
836 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 5, MAY 2021

Computational Restructuring: Rethinking Image

Compression Using Resistive Crossbar Arrays
Baogang Zhang , Necati Uysal , Graduate Student Member, IEEE, and Rickard Ewetz , Member, IEEE

Abstract—Image compression is performed on billions of edge
devices deployed in the Internet of Things (IoT). The bottleneck
of the compression is the 2-D discrete cosine transform (2D DCT),
which involves performing two matrix–matrix multiplications in
series. Earlier studies have explored directly mapping the 2D
DCT computation to emerging resistive crossbar arrays (RCAs),
which promise to perform matrix–vector multiplication (MVM)
with extremely small energy-delay product. The main draw-
back is that the series computation is inherently vulnerable
to errors. In this article, we propose to fundamentally rethink
how to perform image compression using RCAs. The key idea
is to restructure the computation to natively match the prop-
erties of the underlying resistive hardware. This allows three
of the main design steps within image compression (2D DCT,
quantization, and zig-zag reordering) to be integrated into a
single analog MVM operation. The integration is facilitated
by the development of a 2D DCT reconstruction technique, a
frequency spectrum optimization technique, and a quantization
optimization technique. The techniques improve the robustness
to errors, eliminates the storage of intermediate data, enables
processing of small image blocks, facilitates the utilization of
large-scale RCAs, and reduces the requirements on the expensive
domain interfaces. Compared with the previous work, the exper-
imental results demonstrate significant improvements in image
quality while reducing power and latency with up to 62% and
21%, respectively.

Index Terms—2D DCT, analog matrix–vector multiplication
(MVM), image compression, in-memory computing, nonvolatile
resistive technology.

I. INTRODUCTION

I
MAGE and video processing is a fundamental build-

ing block for emerging cyber-physical systems that are

expected to have a broad impact on areas of our society

as autonomous vehicles, sensor networks, and health care

monitoring [1], [2]. Within these application domains, it is

impossible to transmit all collected sensor data for analysis

on a cloud servers. The acquired data is required to be pre-

processed on the edge such that only the most important parts

are transmitted. In particular, data in the form of images and

videos is required to be compressed before transmission. The
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compression is required to be performed with low latency

and high energy efficiency to enable real-time processing on

power-constrained edge devices. Moreover, the demand for

such low latency and high energy efficiency processing on the

edge is expected to rapidly grow with the maturing of virtual

reality and augmented reality systems [3], [4].

Image compression is performed by partitioning an image

into smaller image blocks. Each image block is transformed

from the spatial domain into the frequency domain using the

2-D discrete cosine transform (2D DCT) [5], [6]. Next, the

obtained frequency coefficients are quantized using a quan-

tization table. Subsequently, the coefficients are reordered

(using a zig-zag pattern), encoded, and saved to a file. The

bottleneck of the flow is the 2D DCT, which involves per-

forming two matrix–matrix multiplications in series. Despite

noteworthy efforts to accelerate image compression with algo-

rithm innovations (as the fast Fourier transform [7], [8]) and

custom digital hardware implementations [9], [10], the com-

pression is still a limiting factor for applications with real-time

processing requirements [11], [12]. Moreover, issue will not

“automatically” be solved by further technology scaling, as the

short-term performance gains are expected to be limited [13].

An arising solution to accelerating image compres-

sion is based on leveraging emerging restive technol-

ogy [14]–[18] to perform highly energy-efficient in-memory

computing [19]–[21]. Resistive technology has recently

attracted significant interest due to that resistive devices

arranged into crossbar array structures can natively perform

analog matrix–vector multiplication (MVM). When the dimen-

sions of the resistive crossbar arrays (RCAs) are scaled-up,

the computation is projected to be orders of magnitude more

energy-efficient than using digital hardware. Moreover, the

latency is low because the entire computation is performed

in a single time-step. Nevertheless, analog computation is

vulnerable to various sources of errors [22], [23].

Directly mapping the expensive matrix–matrix

multiplications within the 2D DCT to RCAs has been

explored in [19]–[21]. The matrix–matrix multiplications

were decomposed into multiple MVM operations, which

were efficiently accelerated using RCAs. The limitation of

this direct approach is that the computational structure has

been optimized for digital hardware, which prohibits the

full potential of the resistive hardware to be unleashed. In

particular, the direct mapping results in poor image quality

and significant amounts of redundant computation. The loss

in image quality stems from that the series computation is

vulnerable to errors, i.e., small errors in the output of the first
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Fig. 1. Review of JPEG image compression based on 2D DCT [24].

matrix–matrix multiplication are amplified into large errors

by the second matrix–matrix multiplication. The high amount

of redundant computation is a result of that the RCAs were

simply viewed as an accelerator for MVM operations, instead

of a novel piece of hardware with unique characteristics that

can be exploited to perform energy-efficient computation.

In this article, we propose to fundamentally rethink how

to perform image compression using RCAs. The key idea is

to restructure the computation to natively match the proper-

ties of the underlying resistive hardware. This allows three of

the main design steps within image compression (2D DCT,

quantization, and zig-zag reordering) to be integrated into a

single analog MVM operation. The integration is facilitated

by the development of: 1) a 2D DCT reconstruction tech-

nique; 2) a frequency spectrum optimization technique; and

3) a quantization optimization technique.

The 2-D reconstruction technique involves converting the

series matrix–matrix multiplication into a single linear trans-

formation (or MVM operation), where the input and output

vectors are the representation of an image block in the spa-

tial and frequency domain, respectively. The reconstruction

itself reduces computation with 2×, improves the robustness

to errors, eliminates storage of intermediate data, and allows

RCAs with large dimensions to process small image blocks.

Moreover, the reconstruction results in that each frequency

coefficient is explicitly computed, which opens the door for the

subsequent frequency spectrum optimization and quantization

optimization. The frequency spectrum optimization involves

reordering rows in the reconstructed DCT matrix such that the

zig-zag reordering is performed for free. Next, high-frequency

coefficients are pruned to allow RCAs with smaller dimen-

sions to be utilized. Although errors are introduced by the

pruning of frequency coefficients, the overall image quality

is improved because smaller RCAs introduce smaller analog

errors. The quantization optimization is based on configuring

ADC, the domain interfaces to inherently perform the quanti-

zation step. In particular, the bit-accuracies of the ADCs are

configured to mimic the quantization table. This alignment of

the computational kernels with the properties of the underly-

ing hardware results in that the requirements on the domain

interfaces can be reduced to an absolute minimum, which

results in further power and area savings. The experimental

results demonstrate that the obtained image quality is signifi-

cantly improved compared with the previous works. Moreover,

the power and latency is reduced with up to 62% and 21%,

respectively.

The remainder of this article is organized as follows.

Preliminaries are provided in Section II. Previous work is

given in Section III. The motivation for the proposed recon-

struction is provided in Section IV. The details of the proposed

image compression is outlined in Section V. The experimen-

tal results are given in Section VI. This article is concluded

in Section VII.

II. PRELIMINARIES

In this section, we review the basics of image compression,

metrics for image compression, and the acceleration of MVM

operations using emerging RCAs.

A. Review of Image Compression

Common lossy image and video compression formats as

JPEG [6] and motion JPEG (MJPEG) are based on trans-

forming an image (or video) from the spatial domain to the

frequency-domain using 2D DCT and encoding the frequency

coefficients. The fundamental steps of JPEG compression

are partitioning, 2D DCT, quantization, zig-zag reordering,

encoding, and create file, which is illustrated in Fig. 1.

The first step is to partition the input image I into small

image blocks X with dimension 8×8 (or 16×16). Small block

sizes are used in order to preserve high image quality. For

color images, the RGB components are compressed separately.

Second, each image block X is converted into the frequency

domain by applying the 2D DCT as follows:

C = DXD′ (1)

where C is a matrix with the frequency coefficients of X. D is

the standard 2D DCT matrix. Each element Dij in D is defined

as follows:

Dij =

⎧
⎨
⎩

1√
N

, i = 1, 1 ≤ j ≤ N√
2
N

cos
[

π(2j−1)(i−1))
2N

]
, 2 ≤ i ≤ N, 1 ≤ j ≤ N

(2)

where the block size is N×N. Third, the frequency coefficients

are divided by each corresponding entry in a quantization

table. The quantization table is designed to preserve low

frequency components and discard high frequency compo-

nents, as empirical studies have shown that humans are less

sensitive to high frequency patterns. Moreover, the coefficients

in the quantization table can be scaled with a factor quser

to balance image quality and compression ratio. The quan-

tization is followed by zig-zag reordering of the frequency

coefficients from into a vector (with the coefficients ordered

from low to high frequency). The zig-zag reordering is per-

formed to statistically placing the nonzero coefficients in the

beginning and the zero components at the end of the vector,

which allows the subsequent encoding to be performed more

effectively. The encoding step consists of run-length encod-

ing and Huffman encoding. Run-length encoding is based on

storing the nonzero elements and the number of zeros that

are followed by the nonzero element in the vector. In partic-

ular, each nonzero-element is stored using a triplet (r, s, v),
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where r is the number of zeros before the nonzero element;

v is the value of the nonzero element; and s is the number

of bits required to store v. Next, the triplets are further com-

pressed using Huffman encoding. The last step is to create file

where the encoded image is appended with the information

required to perform the uncompression, i.e., the quantization

table and the specification of the Huffman encoding that was

used. Uncompression is performed by reversing the process in

Fig. 1.

B. Image Compression Performance Metrics

In this article, the quality of the image compression is

measured using mean-squared errors (MSEs), peak signal-to-

noise ratio (PSNR), and structural similarity index measure

(SSIM) [25]. The degree of compression (or compression

ratio) is measured using bits per pixel (BPP). The MSE is

computed as follows:

MSE
(

I, Î
)

= 1

PQ

P∑

p=1

Q∑

q=1

(
Ipq − Îpq

)
(3)

where Î is the original reference image with dimensions

P × Q. I is the image obtained after Î has been compressed

and uncompressed using the flow in Fig. 1. PSNR is computed

as follows:

PSNR
(

I, Î
)

= 20 · log10

⎛
⎜⎜⎝

Ipeak√
MSE

(
I, Î

)

⎞
⎟⎟⎠ (4)

where Ipeak is the maximum pixel value. The technical details

of the SSIM metric are provided in [25]. The BPP metric for

an image is computed as follows:

BPP = #num_bits

#num_pixels
. (5)

Using the basic RGB representation of an image, each RGB

component is represented using eight bits. Consequently, the

RGB representation results in that an image is stored using 24

BPP.

C. Acceleration of MVM Using Emerging RCAs

In this section, we outline how MVM operations can

be accelerated using emerging RCAs, which is shown in

Fig. 2(a). In particular, we focus on MVM multiplication

(x = Dy), where D is a DCT matrix (or a reconstructed

DCT matrix D or D̃ in Section V) and x and y are the

input and output vectors, respectively. An RCA consists of

wordlines and bitlines with a nonvolatile resistive in each

cross-point. The fabrication of nonvolatile resistive devices

has been explored based on resistive random access memory

(ReRAM) [14], [26], spin transfer torque magnetic random

access memory (STT-MRAM) [15], [27], and phase change

memory (PCM) [16], [28].

Analog MVM is performed using a one-time expensive ini-

tialization phase and a fast and efficient evaluation phase. In

the initialization phase, conductance values of the resistive

Fig. 2. (a) RCA for MVM. (b) Normalized performance of RCA hardware
versus digital hardware [22].

devices are programmed to realize a conductance matrix G.

In this article, the conductance matrix G is programmed to be

proportional to the DCT matrix (D) in (2). Next, analog MVM

is performed by passing an input vector vin to the wordlines

and recording an output vector vout from the transimpedance

amplifiers (TIAs) attached to the bitlines, where Rs is the feed-

back resistance of the TIAs. vT
out = vT

inGRs is the computation

performed in the analog domain. The digital input vector x

is converted into an analog input vector vin using digital-to-

analog converters (DACs). Similarly, the analog output vector

vout is converted into a digital output vector y using analog-to-

digital converters (ADCs). As conductance values cannot be

negative, the common differential pair approach is used to rep-

resent negative matrix values, i.e., one bitline is, respectively,

used to represent the positive and negative elements for one

row in a matrix. Next, the two outputs are subtracted while

being converted into the digital domain using an differential

ADC. Consequently, an N × N matrix is represented using an

RCA with dimensions N × 2N.

The advantage of leveraging RCAs is that the computation

is orders of magnitude more efficient than using digital hard-

ware, which is shown in Fig. 2(b). The results in the figure

are obtained with respect to custom ASIC implementation that

has been optimized for high throughput. The main limitation

of using RCAs to accelerate MVM operations is that the com-

putations is vulnerable to analog errors and errors introduced

by the domain interfaces. This analog errors stem from the

programming accuracy of the resistive devices, the array par-

asitics, and random telegraph noise. The errors introduced by

the domain interfaces stem from that the input and output vec-

tors are quantized with respect to the input and output value

ranges, respectively. The complexity of the domain interfaces

is measured using bit-accuracy. Specifically, an ADC with a

bit-accuracy of b is capable of measuring 2b distinguishable

states within a specified voltage range [vL, vH]. The domain

interfaces dominate the power and area overhead of an RCA.

Moreover, the overheads increase with the complexity (or

bit-accuracy) of the interfaces.

III. PREVIOUS WORK

In [19]–[21], image compression was accelerated by directly

mapping the computation of the 2D DCT step to resistive hard-

ware, which is illustrated in Fig. 3. The 2D DCT computation

was selected because it is the bottleneck of image compression.
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Fig. 3. Review of direct mapping in [19]–[21].

Fig. 4. Image compression using (a) digital and (b) resistive hardware. The
RCAs have dimensions 64 × 128 and parameters as in [19]–[21].

The figure shows how an image block X with dimen-

sions N × N is processed into the corresponding frequency

coefficients C using 2N MVM operations. The two RCAs in

the figure have dimensions N × 2N as two resistive devices

are used per matrix element. First, XD′ is computed by pass-

ing each row from image block X as an input vector to an

RCA programmed with the transpose of the DCT matrix D.

The result of each MVM operation is saved as a row in a

temporary storage, which is illustrated to the left in Fig. 3.

Next, DXD′ is computed by passing each column from the

temporary storage as an input vector to a second RCA, which

is programmed with the DCT matrix D. The output vector of

each MVM operation is stored as a column in the final output

C = DXD′, which is shown to the right in Fig. 3.

The two main limitations of the direct mapping are: 1) the

image quality after uncompression is degraded and 2) it is

difficult to scale-up the RCA dimensions, which is highly ben-

eficial in terms of power and area. We illustrate the image

quality obtained when image compression is performed by

using digital and resistive hardware in Fig. 4. The images

in the figure are obtained with the quantization step deacti-

vated. It can be easily observed that the analog computation

degrades the image quality. Although the image is recogniz-

able, it is well known from adversarial learning that even

minor distortions may have a devastating impact on the

subsequent processing (such as classification or object detec-

tion) [24], [29]. The degraded image stems from that the

series matrix–matrix multiplication is inherently sensitive to

variations. Small errors introduced in the first matrix–matrix

multiplication are amplified into large errors by the second

matrix–matrix multiplication. Due to the inherent presence of

errors and variations within analog computing, it is impossi-

ble to achieve high image quality [19]–[21]. Moreover, it is

not possible to tradeoff performance (power/area) with image

quality by reducing the complexity of the domain interfaces,

as the uncompressed images quickly become unrecognizable.

RCA with large dimensions have to be leveraged in order to

gain performance advantages (power and latency) over digital

implementations, which was shown in Fig. 2(b). Consequently,

large block sizes are required to be used for the compression.

In [19]–[21], RCAs with dimensions of 64×128 were used to

process block sizes of 64 × 64. In contrast, small 8 × 8 or

16 × 16 are commonly used in standard image and video com-

pression formats. The small block sizes are needed to attain

high image quality after uncompression. Nevertheless, these

errors may be relatively minor for block sizes of 64 × 64.

However, the errors are significant when the RCA dimensions

are scaled to 512 × 512 and above.

IV. RETHINKING IMAGE COMPRESSION USING RCAS

In this article, we propose to fundamentally rethink how

to perform image compression using RCAs. The key idea is

to restructure the computation within image compression to

natively match the properties of the underlying resistive hard-

ware, which allows full potential of the emerging hardware to

be unleashed.

The proposed computational restructuring is based on two

observations.

1) Any number of linear transformations performed in

series can, by definition, be restructured into a single

linear transformation. Consequently, the 2D DCT in (1)

can be reconstructed into a single linear transformation

(or MVM operation).

2) We view the quantization performed by the ADC as a

“free” quantization operation that can be exploited to

perform efficient computation. In contrast, quantization

performed by ADCs is commonly viewed as a source

of errors that should be minimized.

These two observations enable the 2D DCT step, the quan-

tization step, and zig-zag reordering step to be integrated

into a single analog MVM operation, which is illustrated in

Fig. 5(a). The integration is facilitated by 2D DCT recon-

struction, frequency spectrum optimization, and quantization

optimization, which is shown in Fig. 5(b)–(d).

The 2D DCT reconstruction involves reconstructing the

2D DCT into a single larger linear transformation, which is

illustrated in Fig. 5. The reconstruction solves the two main

challenges in the previous works [19]–[21]: 1) the sensitivity

to errors is reduced as the series computation is eliminated

and 2) the reconstruction allows RCAs with large dimensions

to efficiently process small block sizes. This translates into

significant improvements in terms of latency, power, and area.

The details of the reconstruction and the advantages are pro-

vided in Section V-A. The reconstruction also facilitates the

explicit computation of each frequency coefficient from the

spatial representation, which opens the door for frequency

spectrum optimization and quantization optimization.

Frequency spectrum optimization involves first reorder-

ing the rows in the reconstructed DCT matrix to perform

the zig-zag reordering for free. This arranges the frequency

coefficients from low to high frequency. Next, we propose to

prune the less important high frequency coefficients, which is

illustrated in Fig. 5(b). The optimization interestingly improves
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(b) (c)

(a)

(d)

Fig. 5. (a) Flow of proposed image compression. (b) Overview of 2D
DCT reconstruction, (c) frequency spectrum optimization, and (d) quantization
optimization.

both image quality while simultaneously reduces hardware

overheads due to the array parasitics in the RCAs. The details

are provided in Section V-B.

Quantization optimization is based on configuring the ADCs

to perform the quantization step for free, which is shown

in Fig. 5(c). In particular, the bit-accuracy of each ADC is

specified based on the corresponding entry in the quantization

table. This allows the requirements on the domain interfaces

to be reduced to an absolute minimum, which translates into

significant saving in terms of power and area. Intuitively, it

is wasteful to compute each frequency coefficient with high

precision and then quantize them to low precision in order to

save memory. The technique is explained in Section V-C.

V. PROPOSED IMAGE COMPRESSION

In this section, we provide the details of our proposed image

compression consisting of 2D DCT reconstruction, frequency

spectrum optimization, and quantization optimization.

A. 2D DCT Reconstruction

In this section, we explain the proposed 2D DCT recon-

struction. An overview of the reconstruction is followed by an

analysis of the advantages and the detailed specification of the

reconstructed matrix.

1) Overview of Reconstruction: The 2D DCT reconstruc-

tion involves restructuring the series matrix–matrix multipli-

cation in (1) into a single linear transformations as follows:

c = Dx (6)

where D is a reconstructed 2D DCT matrix. x and c are

columnwise vector representations of the spatial and frequency

coefficients X and C, respectively. If the reconstructed DCT

Fig. 6. Proposed 2D DCT computation using reconstructed DCT matrix.

matrix has dimensions N×N, the image block X and the block

of frequency coefficients C both have dimension
√

Nx
√

N.

The partitioning and the 2D DCT step performed using the

proposed reconstruction is shown in Fig. 6. Given that the

reconstructed DCT matrix has dimension N × N, the image I

is partitioned into image blocks X and frequency blocks C with

dimension
√

N ×
√

N. In the example, it is assumed that the

image I has dimension N ×N. Consequently, there is a total of

N image and frequency blocks. Let the image and frequency

blocks, respectively, be denoted Xij and Cij with 1 ≤ i ≤
√

N

and 1 ≤ j ≤
√

N.

The image blocks are one-by-one processed into the corre-

sponding frequency sub-block, i.e., Xij is processed into Cij.

Specifically, Cij is obtained from Xij by decomposing Xij into

a vector x columnwise. Next, the vector is passed to an RCA

programmed with the matrix D to perform the computation

c = Dx using an analog MVM operation, which is shown

in the middle of Fig. 6. The frequency block Cij is obtained

from the output vector c by organizing the elements in c into

a block format.

In reality, there is no need to reorganize the vector c into

the corresponding frequency block Cij. Using the subsequent

optimization techniques, the output vector from the RCA will

be the input vector expected by the run-length encoding in the

top-right of Fig. 5(a) or step 5 in Fig. 1.

2) Analysis of Reconstruction: In Table I, we analyze the

number of MVM operations required to process an image of

size N ×N using an RCA with dimensions N ×2N (two resis-

tive devices per matrix element). The direct mapping of DXD′

to RCA hardware used in the previous works results in 2N

MVM operations. First, N operations are used to compute

XD′. Second, an additional N operations are required to com-

pute D(XD′). In contrast, the proposed mapping only results

in N MVM operations. The image X is decomposed into N

blocks of dimension
√

N ×
√

N and each block is processed

using a single MVM operation. Consequently, the restructur-

ing directly reduces the number of MVM operations by 2X

(or from 2N to N), which translates into a 2X improvement

in power, latency, and area. Moreover, no intermediate results

are required to be stored. Furthermore, the robustness to errors

is significantly improved because the series computation is

eliminated, which results in that there are only small errors in

computed frequency coefficients.

3) Reconstructed DCT Matrix D: The reconstructed 2D

DCT matrix D is defined with respect to a columnwise decom-

position of x and c into X and C, respectively. Let the element
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TABLE I
ANALYSIS OF NUMBER OF MVM OPERATIONS

(a) (b)

Fig. 7. (a) Frequency reordering and (b) frequency spectrum pruning.

on row i and column j in D be denoted Dij and defined as

follows:

Dij = ap · aq · cos

[
πp(2t + 1)

2N

]
· cos

[
πq(2r + 1)

2N

]
(7)

where 1 ≤ i ≤ N, 1 ≤ j ≤ N. q = i/N and r = j/N, where/is

the integer division. p = mod(i, N) and t = mod(j, N) where

mod is the modulus operator. The constant ak is defined as

follows:

ak =

⎧
⎨
⎩

1√
N

, k = 0√
2
N

, k �= 0.

B. Frequency Spectrum Optimization

In this section, we explain the proposed frequency spectrum

optimization. The frequency spectrum optimization consists of

a frequency reordering step and frequency spectrum pruning

step, which is illustrated in Fig. 7.

1) Frequency Reordering: The input to the frequency

reordering step is the reconstructed DCT matrix D. The out-

put vector c contains the frequency coefficients arranged in

a columnwise order with respect to the frequency block C,

which is illustrated in the top-right of Fig. 7(a). However, the

run-length encoding expects the frequency coefficients to be

organized from low to high using the zig-zag pattern in the

bottom-right of Fig. 7(a). We observe that the elements in

the output vector can be reordered without any overhead by

simply permuting the corresponding rows in the reconstructed

DCT matrix. Consequently, the frequency reordering step con-

sists of reordering the rows in D such that a matrix D̃ is

obtained where the output elements are arranged with respect

to the zig-zag pattern expected by the run-length encoding.

Consequently, the zig-zag reordering in Fig. 7(a) is performed

for free.

Fig. 8. The figure shows the total, analog, and frequency errors in terms
of MSE with respect to only computing Nf of the N frequency coefficients.
The tradeoff is shown with respect to an reconstructed DCT matrix with
dimensions (a) 64 × 64, (b) 144 × 144, and (c) 256 × 256.

2) Frequency Spectrum Pruning: The frequency spectrum

pruning involves only computing the Nf lowest frequency

coefficients of an image block X. The remaining (N − Nf )

frequency coefficients are pruned (or set to zero). Intuitively,

the hardware cost is reduced when only a subset of the

frequency coefficients are computed. In digital hardware,

frequency spectrum pruning techniques have demonstrated a

smooth tradeoff between image quality and hardware cost.

Interestingly, when the image compression is performed using

RCAs, substantial reductions in overheads can be obtained

while at the same time improving the image quality. The sav-

ings can be significant because an expensive ADC is used to

measure each frequency coefficient.

Each row in the reconstructed DCT matrix D̃ is used to com-

pute a frequency coefficient in C. Consequently, the frequency

spectrum pruning involves transforming D̃ into a new matrix

D̃f with dimensions Nf xN, which is illustrated in Fig. 7(b). The

transformation automatically results in that only the desired Nf

frequency coefficients are computed.

3) Analysis of Frequency Spectrum Pruning: In this sec-

tion, we first analyze the tradeoff between frequency errors and

analog errors that is introduced by the pruning of frequency

coefficients. All the errors are measured in terms of MSE.

Next, we analyze the implicit tradeoff between image quality

and overheads in terms of power and area.

Let the errors introduced when only a subset of the

frequency coefficients are computed be called frequency

errors. Intuitively, the magnitude of the frequency errors are

increased when the fewer number of frequency coefficients

are computed. Nevertheless, the image quality is gracefully

degraded with respect to the number of discarded coefficients.

This stems from that we choose to discard the highest part

of the frequency spectrum. In contrast, the impact of analog

errors is reduced when fewer frequency coefficients are com-

puted. The explanation is that RCAs with smaller dimension

introduce smaller analog errors because there is less IR-drop

over the array parasitics [30]. Consequently, there exists a

tradeoff between analog errors and frequency errors that is

governed by the selected number of frequency coefficients Nf .

Let the combination of the frequency errors and the analog

errors be equal to the total errors.

In Fig. 8, we plot the errors with respect to the ratio Nf /N.

The total errors and the frequency errors are obtained by

compressing an image using an RCA and digital hardware
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TABLE II
IMAGE QUALITY AND PERFORMANCE (POWER AND AREA) WITH

RESPECT TO THE SELECTED FREQUENCY SPECTRUM Nf .
THE FIGURE SHOWS THAT THE IDEAL FREQUENCY SPECTRUM

IS IN THE RANGE [1, N∗
f

]

using a subset Nf /N of the frequency components, respec-

tively. Next, the images are uncompressed and the errors are

measured using MSE using (3). The analog errors are equal

to the difference between the total errors and the frequency

errors. The figure shows that the frequency errors increase with

the ratio Nf /N. In contrast, the analog errors are decreased

with respect to Nf /N. Consequently, the total errors first

decrease until a turning point from where the error start to

increase rapidly, which is shown using a blue line in Fig. 8.

Let N∗
f . be the number of frequency coefficients at the turn-

ing point. In other words, N∗
f is the number of frequency

coefficients that maximize the image quality.

Now, we turn our attention to analyze the tradeoff between

image quality and overheads based on Nf , which is shown in

Table II. The key observation is that the highest image quality

is obtained when Nf is equal to N∗
f . Consequently, power and

area can be saved while at the same time improving the image

quality. Additional power and area savings can intuitively be

obtained at the expense of image quality by setting Nf to below

N∗
f . However, it is never beneficial to use Nf > N∗

f , as both the

image quality and the power/area is worse than for Nf equal

to N∗
f . In our implementation, we set Nf to estimate N∗

f . The

details of the estimation of N∗
f are provided in Section VI-A2.

We also note that the frequency spectrum pruning can be

applied using RCA with fixed dimensions. This would be real-

ized by mapping the matrix D̃f to the bottom-left corner of the

RCA. Next, all resistive devices that are not used would be

programmed to have the maximum resistance, which greatly

reduces the analog errors by reducing the amount of IR-drop

in the RCA.

C. Quantization Optimization

The quantization optimization consists of ADC-based quan-

tization and hardware friendly ADC-based quantization.

1) ADC-Based Quantization: We observe that there exists

an equivalency between the digital quantization performed by

a quantization table and analog quantization performed by an

ADC, which is shown in Fig. 9. In this section, we explain

how to exploit this equivalency to perform quantization oper-

ations for free by appropriately configuring the ADCs, which

intuitively allows the complexity of the ADCs to be reduced to

an absolute minimum. It would obviously be very wasteful to

measure the analog signal with high precision and then quan-

tize the digital results (into low precision) to save memory (or

improve the BPP metric).

The quantization step involves quantizing each frequency

coefficient in a frequency block with the corresponding entry

(a) (b)

Fig. 9. (a) Quantization in the digital domain using a quantization table
qTable. (b) Quantization in the analog domain using ADCs.

in the quantization table. The quantization is motivated by that

the subsequent encoding can be more effective when most

coefficients are small or preferably equal to zero. Let cij, c
q
ij,

and qij be the frequency coefficient, the quantized frequency

coefficient, and the entry in the quantization table on row i and

column j with respect to a frequency block C. The quantized

frequency coefficients are computed as follows:

c
q
ij = round

(
cij

qij

)
(8)

where round(.) is the rounding operator. This is equivalent to

defining quantization levels as follows:

qk = 1

2
qij + k�q, k ∈ {. . . ,−1, 0, 1, . . . }

�q = qij (9)

where �q is the distance between two adjacent quantization

levels. qk are the boundaries between the quantization levels.

The output after quantization is k if the input number is within

the range [qk−1, qk].

An differential ADC with a bit-accuracy of b compares an

analog input voltage with 2b −1 reference voltages and output

a b-bit binary number. The reference voltages are uniformly

distributed between a low and high reference voltage (vL, vH).

The reference voltage levels vk are defined as follows:

vk = vL + k · �v, k ∈ 0 to 2(b−1)

�v = vH − vL

2(b−1)
(10)

where �v is the distance between two adjacent voltage levels.

The output from the ADC is equal to k if the reference signal

is within the voltage range [vk−1, vk].

It can easily be observed that there exists an equivalency

between the quantization performed by an quantization table

and an ADC. Therefore, by appropriately specifying the ref-

erence voltages to the ADC, the quantization operation can be

performed for free. It is easy to understand that �v is required

to be specified to be proportional to �q. The main difference

between the two types of quantization is that the ADC-based

quantization requires the value range of the analog input signal

to be defined. We solve this issue by deriving the value range

of the frequency coefficients in the digital domain. Next, the

digital value range is translated into an analog value range.

Given the analog value range, it is straightforward to specify

the parameters vL, vH , and b to realize any entry in a quantiza-

tion table. The technical details are specified in the Appendix.

It is easy to understand that this results in that the complexity

of the ADCs is reduced to an absolute minimum with respect

to the specified quantization table.

Authorized licensed use limited to: University of Central Florida. Downloaded on July 01,2021 at 19:01:21 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: COMPUTATIONAL RESTRUCTURING: RETHINKING IMAGE COMPRESSION USING RCAs 843

(a) (b)

(c) (d)

Fig. 10. (a) Two differential ADCs with individual reference voltages. (b)
Two differential ADCs with shared reference voltages. (c) An ideal quantiza-
tion table. (d) Shared quantization table with respect to a group size (M) of
eight.

2) Hardware Friendly ADC-Based Quantization: In this

section, we propose a hardware friendly implementation of

the ADC-based quantization. There are two main limitations

of the ADC-based quantization in the previous section. First,

if the complexity of the ADCs are fabricated based on a spe-

cific quantization table, it is impossible to adjust the ADCs to

obtain a higher image quality at run-time. Second, the tech-

nique requires that different reference voltages vL and vH are

provided as an input to each differential ADC. This requires

each ADC to have two internal DACs, which is illustrated in

Fig. 10(a). The separate DACs naturally introduce significant

power and area overheads.

We propose to circumvent these two limitations by attaching

an ADC with the maximum bit-accuracy (8 bits) to each bit-

line. This allows the ADCs to be calibrated to deliver variable

image quality. Next, groups of adjacent ADCs are set to share

pairs of DACs that provide the reference voltages (vL, vH),

which is illustrated in Fig. 10(b). Specifically, we divide the

ADCs into groups of M and let the ADCs in each group share

the same reference voltages. The sharing intuitively reduces

the power and area overheads. On the other hand, the shar-

ing of the reference voltages results in that the corresponding

entries in the quantization table must be shared. Consequently,

we convert the original quantization table into an shared quan-

tization table, which is illustrated in Fig. 10(c) and (d). The

shared quantization table is constructed by setting each group

of M quantization entries to be equal to the minimum of the

M entries in the original quantization table. This ensures that

the image quality is not degraded by the sharing. Moreover,

we propose to power gate the ADC groups to save power if

the full bit-accuracy is not required. An k-bit ADC requires

k clock cycles to provide the k bit output. If only p bits are

required to be computed, the ADC can be gated for k − p

cycles. For example, let the required bit-accuracy for the low

and high frequency components be 8 and 5 bits, respectively.

Consequently, there is an opportunity to power gate the ADCs

used to compute the high frequency coefficients for 3 cycles.

In Fig. 11, we plot the power and area of the output

interface, i.e., the differential ADCs and the DACs used to

provide the reference voltages to the ADCs with respect to a

Fig. 11. The output interface (a) power and (b) area breakdown based on
the ADC group size M.

TABLE III
PERFORMANCE IN POWER AND AREA WITH RESPECT TO THE

GROUP SIZE (M) OF ADCS THAT SHARE REFERENCE VOLTAGES

FROM THE SAME DACS. M∗ IS THE GROUP SIZE THAT MINIMIZES

THE POWER CONSUMPTION

group size of M. In Fig. 11(a), it can be observed that the

power of the DACs used to provide the reference voltages is

reduced when the group size is increase. At the same time, the

power consumption of the ADCs is increased due to that there

are fewer opportunities for power gating. Consequently, it is

not surprising that the total power is reduced until a turning

point from where the power starts to increase. Let the group

size that minimizes the power consumption be denoted M∗.

We illustrate a breakdown of the area in Fig. 11(b). The area

of the DACs providing the reference voltages is reduced when

the group size is increased. However, as the area is dominated

by the ADCs (constant), the total area is only slightly reduced.

We summarize our performance observations with respect

to the group size M in Table III. The total power is minimum

when the group size M is equal to M∗. The power consumption

is degraded (or larger) if M is smaller or larger than M∗. The

total area is only slightly decreased when M is increased due

to the increased degree of sharing.

VI. EXPERIMENTAL RESULTS

The experimental results are obtained using a quad core

3.4-GHz Linux machine with 32 GB of memory. The images

in the evaluation are subsets of the images within the Berkeley

Segmentation Dataset [31] and Challenge on Learned Image

Compression (CLIC) mobile and professional datasets [32]. A

summary of the properties of the evaluated images is provided

in Table IV.

The images in the experimental results section are obtained

by performing compression using RCAs hardware using the

proposed flow in Fig. 6(a) or the default flow in Fig. 1.

Uncompression of the images is performed by reversing the

flow using digital hardware. The compression is evaluated in

terms of image quality, compression ratio, latency, power, and

area. Specifically, the image quality is evaluated in terms of
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TABLE IV
PROPERTIES OF THE DATA SETS OF INPUT IMAGES

TABLE V
PARAMETERS OF THE OF RCAS USED

IN THE EXPERIMENTAL EVALUATION

TABLE VI
POWER AND AREA OF CROSSBAR AND PERIPHERAL CIRCUITRY

MSE, PSNR, and SSIM after uncompression. Image quality

degradations stem from both the quantization step and the

errors introduced in the analog computation. The compres-

sion ratio is evaluated in terms of BPP after the run-length

encoding. The BPP is mainly governed by the quantization

table used in the quantization step.

The MVM operations that are accelerated using RCA are

evaluated using circuit simulation with SPICE level accu-

racy. The circuit simulations explicitly capture the impact of

array parasitics, programming accuracy, and domain interface

quantization errors. The circuit simulation is performed using

a custom simulator that exploits the sparse structure of the

RCAs, which results in significant (orders of magnitude) run-

time improvements over HSPICE. The accuracy has been

validated to be equivalent or higher than HSPICE. Using the

parameters in Table V, the experimental setup has been proven

to exhibit high correlation with results obtained using hard-

ware prototypes [20], [23]. The conductance values of the

resistive devices are programmed using the program and verify

techniques in [22].

The performance in terms of power, latency, and area

has been obtained by carefully combining results reported

in [21], [22], and [33]. The power and area for an 64 × 128,

8-bit DAC, and 8-bit differential ADC is shown in Table VI.

The power and area for crossbars of other dimensions are

obtained by scaling the crossbar parameters with the num-

ber of cells in the crossbar. The power and area of the DACs

and ADCs are assumed to scale exponentially with the bit-

accuracy. The latency of an MVM operation with 8-bit ADCs

is 100 ns.

We evaluate the effectiveness of the different optimization

techniques in Section VI-A. The performance of the entire

framework is evaluated in Section VI-B.

Fig. 12. (a) Reference image. (b) Images obtained using the direct mapping
in [19]–[21]. (c) Images obtained using the proposed 2D DCT reconstruction.

TABLE VII
COMPARISON OF PERFORMANCE AND OVERHEADS W/O WITHOUT 2D

DCT RECONSTRUCTION

A. Evaluation of Optimization Techniques

1) Evaluation of 2D DCT Reconstruction: We evaluate the

impact of the proposed 2D reconstruction in Fig. 12. The

images are obtained using RCAs with dimensions 64 × 128.

The quantization step is disabled to demonstrate the maximum

image quality that can be achieved after uncompression. The

reference images are shown in Fig. 12(a). The images obtained

using the direct mapping in [19]–[21] are shown in Fig. 12(b).

The images obtained using the proposed 2D DCT reconstruc-

tion are shown in Fig. 12(c). The reference images are of high

quality. It can be observed that the images obtained using the

direct mapping are degraded by the compression. The degra-

dation stems from the amplification of errors in the second

matrix–matrix multiplication. Moreover, the impact of using

the large block sizes is visible when examining the images

in detail. The image obtained after the proposed 2D DCT

reconstruction are just slightly degraded with respect to the

reference images. This stems from that there is no amplifica-

tion of errors and the reconstruction enables small block sizes

can be used. In fact, the reconstruction improves the robustness

to any type of errors.
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Fig. 13. Sensitivity of the image quality with respect to the bit-accuracy of
the DAC and ADC domain interfaces. The images in (a) are obtained using
the direct mapping and the images in (b) are obtained using the proposed 2D
DCT reconstruction.

To further demonstrate the improvement in robustness to

errors, the image quality with respect to the bit-accuracy of

the domain interfaces is shown in Fig. 13. The figure shows

that using the direct mapping in [19]–[21], the image quality is

quickly degraded when the bit-accuracy is reduced from 8 to

4 bits. Using the proposed 2D DCT reconstruction, the image

quality is more smoothly degraded when the bit-accuracy of

the domain interfaces are reduced. Hence, a lower vulnerability

to errors is demonstrated.

In Table VII, we compare the performance in terms of

latency, power, and area. While excluding the extra overhead

introduced by the storage of the intermediate data, the power,

area, and latency is reduced with 2X. It is easy to understand

that these performance benefits are obtained because the num-

ber of MVM operations is reduced from 2N to N, which was

analyzed in detail in Section V-A.

Based on the observed results, it is clearly advantageous to

leverage the proposed 2D DCT reconstructions because it both

improves the image quality and the performance in terms of

power, area, and latency.

2) Evaluation of Frequency Optimization: In this section,

we analyze the impact of the frequency spectrum optimization

in Section V-B. The analysis is focused on the frequency spec-

trum pruning because the frequency reordering only avoids

performing the zig-zag reordering using a specialized router.

For the frequency spectrum pruning, the optimal N̂∗
f /N ratios

are 0.8, 0.7, and 0.7 for D̃ matrices with dimensions 64 × 64,

144×144, and 256×256, respectively. The ratios were deter-

mined by performing the image compression using RCAs

with different dimensions and selecting the ratio that mini-

mized MSE in (3). It is not surprising that the N∗
f /N ratio

becomes smaller for RCAs with larger dimensions, as larger

RCAs are more severely impacted by IR-drop over the array

parasitics [30].

The frequency spectrum pruning is evaluated in terms of

image quality in Fig. 14. The images in the left column are

obtained using the full frequency spectrum. The images in the

right column are obtained using a reduced frequency spec-

trum. The number of columns in the reconstructed DCT matrix

is 64, 144, and 256 for the top, middle, and bottom row,

Fig. 14. The images in the left (right) column are obtained without (with)
frequency spectrum optimization. The dimension of the reconstructed 2D DCT
matrix and the MSE are shown below each figure.

respectively. The dimensions of the reconstructed DCT matri-

ces (D̃ or D̃f ) and the MSE are shown below each image.

It can be observed that image quality is gracefully degraded

when RCAs with larger dimensions are utilized. The degra-

dation stems from the IR-drop over the array parasitics. Note

that the loss in image quality is observed although the state-of-

the-art technique of tuning the memristors conductance values

to compensate for the IR-drop is utilized [22]. It can also be

seen that the frequency pruning improves the image quality (or

reduces MSE). The image quality improvements are a result

of that smaller analog errors are introduced when the size of

the RCAs are scaled down.

Next, we focus on evaluating the frequency spectrum prun-

ing in terms of power and area for RCAs with different

dimensions. The evaluation in Fig. 15(a) and (b). The fig-

ure shows that the pruning significantly reduces the power

and area while Nf is selected to maximize the image quality.

The improvements are slightly smaller the Nf /N ratio because

only the number of bitlines is reduced. However, large gains

are still obtained because the ADCs used to measure the out-

puts are more expensive in terms of overheads than the DACs

used to provide the inputs. For the RCAs with 144 or 256

inputs, it may be advantageous to accept a slight degradation

in image quality in order to significantly reduce the hardware

overheads. The tradeoff between the image quality and the

number of frequency coefficients for an RCA with 144 inputs

was shown in Fig. 8(b). The trends for RCAs with 256 inputs

are similar.

Given that the frequency spectrum pruning provides

performance benefits without any degradation in image quality,
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Fig. 15. Performance improvements from frequency spectrum optimization
for reconstructed 2D DCT matrices with different dimensions.

it can be concluded that it is always advantageous to apply

frequency spectrum optimization.

3) Evaluation of Quantization Optimization: In this section,

we evaluate the quantization optimization in Section V-C.

The ADC-based quantization is examined in Fig. 16. We

compare the proposed ADC-based quantization with using

8-bit ADCs and performing digital quantization. The evalu-

ation is performed in terms of image quality with respect to

quser in Fig. 16(a). Recall that the quantization table is scaled

with quser to balance compression ratio with image quality.

The figures shows that the MSE for both methods is corre-

lated with quser. For quser larger than 0.25, the MSE is similar

for both methods because the overall errors are dominated by

the quantization specified by the quantization table. However,

for quser equal to 0.25, the ADC-based quantization results in

smaller errors. This stems from that the 8-bit ADCs introduce

larger errors than the digital quantization for small values of

quser. The ADC-based quantization would use ADCs with a

bit-accuracy higher than 8 to circumvent this to occur. We eval-

uate the normalized power with respect to quser in Fig. 16(b).

The figure shows that the power consumption is constant when

8-bit ADCs are used and quantization is performed in the digi-

tal domain. In contrast, the power consumption of ADC-based

quantization is correlated with the value of quser. This is easy

to understand because when quser is equal to 1, the ADC-based

quantization utilizes 22/10/12/81 ADCs with a bit-accuracy of

5/6/7/8, respectively.

In summary, the ADC-based quantization is quality config-

urable, i.e., the effort in power is proportional with the desired

image quality. With respect to the 8-bit ADC baseline, power is

saved when quser is set equal or greater than 0.5 by down sizing

the bit-accuracy of the ADCs. The power saving are obtained

without degrading the image quality in terms of MSE. In par-

ticular, the figure shows that the technique is able to save up

to 60% of the total power for larger values of quser. For quser

equal to 0.25, the image quality is improved at the expense of

increasing the power consumption by sizing up some ADCs

beyond the 8-bit baseline. The main limitation of the ADC-

based quantization is that quser is restricted to a single at the

time of fabrication.

The hardware friendly ADC-based quantization is evaluated

in Fig. 17. The parameter quser is set to 1 in the evaluation.

The technique allows the domain interfaces to be configured

1Frequency pruning is assumed to be used, i.e., there are only 52 ADCs.

Fig. 16. Comparison between proposed ADC-based quantization and using
8-bit ADCs and performing digital quantization. The comparison is evaluated
in terms of MSE in (a) and power in (b).

Fig. 17. Evaluation of group size selection (M) in terms of (a) power
consumption and (b) area.

with respect to the image quality at run-time. The normal-

ized performance in terms of power and area is evaluated with

respect to the group size in the figure. The group size M refers

to the number of ADCs that share the same reference voltages

vL and vH . In Fig. 17(a), it can be observed that the minimum

power is achieved for M equal to 14. This stems from that M

equals 14 strikes a perfect balance between the power reduc-

tions obtained from the sharing of the reference voltages and

the power savings obtained from the power gating. The total

RCA power is reported in Fig. 17(a). The power savings are

smaller than in Fig. 11 where only the power of the output

interface was reported. We evaluate the total area with respect

to the group size in Fig. 17(b). It can be observed in the figure

that only minor savings in terms of total area are obtained with

a higher degree of sharing. This stems from that the ADCs

dominate the area of each RCAs. Despite that the minimum

power is obtained for a group size of 14, it may be more prac-

tical to utilize a group size of 8, which would ease delivering

the reference signals to the ADCs. The majority of the saving

in terms of power consumption are anyways achieved.

B. Evaluation of Proposed Image Compression

In this section, we evaluate the proposed image compression

as a whole and provide comparisons with previous studies. We

perform the evaluation in terms of image quality, compres-

sion ratio, latency, power, and area in Table VIII. Note that

a lower MSE indicates higher image quality while a higher

PSNR or SSIM indicates higher image quality. The reported

latency in the table is the average time for processing an image

from the respective datasets. For the proposed image com-

pression, this is equal to number of image blocks multiplied

with 100 ns. In the table, we evaluate six different methodolo-

gies to clearly demonstrate the effectiveness of the proposed

techniques. “Ideal” denotes the performance obtained using

floating point computation in digital hardware. This method

should be viewed as a reference point (or upper bound) on the
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TABLE VIII
COMPARISON OF DIFFERENT IMAGE COMPRESSION TECHNIQUES

image quality that can be achieved. The “D” method stands for

the direct mapping in [20] and [21]. The “D-P” method stands

for the D method but with an implementation that is pipelined

to maximize throughput [19]. The “R” method denotes our

framework with only the 2D DCT reconstruction applied. The

“RF” method indicates the R method extended with frequency

spectrum optimization. The “RFQ” method is the RF method

extended with the hardware friendly quantization. The normal-

ized performance of the different methods is shown in bold at

the bottom of the table. For all the methods, we assume that

the RCAs are fabricated with an ADC group sharing size of

8. The RCAs have a dimension of 64×128 and 64×104 with

and without frequency pruning, respectively. Quantization is

performed with respect to the quantization table in Fig. 10(c).

First, we evaluate the D method with respect to the Ideal

method. The table shows that the D method has 4.33× higher

MSE and 23% and 26% smaller PSNR and SSIM than the

ideal method. The compression rate is 2.0X worse in terms of

BPP. The degraded image quality stems from that errors are

introduced when the RCA are leveraged to perform the MVM

operations. We believe that the worse compression ratio stems

from that the errors introduce additional nonzero frequency

coefficients. Every nonzero coefficient requires a minimum of

9 bits to be stored. Compared with the D method, the D-P

method achieves the exact same performance in terms of image

quality and compression. However, the latency is about two

times lower and the power and area is two times higher due

to a parallel implementation.

Compared with the D and D-P method, the R method

improves MSE, PSNR, and SSIM with 25%, 26%, and 36%,

respectively. The degree of compression is improved with

46.0%. The improvements in image quality stem from that

the series matrix–matrix multiplication is circumvented by

the computational reconstruction. The BPP is reduced due to

the improved robustness to variations. Compared with the D

method, the latency is reduced with 51%. Compared with the

D-P method, power and area are reduced with 50%. The R

method has slightly smaller (3%) average latency than the D-

P method because the image block size is reduced from 64×64

to 8 × 8. Consequently, less padding is required to make the

image dimensions match a multiple of the block size dimen-

sions, i.e., the amount of redundant computation is reduced.

Compared with the R method, the RF method improves

MSE, PSNR, and SSIM with 4%, 0.6%, and 0.2%, respec-

tively. The improved image quality stems from that the

frequency pruning reduces the amount of errors introduced

in the analog computation. Recall that the frequency prun-

ing reduces the dimension of the RCA, which results in that

the negative impact of IR-drop is reduced. The (2%) increase

in compression ratio may stem from that the image quality

is improved. The power consumption is reduced with 13.2%

because RCAs with 20.0% fewer bitlines are utilized.

Compared with the RF method, the RFQ method results

in similar performance in terms of image quality and com-

pression. However, the power consumption is reduced with

10.7% on the average. The savings stem from that the RF

method uses 8-bit ADCs and performs quantization in the dig-

ital domain. The RFQ method performs the quantization using

the ADCs, which allows the 8-bit ADCs used to compute the

high frequency coefficients to be power gated in a few clock

cycles.

In summary, the proposed methods result in that image com-

pression can be performed using RCAs while only slightly

degrading the image quality compared with digital hardware.

The RFQ method is compared with the Ideal method in terms

of image quality in Fig. 18. Despite that the MSE is slightly

higher and the PSNR and SSIM are a bit lower, the image

quality is very similar to the human eye. Compared with the
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Fig. 18. Comparison of image quality obtained using (a) digital hardware and
(b) resistive hardware. Quantization is performed using the table in Fig. 10.

previous work in [19]–[21], the image quality is improved

while at the same time reducing latency and power with

51% and 24% or 3% and 61%, respectively. The benefits are

obtained by reconstructing the compression such that the dom-

inating computational kernels are aligned with the properties

of the underlying hardware.

Next, we focus on evaluating the proposed compression with

respect to the block sizes that are processed. We compare the

normalized performance in terms of normalized MSE, BPP,

power, and area in Fig. 19. A uniform quantization table con-

sisting of only 10 is used for all the block sizes. It can be

observed that the MSE is degraded and the BPP is improved

when the block size is scaled up in Fig. 19(a). The power

and area performance is shown in Fig. 19(b). The power and

area performance is close to constant with respect to the block

size. This stems from that an RCA used to process 16 × 16

blocks has 4X larger domain interfaces. At the same time, it

processes a 4X larger block size. The power and area sav-

ing obtained when the block size is scaled from 8 × 8 to

12 × 12 stems from that additional frequency coefficients can

be pruned. Nevertheless, compared with digital hardware, it is

highly advantageous that the computational effort is constant

(at worst) with respect the block size. The digital computa-

tional effort of 2D DCT is obviously not constant with respect

to the block size.

Compared with performing image processing with digital

hardware, we estimate the computation to be at least 44X more

energy efficient. A detailed comparison between an RCA hard-

ware prototype and an application-specific integrated circuit

(ASIC) was performed in [21] and [34]. The study reported a

17X improvement in energy efficiency with obtaining similar

image quality. The techniques proposed in this article fur-

ther improves the energy efficiency with 2.61X. Moreover, the

image quality is improved at the same time. Therefore, the

case for leveraging emerging resistive hardware is even more

compelling than before.

VII. SUMMARY AND FUTURE WORK

Computation of 2D DCT is the bottleneck of real-time

image and video compression. An arising solution to scalably

Fig. 19. The image quality and compression ratio is evaluated with respect to
the processed block size in (a). The normalized power and area with respect
to the block size is evaluated in (b).

enable 2D DCT to be performed on edge-devices is to accel-

erate the computation using emerging RCAs. In this article,

we proposed to rethink how to perform image compression

using emerging hardware by reconstructing the computational

kernels to be aligned with the underlying properties of the

resistive hardware. This results in significant improvements in

image quality, robustness to errors, power, area, and latency. In

our future work, we will investigate techniques of further mit-

igating the errors occurring in the analog domain. Moreover,

we also plan to collaborate with device level researches to

evaluate the proposed techniques using hardware prototypes.

APPENDIX

In this Appendix, we provide the details for how to specify

parameters vL, vH , and b with respect to a quantization factor

q in Section V-C. Let q be an arbitrary entry in a quantization

table. This is performed by first determining the number of

states that are required to be captured, which directly deter-

mines the bit-accuracy b of the ADCs. Next, we calculate the

analog voltage step �v that corresponds to a digital quan-

tization step �q. Lastly, the reference voltages (vL, vH) are

specified based on b and �v.

The value rage [c−, c+] for each frequency coefficient can

be determined based on the value range of the input vector x

and the values in the reconstructed DCT matrix D̃f . The value

range of x is [−127.5, 127.5]. This allows the value range

[c−, c+] to be easily computed by taking the absolute value

of each entry in the reconstructed DCT matrix and computing

the corresponding row-wise sum. The result is subsequently

multiplied with −127.5 or 127.5 to obtain c− or c+, respec-

tively. Next, the number of positive states (m+) and negative

states (m−) are computed as follows:

m+ = round

(
c+

q

)
(11)

m− = round

(
c−

q

)
(12)

where q is the corresponding quantization factor.

Consequently, the total number of states is m+ + m− + 1,

where the 1 corresponds to the zero state. Next, the number

of required bits is computed as follows:

b = ceil
(
log2

(
m+ + m− + 1

))
(13)

where ceil(.) is the ceiling operator. log2(.) is the logarithm

with respect to base 2. Now we turn our attention to computing
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the voltage step v that corresponds to �q, which is performed

as follows:

�v = q
vmax

c+ · αvi · Rs (14)

where vmax is the maximum input voltage provided by the

DAC. The DAC is assumed to provide input voltages in the

range [− vmax, vmax]; αvi is the scaling between an input volt-

age into an output current realized by the conductance matrix

G; Rs is the feedback resistance of the TIAs.

Lastly, we turn our attention to specifying the reference

voltages. The voltages (vL, vH) are defined as follows:

vL =
(

m− − 1

2

)
· �v (15)

vH = vL +
(

2b − 1
)

· �v. (16)
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