2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

Fast Resilient-Aware Data Layout Organization
for Resistive Computing Systems

Baogang Zhang*, M. G. Sarwar Murshed!, Faraz Hussain! and Rickard Ewetz}
*§Department of Electrical and Computer Engineering, University of Central Florida, Orlando FL, USA
TiDepartment of Electrical and Computer Engineering, Clarkson University, Potsdam NY, USA
*baogang.zhang @knights.ucf.edu, fmurshem @clarkson.edu, ffhussain@clarkson.edu, Srickard.ewetz@ucf.edu

Abstract—Resistive computing systems (RCSs) are projected
to be leveraged as inference engines for Deep Neural Networks
(DNNs). Unfortunately, limited device yield due to immature fab-
rication processes may severely degrade the DNN’s classification
accuracy. The arising solution is to leverage resilient-aware data
layout organization techniques to mask the defects using the
neural network weights. However, current techniques are too
slow to be practical for real-world applications. In this paper,
we propose a framework for fast resilient-aware data layout
organization to enable large DNNs to be deployed on RCSs with
defects. The framework contains three speed-up mechanisms: i)
sparse defect indexing, ii) weight range characterization, and a
iii) linear programming formulation. The first two techniques
aim to quickly compute the errors introduced by various data to
hardware assignments (or data layout organizations). The third
technique aims to swiftly select the data layout organization
that results in the smallest amount of errors. The experimental
results demonstrate that the proposed framework is capable
of achieving software level classification accuracy in resistive
hardware without any use of retraining. Compared with the
previous work, the run-time is reduced with 89% on the average.

I. INTRODUCTION

Acceleration of DNNs using resistive computing systems
(RCSs) has recently attracted significant interest due to their
capability of natively performing energy-efficient multiply-
and-accumulate (MAC) operations, which is the dominat-
ing computation within DNNs. Moreover, data movement is
greatly reduced as the computation is performed in-memory,
which circumvents the von-Neumann bottleneck. Nevertheless,
RCSs are vulnerable to variations and non-ideal effects that
may lead to system malfunction.

The performance of RCSs consisting of resistive cross-
bar arrays (RCAs) is impacted by non-zero array parasitics,
non-linear device temperature variations, resistance drift and
limited device yield. Many recent studies aim to improve
the robustness of RCSs to the aforementioned issues [6],
[10], [13], [17], [1], [12], [2], [11], [4], [18]. Among these
challenges, limited device yield may be the most important,
as only a few device defects can render an entire RCS system
non-functional [12]. A resistive device that is stuck to the
maximum conductance (stuck-on) or minimum conductance
(stuck-off) is called a device defect or stuck-at-fault. Tech-
niques to mitigate the negative impact of defects are based on

Research was supported in part by NSF awards CCF-1755825 and CNS-
1908471.

hardware-aware training [2], [11], [12], [15], [4], digital com-
pensation [4], utilizing redundant hardware [2], [5], [16], [18],
and data layout organization [2], [11], [15], [18]. Hardware-
aware training aims to train the weights of a DNN to mimic
the defects in the hardware. However, hardware-aware training
requires full access to the training data. Digital compensation
is based on compensating for the defects using a digital co-
processor, which introduces massive overheads. Techniques
based on redundant hardware aim to compensate for defects
by representing each weight using multiple parallel resistive
devices. Resilient-aware data layout organization techniques
attempt to mask the defects by modifying the data to hardware
assignment, i.e., large (small) weights are assigned to devices
stuck-on (stuck-off). In [2], [11], data layout organization was
performed by permuting rows and columns in a weight matrix
using routers. In [15], it was observed that data layout organi-
zation in DNNs can be performed by reordering the neurons in
layers, which avoids the use of routers that introduce hardware
overhead. Recent work on data layout organization is based
on formulating and solving an assignment problem to find the
data layout organization (or ordering of the neurons) in each
layer that minimizes the weight errors (or cost) introduced
by the defects [18]. The limitation is that the run-time of
the technique is prohibitively long for real-world applications.
In particular, the run-time of the resilient-aware data layout
organization is 68 hours for a sixteen-layer convolutional
neural network (CNN).

In this paper, we propose a framework to perform fast
resilient-aware data layout organization to enable DNNs to
be deployed on RCSs with defects. The framework reduces
the run-time of the state-of-the-art data layout organization
techniques using three speed-up mechanisms. A sparse defect
indexing technique and a weight range technique are used to
quickly compute the error cost of alternative data layout or-
ganizations. Specifically, the sparse defect indexing technique
reduces the run-time by avoiding to compute “zero” cost of
assigning weights to non-defective devices. The weight range
technique is based on pre-characterizing the weight range
that can be realized using hardware redundancy instead of
computing the weight range dynamically for every weight. To
swiftly select the data layout organization with the minimal
total cost, a linear programming formulation is proposed. The
proposed LP formulation solves the assignment problem faster
than the Hungarian algorithm used in [18], [2]. The experi-

2159-3477/20/$31.00 ©2020 IEEE
DOI 10.1109/1SVLSI49217.2020.00023

72

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

mental results show that the proposed framework is capable
of achieving software level classification accuracy in resistive
hardware. Compared with the state-of-the-art techniques, the
run-time of the data layout organization for a 16-layer CNN
is reduced from 68 hours to 7 hours.

The remainder of this paper is organized as follows: Sec-
tion II gives the preliminaries; Section III reviews the data
layout organization. The proposed speed-up techniques and
the methodology are respectively given in Section IV and
Section V; Section VI presents the evaluation of the proposed
framework and Section VII concludes this paper.

II. PRELIMINARIES

In this section, we introduce the background of deploying
DNNs to RCSs for inference, the impact of device defects,
and the problem definition.

DNN deployed on RCSs: A DNN consists of L layers of
neurons are connected together by synapses. A DNN classifies
an input image into one of multiple output categories by
passing it to the first layer and recording the output from
the last layer. Let x; and y; denote the input and output of
neurons in layer [. In each layer, the output y; is obtained by
a MAC operation, y; = W;x;, where W, is the weight matrix
connecting the neurons in layer [to the neurons in layer [+ 1.
The output 7; is passed to a non-linear activation function
o(.) and converted to the input x;y; of the next layer, i.e.,
x1+1 = o(y;). The software classification accuracy is equal
to the ratio between the number of correctly classified input
images and the number of total input images.

A DNN deployed on a RCS is shown in Figure 1. When
a DNN is deployed on a RCS, each of the weight matrix W,
is assigned to an RCA; (or a grid of RCAs), as shown in the
middle of Figure 1. The RCAs perform MAC operations ex-
tremely energy-efficiently. However, any defects in the RCAs
introduce errors when performing the MAC operations.

layer;; layer, layer;; Softiare
classification
O§ >O§ accuracy
O M SOISG
input x x
) ofe RCh Hardware
¢ i classification

accuracy
er er+1 &

Fig. 1. DNN inference deployment on RCAs of RCSs.

MAC using RCAs with defects: Let G% denotes a matrix
with the device defects for an RCA. G¢ can be determined
using the technique in [1], [7], [14]. An RCA with defects G¢

73

realizes an matrix W instead of the matrix W. Each element
wy, in W is obtained, as follows:

Wmaz 5 Stl.ICk-Ol‘l,
Wy = W, non-defective, (1)
Winin, stuck-off.

where wy, is a weigh in weight matrix W. W,,, 4, and W,,;,, are
the maximum value and minimum value of weight matrix W,
respectively. Given a DNN and the defects for each RCA, the
classification accuracy in hardware is computed by evaluating
the DNN using the weight matrices W' instead of W, which
is shown at the bottom of Figure 1.

Problem definition: Data layout organization is based on
the observation that if the order of two neurons (in layer [of
a DNN) are permuted, the network is functionally equivalent
in software if the corresponding rows in W; and columns in
Wi41 are exchanged. However, the reordering of neurons will
change the assignment of the weight matrices to the RCAs,
which results in different classification accuracy in hardware.
Consequently, the data layout organization problem consists
of finding the ordering of the neurons in each layer that
maximizes the classification accuracy in hardware.

III. DATA LAYOUT ORGANIZATION IN [18]

In this section, we review the data layout organizations
in [18], which is an extension of the techniques in [2], [11],
[15]. The technique is based on reordering the neurons in
each layer, while minimizing a cost metric that measures
the difference between the weight matrix W and the real-
ized weight matrix W". The cost metric is introduced in
Section III-A. The reordering of the neurons in a layer is
performed by first computing the cost of various candidate
data to hardware assignments (or data layout organizations).
Next, the data layout organization that minimizes the cost is
selected by solving an assignment problem, which is detailed
in Section III-B. The run-time limitation of [18] is analyzed
in Section III-C.

A. The Error Cost(EC) metric

Previous studies introduce a cost metric to measure the dif-
ference between the weight matrix W, and the realized weight
matrix W, [2], [11], [15], [16], [18]. In [18], the weighted
square error metric was used to compute the assignment cost,
which is defined as follows:

EC =¢ - Z (wy, — wh)? (2)

wr €W

where EC' is the error cost. ¢; is the ratio of the number
of times a weight matrix is used per image and the number
weights in the matrix. wy, and wj, are the weights in the weight
matrix WW; and the realized weight in matrix W}, respectively.

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

B. Cost matrix computation and assignment problem

The reordering of the neurons in a layer can be viewed as
the problem of assigning each of the neurons to a hardware
location, which is illustrated in Figure 2 (a). Determining the
mapping that minimizes the cost in Eq (2) can be formulated
as an assignment problem, which requires a cost matrix C' to
computed. ¢;; in C' denotes the cost of assigning neuron i to
location j. This involves computing the cost of assigning row
¢ in W; to row j in an RCA; and column ¢ in Wj4; to column
j in an RCA;4 1. Next, the Hungarian algorithm is used to find
the neuron to hardware assignment that minimizes the cost in
Eq (2) based on the cost matrix C.

Cjj: cost of assigning neuron i Cost matrix
to location j
Y Cy1 C12 Cy3
{3 C=|C21C22C23
C31 C32 C33
neuron location
(a) (b)

Fig. 2. (a) Formulation and (b) Cost matrix of the assignment problem.

C. Run-time Limitation of Data Layout Organization in [18]

When the resilient-aware data layout organization in [18]
is applied to two 16-layer CNNs, it can be observed that the
run-time is 1.7 hours and 67.9 hours, which is illustrated in
Figure 3 (a). The run-time is longer for CNN-16b because
it has been optimized for throughput. Clearly, the run-time
is too long to be practical for real-world applications, which
motivates the work in this paper. To identify the run-time bot-
tleneck, we profile the run-time of the data layout organization
of CNN-16b in Figure 3 (b). The figure shows that 96.9% of
the run-time is consumed by computing the cost matrix of the
assignment problem and 2.8% of the run-time is consumed
by solving the assignment problem. Therefore, the speed-up
techniques in the paper are focused on reducing the run-time
of these two steps.

80

® Computation
of cost matrix

W Solving the
assignment
problem
Other

Run-time (hr)
-
s 8

N
S

CNN-16a

CNN-16b

(a)

(b)

. 3. Data layout organization run-time break down of a 16-layer network.

Fi

7

IV. PROPOSED SPEED-UP TECHNIQUES
In this section, we present the details of the three proposed
speed-up techniques.
A. The sparse defect indexing technique

The sparse defect indexing technique aims to speed-up
the computation of the cost matrix. The key insight of the

74

W, layer| — Wy,
i 8]
L o LU
RCA RCA.,
J " “x

X X X
Cost: +

C

FoF

Cost:

x: defective device *: non-zero error

(b)

Fig. 4. (a) The cost computation of data to hardware and (b) the proposed
sparse data structure for cost computation.

technique is that the cost of assigning weight to non-defective
device is equal to zero. Consequently, it is expected that the
run-time can be significantly reduced by only computing the
cost of assigning weights to defective devices.

The computation of ¢;; in the cost matrix C' is obtained
by respectively mapping row 7 in W; to row j in an RCA;
and column ¢ in Wi4q to column j in an RCA;4;, which
is illustrated in Figure 4. It can be observed that many of
the costs are equal to zero as the number of non-defective
devices outnumbers the number of defective devices. To only
compute the cost of assigning weights to defective devices, we
introduce two adjacency matrices to store the location of the
defects within each RCA. One stores the defect locations in a
row-oriented fashion and the other stores the defect locations
in a column oriented fashion. Consequently, when the cost of
assigning row ¢ in W; to row j in an RCA; is computed, the
framework iterates over the elements in the row-oriented data
structure to only compute the cost of assigning weight to the
defective devices. Similarly, the column-oriented data structure
is used to compute the cost of assigning column 7 in Wi
to column j in an RCA;;;. The use of the defect indexing
results in that the computation number of computing costs is
proportional to the number of defective devices instead of the
total number of devices.

B. The weight range characterization technique

The weight range technique aims to speed-up the compu-
tation of the cost matrix when more than one resistive device
is used to realize each weight. The main idea is to pre-
characterize the weight value range that can be realized by
a set of parallel devices, which avoids dynamically computing
the weight range every time a weight is assigned to the devices.

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

When R parallel resistive devices are used to realize a single
weight, the realized weight wj, is computed in three steps [16],
as follows:

Step 1: For the R parallel devices, count the number of device
stuck-on d and device stuck-off d”.

Step 2: Convert the d and d” into an weight value range
[Winin, Wmaz), as follows:

Wmin = (dH . Wmaz + (R - dH) . szn)/R

3
Wmaz = (dL . szn + (R - dL) . Wmaz)/R ()

where Wi, and wy,q, are the minimum and maximum
of the weight range. W,,,;,, and W,,,4, are the minimum
and maximum values of matrix W, respectively.

Step 3: Compute the realized weight wj, based on the weight
value range [Wiin, Wmaz), as follows:

Wynin, W < Wmin,
ro_
wk - Wi, Wimin S Wi S Wmazx, (4)
Wmaz, Wk > Wnax

Using wy,, the cost can be evaluated quickly using Eq (2).
When formulating the cost matrix in Section III-B, we
observe that the algorithm evaluates mapping many different
weights to the same parallel resistive devices. For each weight,
the three steps are repeated and the time complexity is O(R)
based on the first step. The process is illustrated at the top
of Figure 5. However, we observe that the first two steps are
independent of the specific weight. Consequently, there exists
an opportunity to pre-characterize the weight range using a
one-time expensive initialization phase. Next, each realized
weight can be computed fast and efficiently based on the
weight range characterization, as shown at bottom of Figure 5.

}—»wk'

For every weight

For every weight

X Wi
% — dL, dH —
[Weniny Wmax]

Characterization
(one-time process)

4 Wi
—> dt, d" —> [Wrins Wimax]

—=> W'
[Wmin: Wmax]

Step 3

X X

Step 1 Step 2

- : non-defecive x: defects

Fig. 5. An example of the weight range characterization technique of using
R = 4 devices for a single weight.

The time complexity analysis of assigning /N weights to
R parallel resistive devices on the RCA is shown in Table I.
Without the weight range characterization, the time complex-
ity of the N assignments is O(NR). When the one-time
characterization is utilized, the time complexity is reduced to
O(N+R). Clearly, the technique is particularly effective when
a higher redundancy factors are used to compensate for many
defects in the hardware.

75

TABLE I
TIME COMPLEXITY ANALYSIS OF ASSIGNING N WEIGHTS TO R PARALLEL
RESISTIVE DEVICES IN AN RCA.

Weight range mechanism Time complexity
Step 1 Step 2 | Step 3 Total
Without characterization | O(NR) | O(N) | O(N) O(NR)
With characterization O(R) O(1) | O(N) || O(N + R)

C. The LP formulation technique

The assignment problem can be solved using the Hungarian
algorithm or an LP formulation. Previous studies have used
the Hungarian algorithm. We empirically observe that the use
of an LP formulation results in shorter run-time due to the
structure of the problem. The LP is formulated, as follows:

min Z Z CijTij, (5)
i€EM jEN
dwij=1YieM (6)
JEN
Y mi;=1VjeN 7
€M

where c;; is the cost of assigning neuron i to location j, i.e.,
entry (¢,7) in the cost matrix C. x;; = {0,1} is a binary
variable that denotes if neuron 7 is assigned to location j. The
objective function in Eq (5) minimizes the total cost of the data
layout organization. The constraints in Eq (6) and (7) ensure
that each neuron is assigned to one and only one location.

V. METHODOLOGY

The flow of the proposed framework for fast data layout
organization is shown in Figure 6. The input to the framework
is the weight matrices of a neural network with L layers,
a RCA for each weight matrix, and a redundancy factor R
indicating the number of parallel resistive devices that are used
to realize each weight. The output from the framework is the
order of the neurons in each layer of the neural network. The
neuron order is expected to reduce the cost in Eq (2) and
therefore improve the classification accuracy in hardware.

inTut

| Detect defects in RCS ‘
[

Initialize network with
pre-characterization

—.— Sparse defect indexing
Compute cost matrix

— Sparse defect indexing

— Weight range characterization

Data
layout
organization

™ Weight range characterization

|So|ve assignment problem ‘ «~— LP formulation

Layers remaining?
yes no

output
Fig. 6. Flow of the proposed framework.

First, the defective devices in each RCA is detected using
the technique in [1], [7], [14]. In the initialization phase,
the row-oriented and column-oriented data structures are con-
structed to facilitate the sparse indexing technique. Moreover,

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

the value range for each location for each set of R parallel
devices is pre-characterized. Next, the neuron permutation is
iteratively applied to each layer of the neural network from
the first layer to the last layer. In each layer, the neuron
permutation is performed by computing a cost matrix and
solving an assignment problem, as explained in Section III-B.
The cost matrix is quickly computed using the proposed sparse
defect indexing and weight range characterization techniques
in Section IV-A and IV-B, respectively. Next, the assignment
problem is swiftly solved using the proposed LP formulation
in Section IV-C.

VI. EXPERIMENTAL EVALUATION

The speed-up techniques in the proposed framework are
implemented using C++ and the experiments are performed
on a 3.4GHzx8 core machine with 32GiB of memory. The
neural networks on MNIST [9] and CIFAR-10 [8] are trained
using Keras [3] and TensorFlow on a NVIDIA Tesla K80 GPU.

TABLE 11
PROPERTIES OF THE EVALUATED NEURAL NETWORKS.
Network Dataset Software | Layers Weights Through
accuracy -put
MLP-4 MNIST 98.35% 4 545000 1
MLP-6 MNIST 98.43% 6 774000 1
| 'CNN-7 | CIFAR-10 | 75.03% | 7 ~ | 1250144 | 1024 |
CNN-16a | CIFAR-10 | 93.45% 6 14977728 1024
CNN-16b | CIFAR-10 | 93.45% 6 54586368 32

We evaluate the performance of the framework using two
MLPs trained on MNIST and three CNNs trained on CIFAR-
10. The properties of the evaluated neural networks on both
the MNIST and CIFAR-10 datasets are shown in Table II.

The framework is evaluated in terms of the normalized
classification accuracy, is equal to the hardware accuracy
divided by the software accuracy. The software classification
accuracy is shown in the table. The classification accuracy
in hardware is obtained by introducing 10% defects into the
RCAs and evaluating the DNN classification accuracy using
the realized weight matrices using Eq (1).

The baseline method with no optimization is labeled ‘-
’. The technique of utilizing redundant hardware in [16] is
denoted ‘H’. The use of both redundant hardware and data
layout organization in [18] is denoted ‘HD’. The ‘HD’ method
extended with the sparse defect indexing technique is called
‘HD-I’. ‘HD-IC’ is the ‘HD-I’ method integrated with the
weight range characterization technique. ‘HD-ICL’ is the ‘HD-
IC’ technique extended with the proposed LP formulation.

In Section VI-A, we present the evaluation of the individ-
ual speed-up techniques. In Section VI-B, we compare our
framework with the methods from previous studies.

A. Evaluation of the speed-up techniques

1) Evaluation of sparse defect indexing: The sparse defect
indexing technique is evaluated in Figure 7. The figure shows
the run-time of the framework with and without the sparse
defect indexing technique with different defect rates on both
the MNIST and CIFAR-10 datasets.

76

— Non-indexing — Indexing — Non-indexing — Indexing

200 60
g 150 £w
%5 3
3 L e ———— S
& &

0
12'3 456171 8910
Defect rate (%)

0
1234567881
Defect rate (%)

(a) MLP-6 (b) CNN-16a

Fig. 7. Evaluation of sparse defect indexing with respect to defect rate on
(a) MNIST and (b) CIFAR-10 dataset.

The figure shows that the run-time without sparse defect
indexing is proportional to the number of devices in the DNN.
The sparse defect indexing technique significantly reduces
the run-time, as the run-time is proportional to the number
of defective devices. With the defect rate increasing from
1% to 10%, the normalized indexing run-time increases from
5.1% to 20.6% on the MNIST and from 15.5% to 72.4%
on the CIFAR-10, respectively. The run-time is reduced by
only computing the cost at the recorded locations instead of
computing the cost at each location of the RCAs, as the cost
introduced by non-defective devices is equal to zero.

2) Evaluation of the weight range characterization: The
weight range characterization technique is evaluated in Fig-
ure 8. The figure shows that the run-time is proportional to R
when the the weight range characterization technique is not
used. In contrast, the run-time is almost constant when the
weight range characterization is applied. The speed-up stems
from that the time-complexity of computing wj, is reduced
from O(R) to O(1).

— Without characterization
— With characterization

— Without characterization
— With characterization

__ 160 __ 8000

Q Q

8 120 8 6000

g 80 g 4000

= 40 = 2000

g or——— | § feee——————
R=2 R=4 R=8 R=2 R=4 R=8

(@) (b)

Fig. 8. Effectiveness of the weight range characterization technique with
respect to different redundancy factor R on (a) MLP-6 and (b) CNN-16a.

3) Evaluation of the LP formulation: The linear program-
ming formulation technique is evaluated and compared with
the Hungarian algorithm, as shown in Figure 9. It can be
observed that the run-time of the Hungarian algorithm greatly
increase as the cost matrix dimension increase.

B. Comparison with related studies

In Table III, we present the comparison of the proposed
framework with previous studies in terms of normalized ac-
curacy, the cost in Eq (2), and run-time. The comparison is
performed on both the MNIST and CIFAR-10 datasets using
networks with 10% defect rate. The redundancy factor is set
such that the ‘HD” method achieves 99% normalized accuracy.
Specifically, a redundancy factor R equal to 4, 4, 8, 4, 8

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

—Hungarian —LP
1000

~
o
o

Run-time (sec)
N o
a o
o o

o

400 800 1200 1600

Cost matrix dimension

2000

Fig. 9. Evaluation of the solver run-time vs. problem dimension.

is used for MLP-4, MLP-6, CNN-7, CNN-16a, CNN-16b,
respectively.

When no optimization is applied, the normalized accuracy
is unacceptably low. The technique of utilizing hardware
redundancy (the ‘H’ method in [16]) greatly improves the
accuracy. Compared with the ‘H’ method, the ‘HD’ method
improves the average normalized classification accuracy with
1.8% without any hardware overhead. It is easy to understand
that the normalized accuracy is improved because the cost
in Eq (2) is improved with 52.6%. However, the run-time
is too long to be practical for the larger neural networks. In
particular, it can be observed that the run-time for CNN-16a
and CNN-16b is 1.7 hours and 67.9 hours, respectively.

TABLE III

COMPARISON OF THE PROPOSED FRAMEWORK WITH RELATED STUDIES.

Network Work | Method cost Norm. Run-time
(dataset) in Eq (2) accuracy (sec)

- 39.0 22.0 3
[16] H 6.8 97.8 4
MLP-4 [18] HD 0.1 99.9 176
(MNIST) Ours | HD-I 0.1 99.9 69
Ours | HD-IC 0.1 99.9 18
Ours | HD-ICL 0.1 99.9 18

7777777 D I I X T R
[16] H 7.3 98.4 5
MLP-6 [18] HD 0.1 100.0 259
(MNIST) Ours HD-I 0.1 100.0 100
Ours | HD-IC 0.1 100.0 27
Ours | HD-ICL 0.1 100.0 27
- 10050.3 13.3 2
[16] H 97.8 97.2 7
CNN-7 [18] HD 79 99.9 686
(CIFAR-10) | Ours | HD-I 79 99.9 668
Ours | HD-IC 79 99.9 71
Ours HD-ICL 79 99.9 71

7777777 T - T T 29310200 | 107 [T 25 |
(6] | H 5821.1 96.9 64
CNN-16a [18] HD 1911.8 99.3 5969
(CIFAR-10) | Ours | HD-I 1911.8 99.3 5051
Ours | HD-IC 1911.8 99.3 943
Ours | HD-ICL 1911.8 99.3 939

7777777 D A 3 T A T B [T
[16] H 243 99.5 770
CNN-16b [18] HD 0.3 99.9 244572
(CIFAR-10) Ours HD-I 0.3 99.9 95725
Ours | HD-IC 0.3 99.9 28905
Ours | HD-ICL 0.3 99.9 25248
- 610114 | (-84.5%) 0.15 0.01
[16] H 47.4 (-1.8%) 0.98 0.01
Norm [18] HD 1.00 1.00 1.00
Ours | HD-I 1.00 1.00 0.60
Ours | HD-IC 1.00 1.00 0.12
Ours | HD-ICL 1.00 1.00 0.11

Compared with the ‘HD’ method, the proposed ‘HD-I’,
‘HD-IC’, and ‘HD-ICL’ methods result in the exact same cost
and normalized classification accuracy. This is expected be-

71

cause the speed-up techniques only avoid redundant computa-
tion when computing the cost metric or solves the assignment
problem faster, i.e., the exact same data to hardware assign-
ment (or data layout organization) is obtained. Compared with
the ‘HD’ method, the ‘HD-I’, ‘HD-IC’, and ‘HD-ICL’ method
respectively reduces the run-time with 40%, 88%, and 89%.
The improvements in run-time are not surprising as the ‘HD-I’
method avoids a significant amount of redundant “zero” cost
computation and the weight characterization reduces the time
complexity of utilizing redundant hardware. The LP formula-
tion slightly reduces the run-time for the large neural networks.
In summary, the proposed framework reduces the average run-
time of the state-of-the-art data layout organization without
degrading the performance in resistive hardware.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a framework to speed-up
the data layout organization for deploying DNNs on RCSs.
The results show that the proposed framework is capable of
achieving software level classification accuracy while reducing
up to 89% of the run-time. Future study will explore specific
customized techniques for large neural networks to balance
the trade-off between the run-time and performance of the
data layout organization.

REFERENCES

C. Y. Chen et al. RRAM defect modeling and failure analysis based on
march test and a novel squeeze-search scheme. [EEE Transactions on
Computers, 64(1):180-190, 2015.

L. Chen et al. Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar. DATE, pages 19-24, 2017.
[3] F. Chollet et al. Keras. https://keras.io, 2015.

Z. He et al. Noise injection adaption: End-to-end reram crossbar non-
ideal effect adaption for neural network mapping. DAC, page 57, 2019.
M. Hu et al. Memristor crossbar-based neuromorphic computing system:
A case study. JEEE TNNLS, pages 1864-1878, 2014.

M. Hu et al. Dot-product engine for neuromorphic computing: Program-
ming ITIM crossbar to accelerate matrix-vector multiplication. DAC,
pages 1-6, 2016.

S. Kannan et al. Modeling, detection, and diagnosis of faults in
multilevel memristor memories. IEEE TCAD, 34(5):822-834, 2015.
A. Krizhevsky et al. Cifar-10 (canadian institute for advanced research).
[9] Y. LeCun et al. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

B. Liu et al. Reduction and IR-drop compensations techniques for
reliable neuromorphic computing systems. ICCAD, pages 63-70, 2014.
B. Liu et al. Vortex: Variation-aware training for memristor X-bar. DAC,
pages 1-6, 2015.

C. Liu et al. Rescuing memristor-based neuromorphic design with high
defects. DAC, pages 87:1-87:6, 2017.

X. Liu et al. Harmonica: A framework of heterogeneous computing
systems with memristor-based neuromorphic computing accelerators.
IEEE Tran. on Circuits and Systems I: Regular Papers, 63(5), 2016.
A. van de Goor and Y. Zorian. Effective march algorithms for testing
single-order addressed memories. In Proc. European Conference on
Design Automation with the European Event in ASIC Design, pages
499-505, 1993.

L. Xia et al. Fault-tolerant training with on-line fault detection for
RRAM-based neural computing systems. DAC’17, pages 1-6, 2017.
L. Xia et al. Stuck-at fault tolerance in RRAM computing systems.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
8(1):102-115, 2018.

B. Yan et al. A closed-loop design to enhance weight stability of
memristor based neural network chips. ICCAD, pages 541-548, 2017.
B. Zhang et al. Handling stuck-at-fault defects using matrix transfor-
mation for robust inference of dnns. IEEE TCAD, 2019.

(1]

[13]

[14]

[15]

[16]

[17]

[18]

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 12:38:24 UTC from IEEE Xplore. Restrictions apply.

