
Fast Resilient-Aware Data Layout Organization

for Resistive Computing Systems

Baogang Zhang∗, M. G. Sarwar Murshed†, Faraz Hussain‡ and Rickard Ewetz§

∗§Department of Electrical and Computer Engineering, University of Central Florida, Orlando FL, USA
†‡Department of Electrical and Computer Engineering, Clarkson University, Potsdam NY, USA

∗baogang.zhang@knights.ucf.edu, †murshem@clarkson.edu, ‡fhussain@clarkson.edu, §rickard.ewetz@ucf.edu

Abstract—Resistive computing systems (RCSs) are projected
to be leveraged as inference engines for Deep Neural Networks
(DNNs). Unfortunately, limited device yield due to immature fab-
rication processes may severely degrade the DNN’s classification
accuracy. The arising solution is to leverage resilient-aware data
layout organization techniques to mask the defects using the
neural network weights. However, current techniques are too
slow to be practical for real-world applications. In this paper,
we propose a framework for fast resilient-aware data layout
organization to enable large DNNs to be deployed on RCSs with
defects. The framework contains three speed-up mechanisms: i)
sparse defect indexing, ii) weight range characterization, and a
iii) linear programming formulation. The first two techniques
aim to quickly compute the errors introduced by various data to
hardware assignments (or data layout organizations). The third
technique aims to swiftly select the data layout organization
that results in the smallest amount of errors. The experimental
results demonstrate that the proposed framework is capable
of achieving software level classification accuracy in resistive
hardware without any use of retraining. Compared with the
previous work, the run-time is reduced with 89% on the average.

I. INTRODUCTION

Acceleration of DNNs using resistive computing systems

(RCSs) has recently attracted significant interest due to their

capability of natively performing energy-efficient multiply-

and-accumulate (MAC) operations, which is the dominat-

ing computation within DNNs. Moreover, data movement is

greatly reduced as the computation is performed in-memory,

which circumvents the von-Neumann bottleneck. Nevertheless,

RCSs are vulnerable to variations and non-ideal effects that

may lead to system malfunction.

The performance of RCSs consisting of resistive cross-

bar arrays (RCAs) is impacted by non-zero array parasitics,

non-linear device temperature variations, resistance drift and

limited device yield. Many recent studies aim to improve

the robustness of RCSs to the aforementioned issues [6],

[10], [13], [17], [1], [12], [2], [11], [4], [18]. Among these

challenges, limited device yield may be the most important,

as only a few device defects can render an entire RCS system

non-functional [12]. A resistive device that is stuck to the

maximum conductance (stuck-on) or minimum conductance

(stuck-off) is called a device defect or stuck-at-fault. Tech-

niques to mitigate the negative impact of defects are based on

Research was supported in part by NSF awards CCF-1755825 and CNS-
1908471.

hardware-aware training [2], [11], [12], [15], [4], digital com-

pensation [4], utilizing redundant hardware [2], [5], [16], [18],

and data layout organization [2], [11], [15], [18]. Hardware-

aware training aims to train the weights of a DNN to mimic

the defects in the hardware. However, hardware-aware training

requires full access to the training data. Digital compensation

is based on compensating for the defects using a digital co-

processor, which introduces massive overheads. Techniques

based on redundant hardware aim to compensate for defects

by representing each weight using multiple parallel resistive

devices. Resilient-aware data layout organization techniques

attempt to mask the defects by modifying the data to hardware

assignment, i.e., large (small) weights are assigned to devices

stuck-on (stuck-off). In [2], [11], data layout organization was

performed by permuting rows and columns in a weight matrix

using routers. In [15], it was observed that data layout organi-

zation in DNNs can be performed by reordering the neurons in

layers, which avoids the use of routers that introduce hardware

overhead. Recent work on data layout organization is based

on formulating and solving an assignment problem to find the

data layout organization (or ordering of the neurons) in each

layer that minimizes the weight errors (or cost) introduced

by the defects [18]. The limitation is that the run-time of

the technique is prohibitively long for real-world applications.

In particular, the run-time of the resilient-aware data layout

organization is 68 hours for a sixteen-layer convolutional

neural network (CNN).

In this paper, we propose a framework to perform fast

resilient-aware data layout organization to enable DNNs to

be deployed on RCSs with defects. The framework reduces

the run-time of the state-of-the-art data layout organization

techniques using three speed-up mechanisms. A sparse defect

indexing technique and a weight range technique are used to

quickly compute the error cost of alternative data layout or-

ganizations. Specifically, the sparse defect indexing technique

reduces the run-time by avoiding to compute “zero” cost of

assigning weights to non-defective devices. The weight range

technique is based on pre-characterizing the weight range

that can be realized using hardware redundancy instead of

computing the weight range dynamically for every weight. To

swiftly select the data layout organization with the minimal

total cost, a linear programming formulation is proposed. The

proposed LP formulation solves the assignment problem faster

than the Hungarian algorithm used in [18], [2]. The experi-

72

2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/20/$31.00 ©2020 IEEE
DOI 10.1109/ISVLSI49217.2020.00023

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

mental results show that the proposed framework is capable

of achieving software level classification accuracy in resistive

hardware. Compared with the state-of-the-art techniques, the

run-time of the data layout organization for a 16-layer CNN

is reduced from 68 hours to 7 hours.

The remainder of this paper is organized as follows: Sec-

tion II gives the preliminaries; Section III reviews the data

layout organization. The proposed speed-up techniques and

the methodology are respectively given in Section IV and

Section V; Section VI presents the evaluation of the proposed

framework and Section VII concludes this paper.

II. PRELIMINARIES

In this section, we introduce the background of deploying

DNNs to RCSs for inference, the impact of device defects,

and the problem definition.

DNN deployed on RCSs: A DNN consists of L layers of

neurons are connected together by synapses. A DNN classifies

an input image into one of multiple output categories by

passing it to the first layer and recording the output from

the last layer. Let xl and yl denote the input and output of

neurons in layer l. In each layer, the output yl is obtained by

a MAC operation, yl = Wlxl, where Wl is the weight matrix

connecting the neurons in layer l to the neurons in layer l+1.

The output yl is passed to a non-linear activation function

σ(.) and converted to the input xl+1 of the next layer, i.e.,

xl+1 = σ(yl). The software classification accuracy is equal

to the ratio between the number of correctly classified input

images and the number of total input images.

A DNN deployed on a RCS is shown in Figure 1. When

a DNN is deployed on a RCS, each of the weight matrix Wl

is assigned to an RCAl (or a grid of RCAs), as shown in the

middle of Figure 1. The RCAs perform MAC operations ex-

tremely energy-efficiently. However, any defects in the RCAs

introduce errors when performing the MAC operations.

Fig. 1. DNN inference deployment on RCAs of RCSs.

MAC using RCAs with defects: Let Gd denotes a matrix

with the device defects for an RCA. Gd can be determined

using the technique in [1], [7], [14]. An RCA with defects Gd

realizes an matrix W r instead of the matrix W . Each element

wr
k in W r is obtained, as follows:

wr
k =

⎧

⎪

⎨

⎪

⎩

Wmax, stuck-on,

wk, non-defective,

Wmin, stuck-off.

(1)

where wk is a weigh in weight matrix W . Wmax and Wmin are

the maximum value and minimum value of weight matrix W ,

respectively. Given a DNN and the defects for each RCA, the

classification accuracy in hardware is computed by evaluating

the DNN using the weight matrices W r instead of W , which

is shown at the bottom of Figure 1.

Problem definition: Data layout organization is based on

the observation that if the order of two neurons (in layer l of

a DNN) are permuted, the network is functionally equivalent

in software if the corresponding rows in Wl and columns in

Wl+1 are exchanged. However, the reordering of neurons will

change the assignment of the weight matrices to the RCAs,

which results in different classification accuracy in hardware.

Consequently, the data layout organization problem consists

of finding the ordering of the neurons in each layer that

maximizes the classification accuracy in hardware.

III. DATA LAYOUT ORGANIZATION IN [18]

In this section, we review the data layout organizations

in [18], which is an extension of the techniques in [2], [11],

[15]. The technique is based on reordering the neurons in

each layer, while minimizing a cost metric that measures

the difference between the weight matrix W and the real-

ized weight matrix W r. The cost metric is introduced in

Section III-A. The reordering of the neurons in a layer is

performed by first computing the cost of various candidate

data to hardware assignments (or data layout organizations).

Next, the data layout organization that minimizes the cost is

selected by solving an assignment problem, which is detailed

in Section III-B. The run-time limitation of [18] is analyzed

in Section III-C.

A. The Error Cost(EC) metric

Previous studies introduce a cost metric to measure the dif-

ference between the weight matrix Wl and the realized weight

matrix W r
l [2], [11], [15], [16], [18]. In [18], the weighted

square error metric was used to compute the assignment cost,

which is defined as follows:

EC = cl ·
∑

wk∈Wl

(wk − wr
k)

2 (2)

where EC is the error cost. cl is the ratio of the number

of times a weight matrix is used per image and the number

weights in the matrix. wk and wr
k are the weights in the weight

matrix Wl and the realized weight in matrix W r
l , respectively.

73

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

B. Cost matrix computation and assignment problem

The reordering of the neurons in a layer can be viewed as

the problem of assigning each of the neurons to a hardware

location, which is illustrated in Figure 2 (a). Determining the

mapping that minimizes the cost in Eq (2) can be formulated

as an assignment problem, which requires a cost matrix C to

computed. cij in C denotes the cost of assigning neuron i to

location j. This involves computing the cost of assigning row

i in Wl to row j in an RCAl and column i in Wl+1 to column

j in an RCAl+1. Next, the Hungarian algorithm is used to find

the neuron to hardware assignment that minimizes the cost in

Eq (2) based on the cost matrix C.

(a) (b)

Fig. 2. (a) Formulation and (b) Cost matrix of the assignment problem.

C. Run-time Limitation of Data Layout Organization in [18]

When the resilient-aware data layout organization in [18]

is applied to two 16-layer CNNs, it can be observed that the

run-time is 1.7 hours and 67.9 hours, which is illustrated in

Figure 3 (a). The run-time is longer for CNN-16b because

it has been optimized for throughput. Clearly, the run-time

is too long to be practical for real-world applications, which

motivates the work in this paper. To identify the run-time bot-

tleneck, we profile the run-time of the data layout organization

of CNN-16b in Figure 3 (b). The figure shows that 96.9% of

the run-time is consumed by computing the cost matrix of the

assignment problem and 2.8% of the run-time is consumed

by solving the assignment problem. Therefore, the speed-up

techniques in the paper are focused on reducing the run-time

of these two steps.

(a) (b)

Fig. 3. Data layout organization run-time break down of a 16-layer network.

IV. PROPOSED SPEED-UP TECHNIQUES

In this section, we present the details of the three proposed

speed-up techniques.

A. The sparse defect indexing technique

The sparse defect indexing technique aims to speed-up

the computation of the cost matrix. The key insight of the

(a)

(b)

Fig. 4. (a) The cost computation of data to hardware and (b) the proposed
sparse data structure for cost computation.

technique is that the cost of assigning weight to non-defective

device is equal to zero. Consequently, it is expected that the

run-time can be significantly reduced by only computing the

cost of assigning weights to defective devices.

The computation of cij in the cost matrix C is obtained

by respectively mapping row i in Wl to row j in an RCAl

and column i in Wl+1 to column j in an RCAl+1, which

is illustrated in Figure 4. It can be observed that many of

the costs are equal to zero as the number of non-defective

devices outnumbers the number of defective devices. To only

compute the cost of assigning weights to defective devices, we

introduce two adjacency matrices to store the location of the

defects within each RCA. One stores the defect locations in a

row-oriented fashion and the other stores the defect locations

in a column oriented fashion. Consequently, when the cost of

assigning row i in Wl to row j in an RCAl is computed, the

framework iterates over the elements in the row-oriented data

structure to only compute the cost of assigning weight to the

defective devices. Similarly, the column-oriented data structure

is used to compute the cost of assigning column i in Wl+1

to column j in an RCAl+1. The use of the defect indexing

results in that the computation number of computing costs is

proportional to the number of defective devices instead of the

total number of devices.

B. The weight range characterization technique

The weight range technique aims to speed-up the compu-

tation of the cost matrix when more than one resistive device

is used to realize each weight. The main idea is to pre-

characterize the weight value range that can be realized by

a set of parallel devices, which avoids dynamically computing

the weight range every time a weight is assigned to the devices.

74

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

When R parallel resistive devices are used to realize a single

weight, the realized weight wr
k is computed in three steps [16],

as follows:

Step 1: For the R parallel devices, count the number of device

stuck-on dH and device stuck-off dL.

Step 2: Convert the dH and dL into an weight value range

[wmin, wmax], as follows:

wmin = (dH ·Wmax + (R− dH) ·Wmin)/R

wmax = (dL ·Wmin + (R− dL) ·Wmax)/R
(3)

where wmin and wmax are the minimum and maximum

of the weight range. Wmin and Wmax are the minimum

and maximum values of matrix Wl, respectively.

Step 3: Compute the realized weight wr
k based on the weight

value range [wmin, wmax], as follows:

wr
k =

⎧

⎪

⎨

⎪

⎩

wmin, wk < wmin,

wk, wmin ≤ wk ≤ wmax,

wmax, wk > wmax

(4)

Using wr
k, the cost can be evaluated quickly using Eq (2).

When formulating the cost matrix in Section III-B, we

observe that the algorithm evaluates mapping many different

weights to the same parallel resistive devices. For each weight,

the three steps are repeated and the time complexity is O(R)
based on the first step. The process is illustrated at the top

of Figure 5. However, we observe that the first two steps are

independent of the specific weight. Consequently, there exists

an opportunity to pre-characterize the weight range using a

one-time expensive initialization phase. Next, each realized

weight can be computed fast and efficiently based on the

weight range characterization, as shown at bottom of Figure 5.

Fig. 5. An example of the weight range characterization technique of using
R = 4 devices for a single weight.

The time complexity analysis of assigning N weights to

R parallel resistive devices on the RCA is shown in Table I.

Without the weight range characterization, the time complex-

ity of the N assignments is O(NR). When the one-time

characterization is utilized, the time complexity is reduced to

O(N+R). Clearly, the technique is particularly effective when

a higher redundancy factors are used to compensate for many

defects in the hardware.

TABLE I
TIME COMPLEXITY ANALYSIS OF ASSIGNING N WEIGHTS TO R PARALLEL

RESISTIVE DEVICES IN AN RCA.

Weight range mechanism Time complexity
Step 1 Step 2 Step 3 Total

Without characterization O(NR) O(N) O(N) O(NR)
With characterization O(R) O(1) O(N) O(N +R)

C. The LP formulation technique

The assignment problem can be solved using the Hungarian

algorithm or an LP formulation. Previous studies have used

the Hungarian algorithm. We empirically observe that the use

of an LP formulation results in shorter run-time due to the

structure of the problem. The LP is formulated, as follows:

min
∑

i∈M

∑

j∈N

cijxij , (5)

∑

j∈N

xij = 1, ∀i ∈ M (6)

∑

i∈M

xij = 1, ∀j ∈ N (7)

where cij is the cost of assigning neuron i to location j, i.e.,

entry (i, j) in the cost matrix C. xij = {0, 1} is a binary

variable that denotes if neuron i is assigned to location j. The

objective function in Eq (5) minimizes the total cost of the data

layout organization. The constraints in Eq (6) and (7) ensure

that each neuron is assigned to one and only one location.

V. METHODOLOGY

The flow of the proposed framework for fast data layout

organization is shown in Figure 6. The input to the framework

is the weight matrices of a neural network with L layers,

a RCA for each weight matrix, and a redundancy factor R
indicating the number of parallel resistive devices that are used

to realize each weight. The output from the framework is the

order of the neurons in each layer of the neural network. The

neuron order is expected to reduce the cost in Eq (2) and

therefore improve the classification accuracy in hardware.

Fig. 6. Flow of the proposed framework.

First, the defective devices in each RCA is detected using

the technique in [1], [7], [14]. In the initialization phase,

the row-oriented and column-oriented data structures are con-

structed to facilitate the sparse indexing technique. Moreover,

75

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

the value range for each location for each set of R parallel

devices is pre-characterized. Next, the neuron permutation is

iteratively applied to each layer of the neural network from

the first layer to the last layer. In each layer, the neuron

permutation is performed by computing a cost matrix and

solving an assignment problem, as explained in Section III-B.

The cost matrix is quickly computed using the proposed sparse

defect indexing and weight range characterization techniques

in Section IV-A and IV-B, respectively. Next, the assignment

problem is swiftly solved using the proposed LP formulation

in Section IV-C.

VI. EXPERIMENTAL EVALUATION

The speed-up techniques in the proposed framework are

implemented using C++ and the experiments are performed

on a 3.4GHz×8 core machine with 32GiB of memory. The

neural networks on MNIST [9] and CIFAR-10 [8] are trained

using Keras [3] and TensorFlow on a NVIDIA Tesla K80 GPU.

TABLE II
PROPERTIES OF THE EVALUATED NEURAL NETWORKS.

Network Dataset Software Layers Weights Through
accuracy -put

MLP-4 MNIST 98.35% 4 545000 1
MLP-6 MNIST 98.43% 6 774000 1

CNN-7 CIFAR-10 75.03% 7 1250144 1024
CNN-16a CIFAR-10 93.45% 16 14977728 1024
CNN-16b CIFAR-10 93.45% 16 54586368 32

We evaluate the performance of the framework using two

MLPs trained on MNIST and three CNNs trained on CIFAR-

10. The properties of the evaluated neural networks on both

the MNIST and CIFAR-10 datasets are shown in Table II.

The framework is evaluated in terms of the normalized

classification accuracy, is equal to the hardware accuracy

divided by the software accuracy. The software classification

accuracy is shown in the table. The classification accuracy

in hardware is obtained by introducing 10% defects into the

RCAs and evaluating the DNN classification accuracy using

the realized weight matrices using Eq (1).

The baseline method with no optimization is labeled ‘-

’. The technique of utilizing redundant hardware in [16] is

denoted ‘H’. The use of both redundant hardware and data

layout organization in [18] is denoted ‘HD’. The ‘HD’ method

extended with the sparse defect indexing technique is called

‘HD-I’. ‘HD-IC’ is the ‘HD-I’ method integrated with the

weight range characterization technique. ‘HD-ICL’ is the ‘HD-

IC’ technique extended with the proposed LP formulation.

In Section VI-A, we present the evaluation of the individ-

ual speed-up techniques. In Section VI-B, we compare our

framework with the methods from previous studies.

A. Evaluation of the speed-up techniques

1) Evaluation of sparse defect indexing: The sparse defect

indexing technique is evaluated in Figure 7. The figure shows

the run-time of the framework with and without the sparse

defect indexing technique with different defect rates on both

the MNIST and CIFAR-10 datasets.

(a) MLP-6 (b) CNN-16a

Fig. 7. Evaluation of sparse defect indexing with respect to defect rate on
(a) MNIST and (b) CIFAR-10 dataset.

The figure shows that the run-time without sparse defect

indexing is proportional to the number of devices in the DNN.

The sparse defect indexing technique significantly reduces

the run-time, as the run-time is proportional to the number

of defective devices. With the defect rate increasing from

1% to 10%, the normalized indexing run-time increases from

5.1% to 20.6% on the MNIST and from 15.5% to 72.4%
on the CIFAR-10, respectively. The run-time is reduced by

only computing the cost at the recorded locations instead of

computing the cost at each location of the RCAs, as the cost

introduced by non-defective devices is equal to zero.

2) Evaluation of the weight range characterization: The

weight range characterization technique is evaluated in Fig-

ure 8. The figure shows that the run-time is proportional to R
when the the weight range characterization technique is not

used. In contrast, the run-time is almost constant when the

weight range characterization is applied. The speed-up stems

from that the time-complexity of computing wr
k is reduced

from O(R) to O(1).

(a) (b)

Fig. 8. Effectiveness of the weight range characterization technique with
respect to different redundancy factor R on (a) MLP-6 and (b) CNN-16a.

3) Evaluation of the LP formulation: The linear program-

ming formulation technique is evaluated and compared with

the Hungarian algorithm, as shown in Figure 9. It can be

observed that the run-time of the Hungarian algorithm greatly

increase as the cost matrix dimension increase.

B. Comparison with related studies

In Table III, we present the comparison of the proposed

framework with previous studies in terms of normalized ac-

curacy, the cost in Eq (2), and run-time. The comparison is

performed on both the MNIST and CIFAR-10 datasets using

networks with 10% defect rate. The redundancy factor is set

such that the ‘HD’ method achieves 99% normalized accuracy.

Specifically, a redundancy factor R equal to 4, 4, 8, 4, 8

76

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Evaluation of the solver run-time vs. problem dimension.

is used for MLP-4, MLP-6, CNN-7, CNN-16a, CNN-16b,

respectively.

When no optimization is applied, the normalized accuracy

is unacceptably low. The technique of utilizing hardware

redundancy (the ‘H’ method in [16]) greatly improves the

accuracy. Compared with the ‘H’ method, the ‘HD’ method

improves the average normalized classification accuracy with

1.8% without any hardware overhead. It is easy to understand

that the normalized accuracy is improved because the cost

in Eq (2) is improved with 52.6%. However, the run-time

is too long to be practical for the larger neural networks. In

particular, it can be observed that the run-time for CNN-16a

and CNN-16b is 1.7 hours and 67.9 hours, respectively.

TABLE III
COMPARISON OF THE PROPOSED FRAMEWORK WITH RELATED STUDIES.

Network Work Method cost Norm. Run-time
(dataset) in Eq (2) accuracy (sec)

- 39.0 22.0 3
[16] H 6.8 97.8 4

MLP-4 [18] HD 0.1 99.9 176
(MNIST) Ours HD-I 0.1 99.9 69

Ours HD-IC 0.1 99.9 18
Ours HD-ICL 0.1 99.9 18

- 48.4 22.9 4
[16] H 7.3 98.4 5

MLP-6 [18] HD 0.1 100.0 259
(MNIST) Ours HD-I 0.1 100.0 100

Ours HD-IC 0.1 100.0 27
Ours HD-ICL 0.1 100.0 27

- 10050.3 13.3 2
[16] H 97.8 97.2 7

CNN-7 [18] HD 7.9 99.9 686
(CIFAR-10) Ours HD-I 7.9 99.9 668

Ours HD-IC 7.9 99.9 71
Ours HD-ICL 7.9 99.9 71

- 2931020.0 10.7 25
[16] H 5821.1 96.9 64

CNN-16a [18] HD 1911.8 99.3 5969
(CIFAR-10) Ours HD-I 1911.8 99.3 5051

Ours HD-IC 1911.8 99.3 943
Ours HD-ICL 1911.8 99.3 939

- 90413.3 7.5 166
[16] H 24.3 99.5 770

CNN-16b [18] HD 0.3 99.9 244572
(CIFAR-10) Ours HD-I 0.3 99.9 95725

Ours HD-IC 0.3 99.9 28905
Ours HD-ICL 0.3 99.9 25248

- 61011.4 (-84.5%) 0.15 0.01
[16] H 47.4 (-1.8%) 0.98 0.01

Norm. [18] HD 1.00 1.00 1.00
Ours HD-I 1.00 1.00 0.60
Ours HD-IC 1.00 1.00 0.12
Ours HD-ICL 1.00 1.00 0.11

Compared with the ‘HD’ method, the proposed ‘HD-I’,

‘HD-IC’, and ‘HD-ICL’ methods result in the exact same cost

and normalized classification accuracy. This is expected be-

cause the speed-up techniques only avoid redundant computa-

tion when computing the cost metric or solves the assignment

problem faster, i.e., the exact same data to hardware assign-

ment (or data layout organization) is obtained. Compared with

the ‘HD’ method, the ‘HD-I’, ‘HD-IC’, and ‘HD-ICL’ method

respectively reduces the run-time with 40%, 88%, and 89%.

The improvements in run-time are not surprising as the ‘HD-I’

method avoids a significant amount of redundant “zero” cost

computation and the weight characterization reduces the time

complexity of utilizing redundant hardware. The LP formula-

tion slightly reduces the run-time for the large neural networks.

In summary, the proposed framework reduces the average run-

time of the state-of-the-art data layout organization without

degrading the performance in resistive hardware.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a framework to speed-up

the data layout organization for deploying DNNs on RCSs.

The results show that the proposed framework is capable of

achieving software level classification accuracy while reducing

up to 89% of the run-time. Future study will explore specific

customized techniques for large neural networks to balance

the trade-off between the run-time and performance of the

data layout organization.

REFERENCES

[1] C. Y. Chen et al. RRAM defect modeling and failure analysis based on
march test and a novel squeeze-search scheme. IEEE Transactions on

Computers, 64(1):180–190, 2015.
[2] L. Chen et al. Accelerator-friendly neural-network training: Learning

variations and defects in RRAM crossbar. DATE, pages 19–24, 2017.
[3] F. Chollet et al. Keras. https://keras.io, 2015.
[4] Z. He et al. Noise injection adaption: End-to-end reram crossbar non-

ideal effect adaption for neural network mapping. DAC, page 57, 2019.
[5] M. Hu et al. Memristor crossbar-based neuromorphic computing system:

A case study. IEEE TNNLS, pages 1864–1878, 2014.
[6] M. Hu et al. Dot-product engine for neuromorphic computing: Program-

ming 1T1M crossbar to accelerate matrix-vector multiplication. DAC,
pages 1–6, 2016.

[7] S. Kannan et al. Modeling, detection, and diagnosis of faults in
multilevel memristor memories. IEEE TCAD, 34(5):822–834, 2015.

[8] A. Krizhevsky et al. Cifar-10 (canadian institute for advanced research).
[9] Y. LeCun et al. Mnist handwritten digit database. ATT Labs [Online].

Available: http://yann. lecun. com/exdb/mnist, 2, 2010.
[10] B. Liu et al. Reduction and IR-drop compensations techniques for

reliable neuromorphic computing systems. ICCAD, pages 63–70, 2014.
[11] B. Liu et al. Vortex: Variation-aware training for memristor X-bar. DAC,

pages 1–6, 2015.
[12] C. Liu et al. Rescuing memristor-based neuromorphic design with high

defects. DAC, pages 87:1–87:6, 2017.
[13] X. Liu et al. Harmonica: A framework of heterogeneous computing

systems with memristor-based neuromorphic computing accelerators.
IEEE Tran. on Circuits and Systems I: Regular Papers, 63(5), 2016.

[14] A. van de Goor and Y. Zorian. Effective march algorithms for testing
single-order addressed memories. In Proc. European Conference on

Design Automation with the European Event in ASIC Design, pages
499–505, 1993.

[15] L. Xia et al. Fault-tolerant training with on-line fault detection for
RRAM-based neural computing systems. DAC’17, pages 1–6, 2017.

[16] L. Xia et al. Stuck-at fault tolerance in RRAM computing systems.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
8(1):102–115, 2018.

[17] B. Yan et al. A closed-loop design to enhance weight stability of
memristor based neural network chips. ICCAD, pages 541–548, 2017.

[18] B. Zhang et al. Handling stuck-at-fault defects using matrix transfor-
mation for robust inference of dnns. IEEE TCAD, 2019.

77

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

