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Abstract Traditionally, computation within self-assembly models is hard to
conceal because the self-assembly process generates a crystalline assembly
whose computational history is inherently part of the structure itself. With no
way to remove information from the computation, this computational model
offers a unique problem: how can computational input and computation be
hidden while still computing and reporting the final output? Designing such
systems is inherently motivated by privacy concerns in biomedical computing
and applications in cryptography.

In this paper we propose the problem of performing “covert computation”
within tile self-assembly that seeks to design self-assembly systems that “con-
ceal” both the input and computational history of performed computations.
We achieve these results within the growth-only restricted abstract Tile As-
sembly Model (aTAM) with positive and negative interactions. We show that
general-case covert computation is possible by implementing a set of basic
covert logic gates capable of simulating any circuit (functionally complete). To
further motivate the study of covert computation, we apply our new framework
to resolve an outstanding complexity question; we use our covert circuitry to
show that the unique assembly verification problem within the growth-only
aTAM with negative interactions is coNP-complete.
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1 Introduction

Since the discovery of DNA over half a century ago, humans have been con-
tinually working to understand and harness the vast amount of information
it contains. The Human Genome Project [19], which began in 1990 and took
a decade, was the first major attempt to fully sequence the human genome.
In the years since, sequencing has become extremely cheap and easy, and our
ability to manipulate DNA has emerged as a central tool for many applications
related to nanotechnology and biomedical engineering.

Although this progress has many benefits, as we learn more about the
information, we also must be careful with the shared data. There are databases
of anonymous DNA sequences, which can sometimes be deanonymized with
only small amounts of information such as a surname [16], or by reconstructing
physical features from the DNA [8]. In order to address these issues, there has
been work on cryptographic schemes aimed at obscuring results related to
DNA or the input/output [9,13,17,30].

In this work we take the first steps in addressing some of these issues within
self-assembling systems by proposing a new style of computation termed covert
computation with important motivations for private biomedical computing and
cryptography. Self-assembly is the process by which systems of simple objects
autonomously organize themselves through local interactions into larger, more
complex objects. Understanding how to design and efficiently program molec-
ular self-assembly systems is fundamental for the future of nanotechnology.
The abstract Tile Self-Assembly Model (aTAM) [10,21], motivated by a DNA
implementaiton [14], has become the premiere model for the study of the com-
putational power of self-assembling systems. In the aTAM, system monomers
are modeled by four-sided Wang tiles which randomly combine and attach if
the respective bonding domains on tile edges are sufficiently strong. The aTAM
is known to be computationally universal [29] and intrinsically universal [12].

Covert Computation. As a computational model, tile self-assembly dif-
fers from traditional models of computation in that computational steps are
defined by permanently placing particular tile types at specific locations in
geometric space. A history of each computational step is thereby recorded in
the final assembled structure. This presents a unique problem to this type of
computation: is it possible to conceal the input and history of a computation
within the final assembly while still computing and reporting the output of
the computation? Concealing the computational histories of the self-assembly
process in this way requires designing a computational system which encodes
computational steps in the order of tile placement, rather than the type and
location of tile placements. We use the term covert' to describe this con-
cealment of inputs and computational histories. This method of computing
is different than previous tile self-assembly computing methods and requires
novel techniques.

1 1t is important to note that the term covert has specific meaning in cryptography which
does not apply here.
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Also, while the reader may notice many parallels between our work and
traditional secure multiparty computation [6], it should be made clear that
our main result is the secure computation of a function with only a single
party. The challenges presented above make this an interesting problem for
tile self-assembly.

Motivation. The concept of covert computation within self-assembly has
many potential applications. We briefly outline a few biomedical computing
applications. Consider a set of diagnostic tiles sent to a patient as a droplet of
DNA to which the patient adds some biological input such as a blood sample.
From this the diagnostic system could compute some desired function that
outputs specific diagnostic statistics. The patient sends the combined product
to a medical facility for interpretation. With covert computation, only the
results can be read by the lab and the user’s biological input is obscured
ensuring privacy.

Another potential use involves implementing a cryptography system within
a molecular computing framework. The ability to covertly compute allows
users to provide a personal key input that may be combined with a publicly
available covert system where the combination verifies some computable prop-
erty of the input key without revealing any additional details of the key. This
style of cryptographic scheme fits well when the input keys are biological based
inputs.

A final potential biological application might be engineering a system for
unlocking key biological properties within bio-engineered crops. For example,
by releasing a hidden “key” input, covert computation might allow a field of
crops to become fertile. A company owning the patent on this type of activation
might desire the security of ensuring that the release key cannot be deciphered
from the activated crop based on a covert molecular computation.

The final motivation of covert computation is within algorithmic self-assembly.
We believe the concept of covert computation is fundamental and hope that
our novel design techniques will be applicable to a number of future problems in
the area. As evidence towards this, we apply our techniques to resolve the com-
plexity of the fundamental question of verifying whether a tile system uniquely
assembles a given assembly within the growth-only negative-glue aTAM.

Contributions. After formally defining the concept of covert computa-
tion in tile self-assembly, we implement several covert logic gates within the
negative-glue growth-only abstract Tile Assembly Model (this growth-only re-
striction to negative glues has been seen in the 2HAM [5], and negative glues
in tile assembly have received extensive study [4,11,20,22-25]), and show these
gates may be combined to create general circuits, thereby showing that general
covert computation is possible. Finally, we apply our techniques and frame-
work to address the fundamental problem of deciding if a negative-glue aTAM
system uniquely produces a given assembly. We show this problem is coNP-
complete. Table 1 outlines how our result compares to what was previously
known about Unique Assembly Verification in the aTAM.

This work is an extension of a paper originally published in [3]. We have
included a lot more detail as well as additional examples and gadgets. There
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Model | Negative Glues | Detachment Complexity Theorem
aTAM No No O(JA]Z +JA|IT]) | Thm. 3.2 in [1]
aTAM Yes No coNP-complete Thm. 2
aTAM Yes Yes Undecidable [11]

Table 1: The complexity of Unique Assembly Verification in the aTAM in
relation to negative glues. |A| refers to the size of an assembly and |7T'| is the
number of tile types.

was also a small issue with the NAND gadget related to backfilling which
has been corrected. The backfill stop gadget was also added, which allows
backfilling to begin along a wire for a cleaner construction with the FANOUT
and at the output.

2 Definitions

We begin with an overview of the abstract Tile-Assembly Model (aTAM)
and then give the new definitions introducing covert computation. Due to the

extensive use of the aTAM in the literature, we only give a high-level overview
of the aTAM.

2.1 Abstract Tile Assembly Model

Figure 1 gives a high-level overview of the models with a couple of example
systems. Essentially, we have non-rotating square tiles that have a glue label on
each edge. The tile with its labels is a tile type. The tile set is all the tile types.
A glue function determines the strength of matching glue labels. An assembly
is a single tile or a finite set of tiles that have combined via the glues. If the
combined strength of the glue labels of a single attaching tile to an assembly
is greater than or equal to the temperature 7, the tile may attach. A producible
assembly is any assembly that might be achieved by beginning with the seed
(the specified starting assembly) and attaching tiles. A producible assembly
is further said to be terminal if no further tile attachment is possible. A tile
system is said to uniquely produce a (terminal) assembly A if all producible
assemblies will eventually grow into A. A tile system is formally represented
as an ordered triplet I' = (T, .S, 7) representing the tile set, seed assembly, and
temperature parameter of the system respectively.

In a standard aTAM system, all glues are positive integral values, but here
we look at the negative aTAM where the glues may be negative/repulsive.
Such repulsive forces may be used to block the attachment of tiles despite
the presence of strong attractive glues. Moreover, the inclusion of repulsive
forces may yield unstable producible assemblies where a subassembly could
detach because it no longer has enough binding strength. While this type of
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Fig. 1: High-level overview of the aTAM with repulsive forces. Both systems
have tiles that can attach to the seed tile given they can attach with 7 strength.
The arrows show the possible assembly paths from the seed tile with the termi-
nal assembly being outlined. (a) A negative aTAM system that has a possible
assembly path causing disassembly. One path is growth-only, but the other
path can attach the tile with the purple/red glues, which causes the orange/red
tile to become unstable and detach. (b) A growth-only aTAM system where
negative glues are used to block, but never cause disassembly. The only dif-
ference is that the purple glue attaches with strength 1, G(p) = 1. This yields
two possible terminal assemblies, neither of which include disassembly.

detachment has been studied in the literature [11,25], we avoid this feature in
this work as its inclusion drastically changes the complexity of the model by
making most types of verification problems undecidable, and may require more
sophisticated techniques for experimental implementation. Thus, we consider
a system to be a wvalid growth-only system if all producible assemblies are 7-
stable. In this paper we restrict our consideration to valid growth-only systems.

2.2 Formal Definitions

Tiles. Let IT be an alphabet of symbols called the glue types. A tile is a finite
edge polygon with some finite subset of border points each assigned a glue type
from II. Each glue type g € II also has some integer strength str(g). Here,
we consider unit square tiles of the same orientation with at most one glue
type per face, and the location to be the center of the tile located at integer
coordinates.

Assemblies. An assembly A is a finite set of tiles whose interiors do not
overlap. If each tile in A is a translation of some tile in a set of tiles T', we
say that A is an assembly over tile set T. For a given assembly A, define
the bond graph G 4 to be the weighted graph in which each element of A is
a vertex, and the weight of an edge between two tiles is the strength of the
overlapping matching glue points between the two tiles. Only overlapping glues
of the same type contribute a non-zero weight, whereas overlapping, non-equal
glues contribute zero weight to the bond graph. The property that only equal
glue types interact with each other is referred to as the diagonal glue function
property and is perhaps more feasible than more general glue functions for
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experimental implementation (see [7] for the theoretical impact of relaxing
this constraint). An assembly A is said to be 7-stable for an integer 7 if the
min-cut of G4 has weight at least 7.

Tile Attachment. Given a tile ¢, an integer 7, and an assembly A, we
say that ¢ may attach to A at temperature 7 to form A’ if there exists a
translation ¢ of ¢ such that A’ = AU {t'}, and the sum of newly bonded
glues between ¢’ and A meets or exceeds 7. For a tile set T we use notation
A =, A’ to denote there exists some ¢t € T that may attach to A to form A’
at temperature 7. When T and 7 are implied, we simply say A — A’. Further,
we say that A —* A’ if either A = A’, or there exists a finite sequence of
assemblies (A; ... Ag) such that A — A; — ... > A, — A'.

Tile Systems. A tile system I" = (7,5, 7) is an ordered triplet consisting
of a set of tiles T called the system’s tile set, a T-stable assembly S called the
system’s seed assembly, and a positive integer 7 referred to as the system’s
temperature. A tile system I' = (T,5,7) has an associated set of producible
assemblies, PROD;, which define what assemblies can grow from the initial
seed S by any sequence of temperature 7 tile attachments from 7T'. Formally,
S € PRODy is a base case producible assembly. Further, for every A € PROD, if
A —p . A’ then A’ € PRODp. That is, assembly S is producible, and for every
producible assembly A, if A can grow into A’, then A’ is also producible. We
further denote a producible assembly A to be terminal if A has no attachable
tile from T at temperature 7. We say a system I" = (T, S, 7) uniquely produces
an assembly A if all producible assemblies can grow into A through some
sequence of tile attachments. More formally, I" uniquely produces an assembly
A € PRODy if for every A’ € PRODy it is the case that A" —* A. Systems that
uniquely produce one assembly are said to be deterministic.

Finally, we consider a system to be a valid growth-only system if all assem-
blies in PROD are 7T-stable. The existence of negative strength glues allows for
the possibility that unstable assemblies are produced.

2.3 Covert Computation

Here, we provide formal definitions for computing a function with a tile sys-
tem, and the further requirement for covert computation of a function. Our
formulation of computing functions is based on that of [18] but modified to
allow for each bit to be represented by a sub-assembly potentially larger than
a single tile.

Informally, a Tile Assembly Computer (TAC) for a function f consists of a
set of tiles, along with a format for both input and output. The input format
is a specification for how to build an input seed for the system that encodes
the desired input bit-string for function f. We require that each bit of the
input be mapped to one of two assemblies for the respective bit position: a
sub-assembly representing “0”, or a sub-assembly representing “1”. The input
seed for the entire string is the union of all these sub-assemblies. This seed,
along with the tile set of the TAC, forms a tile system. The output of the
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computation is the final terminal assembly this system builds. To interpret
what bit-string is represented by the output, a second output format specifies
a pair of sub-assemblies for each bit. The bit-string represented by the union
of these subassemblies within the constructed assembly is the output of the
system.

For a TAC to covertly compute f, the TAC must compute f and produce
a unique assembly for each possible output of f. We note that our formulation
for providing input and interpreting output is quite rigid and may prohibit
more exotic forms of computation. We acknowledge this, but caution that
any formulation must take care to prevent “cheating” that could allow the
output of a function to be partially or completely encoded within the input,
for example. To prevent this, some type of uniformity constraint, similar to
what is considered in circuit complexity [28], should be enforced. We now
provide the formal definitions of function computing and covert computation.

Input/Output Templates. An n-bit input/output template over tile
set T is a sequence of ordered pairs of assemblies over T: A = (Ao, A40,1),

.y (Ap—1,0, Ap—1,1). For a given n-bit string b = by, ...,b,—1 and n-bit in-
put/output template A, the representation of b with respect to A is the as-
sembly A(b) = U, Aip,- A template is valid for a temperature 7 if this union
never contains overlaps for any choice of b, and is always T-stable. An assembly
B D A(b), which contains A(b) as a subassembly, is said to represent b as long
as A(d) ¢ B for any d # b.

Function Computing Problem. A tile assembly computer (TAC) is
an ordered quadruple & = (T,1,0,7) where T is a tile set, I is an n-bit
input template, and O is a k-bit output template. A TAC is said to compute
function f : Z% — Z& if for any b € Z% and ¢ € Z5 such that f(b) = ¢, then
the tile system I'sp, = (T,1(b),7) uniquely assembles a set of assemblies at
temperature 7 which all represent ¢ with respect to template O.

Covert Computation. A TAC covertly computes a function f(b) = c if
1) it computes f, and 2) for each ¢, there exists a unique assembly A. such
that for all b, where f(b) = ¢, the system I's, = (T, I(b), 7) uniquely produces
A.. In other words, A, is determined by ¢, and every b where f(b) = ¢ has the
exact same final assemby.

3 Covert Circuits

Here we cover the machinery for making covert gadgets and the covert gad-
gets needed for functional completeness in circuits based on a dual-rail logic
implementation: variables, wires, fanouts, and NANDs. We cover a NOT gate
as a primitive used in the NAND construction. Traditionally, a crossover is
also given, and we discuss why this is unnecessary in Section 4. For simplicity,
we give some other common gates in Section 5.

Some Conventions. All solid lines through two neighboring tiles indicate
strength-2 glues between them. The arrows indicate the build order (which may
branch). Blue single glues are strength 1, and red are strength -1. Following the
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(b)

Fig. 2: An example with two gadgets, A and B, to show how backfilling works
in covert computation. (a) If true is output from Gadget A, that wire assembles
to the next gadget. (b) Gadget B builds, and based on its function, outputs
the true or false wire (false in this case). Once B received the input (the true
wire assembles that then assembles B), it backfills the false wire towards A
(the false wire cooperatively assembles the tiles back to the gadget A). (c) The
false wire finishes assembling and both Gadget A and B have true and false
paths filled. The true output wire of Gadget B will be backfilled from the next
gadget. In this way, the input to B/output from A is “hidden.”

variable gadget (Figure 3b), all variables have a true and false path adjacent to
each other (dual-rail logic), but only one may be traversed at a time until the
next gadget. The true value is always to the left or on top of the false value,
and for most gadgets, the true input is colored grey while the false input is
colored green. Once a variable wire, true or false, reaches the next gadget, the
unused variable wire is backfilled so that both wires are present. This is a key
concept used in all constructions and is further explained in Figure 2.

3.1 Variables and Wires

A variable in our system is represented by two lines of connected tiles where
only one exists at a time when the wire is in use (dual rail). Figure 3a shows an
example of the possible input seeds on 2-bits used in a half-adder. Figure 3b
demonstrates how the variables might be set nondeterministically, although
generally the specific bits desired would already be attached as part of the
input seed (as in Figure 3a). Each variable v; has a sequence of tiles ¢; rep-
resenting a true setting and f; a false setting. The first tiles have a negative
glue of strength —1 meaning only the ¢; or the f; tile can attach. The other
shown glues are strength 2. Once the variable is set, the setting travels to the
gadget as a wire.

The variable setup in Figure 3b is used in one of two ways: In the case
of providing an input to a covert computation, this variable setup defines the
input template for the computation, with the seed for a given binary input
being the seed assembly with either a true or false tile (but not both) placed
at each bit position. An example system (a half-adder) with a big seed input
is shown in Figure 13. Alternatively, the seed begins as a single seed tile that
nondeterministically creates a valid input over all possible n-bit inputs. This
approach is used in Section 4 to show coNP-completeness for unique assembly
verification.
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) Possible Input Seeds (b) Variable

Fig. 3: (a) Example of the 4 possible input seeds for a half-adder from Section
5.2. (b) Variables are represented by a true and a false line where only one
may exist. The variables build off the seed, but only the ¢; or the f; tile may
attach due to the negative glue between the two tiles.
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Fig. 4: (a) A backfill stop. This ensures that the wire is allowed to backfill up
to a certain point. (b) A gadget referred to as a logic diode. This ensures input
from one direction and stops tiles from assembling in the wrong direction.

3.2 Backfill Stops

Figure 4a shows a backfill stop, or simply a backstop. This continues a signal,
but also backfills the other wire up to this gadget. This ensures that every-
thing up to this gadget has the signals needed to begin backfilling. It has the
following properties.

1. If ti" enters, then only %! leaves, and fi™ is also populated. Since #7%
attaches the tile with the n3 glue, the tile going to f°** can not attach.
However, the hj,hs glues allows a tile from fi™ to attach cooperatively,
which allows backfilling of the wire. The ny glue prevents the wire from
attaching another tile towards the output though.

2. If fi" enters, then only f2“' leaves, and ti" is also populated. Since f
attaches the tile with the ng glue, the tile going to t¢“* can not attach.
However, the hq, ha glues allows a tile from ti" to attach cooperatively,
which allows backfilling of the wire. The n; glue prevents the wire from
attaching another tile towards the output though.
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3.3 Logic Diodes

Figure 4b shows what we refer to as a logic diode, and prevents timing issues.
These appear in every gadget and serve two purposes: if backfilling, this stops
the filling at the gadget level so it does not backfill a wire that has not been set,
and second it ensures that a gadget must have input from the wire. All shown
glues are strength 1 and the lines are strength 2. This gadget is important for
later constructions. It must have these properties.

1. If ¢ enters, then only t¢“* leaves. This is guaranteed due to hg, h3 coop-
eratively attaching the next tile. Without f{™ present, the only tile which
could attach is the cooperatively-placed tile from ¢2“*.

2. If fi™ enters, then only f¢“! leaves. This is guaranteed due to hg, hs coop-
eratively attaching the next tile. Without #{" present, the only tile which
could attach is the cooperatively-placed tile from fut.

3. The ti" wire will be backfilled if and only if fi" enters. Without f{" present,
a backfilled false path will stop at the tile with hg, h3. However, with fi"
present, the hy, ho tile can cooperatively attach and backfill the true wire.

4. The fi™ wire will be backfilled if and only if ¢i enters. Without ¢ present,
a backfilled false path will stop at the tile with hy, hs. With ¢ present,
the tile with Ay, h4 can cooperatively attach and backfill the false wire.

3.4 Covert NOT Gadget

The first covert gadget we introduce is a NOT gadget. This gadget displays
some of the key insights needed for covert computation, such as how blocking
with negative glue adds power to the system. The NOT gadget is also used as
a submodule within our NAND gadget. The NOT gadget is shown in Figure
5a, and Figure 5b is the NOT gadget with the logic diode added on the input
to ensure no backfill happens unless the gadget has receieved input. In the
NAND gadget, we also use the same structure as the NOT gadget, but with
an additional negative glue. This is shown in Figure 5c¢c and will be discussed
when needed.

Given the variables and wires work as shown, the difficulty in a dual-rail
NOT is that there must be at least one crossing tile that both the true and
false paths place. This tile can be thought of as where the signals cross or
switch. Figure 5a shows the basic NOT gadgets, and the tile shared by both
paths is labelled z. The negative glues allow blocking around this tile so that
only one path is possible once x is placed.

The properties of the NOT gadget guarantee that it works correctly and
that the gadget is covert (the gadget looks indistinguishable before the output
regardless of the input), and that the backfill works correctly. Figure 6 dis-
cusses these elements and walks through how the true/false inputs block and
crossover correctly. The figure does not show the logic diode though.

In verifying that the gadget works as intended, we must verify six proper-
ties. The first two conditions guarantee that the gadget works correctly. The
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Fig. 5: (a) Basic NOT gate (b) NOT gate with the logic diode on the input (c)
A covert NOT gate with an additional negative horizontal glue on the output
to prevent incorrect backfilling. This modification is needed when using this
gate for the construction of the NAND gate.
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Fig. 6: (a) A NOT gadget with true input tﬁ" and output f“*. The true output
can not place from tile x due to the negative glues n; and ns of strength —1.
(b) Once the NOT gadget passes the false output, glues hs, hy cooperatively
allow the false portion and wire to backfill. Glue hs is needed to fill in the tile
with na. (¢) A NOT gadget with false input f{" and output t2“f. The false
output can not attach due to the negative glue ny. The tile to the west of x
may attach, but due to glue ns, no other tile can attach. (d) Once the NOT
gadget passes the true output, glues hs, hg allow the true portion and wire to
backfill. Glue h; is needed to counteract the n; glue when backfilling that tile.

second two conditions are needed along with the last two to guarantee the
covertness of the gadget, i.e., the gadget looks indistinguishable before the
output regardless of the input. The final two conditions also verify that the
backfill from future gadgets will work correctly, and no trace of the build path
will be evident.

1. If ti" enters a NOT gadget, it results in f°** and not t%!. Figure 6a shows
the gadget in this case with true input ¢ and output f¢“*. The true output
can not place from tile x due to the negative glues n; and ng of strength
—1. Given the build order, we are guaranteed f?“! and that t¢“* can not
build.

2. If fi" enters a NOT gadget, it results in t2** and not f°*!. Figure 6¢ shows
the gadget in this case— with false input f/" and output t¢“f. The false
output can not attach due to the negative glue nsy. The tile to the west of
x may attach, but due to glue ng, no other tile can attach. Given the build
order, we are guaranteed %! and that f°“* can not build.
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3. The ti" wire will be backfilled up to tile  if and only if fi" enters a NOT
gadget and t9*! leaves. Figure 6d shows the desired result. Glues hs, hg
allow the true portion and wire to backfill. Glue h; is needed to counteract
the n; glue when backfilling that tile. Then the logic diode ensures fi™ is
present to backfill the wire.

4. The fi™ wire will be backfilled up to tile x if and only if ¢i" enters a NOT
gadget and f?“! leaves. Figure 6b shows the desired result. Glues hs, hy
allow the true portion and wire to backfill. Glue hs is needed to fill in the
tile with ny. Then the logic diode ensures ¢ is present to backfill the wire.

5. If the gadget resulted in ff“!, a future gadget can backfill t2** and the
gadget will be complete. If the gadget is in the configuration of Figure 6b,
the true wire can directly backfill until the tile directly above tile x. The
glue n; would prevent this tile from placing except x will be there and the
tile can cooperatively attach using the north glue of x and the south glue
of the backfilling wire.

6. If the gadget resulted in t9“!, a future gadget can backfill f?“* and the
gadget will be complete. If the gadget is in the configuration of Figure 6d,
the false wire can directly backfill until the tile directly east of tile x. The
glue ny would prevent this tile from placing except x is there and the tile
can cooperatively attach using the east glue of x and the west glue of the
backfilling wire.

3.5 Covert NAND Gadget

The basic idea for the NAND gadget is to compare if both inputs are true,
but because of the planarity constraints, we need to “flip” one of the inputs
using a covert NOT before comparing. Since a NAND is false only when both
inputs are true, this is the only path that should result in a false output. The
basic idea for the gadget is shown in Figure 7a with a representative block
for the NOT gadget already discussed. The second NOT block is the modified
NOT gadget (H-NOT) from Figure 5c. Both false inputs are routed to the
true output. One must go through another NOT in order to flip to the top
output position, while the other false line skips this NOT and ties directly to
the true output. Once we flip the top input, we can use cooperative binding
to compare the two true inputs, and only if both are true do we send it as
true into the second NOT block (so the gadget outputs false). All other input
combinations output true.

We will show why NOT and H-NOT are both necessary. Looking at Figure
7b, the negative glue ny is necessary in H-NOT to ensure that ¢7“, which
skips the second NOT gadget, does not set the output tf}”, and then also
set ffj“t based on the assembly order. Essentially, this protects from incorrect
backfilling and setting both outputs. However, the ny glue should not exist in
the standard NOT gadget, or it may backfill and could cause a tile to break
off depending on build order. Given we are using the growth-only aTAM, this
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Fig. 7: (a) Diagram of the covert NAND gate with NOTs shown as blocks.
The boxes for the NOT blocks are shown outlined in Figures 5b and 5¢. The
left box is the standard NOT gadget and the right box is the H-NOT gadget.
(b) The full NAND gate with the two NOT gadgets filled in and compacted.

would not be allowed. It is possible to create a single NOT that incorporates
these properties, but we prefer to avoid the added complexity.

Finally, the logic diodes on the inputs (Figure 4b) ensure that if we only
have one input, the gadget does not backfill down the other input wire. Even
if the gadget has already been set, that input will wait until either the true or
false wire comes before backfilling the wire.

Given the complexity of the NAND gadget, there are more issues related
to its function that must be considered compared to the previous gadgets. The
properties that it must have are as follows.

1. If wires ti" and t;" are set, then the wire i"j”t should leave the gadget.
Wire ¢/ exits the first NOT gadget as f{*. This wire, f**, and ;" both
stop and expose glues as and ag, respectively. Both are strength 1 glues,

and thus the tile with glues as and a3 can only attach if both the glues are
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exposed. Thus, only if wires ¢! and tz-" are set, will wire t;;‘ ever enter the

H-NOT gadget, which results in the wire fj“t as the gadget output.

. Given f{™ or fi", the wire 7" leaves the gadget. If wire f{" = ¢ is set,

ij _
this is tied directly to the output wire tf;”. If the wire f;™ is set, it comes
in as the false input of the second H-NOT gadget, which means it leaves
as t7"* by the validity of the NOT gadget.

. The wires ;" and fi" (f{" and ¢’ input) are backfilled if £{;** left the

gadget. If ¢ left the gadget, then it directly can backfill both the £
wire of the NOT gadget and the f;" wire if not already filled. Thus, f;” is
filled. Since the input line t2%* of the NOT is filled, it backfills ¢/ as shown
for the NOT gadget. Both wires are then backfilled through cooperative
attachment with the presence of the other input in the logic diode.

The wires f{" and ¢/* (t;* and f;" input) are backfilled if ¢ left the
gadget. If ¢ left the gadget, then it directly can backfill both the £
wire of the NOT gadget and the f}” wire if not already filled. The true
output of the H-NOT gadget backfills and glues as, a4 allow the cooperative
attachment that backfills t;” The NOT gadget with the true input would
backfill fi". Both wires are then backfilled through cooperative attachment
with the presence of the other input in the logic diode.

. The wires t;" and 5 (f{™ and fi™ input) are backfilled if £ left the

gadget. If £ left the gadget, then it directly can backfill both the t£** wire
of the NOT gadget and the f;" wire if not already filled. The NOT gadget
with f{" input will backfill ¢!”. The true output of the H-NOT gadget
backfills and glues as, a4 allow the cooperative attachment that backfills
t;" Both wires are then backfilled through cooperative attachment with
the presence of the other input in the logic diode.

. The wires f{" and fi" (t{* and ¢* input) are backfilled if f7** left the

gadget. The NOT gadget with the true input would backfill fi". The H-
NOT gadget will backfill the false input line, which is fjm Both wires are
then backfilled through cooperative attachment with the presence of the
other input in the logic diode.

The wire f2“* is always placed. The glues aj, as ensure that if all previ-
ous properties hold, the false output wire (f?“*) is also filled. Stepping
through properties 3-6, it is possible for the gadget to backfill the input
wires correctly without always placing these tiles.

. The growth-only constraint is not violated with the negative glues. This can

only happen given a stable assembly where a tile attaches with a negative
glue that destabilizes part of the assembly. The additional negative glue
ng could do this if the green tile is placed after the blue tile, however, the
build path is intentional to ensure this can not happen. If the wire f{;“t
were placed and t;’}‘t is backfilled, the tile with ng would be the last tile
that could attach and the assembly would never be unstable.

. The gadget does not behave incorrectly with only one input. The logic

diode guarantees the backfilling never goes beyond the gadget. If one input
is false, the NAND can send the tfft wire and backfill the NAND gadget
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Fig. 8: (a) FANOUT gadget. (b) True input wire for the FANOUT gadget t:"
results in output wires t7*** and ¢7“*2. (c) False input wire for the FANOUT
gadget fi" results in output wires f2** and f7"'2.

without having yet receieved the second input. When the second wire does
arrives, that wire is backfilled. With one true input, the gadget will just
be waiting at the tile needing both as or as. ti" will also backfill f{" even
with only that input. Given t;”, the false line is not backfilled until both
inputs are there.

3.6 Covert FANOUT Gadget

The FANOUT gadget needs to duplicate the geometric wire, and needs to
backfill when at least one of the outgoing wires has backfilled. Figure 8a shows
the FANOUT gadget. Similar to the NOT, there is a shared set of tiles placed
by both the true and the false path. Figures 8b and 8c show the true and false
paths without any backfilling, respectively. For a FANOUT, we add a Backfill
Stop gadget to both of its outputs in order to ensure they are backfilled. This
is not necessary, but it ensures that the gadget always backfills even when one
of the outputs is part of the output of the computation.
The FANOUT has the following necessary properties.

outy outsz
ti ti

1. With input ¢i", the gadget outputs wires and , and does not
output f7** and f{"">. Figure 8b shows the true fanout without the back-
filling. Due to n; and ne, the false outputs can not assemble. Both settings
share the same middle four tiles, but with placement order n; is placed
first and then cooperative glues are used to place the first tile of the four
(with glues g3, g4).

2. With input f/", the gadget outputs wires f2*** and f’**2, and does not
output 7" and t2“*>. Figure 8c shows the false fanout without the backfill-
ing. Due to n; and ns, the true outputs can not assemble. With placement
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order ny is placed first and then cooperative glues are used to place the
first of the four middle tiles (with glues hs, hy).

3. With input wire ¢, wire fi™ only backfills once " or f*** have back-
filled. Both wires backfill independently, and only fio“t"‘ can actually backfill
the fi™ wire. However, much like the logic diodes at the input of the gadget,
we require a backfill stop gadget on both of the outputs of the FANOUT.
This means that both f7*** and f7“*> are backfilled.

4. With input wire f", wire ¢ only backfills once ¢J*“** or t?*** have back-
filled. Both wires backfill independently, and only tf“tl can actually backfill
the ti" wire. However, much like the logic diodes at the input of the gadget,
we require a backfill stop gadget on both of the outputs of the FANOUT.
This means that both ¢{*"* and t** are backfilled.

4 Covert Computation and Unique Assembly Verification

In this section we establish our main results related to covert computation
in self-assembly systems. We first utilize our covert circuitry to show that
any function is covertly computable (Thm. 1). We then apply covert circuitry
to show that the open problem of Unique Assembly Verification within the
growth-only negative glue aTAM is coNP-complete (Thm. 2).

Theorem 1 For any function f computed by a boolean circuit, there exists a
tile assembly computer (TAC) that covertly computes f.

Proof The proof of this theorem consists of a direct simulation of boolean
circuits by way of a series of covert gadget implementations for various logic
gates and how to connect them. NAND Boolean gates are functionally com-
plete when combined with a FANOUT [27], and can implement any Boolean
circuit. These are easily transformed into Circuit SAT instances to compute
any function that is in the class NP [15], which fits within our definition of
computable functions by a TAC. Thus, the proof follows from the gadgets
and machinery given in Section 3 that implement the variables and gates for
Circuit SAT. O

We now prove that Unique Assembly Verification (UAV) in a growth-only
negative glue aTAM system is coNP-complete by utilizing our covert gadgets.
Without the growth-only constraint, UAV in the negative glue atam is unde-
cidable as a Turing machine simulation could use negative interactions to break
down produced assemblies into a final unique terminal assembly exactly when
the Turing machine halts [11]. With no negative glues however, the problem
is in P [1]. We prove that with the ability to temporarily block, the problem
becomes coNP-complete. This result is achieved with a reduction from Circuit
SAT. Unique Assembly Verification in our model is formally defined as follows:

Definition 1 (Unique Assembly Verification (growth only)) Given a
negative-glue aTAM tile-system I' = (T,S,7) with the promise that it is a
growth-only system, and an assembly A. Does I" uniquely assemble A?
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Fig. 9: Constructing planar crossover gadgets with NAND gates. (a) XOR
symbol. (b) NAND symbol. (¢) Two wires in a circuit that cross making it
non-planar. (d) A planar circuit using XOR gates that act as a crossover. (e)
A planar circuit using only NAND gates that implement an XOR gate.

A reduction from Circuit SAT [15] generally requires a functionally uni-
versal set of gates and variable, wire, fanout, and crossover gadgets. Both
NAND and NOR are functionally complete gates, so given either, all gates
can be made. A crossover gadget is redundant since it can be made with XOR
gates and XOR gates can be made with NAND gates [26]. Figure 9 shows this
derivation. Finally, Circuit SAT requires a DAG, and thus there are no cycles,
and so the gadgets can be topologically sorted so that there are no crossovers
that cause a loop (the output of a gadget can not crossover one of its input
lines). Thus, a reduction from Planar Circuit SAT is equivalent to a reduction
from Circuit SAT.

Definition 2 (Planar Circuit SAT) Given a planar directed acyclic graph
(DAG) G = (V,E) with n boolean inputs, one output, and every v € V
is either a NAND (or NOR) gate (deg~ (v) = 2, deg*(v) = 1) or a fanout
(deg™(v) =1, deg™ (v) = 2), the source vertices (v; € V s.t. deg™ (v;) = 0 and
1 < i < n) are the variables, and the sink vertex (s € V s.t. degt(v;) = 0) is
the “output” of the boolean circuit. Does there exist a setting of the inputs
such that the output to the circuit is 17

Theorem 2 Unique Assembly Verification in the a TAM with repulsive forces
in a growth only system is coNP-complete.

Proof We first observe that Unique Assembly Verification with repulsive forces
is in coNP as any failure to uniquely assemble a target assembly A comes in
the form of a polynomially sized assembly that is inconsistent with A. The
producibility of this assembly can be verified in polynomial time, and thus
serves as a certificate for “no” instances to the UAV problem.

We now show coNP-hardness by a reduction from Planar Circuit SAT.
Assume we are given an arbitrary instance of planar Circuit SAT C' with
inputs 41,...,4, where i € {0, 1}, i.e., a boolean circuit. By our definition we
assume there are only NAND gates, fanouts, input variables and an ouput
variable in the planar DAG.

For our reduction, we build a tileset T' by adding tiles corresponding
to the covert gadgets and connections described in Section 3. Replace each
NAND gate with a unique set of tiles implementing a NAND gadget, and each
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FANOUT gate with a unique set of tiles implementing a FANOUT gadget.
For each edge, a unique sequence of tiles is added to T that connects the two
gadgets representing the two gates the edge connected.

This yields a tile assembly computer (TAC), & = (T,1,0, 1), for covertly
computing the circuit C'. The key modification to show coNP-hardness is the
utilization of a seed that non-deterministically grows any one of the possible
n-bit input seeds for this TAC, and then evaluates the circuit. If the circuit is
not-satisfiable, then the final computation will be false regardless of the guessed
input, and therefore will yield the unique “no” assembly of the TAC based on
the fact that the circuit is computed covertly. On the other hand, if there exists
some satisfying n-bit input, there will be at least one final assembly that differs
from the “no” assembly. Thus, the “no” assembly is uniquely produced if and
only if the circuit C' is not satisfiable, thereby showing coNP-hardness.

Non-deterministic input selection. To non-deterministically form the pos-
sible input bits, we include the tile types and seed tile described in Figure 3b.
The seed grows a length O(n) line with each bit being encoded by a pair of
adjacent locations which expose a glue on the north edge. For each pair of
positions, the presence of the left tile denotes a “1” for the respective bit, and
the placement of the right tile denotes a “0”. The “1” and “0” tiles share a
negative strength 1 glue, making their mutual placement impossible until the
covert gadgets have passed on the computed signal and backfilled. O

Given that UAV is coNP-complete with negative glues by way of covert cir-
cuitry, yet UAV is in P without negative glues [1], it is reasonable to conjecture
that the use of negative interactions is needed to perform covert computation.

Conjecture 1 For some function f computed by a boolean circuit, there does
not exist a polynomially-sized tile assembly computer (TAC) that covertly
computes f in the aTAM without negative glues.

5 Further Motivation

Here, we give a few more motivating examples and some simplified gadgets.
There is a lot of future work in this vein of research that is extremely relevant
to modern society. We first cover the covert AND and OR gadgets.

5.1 Simplified Gadgets

Even though NAND gates alone are functionally complete, for some gates the
circuit is larger than desired. Here, we give compact direct versions of some
other useful gadgets and gates. This does not affect the complexity, but does
help build a more efficient covert computation toolkit.

Covert AND Gadget. The covert AND gadget is nearly identical to
the NAND gadget. The only real difference is which two inputs the second
NOT takes in. Also, similar to the H-NOT needed for the NAND, we create a
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Fig. 10: (a) Diagram of the covert AND gate with NOTs shown as blocks. The
left box is the standard NOT gadget and the right box is the V-NOT gadget
(has an additional vertical glue). (b) The full AND gate with the two NOT
gadgets filled in and some simplification for space.

V-NOT, which is a NOT with one additional vertically aligned negative glue.
Figure 10a shows the AND gadget with the blocks in place of NOTs for clarity,
and Figure 10b shows the full gadget.

Covert OR Gadget. The covert OR gadget still uses a NOT to flip
one of the inputs, but does several checks on the second flip to the point
of drastically differing from a NOT. This is similar to needing H-NOT and
V-NOT in previous gadgets to handle specific issues related to the boolean
function, but more changes are required. Figure 11a shows the OR gadget
with the blocks in place of NOTs for clarity, and Figure 11b shows the full
gadget.
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(a) Block OR (b) OR

Fig. 11: (a) Block diagram for the OR gadget. (b) The covert OR gadget with
the NOT gadget block filled in with the tiles.

5.2 Encryption and Cryptography

Several encryption methods are based off problems that we believe to be
“hard” computationally. One of the most common is factoring the product
of large prime numbers, which is the basis for several encryption schemes.
Although factoring may be difficult, the function to generate the number is
simple multiplication, which can be accomplished with simple circuits. Figure
12d shows a simple 6-gate circuit implementing a 2-bit number multiplier re-
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Fig. 12: Constructing covert circuits for arithmetic building up to cryptography
examples. (a) XOR symbol. (b) AND symbol. (¢) A half-adder, which has two
1-bit numbers as input and a 2-bit number as output. (d) A 2-bit multiplier
which has two 2-bit numbers as input and outputs a 4-bit number that is their
product. This can be expanded to use two large primes resulting in a large
number that would be hard to factor.

(a) Seed (b) Covert Half-Adder

Fig. 13: Covert Half-Adder made with 4 NANDs, 3 FANOUTSs, 2 NOTs, and
1 AND. The seed input is highlighted and all 4 possible seeds are shown in
(a). Regardless of the seed, the final assembly will look identical except the
final T/F representing the bits of the numbers added. This implements the
schematic shown in Figure 12¢ and the XOR is implemented with NANDs as
shown in Figure 9e.

sulting in a 4-bit output number. An n-bit multiplier scales linearly (in the
number of bits) with additional AND gates and full and half adders.

Implementing the multiplier with covert gates is not difficult, but the re-
sulting assembly is large due to the inefficient crossover gadget used. Instead,
we demonstrate a simple half-adder. The schematic for a half-adder is in Fig-
ure 12c. A covert half-adder as a TAC is shown in Figure 13b. The XOR
has been replaced by the 4 NAND gates as shown in Figure 9e. Further, 3
FANOUTSs were needed, an AND gadget as shown above in Section 5.1, and
2 NOT gadgets were used to flip the input for the gadgets. Figure 13a shows
the four possible input seeds to build the assembly.
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6 Conclusions and Future Work

We have introduced the concept of covert computation in self-assembly and
provided a general scheme to implement any boolean circuit under this re-
striction. Beyond potential applications to biomedical privacy, cryptography,
and intellectual property, our techniques and framework promise to impact
self-assembly theory itself. As a first example we have applied our techniques
to the fundamental problem of Unique Assembly Verification in the negative
glue aTAM, and shown it to be coNP-complete with growth-only systems,
essentially as a corollary of our covert computation theory.

A number of future directions stem from our work. Having established the
general computation power of covert computation, a natural next step is the
consideration of efficiency for computing classes of functions. The time com-
plexity of self-assembly computation has been studied [2, 18] and shown to
allow for a substantial amount of parallelism. Can similar results be achieved
under the covert constraint? What general connections exists between the time
complexity for unrestricted self-assembly computation versus that of covert
computation? Other natural metrics include minimizing the number of dis-
tinct tile types, along with the space taken up by the final assembly of the
computation.

Another future direction is to investigate what model features are required
for covert computation. In this paper, we conjectured that there does not
exists a tile assembly computer that performs covert computation in the aTAM
without negative glues. This conjecture is made with the assumption that no
other model definitions change. If other definition relaxations are made to the
model, such as allowing assemblies which are equal up to translation to be
considered the same assembly, might covert computation be possible without
negative glues?
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