithm 1, the y-subproblem can be solved inexactly by an iterative
method G until criterion (10) is satisfied. Note that the right-hand side of (10) is
nonnegative due to the fact τσL2 < 1 and (8). We show in the next lemma that
the criterion (10) must be satisfied in a finite number of iterations if a method G
satisfying Assumption 1 is applied to solve the y-subproblem in step 2 of Algorithm 1
unless (xk, yk) is a solution of (1). The inexact criterion (10) is different from that
one used in [20] where an additional variable is involved for collecting the relative
error. Also note that two additional correction steps in (14) and (15) are used for the
purpose of establishing global convergence of the Algorithm 1. Moreover, if we set
η = 0 and ρ = 1, Algorithm 1 would reduce to the classical PDA (2) with γ = 1.
We can also see that Algorithm 1 stops when ϕ(dk

1 , d
k
2 ) is sufficiently small, that is

ϕ(dk
1 , d

k
2 ) < ε for small positive ε. Hence, the stepsize αk given by (16) is well-

defined when the algorithm does not stop. We will show in Corollary 1 that (x̃k, ỹk)

is in fact a solution of (1) if ϕ(dk
1 , d

k
2 ) = 0.

Now, for solving the y-subproblem inexactly in step 2 of Algorithm 1, we have
the following lemma.

Lemma 2 Suppose an iterative method G satisfying Assumption 1 is applied to solve
the y-subproblem in step 2 of Algorithm 1, that is, at the kth iteration of Algorithm 1,
G can generate an infinite sequence (yk,l, ek,l) ∈ Y × Y , l = 0, 1, 2, . . ., satisfying:

lim
l→∞ ek,l = 0, and ek,l ∈ ∂y

[
g(y) + 1

2σ
‖y − ȳ‖2

]
y=yk,l

, (21)

where ȳ = yk + σK(2x̃k − xk). If (xk, yk) is not a solution of (1), for sufficiently
large l we have:

‖ek,l‖2H ≤ η2ϕ(xk − x̃k, yk − yk,l), (22)

where η is any constant in [0, 1). Hence, setting ỹk = yk,l with l sufficiently large,
the criterion (10) will be satisfied.
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Proof Suppose condition (22) is not satisfied for all l. Then, by (21), we must have:

lim
l→∞ ϕ(xk − x̃k, yk − yk,l) = 0.

Thus, by (8), we have xk = x̃k and liml→∞ yk,l = yk . Hence, it follows from (9) and
(21) that:

−K∗yk − 1

τ
(x̃k − xk) ∈ ∂f (x̃k),

ek,l + K(2x̃k − xk) + 1

σ
(yk,l − yk) ∈ ∂g(yk,l),

which can be simplified as:

−K∗yk ∈ ∂f (xk),

ek,l + Kxk + 1

σ
(yk,l − yk) ∈ ∂g(yk,l).

Taking l → ∞ in the above relations and using that the graph of the subdifferential
mappings of a proper l.s.c. convex function is closed, we obtain −K∗yk ∈ ∂f (xk)

andKxk ∈ ∂g(yk), which implies (xk, yk) is a solution of (1). The proof is complete.

By the previous Lemma 2, to analyze the global convergence and convergence
rate of Algorithm 1, in the following, we assume (xk, yk) generated by Algorithm 1
is not a solution of (1) for any k, which implies a ỹk satisfying criterion (10) in step
2 of Algorithm 1 can be always computed by a proper method G . Now, we give the
key lemma for showing the convergence of I-PDA.

Lemma 3 Let {(xk, yk)} and {(x̃k, ỹk)} be the iterates generated by Algorithm 1.
Then for all x ∈ X , y ∈ Y and k ≥ 0, we have:

L(x̃k, y) − L(x, ỹk) ≤ 1

ρ

(
ϕ(xk − x, yk − y) − ϕ(xk+1 − x, yk+1 − y)

)

−1

4
(1 − η2)(2 − ρ)ϕ(xk − x̃k, yk − ỹk). (23)

Proof First, it follows from (9) that:

f (x) − f (x̃k) + 〈x − x̃k, K∗yk + 1

τ
(x̃k − xk)〉 ≥ 0, ∀ x ∈ X . (24)

By rearranging terms, we obtain

〈x̃k − x,
1

τ
(xk − x̃k) − K∗(yk − ỹk)〉 + 〈x̃k − x, K∗(y − ỹk)〉

≥ f (x̃k) − f (x) + 〈x̃k − x, K∗y〉, ∀ x ∈ X . (25)

Similarly, according to (11), we get:

g(y)−g(ỹk)+〈y−ỹk, −Kx̃k−K(x̃k−xk)+ 1

σ
(ỹk−yk)−ek〉 ≥ 0, ∀ y ∈ Y . (26)



Numerical Algorithms

By rearranging terms, we get:

〈ỹk − y, −K(xk − x̃k) + 1

σ
(yk − ỹk) + ek〉 − 〈x̃k − x, K∗(y − ỹk)〉

≥ g(ỹk) − g(y) + 〈ỹk − y, −Kx〉, ∀ y ∈ Y . (27)

Summing (25) and (27), we can derive:

〈x̃k − x,
1

τ
(xk − x̃k) − K∗(yk − ỹk)〉

+〈ỹk − y, −K(xk − x̃k) + 1

σ
(yk − ỹk) + ek〉

≥ L(x̃k, y) − L(x, ỹk), ∀ x ∈ X , ∀ y ∈ Y . (28)

On the other hand, it follows from (12) and (13) that:

1

τ
(xk − x̃k) − K∗(yk − ỹk) = 1

τ
dk
1 − K∗dk

2 , (29)

−K(xk − x̃k) + 1

σ
(yk − ỹk) + ek = −Kdk

1 + 1

σ
dk
2 . (30)

Substituting (29) and (30) into (28), we obtain:

〈xk − x,
1

τ
dk
1 − K∗dk

2 〉 + 〈yk − y, −Kdk
1 + 1

σ
dk
2 〉

≥ 〈xk − x̃k,
1

τ
dk
1 − K∗dk

2 〉 + 〈yk − ỹk, −Kdk
1 + 1

σ
dk
2 〉

+L(x̃k, y) − L(x, ỹk), ∀ x ∈ X , ∀ y ∈ Y . (31)

By some simple manipulations, we have:

〈xk − x̃k,
1

τ
dk
1 − K∗dk

2 〉 + 〈yk − ỹk, −Kdk
1 + 1

σ
dk
2 〉

= 1

τ
〈xk − x̃k, dk

1 〉 + 1

σ
〈yk − ỹk, dk

2 〉 − 〈xk − x̃k, K∗dk
2 〉 − 〈yk − ỹk, Kdk

1 〉

= 1

2τ

(
‖xk − x̃k‖2 + ‖dk

1‖2 − ‖xk − x̃k − dk
1‖2

)

+ 1

2σ

(
‖yk − ỹk‖2 + ‖dk

2‖2 − ‖yk − ỹk − dk
2‖2

)
− 〈dk

1 , K
∗dk

2 〉
−〈xk − x̃k, K∗(yk − ỹk)〉 + 〈xk − x̃k − dk

1 , K
∗(yk − ỹk − dk

2 )〉
= 1

2
ϕ(xk − x̃k, yk − ỹk) + 1

2
ϕ(dk

1 , d
k
2 )

−1

2
ϕ(xk − x̃k − dk

1 , y
k − ỹk − dk

2 ). (32)

Then, by the definitions of H and ϕ(·, ·) in (6) and (7), (12) and (13), we obtain:
ϕ(xk − x̃k − dk

1 , y
k − ỹk − dk

2 ) = ϕ(−τK∗Hek, −Hek)

= τ‖K∗Hek‖2 − 2〈τK∗Hek, K∗Hek〉 + 1

σ
‖Hek‖2

= ‖ek‖2H . (33)
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Substituting (32) and (33) into (31), and applying the inexact criterion (10), we can
further get for all x ∈ X and y ∈ Y:

〈xk − x,
1

τ
dk
1 − K∗dk

2 〉 + 〈yk − y, −Kdk
1 + 1

σ
dk
2 〉

≥ 〈xk − x̃k,
1

τ
dk
1 − K∗dk

2 〉 + 〈yk − ỹk, −Kdk
1 + 1

σ
dk
2 〉

+L(x̃k, y) − L(x, ỹk) (34)

= 1

2
ϕ(xk − x̃k, yk − ỹk) + 1

2
ϕ(dk

1 , d
k
2 ) − 1

2
‖ek‖2H + L(x̃k, y) − L(x, ỹk)

≥ 1 − η2

2
ϕ(xk − x̃k, yk − ỹk) + 1

2
ϕ(dk

1 , d
k
2 ) + L(x̃k, y) − L(x, ỹk). (35)

From (34) to (35), a lower bound on the stepsize αk can be derived as:

αk = 〈xk − x̃k, 1
τ
dk
1 − K∗dk

2 〉 + 〈yk − ỹk, −Kdk
1 + 1

σ
dk
2 〉

ϕ(dk
1 , d

k
2 )

≥
1−η2

2 ϕ(xk − x̃k, yk − ỹk) + 1
2ϕ(dk

1 , d
k
2 )

ϕ(dk
1 , d

k
2 )

≥ 1

2
. (36)

Therefore, we have for all x ∈ X and y ∈ Y:
ϕ(xk − x, yk − y) − ϕ(xk+1 − x, yk+1 − y)

= ϕ(xk − x, yk − y) − ϕ(xk − x − ραkd
k
1 , y

k − y − ραkd
k
2 )

= 2ραk

(
〈xk − x,

1

τ
dk
1 − K∗dk

2 〉 + 〈yk − y, −Kdk
1 + 1

σ
dk
2 〉

)
− ρ2α2

kϕ(dk
1 , d

k
2 )

≥ 2ραk

(
〈xk − x̃k,

1

τ
dk
1 − K∗dk

2 〉 + 〈yk − ỹk, −Kdk
1 + 1

σ
dk
2 〉

)

−ρ2α2
kϕ(dk

1 , d
k
2 ) + 2ραk

(
L(x̃k, y) − L(x, ỹk)

)

= (2 − ρ)ραk

(
〈xk − x̃k,

1

τ
dk
1 − K∗dk

2 〉 + 〈yk − ỹk, −Kdk
1 + 1

σ
dk
2 〉

)

+2ραk

(
L(x̃k, y) − L(x, ỹk)

)

≥ 1

2
(1 − η2)(2 − ρ)ραkϕ(xk − x̃k, yk − ỹk) + 2ραk

(
L(x̃k, y) − L(x, ỹk)

)

≥ 1

4
(1 − η2)(2 − ρ)ρϕ(xk − x̃k, yk − ỹk) + ρ

(
L(x̃k, y) − L(x, ỹk)

)
, (37)

where the first inequality follows from (34), the third equality follows from the def-
inition of αk in (16), the second inequality follows from (8) and (35), and the third
inequality follows from (36). This completes the proof.

Based on the analysis for showing the previous Lemma 3, we can easily have the
following corollary.
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Corollary 1 If ϕ(dk
1 , d

k
2 ) = 0, then (x̃k, ỹk) is a saddle point solution of (1).

Proof If ϕ(dk
1 , d

k
2 ) = 0, we have dk

1 = 0 and dk
2 = 0 because of (8). Then, it follows

from (29) to (30) that:

1

τ
(xk − x̃k) − K∗(yk − ỹk) = 0 and

−K(xk − x̃k) + 1

σ
(yk − ỹk) + ek = 0.

Substituting the above two equalities into (24) and (26), we obtain:

f (x) − f (x̃k) + 〈x − x̃k, K∗ỹk〉 ≥ 0, ∀ x ∈ X ,

g(y) − g(ỹk) + 〈y − ỹk, −Kx̃k〉 ≥ 0, ∀y ∈ Y,

which means (x̃k, ỹk) is a saddle point solution of (1).

The following theorem gives the global convergence of the iterates generated by
I-PDA as well as its ergodic convergence rate.

Theorem 1 Let {(xk, yk)} and {(x̃k, ỹk)} be the iterates generated by Algorithm 1.
Then, {(xk, yk)} and {(x̃k, ỹk)} converge to a same solution of (1). Furthermore, for
the ergodic sequence {(XN, YN)} given by:

XN = 1

N

N−1∑
k=0

x̃k and YN = 1

N

N−1∑
k=0

ỹk, (38)

it holds that:

L(XN, y) − L(x, YN) ≤ ϕ(x0 − x, y0 − y)

ρN
, ∀ x ∈ X , ∀ y ∈ Y . (39)

Proof Summing the inequality (23) over k = 0, 1, . . . , N − 1, we have:

1

4
(1 − η2)(2 − ρ)

N−1∑
k=0

ϕ(xk − x̃k, yk − ỹk) +
N−1∑
k=0

L(x̃k, y) − L(x, ỹk)

+ 1

ρ
ϕ(xN −x, yN −y) ≤ 1

ρ
ϕ(x0−x, y0−y), ∀ x ∈ X , ∀ y ∈ Y . (40)

Setting (x, y) as an arbitrary solution (x̂, ŷ) of (1) and using (8), (40), and the fact
L(x̃k, ŷ) − L(x̂, ỹk) ≥ 0, we conclude that {(xk, yk)} is bounded and:

β1

∞∑
k=0

(
‖xk − x̃k‖2 + ‖yk − ỹk‖2

)
≤

∞∑
k=0

ϕ(xk − x̃k, yk − ỹk) < ∞.

Hence, we have ‖(xk, yk) − (x̃k, ỹk)‖ → 0 as k → ∞ and by (10), ek → 0 as
k → ∞. Furthermore, there exists a subsequence {(xkj , ykj )} converging to a limit
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point (x∞, y∞) ∈ X ×Y . Hence, substituting k by kj in (24) and (26) and taking the
limits as j → ∞, it follows from the lower semicontinuities of f and g that:

f (x) − f (x∞) + 〈x − x∞, K∗y∞〉 ≥ 0, ∀ x ∈ X ,

g(y) − g(y∞) + 〈y − y∞, −Kx∞〉 ≥ 0, ∀y ∈ Y,

which shows (x∞, y∞) is a saddle point solution of (1). Notice that (23) holds for
any solution of (1). Hence, we have:

ϕ(xk+1 − x∞, yk+1 − y∞) ≤ ϕ(xk − x∞, yk − y∞), ∀ k ≥ 0,

which implies:

ϕ(xk − x∞, yk − y∞) ≤ ϕ(xkj − x∞, ykj − y∞), ∀ k ≥ kj .

Then, it follows from (8) and {(xkj , ykj )} converging to (x∞, y∞) that the whole
sequence {(xk, yk)} converges to (x∞, y∞). In addition, we also have {(x̃k, ỹk)}
converges to (x∞, y∞).

Now, it follows from (40) that:

N−1∑
k=0

L(x̃k, y) − L(x, ỹk) ≤ 1

ρ
ϕ(x0 − x, y0 − y) − 1

ρ
ϕ(xN − x, yN − y).

Then, by the convexity of L(·, y) − L(x, ·) and (8), we have:

N
(
L(XN, y) − L(x, YN)

)
≤ 1

ρ
ϕ(x0 − x, y0 − y).

which gives (39).

Theorem 1 shows that the iterative sequences generated by I-PDA converge to a
solution of (1), which is stronger than that in [20], where it only shows any clus-
ter point of the sequence {(xk, yk)} is a solution of (1). This stronger result comes
from the different inexact criterion (10) and the correction steps used in I-PDA. In
addition, exactly similar bounds as (39) are also established in [4, 5] to indicate a
worst-case O(1/N) convergence rate at the ergodic iterates. In fact, for any fixed
solution (x̂, ŷ) ∈ Û , we can consider the functions L(·, ŷ) and L(x̂, ·) associated
with the saddle point (x̂, ŷ). Then, by setting (x, y) = (x̂, ŷ) in (39), we can derive
the values of convex function L(·, ŷ) at {XN } converge to its minimum value L(x̂, ŷ)

with the rate of:

L(XN, ŷ)−L(x̂, ŷ) ≤ L(XN, ŷ)−L(x̂, YN) ≤ φ(x0−x̂, y0−ŷ)/(ρN) = O(1/N).

And similarly, we have the values of concave function L(x̂, ·) at {YN } converges to
its maximum value L(x̂, ŷ) with the rate of:

L(x̂, ŷ) − L(x̂, YN) ≤ L(XN, ŷ) − L(x̂, YN) = O(1/N).
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4 Linear convergence

In this section, we establish the Q-linear convergence rate of the distance of the iterate
uk to the solution set Û , i.e., distG(uk, Û), which leads to the R-linear convergence
rate for the iterates {(xk, yk)}.

The following lemma provides an upper bound for ‖R(x̃k, ỹk)‖, where R(·) is
defined in (5).

Lemma 4 Let {(xk, yk)} and {(x̃k, ỹk)} be the iterates generated by Algorithm 1.
Then, for any k ≥ 0, there exists a constant κ1 > 0 such that:

‖R(ũk)‖2 ≤ κ1ϕ(xk − x̃k, yk − ỹk), (41)

where:

κ1 := 1

β1
max

{
3L2 + 2

τ 2
, 2L2 + 3

σ 2

}
+ 3η2

λmin(H)
,

and λmin(H) > 0 is the minimum eigenvalue of H .

Proof First, the optimality condition of (9) can be read as:

x̃k = proxf

[
x̃k −

(
1

τ
(x̃k − xk) + K∗yk

)]
. (42)

Similarly, the optimality condition of (11) can be read as:

ỹk = proxg

[
ỹk − (−K(2x̃k − xk) + 1

σ
(ỹk − yk) − ek)

]
. (43)

Then, it follows from (42), (43), and the definition of R(·) in (5) that:
‖R(ũk)‖2 = ‖x̃k − proxf (x̃k − K∗ỹk)‖2 + ‖ỹk − proxg(ỹ

k + Kx̃k)‖2

≤ ‖ − 1

τ
(x̃k − xk) + K∗(ỹk − yk)‖2

+‖K(xk − x̃k) + 1

σ
(ỹk − yk) − ek‖2

≤ 2

τ 2
‖xk − x̃k‖2 + 2L2‖yk − ỹk‖2

+3L2‖xk − x̃k‖2 + 3

σ 2
‖yk − ỹk‖2 + 3‖ek‖2

≤
(
3L2 + 2

τ 2

)
‖xk − x̃k‖2 +

(
2L2 + 3

σ 2

)
‖yk − ỹk‖2 + 3

λmin(H)
‖ek‖2H

≤
(
3L2 + 2

τ 2

)
‖xk − x̃k‖2 +

(
2L2 + 3

σ 2

)
‖yk − ỹk‖2

+ 3η2

λmin(H)
ϕ(xk − x̃k, yk − ỹk)

≤ κ1ϕ(xk − x̃k, yk − ỹk),
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where the first inequality follows from the 1-Lipschitz continuities of proxf (·) and
proxg(·), the second inequality uses the fact of ‖K‖ = L, the fourth inequality
follows from the inexact criterion (10), and the last inequality follows from (8).

Now, we are ready to establish the linear rate convergence of Algorithm 1 under
certain calmness condition on R−1. Note that this calmness condition are also pro-
posed for establishing the linear convergence of alternating direction method of
multipliers in [17].

Theorem 2 Let {(xk, yk)} and {(x̃k, ỹk)} be the iterates generated by Algorithm 1.
The following properties hold.

(i) there exists a solution u∞ := (x∞, y∞) of (1) such that the {(xk, yk)} and
{(x̃k, ỹk)} converge to u∞ ∈ Û ;
(ii) If R−1 is calm at the origin for u∞ with modulus θ > 0, i.e.:

dist(u, Û) ≤ θ‖R(u)‖, ∀ u ∈ {u ∈ U
∣∣ ‖u − u∞‖ ≤ r}, (44)

for some r > 0, there exists a positive number ξ ∈ [κ, 1) such that:

distG(uk+1, Û) ≤ ξdistG(uk, Û), (45)

for all k ≥ 0, where:

κ :=
√
1 − (1 − η2)(2 − ρ)ρ

4(1 + θ
√

κ1β2)2
< 1.

(iii) The iterates {uk} := {(xk, yk)} converges R-linearly.

Proof By Theorem 1, we already know that the property (i) holds. Hence, there exists
a k̄ ≥ 0 such that for all:

‖ũk − u∞‖ ≤ r, ∀ k ≥ k̄.

Thus, by using Lemma 4 and (44), we know that for all k ≥ k̄:

dist(ũk, Û) ≤ θ‖R(ũk)‖ ≤ θ
√

κ1

√
ϕ(xk − x̃k, yk − ỹk), (46)

where κ1 is given in Lemma 4. Next, by the definition of ϕ in (7) with G a positive
definite operator, it follows from the definition of the distance function distG(·, Û)

that:

dist(ũk, Û) ≥ 1√
β2

distG(ũk, Û)

≥ 1√
β2

(
distG(uk, Û) −

√
ϕ(xk − x̃k, yk − ỹk)

)
. (47)

By combining (46) with (47), we obtain for k ≥ k̄:

distG(uk, Û) ≤ (1 + θ
√

κ1β2)

√
ϕ(xk − x̃k, yk − ỹk). (48)
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Note that for any (x̂, ŷ) ∈ Û , it follows from (37) in Lemma 3 and L(x̃k, ŷ) −
L(x̂, ỹk) ≥ 0 that:

ϕ(xk − x̂, yk − ŷ) − ϕ(xk+1 − x̂, yk+1 − ŷ)

≥ 1

4
(1 − η2)(2 − ρ)ρϕ(xk − x̃k, yk − ỹk). (49)

Then, by the definition of distG(·, Û) with Û being a nonempty closed convex set,
for all k ≥ 0, we have:

dist2G(uk, Û) − dist2G(uk+1, Û) ≥ 1

4
(1 − η2)(2 − ρ)ρϕ(xk − x̃k, yk − ỹk). (50)

Hence, by (48), for k ≥ k̄, we have:

dist2G(uk, Û) − dist2G(uk+1, Û) ≥ (1 − η2)(2 − ρ)ρ

4(1 + θ
√

κ1β2)2
dist2G(uk, Û). (51)

Then, (50), (51), and Lemma 4 imply that the property (ii) holds, i.e., (45) holds for
all k ≥ 0.

Now, we show property (iii). Select ûk = (x̂k, ŷk) ∈ Û such that distG(uk, Û) =
‖uk − ûk‖G and denote δk = uk+1 − uk . Then, it follows from (49) that:

‖uk − ûk‖2G −‖uk+1 − ûk‖2G = ϕ(xk − x̂k, yk − ŷk)−ϕ(xk+1 − x̂k, yk+1 − ŷk) ≥ 0.

Hence, by (45), we have:

‖δk‖G = ‖uk+1 − uk‖G

≤ ‖uk+1 − ûk‖G + ‖uk − ûk‖G

≤ 2‖uk − ûk‖G = 2distG(uk, Û)

≤ 2ξkdistG(u0, Û). (52)

Then, it follows from {uk} converging to u∞ ∈ Û that u∞ = uk + ∑∞
j=k δj . So:

‖uk − u∞‖G ≤
∞∑

j=k

‖δj‖G ≤ 2distG(u0, Û)

∞∑
j=k

ξ j

= 2distG(u0, Û)ξk
∞∑

j=0

ξj

= ξk

[
2distG(u0, Û)

1

1 − ξ

]
,

which shows {uk} converging to u∞ R-linearly.

Under proper calmness condition (44), Theorem 2 shows the Q-linear convergence
rate of distG(uk, Û) and the nonergodic R-linear convergence rate for the iterates
{uk}. Although the constant θ in the calmness condition (44) is not easy to evaluate,
our results are more general and stronger than those in [4, 5] which are based on the
strong convexity of the objective function.
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Corollary 2 Let {(xk, yk)} and {(x̃k, ỹk)} be the iterates generated by Algorithm
1. Assume the mapping R : U → U is piecewise polyhedral. Then, the following
properties hold.
(i) There exists a constant θ̂ > 0 such that for all k ≥ 0 we have:

dist(u, Û) ≤ θ̂‖R(u)‖. (53)

(ii) For all k ≥ 0, we have:

distG(uk+1, Û) ≤ κ̂ distG(uk, Û), (54)

where:

κ̂ :=
√
1 − (1 − η2)(2 − ρ)ρ

4(1 + θ̂
√

κ1β2)2
< 1.

(iii) The iterates {uk} := {(xk, yk)} converges R-linearly.

Proof Since R−1 is piecewise polyhedral if and only if R is piecewise polyhedral
[17], it follows from [30] that there exist two constants θ > 0 and s > 0 such that:

dist(u, Û) ≤ θ̂‖R(u)‖, ∀ u ∈ {u ∈ U
∣∣ ‖R(u)‖ ≤ s}. (55)

By Theorem 2, we know {uk} converges to u∞ ∈ Û . Hence, there exists a constant
r > 0 such that ‖uk −u∞‖ ≤ r for all k ≥ 0. Note that when ‖R(uk)‖ > s, we have:

dist(uk, Û) ≤ ‖uk − u∞‖ ≤ r <
r

s
‖R(uk)‖. (56)

Combining (55) and (56), we have (53) holds with θ̂ := max{θ, r
s
}. Using (53), the

properties (ii) and (iii) can be similarly proved as the proof in Theorem 2.

5 Applications to some convex optimizationmodels

In this section, we give some examples arising from practical applications, where
the linear convergence results in the previous section will apply. As one can see in
Theorem 2, the calmness condition is the key assumption for linear convergence. In
order to show the linear convergence rate of I-PDA for solving these problems, it
is sufficient to show the KKT mapping (4) of these problems satisfy the calmness
condition (44). From the discussions in Section 2, it is sufficient to show the inverse
operator of KKT mapping defined in (5) is piecewise polyhedral.

Note that the objective functions f and g involved in the following examples
(except the elastic net problem) do not satisfy the strongly convex condition. Hence,
the theoretical results given in [4, 5, 27] do not imply the linear convergence rate of
PDA. However, from our analysis, these models satisfy the calmness condition and
the linear convergence rate can be obtained immediately.
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5.1 Matrix games

The matrix games can be applied to model the two-person zero-sum games [5].
Consider the following min-max matrix game [5, 21]:

min
x∈Δn

max
y∈Δm

〈Kx, y〉, (57)

where K ∈ Rm×n, Δn, and Δm denote the standard unit simplices in Rn and Rm,
respectively. Note that this problem (57) can be reformulated as:

min
x∈Rn

max
y∈Rm

δΔn(x) + 〈Kx, y〉 − δΔm(y). (58)

Then, the KKT mapping for this model (58) is:

R(u) :=
(

x − ΠΔn(x − K∗y)

y − ΠΔm(y + Kx)

)
, ∀ u ∈ U .

By recalling that Δn and Δm are polyhedral, Lemma 1 implies that ΠΔn(·) and
ΠΔm(·) are piecewise polyhedral, and so are R and R−1.

5.2 �1 regularized least squares

The �1 regularized least squares model, which includes LASSOmodel, is widely used
in signal processing and sparse optimization. Consider the following �1 regularized
problem [21]:

min
x∈Rn

1

2
‖Kx − b‖2 + λ‖x‖1, (59)

where K ∈ Rm×n and b ∈ Rm. Analogously, we can rewrite (59) as:

min
x∈Rn

max
y∈Rm

f (x) + 〈Kx, y〉 − g(y), (60)

where f (x) = λ‖x‖1 and g(y) = 1
2‖y‖2 + bT y. Then, the KKT mapping for this

model (60) is:

R(u) :=
(

x − proxf (x − K∗y)

y − proxg(y + Kx)

)
, ∀ u ∈ U .

Since ∂f is piecewise linear, f is piecewise linear-quadratic. In addition, g is
quadratic. Consequently, proxf (·) and proxg(·) are piecewise polyhedral, and so are
R and R−1.

5.3 Nonnegative least squares

Consider the following nonnegative least squares problem [21]:

min
x∈Rn+

1

2
‖Kx − b‖2, (61)
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where K ∈ Rm×n and b ∈ Rm. One saddle point formulation of (61) can be written
as:

min
x∈Rn

max
y∈Rm

δRn+(x) + 〈Kx, y〉 − g(y), (62)

where g(y) = 1
2‖y‖2 + bT y. Then the KKT mapping for this model (62) is:

R(u) :=
(

x − ΠRn+(x − K∗y)

y − proxg(y + Kx)

)
, ∀ u ∈ U .

Since Rn+ is polyhedral and g is quadratic, ΠRn+(·) and proxg(·) are piecewise

polyhedral, and so are R and R−1.

5.4 Elastic net problem

The elastic net problem, which is used for feature selection and sparse coding [5],
can be written as:

min
x∈Rn

1

2
‖Kx − b‖2 + λ1‖x‖1 + λ2‖x‖2, (63)

where K ∈ Rm×n and b ∈ Rm. Analogously, we can reformulate (63) as:

min
x∈Rn

max
y∈Rm

f (x) + 〈Kx, y〉 − g(y), (64)

where f (x) = λ1‖x‖1 + λ2‖x‖2 and g(y) = 1
2‖y‖2 + bT y. Then the KKT mapping

for this model (64) is:

R(u) :=
(

x − proxf (x − K∗y)

y − proxg(y + Kx)

)
, ∀ u ∈ U .

Similarly, we can conclude that R−1 is piecewise polyhedral.

5.5 Fused LASSO

The fused lasso problem, which was proposed for group variable selection [35], can
be written as:

min
y∈Rn

F (y) := ‖Dy‖1 + μ1‖y‖1 + μ2

2
‖Ay − b‖2, (65)

where A ∈ Rm×n, b ∈ Rm, and D ∈ R(n−1)×n is given by:

D =

⎛
⎜⎜⎝

−1 1
−1 1

· · · · · ·
−1 1

⎞
⎟⎟⎠ .

One min-max reformulation of (65) can be equivalently written as:

min
x∈Rm

max
y∈Rn

f (x) + 〈Kx, y〉 − g(y), (66)
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where f (x) = δB∞(x), g(y) = μ1‖y‖1+ μ2
2 ‖Ay −b‖2 and K = D∗. Then the KKT

mapping for this model (66) is:

R(u) :=
(

x − ΠB∞(x − K∗y)

y − proxg(y + Kx)

)
, ∀ u ∈ U .

Similarly, we can conclude that R−1 is piecewise polyhedral.

5.6 TV-�2 image restoration

Many image processing problems involve both constraints and regularized terms,
such as the tomography reconstruction, where both nonnegative constraints and total
variation regularization appear. Consider the following constrained TV-�2 image
restoration problem [16, 20, 23]:

min
y∈B

{
‖Dy‖1 + 1

2μ
‖Ay − c‖2

}
, (67)

where c ∈ Rn is the observed image, A is a blur operator, D is the discrete gradient
operator [28], ‖Dy‖1 is the discrete TV regularization term, B = [0, 1]n is the unit
box in Rn, and μ is a positive parameter for balancing the data-fidelity and TV
regularization. Here, n = n1 × n2 is the total number of pixels, where n1 and n2 are
the numbers of pixels in the horizontal and vertical directions, respectively. Note that
the model (67) can be reformulated as the following saddle point problem:

min
x∈Rp

max
y∈Rn

{
δB∞(x) + 〈D∗x, y〉 − δB(y) − 1

2μ
‖Ay − c‖2

}
. (68)

Clearly, (68) is the special case of (1) with f (x) = δB∞(x), g(y) = δB(y)+ 1
2μ‖Ay−

c‖2 and K = D∗. Then, the KKT mapping for this model (67) is:

R(u) :=
(

x − ΠB∞(x − K∗y)

y − proxg(y + Kx)

)
, ∀ u ∈ U .

Similarly, we can conclude that R−1 is piecewise polyhedral.

6 Numerical experiments

In this section, we would like to demonstrate the linear convergence rate and show
the efficiency of I-PDA on several problems mentioned in Section 5. All codes were
written by MATLAB R2016a and all the numerical experiments were performed on
a laptop ThinkPad X1 Extreme with i7-8750H processor and 16GB memory.

6.1 Matrix games

We first consider a matrix games problem (57), which is generated following the
same way given in [5]. The entries of K are generated independently and randomly
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with uniformly distribution in the interval [−1, 1]. As in [5], for a feasible point pair
(x, y), the primal-dual gap can be obtained by:

Θ(x, y) := max
i

(Kx)i − min
j

(K∗y)j . (69)

In this experiment, we set m = 100 and n = 300. Note that both the x-subproblem
and y-subproblem in I-PDA for solving (57) can be efficiently solved exactly by
performing projection onto the unit simplex [12]. So we can simply set η = 0
in I-PDA. The other parameters are set as τ = σ = √

0.99/L and ρ = 1.
Hence, we have τσL2 < 1. The starting point of I-PDA is chosen as (x0, y0) =
( 1
n
(1, . . . , 1), 1

m
(1, . . . , 1)). By direct calculation, we have:

max
x∈Δn

1

2
‖x − x0‖2 = (1 − 1

n
)/2

and

max
y∈Δm

1

2
‖y − y0‖2 = (1 − 1

m
)/2.

Then, it follows from (7), (8) to (39) that:

L(XN, y) − L(x, YN) ≤ 1

Nρ

(
1 − 1

n

τ
+ 1 − 1

m

σ

)
.

To demonstrate the linear convergence rate, we first run I-PDA for sufficiently many
iterations to obtain an almost exact solution (x∞, y∞) of the problem. Then, Fig. 1
(left) shows the convergence behaviors of:

Error := ‖(xk − x∞, yk − y∞)‖G =
√

ϕ(xk − x∞, yk − y∞), (70)

and Fig. 1 (right) shows the primal-dual gaps Θ(XN, YN) on the ergodic iterates
(XN, YN) and Θ(x̃k, ỹk) on the nonergodic iterates (x̃k, ỹk).

From Fig. 1 (left), we can see that the Error defined in (70) decreases rapidly at
early iterations and then converges to zero in a steady linear rate. Figure 1 (right)
shows that the primal-dual gap given in (69) at the nonergodic iterates (x̃k, ỹk) con-
verges faster than that at the ergodic iterates (XN, YN). Moreover, we can see that
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Fig. 1 Convergence plots for matrix games problem (57)
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the primal-dual gap at ergodic sequence converges with almost an exact O(1/N)

sublinear rate.

6.2 Nonnegative least squares

We then consider the nonnegative least squares problem (61). In this numerical
experiment, the entries of K ∈ Rm×n are independently randomly generated by
the standard Gaussian distribution N (0, 1). To generate the vector b, we first ran-
domly generate a vector w ∈ Rn by the standard Gaussian distribution and then
take b = KΠRn+(w). Hence, F ∗ = 0 is the optimal objective value of the prob-
lem. The problem dimensions are set as m = 300 and n = 1000. Note that both the
x-subproblem and y-subproblem in I-PDA for solving problem (61) also has easily
closed-form solution. Hence, we can also set η = 0 in I-PDA. The other parameters
are set as τ = 0.4, σ = 0.99

τL2 and ρ = 1. Hence, we have τσL2 < 1. We randomly

choose a starting point (x0, y0) and the typical convergence behaviors of I-PDA are
shown in Fig. 2.

Figure 2 (left) again clearly shows the linear convergence of Error defined in (70)
to a high precision, where (x∞, y∞) is again obtained by running I-PDA sufficiently
many iterations. Since F is Lipschitz continuous and xk converges to x∞ with a R-
linear rate, F(xk) − F ∗ also converges to zero with a R-linear rate. We can see from
Fig. 2 (right) that the primal function value gap F(x̃k) − F ∗ at nonergodic sequence
converges with a faster linear convergence rate, while function value gap F(XN)−F ∗
at ergodic sequence only converges at O(1/N) rate. These convergence behaviors
exactly match our theoretical analysis.

6.3 Fused LASSO

We now explore the efficiency of I-PDA for solving the fused LASSO model (65)
by solving its subproblems inexactly. We can see that the y-subproblem in I-PDA for
solving (65) does not have a closed-form solution. Hence, in our numerical exper-
iments, the y-subproblem in I-PDA is solved inexactly by FISTA [2] to satisfy the
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Fig. 2 Convergence plots for nonnegative least squares problem (61)
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criterion (10) with η = 0.99. Note that when the y-subproblem in I-PDA is solved
exactly, the I-PDA will reduce to the exact PDA method (2) with γ = 1. We compare
the performance of I-PDA with exact PDA, simply denoted as PDA in the following
tables and figures, and two inexact PDAs proposed in [20], that are an inexact PDA
with absolute error (I-PDAa) and an inexact PDA with relative error (I-PDAr). For
exact PDA, its y-subproblems are solved almost numerically exactly by FISTA until
‖ek‖ ≤ 10−5. To avoid solving linear system at each iteration, we apply the strategy
(17) proposed in I-PDA.

We generate the test problems by the same way used in [35]. More precisely, the
entries of A are generated by the standard Gaussian distribution N (0, 1) and b is
obtained by b = Ax + λe, where e is a standard distributed Gaussian noise and
λ = 0.01. The parameters are set as μ1 = 0.1 and μ2 = 0.005. For exact PDA,
I-PDAa, and I-PDAr, we set τ = 0.8 and σ = 1/(4τ), which give relatively good
numerical results as chosen in [20]. For I-PDA, we set τ = 0.56 and σ = 0.7/(4τ).
Note that the n−1 eigenvalues of DD∗ are 2−2 cos(iπ/n), i = 1, 2, · · · , n−1. and
K = D∗ in (66). Hence, we have τσL2 < 1. We also randomly generate the starting
point (x0, y0) and the stopping criterion of I-PDA is set as ϕ(dk

1 , d
k
2 ) ≤ 10−3.

In this experiment, we generate 5 testing scenarios with different dimensions
(m, n) and use 10 different initial points for each scenario. The average performances
of exact PDA, I-PDA, I-PDAa, and I-PDAr for each scenario are shown in Table 1,
which includes the CPU time in seconds (CPU (s)), the outer iteration number (Iter),
and the total inner iteration number (InnerIter) for solving the y-subproblem. From
Table 1, we can see that the inner iteration numbers of all inexact PDAs, including
I-PDA, I-PDAa, and I-PDAr, are significantly less than that of exact PDA, while the

Table 1 Numerical results for fused LASSO

n m PDA I-PDA

CPU (s) Iter InnerIter CPU (s) Iter InnerIter

25 500 1.33 380.2 4414.8 0.17 330.6 423.6

40 800 2.11 287.6 4337.2 0.31 300.8 337.3

50 800 2.28 275.1 5085.8 0.44 380.5 502.0

50 1000 3.85 294.9 5110.1 0.72 329.1 470.2

100 2000 87.25 650.8 17653.5 9.95 823.2 1647.1

n m I-PDAa I-PDAr

CPU (s) Iter InnerIter CPU (s) Iter InnerIter

25 500 0.43 406.0 1338.0 0.91 390.1 2928.4

40 800 0.72 344.0 1183.3 1.80 303.1 2932.5

50 800 0.60 314.7 1043.9 1.27 289.4 2585.3

50 1000 1.37 347.1 1451.4 2.57 317.3 3095.5

100 2000 35.66 651.1 6993.2 57.72 700.0 11518.7



Numerical Algorithms

outer iteration numbers of exact PDA are usually less than those of the inexact PDAs,
but in a relatively small margin. Hence, we can see from Table 1 that the overall CPU
time of the inexact PDAs is much less than that of the exact PDA. On the other hand,
compared with I-PDAa and I-PDAr, I-PDA always uses the least CPU time and much
less number of inner iterations. So, the relative stopping criterion implemented in I-
PDA are more effective than than the inexact subproblem rules used by I-PDAa and
I-PDAr. In addition, as pointed in [20], we can also observe that I-PDAa performs
better than I-PDAr.

The typical convergence behaviors of these comparison methods against iteration
number and CPU time can be illustrated in Figs. 3 and 4 for the case with n = 50
and m = 1000. In particular, Fig. 3 (left) shows the linear convergence rate of Error
(70) for both exact PDA and I-PDA at nonergodic iterates and Fig. 3 (right) illus-
trates convergence behaviors of Error against CPU time for the four tested methods.
Figure 4 (left) shows the sublinear convergence of F(Y k) − F ∗ of exact PDA and
I-PDA at ergodic iterates, while Fig. 4 (right) demonstrates the linear convergence
of F(yk) − F ∗ of all comparison methods at nonergodic iterates. Here, the opti-
mal objective value F ∗ is obtained by running exact PDA for 5000 iterations. From
Figs. 3 (right) to 4 (right), we can also observe that I-PDA converges much faster
than the other three comparison algorithms. Note again that since F is Lipschitz
continuous, the R-linear convergence of yk to y∞ implies the R-linear convergence
of F(yk) − F ∗. These convergence behaviors of I-PDA shown in Figs. 3 and 4
again exactly match our analysis. More importantly, we can observe from Fig. 3 that
although the y-subproblem was solved inexactly, I-PDA can still maintain the desired
linear convergence rate. Its performance is only slightly worse compared with the
exact PDA after the same number of iterations, but much better in terms of CPU time.
Hence, for overall efficiency, it is much preferable to solve the subproblems inex-
actly to a relative accuracy given in I-PDA, when the subproblem is nontrivial to be
solved exactly.
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Fig. 4 Convergence rates of primal function value gap for fused LASSO (65)

7 Conclusions

The main contribution of this paper is to provide a road map for analyzing global con-
vergence and the linear convergence rate of an inexact primal-dual algorithm (I-PDA)
for solving a class of convex-concave saddle point problems. This I-PDA solves one
of the subproblems inexactly to an accuracy relative to the overall optimality error
at current iterate. We first analyze the global convergence and convergence rate of I-
PDA under the standard condition. Then, with an additional mild calmness condition
for the KKT mapping, which naturally holds for many convex models in practical
applications, we have established the Q-linear convergence of the distance between
the current iterate and the solution set, and the R-linear convergence of the primal-
dual gap on the nonergodic iterates generated by I-PDA. These theoretical analyses
show that although one subproblem is solved inexactly, the theoretical global conver-
gence and linear convergence rate of exact PDA can still be maintained by I-PDA.
Our numerical experiments clearly demonstrate the convergence rates obtained from
the theoretical analysis and show that the I-PDA could be much more efficient than
exact PDA as well as other compared inexact PDAs when the subproblems do not
have closed-from solutions.
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