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Computational Restructuring: Rethinking Image
Compression Using Resistive Crossbar Arrays

Baogang Zhang ', Necati Uysal

Abstract—Image compression is performed on billions of edge
devices deployed in the Internet of Things (IoT). The bottleneck
of the compression is the 2-D discrete cosine transform (2D DCT),
which involves performing two matrix—matrix multiplications in
series. Earlier studies have explored directly mapping the 2D
DCT computation to emerging resistive crossbar arrays (RCAs),
which promise to perform matrix—vector multiplication (MVM)
with extremely small energy-delay product. The main draw-
back is that the series computation is inherently vulnerable
to errors. In this article, we propose to fundamentally rethink
how to perform image compression using RCAs. The key idea
is to restructure the computation to natively match the prop-
erties of the underlying resistive hardware. This allows three
of the main design steps within image compression (2D DCT,
quantization, and zig-zag reordering) to be integrated into a
single analog MVM operation. The integration is facilitated
by the development of a 2D DCT reconstruction technique, a
frequency spectrum optimization technique, and a quantization
optimization technique. The techniques improve the robustness
to errors, eliminates the storage of intermediate data, enables
processing of small image blocks, facilitates the utilization of
large-scale RCAs, and reduces the requirements on the expensive
domain interfaces. Compared with the previous work, the exper-
imental results demonstrate significant improvements in image
quality while reducing power and latency with up to 62% and
21%, respectively.

Index Terms—2D DCT, analog matrix—vector multiplication
(MVM), image compression, in-memory computing, nonvolatile
resistive technology.

I. INTRODUCTION

MAGE and video processing is a fundamental build-
Iing block for emerging cyber-physical systems that are
expected to have a broad impact on areas of our society
as autonomous vehicles, sensor networks, and health care
monitoring [1], [2]. Within these application domains, it is
impossible to transmit all collected sensor data for analysis
on a cloud servers. The acquired data is required to be pre-
processed on the edge such that only the most important parts
are transmitted. In particular, data in the form of images and
videos is required to be compressed before transmission. The
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compression is required to be performed with low latency
and high energy efficiency to enable real-time processing on
power-constrained edge devices. Moreover, the demand for
such low latency and high energy efficiency processing on the
edge is expected to rapidly grow with the maturing of virtual
reality and augmented reality systems [3], [4].

Image compression is performed by partitioning an image
into smaller image blocks. Each image block is transformed
from the spatial domain into the frequency domain using the
2-D discrete cosine transform (2D DCT) [5], [6]. Next, the
obtained frequency coefficients are quantized using a quan-
tization table. Subsequently, the coefficients are reordered
(using a zig-zag pattern), encoded, and saved to a file. The
bottleneck of the flow is the 2D DCT, which involves per-
forming two matrix—matrix multiplications in series. Despite
noteworthy efforts to accelerate image compression with algo-
rithm innovations (as the fast Fourier transform [7], [8]) and
custom digital hardware implementations [9], [10], the com-
pression is still a limiting factor for applications with real-time
processing requirements [11], [12]. Moreover, issue will not
“automatically” be solved by further technology scaling, as the
short-term performance gains are expected to be limited [13].

An arising solution to accelerating image compres-
sion is based on leveraging emerging restive technol-
ogy [14]-[18] to perform highly energy-efficient in-memory
computing [19]-[21]. Resistive technology has recently
attracted significant interest due to that resistive devices
arranged into crossbar array structures can natively perform
analog matrix—vector multiplication (MVM). When the dimen-
sions of the resistive crossbar arrays (RCAs) are scaled-up,
the computation is projected to be orders of magnitude more
energy-efficient than using digital hardware. Moreover, the
latency is low because the entire computation is performed
in a single time-step. Nevertheless, analog computation is
vulnerable to various sources of errors [22], [23].

Directly = mapping the  expensive  matrix—matrix
multiplications within the 2D DCT to RCAs has been
explored in [19]-[21]. The matrix—matrix multiplications
were decomposed into multiple MVM operations, which
were efficiently accelerated using RCAs. The limitation of
this direct approach is that the computational structure has
been optimized for digital hardware, which prohibits the
full potential of the resistive hardware to be unleashed. In
particular, the direct mapping results in poor image quality
and significant amounts of redundant computation. The loss
in image quality stems from that the series computation is
vulnerable to errors, i.e., small errors in the output of the first
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Fig. 1. Review of JPEG image compression based on 2D DCT [24].

matrix—matrix multiplication are amplified into large errors
by the second matrix—matrix multiplication. The high amount
of redundant computation is a result of that the RCAs were
simply viewed as an accelerator for MVM operations, instead
of a novel piece of hardware with unique characteristics that
can be exploited to perform energy-efficient computation.

In this article, we propose to fundamentally rethink how
to perform image compression using RCAs. The key idea is
to restructure the computation to natively match the proper-
ties of the underlying resistive hardware. This allows three of
the main design steps within image compression (2D DCT,
quantization, and zig-zag reordering) to be integrated into a
single analog MVM operation. The integration is facilitated
by the development of: 1) a 2D DCT reconstruction tech-
nique; 2) a frequency spectrum optimization technique; and
3) a quantization optimization technique.

The 2-D reconstruction technique involves converting the
series matrix—matrix multiplication into a single linear trans-
formation (or MVM operation), where the input and output
vectors are the representation of an image block in the spa-
tial and frequency domain, respectively. The reconstruction
itself reduces computation with 2x, improves the robustness
to errors, eliminates storage of intermediate data, and allows
RCAs with large dimensions to process small image blocks.
Moreover, the reconstruction results in that each frequency
coefficient is explicitly computed, which opens the door for the
subsequent frequency spectrum optimization and quantization
optimization. The frequency spectrum optimization involves
reordering rows in the reconstructed DCT matrix such that the
zig-zag reordering is performed for free. Next, high-frequency
coefficients are pruned to allow RCAs with smaller dimen-
sions to be utilized. Although errors are introduced by the
pruning of frequency coefficients, the overall image quality
is improved because smaller RCAs introduce smaller analog
errors. The quantization optimization is based on configuring
ADC, the domain interfaces to inherently perform the quanti-
zation step. In particular, the bit-accuracies of the ADCs are
configured to mimic the quantization table. This alignment of
the computational kernels with the properties of the underly-
ing hardware results in that the requirements on the domain
interfaces can be reduced to an absolute minimum, which
results in further power and area savings. The experimental
results demonstrate that the obtained image quality is signifi-
cantly improved compared with the previous works. Moreover,

the power and latency is reduced with up to 62% and 21%,
respectively.

The remainder of this article is organized as follows.
Preliminaries are provided in Section II. Previous work is
given in Section III. The motivation for the proposed recon-
struction is provided in Section IV. The details of the proposed
image compression is outlined in Section V. The experimen-
tal results are given in Section VI. This article is concluded
in Section VIIL.

II. PRELIMINARIES

In this section, we review the basics of image compression,
metrics for image compression, and the acceleration of MVM
operations using emerging RCAs.

A. Review of Image Compression

Common lossy image and video compression formats as
JPEG [6] and motion JPEG (MJPEG) are based on trans-
forming an image (or video) from the spatial domain to the
frequency-domain using 2D DCT and encoding the frequency
coefficients. The fundamental steps of JPEG compression
are partitioning, 2D DCT, quantization, zig-zag reordering,
encoding, and create file, which is illustrated in Fig. 1.

The first step is to partition the input image [/ into small
image blocks X with dimension 8 x 8 (or 16 x 16). Small block
sizes are used in order to preserve high image quality. For
color images, the RGB components are compressed separately.
Second, each image block X is converted into the frequency
domain by applying the 2D DCT as follows:

C = DXD' (1)

where C is a matrix with the frequency coefficients of X. D is
the standard 2D DCT matrix. Each element D;; in D is defined
as follows:

1 . .
JEco [ ZERED] o <isn1<j<N

where the block size is N x N. Third, the frequency coefficients
are divided by each corresponding entry in a quantization
table. The quantization table is designed to preserve low
frequency components and discard high frequency compo-
nents, as empirical studies have shown that humans are less
sensitive to high frequency patterns. Moreover, the coefficients
in the quantization table can be scaled with a factor gyger
to balance image quality and compression ratio. The quan-
tization is followed by zig-zag reordering of the frequency
coefficients from into a vector (with the coefficients ordered
from low to high frequency). The zig-zag reordering is per-
formed to statistically placing the nonzero coefficients in the
beginning and the zero components at the end of the vector,
which allows the subsequent encoding to be performed more
effectively. The encoding step consists of run-length encod-
ing and Huffman encoding. Run-length encoding is based on
storing the nonzero elements and the number of zeros that
are followed by the nonzero element in the vector. In partic-
ular, each nonzero-element is stored using a triplet (r, s, v),

Djj =
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where r is the number of zeros before the nonzero element;
v is the value of the nonzero element; and s is the number
of bits required to store v. Next, the triplets are further com-
pressed using Huffman encoding. The last step is to create file
where the encoded image is appended with the information
required to perform the uncompression, i.e., the quantization
table and the specification of the Huffman encoding that was
used. Uncompression is performed by reversing the process in
Fig. 1.

B. Image Compression Performance Metrics

In this article, the quality of the image compression is
measured using mean-squared errors (MSEs), peak signal-to-
noise ratio (PSNR), and structural similarity index measure
(SSIM) [25]. The degree of compression (or compression
ratio) is measured using bits per pixel (BPP). The MSE is
computed as follows:

0

MSE(I, i) - % ;:2:: q;(l,,q _ i,,q) 3)

where ] is the original reference image with dimensions
P x Q. I is the image obtained after 1 has been compressed
and uncompressed using the flow in Fig. 1. PSNR is computed
as follows:

I peak

PSNR(I, i) =20 logy, €5

MSE (1, i)

where Ipeak is the maximum pixel value. The technical details
of the SSIM metric are provided in [25]. The BPP metric for
an image is computed as follows:
#num_bits
BPP = ——. ®)
#num_pixels
Using the basic RGB representation of an image, each RGB
component is represented using eight bits. Consequently, the
RGB representation results in that an image is stored using 24
BPP.

C. Acceleration of MVM Using Emerging RCAs

In this section, we outline how MVM operations can
be accelerated using emerging RCAs, which is shown in
Fig. 2(a). In particular, we focus on MVM multiplication
(x = Dy), where D is a DCT matrix (or a reconstructed
DCT matrix D or D in Section V) and x and y are the
input and output vectors, respectively. An RCA consists of
wordlines and bitlines with a nonvolatile resistive in each
cross-point. The fabrication of nonvolatile resistive devices
has been explored based on resistive random access memory
(ReRAM) [14], [26], spin transfer torque magnetic random
access memory (STT-MRAM) [15], [27], and phase change
memory (PCM) [16], [28].

Analog MVM is performed using a one-time expensive ini-
tialization phase and a fast and efficient evaluation phase. In
the initialization phase, conductance values of the resistive
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Fig. 2. (a) RCA for MVM. (b) Normalized performance of RCA hardware

versus digital hardware [22].

devices are programmed to realize a conductance matrix G.
In this article, the conductance matrix G is programmed to be
proportional to the DCT matrix (D) in (2). Next, analog MVM
is performed by passing an input vector v, to the wordlines
and recording an output vector voy from the transimpedance
amplifiers (TIAs) attached to the bitlines, where R; is the feed-
back resistance of the TIAs. v, = v GR; is the computation
performed in the analog domain. The digital input vector x
is converted into an analog input vector vj, using digital-to-
analog converters (DACs). Similarly, the analog output vector
Vout 18 converted into a digital output vector y using analog-to-
digital converters (ADCs). As conductance values cannot be
negative, the common differential pair approach is used to rep-
resent negative matrix values, i.e., one bitline is, respectively,
used to represent the positive and negative elements for one
row in a matrix. Next, the two outputs are subtracted while
being converted into the digital domain using an differential
ADC. Consequently, an N x N matrix is represented using an
RCA with dimensions N x 2N.

The advantage of leveraging RCAs is that the computation
is orders of magnitude more efficient than using digital hard-
ware, which is shown in Fig. 2(b). The results in the figure
are obtained with respect to custom ASIC implementation that
has been optimized for high throughput. The main limitation
of using RCAs to accelerate MVM operations is that the com-
putations is vulnerable to analog errors and errors introduced
by the domain interfaces. This analog errors stem from the
programming accuracy of the resistive devices, the array par-
asitics, and random telegraph noise. The errors introduced by
the domain interfaces stem from that the input and output vec-
tors are quantized with respect to the input and output value
ranges, respectively. The complexity of the domain interfaces
is measured using bit-accuracy. Specifically, an ADC with a
bit-accuracy of b is capable of measuring 2° distinguishable
states within a specified voltage range [vr, vg]. The domain
interfaces dominate the power and area overhead of an RCA.
Moreover, the overheads increase with the complexity (or
bit-accuracy) of the interfaces.

III. PREVIOUS WORK

In [19]-[21], image compression was accelerated by directly
mapping the computation of the 2D DCT step to resistive hard-
ware, which is illustrated in Fig. 3. The 2D DCT computation
was selected because it is the bottleneck of image compression.
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Fig. 4. Image compression using (a) digital and (b) resistive hardware. The
RCAs have dimensions 64 x 128 and parameters as in [19]-[21].

The figure shows how an image block X with dimen-
sions N x N is processed into the corresponding frequency
coefficients C using 2N MVM operations. The two RCAs in
the figure have dimensions N x 2N as two resistive devices
are used per matrix element. First, XD’ is computed by pass-
ing each row from image block X as an input vector to an
RCA programmed with the transpose of the DCT matrix D.
The result of each MVM operation is saved as a row in a
temporary storage, which is illustrated to the left in Fig. 3.
Next, DXD' is computed by passing each column from the
temporary storage as an input vector to a second RCA, which
is programmed with the DCT matrix D. The output vector of
each MVM operation is stored as a column in the final output
C = DXD', which is shown to the right in Fig. 3.

The two main limitations of the direct mapping are: 1) the
image quality after uncompression is degraded and 2) it is
difficult to scale-up the RCA dimensions, which is highly ben-
eficial in terms of power and area. We illustrate the image
quality obtained when image compression is performed by
using digital and resistive hardware in Fig. 4. The images
in the figure are obtained with the quantization step deacti-
vated. It can be easily observed that the analog computation
degrades the image quality. Although the image is recogniz-
able, it is well known from adversarial learning that even
minor distortions may have a devastating impact on the
subsequent processing (such as classification or object detec-
tion) [24], [29]. The degraded image stems from that the
series matrix—matrix multiplication is inherently sensitive to
variations. Small errors introduced in the first matrix—matrix
multiplication are amplified into large errors by the second
matrix—matrix multiplication. Due to the inherent presence of
errors and variations within analog computing, it is impossi-
ble to achieve high image quality [19]-[21]. Moreover, it is
not possible to tradeoff performance (power/area) with image
quality by reducing the complexity of the domain interfaces,
as the uncompressed images quickly become unrecognizable.

RCA with large dimensions have to be leveraged in order to
gain performance advantages (power and latency) over digital
implementations, which was shown in Fig. 2(b). Consequently,
large block sizes are required to be used for the compression.
In [19]-[21], RCAs with dimensions of 64 x 128 were used to
process block sizes of 64 x 64. In contrast, small 8 x 8 or
16 x 16 are commonly used in standard image and video com-
pression formats. The small block sizes are needed to attain
high image quality after uncompression. Nevertheless, these
errors may be relatively minor for block sizes of 64 x 64.
However, the errors are significant when the RCA dimensions
are scaled to 512 x 512 and above.

IV. RETHINKING IMAGE COMPRESSION USING RCAS

In this article, we propose to fundamentally rethink how
to perform image compression using RCAs. The key idea is
to restructure the computation within image compression to
natively match the properties of the underlying resistive hard-
ware, which allows full potential of the emerging hardware to
be unleashed.

The proposed computational restructuring is based on two
observations.

1) Any number of linear transformations performed in
series can, by definition, be restructured into a single
linear transformation. Consequently, the 2D DCT in (1)
can be reconstructed into a single linear transformation
(or MVM operation).

2) We view the quantization performed by the ADC as a
“free” quantization operation that can be exploited to
perform efficient computation. In contrast, quantization
performed by ADCs is commonly viewed as a source
of errors that should be minimized.

These two observations enable the 2D DCT step, the quan-
tization step, and zig-zag reordering step to be integrated
into a single analog MVM operation, which is illustrated in
Fig. 5(a). The integration is facilitated by 2D DCT recon-
struction, frequency spectrum optimization, and quantization
optimization, which is shown in Fig. 5(b)-(d).

The 2D DCT reconstruction involves reconstructing the
2D DCT into a single larger linear transformation, which is
illustrated in Fig. 5. The reconstruction solves the two main
challenges in the previous works [19]-[21]: 1) the sensitivity
to errors is reduced as the series computation is eliminated
and 2) the reconstruction allows RCAs with large dimensions
to efficiently process small block sizes. This translates into
significant improvements in terms of latency, power, and area.
The details of the reconstruction and the advantages are pro-
vided in Section V-A. The reconstruction also facilitates the
explicit computation of each frequency coefficient from the
spatial representation, which opens the door for frequency
spectrum optimization and quantization optimization.

Frequency spectrum optimization involves first reorder-
ing the rows in the reconstructed DCT matrix to perform
the zig-zag reordering for free. This arranges the frequency
coefficients from low to high frequency. Next, we propose to
prune the less important high frequency coefficients, which is
illustrated in Fig. 5(b). The optimization interestingly improves
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both image quality while simultaneously reduces hardware
overheads due to the array parasitics in the RCAs. The details
are provided in Section V-B.

Quantization optimization is based on configuring the ADCs
to perform the quantization step for free, which is shown
in Fig. 5(c). In particular, the bit-accuracy of each ADC is
specified based on the corresponding entry in the quantization
table. This allows the requirements on the domain interfaces
to be reduced to an absolute minimum, which translates into
significant saving in terms of power and area. Intuitively, it
is wasteful to compute each frequency coefficient with high
precision and then quantize them to low precision in order to
save memory. The technique is explained in Section V-C.

V. PROPOSED IMAGE COMPRESSION

In this section, we provide the details of our proposed image
compression consisting of 2D DCT reconstruction, frequency
spectrum optimization, and quantization optimization.

A. 2D DCT Reconstruction

In this section, we explain the proposed 2D DCT recon-
struction. An overview of the reconstruction is followed by an
analysis of the advantages and the detailed specification of the
reconstructed matrix.

1) Overview of Reconstruction: The 2D DCT reconstruc-
tion involves restructuring the series matrix—matrix multipli-
cation in (1) into a single linear transformations as follows:

¢ =Dx (6)

where D is a reconstructed 2D DCT matrix. x and c are
columnwise vector representations of the spatial and frequency
coefficients X and C, respectively. If the reconstructed DCT
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Fig. 6. Proposed 2D DCT computation using reconstructed DCT matrix.

matrix has dimensions N x N, the image block X and the block
of frequency coefficients C both have dimension v/Nx+/N.

The partitioning and the 2D DCT step performed using the
proposed reconstruction is shown in Fig. 6. Given that the
reconstructed DCT matrix has dimension N x N, the image /
is partitioned into image blocks X and frequency blocks C with
dimension v/N x +/N. In the example, it is assumed that the
image I has dimension N x N. Consequently, there is a total of
N image and frequency blocks. Let the image and frequency
blocks, respectively, be denoted X;; and Cj; with 1 <i < N
and 1 <j < +/N.

The image blocks are one-by-one processed into the corre-
sponding frequency sub-block, i.e., Xj; is processed into Cj;.
Specifically, Cj; is obtained from X;; by decomposing X;; into
a vector x columnwise. Next, the vector is passed to an RCA
programmed with the matrix D to perform the computation
¢ = Dx using an analog MVM operation, which is shown
in the middle of Fig. 6. The frequency block Cj; is obtained
from the output vector ¢ by organizing the elements in ¢ into
a block format.

In reality, there is no need to reorganize the vector ¢ into
the corresponding frequency block Cj;. Using the subsequent
optimization techniques, the output vector from the RCA will
be the input vector expected by the run-length encoding in the
top-right of Fig. 5(a) or step 5 in Fig. 1.

2) Analysis of Reconstruction: In Table I, we analyze the
number of MVM operations required to process an image of
size N x N using an RCA with dimensions N x 2N (two resis-
tive devices per matrix element). The direct mapping of DXD’
to RCA hardware used in the previous works results in 2N
MVM operations. First, N operations are used to compute
XD'. Second, an additional N operations are required to com-
pute D(XD'). In contrast, the proposed mapping only results
in N MVM operations. The image X is decomposed into N
blocks of dimension /N x ~/N and each block is processed
using a single MVM operation. Consequently, the restructur-
ing directly reduces the number of MVM operations by 2X
(or from 2N to N), which translates into a 2X improvement
in power, latency, and area. Moreover, no intermediate results
are required to be stored. Furthermore, the robustness to errors
is significantly improved because the series computation is
eliminated, which results in that there are only small errors in
computed frequency coefficients.

3) Reconstructed DCT Matrix D: The reconstructed 2D
DCT matrix D is defined with respect to a columnwise decom-
position of x and ¢ into X and C, respectively. Let the element
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TABLE I
ANALYSIS OF NUMBER OF MVM OPERATIONS

Mapping technique

Direct | Proposed

Block size NxN | VNxvV'N

# partitions 1 N

# MVMs per partition 2N 1
Total # MVM operations 2N N

5 |[H| [ o H

pruning of high
frequency coefficients

=22
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Fig. 7. (a) Frequency reordering and (b) frequency spectrum pruning.

on row i and column j in D be denoted D;; and defined as
follows:

— 2t+1 2 1
Dl] — ap . aq . COS[%} . COS[%] (7)

where 1 <i <N,1 <j<N.q=i/N and r = j/N, where/is
the integer division. p = mod(i, N) and ¢t = mod(j, N) where
mod is the modulus operator. The constant a; is defined as
follows:

1 —
TN k=0

NE )

B. Frequency Spectrum Optimization

ap =

In this section, we explain the proposed frequency spectrum
optimization. The frequency spectrum optimization consists of
a frequency reordering step and frequency spectrum pruning
step, which is illustrated in Fig. 7.

1) Frequency Reordering: The input to the frequency
reordering step is the reconstructed DCT matrix D. The out-
put vector ¢ contains the frequency coefficients arranged in
a columnwise order with respect to the frequency block C,
which is illustrated in the top-right of Fig. 7(a). However, the
run-length encoding expects the frequency coefficients to be
organized from low to high using the zig-zag pattern in the
bottom-right of Fig. 7(a). We observe that the elements in
the output vector can be reordered without any overhead by
simply permuting the corresponding rows in the reconstructed
DCT matrix. Consequently, the frequency reordering step con-
sists of reordering the rows in D such that a matrix D is
obtained where the output elements are arranged with respect
to the zig-zag pattern expected by the run-length encoding.
Consequently, the zig-zag reordering in Fig. 7(a) is performed
for free.
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Fig. 8. The figure shows the total, analog, and frequency errors in terms
of MSE with respect to only computing Ny of the N frequency coefficients.
The tradeoff is shown with respect to an reconstructed DCT matrix with
dimensions (a) 64 x 64, (b) 144 x 144, and (c) 256 x 256.

2) Frequency Spectrum Pruning: The frequency spectrum
pruning involves only computing the Ny lowest frequency
coefficients of an image block X. The remaining (N — Ny)
frequency coefficients are pruned (or set to zero). Intuitively,
the hardware cost is reduced when only a subset of the
frequency coefficients are computed. In digital hardware,
frequency spectrum pruning techniques have demonstrated a
smooth tradeoff between image quality and hardware cost.
Interestingly, when the image compression is performed using
RCAs, substantial reductions in overheads can be obtained
while at the same time improving the image quality. The sav-
ings can be significant because an expensive ADC is used to
measure each frequency coefficient.

Each row in the reconstructed DCT matrix D is used to com-
pute a frequency coefficient in C. Consequently, the frequency
spectrum pruning involves transforming D into a new matrix
5} with dimensions NyxN, which is illustrated in Fig. 7(b). The
transformation automatically results in that only the desired Ny
frequency coefficients are computed.

3) Analysis of Frequency Spectrum Pruning: In this sec-
tion, we first analyze the tradeoff between frequency errors and
analog errors that is introduced by the pruning of frequency
coefficients. All the errors are measured in terms of MSE.
Next, we analyze the implicit tradeoff between image quality
and overheads in terms of power and area.

Let the errors introduced when only a subset of the
frequency coefficients are computed be called frequency
errors. Intuitively, the magnitude of the frequency errors are
increased when the fewer number of frequency coefficients
are computed. Nevertheless, the image quality is gracefully
degraded with respect to the number of discarded coefficients.
This stems from that we choose to discard the highest part
of the frequency spectrum. In contrast, the impact of analog
errors is reduced when fewer frequency coefficients are com-
puted. The explanation is that RCAs with smaller dimension
introduce smaller analog errors because there is less IR-drop
over the array parasitics [30]. Consequently, there exists a
tradeoff between analog errors and frequency errors that is
governed by the selected number of frequency coefficients Ny.
Let the combination of the frequency errors and the analog
errors be equal to the fotal errors.

In Fig. 8, we plot the errors with respect to the ratio Ny/N.
The total errors and the frequency errors are obtained by
compressing an image using an RCA and digital hardware
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TABLE 11
IMAGE QUALITY AND PERFORMANCE (POWER AND AREA) WITH
RESPECT TO THE SELECTED FREQUENCY SPECTRUM Ny.
THE FIGURE SHOWS THAT THE IDEAL FREQUENCY SPECTRUM
IS IN THE RANGE [1, N}f]

Frequency spectrum N; | Image Quality Overhead
with respect to N; (power/area)
larger degraded high
equal highest medium
smaller degraded small

using a subset Ny/N of the frequency components, respec-
tively. Next, the images are uncompressed and the errors are
measured using MSE using (3). The analog errors are equal
to the difference between the total errors and the frequency
errors. The figure shows that the frequency errors increase with
the ratio Ny/N. In contrast, the analog errors are decreased
with respect to Ny/N. Consequently, the total errors first
decrease until a turning point from where the error start to
increase rapidly, which is shown using a blue line in Fig. 8.
Let N¥. be the number of frequency coefficients at the turn-
ing point. In other words, Nji" is the number of frequency
coefficients that maximize the image quality.

Now, we turn our attention to analyze the tradeoff between
image quality and overheads based on Ny, which is shown in
Table II. The key observation is that the highest image quality
is obtained when Ny is equal to Nf* Consequently, power and
area can be saved while at the same time improving the image
quality. Additional power and area savings can intuitively be
obtained at the expense of image quality by setting Ny to below
N]’f. However, it is never beneficial to use Ny > N7, as both the
image quality and the power/area is worse than for Ny equal
to N}" - In our implementation, we set Ny to estimate N, *. The
details of the estimation of N are provided in Section VI-A2.

We also note that the frequency spectrum pruning can be
applied using RCA with fixed dimensions. This would be real-
ized by mapping the matrix lN)f to the bottom-left corner of the
RCA. Next, all resistive devices that are not used would be
programmed to have the maximum resistance, which greatly
reduces the analog errors by reducing the amount of IR-drop
in the RCA.

C. Quantization Optimization

The quantization optimization consists of ADC-based quan-
tization and hardware friendly ADC-based quantization.

1) ADC-Based Quantization: We observe that there exists
an equivalency between the digital quantization performed by
a quantization table and analog quantization performed by an
ADC, which is shown in Fig. 9. In this section, we explain
how to exploit this equivalency to perform quantization oper-
ations for free by appropriately configuring the ADCs, which
intuitively allows the complexity of the ADCs to be reduced to
an absolute minimum. It would obviously be very wasteful to
measure the analog signal with high precision and then quan-
tize the digital results (into low precision) to save memory (or
improve the BPP metric).

The quantization step involves quantizing each frequency
coefficient in a frequency block with the corresponding entry

digital real number analog analog voltage
quantization | - quantization l |+|+J‘
using integer using _Integer
qTable (binary encoding) ADC (binary encoding)
(a) (b)
Fig. 9. (a) Quantization in the digital domain using a quantization table

qTable. (b) Quantization in the analog domain using ADCs.

in the quantization table. The quantization is motivated by that
the subsequent encoding can be more effective when most
coefficients are small or preferably equal to zero. Let cyj, cg.,
and g;; be the frequency coefficient, the quantized frequency
coefficient, and the entry in the quantization table on row i and
column j with respect to a frequency block C. The quantized

frequency coefficients are computed as follows:

Cii

cg- = round<l> (8)
qij

where round(.) is the rounding operator. This is equivalent to

defining quantization levels as follows:

1
quECIij‘*‘kAq’ ke{...,—1,0,1,...}
Aq = qjj @

where Agq is the distance between two adjacent quantization
levels. gy are the boundaries between the quantization levels.
The output after quantization is k if the input number is within
the range [gk—1, qk]-

An differential ADC with a bit-accuracy of b compares an
analog input voltage with 2° — 1 reference voltages and output
a b-bit binary number. The reference voltages are uniformly
distributed between a low and high reference voltage (v, vy).
The reference voltage levels vy are defined as follows:

ve=vL+k-Av, ke0to2bD
VH — VL
Ay =

D (10)

where Av is the distance between two adjacent voltage levels.
The output from the ADC is equal to k if the reference signal
is within the voltage range [vi—_1, vi].

It can easily be observed that there exists an equivalency
between the quantization performed by an quantization table
and an ADC. Therefore, by appropriately specifying the ref-
erence voltages to the ADC, the quantization operation can be
performed for free. It is easy to understand that Av is required
to be specified to be proportional to Ag. The main difference
between the two types of quantization is that the ADC-based
quantization requires the value range of the analog input signal
to be defined. We solve this issue by deriving the value range
of the frequency coefficients in the digital domain. Next, the
digital value range is translated into an analog value range.
Given the analog value range, it is straightforward to specify
the parameters vz, vy, and b to realize any entry in a quantiza-
tion table. The technical details are specified in the Appendix.
It is easy to understand that this results in that the complexity
of the ADC:s is reduced to an absolute minimum with respect
to the specified quantization table.
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16 11 10 16 24 40 51 61 10 10 10 10 13 13 24 24
12 12 14 19 26 58 60 55 10 10 10 13 22 24 24 55
14 13 16 24 40 57 69 56 10 13 13 22 24 24 55 55
14 17 22 29 51 87 80 62 13 13 22 24 24 55 55 62
18 22 37 56 68 109 103 77 13 22 22 55 55 55 62 62
24 35 55 64 81 104 113 92 22 22 55 55 55 62 62 92
49 64 78 87 103 121 120 101 22 55 55 55 62 92 92 92
7292 95 98 112 100 103 99 55 55 62 62 92 92 92 92

©) (d)

Fig. 10. (a) Two differential ADCs with individual reference voltages. (b)
Two differential ADCs with shared reference voltages. (c) An ideal quantiza-
tion table. (d) Shared quantization table with respect to a group size (M) of
eight.

2) Hardware Friendly ADC-Based Quantization: In this
section, we propose a hardware friendly implementation of
the ADC-based quantization. There are two main limitations
of the ADC-based quantization in the previous section. First,
if the complexity of the ADCs are fabricated based on a spe-
cific quantization table, it is impossible to adjust the ADCs to
obtain a higher image quality at run-time. Second, the tech-
nique requires that different reference voltages v; and vy are
provided as an input to each differential ADC. This requires
each ADC to have two internal DACs, which is illustrated in
Fig. 10(a). The separate DACs naturally introduce significant
power and area overheads.

We propose to circumvent these two limitations by attaching
an ADC with the maximum bit-accuracy (8 bits) to each bit-
line. This allows the ADCs to be calibrated to deliver variable
image quality. Next, groups of adjacent ADCs are set to share
pairs of DACs that provide the reference voltages (vp, vgy),
which is illustrated in Fig. 10(b). Specifically, we divide the
ADC:s into groups of M and let the ADCs in each group share
the same reference voltages. The sharing intuitively reduces
the power and area overheads. On the other hand, the shar-
ing of the reference voltages results in that the corresponding
entries in the quantization table must be shared. Consequently,
we convert the original quantization table into an shared quan-
tization table, which is illustrated in Fig. 10(c) and (d). The
shared quantization table is constructed by setting each group
of M quantization entries to be equal to the minimum of the
M entries in the original quantization table. This ensures that
the image quality is not degraded by the sharing. Moreover,
we propose to power gate the ADC groups to save power if
the full bit-accuracy is not required. An k-bit ADC requires
k clock cycles to provide the k bit output. If only p bits are
required to be computed, the ADC can be gated for k — p
cycles. For example, let the required bit-accuracy for the low
and high frequency components be 8 and 5 bits, respectively.
Consequently, there is an opportunity to power gate the ADCs
used to compute the high frequency coefficients for 3 cycles.

In Fig. 11, we plot the power and area of the output
interface, i.e., the differential ADCs and the DACs used to
provide the reference voltages to the ADCs with respect to a

-l Total power-#- DAC power - Total area —¢-DAC area

ADC power ADC area
120 0.07
100 0.06
S g0\ < 0.05
E o Eoos
r ~0.03
z 40 © 0.02
a 20 0.01
0+ -

0
02 46 8101214161820 0 2 46 8101214161820
ADC group size (M) ADC group size (M)

(@) (b)

Fig. 11. The output interface (a) power and (b) area breakdown based on
the ADC group size M.

TABLE III
PERFORMANCE IN POWER AND AREA WITH RESPECT TO THE
GROUP S1ZE (M) OF ADCS THAT SHARE REFERENCE VOLTAGES
FROM THE SAME DACS. M* IS THE GROUP SIZE THAT MINIMIZES
THE POWER CONSUMPTION

Group size M Total Total

with respect to M x power area

smaller larger high
equal smallest | medium

larger larger small

group size of M. In Fig. 11(a), it can be observed that the
power of the DACs used to provide the reference voltages is
reduced when the group size is increase. At the same time, the
power consumption of the ADCs is increased due to that there
are fewer opportunities for power gating. Consequently, it is
not surprising that the total power is reduced until a turning
point from where the power starts to increase. Let the group
size that minimizes the power consumption be denoted M.
We illustrate a breakdown of the area in Fig. 11(b). The area
of the DACs providing the reference voltages is reduced when
the group size is increased. However, as the area is dominated
by the ADCs (constant), the total area is only slightly reduced.

We summarize our performance observations with respect
to the group size M in Table III. The total power is minimum
when the group size M is equal to M*. The power consumption
is degraded (or larger) if M is smaller or larger than M*. The
total area is only slightly decreased when M is increased due
to the increased degree of sharing.

VI. EXPERIMENTAL RESULTS

The experimental results are obtained using a quad core
3.4-GHz Linux machine with 32 GB of memory. The images
in the evaluation are subsets of the images within the Berkeley
Segmentation Dataset [31] and Challenge on Learned Image
Compression (CLIC) mobile and professional datasets [32]. A
summary of the properties of the evaluated images is provided
in Table IV.

The images in the experimental results section are obtained
by performing compression using RCAs hardware using the
proposed flow in Fig. 6(a) or the default flow in Fig. 1.
Uncompression of the images is performed by reversing the
flow using digital hardware. The compression is evaluated in
terms of image quality, compression ratio, latency, power, and
area. Specifically, the image quality is evaluated in terms of
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TABLE IV
PROPERTIES OF THE DATA SETS OF INPUT IMAGES

Dataset Size Average dimensions
(name) (#images) | rows cols
Berkeley Segmentation 100 369 433
CLIC mobile 30 | 1688 1785
CLIC professional 30 | 1314 1961
TABLE V
PARAMETERS OF THE OF RCAS USED
IN THE EXPERIMENTAL EVALUATION
Property Value
Array block resistance 0.4
Input resistance 1002
Output resistance 1002
Programmable resistance range | [2k, 202
Bit accuracy 6 bits

TABLE VI
POWER AND AREA OF CROSSBAR AND PERIPHERAL CIRCUITRY

Bits | Power Area
(mW) | (um®)
Differential ADC 8 1.5 | 1178.8
DAC 8 0.5 21.2
64x128 crossbar n/a 4.8 400.0

MSE, PSNR, and SSIM after uncompression. Image quality
degradations stem from both the quantization step and the
errors introduced in the analog computation. The compres-
sion ratio is evaluated in terms of BPP after the run-length
encoding. The BPP is mainly governed by the quantization
table used in the quantization step.

The MVM operations that are accelerated using RCA are
evaluated using circuit simulation with SPICE level accu-
racy. The circuit simulations explicitly capture the impact of
array parasitics, programming accuracy, and domain interface
quantization errors. The circuit simulation is performed using
a custom simulator that exploits the sparse structure of the
RCAs, which results in significant (orders of magnitude) run-
time improvements over HSPICE. The accuracy has been
validated to be equivalent or higher than HSPICE. Using the
parameters in Table V, the experimental setup has been proven
to exhibit high correlation with results obtained using hard-
ware prototypes [20], [23]. The conductance values of the
resistive devices are programmed using the program and verify
techniques in [22].

The performance in terms of power, latency, and area
has been obtained by carefully combining results reported
in [21], [22], and [33]. The power and area for an 64 x 128,
8-bit DAC, and 8-bit differential ADC is shown in Table VI.
The power and area for crossbars of other dimensions are
obtained by scaling the crossbar parameters with the num-
ber of cells in the crossbar. The power and area of the DACs
and ADCs are assumed to scale exponentially with the bit-
accuracy. The latency of an MVM operation with 8-bit ADCs
is 100 ns.

We evaluate the effectiveness of the different optimization
techniques in Section VI-A. The performance of the entire
framework is evaluated in Section VI-B.

Fig. 12. (a) Reference image. (b) Images obtained using the direct mapping
in [19]-[21]. (c) Images obtained using the proposed 2D DCT reconstruction.

TABLE VII
COMPARISON OF PERFORMANCE AND OVERHEADS W/O WITHOUT 2D
DCT RECONSTRUCTION

2D DCT Performance Storage of intermediate
reconstruction? | (power/area/latency) data required?
No 2X Yes
Yes 1X No

A. Evaluation of Optimization Techniques

1) Evaluation of 2D DCT Reconstruction: We evaluate the
impact of the proposed 2D reconstruction in Fig. 12. The
images are obtained using RCAs with dimensions 64 x 128.
The quantization step is disabled to demonstrate the maximum
image quality that can be achieved after uncompression. The
reference images are shown in Fig. 12(a). The images obtained
using the direct mapping in [19]-[21] are shown in Fig. 12(b).
The images obtained using the proposed 2D DCT reconstruc-
tion are shown in Fig. 12(c). The reference images are of high
quality. It can be observed that the images obtained using the
direct mapping are degraded by the compression. The degra-
dation stems from the amplification of errors in the second
matrix—matrix multiplication. Moreover, the impact of using
the large block sizes is visible when examining the images
in detail. The image obtained after the proposed 2D DCT
reconstruction are just slightly degraded with respect to the
reference images. This stems from that there is no amplifica-
tion of errors and the reconstruction enables small block sizes
can be used. In fact, the reconstruction improves the robustness
to any type of errors.
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Fig. 13.  Sensitivity of the image quality with respect to the bit-accuracy of
the DAC and ADC domain interfaces. The images in (a) are obtained using

the direct mapping and the images in (b) are obtained using the proposed 2D
DCT reconstruction.

To further demonstrate the improvement in robustness to
errors, the image quality with respect to the bit-accuracy of
the domain interfaces is shown in Fig. 13. The figure shows
that using the direct mapping in [19]-[21], the image quality is
quickly degraded when the bit-accuracy is reduced from 8§ to
4 bits. Using the proposed 2D DCT reconstruction, the image
quality is more smoothly degraded when the bit-accuracy of
the domain interfaces are reduced. Hence, a lower vulnerability
to errors is demonstrated.

In Table VII, we compare the performance in terms of
latency, power, and area. While excluding the extra overhead
introduced by the storage of the intermediate data, the power,
area, and latency is reduced with 2X. It is easy to understand
that these performance benefits are obtained because the num-
ber of MVM operations is reduced from 2N to N, which was
analyzed in detail in Section V-A.

Based on the observed results, it is clearly advantageous to
leverage the proposed 2D DCT reconstructions because it both
improves the image quality and the performance in terms of
power, area, and latency.

2) Evaluation of Frequency Optimization: In this section,
we analyze the impact of the frequency spectrum optimization
in Section V-B. The analysis is focused on the frequency spec-
trum pruning because the frequency reordering only avoids
performing the zig-zag reordering using a specialized router.
For the frequency spectrum pruning, the optimal N]’f /N ratios
are 0.8, 0.7, and 0.7 for D matrices with dimensions 64 x 64,
144 x 144, and 256 x 256, respectively. The ratios were deter-
mined by performing the image compression using RCAs
with different dimensions and selecting the ratio that mini-
mized MSE in (3). It is not surprising that the NJZ‘/N ratio
becomes smaller for RCAs with larger dimensions, as larger
RCAs are more severely impacted by IR-drop over the array
parasitics [30].

The frequency spectrum pruning is evaluated in terms of
image quality in Fig. 14. The images in the left column are
obtained using the full frequency spectrum. The images in the
right column are obtained using a reduced frequency spec-
trum. The number of columns in the reconstructed DCT matrix
is 64, 144, and 256 for the top, middle, and bottom row,

D: 64x64 Dy: 64x52
MSE: 2.4

D: 144x144 Dy: 144x87
MSE: 5.4 5.1

D: 256x256 Dy: 256x154
MSE: 8.7 6.8

Fig. 14. The images in the left (right) column are obtained without (with)
frequency spectrum optimization. The dimension of the reconstructed 2D DCT
matrix and the MSE are shown below each figure.

respectively. The dimensions of the reconstructed DCT matri-
ces (5 or ﬁf) and the MSE are shown below each image.
It can be observed that image quality is gracefully degraded
when RCAs with larger dimensions are utilized. The degra-
dation stems from the IR-drop over the array parasitics. Note
that the loss in image quality is observed although the state-of-
the-art technique of tuning the memristors conductance values
to compensate for the IR-drop is utilized [22]. It can also be
seen that the frequency pruning improves the image quality (or
reduces MSE). The image quality improvements are a result
of that smaller analog errors are introduced when the size of
the RCAs are scaled down.

Next, we focus on evaluating the frequency spectrum prun-
ing in terms of power and area for RCAs with different
dimensions. The evaluation in Fig. 15(a) and (b). The fig-
ure shows that the pruning significantly reduces the power
and area while Ny is selected to maximize the image quality.
The improvements are slightly smaller the N¢/N ratio because
only the number of bitlines is reduced. However, large gains
are still obtained because the ADCs used to measure the out-
puts are more expensive in terms of overheads than the DACs
used to provide the inputs. For the RCAs with 144 or 256
inputs, it may be advantageous to accept a slight degradation
in image quality in order to significantly reduce the hardware
overheads. The tradeoff between the image quality and the
number of frequency coefficients for an RCA with 144 inputs
was shown in Fig. 8(b). The trends for RCAs with 256 inputs
are similar.

Given that the frequency spectrum pruning provides
performance benefits without any degradation in image quality,
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Fig. 15. Performance improvements from frequency spectrum optimization
for reconstructed 2D DCT matrices with different dimensions.

it can be concluded that it is always advantageous to apply
frequency spectrum optimization.

3) Evaluation of Quantization Optimization: In this section,
we evaluate the quantization optimization in Section V-C.

The ADC-based quantization is examined in Fig. 16. We
compare the proposed ADC-based quantization with using
8-bit ADCs and performing digital quantization. The evalu-
ation is performed in terms of image quality with respect to
quser 1n Fig. 16(a). Recall that the quantization table is scaled
with gyser to balance compression ratio with image quality.
The figures shows that the MSE for both methods is corre-
lated with gyger. For guger larger than 0.25, the MSE is similar
for both methods because the overall errors are dominated by
the quantization specified by the quantization table. However,
for quser €qual to 0.25, the ADC-based quantization results in
smaller errors. This stems from that the 8-bit ADCs introduce
larger errors than the digital quantization for small values of
quser- The ADC-based quantization would use ADCs with a
bit-accuracy higher than 8 to circumvent this to occur. We eval-
uate the normalized power with respect to qyser in Fig. 16(b).
The figure shows that the power consumption is constant when
8-bit ADCs are used and quantization is performed in the digi-
tal domain. In contrast, the power consumption of ADC-based
quantization is correlated with the value of gyger. This is easy
to understand because when gyger is equal to 1, the ADC-based
quantization utilizes 22/10/12/8' ADCs with a bit-accuracy of
5/6/7/8, respectively.

In summary, the ADC-based quantization is quality config-
urable, i.e., the effort in power is proportional with the desired
image quality. With respect to the 8-bit ADC baseline, power is
saved when gy is set equal or greater than 0.5 by down sizing
the bit-accuracy of the ADCs. The power saving are obtained
without degrading the image quality in terms of MSE. In par-
ticular, the figure shows that the technique is able to save up
to 60% of the total power for larger values of gyser. For quger
equal to 0.25, the image quality is improved at the expense of
increasing the power consumption by sizing up some ADCs
beyond the 8-bit baseline. The main limitation of the ADC-
based quantization is that gyser iS restricted to a single at the
time of fabrication.

The hardware friendly ADC-based quantization is evaluated
in Fig. 17. The parameter gyser is set to 1 in the evaluation.
The technique allows the domain interfaces to be configured

lFrequency pruning is assumed to be used, i.e., there are only 52 ADCs.

& 8-bit interfaces + digital quant.
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- 8-bit interfaces + digital quant.
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Fig. 16. Comparison between proposed ADC-based quantization and using
8-bit ADCs and performing digital quantization. The comparison is evaluated
in terms of MSE in (a) and power in (b).
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Fig. 17.  Evaluation of group size selection (M) in terms of (a) power

consumption and (b) area.

with respect to the image quality at run-time. The normal-
ized performance in terms of power and area is evaluated with
respect to the group size in the figure. The group size M refers
to the number of ADCs that share the same reference voltages
vr and vy. In Fig. 17(a), it can be observed that the minimum
power is achieved for M equal to 14. This stems from that M
equals 14 strikes a perfect balance between the power reduc-
tions obtained from the sharing of the reference voltages and
the power savings obtained from the power gating. The total
RCA power is reported in Fig. 17(a). The power savings are
smaller than in Fig. 11 where only the power of the output
interface was reported. We evaluate the total area with respect
to the group size in Fig. 17(b). It can be observed in the figure
that only minor savings in terms of total area are obtained with
a higher degree of sharing. This stems from that the ADCs
dominate the area of each RCAs. Despite that the minimum
power is obtained for a group size of 14, it may be more prac-
tical to utilize a group size of 8, which would ease delivering
the reference signals to the ADCs. The majority of the saving
in terms of power consumption are anyways achieved.

B. Evaluation of Proposed Image Compression

In this section, we evaluate the proposed image compression
as a whole and provide comparisons with previous studies. We
perform the evaluation in terms of image quality, compres-
sion ratio, latency, power, and area in Table VIII. Note that
a lower MSE indicates higher image quality while a higher
PSNR or SSIM indicates higher image quality. The reported
latency in the table is the average time for processing an image
from the respective datasets. For the proposed image com-
pression, this is equal to number of image blocks multiplied
with 100 ns. In the table, we evaluate six different methodolo-
gies to clearly demonstrate the effectiveness of the proposed
techniques. “Ideal” denotes the performance obtained using
floating point computation in digital hardware. This method
should be viewed as a reference point (or upper bound) on the
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TABLE VIII
COMPARISON OF DIFFERENT IMAGE COMPRESSION TECHNIQUES

Name Method Image quality Compression || Latency | Power | Area

(MSE) | (PSNR) | (SSIM) (BPP) (ms) (mW) | (mm?)

Berkeley Ideal 73.7 30.3 0.930 3.6 - -
segmentation | D20, [217 || 2235 [ ~ 251 [ 0757 |~ ~ 631 061 | 140.8 | 0.077 |

D-P [19] 223.5 25.1 0.757 6.3 031 | 281.6 | 0.154

R 89.1 29.4 0.908 32 025 | 140.8 | 0.077

RF 84.8 29.6 0.913 33 025 | 121.8 | 0.063

RFQ 83.2 29.7 0.916 3.3 025 | 107.9 | 0.063

CLIC Ideal 22.3 35.6 0.957 2.0 - -
mobile | D201, 211 ||~ 140.7 | ~ 26.8 [ 0.742° |~~~ 38~ ~9.597| 140.8 | 0.077 |

D-P [19] 140.7 26.8 0.742 3.8 480 | 281.6 | 0.154

R 26.9 34.7 0.948 1.8 4.65 | 1408 | 0.077

RF 259 349 0.949 1.9 4.65 | 121.8 | 0.063

RFQ 249 35.1 0.952 1.9 4.65 | 107.9 | 0.063

CLIC Ideal 522 32.1 0.938 2.9 - -
professional | D201, [21] | " 213.8 [ = 250 | 0689 [ ~ = 6.0 8387 140.8 | 0.077 |

D-P [19] 213.8 25.0 0.689 6.0 419 | 281.6 | 0.154

R 63.7 31.1 0.922 2.6 4.07 | 140.8 | 0.077

RF 60.7 31.3 0.925 2.6 4.07 | 121.8 | 0.063

RFQ 59.3 31.4 0.928 2.7 4.07 | 107.9 | 0.063

Norm. Ideal 0.88 1.02 1.01 1.08 - -
| DT20L, 211 ]|~ 429 [ 079 | 075 | 217 ||~ 206 130 | 123 ]

D-P [19] 4.29 0.79 0.75 2.17 1.03 2.61 2.45

R 1.08 0.99 0.99 0.97 1.00 1.30 1.23

RF 1.03 0.99 1.00 0.99 1.00 1.13 1.00

RFQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

image quality that can be achieved. The “D” method stands for
the direct mapping in [20] and [21]. The “D-P” method stands
for the D method but with an implementation that is pipelined
to maximize throughput [19]. The “R” method denotes our
framework with only the 2D DCT reconstruction applied. The
“RF” method indicates the R method extended with frequency
spectrum optimization. The “RFQ” method is the RF method
extended with the hardware friendly quantization. The normal-
ized performance of the different methods is shown in bold at
the bottom of the table. For all the methods, we assume that
the RCAs are fabricated with an ADC group sharing size of
8. The RCAs have a dimension of 64 x 128 and 64 x 104 with
and without frequency pruning, respectively. Quantization is
performed with respect to the quantization table in Fig. 10(c).

First, we evaluate the D method with respect to the Ideal
method. The table shows that the D method has 4.33x higher
MSE and 23% and 26% smaller PSNR and SSIM than the
ideal method. The compression rate is 2.0X worse in terms of
BPP. The degraded image quality stems from that errors are
introduced when the RCA are leveraged to perform the MVM
operations. We believe that the worse compression ratio stems
from that the errors introduce additional nonzero frequency
coefficients. Every nonzero coefficient requires a minimum of
9 bits to be stored. Compared with the D method, the D-P
method achieves the exact same performance in terms of image
quality and compression. However, the latency is about two
times lower and the power and area is two times higher due
to a parallel implementation.

Compared with the D and D-P method, the R method
improves MSE, PSNR, and SSIM with 25%, 26%, and 36%,
respectively. The degree of compression is improved with
46.0%. The improvements in image quality stem from that
the series matrix—matrix multiplication is circumvented by
the computational reconstruction. The BPP is reduced due to

the improved robustness to variations. Compared with the D
method, the latency is reduced with 51%. Compared with the
D-P method, power and area are reduced with 50%. The R
method has slightly smaller (3%) average latency than the D-
P method because the image block size is reduced from 64 x 64
to 8 x 8. Consequently, less padding is required to make the
image dimensions match a multiple of the block size dimen-
sions, i.e., the amount of redundant computation is reduced.

Compared with the R method, the RF method improves
MSE, PSNR, and SSIM with 4%, 0.6%, and 0.2%, respec-
tively. The improved image quality stems from that the
frequency pruning reduces the amount of errors introduced
in the analog computation. Recall that the frequency prun-
ing reduces the dimension of the RCA, which results in that
the negative impact of IR-drop is reduced. The (2%) increase
in compression ratio may stem from that the image quality
is improved. The power consumption is reduced with 13.2%
because RCAs with 20.0% fewer bitlines are utilized.

Compared with the RF method, the RFQ method results
in similar performance in terms of image quality and com-
pression. However, the power consumption is reduced with
10.7% on the average. The savings stem from that the RF
method uses 8-bit ADCs and performs quantization in the dig-
ital domain. The RFQ method performs the quantization using
the ADCs, which allows the 8-bit ADCs used to compute the
high frequency coefficients to be power gated in a few clock
cycles.

In summary, the proposed methods result in that image com-
pression can be performed using RCAs while only slightly
degrading the image quality compared with digital hardware.
The RFQ method is compared with the Ideal method in terms
of image quality in Fig. 18. Despite that the MSE is slightly
higher and the PSNR and SSIM are a bit lower, the image
quality is very similar to the human eye. Compared with the
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(b)

Fig. 18. Comparison of image quality obtained using (a) digital hardware and
(b) resistive hardware. Quantization is performed using the table in Fig. 10.

previous work in [19]-[21], the image quality is improved
while at the same time reducing latency and power with
51% and 24% or 3% and 61%, respectively. The benefits are
obtained by reconstructing the compression such that the dom-
inating computational kernels are aligned with the properties
of the underlying hardware.

Next, we focus on evaluating the proposed compression with
respect to the block sizes that are processed. We compare the
normalized performance in terms of normalized MSE, BPP,
power, and area in Fig. 19. A uniform quantization table con-
sisting of only 10 is used for all the block sizes. It can be
observed that the MSE is degraded and the BPP is improved
when the block size is scaled up in Fig. 19(a). The power
and area performance is shown in Fig. 19(b). The power and
area performance is close to constant with respect to the block
size. This stems from that an RCA used to process 16 x 16
blocks has 4X larger domain interfaces. At the same time, it
processes a 4X larger block size. The power and area sav-
ing obtained when the block size is scaled from 8 x 8 to
12 x 12 stems from that additional frequency coefficients can
be pruned. Nevertheless, compared with digital hardware, it is
highly advantageous that the computational effort is constant
(at worst) with respect the block size. The digital computa-
tional effort of 2D DCT is obviously not constant with respect
to the block size.

Compared with performing image processing with digital
hardware, we estimate the computation to be at least 44X more
energy efficient. A detailed comparison between an RCA hard-
ware prototype and an application-specific integrated circuit
(ASIC) was performed in [21] and [34]. The study reported a
17X improvement in energy efficiency with obtaining similar
image quality. The techniques proposed in this article fur-
ther improves the energy efficiency with 2.61X. Moreover, the
image quality is improved at the same time. Therefore, the
case for leveraging emerging resistive hardware is even more
compelling than before.

VII. SUMMARY AND FUTURE WORK

Computation of 2D DCT is the bottleneck of real-time
image and video compression. An arising solution to scalably

% MSE -e-BPP 4 Power -e-Area

o 25 o 1.05
o (8]
g 2 g 1
1S IS
é 15 E 0.95
o 1 o 09
o Q.

: 0.5 : 0.85
1S £
© o © o8
Z sxs 12x12 16x16 < 8x8 12x12 16x16

Block size Block size

(a) (b)

Fig. 19. The image quality and compression ratio is evaluated with respect to
the processed block size in (a). The normalized power and area with respect
to the block size is evaluated in (b).

enable 2D DCT to be performed on edge-devices is to accel-
erate the computation using emerging RCAs. In this article,
we proposed to rethink how to perform image compression
using emerging hardware by reconstructing the computational
kernels to be aligned with the underlying properties of the
resistive hardware. This results in significant improvements in
image quality, robustness to errors, power, area, and latency. In
our future work, we will investigate techniques of further mit-
igating the errors occurring in the analog domain. Moreover,
we also plan to collaborate with device level researches to
evaluate the proposed techniques using hardware prototypes.

APPENDIX

In this Appendix, we provide the details for how to specify
parameters vy, vy, and b with respect to a quantization factor
q in Section V-C. Let g be an arbitrary entry in a quantization
table. This is performed by first determining the number of
states that are required to be captured, which directly deter-
mines the bit-accuracy b of the ADCs. Next, we calculate the
analog voltage step Av that corresponds to a digital quan-
tization step Agq. Lastly, the reference voltages (v, vy) are
specified based on b and Av.

The value rage [c~, ¢T] for each frequency coefficient can
be determined based on the value range of the input vector x
and the values in the reconstructed DCT matrix 5} The value
range of x is [—127.5, 127.5]. This allows the value range
[c=,ct] to be easily computed by taking the absolute value
of each entry in the reconstructed DCT matrix and computing
the corresponding row-wise sum. The result is subsequently
multiplied with —127.5 or 127.5 to obtain ¢~ or ¢¥, respec-
tively. Next, the number of positive states (m™) and negative
states (m~) are computed as follows:

ot
+
m = r0und<—) (11D
q
- c
m- = round(—) (12)
q
where ¢ is the corresponding quantization factor.

Consequently, the total number of states is mt +m + 1,
where the 1 corresponds to the zero state. Next, the number

of required bits is computed as follows:
b = ceil(logy (m* +m™ + 1)) (13)

where ceil(.) is the ceiling operator. log,(.) is the logarithm
with respect to base 2. Now we turn our attention to computing
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the voltage step v that corresponds to Ag, which is performed
as follows:

1%
Av=q— i Ry (14)
C

where vpax is the maximum input voltage provided by the
DAC. The DAC is assumed to provide input voltages in the
range [ — Vmax, Vmaxl; ¢ 1S the scaling between an input volt-
age into an output current realized by the conductance matrix
G; Ry is the feedback resistance of the TIAs.

Lastly, we turn our attention to specifying the reference
voltages. The voltages (v, vy) are defined as follows:
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VL+(2b—1)-Av.
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